WO2024083479A1 - Mittel zur quantitativen entfernung von wasser aus einem gasstrom sowie vorrichtung hierfür und verwendung desselben - Google Patents

Mittel zur quantitativen entfernung von wasser aus einem gasstrom sowie vorrichtung hierfür und verwendung desselben Download PDF

Info

Publication number
WO2024083479A1
WO2024083479A1 PCT/EP2023/077119 EP2023077119W WO2024083479A1 WO 2024083479 A1 WO2024083479 A1 WO 2024083479A1 EP 2023077119 W EP2023077119 W EP 2023077119W WO 2024083479 A1 WO2024083479 A1 WO 2024083479A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
indicator
gas stream
quantitative removal
Prior art date
Application number
PCT/EP2023/077119
Other languages
English (en)
French (fr)
Inventor
Jan HARTWIG
Sabine Kraus
Original Assignee
Elementar Analysensysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elementar Analysensysteme Gmbh filed Critical Elementar Analysensysteme Gmbh
Publication of WO2024083479A1 publication Critical patent/WO2024083479A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3092Packing of a container, e.g. packing a cartridge or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/49Materials comprising an indicator, e.g. colour indicator, pH-indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the invention relates to a mixture for quantitatively removing water from a gas stream.
  • the purity of gases plays a major role in a variety of processes.
  • a key aspect is water removal.
  • the term "quantitative" in the sense of the invention is to be understood as meaning that the water content is reduced to a value of less than 100 ppm.
  • the need for such water removal affects all existing analysis systems and modes for measuring nitrogen, carbon and oxygen, but also, for example, TOC analysis or IRMS analysis.
  • the gas stream to be supplied for analysis is usually passed through a pipe which is partially filled with the drying agent, so that the gas inevitably has to pass through the drying agent and water is thereby removed.
  • drying agents are either not suitable for actually removing water quantitatively or they are not inert towards all gas streams.
  • the well-known drying agent silica gel often causes side reactions, so that the analysis result is distorted by the pre-drying because components in the drying agent are either bound or changed.
  • the invention is therefore based on the object of providing a simple and safe material for the quantitative removal of water, which is particularly suitable for drying a gas stream before a subsequent gas analysis.
  • the drying agent must not react with the measuring gases or interact too strongly, as this would lead to a change in the measuring signal.
  • Such a material according to the invention comprises a mixture of molecular sieve and calcium chloride provided with an indicator.
  • the molecular sieve is able to quantitatively remove the water contained. It thus ensures the necessary dryness of the gas stream (dry efficiency), in particular for elemental analysis.
  • molecular sieve or molecular sieve in the sense of this invention is to be understood as a functional term, particularly for natural and synthetic zeolites. However, the terminology also includes other substances which, like cellulites, have the inherent property of having a high adsorption capacity for gases, vapors and dissolved substances with certain molecular sizes. Such molecular sieves, especially natural and synthetic zeolites, have a comparably large internal surface area, preferably in the range of 500 to 760 m 2 /g. They also have a very large pore diameter, which is in the same order of magnitude as the diameter of the molecules to be adsorbed. The pore diameter given in angstroms is generally used to classify molecular sieves.
  • the advantage of using a molecular sieve is that it does not dissolve when water is absorbed and thus retains its solid form and structure even when a drying tube is used. When used in elemental analysis, this prevents blockages and the entrainment of liquid fractions with the gas flow, which would at least lead to the measurement being aborted or to incorrect measurements. Permanent entrainment of material would also mean that the drying agent would have to be changed more frequently and, in the worst case, could damage the device.
  • molecular sieves alone would ensure suitable and sufficient drying, but so-called molecular sieves are designed in such a way that due to their dark color and/or the property of retaining water in the sample, it is not possible to apply an indicator and thus recognize when the drying capacity of the molecular sieve is exhausted. The user is therefore left in the dark as to whether the drying agent can still be used or whether the water is no longer completely removed and the residual water contained in the gas stream has long since distorted the measurement result.
  • Calcium chloride is therefore added to the mixture according to the invention as a second drying agent.
  • the use of pure calcium chloride as the sole drying agent would not be sufficient to ensure quantitative removal of water, which is particularly important for gas analysis.
  • calcium chloride due to its colorless, non-transparent crystals, calcium chloride is well suited to making a clear color change visible when the calcium chloride contains an indicator. Due to the property of calcium chloride to absorb large amounts of water and then dissolve itself in the crystal water, the color change caused by exposure to water is particularly visible. The indicator thus allows the water absorption to be visually tracked.
  • the combination of molecular sieve and calcium chloride also has the advantage that even after completion of the aforementioned dissolution process of calcium chloride, a completely liquid phase cannot form over the entire diameter of a drying tube or another container containing the agent according to the invention, since the solid structure of the molecular sieve is retained.
  • calcium chloride like the molecular sieve, is inert to practically all gas streams to be measured. This applies not only to the typically used carrier gases helium and argon, but also to carbon dioxide.
  • calcium chloride acts as a drying agent and thus the introduction of an indicator onto a carrier material does not lead to a dilution of the drying material itself. This in turn has the advantage that the total amount of mixtures can remain the same when compared to material with an indicator and material without an indicator, which plays a role in determining pressure loss, dead volume or service life, among other things.
  • the material according to the invention has a significantly higher water absorption capacity per volume than the drying materials known to date.
  • the water absorption of Sicapent® is smaller by a factor of about 2 over a wide mixing range due to the significantly lower bulk density.
  • the advantage of the new invention is that it provides a way to use a new drying agent for C, N and O determinations using simple chemicals that are available in large volumes, which simultaneously indicates the creation of the drying agent.
  • the hazard potential of the material has also been significantly reduced, making processing, preparation and use safer and easier. Due to the increased absorption capacity per volume, the operating time could be extended by a factor of 2 while maintaining the same container volume.
  • 3 ⁇ molecular sieves between 3 and 4 angstroms, in particular various 3 ⁇ molecular sieves, can be used for the mixture, which means that preferably at least 70% by weight, preferably at least 90% by weight, have a pore diameter.
  • 3 ⁇ molecular sieves are particularly preferred because they absorb and release gas to a lesser extent during measurements than larger-pore molecular sieves, which prevents falsification of measurement results.
  • the proportion of molecular sieve in the total mass of the mixture is between 60 and 95 wt.%, preferably between 80 and 93 wt.% and particularly preferably between 85 and 90 wt.%.
  • the remaining difference to the total amount is then made up of the calcium chloride contained in the indicator in some form, so that its proportion is between 5 and 40 wt.% based on the total amount of drying material, preferably 7 to 20 wt.% and particularly preferably between 10 and 15 wt.%.
  • the indicators used which show a color change depending on the humidity in the surrounding medium, can be both inorganic and organic in nature.
  • Inorganic indicators are often available on the market at a lower price.
  • the most popular inorganic indicator is copper(II) sulfate (Cu(II)SO4).
  • Copper(II) chloride can also be used. The advantage here is that it is harmless. When used together with calcium chloride, the color changes from colorless to blue as soon as the primary drying agent, the molecular sieve, is no longer suitable for quantitatively removing the water.
  • Phenolphthalein is particularly suitable as an organic substance.
  • Phenolphthalein has the particular advantage that when the capacity of the molecular sieve, which fills completely with water within its pores, is exhausted, it shows a color change to white, which is clearly recognizable against the dark brown color of the molecular sieve. This "front” shifts further and further in the direction of flow towards the gas outlet during the course of the measurements. As soon as this color change reaches the gas outlet, there is no longer a sufficient amount of drying agent suitable for completely removing the water.
  • the mixture according to the invention is stored for a longer period of time in such a way that it is exposed to air humidity so that the water is not carried through by a gas stream, this changes the reactions that lead to the color change of the indicator.
  • the indicator (In) then does not have the structure FMn, which leads to a white color, but is present as In 2- and thus turns pink-violet. This pink coloration clearly shows that moisture has slowly diffused in. This can also be the cause of the exhaustion of the absorption capacity of a column, especially storage errors, can be more easily detected.
  • the calcium chloride (CaCl2) containing the indicator can be coated with the indicator so that it lies on the surface of the calcium chloride acting as a carrier material.
  • the drying agent is characterized by a particularly long service life, easy handling and an optical indicator that ensures visual tracking of water absorption.
  • the material is not a hazardous material.
  • the invention furthermore also includes a device for drying gases in the sense of quantitatively removing the water, in particular in preparation of a gas flow for subsequent analysis.
  • a device for drying gases in the sense of quantitatively removing the water, in particular in preparation of a gas flow for subsequent analysis.
  • Such a device has a gas-tight housing and a gas inlet and a gas outlet.
  • the volume defined by this housing is at least partially filled with the material according to the invention according to at least one of claims 1 to 6.
  • the material according to the invention can be used directly in any gas analysis, in particular in any elemental analysis, without changing the system.
  • a filled tubular reactor represents a particularly simple design of such a device.
  • the device can basically be made of any material that is inert to the gas stream to be analyzed and is gas-tight. it must be at least partially transparent.
  • Metals, glass and plastic are the main possible base materials.
  • a viewing window made of glass or a corresponding transparent plastic must be provided so that the indicator changes and the end of the drying agent's service life is visible.
  • Glass and sometimes plastic as the base material in particular has the advantage that such viewing windows are not necessary. When a color change is moved along the length of the container, particularly the tube, this has the advantage that the effect is clearly visible.
  • Glass is particularly preferred as a housing material due to its inert properties.
  • the invention also relates to the use of the material according to the invention according to one of claims 1 to 6 and/or a device according to the invention according to claim 7 or 8 for the quantitative removal of water in a gas analysis system.
  • this relates to gas analysis systems for the determination of nitrogen, carbon, hydrogen and oxygen (CHNO).
  • CHNO nitrogen, carbon, hydrogen and oxygen
  • the material according to the invention is particularly suitable for completely removing water from the gas flow head without changing the flow behavior and at the same time reliably shows the exhaustion of its drying capacity through the indicator it contains.
  • the use of the material is not limited to certain devices, but can be used in all applications that identify non-acidic, dry gas flows. Other conceivable areas of analysis are also TOC analysis and IRMS analysis.
  • a thermal conductivity detector (WLD) also has a A dry gas flow is the basic requirement for precise, linear and repeatable results over the entire measuring range.
  • Fig. 1 a schematic design of a device according to the invention
  • Fig. 2 schematically the use of a device according to the invention in a gas analysis system
  • Figure 1 shows the device 10 according to the invention, which is equipped as a preferably cylindrical housing 11 with a gas inlet 12 and a gas outlet 13. Inside there is a filling 14 with the material according to the invention, which is introduced in such a way that the gas flow flowing in through the gas inlet 12 must in any case pass through the material before it can escape via the gas outlet 13.
  • Figure 2 shows a highly simplified gas analysis system 20, preferably an elemental analysis system, in which the material according to the invention is used for the quantitative removal of water.
  • the gas stream is first passed via lines 21, 22 and 23 through a device for removing carbon dioxide 24 and then through a device 10 according to the invention before it is analyzed in the detector 25.
  • the functions of the devices 24 and 10, i.e. carbon dioxide removal and drying can also be arranged in a device such that this device has two segments into which a corresponding material is filled.
  • this can be a tube which is filled in a first part with the mixture according to the invention and in a second part, downstream in relation to the gas flow, with a drying agent.
  • pre-drying may be provided before the removal of carbon dioxide.
  • the following example shows how many measurements can be carried out with which type of absorbent for the quantitative removal of water before the indicator contained in each case indicates complete loading with water.
  • Example 2 shows that due to the very good drying properties of the molecular sieve, its drying capacity is increased by a factor of 2 in an identical filling volume, so that conversely the service life of a column is significantly increased.
  • Example 2 shows that due to the very good drying properties of the molecular sieve, its drying capacity is increased by a factor of 2 in an identical filling volume, so that conversely the service life of a column is significantly increased.
  • an analyzer without a drying agent was used, followed by various drying agents.
  • an automatic liquid sample feed was used.
  • the drying effect (amount of water removed in relation to the total amount of water present) can be determined from the ratio of the values when using the respective drying agent to the analysis without a drying agent. The average value from 10 analyses was used for the calculation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Mittel zur quantitativen Entfernung von Wasser aus einem Gasstrom sowie Vorrichtung hierfür und Verwendung desselben Die Erfindung betrifft ein Material zum quantitativen Entfernen von Wasser aus einem Gasstrom, wobei Material eine Mischung aus Molekularsieb und mit einem Indikator versehenem Calciumchlorid umfasst. Erfindungsgemäß ist auch die Verwendung dieses Material in Vorrichtungen zur chemischen Analyse, in der eine quantitative Entfernung von Wasser besonders wichtig ist.

Description

Mittel zur quantitativen Entfernung von Wasser aus einem Gasstrom sowie Vorrichtung hierfür und Verwendung desselben
Die Erfindung betrifft eine Mischung zum quantitativen Entfernen von Wasser aus einem Gasstrom.
Die Reinheit von Gasen spielt bei einer Vielzahl von Prozessen eine große Rolle. Ein wesentlicher Aspekt ist dabei die Wasserentfernung. Insbesondere bei der Analytik von Gasen ist es notwendig, in dem zu analysierenden Gasstrom enthaltenes Wasser quantitativ zu entfernen, wobei der Begriff "quantitativ" im Sinne der Erfindung so zu verstehen ist, dass der Wassergehalt auf einen Wert von weniger als 100 ppm abgesenkt wird.
Die Notwendigkeit einer solchen Wasserentfernung betrifft alle bestehenden Analysensysteme und -modi zur Messung von Stickstoff, Kohlenstoff und Sauerstoff, aber auch beispielsweise die TOC-Analyse oder die IRMS-Analyse. Üblicherweise werden bei einer solchen Trocknung der der Analyse zuzuführenden Gasstrom durch ein Rohr geleitet, welches den Fluss teilweise mit dem Trocknungsmittel gefüllt ist, so dass das Gas zwangsläufig das Trocknungsmittel passieren muss und Wasser dadurch entfern wird.
Bisher sind zum einen Phosphorpentoxid-Trocknungsmittel auf inertem Trägermaterial, bekannt vor allem unter dem Namen Sicapent®, oder Magnesiumperchlorat in der Gasanalyse eingesetzt, da diese Trocknungsmittel geeignet sind, Wasser tatsächlich quantitativ zu entfernen. Den genannten Materialien ist aber gemeinsam, dass sie nicht nur stark hygroskopisch sind, sondern auch als starke Oxidationsmittel in Kombination mit anderen Stoffen zur Säure- und Sprengstoffbildung neigen. Die Verwendung dieser Materialien setzt daher ein hohes Maß an Arbeitssicherheit sowie eine entsprechende Schulung des damit arbeitenden Personals voraus. Ein weiterer Nachteil dieser Materialien liegt in der sehr aufwändigen und entsprechend energieintensiven bzw. mit hohen Abfallmengen behaftete Herstellung.
Andere übliche Trocknungsmittel sind entweder nicht geeignet, Wasser tatsächlich quantitativ zu entfernen oder aber sie verhalten sich nicht gegenüber allen Gasströmen inert. Beispielsweise kommt es bei dem bekannten Trocknungsmittel Silicagel häufig zu Nebenreaktionen, so dass das Analysenergebnis durch die Vortrocknung verfälscht wird, da Komponenten im Trocknungsmittel entweder gebunden oder aber verändert werden.
Der Erfindung liegt daher die Aufgabe zugrunde, ein einfaches und unbedenklich herstellbares Material zur quantitativen Entfernung von Wasser bereitzustellen, welches insbesondere auch für die Trocknung eines Gasstroms vor einer nachgeschalteten Gasanalyse geeignet ist. Dazu darf das Trocknungsmittel nicht mit den Messgasen reagieren oder zu stark wechselwirken, da dies zu einer Änderung des Messsignals führen würde.
Diese Aufgabe wird mit einem Material gemäß Anspruch 1 gelöst.
Ein solches erfindungsgemäßes Material umfasst eine Mischung von Molekularsieb und mit einem Indikator versehenen Kalziumchlorid. Das Molekularsieb ist dabei in der Lage, das enthaltene Wasser quantitativ zu entfernen. Es sichert damit die notwendige Trockenheit des Gasstroms (Trockeneffizienz), insbesondere für die Elementaranalyse.
Der Begriff "Molekularsieb" oder auch Molsieb im Sinne dieser Erfindung ist als funktionelle Bezeichnung insbesondere für natürlich und synthetische Zeolithe zu verstehen. Die Terminologie umfasst aber auch andere Stoffe, denen genau wie den Zelluliten die Eigenschaft innewohnt, eine hohe Adsorptionskapazität für Gase, Dämpfe und gelöste Stoffe mit bestimmten Molekülgrößen zu haben. Derartige Molekularsiebe, insbesondere natürliche und synthetische Zeolithe, weisen eine vergleichbare große innere Oberfläche, bevorzugt im Bereich von 500 bis 760 m2/g auf. Sie haben überdies einen sehr hohen Porendurchmesser, der in der gleichen Größenordnung wieder durch die Messer der zu adsorbierenden Moleküle liegt. Zur Klassifizierung von Molekularsieben wird in der Regel der in Ängström angegebene Porendurchmesser verwendet.
Vorteilhaft an der Verwendung eines Molekularsiebs ist, dass sich dieses nicht bei der Wasseraufnahme auflöst und so seine feste Form und Struktur auch bei einer Verwendung eines Trockenrohres behält. Im Einsatz in der Elementaranalyse kommt es so nicht zu Verstopfungen und dem Mitreißen von flüssigen Fraktionen mit dem Gasstrom, welche zumindest zu einem Abbruch der Messungen bzw. Fehlmessungen führen würden. Ein dauerhaftes Mitreißen von Material würde überdies ein häufigeres Wechseln des Trocknungsmittels erfolgen und im schlimmsten Fall zu einer Schädigung des Gerätes führen.
Die Verwendung eines Molekularsiebs allein würde zwar eine geeignete und ausreichende Trocknung sicherstellen, allerdings sind sogenannte Molekularsiebe derart beschaffen, dass aufgrund ihrer dunklen Färbung und/oder der Eigenschaft Wasser in der Probe zu halten es nicht möglich ist, einen Indikator aufzubringen und so zu erkennen, wann die Trocknungskapazität des Molekularsiebs erschöpft ist. Der Anwender bleibt daher im Unklaren darüber, ob das Trocknungsmittel noch weiterverwendet werden kann oder ob es bereits nicht mehr zu einer vollständigen Entfernung des Wassers kommt und das im Gasstrom dann enthaltene Restwasser längst das Messergebnis verfälscht.
Der erfindungsgemäßen Mischung ist daher Kalziumchlorid als zweites Trocknungsmittel beigemengt. Die Verwendung von reinem Kalziumchlorid als ausschließliches Trocknungsmittel wäre nicht ausreichend, um eine, insbesondere für die Gasanalytik wichtige, quantitative Entfernung von Wasser sicherzustellen, jedoch ist Kalziumchlorid aufgrund seiner farblosen, nicht transparenten Kristalle gut geeignet, einen deutlichen Farbumschlag dann sichtbar zu machen, wenn das Kalziumchlorid einen Indikator enthält. Aufgrund der Eigenschaft des Kalziumchlorids, große Mengen Wasser aufnehmen zu können und sich dann selbst im Kristallwasser zu lösen, ist der Farbumschlag durch Wassereinwirkung besonders gut sichtbar. Der Indikator erlaubt so die optische Verfolgbarkeit der Wasseraufnahme.
Die Kombination von Molekularsieb und Kalziumchlorid hat überdies den Vorteil, dass auch nach Abschluss des angesprochenen Löseprozesses von Kalziumchlorid es nicht zur Bildung einer vollständigen flüssigen Phase über den gesamten Durchschnitt eines Trocknungsrohres oder eines anderen, das erfindungsgemäße Mittel fassenden Behälters kommen kann, da die feste Struktur des Molekularsiebs erhalten bleibt.
Weitere Vorteile in der Verwendung von Kalziumchlorid liegen zum einen darin, dass Kalziumchlorid ebenso wie das Molekularsieb inert gegenüber praktisch allen zu messenden Gasströmen ist. Dies betrifft nicht nur die typischerweise verwendeten Trägergase Helium und Argon, sondern auch Kohlenstoffdioxid. Überdies hat es jedoch auch den Vorteil, dass Kalziumchlorid wie bereits angesprochen als Trocknungsmittel wirkt und damit das Einbringen eines Indikators auf einem Trägermaterial nicht zu einer Verdünnung des Trocknungsmatenals selbst führt. Dies hat wiederum den Vorteil, dass die Gesamtmenge an Mischungen im Vergleich mit Indikator versehenem Material zu ohne einen Indikator enthaltenen Materials gleichbleiben kann, was eine Rolle unter anderem für Fallen des Druckverlustes, Totvolumen oder Standzeit spielt.
Es hat sich herausgestellt, dass dadurch das erfindungsgemäße Material über eine signifikant höhere Wasseraufnahmekapazität pro Volumen als die bisher bekannten Trocknungsmatenalien verfügt. Im Vergleich ist die Wasseraufnahme von Sicapent® aufgrund der deutliche geringeren Schüttdichte von über einen breiten Mischungsbereich um etwa Faktor 2 kleiner.
Zusammenfassend liegt der Vorteil der neuen Erfindung also darin, eine Möglichkeit bereitzustellen, mit Hilfe von einfachen, in großen Volumina erhältlichen Chemikalien ein neues Trocknungsmittel für die C-, N- und O-Bestimmungen einzusetzen, welches gleichzeitig die Schöpfung des Trocknungsmittels anzeigt. Das Gefahrenpotential des Materials wurde überdies signifikant reduziert, was die Verarbeitung, Bereitstellung und Verwendung sicherer und einfacher gestaltet. Durch die erhöhte Aufnahmekapazität pro Volumen konnte die Einsatzzeit bei gleichbleibenden Behältervolumen um den Faktor 2 verlängert werden.
Für die Mischung können Molekularsiebe zwischen 3 und 4 Ängström insbesondere verschiedene 3 Ä-Molekularsiebe verwendet werden, wobei dies bedeutet, dass bevorzugt wenigstens 70 Gew.-%, vorzugsweise wenigstens 90 Gew.-% über den Porendurchmesser aufweisen. 3 Ä-Molekularsiebe sind deshalb besonders bevorzugt, weil sie während der Messungen im Vergleich zu großporigeren Molsieben im geringeren Maße Gas aufnehmen und wieder abgeben, wodurch eine Verfälschung von Messergebnissen verhindert wird.
Weiterhin hat es sich als günstig herausgestellt, wenn der Anteil des Molekularsiebs eine Gesamtmasse der Mischung zwischen 60 und 95 Gew.-%, bevorzugt zwischen 80 und 93 Gew.-% und besonders bevorzugt zwischen 85 und 90 Gew.-% liegt. Die verbleibende Differenz zur Gesamtmenge entfällt dann auf das den Indikator in irgendeiner Form enthaltene Kalziumchlorid, so dass dessen Mengenanteil zwischen 5 und 40 Gew.-% bezogen auf die Gesamtmenge des Trocknungsmatenals, bevorzugt 7 bis 20 Gew.-% und besonders bevorzugt zwischen 10 und 15 Gew.-% liegt. Dadurch ist zum einen eine hocheffiziente Trocknung und gleichzeitig ein gut sichtbarer Farbumschlag bei Erschöpfung der Trocknungskapazität sichergestellt. Die verwendeten Indikatoren, welche einen Farbumschlag in Abhängigkeit von der Feuchtigkeit in dem sie umgebenden Medium anzeigen, können sowohl anorganischer als auch organischer Natur sein.
Anorganische Indikatoren sind häufig günstiger auf dem Markt erhältlich. Besonders bevorzugt ist unter den anorganischen Indikatoren die Verwendung von Kup- fer( I I)-Sulfat (Cu(ll)SO4). Gut lässt sich auch Kupfer(ii)-Chlorid einsetzen. Vorteil ist hier seine Unbedenklichkeit. Bei der Verwendung zusammen mit Kalziumchlorid kommt es zu einem Farbumschlag von farblos nach blau, sobald das primäre Trocknungsmittel, das Molekularsieb nicht mehr geeignet ist, das Wasser quantitativ zu entfernen.
Organische Substanzen zeigen oft sehr klar erkennbare Farbunterschiede. Als organische Substanz eignet sich insbesondere Phenolphtalein. Phenolphtalein hat den besonderen Vorteil, dass es bei einer Erschöpfung der Kapazität des Molsiebs, welches sich innerhalb seiner Poren vollständig mit Wasser füllt, einen Farbumschlag ins Weiße zeigt, welche gegen die dunkelbraune Farbe des Molekularsiebs klar erkennbar ist. Diese "Front" verschiebt sich im Laufe der Messungen immer weiter in Strömungsrichtung hin zum Gasauslass. Sobald dieser Farbumschlag den Gasauslass erreicht, ist keine ausreichende Menge Trocknungsmittel mehr vorhanden, welche geeignet ist, das Wasser vollständig zu entfernen. Wird hingegen die erfindungsgemäße Mischung über eine längere Zeit so gelagert, dass sie der Luftfeuchtigkeit ausgesetzt ist, so dass das Wasser nicht durch einen Gasstrom hindurchgetragen wird, verändert dies die Reaktionen, die zum Farbumschlag des Indikators führen. Der Indikator (In) weist dann nicht die Struktur FMn auf, welche zu einer weißen Färbung führt, sondern liegt als In2- vor und färbt sich damit rosa-violett. Diese rosa Färbung zeigt damit deutlich auf, dass hier Feuchtigkeit langsam eindiffundiert ist. Dadurch kann auch die Ursache für die Erschöpfung der Aufnahmekapazitäten einer Säule, insbesondere Lagerungsfehler, leichter detektiert werden.
Weiterhin kann das den Indikator beinhaltende Kalziumchlorid (CaCl2) zum einen mit dem Indikator beschichtet werden, so dass dieser auf der Oberfläche des als Trägermaterial fungierenden Kalziumchlorid liegt. Alternativ ist es auch möglich, den Indikator mit dem Kalziumchlorid zu vermengen und zu Granulat oder Perlen zu formen, beispielsweise zu pressen. Letzteres ist im Herstellungsaufwand weniger aufwändig als die vorgenannte Beschichtung, dafür ist der Farbumschlag je nach Art des eingesetzten Indikators bei einer Beschichtung aufgrund der höheren Lokalkonzentration an der Oberfläche teilweise besser sichtbar.
Zusammenfassend zeichnet sich das Trocknungsmittel durch eine besonders lange Einsatzzeit, einfaches Handling und einen optischen Indikator aus, mittels dem eine optische Verfolgbarkeit der Wasseraufnahme sichergestellt ist. Zudem ist das Material im Gegensatz zu den bisher verwendeten Stoffen kein Gefahrgut.
Die Erfindung umfasst weiterhin auch eine Vorrichtung zur Trocknung von Gasen im Sinne einer quantitativen Entfernung des Wassers, insbesondere in Vorbereitung eines Gasstroms für eine nachfolgende Analyse. Eine solche Vorrichtung weist ein gasdichtes Gehäuse und einen Gaseinlass und einen Gasauslass auf. Das durch dieses Gehäuse definierte Volumen ist wenigstens teilweise mit dem erfindungsgemäßen Material nach wenigstens einem der Ansprüche 1 bis 6 gefüllt. Das erfindungsgemäße Material kann in jeder Gasanalytik, insbesondere in jeder Elementaranalyse ohne Änderung des Systems direkt eingesetzt werden. Ein gefüllter Rohrreaktor stellt dabei eine besonders einfache Ausgestaltung einer solchen Vorrichtung dar.
Die Vorrichtung kann grundsätzlich aus jedem Material gefertigt sein, welches sich über den zu analysierenden Gasstrom inert verhält und gasdicht ist. Überdies muss sie wenigstens teilweise transparent gestaltet sein. Als Grundmaterial sind vor allem Metalle, Glas und Kunststoff denkbar. Bei der Verwendung von Metallen und intransparenten Kunststoffen muss dann ein Sichtfenster aus Glas oder einem entsprechenden transparenten Kunststoff vorgesehen sein, so dass der Indikator umschlägt und damit die Erschöpfung der Standzeit des Trocknungsmittels sichtbar ist. Vor allem Glas und teilweise auch Kunststoff als Grundmaterial hat den Vorteil, dass derartige Sichtfenster nicht nötig sind. Beim Verschieben eines Farbumschlags über die Länge des Behälters, insbesondere des Rohres, hat dies den Vorteil, dass der Effekt gut sichtbar ist. Glas ist als Gehäusematenals aufgrund seiner inerten Eigenschaften besonders bevorzugt.
Grundsätzlich ist es auch denkbar die erfindungsgemäße Vorrichtung sequenzweise mit einer Reihe von Materialien zu füllen, beispielsweise die Strömungsrichtung zuerst ein Kohlenstoffdioxid absorbierendes Material und danach das erfindungsgemäße Trocknungsmittel von der Mischung vorzusehen.
Schließlich richtet sich die Erfindung auch auf die Verwendung des erfindungsgemäßen Materials nach einem der Ansprüche 1 bis 6 und/oder einer erfindungsgemäßen Vorrichtung nach Anspruch 7 oder 8 zur quantitativen Entfernung von Wasser in einem Gasanalytiksystem. Insbesondere betrifft dies Gasanalytiksysteme zur Bestimmung von Stickstoff, Kohlenstoff, Wasserstoff und Sauerstoff (CHNO). Das erfindungsgemäße Material eignet sich nämlich in besonderer Weise dazu, den Gasstromkopf vollständig von Wasser zu befreien, ohne dass sich das Strömungsverhalten verändert und zeigt gleichzeitig durch den enthaltenen Indikator zuverlässig die Erschöpfung seiner Trocknungskapazität auf. Verwendung des Materials ist nicht auf bestimmte Geräte limitiert, sondern kann in allen Anwendungen eingesetzt werden, die nicht saure, trockene Gasströme identifizieren. Denkbare weitere Analysegebiete sind auch die TOC-Analyse und die IRMS-Analyse. Auch bei einem Wärmeleitfähigkeitsdetektor WLD ist ein trockener Gasstrom die Grundvoraussetzung für präzise, lineare und wiederholbare Ergebnisse über den gesamten Messbereich.
Weitere Ausgestaltungsformen der Erfindung ergeben sich aus den Beispielen sowie den Figuren und ihrer dazugehörigen Beschreibung. Dabei soll jedes Merkmal für sich oder in beliebiger Kombination als offenbart gelten. Die Abbildungen sind teilweise leicht vereinfacht und schematisch.
Es zeigen:
Fig. 1 : eine schematische Ausgestaltung einer erfindungsgemäßen Vorrichtung und
Fig. 2: schematisch den Einsatz einer erfindungsgemäßen Vorrichtung in einem Gasanalysesystem
Figur 1 zeigt die erfindungsgemäße Vorrichtung 10, welche als, vorzugsweise zylinderförmiges, Gehäuse 11 mit einem Gaseinlass 12 und einem Gasauslass 13 ausgestattet ist. Im Inneren findet sich eine Füllung 14 mit dem erfindungsgemäßen Material, welches so eingebracht ist, dass der durch den Gaseinlass 12 einströmende Gasstrom in jedem Fall das Material passieren muss, bevor es über den Gasauslass 13 entweichen kann.
Figur 2 zeigt stark vereinfach ein Gasanalysesystem 20, vorzugsweise ein Elementaranalysesystem, in dem das erfindungsgemäße Material zur quantitativen Entfernung von Wasser eingesetzt wird. Über die Leitungen 21 , 22 und 23 wird der Gasstrom zunächst über eine Vorrichtung zur Entfernung von Kohlenstoffdioxid 24 und dann eine erfindungsgemäße Vorrichtung 10 geführt, bevor er im Detektor 25 analysiert wird. Alternativ zur graphischen Darstellung können auch die Funktionen der Vorrichtungen 24 und 10, also Kohlenstoffdioxidentfernung und Trocknung in einer Vorrichtung derart angeordnet sein, dass diese Vorrichtung zwei Segmente aufweist, in die ein entsprechendes Material eingefüllt ist. Insbesondere kann es sich dabei um ein Rohr handeln, welches in einem ersten Teil mit der erfindungsgemäßen Mischung und in einem zweiten, in Bezug auf den durchströmenden Gasstrom nachgeschalteten Teil mit einem Trocknungsmittel gefüllt ist.
Zudem kann eine nicht dargestellte Vortrocknung noch vor der Entfernung von Kohlenstoffdioxid vorgesehen sein.
Beispiel 1
Das nachfolgende Beispiel zeigt, wie viele Messungen mit welcher Art von Absorptionsmittel für die quantitative Entfernung von Wasser durchgeführt werden können, bevor der jeweils enthaltene Indikator eine vollständige Beladung mit Wasser anzeigt.
Die angegebenen Werte sind Mittelwerte über jeweils 3 Standzeituntersuchungen.
Figure imgf000011_0001
Das nachfolgende Beispiel zeigt, dass aufgrund der sehr guten Trocknungseigenschaften des Molekularsiebs dessen Trocknungskapazität in einem identischen Füllvolumen um den Faktor 2 erhöht ist, so dass umgekehrt sich die Standzeit einer Säule deutlich vergrößert. Beispiel 2
Zur Bestimmung der Trockeneffektivität des erfindungsgemäßen Materials wurde ein Analysator ohne ein Trockenmittel und anschließend verschiedene Trocken- mittel verwendet. Für eine bessere Vergleichbarkeit wurde eine automatische Flüssigprobenaufgabe genutzt. Aus dem Verhältnis der Werte bei Verwendung des jeweiligen Trockenmittels zur Analyse ohne Trockenmittel kann die Trockenwirkung (entfernte Wassermenge in Bezug auf die vorhandene Gesamtwassermenge) bestimmt werden. Zur Berechnung wurde der Mittelwert aus 10 Analysen verwendet.
Figure imgf000012_0001
Bezugszeichenliste
10 Vorrichtung
11 Gehäuse
12 Gaseinlass
13 Gasauslass
14 Füllung mit erfindungsgemäßem Material
20 Gasanalysesystem
21 - 23 Leitung
24 Trocknungsvorrichtung
25 Detektor

Claims

Schutzansprüche
1. Material zum quantitativen Entfernen von Wasser aus einem Gasstrom, dadurch gekennzeichnet, dass das Material eine Mischung aus Molekularsieb und mit einem Indikator versehenem Calciumchlorid ist.
2. Material zum quantitativen Entfernen von Wasser aus einem Gasstrom nach Anspruch 1 , dadurch gekennzeichnet, dass das Molekularsieb zu wenigstens 70 Gew.-% eine Porenweite von 3 A oder 4 A, bevorzugt 3 A, aufweist.
3. Material zum quantitativen Entfernen von Wasser aus einem Gasstrom nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des Molekularsiebes an der Gesamtmasse der Mischung zwischen 60 und 95 Gew.-%, bevorzugt zwischen 80 und 93 Gew.-% und besonders bevorzugt zwischen bevorzugt zwischen 85 und 90 Gew.-% liegt.
4. Material zum quantitativen Entfernen von Wasser aus einem Gasstrom nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Indikator eine anorganische Verbindung, insbesondere Kupfer(ll)-sulfat, ist.
5. Material zum quantitativen Entfernen von Wasser aus einem Gasstrom nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Indikator eine organische Verbindung, insbesondere Phenolphtalein, ist.
6. Material zum quantitativen Entfernen von Wasser aus einem Gasstrom nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Calciumchlorid wenigstens teilweise mit dem Indikator beschichtet ist oder Calciumchlorid und Indikator gemeinsam in Granalien vorliegen.
7. Vorrichtung (10) zur Absorption von Wasser mit einem gasdichten Gehäuse (11 ), welches einen Gaseinlass (12) und einen Gasauslass (13) aufweist und dessen Volumen wenigstens teilweise mit einem Material nach einem der Ansprüche 1 bis 6 gefüllt ist.
8. Vorrichtung (10) nach Anspruch 7, dadurch gekennzeichnet, dass das Gehäuse wenigstens teilweise transparent ist.
9. Verwendung eines Material nach einem der Ansprüche 1 bis 6 und/oder einer Vorrichtung nach Anspruch 7 oder 8 zur quantitativen Entfernung von Wasser in einem Gasanalytiksystem (20) zur Bestimmung von Stickstoff, Kohlenstoff, Wasserstoff und/oder Sauerstoff.
10. Verwendung eines Material nach einem der Ansprüche 1 bis 6 und/oder einer Vorrichtung nach Anspruch 7 oder 8 zur quantitativen Entfernung von Wasser in einer TOC-Analyse oder einer IRMS-Analyse.
PCT/EP2023/077119 2022-10-20 2023-09-29 Mittel zur quantitativen entfernung von wasser aus einem gasstrom sowie vorrichtung hierfür und verwendung desselben WO2024083479A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202022105926.8U DE202022105926U1 (de) 2022-10-20 2022-10-20 Mittel zur quantitativen Entfernung von Wasser aus einem Gasstrom sowie Vorrichtung hierfür und Verwendung desselben
DE202022105926.8 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024083479A1 true WO2024083479A1 (de) 2024-04-25

Family

ID=84192196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/077119 WO2024083479A1 (de) 2022-10-20 2023-09-29 Mittel zur quantitativen entfernung von wasser aus einem gasstrom sowie vorrichtung hierfür und verwendung desselben

Country Status (2)

Country Link
DE (1) DE202022105926U1 (de)
WO (1) WO2024083479A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117839397B (zh) * 2024-01-03 2024-06-14 南京港能环境科技有限公司 一种用于toc测量的多级自动除水装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144121A (ja) * 1988-11-25 1990-06-01 Shintouhoku Kagaku Kogyo Kk 脱臭機能を有する固形状乾燥剤とその製造法
WO2001009601A1 (en) * 1999-07-30 2001-02-08 Levosil S.P.A. Moisture indicators for the absorbent capacity of a dessicant
DE10157551A1 (de) * 2001-11-23 2003-06-12 Messer Griesheim Gmbh Feuchte-Indikator für Adsorbentien
EP1707253A1 (de) * 2005-03-29 2006-10-04 Elementar Analysensysteme GmbH Verfahren und Vorrichtung zur simultanen Bestimmung von Isotopenverhältnissen leichter Elemente
EP3318325A1 (de) * 2015-07-01 2018-05-09 Korea Institute Of Industrial Technology Verbessertes verfahren zur herstellung eines hybriden feuchtigkeitsadsorptionsmittels aus zeolithmetallchlorid und danach hergestelltes feuchtigkeitsadsorptionsmittels sowie verfahren zur herstellung einer feuchtigkeitsabsorbierenden zusammensetzung zur oberflächenbeschichtung damit
CN110280211A (zh) * 2019-06-25 2019-09-27 北京宇极科技发展有限公司 一种全氟异丁腈的干燥剂、制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144121A (ja) * 1988-11-25 1990-06-01 Shintouhoku Kagaku Kogyo Kk 脱臭機能を有する固形状乾燥剤とその製造法
WO2001009601A1 (en) * 1999-07-30 2001-02-08 Levosil S.P.A. Moisture indicators for the absorbent capacity of a dessicant
DE10157551A1 (de) * 2001-11-23 2003-06-12 Messer Griesheim Gmbh Feuchte-Indikator für Adsorbentien
EP1707253A1 (de) * 2005-03-29 2006-10-04 Elementar Analysensysteme GmbH Verfahren und Vorrichtung zur simultanen Bestimmung von Isotopenverhältnissen leichter Elemente
EP3318325A1 (de) * 2015-07-01 2018-05-09 Korea Institute Of Industrial Technology Verbessertes verfahren zur herstellung eines hybriden feuchtigkeitsadsorptionsmittels aus zeolithmetallchlorid und danach hergestelltes feuchtigkeitsadsorptionsmittels sowie verfahren zur herstellung einer feuchtigkeitsabsorbierenden zusammensetzung zur oberflächenbeschichtung damit
CN110280211A (zh) * 2019-06-25 2019-09-27 北京宇极科技发展有限公司 一种全氟异丁腈的干燥剂、制备方法及其应用

Also Published As

Publication number Publication date
DE202022105926U1 (de) 2022-11-04

Similar Documents

Publication Publication Date Title
DE2705734C3 (de) Dialysemembran für die Hämodialyse
WO2024083479A1 (de) Mittel zur quantitativen entfernung von wasser aus einem gasstrom sowie vorrichtung hierfür und verwendung desselben
DE4007064A1 (de) Vorrichtung zur bestimmung fluechtiger stoffe in einer fluessigkeit
DE1907369A1 (de) Vorrichtung zur Bestimmung von Wasserstoff in Gasen,insbesondere in Chlor
CH639763A5 (de) Ueberwachungsvorrichtung, in welcher die menge wenigstens einer ausgewaehlten komponente eines fluidgemisches gemessen wird.
DE1267883B (de) Pruefroehrchen zur Bestimmung von Schwefeldioxyd und Schwefelwasserstoff
DE1077895B (de) Verfahren und Vorrichtung zur Analyse von gasfoermigen Stoffen
DE1498909B2 (de) Kolorimetrisches Gasdosimeter
DE2000074A1 (de) Analytisches Verfahren und hierfuer geeignete Vorrichtung
DE2936235A1 (de) Packung fuer die hochgeschwindigkeits- fluessigkeitschromatographie, verfahren zu ihrer herstellung und ihre verwendung
DE10157551A1 (de) Feuchte-Indikator für Adsorbentien
DE102013223891B4 (de) Kartuschendepositionssammler und Verfahren zur Eintragsmessung atmospärischer Stoffe
DE4316513B4 (de) Atomabsorptionsspektrometer
DE3909227B4 (de) Verfahren zum Nachweis von zersetzungsfähigen organischen Kohlenstoffverbindungen die in einer gasförmigen oder flüssigen Phase vorliegen
DE1442650A1 (de) Einrichtung zum Abfiltern einer fluessigen Verunreinigung aus einem Stroemungsmittel
WO2024002724A1 (de) Absorptionsmittel zur quantitativen entfernung von kohlendioxid aus einem gasstrom sowie verwendung desselben
DE102007039000B4 (de) Verfahren für die Probenpräparation flüssiger oder pastöser Stoffe zur Messung mittels Röntgenfluoreszenz und dafür geeigneter Probenkörper
DE102004009870B3 (de) Verfahren und Vorrichtung zur Charakterisierung von OSI-Material
EP0047860B1 (de) Verfahren und Vorrichtung zur kalibrierten Dotierung eines Trägergases mit geringen Konzentrationen eines aggressiven Gases
DE1946277A1 (de) Trockenmittel mit Feuchtigkeitsindikator
DE2854462C2 (de) Vorrichtung zur Bestimmung der Photomineralisierbarkeit adsorbierter chemischer Verbindungen
DE19830413B4 (de) Dosimeter
DE1498909C (de) Kolorimetrisches Gasdosimeter
DE4411112C2 (de) Absorptionsmasse für die Entsorgung von Fluor aus Gasgemischen und deren Verwendung
DE4122668C2 (de) Verfahren zur Bestimmung von Metallen mit der Hilfe von Proteinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23782917

Country of ref document: EP

Kind code of ref document: A1