WO2024083011A1 - 锂离子电池电解液和锂二次电池 - Google Patents

锂离子电池电解液和锂二次电池 Download PDF

Info

Publication number
WO2024083011A1
WO2024083011A1 PCT/CN2023/123995 CN2023123995W WO2024083011A1 WO 2024083011 A1 WO2024083011 A1 WO 2024083011A1 CN 2023123995 W CN2023123995 W CN 2023123995W WO 2024083011 A1 WO2024083011 A1 WO 2024083011A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
electrolyte
formula
carbonate
Prior art date
Application number
PCT/CN2023/123995
Other languages
English (en)
French (fr)
Inventor
陈黎
王婷婷
惠银银
甘朝伦
Original Assignee
张家港市国泰华荣化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港市国泰华荣化工新材料有限公司 filed Critical 张家港市国泰华荣化工新材料有限公司
Publication of WO2024083011A1 publication Critical patent/WO2024083011A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, and in particular to a lithium ion battery electrolyte and a lithium secondary battery.
  • lithium-ion batteries Compared with other batteries, lithium-ion batteries have the advantages of light weight, small size, high operating voltage, high energy density, large output power, high charging efficiency, no memory effect, and long cycle life. However, with the gradual improvement of people's living requirements and the continuous development of electronic products, higher challenges are posed to the performance of lithium-ion batteries.
  • Common lithium-ion battery electrolytes contain sulfonate, sultone, sulfate, sulfite, sulfone, sulfoxide and other compounds with sulfonyl groups as additives.
  • these additives can form a solid electrolyte interface film at the negative electrode and effectively inhibit the decomposition reaction of the electrolyte, so the high-temperature storage performance of lithium-ion batteries has been significantly improved.
  • the application of these compounds will involve environmental issues, and their use has been banned or is about to be banned in some countries and regions.
  • the purpose of the present invention is to provide a lithium battery electrolyte which is environmentally friendly, increases battery capacity and improves battery performance.
  • Another object of the present invention is to provide a lithium ion secondary battery using the above electrolyte.
  • the present invention adopts the following technical solutions:
  • An object of the present invention is to provide a lithium ion battery electrolyte, comprising an organic solvent, a lithium salt and an additive, wherein the additive comprises an additive A, and the additive A is one or more of the substances represented by the following structural formula:
  • R1 is an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 4 carbon atoms; in Formulas 3 and 4, R2 to R12 are alkyl groups having 1 to 3 carbon atoms; in Formula 1, a to c are integers of 0 to 3; in Formula 2, d to f are integers of 0 to 3; in Formula 3, h to j are integers of 0 to 3, k is an integer of 1 to 5; in Formula 4, m, n, x, and y are integers of 0 to 3;
  • the organic solvent includes fluoroethylene carbonate, and the fluoroethylene carbonate accounts for at least 5% of the total mass of the electrolyte;
  • the electrolyte does not include a compound containing a sulfonyl group.
  • the sulfonyl group-containing compound includes, but is not limited to, a compound containing sulfonate, sultone, sulfate, sulfite, sulfone, and sulfoxide.
  • the sulfonyl group-containing compound includes, but is not limited to, 1,3-propane sultone, propenyl-1,3-sultone, methane disulfomethylene ester, vinyl sulfate, vinyl sulfite, and sulfolane.
  • R1 in Formula 2 is one of methyl, ethyl, vinyl, and propenyl
  • R2 to R12 in Formulas 3 and 4 are one of methyl, ethyl, and propyl
  • a to c in Formula 1 are 0, 1, or 2
  • d to f in Formula 2 are 0, 1, or 2
  • h to j in Formula 3 are is 0, 1 or 2
  • k is 1, 2 or 3
  • m, n, x, y in formula 4 are 0, 1 or 2.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 can be the same or different.
  • "a to c is”, “d to f is”, “h to j” and "m, n, x, y are” all mean that they are independently taken, but do not limit them to be the same.
  • the additive A is one or more substances represented by the following structural formulas:
  • the additive A accounts for 0.5% to 2.0% of the total mass of the electrolyte, for example 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%.
  • the content of the additive A accounts for 1.0% to 2.0% of the total mass of the electrolyte.
  • the additive A is two or more of the substances represented by Formula 1 to Formula 4.
  • the additive A is A1 accounting for 1% of the total mass of the electrolyte, A4 accounting for 0.5% of the total mass of the electrolyte, and A6 accounting for 0.5% of the total mass of the electrolyte.
  • the additive further contains other additives, and the other additives include but are not limited to cyclic carbonates containing double bonds, cyclic carbonates containing halogens, acid anhydrides, benzene compounds, fluorobenzene compounds, nitriles, One or more of compounds, phosphates, phosphites, boron compounds, amine compounds, silicon-containing compounds, and heterocyclic compounds.
  • the other additives account for 0.1% to 5% of the total mass of the electrolyte.
  • the other additives account for 1% to 3% of the total mass of the electrolyte.
  • the other additives include but are not limited to vinylene carbonate, ethylene carbonate, biphenyl, succinic anhydride, glutaric anhydride, cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, m-fluorotoluene, 3,4-difluorotoluene, p-fluorotoluene, p-xylene, 1,2-dimethoxy-4-nitrobenzene, N-phenylmaleimide, pentafluoroanisole, 1,4-dimethoxybenzene, adiponitrile, hexanetrinitrile, succinonitrile, 1,2,3-tris(2-cyanoethoxy)propane, N,N-dicyclohexylcarbodiimide, N,N-diethylaminotrimethylsilane, hexamethyldisilazane, triphenyl phosphate
  • the other additive is vinylene carbonate accounting for 1% of the total mass of the electrolyte.
  • the organic solvent also includes other organic solvents, and the other organic solvents are one or more of carbonates, carboxylates, and ethers, or a combination of one or more of carbonates, carboxylates, and ethers and one or more of fluorocarbons, fluorocarboxylates, fluoroethers, and fluorobenzenes.
  • the other organic solvents are one or more of difluoroethylene carbonate, trifluoroethyl carbonate, tetrafluoroethyl tetrafluoropropyl ether, trifluoroethyl hexafluoropropyl ether, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethyl methyl carbonate, ethylene glycol dimethyl ether, r-butyrolactone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, and fluorobenzene.
  • the organic solvent accounts for 70% to 90% of the total mass of the electrolyte.
  • the organic solvent accounts for 80% to 90% of the total mass of the electrolyte.
  • the amount of the fluoroethylene carbonate used is associated with the negative electrode of the battery system used in the electrolyte, and the proportion of the fluoroethylene carbonate in the organic solvent increases with the increase of the silicon content in the negative electrode material.
  • the mass of the fluoroethylene carbonate is less than 90%, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, etc. of the mass of the organic solvent.
  • the lithium salt may be any lithium salt that can be used in a lithium-ion battery system or a combination thereof.
  • the lithium salt accounts for 10% to 25% of the total mass of the electrolyte.
  • the lithium salt accounts for 12% to 20% of the total mass of the electrolyte.
  • the lithium salt includes lithium hexafluorophosphate and other lithium salts.
  • the other lithium salts are lithium tetrafluoroborate, lithium dioxalatoborate, lithium oxalatodifluoroborate, lithium difluorophosphate, One or more of lithium difluorobisoxalate phosphate and lithium tetrafluorooxalate phosphate.
  • lithium hexafluorophosphate accounts for 10% to 15% of the total mass of the electrolyte.
  • lithium hexafluorophosphate accounts for 10% to 13% of the total mass of the electrolyte.
  • the lithium salt is lithium hexafluorophosphate accounting for 12.5% of the total mass of the electrolyte and lithium tetrafluoroborate accounting for 0.5% of the total mass of the electrolyte.
  • Another aspect of the present invention is to provide a lithium ion secondary battery, including a shell, and a battery cell and an electrolyte contained in the shell.
  • the battery cell comprises a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode, and the electrolyte is the above-mentioned lithium-ion battery electrolyte.
  • the positive electrode includes a positive electrode current collector and a positive electrode material located on the surface of the positive electrode current collector, the positive electrode material includes a positive electrode active substance, a positive electrode conductive agent, and a positive electrode binder, the positive electrode active substance can be common type LiNi x Co y Mn 1-xy O 2 , common type LiNi x Co y Al 1-xy O 2 , common type LiCoO 2 , high voltage type LiNi x Co y Mn 1-xy O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), and high voltage type LiCoO 2 .
  • the positive electrode conductive agent is acetylene black or carbon nanotubes
  • the positive electrode binder is polyvinylidene fluoride.
  • the negative electrode includes a negative electrode current collector and a negative electrode material located on the surface of the negative electrode current collector, and the negative electrode material includes a negative electrode active substance and a negative electrode binder.
  • the negative electrode material may also selectively include a negative electrode conductive agent, and the negative electrode conductive agent may be the same as or different from the positive electrode conductive agent, and both are conductive agents commonly used in the art.
  • the negative electrode active substance and the negative electrode binder may be negative electrode active substances and negative electrode binders conventionally used in the art, for example, the negative electrode active substance may be one or more of metallic lithium, metal oxides, lithium aluminum alloys, graphite, modified carbon materials, silicon, silicon oxygen, and silicon carbon.
  • the negative electrode active substance is a composite of graphite and silicon oxygen.
  • the diaphragm is a diaphragm layer conventionally used in the art.
  • the present invention has the following advantages compared with the prior art:
  • the present invention is directed to the case where the electrolyte contains fluoroethylene carbonate and the fluoroethylene carbonate accounts for more than 5% of the total mass of the electrolyte.
  • a compound containing 3 or more carbon-carbon double bonds is used as an additive. This is not only more environmentally friendly, but also can improve battery formation and swelling during high-temperature storage, increase battery discharge capacity, and improve battery self-discharge performance under high voltage.
  • the specific implementation of the present invention prepares the battery electrolyte in a glove box according to the formula described in Table 1.
  • the names of the substances involved in the table are ethylene carbonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), fluoroethylene carbonate (FEC), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), 1,3-propane sultone (PS), cyclopentane sulfone (SL), propenyl-1,3-sultone (PST), methane disulfonyl methylene ester (MMDS), vinylene carbonate (VC), and the electrolyte formulas of Comparative Examples 1 to 8 and Examples 1 to 21 are shown in Table 1.
  • Additives A1 to A8 involved in Table 1 are as follows:
  • test battery swelling rate H2% ((thickness after placement - thickness before placement) / thickness before placement) * 100)
  • test battery capacity retention rate Q% ((discharge capacity after placement / discharge capacity before placement) * 100)
  • test battery voltage value V at this time the experimental results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池电解液和锂二次电池。所述锂离子电池电解液,包括有机溶剂、锂盐和添加剂,其中有机溶剂包括占电解液总质量至少5%的氟代碳酸乙烯酯,添加剂包括含有3个或3个以上碳碳双键化合物中的一种或几种的添加剂A,电解液中不包括含磺酰基团的化合物。锂离子电池电解液不仅更加环保,而且更能改善电池化成和高温搁置时臌胀,提高电池放电容量,改善电池在高电压下电池自放电性能。

Description

锂离子电池电解液和锂二次电池 技术领域
本发明涉及锂离子电池技术领域,具体涉及一种锂离子电池电解液和锂二次电池。
背景技术
锂离子电池与其他电池相比,具有质量轻、体积小、工作电压高、能量密度高、输出功率大、充电效率高、无记忆效应、循环寿命长等优点,但随着人们生活的要求逐渐提高和电子产品的不断发展,对锂离子电池的性能提出更高的挑战。
常见的锂离子电池电解液含有磺酸酯、磺内酯、硫酸酯、亚硫酸酯、砜类、亚砜等具有磺酰基团的化合物等作为添加剂,在锂离子电池充电过程中,该类添加剂在负极能形成固态电解质界面膜而有效抑制电解液的分解反应,因此锂离子电池的高温存储性能得到了明显改善。但该类化合物的应用会涉及环保的问题,在有些国家和地区已经禁止使用或是准备禁止使用。
由于含磺酰基团的化合物存在上述缺陷,因此,大家都在寻找合适的替代物,来抑制电池在化成和高温搁置时臌胀,提高电池放电容量,改善电池在高电压下电池自放电性能。
发明内容
本发明的目的是提供一种环保、提升电池容量及改善电池性能的锂电池电解液。
本发明的另一个目的是提供一种采用上述电解液的锂离子二次电池。
为解决上述技术问题,本发明采用以下技术方案:
本发明的一个目的是提供一种锂离子电池电解液,包括有机溶剂、锂盐和添加剂,所述添加剂包括添加剂A,所述添加剂A为如下结构式所示物质中的一种或几种:
式2中R1为碳原子数1~3的烷基或碳原子数为2~4的烯基,式3和式4中R2~R12为碳原子数为1~3的烷基;式1中a~c为0~3的整数,式2中d~f为0~3的整数,式3中h~j为0~3的整数,k为1~5的整数,式4中m、n、x、y为0~3的整数;
所述有机溶剂包括氟代碳酸乙烯酯,所述氟代碳酸乙烯酯至少占所述电解液总质量的5%;
所述电解液中不包括含磺酰基团的化合物。
具体地,所述的含磺酰基团的化合物包括但不限于含有磺酸酯、磺内酯、硫酸酯、亚硫酸酯、砜、亚砜的化合物。
具体地,所述的含磺酰基团的化合物包括但不限于1,3-丙磺酸内酯、丙烯基-1,3-磺酸内酯、甲烷二磺基亚甲酯、硫酸乙烯酯、亚硫酸乙烯酯、环丁砜。
优选地,式2中R1为甲基、乙基、乙烯基、丙烯基中的一种,式3和式4中R2~R12为甲基、乙基、丙基中的一种;式1中a~c为0、1或2,式2中d~f为0、1或2,式3中h~j 为0、1或2,k为1、2或3,式4中m、n、x、y为0、1或2。
本申请中,“R2~R12为”是指R2~R12各自为某个基团,而非限定R2~R12均相同,实际上R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12可以相同,也可以不同。同理,“a~c为”、“d~f为”、“h~j”以及“m、n、x、y为”均是指各自独立取值,而非限定他们是相同的。
根据一些具体实施方式,所述添加剂A为如下结构式所示物质中的一种或多种:
根据一些具体实施方式,所述添加剂A占所述电解液的总质量的0.5%~2.0%,例如0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%。
根据另一些具体实施方式,所述添加剂A的含量占所述电解液的总质量的1.0%~2.0%。
根据一些具体实施方式,所述添加剂A为式1至式4所示物质中的两种及两种以上。
根据一种具体且优选实施方式,所述添加剂A为占所述电解液总质量1%的A1、占所述电解液总质量0.5%的A4、占所述电解液总质量0.5%的A6。
根据一些具体实施方式,所述的添加剂还含有其他添加剂,所述的其他添加剂包括但不限于含有双键的环状碳酸酯、含有卤素的环状碳酸酯、酸酐、苯化合物、氟代苯化合物、腈 类化合物、磷酸酯、亚磷酸酯、硼化合物、胺化合物、含硅化合物、杂环化合物中的一种或多种。
进一步地,所述的其他添加剂占所述电解液总质量的0.1%~5%。
更近一步地,所述的其他添加剂占所述电解液总质量的1%~3%。
进一步地,所述的其他添加剂包括但不限于碳酸亚乙烯酯、碳酸乙烯亚乙酯、联苯、琥珀酸酐、戊二酸酐、环己基苯、叔丁基苯、叔戊基苯、间氟甲苯、3,4-二氟甲苯、对氟甲苯、对二甲苯、1,2-二甲氧基-4-硝基苯、N-苯基马来酰亚胺、五氟苯甲醚、1,4-二甲氧基苯、己二腈、己烷三腈、丁二腈、1,2,3-三(2-氰乙氧基)丙烷、N,N-二环己基碳二亚胺、N,N-二乙胺三甲基硅烷、六甲基二硅氮烷、磷酸三苯酯、庚二腈、2-乙氧基-2,4,4,6,6-五氟三聚磷腈、2-氟吡啶、1,3-二氧六环中一种或多种。
根据一种具体且优选实施方式,所述的其他添加剂为占所述电解液总质量1%的碳酸亚乙烯酯。
根据一些具体实施方式,所述有机溶剂还包括其他有机溶剂,所述其他有机溶剂为碳酸酯、羧酸酯、醚中的一种或多种,或者碳酸酯、羧酸酯、醚中的一种或多种与氟代碳酸酯、氟代羧酸酯、氟代醚、氟代苯中的一种或多种的组合。
进一步地,所述其他有机溶剂为二氟碳酸乙烯酯、三氟乙基碳酸酯、四氟乙基四氟丙醚、三氟乙基六氟丙基醚、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯、乙二醇二甲醚、r-丁内酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸丙酯、丙酸丁酯、丁酸甲酯、丁酸乙酯、氟苯中的一种或多种。
根据一些具体实施方式,所述有机溶剂占所述电解液总质量的70%~90%。
进一步地,所述有机溶剂占所述电解液总质量的80%~90%。
其中,所述氟代碳酸乙烯酯的用量与该电解液所使用的电池体系的负极相关联,所述氟代碳酸乙烯酯占有机溶剂的比例随着负极材料中硅含量的增加而增加。例如所述氟代碳酸乙烯酯的质量为所述有机溶剂质量的90%以下,80%以下,70%以下,60%以下,50%以下,40%以下,30%以下,20%以下等等。
根据一些具体实施方式,所述锂盐可以采用锂离子电池体系中可以使用的任何锂盐或者其组合。
根据一些具体实施方式,所述锂盐占所述电解液总质量的10%~25%。
进一步地,所述锂盐占所述电解液总质量的12%~20%。
根据一些具体实施方式,所述锂盐包括六氟磷酸锂与其他锂盐。
进一步地,所述其他锂盐是四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、 二氟双草酸根磷酸锂、四氟草酸磷酸锂中的一种或多种。
进一步地,所述六氟磷酸锂占所述电解液总质量的10%~15%。
更进一步地,所述六氟磷酸锂占所述电解液总质量的10%~13%。
根据一种具体且优选实施方式,所述的锂盐为占所述电解液总质量12.5%的六氟磷酸锂、占所述电解液总质量0.5%的四氟硼酸锂。
本发明的另一方面是提供一种锂离子二次电池,包括壳体、以及容纳于壳体内的电芯、电解液。
具体地,所述的电芯包括正极、负极、介于正极和负极之间的隔膜,所述的电解液为上述锂离子电池电解液。
具体地,所述的正极包括正极集流体以及位于正极集流体表面的正极材料,所述的正极材料包括正极活性物质、正极导电剂、正极粘结剂,所述的正极活性物质可以是普通型LiNixCoyMn1-x-yO2、普通型LiNixCoyAl1-x-yO2、普通型LiCoO2、高电压型LiNixCoyMn1-x-yO2(0<x<1,0<y<1)、高电压型LiCoO2。所述正极导电剂为乙炔黑或碳纳米管,所述正极粘结剂为聚偏氟乙烯。
具体地,所述的负极包括负极集流体以及位于负极集流体表面的负极材料,所述的负极材料包括负极活性物质、负极粘结剂。所述负极材料还可以选择性的包括负极导电剂,该所述负极导电剂与正极导电剂可以相同也可以不相同,均为本领域常使用的导电剂。所述的负极活性物质、负极粘结剂可以为本领域常规使用的负极活性物质、负极粘结剂,例如负极活性物质可以是金属锂、金属氧化物、锂铝合金、石墨、改性碳材料、硅、硅氧、硅碳中的一种或多种。优选地,所述负极活性物质为石墨与硅氧的复合物。
具体地,所述的隔膜为本领域常规使用的隔膜层。
由于上述技术方案的运用,本发明与现有技术相比具有以下优点:
本发明是针对电解液中含有氟代碳酸乙烯酯,且氟代碳酸乙烯酯占电解液总质量大于5%时,不以磺酸酯、磺内酯、硫酸酯、亚硫酸酯、砜、亚砜等含磺酰基团化合物作为添加剂,而使用包括含有3个或是3个以上碳碳双键的化合物作为添加剂,不仅更加环保,而且更能改善电池化成和高温搁置时臌胀,提高电池放电容量,改善电池在高电压下电池自放电性能。
具体实施方式
随着锂电池应用场景的扩大和环保要求的提升,需要对锂离子二次电池电解液进行改善,抑制电池在化成和高温搁置时臌胀,提高电池放电容量,改善电池在高电压下电池自放电性能。因此,本发明的发明人进行了深入研究和大量实验,最终提出一种电解液及使用该电解液的锂离子二次电池。
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。本文中若未特殊说明,“%”代表质量百分比。
电解液的制备:
本发明中的具体实施方式按照表1所述的配方在手套箱中配制电池电解液。其中,表中涉及到的物质名称为碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)、氟代碳酸乙烯酯(FEC)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、1,3-丙磺酸内酯(PS)、环丁砜(SL)、丙烯基-1,3-磺酸内酯(PST)、甲烷二磺基亚甲酯(MMDS)、碳酸亚乙烯酯(VC),对比例1~8和实施例1~21的电解液配方见表1。
表1


表1中涉及到的添加剂A1~A8如下:
电池的制备:
将对比例1~8和实施例1~21得到的电解液注入到同批次的LiNi0.8Co0.1Mn0.1O2(NCM811)||硅氧碳(550mAh)聚合物软包电池中,分别进行以下测试。
1)电池化成实验:电池在2.75V-4.3V区间进行0.1C首次充放电测试,测试电池的臌胀率H1%((充放电后电池厚度-充放电前电池厚度)/电池充放电前厚度)*100),实验结果见表2。
2)测试电池满电4.3V在60℃下搁置7天后,测试电池臌胀率H2%((搁置后厚度-搁置前厚度)/搁置前厚度)*100),测试电池容量保持率Q%((搁置后放电容量/搁置前放电容量)*100),测试电池此时的电压值V,实验结果见表2。
表2

由上表可知,在LiNi0.8Co0.1Mn0.1O2(NCM811)||硅氧碳(500mAh)1Ah聚合物软包电池中,当电解液使用高含量(大于等于5wt%)的氟代碳酸乙烯酯的有机溶剂、锂盐和含有添加剂A(含有3个或3个以上碳碳双键化合物)的添加剂(实施例1-22),比使用含磺酰基团的磺酸酯、磺内酯、硫酸酯、亚硫酸酯、砜类、亚砜化合物添加剂(对比例2、4-7以及9-12),不仅更加环保,而且更能改善电池化成和高温搁置时臌胀,提高电池放电容量,改善电池在高电压下电池自放电性能。并且从上表可见,两种或者三种添加剂A复配使用时(实施例18-21),电池的臌胀率更低,容量保持率和电压值更高。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (14)

  1. 一种锂离子电池电解液,包括有机溶剂、锂盐和添加剂,其特征在于,所述添加剂包括添加剂A,所述添加剂A为如下结构式所示物质中的一种或几种:
    式2中R1为碳原子数1~3的烷基或碳原子数为2~4的烯基,式3和式4中R2~R12为碳原子数为1~3的烷基;式1中a~c为0~3的整数,式2中d~f为0~3的整数,式3中h~j为0~3的整数,k为1~5的整数,式4中m、n、x、y为0~3的整数;
    所述有机溶剂包括氟代碳酸乙烯酯,所述氟代碳酸乙烯酯至少占所述电解液总质量的5%;
    所述电解液中不包括含磺酰基团的化合物。
  2. 如权利要求1所述的锂离子电池电解液,其特征在于,式2中R1为甲基、乙基、乙烯基、丙烯基中的一种,式3和式4中R2~R12为甲基、乙基、丙基中的一种;式1中a~c为0、1或2,式2中d~f为0、1或2,式3中h~j为0、1或2,k为1、2或3,式4中m、n、 x、y为0、1或2。
  3. 如权利要求1所述的锂离子电池电解液,其特征在于,所述添加剂A为如下结构式所示物质中的一种或多种:
  4. 如权利要求1至3中任一项所述的锂离子电池电解液,其特征在于,所述添加剂A占所述电解液总质量的0.5%~2.0%。
  5. 如权利要求1所述的锂离子电池电解液,其特征在于,所述添加剂还包括其他添加剂,所述的其他添加剂为含有双键的环状碳酸酯、含有卤素的环状碳酸酯、酸酐、苯化合物、氟代苯化合物、腈类化合物、磷酸酯、亚磷酸酯、硼化合物、胺化合物、含硅化合物、杂环化合物中的一种或多种。
  6. 如权利要求5所述的锂离子电池电解液,其特征在于,所述其他添加剂是碳酸亚乙烯酯、碳酸乙烯亚乙酯、联苯、琥珀酸酐、戊二酸酐、环己基苯、叔丁基苯、叔戊基苯、间氟甲苯、3,4-二氟甲苯、对氟甲苯、对二甲苯、1,2-二甲氧基-4-硝基苯、N-苯基马来酰亚胺、五氟苯甲醚、1,4-二甲氧基苯、己二腈、己烷三腈、丁二腈、1,2,3-三(2-氰乙氧基)丙烷、N,N-二环己基碳二亚胺、N,N-二乙胺三甲基硅烷、六甲基二硅氮烷、磷酸三苯酯、庚 二腈、2-乙氧基-2,4,4,6,6-五氟三聚磷腈、2-氟吡啶、1,3-二氧六环中一种或多种。
  7. 如权利要求5所述的锂离子电池电解液,其特征在于,所述其他添加剂占所述电解液总质量的0.1%~5%。
  8. 如权利要求1所述的锂离子电池电解液,其特征在于,所述有机溶剂还包括其他有机溶剂,所述其他有机溶剂为碳酸酯、羧酸酯、醚中的一种或多种,或者碳酸酯、羧酸酯、醚中的一种或多种与氟代碳酸酯、氟代羧酸酯、氟代醚、氟代苯中的一种或多种的组合。
  9. 如权利要求8所述的锂离子电池电解液,其特征在于,所述其他有机溶剂为二氟碳酸乙烯酯、三氟乙基碳酸酯、四氟乙基四氟丙醚、三氟乙基六氟丙基醚、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯、乙二醇二甲醚、r-丁内酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸丙酯、丙酸丁酯、丁酸甲酯、丁酸乙酯、氟苯中的一种或多种。
  10. 如权利要求1所述的锂离子电池电解液,其特征在于,所述有机溶剂占所述电解液总质量的70%~90%。
  11. 如权利要求1所述的锂离子电池电解液,其特征在于,所述锂盐包括六氟磷酸锂与其他锂盐;所述其他锂盐是四氟硼酸锂、二草酸硼酸锂、草酸二氟硼酸锂、二氟磷酸锂、二氟双草酸根磷酸锂、四氟草酸磷酸锂中的一种或多种。
  12. 如权利要求11所述的锂离子电池电解液,其特征在于,所述六氟磷酸锂占所述电解液总质量的10%~15%。
  13. 如权利要求1所述的锂离子电池电解液,其特征在于,所述锂盐占所述电解液总质量的10%~25%。
  14. 一种锂离子二次电池,其特征在于,包括壳体、以及容纳于壳体内的电芯和电解液;所述的电芯包括正极、负极、介于所述正极和所述的负极之间的隔膜,所述的电解液为如权利要求1至13中任一项所述的锂离子电池电解液。
PCT/CN2023/123995 2022-10-21 2023-10-11 锂离子电池电解液和锂二次电池 WO2024083011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211291032.2 2022-10-21
CN202211291032.2A CN117917792A (zh) 2022-10-21 2022-10-21 一种锂离子电池电解液和锂二次电池

Publications (1)

Publication Number Publication Date
WO2024083011A1 true WO2024083011A1 (zh) 2024-04-25

Family

ID=90729760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123995 WO2024083011A1 (zh) 2022-10-21 2023-10-11 锂离子电池电解液和锂二次电池

Country Status (2)

Country Link
CN (1) CN117917792A (zh)
WO (1) WO2024083011A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536242A (zh) * 2006-10-23 2009-09-16 旭化成电子材料株式会社 锂离子二次电池用电解液
CN103825047A (zh) * 2014-02-19 2014-05-28 深圳新宙邦科技股份有限公司 一种用于锂离子电池的电解液
US20150244029A1 (en) * 2014-02-24 2015-08-27 Samsung Sdi Co., Ltd. Electrolyte and rechargeable lithium battery including same
JP2016054142A (ja) * 2014-09-01 2016-04-14 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
CN107251310A (zh) * 2015-02-19 2017-10-13 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
CN109937508A (zh) * 2016-12-22 2019-06-25 松下知识产权经营株式会社 非水电解质二次电池
CN111684642A (zh) * 2018-02-26 2020-09-18 松下知识产权经营株式会社 非水电解质二次电池
CN116936913A (zh) * 2022-04-08 2023-10-24 浙江蓝天环保高科技股份有限公司 一种用于高电压电解液的含氟代羧酸酯组合物及其电解液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536242A (zh) * 2006-10-23 2009-09-16 旭化成电子材料株式会社 锂离子二次电池用电解液
CN103825047A (zh) * 2014-02-19 2014-05-28 深圳新宙邦科技股份有限公司 一种用于锂离子电池的电解液
US20150244029A1 (en) * 2014-02-24 2015-08-27 Samsung Sdi Co., Ltd. Electrolyte and rechargeable lithium battery including same
JP2016054142A (ja) * 2014-09-01 2016-04-14 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
CN107251310A (zh) * 2015-02-19 2017-10-13 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
CN109937508A (zh) * 2016-12-22 2019-06-25 松下知识产权经营株式会社 非水电解质二次电池
CN111684642A (zh) * 2018-02-26 2020-09-18 松下知识产权经营株式会社 非水电解质二次电池
CN116936913A (zh) * 2022-04-08 2023-10-24 浙江蓝天环保高科技股份有限公司 一种用于高电压电解液的含氟代羧酸酯组合物及其电解液

Also Published As

Publication number Publication date
CN117917792A (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
CN106505249B (zh) 一种锂离子电池电解液及含该电解液的锂离子电池
CN109873206B (zh) 锂离子电池电解液及锂离子电池
JP6143401B2 (ja) 電解液添加剤、この電解液添加剤を利用する電解液及びリチウムイオン電池
CN110828893B (zh) 一种锂离子电池电解液及锂离子电池
CN114597493A (zh) 一种锂离子电池及其电解液
JP2021524125A (ja) 非水性液体電解質組成物
CN110970621B (zh) 一种锂离子电池
KR102612376B1 (ko) 전해액, 전기화학장치 및 전자장치
WO2017185997A1 (zh) 电解液、正极及其制备方法和锂离子电池
WO2022116589A1 (zh) 电解液添加剂及应用和包括该添加剂的非水电解液
CN112448034A (zh) 一种高电压锂离子电池用非水电解液及锂离子电池
WO2018120793A1 (zh) 电解液及二次电池
CN110808412A (zh) 电解液及锂离子电池
US20220158243A1 (en) Electrolytic solution, and preparation method thereof and application thereof
WO2023179324A1 (zh) 一种含氟代苯碳酸酯的电解液及由该电解液组成的电池
CN111834665A (zh) 一种高镍三元锂离子电池电解液及锂离子电池
CN113130990A (zh) 一种电解液及使用该电解液的二次电池
CN117219850A (zh) 一种电解液和电池
WO2016090738A1 (zh) 一种电解液及使用该电解液的锂离子电池
CN110858665B (zh) 一种锂离子电池电解液及其应用
CN113956282B (zh) 一种电解液添加剂、电解液、锂二次电池
WO2024083011A1 (zh) 锂离子电池电解液和锂二次电池
CN111129584B (zh) 一种非水电解液及其锂离子电池
CN109301327B (zh) 一种电解液与一种锂离子电池
CN114171792B (zh) 一种二次电池电解液及二次电池