WO2024082093A1 - 电池单体、电池和用电设备 - Google Patents

电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2024082093A1
WO2024082093A1 PCT/CN2022/125681 CN2022125681W WO2024082093A1 WO 2024082093 A1 WO2024082093 A1 WO 2024082093A1 CN 2022125681 W CN2022125681 W CN 2022125681W WO 2024082093 A1 WO2024082093 A1 WO 2024082093A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
battery cell
hole
limiting structure
insulating
Prior art date
Application number
PCT/CN2022/125681
Other languages
English (en)
French (fr)
Inventor
王利钦
李全坤
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/125681 priority Critical patent/WO2024082093A1/zh
Publication of WO2024082093A1 publication Critical patent/WO2024082093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • the embodiments of the present application provide a battery cell, a battery, and an electrical device, which can improve the processing efficiency of the battery cell.
  • a battery cell comprising: a first wall, the first wall being provided with a first limiting structure; an insulating structure, the insulating structure being provided on a side of the first wall facing the interior of the battery cell, the insulating structure being provided with a second limiting structure corresponding to the first limiting structure, the second limiting structure and the first limiting structure cooperating with each other to prevent relative movement between the insulating structure and the first wall.
  • the first wall is provided with a first limiting structure
  • the insulating structure is provided with a second limiting structure.
  • the first limiting structure and the second limiting structure cooperate with each other to prevent or limit the relative movement between the first wall and the insulating structure.
  • the first wall and the insulating structure can be positioned to facilitate the installation between the two; on the other hand, the misalignment between the first wall and the insulating structure can be avoided, thus ensuring the insulation performance of the insulating structure between the first wall and other components inside the battery cell, avoiding short circuits, and improving the safety performance of the battery cell.
  • the first limiting structure includes a first protrusion structure of the first wall protruding toward the insulating structure
  • the second limiting structure includes a first groove structure of the insulating structure, the opening of the first groove structure faces the first wall, and at least a portion of the first protrusion structure is accommodated in the first groove structure
  • the first limiting structure includes a second groove structure of the first wall, the opening of the second groove structure faces the insulating structure
  • the second limiting structure includes a second protrusion structure of the insulating structure protruding toward the first wall, and at least a portion of the second protrusion structure is accommodated in the second groove structure.
  • the first limiting structure and the second limiting structure cooperate with each other and may include at least part of the first protrusion structure being accommodated in the first groove structure, so that the first groove structure can limit the movement of the first protrusion structure, and/or at least part of the second protrusion structure being accommodated in the second groove structure, so that the second groove structure can limit the movement of the second protrusion structure.
  • the movement of the first wall relative to the insulating structure can be limited to achieve the positioning and fixing effect, and avoid the misalignment between the first wall and the insulating structure; and the above-mentioned setting method is simple, the structure is stable, and it is easy to process.
  • the first protruding structure is a groove on the surface of the first wall that is recessed toward the insulating structure and protrudes from the surface of the first wall that is recessed toward the inside of the battery cell; and/or, the second protruding structure is a groove on the surface of the insulating structure that is recessed toward the first wall and protrudes from the surface of the insulating structure that is away from the inside of the battery cell.
  • Arranging the first protrusion structure and/or the second protrusion structure by means of grooves can effectively reduce the weight of the first wall and/or the insulating structure compared to directly arranging a solid protrusion structure on the surface of the first wall or the surface of the insulating structure, and the processing method is simple.
  • the first protrusion structure and the first groove structure can be processed simultaneously by stamping, or the second protrusion structure and the second groove structure can be processed simultaneously by stamping, thereby improving the processing efficiency of the battery cell.
  • the first groove structure protrudes from a surface of the insulating structure facing the interior of the battery cell; and/or the second groove structure protrudes from a surface of the first wall away from the interior of the battery cell.
  • the first groove structure of the insulating structure is set to protrude from the surface of the insulating structure facing the inside of the battery cell, and the depth of the first groove structure is less limited by the thickness of the insulating structure.
  • the thickness of the insulating structure is limited, the depth of the first groove structure may be greater than the thickness of the insulating structure, so that the first protrusion structure can be more accommodated in the first groove structure, so as to increase the stability between the first protrusion structure and the first groove structure, and thus increase the stability between the first limiting structure and the second limiting structure.
  • the second groove structure of the first wall is set to protrude from the surface of the first wall away from the inside of the battery cell, and the depth of the second groove structure is less limited by the thickness of the first wall.
  • the depth of the second groove structure may be greater than the thickness of the first wall, so that the second protrusion structure can be more accommodated in the second groove structure, so as to increase the stability between the second protrusion structure and the second groove structure, and thus increase the stability between the first limiting structure and the second limiting structure.
  • the battery cell also includes: an electrode terminal, which is arranged on the first wall, the first wall is provided with a first through hole, the insulating structure is provided with a second through hole corresponding to the first through hole, and the electrode terminal passes through the first through hole and the second through hole to rivet the first wall and the insulating structure.
  • the riveting action of the electrode terminal can limit the relative translation between the first wall and the insulating structure, but cannot prevent the relative rotation between the first wall and the insulating structure. Therefore, the relative rotation between the first wall and the insulating structure can be further prevented through the mutual cooperation of the first limiting structure and the second limiting structure to avoid misalignment between the first wall and the insulating structure.
  • the battery cell also includes: a connecting member for electrically connecting to the electrode terminal, the connecting member being arranged on a side of the insulating structure facing the interior of the battery cell, the connecting member being provided with a third through hole corresponding to the second through hole, the electrode terminal passing through the third through hole, so that the connecting member, the insulating structure and the first wall are riveted, the processing process is simple, and it is beneficial to improve the processing efficiency of the battery cell.
  • the connecting member further comprises a third limiting structure, and the third limiting structure cooperates with the second limiting structure to prevent relative movement between the connecting member and the insulating structure.
  • the connecting member can be fixed to facilitate the assembly and installation of the battery cell, and the insulating structure can also ensure that the first wall and the connecting member are electrically isolated to avoid a short circuit between the connecting member and the first wall.
  • the third limiting structure includes a fourth through hole of the connecting member, and the fourth through hole is used to accommodate at least part of the second limiting structure.
  • the fourth through hole can save the space occupied by the bottom wall of the groove, improve the space utilization rate inside the battery cell, and reduce the weight of the connecting member, which can also reduce the weight of the battery cell, thereby improving the performance of the battery cell.
  • a first groove structure with an insulating structure is provided between the inner wall of the fourth through hole and the first protrusion structure, which can also prevent the connecting member from short-circuiting with the first wall.
  • the battery cell also includes: a sealing structure, which is arranged on a side of the first wall away from the interior of the battery cell, the sealing structure is used to electrically isolate the electrode terminal from the first wall, the sealing structure is provided with a fifth through hole, at least a portion of the fifth through hole is accommodated in the first through hole, and the electrode terminal passes through the fifth through hole to seal the electrode terminal and the first through hole.
  • a sealing structure which is arranged on a side of the first wall away from the interior of the battery cell, the sealing structure is used to electrically isolate the electrode terminal from the first wall, the sealing structure is provided with a fifth through hole, at least a portion of the fifth through hole is accommodated in the first through hole, and the electrode terminal passes through the fifth through hole to seal the electrode terminal and the first through hole.
  • the sealing structure is usually made of insulating material, and the sealing structure is arranged between the first wall and the electrode terminal to avoid a short circuit between the electrode terminal and the first wall.
  • the first wall is provided with a first through hole and the insulating structure is provided with a second through hole, there may be a gap between the electrode terminal and the first through hole and between the electrode terminal and the second through hole, so the first through hole and the second through hole can be sealed by the sealing structure.
  • the sealing structure can be squeezed and deformed and then sealed to avoid leakage of the internal electrolyte.
  • the electrode terminal is a positive electrode terminal.
  • the ratio of the distance between the electrode terminal and the first limiting structure to the length of the first wall is in the range of [10%, 48%]. If the ratio is set too large, the distance between the first limiting structure and the electrode terminal in the length direction of the first wall is too large, and the first limiting structure is too far away from the electrode terminal, which will cause the first limiting structure to fail to effectively limit the relative movement between the first wall and the insulating structure during the installation of the electrode terminal, thereby affecting the processing efficiency of the battery cell.
  • the first wall is provided with a first through hole for accommodating at least part of the electrode terminal, and the distance between the first limiting structure and the electrode terminal is too small, then the distance between the first limiting structure and the first through hole will also be too small, and the two are likely to affect each other, thereby affecting the structural strength and stability of the first wall, thereby reducing the installation efficiency of the battery cell and increasing the difficulty of processing.
  • the ratio of the size of the first limiting structure to the width of the first wall is in the range of [15%, 95%]. If the ratio is too large, the size of the first limiting structure in the width direction of the first wall is too large, which will increase the difficulty of processing the first limiting structure, and the first limiting structure is likely to affect other walls intersecting with the first wall. On the contrary, if the ratio is too small, the size of the first limiting structure in the width direction of the first wall is too small.
  • the first limiting structure with a smaller size will increase the difficulty of processing the first limiting structure, and it is also difficult to limit the relative movement between the first wall and the insulating structure by the first limiting structure with a too small size.
  • the battery cell further includes: a shell, which is a hollow structure with an opening; and a cover plate, which is used to cover the opening of the shell to form an internal accommodating cavity, which can be used to accommodate the electrode assembly.
  • the cover plate is the wall with the largest area of the battery cell, which facilitates the installation of components inside the battery cell, for example, it can facilitate the installation of the electrode assembly inside the battery cell and speed up the processing of the battery cell.
  • the cover plate is provided with a pressure relief mechanism, or the wall opposite to the cover plate is provided with the pressure relief mechanism, which is actuated to release the internal pressure or temperature of the battery cell when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the pressure relief mechanism is an L-shaped notch disposed on the surface of the battery cell away from the interior of the battery cell, that is, the pressure relief mechanism has two parts that are connected and perpendicular to each other, so that when the temperature or pressure inside the battery cell reaches a preset threshold, the pressure relief mechanism can be destroyed in any direction, so that the pressure relief mechanism is destroyed in time, and the pressure and temperature inside the battery cell are released in time to avoid the explosion of the battery cell.
  • the pressure relief mechanism is disposed on the outer surface of the cover plate to prevent the electrolyte inside the battery cell from accumulating in the notch and to prevent the electrolyte from corroding the pressure relief mechanism, thereby also improving the safety of the pressure relief mechanism.
  • the first wall is a side wall of the shell, and the side wall of the shell is a wall adjacent to the opening of the shell, so that the first limiting structure and the second limiting structure can be easily processed through the opening.
  • the first wall is the wall with the smallest area of the battery cell.
  • the area of the first wall is limited, the area of the insulating structure is also limited.
  • the first limiting structure and the second limiting structure can be used to quickly position the first wall and the insulating structure to facilitate installation and improve the processing efficiency of the battery cell.
  • the material of the first wall includes stainless steel and/or alloy, so that the first wall has a strong hardness to ensure the structural strength of the battery cell.
  • the thickness of the first wall is in the range of [50 ⁇ m, 200 ⁇ m] to ensure the structural strength of the battery cell.
  • a battery comprising: a plurality of battery cells as described in the first aspect.
  • an electrical device comprising: the battery cell described in the first aspect, wherein the battery cell is used to provide electrical energy to the electrical device.
  • the electrical equipment is a vehicle, a ship or a spacecraft.
  • FIG1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • FIG3 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • FIG4 is a partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG5 is another partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG6 is a partial cross-sectional exploded schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG7 is a schematic diagram of an outer surface of a first wall of a battery cell disclosed in an embodiment of the present application.
  • FIG8 is a schematic diagram of a surface of a cover plate disclosed in an embodiment of the present application.
  • FIG. 9 is a partial cross-sectional schematic diagram of a cover plate disclosed in an embodiment of the present application.
  • battery cells may include primary batteries and secondary batteries, such as lithium-ion batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • Battery cells may be cylindrical, flat, rectangular or other shapes, etc., which are not limited in the embodiments of the present application. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • a battery pack generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector not coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector may be aluminum, and the positive electrode active material may be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector not coated with the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon, etc.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly can be a winding structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • An insulating structure is usually required between the outer shell of the battery cell and the internal electrode assembly to avoid short circuits between the outer shell and the components inside the battery cell, for example, to avoid short circuits between the electrode assembly or connecting components inside the battery cell; especially when other components are provided on the outer shell, the insulating structure can also be used to avoid short circuits between the components on the outer shell and the components inside the battery cell.
  • the shell of the battery cell includes a first wall, which can be any wall of the shell.
  • the first wall can be provided with at least one electrode terminal, which is used to output the energy of the battery cell; the first wall can also be provided with a liquid injection hole for injecting electrolyte into the interior of the battery cell, or the first wall can also be provided with other components.
  • the side of the first wall facing the battery cell can also be provided with an insulating structure, which can be used to avoid short circuit between the first wall and the components inside the battery cell, and the insulating structure can also avoid short circuit between the components on the first wall and the components inside the battery cell.
  • directly stacking the insulating structure with the first wall may easily cause misalignment between the insulating structure and the first wall, thereby affecting the insulating effect of the insulating structure on the first wall and the safety performance of the battery cell.
  • the embodiment of the present application provides a battery cell, a battery and an electrical device that can solve the above problems.
  • a first limiting structure is provided on the first wall of the battery cell, and a second limiting structure corresponding to the first limiting structure is provided on the insulating structure.
  • the first limiting structure and the second limiting structure cooperate with each other to prevent relative movement between the insulating structure and the first wall.
  • the first wall and the insulating structure can be positioned to facilitate installation between the two; on the other hand, misalignment between the insulating structure and the first wall can be avoided, thus ensuring the insulating performance of the insulating structure between the first wall and other components inside the battery cell, avoiding short circuits, and improving the safety performance of the battery cell.
  • FIG1 it is a schematic diagram of the structure of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 40, a controller 30 and a battery 10 may be provided inside the vehicle 1.
  • the controller 30 is used to control the battery 10 to supply power to the motor 40.
  • a battery 10 may be provided at the bottom, front or rear of the vehicle 1.
  • the battery 10 may be used to supply power to the vehicle 1.
  • the battery 10 may be used as an operating power source for the vehicle 1, for the circuit system of the vehicle 1, for example, for the working power requirements during the start-up, navigation and operation of the vehicle 1.
  • the battery 10 may not only be used as an operating power source for the vehicle 1, but also as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • a battery may include multiple battery cells, wherein multiple battery cells may be connected in series, in parallel, or in hybrid connection, where hybrid connection refers to a mixture of series and parallel connection.
  • a battery may also be referred to as a battery pack.
  • multiple battery cells may be connected in series, in parallel, or in hybrid connection to form a battery module, and multiple battery modules may be connected in series, in parallel, or in hybrid connection to form a battery.
  • multiple battery cells may be directly connected to form a battery, or they may be first connected to form a battery module, and then the battery module may be connected to form a battery.
  • FIG2 shows a schematic diagram of the structure of a battery 10 according to an embodiment of the present application
  • the battery 10 may include a plurality of battery cells 20.
  • the battery 10 may also include a box 11, the interior of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • FIG2 shows a possible implementation of the box 11 of the embodiment of the present application.
  • the box 11 may include two parts, which are respectively referred to as a first part 111 and a second part 112, and the first part 111 and the second part 112 are buckled together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the shapes of the plurality of battery cells 20 after being combined, and at least one of the first part 111 and the second part 112 has an opening.
  • the first part 111 and the second part 112 may both be hollow cuboids and each have only one face as an opening face, the opening of the first part 111 and the opening of the second part 112 are arranged opposite to each other, and the first part 111 and the second part 112 are buckled together to form a box 11 with a closed chamber.
  • first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be in the shape of a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face being an opening face, and the first part 111 is in the shape of a plate. Then, the first part 111 covers the opening of the second part 112 to form a box 11 with a closed chamber, which can be used to accommodate a plurality of battery cells 20.
  • the plurality of battery cells 20 are connected in parallel, in series, or in a mixed combination and placed in the box 11 formed by the first part 111 and the second part 112 being buckled together.
  • the battery 10 may also include other structures, which are not described one by one here.
  • the battery 10 may also include a busbar, which is used to realize the electrical connection between multiple battery cells 20, such as parallel or series or mixed connection.
  • the busbar can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20.
  • the busbar can be fixed to the electrode terminals of the battery cells 20 by welding. The electrical energy of multiple battery cells 20 can be further led out through the box 11 through the conductive mechanism.
  • the number of battery cells 20 in the battery 10 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed to achieve a larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for ease of installation, the battery cells 20 can be grouped, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to demand. In addition, in order to increase the space occupancy rate of the battery cells 20 in the battery 10, the installation direction of the battery cells 20 can be reasonably set according to the shape of the multiple battery cells 20; and, the installation directions of different battery cells 20 in the battery 10 can be the same or different, and the embodiments of the present application are not limited to this.
  • Figure 3 shows a schematic diagram of a partial decomposition structure of a battery cell 20 of an embodiment of the present application
  • Figure 4 shows a schematic diagram of a partial cross-section of a battery cell 20 of an embodiment of the present application, wherein the cross-section is perpendicular to the thickness direction Y of the battery cell 20
  • Figure 5 shows an enlarged schematic diagram of a partial cross-section of a battery cell 20 of an embodiment of the present application, for example, Figure 5 is an enlarged view of area A shown in Figure 4
  • Figure 6 shows a schematic diagram of a partial cross-section decomposition of a battery cell 20 of an embodiment of the present application, for example, Figure 6 is a schematic diagram of the decomposition structure of the partial battery cell 20 shown in Figure 5.
  • the battery cell 20 of the embodiment of the present application includes: a first wall 21a, which is provided with a first limiting structure 201; an insulating structure 22, which is arranged on the side of the first wall 21a facing the interior of the battery cell 20, and the insulating structure 22 is provided with a second limiting structure 202 corresponding to the first limiting structure 201, and the second limiting structure 202 and the first limiting structure 201 cooperate with each other to prevent relative movement between the insulating structure 22 and the first wall 21a.
  • the shape of the battery cell 20 of the embodiment of the present application can be flexibly set according to the actual application, that is, the battery cell 20 can be any polyhedral structure.
  • the battery cell 20 may include a shell 21, and the shell 21 includes a plurality of walls, and the plurality of walls are used to enclose a hollow polyhedral structure, so that the battery cell 20 is a polyhedral structure.
  • the first wall 21a of the embodiment of the present application may be any wall of the shell 21 of the battery cell 20.
  • the shell 21 may include six faces, that is, six walls, wherein the first wall 21a may be the wall with the largest area or the wall with the smallest area or other walls, and the embodiment of the present application is not limited thereto.
  • the present embodiment defines three reference directions. As shown in Figures 3 to 6, the thickness direction of the battery cell 20 is direction Y, the height direction of the battery cell 20 is direction Z, and the width direction of the battery cell 20 is direction X, wherein the thickness direction Y, height direction Z, and width direction X of the battery cell 20 are perpendicular to each other.
  • the insulating structure 22 of the embodiment of the present application is arranged on the side of the first wall 21a facing the inside of the battery cell 20, that is, the insulating structure 22 and the first wall 21a are stacked along the thickness direction of the first wall 21a.
  • the specific shape of the insulating structure 22 can be set according to the actual application.
  • the insulating structure 22 can be plate-shaped to fit with the first wall 21a so that the first wall 21a is electrically isolated from the internal components of the battery cell 20.
  • the insulating structure 22 can be used to electrically isolate the first wall 21a from the electrode assembly inside the battery cell 20 to avoid short circuit.
  • the first wall 21a is provided with a first limiting structure 201
  • the insulating structure 22 is provided with a second limiting structure 202.
  • the first limiting structure 201 and the second limiting structure 202 cooperate with each other to prevent or limit the relative movement between the first wall 21a and the insulating structure 22.
  • the first wall 21a and the insulating structure 22 can be positioned to facilitate the installation between the two; on the other hand, the misalignment between the first wall 21a and the insulating structure 22 can be avoided, which ensures the insulation performance of the insulating structure 22 between the first wall 21a and other components inside the battery cell 20, avoids short circuits, and improves the safety performance of the battery cell 20.
  • the coordination mode of the first limiting structure 201 and the second limiting structure 202 in the embodiment of the present application can be flexibly set according to the actual application.
  • the first limiting structure 201 includes a first protruding structure of the first wall 21a protruding toward the insulating structure 22, and the second limiting structure 202 includes a first groove structure of the insulating structure 22, the opening of the first groove structure is toward the first wall 21a, and at least part of the first protruding structure is accommodated in the first groove structure.
  • the surface of the first wall 21a facing the insulating structure 22 is provided with a first protruding structure protruding toward the insulating structure 22, and correspondingly, the surface of the insulating structure 22 facing the first wall 21a is provided with a first groove structure, and the opening of the first groove structure is toward the first wall 21a.
  • the first limiting structure 201 includes a first protrusion structure
  • the second limiting structure 202 includes a first groove structure.
  • the first limiting structure 201 and the second limiting structure 202 cooperate with each other and can include at least a portion of the first protrusion structure being accommodated in the first groove structure, so that the first groove structure can limit the movement of the first protrusion structure, and further limit the movement of the first wall 21a relative to the insulating structure 22, so as to achieve the positioning and fixing function and avoid misalignment between the first wall 21a and the insulating structure 22; and the above-mentioned setting method is simple, the structure is stable, and it is easy to process.
  • the first limiting structure 201 includes a second groove structure of the first wall 21a, the opening of the second groove structure faces the insulating structure 22, and the second limiting structure 202 includes a second protrusion structure of the insulating structure 22 protruding toward the first wall 21a, and at least part of the second protrusion structure is accommodated in the second groove structure.
  • the surface of the first wall 21a facing the insulating structure 22 is provided with a second groove structure
  • the opening of the second groove structure faces the insulating structure 22;
  • the surface of the insulating structure 22 facing the first wall 21a is provided with a second protrusion structure protruding toward the first wall 21a.
  • the first limiting structure 201 may include the second groove structure
  • the second limiting structure 202 may include the second protrusion structure.
  • the first limiting structure 201 and the second limiting structure 202 cooperate with each other to include at least a portion of the second protrusion structure being accommodated in the second groove structure, so that the second groove structure can limit the movement of the second protrusion structure, and further limit the movement of the insulating structure 22 relative to the first wall 21a, so as to achieve the positioning and fixing function and avoid misalignment between the first wall 21a and the insulating structure 22; and the above-mentioned setting method is simple, the structure is stable, and it is easy to process.
  • the first limiting structure 201 of the embodiment of the present application may include at least one first protruding structure and/or at least one second groove structure, and correspondingly, the second limiting structure 202 may include at least one first groove structure and/or at least one second protruding structure, and the embodiment of the present application is not limited thereto.
  • the first limiting structure 201 may include a first protruding structure or a second groove structure disposed on the first wall 21a
  • the second limiting structure 202 may include a first groove structure or a second protruding structure disposed on the insulating structure 22 for ease of processing.
  • the arrangement of the first protrusion structure, the first groove structure, the second protrusion structure and the second groove structure in the embodiment of the present application can be flexibly selected according to practical applications to improve the processing efficiency of the battery cell 20.
  • first protruding structure and the second protruding structure can be implemented by means of grooves.
  • the first protruding structure is a groove of the first wall 21a that is recessed toward the insulating structure 22 and protrudes from the surface of the first wall 21a that faces the inside of the battery cell 20; and/or, the second protruding structure is a groove of the insulating structure 22 that is recessed toward the first wall 21a and protrudes from the surface of the insulating structure 22 that is away from the inside of the battery cell 20.
  • the first wall 21a is recessed toward the insulating structure 22 to form a groove, and the bottom wall of the groove protrudes from the surface of the first wall 21a that faces the inside of the battery cell 20, and can then be used as the first protruding structure.
  • the insulating structure 22 is recessed toward the first wall 21a to form a groove, and the bottom wall of the groove protrudes from the surface of the insulating structure 22 that is away from the inside of the battery cell 20, and can then be used as the second protruding structure.
  • Arranging the first protrusion structure and/or the second protrusion structure by means of grooves can effectively reduce the weight of the first wall 21a and/or the insulating structure 22 compared to directly arranging a solid protrusion structure on the surface of the first wall 21a or the surface of the insulating structure 22, and the processing method is simple.
  • the first protrusion structure and the first groove structure can be processed simultaneously by stamping, or the second protrusion structure and the second groove structure can be processed simultaneously by stamping, thereby improving the processing efficiency of the battery cell 20.
  • first groove structure and the second groove structure may also be arranged with reference to the first protruding structure and the second protruding structure, respectively.
  • the first groove structure protrudes from the surface of the insulating structure 22 facing the inside of the battery cell 20; and/or, the second groove structure protrudes from the surface of the first wall 21a away from the inside of the battery cell 20.
  • the first groove structure of the insulating structure 22 is arranged to protrude from the surface of the insulating structure 22 facing the inside of the battery cell 20, and the depth of the first groove structure is less limited by the thickness of the insulating structure 22.
  • the depth of the first groove structure may be greater than the thickness of the insulating structure 22, so that the first protruding structure can be more accommodated in the first groove structure, so as to increase the stability between the first protruding structure and the first groove structure, and also increase the stability between the first limiting structure 201 and the second limiting structure 202.
  • the second groove structure of the first wall 21a is set to protrude from the surface of the first wall 21a away from the interior of the battery cell 20. The depth of the second groove structure is less limited by the thickness of the first wall 21a.
  • the depth of the second groove structure may be greater than the thickness of the first wall 21a, so that the second protrusion structure can be more accommodated in the second groove structure to increase the stability between the second protrusion structure and the second groove structure, thereby increasing the stability between the first limiting structure 201 and the second limiting structure 202.
  • the thickness of the bottom wall of the groove may be less than or equal to or slightly greater than the thickness of the first wall 21a where the groove is located or the thickness of the insulating structure 22 where the groove is located.
  • the first protruding structure may also be a thicker bump on the first wall 21a, for example, the thickness of the first protruding structure is greater than the thickness of other regions of the first wall 21a where the groove is located, so that the first protruding structure protrudes from the surface of the first wall 21a facing the insulating structure 22.
  • the second protruding structure may also be a thicker bump on the insulating structure 22, for example, the thickness of the second protruding structure is greater than the thickness of other regions of the insulating structure 22 where the groove is located, so that the second protruding structure protrudes from the surface of the insulating structure 22 facing the first wall 21a.
  • the first protruding structure can be integrated with the first wall 21a, for example, the first protruding structure can be formed on the first wall 21a by stamping, milling, etc.; or, the first protruding structure can also be formed separately from the first wall 21a, for example, the first wall 21a is formed with a through hole, and the first protruding structure is installed in the through hole, and the installation method can include welding, riveting, clamping, etc., and the present application does not impose special restrictions on this.
  • the second protruding structure can also be formed integrally with the insulating structure 22 or separately, and the present application does not impose special restrictions on this.
  • the battery cell 20 also includes: an electrode terminal 214, which is provided on the first wall 21a, and the electrode terminal 214 is used to electrically connect to the electrode assembly inside the battery cell 20 to output the electrical energy of the battery cell 20.
  • the battery cell 20 may include at least two electrode terminals 214, and the at least two electrode terminals 214 may include at least one positive electrode terminal 214a and at least one negative electrode terminal 214b, and the positive electrode terminal 214a is used to electrically connect to the positive pole ear of the electrode assembly, and the negative electrode terminal 214b is used to electrically connect to the negative pole ear of the electrode assembly.
  • the positive electrode terminal 214a may be directly connected to the positive pole ear or indirectly connected, and the negative electrode terminal 214b may be directly connected to the negative pole ear or indirectly connected.
  • the positive electrode terminal 214 a is electrically connected to the positive electrode tab 222 a via a connecting member 23
  • the negative electrode terminal 214 b is electrically connected to the negative electrode tab 222 b via a connecting member 23 .
  • different electrode terminals 214 may be located on the same wall or different walls of the battery cell 20.
  • the present embodiment of the application takes the electrode terminals 214 of the battery cell 20 as being located on the same wall, for example, they may all be located on the first wall 21a.
  • the electrode terminal 214 in the following description is mainly described by taking the positive electrode terminal 214a as an example, but the present embodiment of the application is not limited thereto.
  • the arrangement of the electrode terminal 214 can be flexibly selected according to practical applications.
  • the first wall 21a is provided with a first through hole 2101
  • the insulating structure 22 is provided with a second through hole 221 corresponding to the first through hole 2101
  • the electrode terminal 214 passes through the first through hole 2101 and the second through hole 221, so that the first wall 21a and the insulating structure 22 are riveted, which is convenient for processing and achieving fixation between the electrode terminal 214, the first wall 21a and the insulating structure 22;
  • the riveting effect of the electrode terminal 214 can limit the relative translation between the first wall 21a and the insulating structure 22, but cannot prevent the relative rotation between the first wall 21a and the insulating structure 22, so the first limiting structure 201 and the second limiting structure 202 can be used to further prevent the relative rotation between the first wall 21a and the insulating structure 22 to avoid misalignment between the first wall 21a and the insulating structure 22.
  • the battery cell 20 also includes: a sealing structure 24, which is provided on the side of the first wall 21a away from the interior of the battery cell 20, and the sealing structure 24 is used to electrically isolate the electrode terminal 214 from the first wall 21a.
  • the sealing structure 24 is provided with a fifth through hole 241, at least part of the fifth through hole 241 is accommodated in the first through hole 2101, and the electrode terminal 214 passes through the fifth through hole 241 to seal the electrode terminal 214 and the first through hole 2101.
  • the sealing structure 24 is usually made of insulating material, and the sealing structure 24 is arranged between the first wall 21a and the electrode terminal 214, so as to avoid a short circuit between the electrode terminal 214 and the first wall 21a.
  • the sealing structure 24 is provided with a fifth through hole 241, and at least a portion of the hole wall forming the fifth through hole 241 is located in the first through hole 2101, or further, at least a portion of the hole wall of the fifth through hole 241 can also be located in the second through hole 221, so that when the electrode terminal 214 passes through the fifth through hole 241, a portion of the sealing structure 24 is arranged between the electrode terminal 214 and the first through hole 2101, or further, a portion of the sealing structure 24 can also be arranged between the electrode terminal 214 and the second through hole 221.
  • the first wall 21a is provided with a first through hole 2101 and the insulating structure 22 is provided with a second through hole 221, there may be a gap between the electrode terminal 214 and the first through hole 2101 and between the electrode terminal 214 and the second through hole 221, so the first through hole 2101 and the second through hole 221 can be sealed by the sealing structure 24.
  • the sealing structure 24 can be squeezed and deformed and then sealed to avoid leakage of internal electrolyte.
  • the battery cell 20 further includes: a connecting member 23, which is used to electrically connect to the electrode terminal 214.
  • the connecting member 23 is arranged on a side of the insulating structure 22 facing the inside of the battery cell 20, and the connecting member 23 is provided with a third through hole 231 corresponding to the second through hole 221.
  • the electrode terminal 214 passes through the third through hole 231, so that the connecting member 23, the insulating structure 22 and the first wall 21a are riveted.
  • the connecting member 23 of the embodiment of the present application can be used to electrically connect to the electrode terminal 214, and can also be used to electrically connect to the tab of the electrode assembly, so that the electrode terminal 214 is electrically connected to the tab.
  • the connecting member 23 is provided with a third through hole 231, and the first through hole 2101 of the first wall 21a, the second through hole 221 of the insulating structure 22 and the third through hole 231 of the connecting member 23 are stacked in sequence, so that the electrode terminal 214 can pass through the first through hole 2101, the second through hole 221 and the third through hole 231 in sequence, thereby realizing riveting fixation between the first wall 21a, the insulating structure 22 and the connecting member 23.
  • the processing process is simple, which is beneficial to improving the processing efficiency of the battery cell 20.
  • the electrode terminal 214 and the connecting member 23 may be connected by welding to further increase the connection stability between the electrode terminal 214 and the connecting member 23 and ensure the performance of the battery cell 20 .
  • the connecting member 23 further includes a third limiting structure 232, and the third limiting structure 232 cooperates with the second limiting structure 202 to prevent the relative movement between the connecting member 23 and the insulating structure 22.
  • the third limiting structure 232 of the connecting member 23 can cooperate with the second limiting structure 202, that is, the first limiting structure 201, the second limiting structure 202 and the third limiting structure 232 can cooperate with each other to prevent the relative movement between the first wall 21a, the insulating structure 22 and the connecting member 23, and the connecting member 23 can be fixed to facilitate the assembly and installation of the battery cell 20, and the insulating structure 22 can also ensure that the first wall 21a and the connecting member 23 are electrically isolated from each other to avoid a short circuit between the connecting member 23 and the first wall 21a.
  • the third limiting structure 232 can be flexibly arranged according to the actual application, for example, the third limiting structure 232 can be arranged accordingly according to the arrangement of the first limiting structure 201 and the second limiting structure 202.
  • the first limiting structure 201 includes a first protrusion structure
  • the second limiting structure 202 includes a first groove structure
  • the first groove can protrude from the surface of the insulating structure 22 toward the connecting member 23, and
  • the third limiting structure 232 can include a groove or a through hole arranged on the connecting member 23, the opening of which is toward the insulating structure 22, for accommodating at least part of the first groove structure, so as to achieve mutual cooperation between the third limiting structure 232 and the second limiting structure 202.
  • the third limiting structure 232 includes a fourth through hole of the connecting member 23, and the fourth through hole is used to accommodate at least part of the second limiting structure 202.
  • the first limiting structure 201 may include a first protruding structure of the first wall 21a
  • the second limiting structure 202 may include a first groove structure of the insulating structure 22, and the first groove structure protrudes from the surface of the insulating structure 22 facing the inside of the battery cell 20.
  • the third limiting structure 232 may include a fourth through hole to accommodate at least part of the first groove structure.
  • the fourth through hole can save the space occupied by the bottom wall of the groove, improve the space utilization rate inside the battery cell 20, and can also reduce the weight of the connecting member 23, and also can reduce the weight of the battery cell 20, thereby improving the performance of the battery cell 20.
  • the first groove structure of the insulating structure 22 is provided between the inner wall of the fourth through hole and the first protruding structure, and the short circuit between the connecting member 23 and the first wall 21a can also be avoided.
  • the third limiting structure 232 may include a third protrusion structure protruding toward the insulating structure 22, and the third protrusion structure is at least partially accommodated in the second protrusion structure to achieve mutual cooperation between the third limiting structure 232 and the second limiting structure 202.
  • the setting position and size of the first limiting structure 201 and the second limiting structure 202 in the embodiment of the present application can be flexibly set according to the actual application.
  • the size and position of the first limiting structure 201 can be set according to the size of the first wall 21a
  • the size and position of the second limiting structure 202 are related to the size and position of the first limiting structure 202, so that the first limiting structure 201 and the second limiting structure 202 can cooperate with each other.
  • the first wall 21a and the first limiting structure 201 are used as an example for description.
  • FIG7 is a schematic diagram of the outer surface of the first wall 21a of the battery cell 20 of the embodiment of the present application, wherein the outer surface of the first wall 21a is the surface of the first wall 21a away from the inside of the battery cell 20.
  • the ratio L1/L2 of the distance L1 between the electrode terminal 214 and the first limiting structure 201 to the length L2 of the first wall 21a is in the range of [10%, 48%].
  • the distance L1 between the first limiting structure 201 and the electrode terminal 214 in the length direction X of the first wall 21a is too large, and the first limiting structure 201 is too far away from the electrode terminal 214, which will cause the first limiting structure 201 to be unable to effectively limit the relative movement between the first wall 21a and the insulating structure 22 during the installation of the electrode terminal 214, thereby affecting the processing efficiency of the battery cell 20.
  • the first wall 21a is provided with a first through hole 2101 for accommodating at least part of the electrode terminal 214.
  • the distance L1 between the first limiting structure 201 and the electrode terminal 214 is too small, the distance between the first limiting structure 201 and the first through hole 2101 will also be too small, and the two are likely to affect each other, thereby affecting the structural strength and stability of the first wall 21a, thereby reducing the installation efficiency of the battery cell 20 and increasing the difficulty of processing.
  • the value of L1/L2 should not be set too large or too small.
  • the value range of L1/L2 can be [10%, 48%]; or it can be [20%, 40%]; or the value of L1/L2 can be set to 10%, 15%, 20%, 25%, 30%, 35%, 40%, or 45%.
  • the distance L1 between the electrode terminal 214 and the first limiting structure 201 in the embodiment of the present application can also be expressed as: the distance between the center of the electrode terminal 214 and the center of the first limiting structure 201 along the length direction X of the first wall 21a.
  • the electrode terminal 214 in the distance L1 between the electrode terminal 214 and the first limiting structure 201 can represent any electrode terminal 214 on the first wall 21a.
  • L1 can be the distance between the first limiting structure 201 and the electrode terminal 214 closest to the first limiting structure 201. As shown in FIG.
  • L1 is the distance between the first limiting structure 201 and the positive electrode terminal 214a, but the embodiment of the present application is not limited thereto.
  • the ratio W1/W2 of the size W1 of the first limiting structure 201 to the width W2 of the first wall 21a has a value range of [15%, 95%]. If the value of W1/W2 is too large, the size W1 of the first limiting structure 201 in the width direction Y of the first wall 21a is too large, which will increase the difficulty of processing the first limiting structure 201, and the first limiting structure 201 is likely to affect other walls intersecting with the first wall 21a. On the contrary, if the value of W1/W2 is too small, the size W1 of the first limiting structure 201 in the width direction Y of the first wall 21a is too small.
  • the first limiting structure 201 with a smaller size will increase the difficulty of processing the first limiting structure 201, and it is also difficult to limit the relative movement between the first wall 21a and the insulating structure 22 by the first limiting structure 201 with too small size.
  • the value of W1/W2 should not be set too large or too small.
  • the value range of W1/W2 can be [15%, 95%]; or it can be [20%, 40%]; or the value of W1/W2 can be set to 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%.
  • the length direction X of the first wall 21a of the embodiment of the present application is perpendicular to the width direction Y, and the length L2 of the first wall 21a represents the dimension of the first wall 21a in the length direction X, the width W2 of the first wall 21a represents the dimension of the first wall 21a in the width direction Y, and the length L2 of the first wall 21a is greater than the width W2 of the first wall 21a.
  • the battery cell 20 further includes: a shell 211 , which is a hollow structure having an opening 2111 ; and a cover plate 212 , which is used to cover the opening 2111 of the shell 211 .
  • the housing 21 of the embodiment of the present application may include a housing 211 and a cover plate 212.
  • the housing 211 is a component for accommodating an electrode assembly, and the housing 211 may be a hollow structure with an opening formed at one end or at multiple ends.
  • the cover plate 212 may be provided as one; if the housing 211 is a hollow structure with openings formed at opposite ends, the cover plate 212 may be provided as two, and the two cover plates 212 respectively cover the openings at both ends of the housing 211.
  • the embodiment of the present application takes the case where the housing 211 has an opening 2111 as an example, and correspondingly, the cover plate 212 is used to cover the opening 2111.
  • the cover plate 212 of the embodiment of the present application covers the opening 2111 of the housing 211, for example, by welding, to achieve a sealed connection between the housing 211 and the cover plate 212 to improve sealing reliability.
  • the cover plate 212 can be any wall of the battery cell 20.
  • the cover plate 212 is the wall with the largest area of the battery cell 20. This facilitates the installation of components inside the battery cell 20, for example, it can facilitate the installation of the electrode assembly and speed up the processing speed of the battery cell 20.
  • the housing 211 may be in various shapes, such as a cylinder, a cuboid, or other polyhedrons.
  • the housing 211 is mainly described as a cuboid structure.
  • the cover plate 212 of the embodiment of the present application is used to cover the opening 2111 of the housing 211 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the cover plate 212 can be adapted to the shape of the housing 211. As shown in Figures 3 to 7, the housing 211 is a rectangular parallelepiped structure, and the cover plate 212 is a rectangular plate-shaped structure adapted to the housing 211.
  • the electrode assembly is a component where an electrochemical reaction occurs in the battery cell 20.
  • the electrode assembly may include a tab and an electrode body, wherein the tab of the electrode assembly may include a positive tab and a negative tab, the positive tab may be formed by stacking a portion of the positive electrode sheet not coated with a positive electrode active material layer, the negative tab may be formed by stacking a portion of the negative electrode sheet not coated with a negative electrode active material layer, and the electrode body may be formed by stacking or winding a portion of the positive electrode sheet coated with a positive electrode active material layer and a portion of the negative electrode sheet coated with a negative electrode active material layer.
  • the electrode assembly in the housing 211 can be set to one or more.
  • the electrode assembly can be a cylinder, a cuboid, etc. If the electrode assembly is a cylindrical structure, the housing 211 can also be a cylindrical structure. If the electrode assembly is a cuboid structure, the housing 211 can also be a cuboid structure.
  • the material of the housing 21 of the embodiment of the present application can be flexibly set according to the actual application, and the material of the cover plate 212 can be the same as or different from the material of the housing 211.
  • the material of the first wall 21a includes stainless steel and/or alloy, so that the first wall 21a has a strong hardness to ensure the structural strength of the battery cell 20.
  • the material of the housing 211 can be a variety of materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the material of the cover plate 212 can also be a variety of materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the thickness of the shell 21 of the embodiment of the present application can be flexibly set according to the actual application, and the thickness of different walls of the shell 21 can be the same or different.
  • the thickness of the cover plate 212 can be the same as or different from the thickness of the shell 211.
  • the value range of the thickness T of the first wall 21a is [50 ⁇ m, 200 ⁇ m] to ensure the structural strength of the battery cell 20.
  • the thickness T of the first wall 21a can be set to 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the first wall 21a of the embodiment of the present application may be any wall of the housing 21.
  • the first wall 21a is a side wall of the housing 211
  • the side wall of the housing 211 is a wall adjacent to the opening 2111 of the housing 211, so that the first limiting structure 201 and the second limiting structure 202 can be processed through the opening 2111.
  • the first wall 21a is the wall with the smallest area of the battery cell 20. In this way, when the area of the first wall 21a is limited, the area of the insulating structure 22 is also limited.
  • the first limiting structure 201 and the second limiting structure 202 can be used to quickly position the first wall 21a and the insulating structure 22 to facilitate installation and improve the processing efficiency of the battery cell 20.
  • the cover plate 212 and the side wall of the housing 211 may have a connection structure that is interconnected.
  • the edge of the side wall of the housing 211 surrounding the opening 2111 extends away from the inside of the battery cell 20, or the edge of the side wall of the housing 211 surrounding the opening 2111 extends toward the inside of the battery cell 20 to be interconnected with the cover plate 212, such as being welded to the cover plate 212.
  • the area of the first wall 21a of the embodiment of the present application does not include the extended portion of the side wall edge.
  • the housing 21 of the embodiment of the present application may also be provided with other components.
  • the housing 21 may also be provided with an injection hole and a sealing component 215 for sealing the injection hole.
  • the first wall 21a may be provided with an injection hole and a sealing component 215 for sealing the injection hole, the injection hole being used to inject electrolyte into the battery cell 20, and the sealing component 215 sealing the injection hole, for example, may be sealed by laser welding to improve the sealing reliability.
  • the housing 21 of the battery cell 20 of the embodiment of the present application may also be provided with a pressure relief mechanism 213.
  • the cover plate 212 is provided with a pressure relief mechanism 213; or, the pressure relief mechanism 213 may also be provided on a wall arranged opposite to the cover plate 212; or, the pressure relief mechanism may also be provided on other walls.
  • the present application mainly takes the case where the pressure relief mechanism 213 is provided on the cover plate 212 as an example, but the relevant description is also applicable to the case where the pressure relief mechanism 213 is provided on other walls. For the sake of brevity, it is not repeated here. Specifically, FIG.
  • FIG. 8 shows a schematic diagram of the surface of the cover plate 212 of the embodiment of the present application away from the inside of the battery cell 20
  • FIG. 9 shows a partial cross-sectional schematic diagram of the cover plate 212 of the embodiment of the present application
  • the cross-sectional schematic diagram may be a partial schematic diagram of a cross section along the B-B' direction shown in FIG. 8.
  • a pressure relief mechanism 213 may be provided on the cover plate 212, and the pressure relief mechanism 213 is used to actuate to discharge the internal pressure or temperature of the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold.
  • the predetermined threshold value can be adjusted according to different design requirements.
  • the predetermined threshold value may depend on one or more materials of the positive electrode plate, negative electrode plate, electrolyte and isolation membrane in the battery cell 20.
  • the "actuation" mentioned in this application refers to the action of the pressure relief mechanism 213, so that the internal pressure and temperature of the battery cell 20 can be released.
  • the action produced by the pressure relief mechanism 213 may include but is not limited to: at least a part of the pressure relief mechanism 213 is broken, torn or melted, etc. After the pressure relief mechanism 213 is actuated, the high-temperature and high-pressure substances inside the battery cell 20 will be discharged from the pressure relief mechanism 213 as emissions. In this way, the battery cell 20 can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from the battery cells 20 mentioned in the present application include, but are not limited to: electrolyte, dissolved or split positive and negative electrode plates, fragments of the isolation membrane, high-temperature and high-pressure gas generated by the reaction, flames, and the like.
  • the pressure relief mechanism 213 on the battery cell 20 has an important impact on the safety of the battery. For example, when the battery cell 20 is short-circuited or overcharged, thermal runaway may occur inside the battery cell 20, causing a sudden increase in pressure or temperature. In this case, the pressure relief mechanism 213 can be activated to release the internal pressure and temperature to the outside to prevent the battery cell 20 from exploding or catching fire.
  • the pressure relief mechanism 213 of the embodiment of the present application can be disposed on any wall of the housing 21 of the battery cell 20.
  • the embodiment of the present application takes the pressure relief mechanism 213 as an example of being disposed on the cover plate 212.
  • the pressure relief mechanism 213 can be a part of the cover plate 212, or can be a separate structure from the cover plate 212, and fixed to the cover plate 212 by, for example, welding.
  • the pressure relief mechanism 213 may also be a separate structure from the cover plate 212.
  • the pressure relief mechanism 213 may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically adopt pressure-sensitive or temperature-sensitive elements or structures. That is, when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold, the pressure relief mechanism 213 executes an action or a weak structure provided in the pressure relief mechanism 213 is destroyed, thereby forming an opening or channel for the internal pressure or temperature to be released.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is a part of the cover plate 212, for example, the pressure relief mechanism 213 can be formed by providing a notch on the cover plate 212, that is, the pressure relief mechanism 213 is a notch of the cover plate 212, then the thickness of the area where the notch is located is less than the thickness of other areas of the cover plate 212 except for the notch.
  • the notch is the weakest position of the pressure relief mechanism 213.
  • the pressure relief mechanism 213 may rupture at the notch, causing the inside and outside of the shell 211 to communicate with each other, and the gas pressure and temperature are released outward through the rupture of the pressure relief mechanism 213, thereby preventing the battery cell 20 from exploding.
  • the pressure relief mechanism 213 is an L-shaped notch disposed on the surface of the battery cell 20 away from the inside of the battery cell 20.
  • the pressure relief mechanism 213 is located on the cover plate 212, the pressure relief mechanism 213 is located on the L-shaped notch on the surface of the cover plate 212 away from the inside of the battery cell 20, that is, the pressure relief mechanism 213 has two parts that are connected to each other and perpendicular to each other.
  • the pressure relief mechanism 213 can be destroyed in any direction, so that the pressure relief mechanism 213 is destroyed in time, and the pressure and temperature inside the battery cell 20 are released in time to avoid the explosion of the battery cell 20.
  • the pressure relief mechanism 213 is disposed on the outer surface of the cover plate 212 to prevent the electrolyte inside the battery cell 20 from accumulating in the notch, and to prevent the electrolyte from corroding the pressure relief mechanism 213, thereby improving the safety of the pressure relief mechanism 213.
  • the cross-section of the notch can be an isosceles trapezoid, which is easy to process on the one hand, and on the other hand, compared with a rectangular cross-section, it can avoid stress concentration and improve the stability of the pressure relief mechanism 213 during normal use of the battery cell 20.
  • the first wall 21a of the battery cell 20 is provided with a first limiting structure 201
  • the insulating structure 22 is provided with a second limiting structure 202.
  • the first limiting structure 201 and the second limiting structure 202 cooperate with each other to prevent or limit the relative movement between the first wall 21a and the insulating structure 22.
  • the first wall 21a and the insulating structure 22 can be positioned to facilitate the installation between the two; on the other hand, the misalignment between the first wall 21a and the insulating structure 22 can be avoided, which ensures the insulation performance of the insulating structure 22 between the first wall 21a and other components inside the battery cell 20, avoids short circuits, and improves the safety performance of the battery cell 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供了一种电池单体、电池和用电设备。该电池单体包括:第一壁,该第一壁设置有第一限位结构;绝缘结构,该绝缘结构设置在该第一壁的朝向该电池单体的内部的一侧,该绝缘结构设置有与该第一限位结构对应的第二限位结构,该第二限位结构和该第一限位结构相互配合,以阻止该绝缘结构与该第一壁之间的相对移动。本申请实施例的一种电池单体、电池和用电设备,能够提高电池单体的加工效率。

Description

电池单体、电池和用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。在电池技术的飞速发展中,如何提高电池的加工生产效率,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池单体、电池和用电设备,能够提高电池单体的加工效率。
第一方面,提供了一种电池单体,包括:第一壁,该第一壁设置有第一限位结构;绝缘结构,该绝缘结构设置在该第一壁的朝向该电池单体的内部的一侧,该绝缘结构设置有与该第一限位结构对应的第二限位结构,该第二限位结构和该第一限位结构相互配合,以阻止该绝缘结构与该第一壁之间的相对移动。
因此,本申请实施例的电池单体,第一壁设置有第一限位结构,绝缘结构设置有第二限位结构,该第一限位结构和该第二限位结构相互配合,可以阻止或者限制第一壁与绝缘结构之间的相对移动。这样,一方面能够对第一壁和绝缘结构进行定位,以便于二者之间的安装;另一方面还能够避免第一壁和绝缘结构之间发生错位,也就保证了绝缘结构对该第一壁与电池单体内部其他部件之间的绝缘性能,避免短路,并提高电池单体的安全性能。
在一些实施例中,该第一限位结构包括该第一壁的朝向该绝缘结构凸起的第一凸起结构,该第二限位结构包括该绝缘结构的第一凹槽结构,该第一凹槽结构的开口朝向该第一壁,该第一凸起结构的至少部分容纳于该第一凹槽结构内;和/或,该第一限位结构包括该第一壁的第二凹槽结构,该第二凹槽结构的开口朝向该绝缘结构,该第二限位结构包括该绝缘结构的朝向该第一壁凸起的第二凸起结构,该第二凸起结构的至少部分容纳于该第二凹槽结构内。
第一限位结构和第二限位结构相互配合可以包括该第一凸起结构的至少部分容纳于该第一凹槽结构内,以使得第一凹槽结构可以限制该第一凸起结构的移动,和/或,包括该第二凸起结构的至少部分容纳于该第二凹槽结构内,以使得第二凹槽结构可以限制该第二凸起结构的移动。这样,可以限制第一壁相对于绝缘结构的移动,以达到 定位和固定的作用,避免第一壁和绝缘结构之间发生错位;并且,上述设置方式简单,结构稳定,便于加工。
在一些实施例中,该第一凸起结构为该第一壁的朝向该绝缘结构凹陷且凸出于该第一壁的朝向该电池单体的内部的表面的凹槽;和/或,该第二凸起结构为该绝缘结构的朝向该第一壁凹陷且凸出于该绝缘结构的远离该电池单体的内部的表面的凹槽。
通过凹槽的方式设置第一凸起结构和/或第二凸起结构,相比于直接在第一壁的表面或者绝缘结构的表面设置实心的凸起结构的方式,可以有效降低第一壁和/或绝缘结构的重量,且加工方式简单,例如,可以通过冲压的方式,同步加工第一凸起结构和第一凹槽结构,或者,可以通过冲压的方式,同步加工第二凸起结构和第二凹槽结构,提高了电池单体的加工效率。
在一些实施例中,该第一凹槽结构凸出于该绝缘结构的朝向该电池单体的内部的表面;和/或,该第二凹槽结构凸出于该第一壁的远离该电池单体的内部的表面。
绝缘结构的第一凹槽结构设置为凸出于该绝缘结构的朝向电池单体的内部的表面,则该第一凹槽结构的深度受到绝缘结构的厚度限制较小,那么虽然绝缘结构的厚度有限,但该第一凹槽结构的深度可能大于绝缘结构的厚度,使得第一凸起结构能够更多的容纳于该第一凹槽结构内,以增加第一凸起结构和第一凹槽结构之间的稳定性,也就增加了第一限位结构和第二限位结构之间的稳定性。类似地,第一壁的第二凹槽结构设置为凸出于第一壁的远离电池单体的内部的表面,则该第二凹槽结构的深度受到第一壁的厚度限制较小,那么虽然第一壁的厚度有限,但该第二凹槽结构的深度可能大于第一壁的厚度,使得第二凸起结构能够更多的容纳于该第二凹槽结构内,以增加第二凸起结构和第二凹槽结构之间的稳定性,也就增加了第一限位结构和第二限位结构之间的稳定性。
在一些实施例中,该电池单体还包括:电极端子,设置于该第一壁,该第一壁设置有第一通孔,该绝缘结构设置有与该第一通孔对应的第二通孔,该电极端子贯穿该第一通孔和该第二通孔,以使该第一壁和该绝缘结构铆接。
这样便于加工和实现电极端子、第一壁和绝缘结构之间的固定;但是,电极端子的铆接作用能够限制第一壁与绝缘结构之间的相对平移,却不能阻止第一壁与绝缘结构之间的相对转动,所以可以通过第一限位结构和第二限位结构的相互配合,进一步阻止第一壁与绝缘结构之间的相对转动,以避免第一壁与绝缘结构之间的错位。
在一些实施例中,该电池单体还包括:连接构件,用于与该电极端子电连接,该连接构件设置在该绝缘结构的朝向该电池单体的内部的一侧,该连接构件设置有与该第二通孔对应的第三通孔,该电极端子贯穿该第三通孔,以使该连接构件、该绝缘结构和该第一壁铆接,加工过程简单,有利于提高电池单体的加工效率。
在一些实施例中,该连接构件还包括第三限位结构,该第三限位结构与该第二限位结构相互配合,以阻止该连接构件与该绝缘结构之间的相对移动。这样,既可以固定该连接构件,以便于电池单体的组合安装,还可以保证绝缘结构将第一壁和连接构件电隔离,避免连接构件与第一壁之间发生短路。
在一些实施例中,该第三限位结构包括该连接构件的第四通孔,该第四通孔用 于容纳该第二限位结构的至少部分。这样,相比于将第三限位结构设置为凹槽的情况,第四通孔可以节省凹槽的底壁占用的空间,提高该电池单体内部的空间利用率,还可以减轻该连接构件的重量,也就可以减轻该电池单体的重量,从而提高电池单体的性能。另外,该第四通孔的内壁与第一凸起结构之间设置有绝缘结构的第一凹槽结构,还可以避免连接构件与第一壁发生短路。
在一些实施例中,该电池单体还包括:密封结构,设置在该第一壁的远离该电池单体的内部的一侧,该密封结构用于电隔离该电极端子与该第一壁,该密封结构设置有第五通孔,该第五通孔的至少部分容纳在该第一通孔内,该电极端子贯穿该第五通孔,以使该电极端子与该第一通孔之间密封。
一方面,该密封结构通常采用绝缘材料,将密封结构设置在第一壁和电极端子之间,可以避免电极端子与第一壁之间发生短路。另一方面,由于第一壁设置有第一通孔,且绝缘结构设置有第二通孔,则电极端子与第一通孔之间以及电极端子与第二通孔之间可能存在空隙,所以可以通过该密封结构密封第一通孔和第二通孔,例如,可以在铆接挤压的过程中,密封结构被挤压变形进而密封,以避免内部电解液泄漏。
在一些实施例中,该电极端子为正极电极端子。
在一些实施例中,沿该第一壁的长度方向,该电极端子与该第一限位结构之间的距离与该第一壁的长度的比值的取值范围为[10%,48%]。若该比值设置过大,则在该第一壁的长度方向上,该第一限位结构与该电极端子之间的距离过大,而第一限位结构距离电极端子太远会导致电极端子的安装过程中,该第一限位结构不能有效限制第一壁与绝缘结构之间的相对移动,进而会影响电池单体的加工效率。相反地,若该比值设置过小,则第一限位结构与电极端子的距离会过小,第一限位结构距离电极端子太近则很可能影响电极端子的安装。例如,第一壁设置有用于容纳至少部分电极端子的第一通孔,第一限位结构与电极端子的距离过小,则该第一限位结构距离该第一通孔的距离也会过小,二者之间很可能会相互影响,进而影响第一壁的结构强度和稳定性,进而降低电池单体的安装效率以及提高加工难度。
在一些实施例中,沿该第一壁的宽度方向,该第一限位结构的尺寸与该第一壁的宽度的比值的取值范围为[15%,95%]。若该比值的取值过大,则在该第一壁的宽度方向上,第一限位结构的尺寸过大,会增加该第一限位结构的加工难度,并且该第一限位结构很可能影响与该第一壁相交的其他壁。相反地,若该比值的取值过小,则在该第一壁的宽度方向上,第一限位结构的尺寸过小,由于第一壁的宽度有限,较小尺寸的第一限位结构会增加该第一限位结构的加工难度,并也很难通过尺寸过小的该第一限位结构限制第一壁与绝缘结构之间的相对移动。
在一些实施例中,该电池单体还包括:壳体,该壳体为具有开口的中空结构;盖板,该盖板用于盖合该壳体的开口,以形成内部的容纳腔,该容纳腔可以用于容纳电极组件。
在一些实施例中,该盖板为该电池单体的面积最大的壁,这样便于电池单体内部的部件的安装,例如,可以便于电池单体内部的电极组件的安装,加快该电池单体的加工速度。
在一些实施例中,该盖板设置有泄压机构,或者,与该盖板相对设置的壁上设置有该泄压机构,以在电池单体的内部压力或温度达到预定阈值时致动以泄放电池单体的内部压力或温度。
在一些实施例中,该泄压机构为设置于该电池单体的远离该电池单体的内部的表面的L型刻痕,即该泄压机构具有相互连接且相互垂直的两部分,这样,电池单体内部的温度或者压力达到预设阈值时,该泄压机构可以沿任一方向被破坏,以便于泄压机构及时被破坏,以及时泄放电池单体的内部的压力和温度,避免电池单体发生爆炸。另外,将泄压机构的设置在盖板的外表面,避免电池单体内部的电解液在刻痕内堆积,避免电解液对泄压机构的腐蚀,从而也可以提高泄压机构的安全性。
在一些实施例中,该第一壁为该壳体的侧壁,该壳体的侧壁为与该壳体的开口相邻的壁,这样,可以便于通过该开口,对第一限位结构和第二限位结构进行加工。
在一些实施例中,该第一壁为该电池单体的面积最小的壁,这样,在该第一壁的面积有限的情况下,绝缘结构的面积也有限,可以通过第一限位结构和第二限位结构快速实现第一壁和绝缘结构的定位,以便于安装,提高电池单体的加工效率。
在一些实施例中,该第一壁的材料包括不锈钢和/或合金,以使该第一壁具有较强的硬度,保证该电池单体的结构强度。
在一些实施例中,该第一壁的厚度的取值范围为[50μm,200μm],以保证该电池单体的结构强度。
第二方面,提供了一种电池,包括:多个第一方面所述的电池单体。
第三方面,提供了一种用电设备,包括:第一方面所述的电池单体,所述电池单体用于为所述用电设备提供电能。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的分解结构示意图;
图4是本申请一实施例公开的一种电池单体的局部截面示意图;
图5是本申请一实施例公开的一种电池单体的另一局部截面示意图;
图6是本申请一实施例公开的一种电池单体的局部截面分解示意图;
图7是本申请一实施例公开的一种电池单体的第一壁的外表面的示意图;
图8是本申请一实施例公开的一种盖板的表面的示意图;
图9是本申请一实施例公开的一种盖板的局部截面示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的 详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括一次电池、二次电池,例如可以是锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极片、负极片和隔离膜。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。 此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性和加工效率。电池单体的外壳与内部的电极组件之间通常需要设置绝缘结构,以避免外壳与电池单体内部的部件发生短路,例如可以避免与电池单体内部的电极组件或者连接构件之间发生短路;尤其是外壳上设置有其他部件时,该绝缘结构还可以用于避免该外壳上的部件与电池单体内部的部件之间发生短路。
具体地,电池单体的外壳包括第一壁,该第一壁可以为壳体的任意一个壁。可选地,该第一壁可以设置有至少一个电极端子,该电极端子用于输出电池单体的能量;该第一壁还可以设置有注液孔,以用于向电池单体的内部注入电解液,或者,该第一壁还可以设置有其他部件。该第一壁的朝向电池单体的一侧还可以设置有绝缘结构,该绝缘结构可以用于避免该第一壁与电池单体内部的部件之间发生短路,该绝缘结构还可以避免该第一壁上的部件与电池单体内部的部件之间发生短路。
但将该绝缘结构直接与第一壁堆叠设置,容易导致该绝缘结构与第一壁之间发生错位,进而影响该绝缘结构对第一壁的绝缘效果,以及电池单体的安全性能。
因此,本申请实施例提供了一种电池单体、电池和用电设备,能够解决上述问题。在本申请实施例中,电池单体的第一壁上设置有第一限位结构,绝缘结构上设置有与第一限位结构对应的第二限位结构,这样,通过第一限位结构与第二限位结构的相互配合,能够阻止绝缘结构和第一壁之间的相对移动,一方面能够对第一壁和绝缘结构进行定位,以便于二者之间的安装;另一方面还能够避免绝缘结构和第一壁之间发生错位,也就保证了绝缘结构对该第一壁与电池单体内部其他部件之间的绝缘性能,避免短路,并提高电池单体的安全性能。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。例如,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,图2示出了本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个 电池单体20容纳于箱体11内。图2示出了本申请实施例的箱体11的一种可能的实现方式,如图2所示,箱体11可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合后的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。
再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
在一些实施例中,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。
根据不同的电力需求,电池10中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。另外,为了提高电池10内电池单体20的空间占用率,可以根据多个电池单体20的形状合理设置电池单体20的安装方向;并且,电池10内不同电池单体20的安装方向可以相同或者不同,本申请实施例对此不做限定。
图3示出了本申请实施例的电池单体20的局部分解结构示意图;图4示出了本申请实施例的电池单体20的局部截面示意图,其中,该截面垂直于该电池单体20的厚度方向Y;图5示出了本申请实施例的电池单体20的局部截面放大示意图,例如,该图5为图4所示的区域A的放大图;图6示出了本申请实施例的电池单体20的局部截面分解示意图,例如,该图6为图5所示的局部电池单体20的分解结构示意图。
如图3至图6所述,本申请实施例的电池单体20包括:第一壁21a,该第一壁21a设置有第一限位结构201;绝缘结构22,该绝缘结构22设置在该第一壁21a的朝向该电池单体20的内部的一侧,该绝缘结构22设置有与该第一限位结构201对应的第二限位结构202,该第二限位结构202和该第一限位结构201相互配合,以阻止该绝缘结构22与该第一壁21a之间的相对移动。
应理解,本申请实施例的电池单体20的形状可以根据实际应用灵活设置,即该电池单体20可以为任意多面体结构。具体地,电池单体20可以包括外壳21,该外壳21包括多个壁,该多个壁用于围合形成中空的多面体结构,以使得该电池单体20为 多面体结构。本申请实施例的第一壁21a可以为电池单体20的外壳21的任意一个壁。例如,若电池单体20为长方体结构,该外壳21可以包括六个面,即包括六个壁,其中,该第一壁21a可以为面积最大的壁或者面积最小的壁或者其他壁,本申请实施例并不限于此。
具体地,对于长方形的电池单体20,为了便于描述,本申请实施例定义了三个参考方向。如图3至图6所示,该电池单体20的厚度方向为方向Y,该电池单体20的高度方向为方向Z,该电池单体20的宽度方向为方向X,其中,该电池单体20的厚度方向Y、高度方向Z和宽度方向X相互垂直。
本申请实施例的绝缘结构22设置在第一壁21a的朝向电池单体20的内部的一侧,即该绝缘结构22与第一壁21a沿该第一壁21a的厚度方向层叠设置。并且,该绝缘结构22的具体形状可以根据实际应用进行设置,例如,该绝缘结构22可以为板状,以与第一壁21a贴合,使得该第一壁21a与电池单体20的内部的部件电隔离,例如,该绝缘结构22可以用于使得第一壁21a与电池单体20的内部的电极组件电隔离,以避免短路。
在本申请实施例中,第一壁21a设置有第一限位结构201,绝缘结构22设置有第二限位结构202,该第一限位结构201和该第二限位结构202相互配合,可以阻止或者限制第一壁21a与绝缘结构22之间的相对移动。这样,一方面能够对第一壁21a和绝缘结构22进行定位,以便于二者之间的安装;另一方面还能够避免第一壁21a和绝缘结构22之间发生错位,也就保证了绝缘结构22对该第一壁21a与电池单体20内部其他部件之间的绝缘性能,避免短路,并提高电池单体20的安全性能。
应理解,本申请实施例中第一限位结构201和第二限位结构202的配合方式可以根据实际应用灵活设置。下面将结合附图,进行举例说明。
可选地,作为一个实施例,第一限位结构201包括第一壁21a的朝向绝缘结构22凸起的第一凸起结构,第二限位结构202包括绝缘结构22的第一凹槽结构,第一凹槽结构的开口朝向第一壁21a,第一凸起结构的至少部分容纳于第一凹槽结构内。具体地,如图3至图6所示,第一壁21a的朝向绝缘结构22的表面设置有朝向该绝缘结构22凸起的第一凸起结构,与之对应的,绝缘结构22的朝向第一壁21a的表面设置有第一凹槽结构,该第一凹槽结构的开口朝向第一壁21a。并且,第一限位结构201包括第一凸起结构,第二限位结构202包括第一凹槽结构,则第一限位结构201和第二限位结构202相互配合可以包括该第一凸起结构的至少部分容纳于该第一凹槽结构内,以使得第一凹槽结构可以限制该第一凸起结构的移动,进而限制第一壁21a相对于绝缘结构22的移动,以达到定位和固定的作用,避免第一壁21a和绝缘结构22之间发生错位;并且,上述设置方式简单,结构稳定,便于加工。
可选地,作为另一个实施例,第一限位结构201包括第一壁21a的第二凹槽结构,第二凹槽结构的开口朝向绝缘结构22,第二限位结构202包括绝缘结构22的朝向第一壁21a凸起的第二凸起结构,第二凸起结构的至少部分容纳于第二凹槽结构内。具体地,与图3至图6所示的设置方向相反地,该第一壁21a的朝向绝缘结构22的表面设置有第二凹槽结构,该第二凹槽结构的开口朝向该绝缘结构22;对应的,绝缘结 构22的朝向第一壁21a的表面设置有朝向第一壁21a凸起的第二凸起结构。该第一限位结构201可以包括该第二凹槽结构,该第二限位结构202可以包括第二凸起结构,则第一限位结构201和第二限位结构202相互配合可以包括该第二凸起结构的至少部分容纳于该第二凹槽结构内,以使得第二凹槽结构可以限制该第二凸起结构的移动,进而限制绝缘结构22相对于第一壁21a的移动,以达到定位和固定的作用,避免第一壁21a和绝缘结构22之间发生错位;并且,上述设置方式简单,结构稳定,便于加工。
可选地,本申请实施例的第一限位结构201可以包括至少一个第一凸起结构和/或至少一个第二凹槽结构,与之相对应的,第二限位结构202可以包括至少一个第一凹槽结构和/或至少一个第二凸起结构,本申请实施例并不限于此。例如,为了节省第一限位结构201占用第一壁21a的空间,以及第二限位结构202占用绝缘结构22的空间,该第一限位结构201可以包括设置于第一壁21a的一个第一凸起结构或者一个第二凹槽结构,与之相对应的,该第二限位结构202可以包括设置于绝缘结构22的一个第一凹槽结构或者一个第二凸起结构,以便于加工。
可选地,本申请实施例的第一凸起结构、第一凹槽结构、第二凸起结构和第二凹槽结构的设置方式可以根据实际应用灵活选择,以提高电池单体20的加工效率。
例如,对于第一凸起结构和第二凸起结构,可以通过凹槽的方式实现。第一凸起结构为第一壁21a的朝向绝缘结构22凹陷且凸出于第一壁21a的朝向电池单体20的内部的表面的凹槽;和/或,第二凸起结构为绝缘结构22的朝向第一壁21a凹陷且凸出于绝缘结构22的远离电池单体20的内部的表面的凹槽。具体地,如图3至图6所示,第一壁21a朝向绝缘结构22凹陷以形成凹槽,该凹槽的底壁凸出于第一壁21a的朝向电池单体20内部的表面,进而可以用作第一凸起结构。类似地,与图3至图6所示的设置方向相反,绝缘结构22朝向第一壁21a凹陷以形成凹槽,该凹槽的底壁凸出于绝缘结构22的远离电池单体20内部的表面,进而可以用作第二凸起结构。通过凹槽的方式设置第一凸起结构和/或第二凸起结构,相比于直接在第一壁21a的表面或者绝缘结构22的表面设置实心的凸起结构的方式,可以有效降低第一壁21a和/或绝缘结构22的重量,且加工方式简单,例如,可以通过冲压的方式,同步加工第一凸起结构和第一凹槽结构,或者,可以通过冲压的方式,同步加工第二凸起结构和第二凹槽结构,提高了电池单体20的加工效率。
可选地,第一凹槽结构和第二凹槽结构也可以分别参照第一凸起结构和第二凸起结构进行设置。第一凹槽结构凸出于绝缘结构22的朝向电池单体20的内部的表面;和/或,第二凹槽结构凸出于第一壁21a的远离电池单体20的内部的表面。绝缘结构22的第一凹槽结构设置为凸出于该绝缘结构22的朝向电池单体20的内部的表面,则该第一凹槽结构的深度受到绝缘结构22的厚度限制较小,那么虽然绝缘结构22的厚度有限,但该第一凹槽结构的深度可能大于绝缘结构22的厚度,使得第一凸起结构能够更多的容纳于该第一凹槽结构内,以增加第一凸起结构和第一凹槽结构之间的稳定性,也就增加了第一限位结构201和第二限位结构202之间的稳定性。类似地,第一壁21a的第二凹槽结构设置为凸出于第一壁21a的远离电池单体20的内部的表面,则该第二凹槽结构的深度受到第一壁21a的厚度限制较小,那么虽然第一壁21a的厚度有限,但 该第二凹槽结构的深度可能大于第一壁21a的厚度,使得第二凸起结构能够更多的容纳于该第二凹槽结构内,以增加第二凸起结构和第二凹槽结构之间的稳定性,也就增加了第一限位结构201和第二限位结构202之间的稳定性。
应理解,若第一凸起结构和第二凸起结构为凹槽,则凹槽的底壁的厚度可以小于或者等于或者略大于该凹槽所在的第一壁21a的厚度或者所在的绝缘结构22的厚度。或者,与之不同的,该第一凸起结构还可以为第一壁21a上的厚度较大的凸块,例如,该第一凸起结构的厚度大于所在的第一壁21a的其他区域的厚度,以使该第一凸起结构凸出于该第一壁21a的朝向绝缘结构22表面。类似的,该第二凸起结构也可以为绝缘结构22上的厚度较大的凸块,例如,该第二凸起结构的厚度大于所在的绝缘结构22的其他区域的厚度,以使该第二凸起结构凸出于绝缘结构22的朝向第一壁21a表面。
可选地,对于第一凸起结构为厚度较大的凸块的情况,该第一凸起结构可以与第一壁21a一体,例如,可以通过冲压、铣削等方式在该第一壁21a上形成第一凸起结构;或者,该第一凸起结构也可以和第一壁21a分体形成,例如第一壁21a形成有通孔,第一凸起结构安装于该通孔,安装方式可以包括焊接、铆接、卡接等,本申请对此不做特殊限制。与第一凸起结构类似地,对于第二凸起结构为厚度较大的凸块的情况,该第二凸起结构也可以与绝缘结构22一体或者分体形成,本申请对此不做特殊限制。
应理解,本申请实施例的第一壁21a还可以设置有其他部件。例如,电池单体20还包括:电极端子214,设置于第一壁21a,电极端子214用于与电池单体20内部的电极组件电连接,以输出电池单体20的电能。具体地,如图3至图6所示,电池单体20可以包括至少两个电极端子214,该至少两个电极端子214可以包括至少一个正极电极端子214a和至少一个负极电极端子214b,正极电极端子214a用于与电极组件的正极极耳电连接,负极电极端子214b用于与电极组件的负极极耳电连接。正极电极端子214a与正极极耳可以直接连接,也可以间接连接,负极电极端子214b与负极极耳可以直接连接,也可以间接连接。示例性的,正极电极端子214a通过一个连接构件23与正极极耳222a电连接,负极电极端子214b通过一个连接构件23与负极极耳222b电连接。
应理解,不同电极端子214可以位于电池单体20的同一个壁或者不同的壁。例如,如图3至图6所示,本申请实施例以电池单体20的电极端子214位于同一个壁为例,例如,可以均位于第一壁21a上。另外,考虑到正极电极端子214a的高度通常大于负极电极端子214b的高度,下文中的电极端子214主要以正极电极端子214a为例进行描述,但本申请实施例并不限于此。
可选地,电极端子214的设置方式可以根据实际应用灵活选择。例如,第一壁21a设置有第一通孔2101,绝缘结构22设置有与第一通孔2101对应的第二通孔221,电极端子214贯穿第一通孔2101和第二通孔221,以使第一壁21a和绝缘结构22铆接,这样便于加工和实现电极端子214、第一壁21a和绝缘结构22之间的固定;但是,电极端子214的铆接作用能够限制第一壁21a与绝缘结构22之间的相对平移,却不能阻止第一壁21a与绝缘结构22之间的相对转动,所以可以通过第一限位结构201和第 二限位结构202的相互配合,进一步阻止第一壁21a与绝缘结构22之间的相对转动,以避免第一壁21a与绝缘结构22之间的错位。
应理解,由于电池单体20的外壳21通常为金属材质,若电极端子214与第一壁21a接触,则可能发生短路。因此,电极端子214与第一壁21a之间可以设置有绝缘部件,以避免短路。具体地,电池单体20还包括:密封结构24,设置在第一壁21a的远离电池单体20的内部的一侧,密封结构24用于电隔离电极端子214与第一壁21a,密封结构24设置有第五通孔241,第五通孔241的至少部分容纳在第一通孔2101内,电极端子214贯穿第五通孔241,以使电极端子214与第一通孔2101之间密封。
一方面,该密封结构24通常采用绝缘材料,将密封结构24设置在第一壁21a和电极端子214之间,可以避免电极端子214与第一壁21a之间发生短路。另一方面,该密封结构24上设置有第五通孔241,形成该第五通孔241的孔壁的至少部分位于第一通孔2101,或者进一步地,该第五通孔241的孔壁的至少部分还可以位于第二通孔221内,以使该电极端子214贯穿该第五通孔241的情况下,该电极端子214与第一通孔2101之间设置有密封结构24的部分,或者进一步地,该电极端子214与第二通孔221之间也可以设置有密封结构24的部分。这样,由于第一壁21a设置有第一通孔2101,且绝缘结构22设置有第二通孔221,则电极端子214与第一通孔2101之间以及电极端子214与第二通孔221之间可能存在空隙,所以可以通过该密封结构24密封第一通孔2101和第二通孔221,例如,可以在铆接挤压的过程中,密封结构24被挤压变形进而密封,以避免内部电解液泄漏。
可选地,电池单体20还包括:连接构件23,用于与电极端子214电连接,连接构件23设置在绝缘结构22的朝向电池单体20的内部的一侧,连接构件23设置有与第二通孔221对应的第三通孔231,电极端子214贯穿第三通孔231,以使连接构件23、绝缘结构22和第一壁21a铆接。具体地,如图3至图6所示,本申请实施例的连接构件23可以用于与电极端子214电连接,还可以用于与电极组件的极耳电连接,以使得电极端子214与极耳电连接。连接构件23设置有第三通孔231,将第一壁21a的第一通孔2101、绝缘结构22的第二通孔221以及连接构件23的第三通孔231依次堆叠设置,以使得该电极端子214可以依次贯穿该第一通孔2101、第二通孔221以及第三通孔231,从而实现第一壁21a、绝缘结构22和连接构件23之间铆接固定,加工过程简单,有利于提高电池单体20的加工效率。
可选地,还可以将电极端子214与连接构件23之间通过焊接的方式连接,以进一步增加电极端子214与连接构件23之间的连接稳定性,保证电池单体20的性能。
可选地,连接构件23还包括第三限位结构232,第三限位结构232与第二限位结构202相互配合,以阻止连接构件23与绝缘结构22之间的相对移动。具体地,该连接构件23的第三限位机构232可以与第二限位结构202相互配合,即第一限位结构201、第二限位结构202和第三限位结构232可以相互配合,以阻止第一壁21a、绝缘结构22和连接构件23之间相对移动,可以固定该连接构件23,以便于电池单体20的组合安装,还可以保证绝缘结构22将第一壁21a和连接构件23电隔离,避免连接构件23与第一壁21a之间发生短路。
可选地,该第三限位结构232的设置方式可以根据实际应用灵活设置,例如,可以根据第一限位结构201和第二限位结构202的设置方式,对应设置该第三限位结构232。例如,若第一限位结构201包括第一凸起结构,第二限位结构202包括第一凹槽结构,该第一凹槽可以朝向连接构件23凸出于绝缘结果22的表面,对应的,该第三限位结构232则可以包括设置在该连接构件23的开口朝向绝缘结构22的凹槽或者通孔,以用于容纳该第一凹槽结构的至少部分,以实现第三限位结构232与第二限位结构202之间的相互配合。
以如图3至图6所示为例,第三限位结构232包括连接构件23的第四通孔,第四通孔用于容纳第二限位结构202的至少部分。具体地,第一限位结构201可以包括第一壁21a的第一凸起结构,第二限位结构202可以包括绝缘结构22的第一凹槽结构,且该第一凹槽结构凸出于该绝缘结构22的朝向电池单体20的内部的表面,则该第一凹槽结构能够容纳至少部分第一凸起结构的情况下,该第三限位结构232可以包括第四通孔,以用于容纳至少部分第一凹槽结构。这样,相比于将第三限位结构232设置为凹槽的情况,第四通孔可以节省凹槽的底壁占用的空间,提高该电池单体20内部的空间利用率,还可以减轻该连接构件23的重量,也就可以减轻该电池单体20的重量,从而提高电池单体20的性能。另外,该第四通孔的内壁与第一凸起结构之间设置有绝缘结构22的第一凹槽结构,还可以避免连接构件23与第一壁21a发生短路。
再例如,若第一限位结构201包括第二凹槽结构,第二限位结构202包括第二凸起结构,该第二凸起结构为设置在绝缘结构22上的凹槽,则该第三限位结构232可以包括向绝缘结构22凸起的第三凸起结构,该第三凸起结构至少部分容纳于第二凸起结构内,以实现第三限位结构232与第二限位结构202之间的相互配合。
应理解,本申请实施例的第一限位结构201和第二限位结构202的设置位置和尺寸可以根据实际应用灵活设置。例如,可以根据第一壁21a的尺寸设置该第一限位结构201的尺寸和位置,而第二限位结构202的尺寸和位置与第一限位结构202的尺寸和位置相关,以使该第一限位结构201与第二限位结构202能够相互配合。下面以第一壁21a与第一限位结构201为例进行说明。
图7示出了本申请实施例的电池单体20的第一壁21a的外表面的示意图,该第一壁21a的外表面为该第一壁21a的远离电池单体20内部的表面。如图7所示,沿该第一壁21a的长度方向X,该电极端子214与该第一限位结构201之间的距离L1与该第一壁21a的长度L2的比值L1/L2的取值范围为[10%,48%]。若L1/L2的值设置过大,则在该第一壁21a的长度方向X上,该第一限位结构201与该电极端子214之间的距离L1过大,而第一限位结构201距离电极端子214太远会导致电极端子214的安装过程中,该第一限位结构201不能有效限制第一壁21a与绝缘结构22之间的相对移动,进而会影响电池单体20的加工效率。相反地,若L1/L2的值设置过小,则第一限位结构201与电极端子214的距离L1会过小,第一限位结构201距离电极端子214太近则很可能影响电极端子214的安装。例如,第一壁21a设置有用于容纳至少部分电极端子214的第一通孔2101,第一限位结构201与电极端子214的距离L1过小,则该第一限位结构201距离该第一通孔2101的距离也会过小,二者之间很可能会相互影响,进而 影响第一壁21a的结构强度和稳定性,进而降低电池单体20的安装效率以及提高加工难度。
因此,L1/L2的取值不宜设置过大或者过小。例如,L1/L2的取值范围可以为[10%,48%];或者也可以为[20%,40%];或者,L1/L2的取值可以设置为10%、15%、20%、25%、30%、35%、40%、或者45%。
应理解,如图7所示,本申请实施例中电极端子214与该第一限位结构201之间的距离L1也可以表示:沿第一壁21a的长度方向X,电极端子214的中心与第一限位结构201的中心之间的距离。另外,电极端子214与该第一限位结构201之间的距离L1中电极端子214可以表示该第一壁21a上的任意一个电极端子214。例如,L1可以为第一限位结构201与距离该第一限位结构201最近的一个电极端子214之间的距离,如图7所示,若距离第一限位结构201最近的一个电极端子214为正极电极端子214a,则L1为第一限位结构201与该正极电极端子214a之间的距离,但本申请实施例并不限于此。
可选地,沿该第一壁21a的宽度方向Y,该第一限位结构201的尺寸W1与该第一壁21a的宽度W2的比值W1/W2的取值范围为[15%,95%]。若W1/W2的取值过大,则在该第一壁21a的宽度方向Y上,第一限位结构201的尺寸W1过大,会增加该第一限位结构201的加工难度,并且该第一限位结构201很可能影响与该第一壁21a相交的其他壁。相反地,若W1/W2的取值过小,则在该第一壁21a的宽度方向Y上,第一限位结构201的尺寸W1过小,由于第一壁21a的宽度W2有限,较小尺寸的第一限位结构201会增加该第一限位结构201的加工难度,并也很难通过尺寸过小的该第一限位结构201限制第一壁21a与绝缘结构22之间的相对移动。
因此,W1/W2的值不宜设置过大或者过小。例如,W1/W2的取值范围可以为[15%,95%];或者也可以为[20%,40%];或者,W1/W2的取值可以设置为15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或者95%。
应理解,本申请实施例的第一壁21a的长度方向X垂直于宽度方向Y,且该第一壁21a的长度L2表示该第一壁21a的长度方向X的尺寸,该第一壁21a的宽度W2表示该第一壁21a的宽度方向Y的尺寸,该第一壁21a的长度L2大于该第一壁21a的宽度W2。
应理解,上文主要对本申请实施例的第一壁21a进行描述,下文将结合附图,对本申请实施例的电池单体20的外壳21进行描述。
在本申请实施例中,如图3至图7所示,电池单体20还包括:壳体211,壳体211为具有开口2111的中空结构;盖板212,盖板212用于盖合壳体211的开口2111。
具体地,本申请实施例的外壳21可以包括壳体211和盖板212。壳体211是用于容纳电极组件的部件,壳体211可以是一端或者多端形成开口的中空结构。例如,若壳体211为一端形成开口的空心结构,盖板212则可以设置为一个;若壳体211为相对的两端形成开口的空心结构,盖板212则可以设置为两个,两个盖板212分别盖合于壳体211两端的开口。
为了便于说明,本申请实施例以该壳体211具有一个开口2111为例,对应的, 盖板212用于盖合该开口2111。可选地,本申请实施例的盖板212盖合壳体211的开口2111,例如,可以通过焊接的方式,实现壳体211与盖板212之间的密封连接,以提高密封可靠性。
可选地,该盖板212可以为电池单体20的任意一个壁,例如,盖板212为电池单体20的面积最大的壁,这样便于电池单体20内部的部件的安装,例如,可以便于电极组件的安装,加快该电池单体20的加工速度。
可选地,壳体211可以是多种形状,比如,圆柱体、长方体或者其他多面体。示例性的,如图3至图7所示,在本申请实施例中,主要以壳体211为长方体结构为例进行描述。
应理解,本申请实施例的盖板212用于盖合于壳体211的开口2111,以将电池单体20的内部环境与外部环境隔绝的部件。盖板212的形状可以与壳体211的形状相适配,如图3至图7所示,壳体211为长方体结构,盖板212为与壳体211相适配的矩形板状结构。
在该电池单体20中,电极组件是电池单体20中发生电化学反应的部件。具体地,电极组件可以包括极耳和电极主体部,其中,电极组件的极耳可以包括正极极耳和负极极耳,正极极耳可以由正极极片上未涂覆正极活性物质层的部分层叠形成,负极极耳可以由负极极片上未涂覆负极活性物质层的部分层叠形成,电极主体部可以由正极极片上涂覆有正极活性物质层的部分和负极极片上涂覆有负极活性物质层的部分层叠形成或者卷绕形成。
应理解,根据实际使用需求,壳体211内的电极组件可设置为一个,也可以是多个。电极组件可以是圆柱体、长方体等,若电极组件为圆柱体结构,壳体211也可以为圆柱体结构,若电极组件为长方体结构,壳体211也可以为长方体结构。
可选地,本申请实施例的外壳21的材质可以根据实际应用灵活设置,并且,盖板212的材质与壳体211的材质可以相同,也可以不同。例如,以第一壁21a为例,第一壁21a的材料包括不锈钢和/或合金,以使该第一壁21a具有较强的硬度,保证该电池单体20的结构强度。再例如,在本申请实施例中,壳体211的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。盖板212的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
可选地,本申请实施例的外壳21的厚度可以根据实际应用灵活设置,并且,外壳21的不同的壁的厚度可以相同也可以不同,例如,盖板212的厚度与壳体211的厚度可以相同,也可以不同。例如,如图3至图7所示,以第一壁21a为例,第一壁21a的厚度T的取值范围为[50μm,200μm],以保证该电池单体20的结构强度。例如,该第一壁21a的厚度T可以设置为50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或者200μm。
可选地,本申请实施例的第一壁21a可以为外壳21的任意一个壁。例如,如图3至图7所示,第一壁21a为壳体211的侧壁,壳体211的侧壁为与壳体211的开口2111相邻的壁,这样,可以便于通过该开口2111,对第一限位结构201和第二限位结 构202进行加工。
再例如,第一壁21a为电池单体20的面积最小的壁,这样,在该第一壁21a的面积有限的情况下,绝缘结构22的面积也有限,可以通过第一限位结构201和第二限位结构202快速实现第一壁21a和绝缘结构22的定位,以便于安装,提高电池单体20的加工效率。
应理解,该盖板212与壳体211的侧壁之间可以具有相互连接的连接结构。例如,壳体211的侧壁的围绕开口2111的边缘向远离电池单体20的内部方向延伸,或者壳体211的侧壁的围绕开口2111的边缘向电池单体20的内部的方向延伸,以与盖板212相互连接,例如与盖板212焊接,则本申请实施例的第一壁21a的面积不包括侧壁边缘的延伸部分。
可选地,本申请实施例的外壳21还可以设置有其他部件。例如,外壳21还可以设置有注液孔以及用于密封该注液孔密封组件215。例如,如图3至图7所示,第一壁21a可以设置有注液孔以及用于密封该注液孔密封组件215,该注液孔用于向电池单体20内部注入电解液,密封组件215密封该注液孔,例如,可以通过激光焊接的方式密封,以提高密封可靠性。
可选地,本申请实施例的电池单体20的外壳21还可以设置有泄压机构213。例如,盖板212设置有泄压机构213;或者,也可以在与盖板212相对设置的壁上设置该泄压机构213;或者,也可以在其他壁上设置该泄压机构。为了便于描述,本申请主要以泄压机构213设置于盖板212为例,但相关描述同样适用于泄压机构213设置于其他壁的情况,为了简洁,在此不再赘述。具体地,图8示出了本申请实施例的盖板212的远离电池单体20的内部的表面的示意图,图9示出了本申请实施例的盖板212的局部截面示意图,例如,该截面示意图可以为沿图8所示的B-B’方向的截面的局部示意图。如图8和图9所示,可以在盖板212上设置泄压机构213,该泄压机构213用于在电池单体20的内部压力或温度达到预定阈值时致动以泄放电池单体20的内部压力或温度。
该预定阈值可以根据设计需求不同而进行调整。该预定阈值可取决于电池单体20中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。本申请中所提到的“致动”是指泄压机构213产生动作,从而使得电池单体20的内部压力及温度得以被泄放。泄压机构213产生的动作可以包括但不限于:泄压机构213中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构213在致动后,电池单体20内部的高温高压物质作为排放物会从泄压机构213向外排出。以此方式能够在可控压力或温度的情况下使电池单体20发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体20的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体20上的泄压机构213对电池的安全性有着重要影响。例如,当电池单体20发生短路、过充等现象时,可能会导致电池单体20内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构213致动可以将内部压力及温度向外释放,以防止电池单体20爆炸、起火。
可选地,本申请实施例的该泄压机构213可以设置于电池单体20的外壳21的任意一个壁,例如,本申请实施例以该泄压机构213设置在盖板212上为例。另外,该泄压机构213可以为盖板212的一部分,也可以与盖板212为分体式结构,通过例如焊接的方式固定在盖板212上。
例如,泄压机构213也可以与盖板212为分体式结构,泄压机构213可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体20的内部压力或温度达到预定阈值时,泄压机构213执行动作或者泄压机构213中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
再例如,当泄压机构213为盖板212的一部分时,例如,泄压机构213可以通过在盖板212上设置刻痕的方式形成,即泄压机构213为盖板212的刻痕,那么该刻痕所在区域的厚度小于该盖板212的除该刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
例如,如图8和图9所示,泄压机构213为设置于电池单体20的远离电池单体20的内部的表面的L型刻痕。例如,若泄压机构213位于盖板212,则泄压机构213位于盖板212的远离电池单体20的内部的表面的L型刻痕,即该泄压机构213具有相互连接且相互垂直的两部分,这样,电池单体20内部的温度或者压力达到预设阈值时,该泄压机构213可以沿任一方向被破坏,以便于泄压机构213及时被破坏,以及时泄放电池单体20的内部的压力和温度,避免电池单体20发生爆炸。另外,将泄压机构213的设置在盖板212的外表面,避免电池单体20内部的电解液在刻痕内堆积,避免电解液对泄压机构213的腐蚀,从而也可以提高泄压机构213的安全性。
可选地,如图9所示,本申请实施例的泄压机构213为刻痕时,该刻痕的横截面可以为等腰梯形,一方面便于加工,另一方面,相比于矩形的横截面,可以避免应力集中,提高电池单体20正常使用过程中该泄压机构213的稳定性。
在本申请实施例中,电池单体20的第一壁21a设置有第一限位结构201,绝缘结构22设置有第二限位结构202,该第一限位结构201和该第二限位结构202相互配合,可以阻止或者限制第一壁21a与绝缘结构22之间的相对移动。这样,一方面能够对第一壁21a和绝缘结构22进行定位,以便于二者之间的安装;另一方面还能够避免第一壁21a和绝缘结构22之间发生错位,也就保证了绝缘结构22对该第一壁21a与电池单体20内部其他部件之间的绝缘性能,避免短路,并提高电池单体20的安全性能。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (22)

  1. 一种电池单体(20),其特征在于,包括:
    第一壁(21a),所述第一壁(21a)设置有第一限位结构(201);
    绝缘结构(22),所述绝缘结构(22)设置在所述第一壁(21a)的朝向所述电池单体(20)的内部的一侧,所述绝缘结构(22)设置有与所述第一限位结构(201)对应的第二限位结构(202),所述第二限位结构(202)和所述第一限位结构(201)相互配合,以阻止所述绝缘结构(22)与所述第一壁(21a)之间的相对移动。
  2. 根据权利要求1所述的电池单体(20),其特征在于,所述第一限位结构(201)包括所述第一壁(21a)的朝向所述绝缘结构(22)凸起的第一凸起结构,所述第二限位结构(202)包括所述绝缘结构(22)的第一凹槽结构,所述第一凹槽结构的开口朝向所述第一壁(21a),所述第一凸起结构的至少部分容纳于所述第一凹槽结构内;和/或,
    所述第一限位结构(201)包括所述第一壁(21a)的第二凹槽结构,所述第二凹槽结构的开口朝向所述绝缘结构(22),所述第二限位结构(202)包括所述绝缘结构(22)的朝向所述第一壁(21a)凸起的第二凸起结构,所述第二凸起结构的至少部分容纳于所述第二凹槽结构内。
  3. 根据权利要求2所述的电池单体(20),其特征在于,所述第一凸起结构为所述第一壁(21a)的朝向所述绝缘结构(22)凹陷且凸出于所述第一壁(21a)的朝向所述电池单体(20)的内部的表面的凹槽;和/或,
    所述第二凸起结构为所述绝缘结构(22)的朝向所述第一壁(21a)凹陷且凸出于所述绝缘结构(22)的远离所述电池单体(20)的内部的表面的凹槽。
  4. 根据权利要求2或3所述的电池单体(20),其特征在于,所述第一凹槽结构凸出于所述绝缘结构(22)的朝向所述电池单体(20)的内部的表面;和/或,
    所述第二凹槽结构凸出于所述第一壁(21a)的远离所述电池单体(20)的内部的表面。
  5. 根据权利要求1至4中任一项所述的电池单体(20),其特征在于,所述电池单体(20)还包括:
    电极端子(214),设置于所述第一壁(21a),所述第一壁(21a)设置有第一通孔(2101),所述绝缘结构(22)设置有与所述第一通孔(2101)对应的第二通孔(221),所述电极端子(214)贯穿所述第一通孔(2101)和所述第二通孔(221),以使所述第一壁(21a)和所述绝缘结构(22)铆接。
  6. 根据权利要求5所述的电池单体(20),其特征在于,所述电池单体(20)还包括:
    连接构件(23),用于与所述电极端子(214)电连接,所述连接构件(23)设置在所述绝缘结构(22)的朝向所述电池单体(20)的内部的一侧,所述连接构件(23)设置有与所述第二通孔(221)对应的第三通孔(231),所述电极端子(214)贯穿所 述第三通孔(231),以使所述连接构件(23)、所述绝缘结构(22)和所述第一壁(21a)铆接。
  7. 根据权利要求6所述的电池单体(20),其特征在于,所述连接构件(23)还包括第三限位结构(232),所述第三限位结构(232)与所述第二限位结构(202)相互配合,以阻止所述连接构件(23)与所述绝缘结构(22)之间的相对移动。
  8. 根据权利要求7所述的电池单体(20),其特征在于,所述第三限位结构(232)包括所述连接构件(23)的第四通孔,所述第四通孔用于容纳所述第二限位结构(202)的至少部分。
  9. 根据权利要求5至8中任一项所述的电池单体(20),其特征在于,所述电池单体(20)还包括:
    密封结构(24),设置在所述第一壁(21a)的远离所述电池单体(20)的内部的一侧,所述密封结构(24)用于电隔离所述电极端子(214)与所述第一壁(21a),
    所述密封结构(24)设置有第五通孔(241),所述第五通孔(241)的至少部分容纳在所述第一通孔(2101)内,所述电极端子(214)贯穿所述第五通孔(241),以使所述电极端子(214)与所述第一通孔(2101)之间密封。
  10. 根据权利要求5至9中任一项所述的电池单体(20),其特征在于,所述电极端子(214)为正极电极端子(214a)。
  11. 根据权利要求5至10中任一项所述的电池单体(20),其特征在于,沿所述第一壁(21a)的长度方向,所述电极端子(214)与所述第一限位结构(201)之间的距离与所述第一壁(21a)的长度的比值的取值范围为[10%,48%]。
  12. 根据权利要求1至11中任一项所述的电池单体(20),其特征在于,沿所述第一壁(21a)的宽度方向,所述第一限位结构(201)的尺寸与所述第一壁(21a)的宽度的比值的取值范围为[15%,95%]。
  13. 根据权利要求1至12中任一项所述的电池单体(20),其特征在于,所述电池单体(20)还包括:
    壳体(211),所述壳体(211)为具有开口(2111)的中空结构;
    盖板(212),所述盖板(212)用于盖合所述壳体(211)的开口(2111)。
  14. 根据权利要求13所述的电池单体(20),其特征在于,所述盖板(212)为所述电池单体(20)的面积最大的壁。
  15. 根据权利要求14所述的电池单体(20),其特征在于,所述盖板(212)设置有泄压机构(213),或者,
    与所述盖板(212)相对设置的壁上设置有所述泄压机构(213)。
  16. 根据权利要求15所述的电池单体(20),其特征在于,所述泄压机构(213)为设置于所述电池单体(20)的远离所述电池单体(20)的内部的表面的L型刻痕。
  17. 根据权利要求13至16中任一项所述的电池单体(20),其特征在于,所述第一壁(21a)为所述壳体(211)的侧壁,所述壳体(211)的侧壁为与所述壳体(211)的开口(2111)相邻的壁。
  18. 根据权利要求1至17中任一项所述的电池单体(20),其特征在于,所述第一 壁(21a)为所述电池单体(20)的面积最小的壁。
  19. 根据权利要求1至18中任一项所述的电池单体(20),其特征在于,所述第一壁(21a)的材料包括不锈钢和/或合金。
  20. 根据权利要求1至19中任一项所述的电池单体(20),其特征在于,所述第一壁(21a)的厚度的取值范围为[50μm,200μm]。
  21. 一种电池,其特征在于,包括:
    多个如权利要求1至20中任一项所述的电池单体(20)。
  22. 一种用电设备,其特征在于,包括:
    多个如权利要求1至20中任一项所述的电池单体(20),所述电池单体(20)用于为所述用电设备提供电能。
PCT/CN2022/125681 2022-10-17 2022-10-17 电池单体、电池和用电设备 WO2024082093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125681 WO2024082093A1 (zh) 2022-10-17 2022-10-17 电池单体、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125681 WO2024082093A1 (zh) 2022-10-17 2022-10-17 电池单体、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024082093A1 true WO2024082093A1 (zh) 2024-04-25

Family

ID=90736531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125681 WO2024082093A1 (zh) 2022-10-17 2022-10-17 电池单体、电池和用电设备

Country Status (1)

Country Link
WO (1) WO2024082093A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211017134U (zh) * 2019-12-02 2020-07-14 宁德时代新能源科技股份有限公司 顶盖组件、二次电池、电池模块以及装置
US20200251711A1 (en) * 2017-02-27 2020-08-06 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
CN216529007U (zh) * 2021-10-25 2022-05-13 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN216903136U (zh) * 2022-01-13 2022-07-05 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
WO2022170553A1 (zh) * 2021-02-10 2022-08-18 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备及电池单体的制造设备和方法
CN217544884U (zh) * 2022-07-06 2022-10-04 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200251711A1 (en) * 2017-02-27 2020-08-06 Sanyo Electric Co., Ltd. Rectangular secondary battery and method of manufacturing the same
CN211017134U (zh) * 2019-12-02 2020-07-14 宁德时代新能源科技股份有限公司 顶盖组件、二次电池、电池模块以及装置
WO2022170553A1 (zh) * 2021-02-10 2022-08-18 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备及电池单体的制造设备和方法
CN216529007U (zh) * 2021-10-25 2022-05-13 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN216903136U (zh) * 2022-01-13 2022-07-05 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
CN217544884U (zh) * 2022-07-06 2022-10-04 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Similar Documents

Publication Publication Date Title
JP7422789B2 (ja) 電池、その関連装置、製造方法及び製造機器
CN216213942U (zh) 电池单体、电池以及用电装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
EP3965214B1 (en) Battery and related apparatus thereof and preparation method and preparation device therefor
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022205069A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
EP4092818A1 (en) Battery box body, battery, electric device, method and apparatus for preparing box body
WO2023179192A1 (zh) 电池和用电设备
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
US20230344033A1 (en) Battery, power consuming device, and method and device for manufacturing battery
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2024092442A1 (zh) 电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023050278A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2024082093A1 (zh) 电池单体、电池和用电设备
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
KR20230110440A (ko) 배터리의 박스 본체, 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2023050281A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050289A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022170487A1 (zh) 电池单体、电池、用电装置以及制备电池单体的方法
WO2024082095A1 (zh) 电池单体、电池和用电设备
WO2024082097A1 (zh) 电池单体、电池和用电设备