WO2024082095A1 - 电池单体、电池和用电设备 - Google Patents

电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2024082095A1
WO2024082095A1 PCT/CN2022/125687 CN2022125687W WO2024082095A1 WO 2024082095 A1 WO2024082095 A1 WO 2024082095A1 CN 2022125687 W CN2022125687 W CN 2022125687W WO 2024082095 A1 WO2024082095 A1 WO 2024082095A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
cover plate
side wall
shell
extension
Prior art date
Application number
PCT/CN2022/125687
Other languages
English (en)
French (fr)
Inventor
王利钦
李全坤
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/125687 priority Critical patent/WO2024082095A1/zh
Publication of WO2024082095A1 publication Critical patent/WO2024082095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • the embodiments of the present application provide a battery cell, a battery, and an electrical device, which can improve the processing efficiency of the battery cell.
  • a battery cell comprising: a shell having a hollow structure with an opening; and a cover plate for covering the opening, wherein an edge area of the cover plate has an extension extending toward the shell, and/or an edge area of the shell for forming a side wall of the opening has an extension extending toward the center of the opening; the extension portion is used to connect the shell and the cover plate.
  • the cover plate and/or the shell has an extension portion, and the connection between the shell and the cover plate can be achieved through the extension portion.
  • an extension portion extending toward the shell can be provided in the edge area of the cover plate;
  • an extension portion extending toward the center of the opening of the shell can be provided in the edge area of the side wall of the shell.
  • the contact area between the shell and the cover plate can be increased, so that when the shell and the cover plate are sealed, the area of the connectable area between the shell and the cover plate can be increased, for example, the area of the weldable area between the shell and the cover plate can be increased; the restriction of the thickness of the shell and the cover plate on the sealing connection between the shell and the cover plate can also be reduced, and the sealing connection strength between the shell and the cover plate can be increased by providing the extension portion, thereby improving the sealing reliability and the processing efficiency and structural strength of the battery cell.
  • the extension portion includes a first extension structure
  • the cover plate includes a main body and the first extension structure
  • the first extension structure extends from an edge area of the main body toward the shell
  • the main body is used to cover the opening
  • the first extension structure is used to connect to the shell.
  • the first extension structure of the cover plate extends toward the shell, and the contact area between the cover plate and the shell is expanded to include the contact area between the first extension structure and the shell; correspondingly, the sealing connection between the shell and the cover plate can be achieved by sealing the shell and the first extension structure, for example, by welding. This can reduce or even avoid the limitation of the thickness of the cover plate on the sealing connection between the shell and the cover plate.
  • the sealing connection strength between the shell and the cover plate can be increased, the sealing reliability can be improved, and the processing efficiency and structural strength of the battery cell can be improved.
  • the first extension structure is used to connect with the inner surface of the side wall, and the inner surface of the side wall is the surface of the side wall facing the inside of the battery cell. In this way, the first extension structure does not need to occupy the external space of the battery cell, that is, the outer surface of the battery cell has no protruding part, which will not affect the installation between multiple battery cells, thereby improving the installation efficiency of the battery.
  • the cover plate also includes a lap portion connected to the main body portion, the lap portion extending from the edge of the main body portion toward a direction away from the center of the main body portion, the lap portion connecting the thickness end surface of the side wall, and the thickness end surface being the end surface of the side wall facing the cover plate.
  • the cover plate when the cover plate is buckled with the opening of the shell, the cover plate can be kept on the thickness end surface a of the side wall of the shell, thereby ensuring the relative stability between the cover plate and the shell, thereby facilitating the connection between the shell and the first extension structure of the cover plate, for example, facilitating the welding of the two, thereby improving the installation efficiency of the battery cell.
  • the first extension structure is used to connect with the outer surface of the side wall, and the outer surface of the side wall is the surface of the side wall away from the interior of the battery cell. In this way, the first extension structure does not need to occupy the internal space of the battery cell, which can avoid the influence of the first extension structure on the electrode assembly of the battery cell, improve the internal space utilization of the battery cell, and help to improve the energy density of the battery cell.
  • the thickness of the first extension structure is in the range of [0.05 mm, 0.2 mm]; and/or, the height of the first extension structure protruding from the main body is in the range of [0.05 mm, 0.2 mm].
  • the height of the first extension structure is set too large, the contact area between the first extension structure and the side wall is large.
  • the sealing connection is made, such as by welding, the actual welding area does not need to be too large while ensuring the connection strength and sealing reliability between the shell and the cover plate. Therefore, setting the height of the first extension structure too large will not effectively increase the connection strength and sealing reliability between the shell and the cover plate. Instead, it will increase the occupied space of the first extension structure and reduce the internal space utilization rate of the battery cell.
  • the height of the first extension structure is set too small, the contact area between the first extension structure and the side wall is very small, and the connection strength and sealing reliability between the side wall and the first extension structure cannot be guaranteed, which increases the difficulty of processing.
  • the thickness of the first extension structure is set too small, the first extension structure is easily melted through when it is sealed and connected to the side wall by welding, etc., resulting in seal failure, reducing the processing qualification rate of the battery cell and also reducing the processing efficiency of the battery cell.
  • the thickness of the first extension structure is set too large, although it can avoid being melted through, it will increase the internal space of the battery cell occupied by the first extension structure, reduce the space utilization rate of the battery cell, and also reduce the energy density of the battery cell.
  • the extension portion includes a second extension structure disposed on the side wall, at least a portion of the second extension structure is located in an edge area of the side wall for forming the opening, and the second extension structure extends from the side wall toward the center of the opening, and the second extension structure is used to connect to the cover plate.
  • the contact area between the shell and the cover plate is expanded to include the contact area between the second extension structure and the cover plate; in this way, the sealed connection between the shell and the cover plate can be achieved by sealing the second extension structure and the cover plate, for example, by welding. This can reduce or even avoid the limitation of the thickness of the side wall of the shell on the sealed connection between the shell and the cover plate.
  • the sealing connection strength between the shell and the cover plate can be increased, the sealing reliability can be improved, and the processing efficiency and structural strength of the battery cell can be improved.
  • the side wall includes a thickness end face, which is the end face of the side wall facing the cover plate, and the thickness end face is flush with the surface of the second extension structure facing the cover plate, and the thickness end face and the second extension structure are used to connect with the cover plate.
  • the end face of the shell facing the cover plate is a plane, and there is no height difference between the side wall and the second extension structure.
  • it is convenient for processing the side wall so that the side wall and the second extension structure can be quickly formed as one piece;
  • the cover plate covers the opening, the outer surface of the battery cell is prone to depression or bulge at the covering position, making the outer surface of the battery cell uneven, which is easy to affect the installation between multiple battery cells, and thus affect the installation efficiency of the battery.
  • the second extension structure is a protruding structure located in the edge region of the side wall for forming the opening and protruding from the inner surface of the side wall, and the inner surface of the side wall is the surface of the side wall facing the inside of the battery cell.
  • the second extension structure is realized by the protruding structure, which is convenient for processing on the one hand, and can make the second extension structure smaller in volume on the other hand, occupying less internal space of the battery cell, which is conducive to ensuring the energy density of the battery cell.
  • the thickness of the second extension structure is in the range of [0.05 mm, 0.2 mm]; and/or, the height of the second extension structure protruding from the side wall is in the range of [0.05 mm, 0.2 mm].
  • the height of the second extension structure is set too large, the contact area between the second extension structure and the cover plate is large.
  • the sealing connection is made, such as when the sealing is made by welding, the actual welding area does not need to be too large while ensuring the connection strength and sealing reliability between the shell and the cover plate. Therefore, setting the height of the second extension structure too large will not effectively increase the connection strength and sealing reliability between the shell and the cover plate. Instead, it will increase the occupied space of the second extension structure and reduce the internal space utilization rate of the battery cell.
  • the height of the second extension structure is set too small, the contact area between the second extension structure and the cover plate is very small, and the sealing connection between the shell and the cover plate is mainly limited by the thickness of the shell and the cover plate. It is impossible to improve the connection strength and sealing reliability between the shell and the cover plate by setting the second extension structure, and it will increase the processing difficulty.
  • the second extension structure is set too small, the second extension structure is easily melted through when it is sealed and connected to the cover plate by welding, etc., resulting in failure of the sealing connection, reducing the processing qualification rate of the battery cell and also reducing the processing efficiency of the battery cell.
  • the thickness of the second extension structure is set too large, although it can avoid being melted through, it will increase the internal space of the battery cell occupied by the second extension structure, reduce the space utilization rate of the battery cell, and also reduce the energy density of the battery cell.
  • a dimension of the second extension structure along a first direction is equal to a dimension of the side wall along the first direction, and the first direction is perpendicular to the cover plate.
  • the thickness end surface perpendicular to the cover plate is flush with the surface of the second extension structure facing the cover plate, if the size of the second extension structure along the first direction is equal to the size of the side wall along the first direction, the size of the second extension structure is consistent with that of the side wall, that is, the second extension structure can be realized by increasing the thickness of the original side wall. Therefore, the thickness of the original side wall of the shell is increased by the thickness of the second extension structure, and the contact area between the cover plate and the shell can also be increased, thereby improving the connection strength and sealing reliability between the shell and the cover plate.
  • the difference between the total length of the thickness end surface and the surface of the second extension structure facing the cover plate along the second direction and the thickness of the cover plate is greater than or equal to 0.01 mm, and the second direction is perpendicular to the side wall. If the difference is set too small, due to the limited thickness of the cover plate, the thickness of the side wall with the second extension structure is still small, and the contact area between the shell and the cover plate is still small.
  • the sealing connection between the shell and the cover plate is mainly limited by the thickness of the shell and the cover plate. The connection strength and sealing reliability between the shell and the cover plate cannot be improved by setting the second extension structure, and the processing difficulty will be increased.
  • the cover plate is the wall with the largest area of the battery cell, which facilitates the installation of components inside the battery cell, for example, can facilitate the installation of the electrode assembly and speed up the processing of the battery cell.
  • the material of the housing includes stainless steel and/or an alloy; and/or the material of the cover plate includes stainless steel and/or an alloy. This can make the battery cell have a stronger hardness and ensure the structural strength of the battery cell.
  • the thickness of the shell is in the range of [50 ⁇ m, 200 ⁇ m]; and/or the thickness of the cover plate is in the range of [50 ⁇ m, 200 ⁇ m], so as to ensure the structural strength of the battery cell.
  • a battery comprising: a plurality of battery cells as described in the first aspect.
  • an electrical device comprising: the battery cell described in the first aspect, wherein the battery cell is used to provide electrical energy to the electrical device.
  • the electrical equipment is a vehicle, a ship or a spacecraft.
  • FIG1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a battery cell disclosed in an embodiment of the present application.
  • FIG4 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
  • FIG5 is a partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG6 is an enlarged schematic diagram of a partial cross section of a battery cell disclosed in an embodiment of the present application.
  • FIG7 is another partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG8 is an enlarged schematic diagram of another partial cross-section of a battery cell disclosed in one embodiment of the present application.
  • FIG9 is another exploded structural schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG10 is another partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG11 is an enlarged schematic diagram of another partial cross-section of a battery cell disclosed in one embodiment of the present application.
  • FIG12 is another partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG13 is an enlarged schematic diagram of another partial cross-section of a battery cell disclosed in an embodiment of the present application.
  • FIG14 is another partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG15 is an enlarged schematic diagram of another partial cross section of a battery cell disclosed in one embodiment of the present application.
  • FIG16 is a partial cross-sectional exploded schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • FIG17 is a schematic diagram of an outer surface of a first wall of a battery cell disclosed in an embodiment of the present application.
  • FIG18 is a schematic diagram of a surface of a cover plate disclosed in an embodiment of the present application.
  • FIG. 19 is a partial cross-sectional schematic diagram of a cover plate disclosed in an embodiment of the present application.
  • battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., and the embodiments of the present application do not limit this.
  • Battery cells may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode collector.
  • the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer.
  • the positive electrode collector not coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode collector.
  • the negative electrode collector not coated with the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer.
  • the negative electrode collector not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon, etc.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (PP) or polyethylene (PE), etc.
  • the electrode assembly may be a winding structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a battery cell usually includes a shell with an opening and a cover plate for covering the opening, wherein the shell and the cover plate can be sealed and connected by welding or the like.
  • a sealed connection can be made directly between the edge area of the cover plate and the opening of the shell by welding or the like.
  • the thickness of the shell and the cover plate is usually small, and this welding method will result in low welding efficiency and low welding reliability, which is not conducive to the processing efficiency of the battery cell.
  • the embodiments of the present application provide a battery cell, a battery and an electrical device that can solve the above problems.
  • the cover plate and/or the shell has an extension portion, through which the connection between the cover plate and the shell can be achieved.
  • an extension portion extending toward the shell can be provided in the edge area of the cover plate;
  • an extension portion extending toward the center of the opening of the shell can be provided in the edge area of the side wall of the shell.
  • the area of the connectable area between the shell and the cover plate can be increased, and the thickness of the shell and the cover plate can be reduced.
  • the restriction on the sealing connection between the shell and the cover plate can be reduced.
  • the sealing connection strength between the shell and the cover plate can be increased by setting the extension portion, the sealing reliability can be improved, and the processing efficiency and structural strength of the battery cell can be improved.
  • FIG1 it is a schematic diagram of the structure of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 40, a controller 30 and a battery 10 may be provided inside the vehicle 1.
  • the controller 30 is used to control the battery 10 to supply power to the motor 40.
  • a battery 10 may be provided at the bottom, front or rear of the vehicle 1.
  • the battery 10 may be used to supply power to the vehicle 1.
  • the battery 10 may be used as an operating power source for the vehicle 1, for the circuit system of the vehicle 1, for example, for the working power requirements during the start-up, navigation and operation of the vehicle 1.
  • the battery 10 may not only be used as an operating power source for the vehicle 1, but also as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • a battery may include multiple battery cells, wherein multiple battery cells may be connected in series, in parallel, or in hybrid connection, where hybrid connection refers to a mixture of series and parallel connection.
  • a battery may also be referred to as a battery pack.
  • multiple battery cells may be connected in series, in parallel, or in hybrid connection to form a battery module, and multiple battery modules may be connected in series, in parallel, or in hybrid connection to form a battery.
  • multiple battery cells may be directly connected to form a battery, or they may be first connected to form a battery module, and then the battery module may be connected to form a battery.
  • FIG2 shows a schematic diagram of the structure of a battery 10 according to an embodiment of the present application, and the battery 10 may include a plurality of battery cells 20.
  • the battery 10 may also include a box 11, the interior of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • FIG2 shows a possible implementation of the box 11 of the present application.
  • the box 11 may include two parts, which are respectively referred to as a first part 111 and a second part 112, and the first part 111 and the second part 112 are buckled together.
  • the shapes of the first part 111 and the second part 112 can be determined according to the shapes of the plurality of battery cells 20 after being combined, and at least one of the first part 111 and the second part 112 has an opening.
  • the first part 111 and the second part 112 may both be hollow cuboids and each have only one face as an opening face, the opening of the first part 111 and the opening of the second part 112 are arranged opposite to each other, and the first part 111 and the second part 112 are buckled together to form a box 11 with a closed chamber.
  • first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be in the shape of a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face being an opening face, and the first part 111 is in the shape of a plate. Then, the first part 111 covers the opening of the second part 112 to form a box 11 with a closed chamber, which can be used to accommodate a plurality of battery cells 20.
  • the plurality of battery cells 20 are connected in parallel, in series, or in a mixed combination and placed in the box 11 formed by the first part 111 and the second part 112 being buckled together.
  • the battery 10 may also include other structures, which are not described one by one here.
  • the battery 10 may also include a busbar, which is used to realize the electrical connection between multiple battery cells 20, such as parallel or series or mixed connection.
  • the busbar can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20.
  • the busbar can be fixed to the electrode terminals of the battery cells 20 by welding. The electrical energy of multiple battery cells 20 can be further led out through the box 11 through the conductive mechanism.
  • the number of battery cells 20 in the battery 10 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed to achieve a larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for ease of installation, the battery cells 20 can be grouped, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to demand. In addition, in order to increase the space occupancy rate of the battery cells 20 in the battery 10, the installation direction of the battery cells 20 can be reasonably set according to the shape of the multiple battery cells 20; and, the installation directions of different battery cells 20 in the battery 10 can be the same or different, and the embodiments of the present application are not limited to this.
  • FIG. 3 is a schematic diagram of the structure of a battery cell 20 according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of the exploded structure of the battery cell 20 according to an embodiment of the present application, for example, FIG. 4 may be a possible schematic diagram of the exploded structure of the battery cell 20 shown in FIG. 3
  • FIG. 5 is a schematic diagram of a partial cross-section of the battery cell 20 according to an embodiment of the present application, for example, the cross-section shown in FIG. 5 may be a possible schematic diagram of a cross-section of the housing 211 and the cover plate 212 of the battery cell 20 shown in FIG. 4, and the cross section is perpendicular to the height direction Z of the battery cell 20;
  • FIG. 5 is a schematic diagram of a partial cross-section of the battery cell 20 according to an embodiment of the present application, for example, the cross-section shown in FIG. 5 may be a possible schematic diagram of a cross-section of the housing 211 and the cover plate 212 of the battery cell 20 shown in FIG
  • FIG. 6 is another schematic diagram of a partial cross-section of the battery cell 20 according to an embodiment of the present application, for example, FIG. 6 may be an enlarged view of the area A shown in FIG. 5;
  • FIG. 7 is another schematic diagram of a partial cross-section of the battery cell 20 according to an embodiment of the present application, for example, the cross-section shown in FIG. 7 may be another possible schematic diagram of a cross-section of the housing 211 and the cover plate 212 of the battery cell 20 shown in FIG. 4, and the cross section is perpendicular to the height direction Z of the battery cell 20, that is, the cross section may be consistent with the direction of the cross section shown in FIG. 5;
  • FIG. 8 is another schematic diagram of a partial cross-section of the battery cell 20 according to an embodiment of the present application, for example, FIG. 8 may be an enlarged view of the area B shown in FIG. 7.
  • the battery cell 20 of the embodiment of the present application includes: a shell 211, a hollow structure having an opening 2111; a cover plate 212, used to cover the opening 2111, wherein an edge area of the cover plate 212 has an extension portion 210 extending toward the shell 211, and/or an edge area of a side wall 2113 of the shell 211 used to form the opening 2111 has an extension portion 210 extending toward the center of the opening 2111; the extension portion 210 is used to connect the shell 211 and the cover plate 212.
  • the battery cell 20 of the embodiment of the present application includes a shell 21, and the shell 21 can be a polyhedral hollow structure, which can be used to accommodate the electrode assembly.
  • the shape of the battery cell 20 can be flexibly set according to the actual application, that is, the battery cell 20 can be any polyhedral structure, for example, it can be set to a rectangular parallelepiped or a cylinder.
  • the battery cell 20 may include a shell 21, and the shell 21 includes a plurality of walls so that the battery cell 20 is a polyhedral structure.
  • the embodiment of the present application is mainly described by taking the shell as a rectangular parallelepiped structure as an example.
  • the shell 21 may include six walls.
  • the present embodiment defines three reference directions. As shown in Figures 3 to 8, the thickness direction of the battery cell 20 is direction Y, the height direction of the battery cell 20 is direction Z, and the width direction of the battery cell 20 is direction X, wherein the thickness direction Y, height direction Z, and width direction X of the battery cell 20 are perpendicular to each other.
  • the housing 21 of the embodiment of the present application may include a shell 211 and a cover plate 212.
  • the shell 211 may be a hollow structure with an opening 2111 formed at one end or at multiple ends.
  • the cover plate 212 may be provided as one to cover one opening 2111 of the shell 211; if the shell 211 is a hollow structure with openings 2111 formed at opposite ends, the cover plate 212 may be provided as two, and the two cover plates 212 respectively cover the openings at both ends of the shell 211, but the embodiment of the present application is not limited thereto.
  • the embodiment of the present application takes the case where the housing 211 has an opening 2111 as an example, and correspondingly, the cover plate 212 is used to cover the opening 2111.
  • the cover plate 212 of the embodiment of the present application covers the opening 2111 of the housing 211, for example, by welding, to achieve a sealed connection between the housing 211 and the cover plate 212, so as to improve the sealing reliability.
  • the cover plate 212 and/or the housing 211 have an extension portion 210, through which the housing 211 and the cover plate 212 can be connected.
  • an extension portion 210 extending toward the housing 211 can be provided at the edge region of the cover plate 212; for the housing 211, an extension portion 210 extending toward the center of the opening 2111 of the housing 211 can be provided at the edge region of the side wall 2113 of the housing 211.
  • the area of the connectable region between the shell body 211 and the cover plate 212 can be increased.
  • the area of the weldable region between the shell body 211 and the cover plate 212 can be increased.
  • the restriction of the thickness of the shell body 211 and the cover plate 212 on the sealed connection between the shell body 211 and the cover plate 212 can also be reduced.
  • the extension portion 210 includes a first extension structure 2122
  • the cover plate 212 includes a main body 2121 and the first extension structure 2122
  • the first extension structure 2122 extends from the edge area of the main body 2121 to the housing 211
  • the main body 2121 is used to cover the opening 2111
  • the first extension structure 2122 is used to connect with the housing 211.
  • the first extension structure 2122 of the cover plate 212 extends toward the shell body 211, and the contact area between the cover plate 212 and the shell body 211 is expanded to include the contact area between the first extension structure 2122 and the shell body 211; correspondingly, the sealed connection between the shell body 211 and the cover plate 212 can be achieved by sealing the shell body 211 and the first extension structure 2122, for example, by welding. This can reduce or even avoid the limitation of the thickness of the cover plate 212 on the sealed connection between the shell body 211 and the cover plate 212.
  • the sealing connection strength between the shell body 211 and the cover plate 212 can be increased, the sealing reliability can be improved, and the processing efficiency and structural strength of the battery cell 20 can be improved.
  • the cover plate 212 of the embodiment of the present application includes a main body 2121, which can be approximately a flat plate structure to cover the opening 2111 of the shell 211.
  • the shape of the surface of the main body 2121 can be set according to the actual application.
  • the opening 2111 of the shell 211 is a cylindrical bottom surface
  • the surface of the main body 2121 of the cover plate 212 can be circular to cover the circular opening 2111.
  • the opening 2111 of the shell 211 can be any one face of the rectangular parallelepiped, then the surface of the main body 2121 of the cover plate 212 can be rectangular to cover the rectangular opening 2111.
  • main bodies 2121 of different shapes have different numbers of edges.
  • the main body 2121 includes a continuous edge; for a main body 2121 with a rectangular surface, the main body 2121 includes four intersecting edges.
  • the edge area of the main body 2121 in the embodiment of the present application is an area close to the edge of the main body 2121; the first extension structure 2122 of the cover plate 212 extends from the edge area of the main body 2121 to the shell 211, that is, the first extension structure 2122 is located in the area close to the edge of the main body 2121.
  • the main body 2121 includes at least one edge, and the first extension structure 2122 can be located in the edge area corresponding to at least part of the edge.
  • the first extension structure 2122 can be located in the edge area corresponding to all the edges of the main body 2121 as an example, that is, the first extension structure 2122 is arranged around the edge area of the main body 2121, as described in Figures 3 to 8, the first extension structure 2122 can be located in the edge area corresponding to all four edges to maximize the sealing reliability between the shell 211 and the cover plate 212; or, differently from this, the first extension structure 2122 can also be located only in part of the edge area, for example, different from Figures 3 to 8, the first extension structure 2122 can be located only in the edge area corresponding to part of the four edges, but the embodiment of the present application is not limited to this.
  • the specific arrangement of the first extension structure 2122 can be flexibly selected according to the actual application.
  • the embodiment of the present application mainly takes the first extension structure 2122 as a protrusion of the surface of the cover plate 212 facing the inside of the battery cell 20 as an example, that is, the first extension structure 2122 protrudes from the surface of the main body 2121 of the cover plate 212 facing the inside of the battery cell 20.
  • the relative position of the first extension structure 2122 and the housing 211 can also be set according to actual applications.
  • the first extension structure 2122 is used to connect with the inner surface of the side wall 2113, and the inner surface of the side wall 2113 is the surface of the side wall 2113 facing the inside of the battery cell 20.
  • the first extension structure 2122 does not need to occupy the external space of the battery cell 20, that is, the outer surface of the battery cell 20 has no protruding part, which will not affect the installation between multiple battery cells 20, thereby improving the installation efficiency of the battery 10.
  • the cover plate 212 further includes a lap portion 2123 connected to the main body 2121, the lap portion 2123 extends from the edge of the main body 2121 in a direction away from the center of the main body 2121, and the lap portion 2123 connects the thickness end surface 2113a of the side wall 2113, and the thickness end surface 2113a is the end surface of the side wall 2113 facing the cover plate 212.
  • the cover plate 212 can be kept on the thickness end surface 2113a of the side wall 2113 of the shell 211, ensuring the relative stability between the cover plate 212 and the shell 211, thereby facilitating the connection between the shell 211 and the first extension structure 2122 of the cover plate 212, for example, facilitating the welding of the two, thereby improving the installation efficiency of the battery cell 20.
  • the first extension structure 2122 is used to connect with the outer surface of the side wall 2113, and the outer surface of the side wall 2113 is the surface of the side wall 2113 away from the inside of the battery cell 20.
  • the first extension structure 2122 does not need to occupy the internal space of the battery cell 20, which can avoid the influence of the first extension structure 2122 on the electrode assembly of the battery cell 20, improve the internal space utilization of the battery cell 20, and help to improve the energy density of the battery cell 20.
  • the first extension structure 2122 is provided on both the inner surface and the outer surface of the side wall 2113 of the housing 211 to improve the reliability of the connection strength between the housing 211 and the cover plate 212 .
  • the dimensions of the first extension structure 2122 in various directions of the embodiment of the present application can be flexibly set according to the actual application.
  • the value of the height H1 of the first extension structure 2122 protruding from the main body 2121 can be flexibly set according to the actual application; and/or the value of the thickness T1 of the first extension structure 2122 can be flexibly set according to the actual application, wherein the thickness direction of the first extension structure 2122 is perpendicular to the height direction of the first extension structure 2122.
  • the height H1 of the first extension structure 2122 is the dimension of the first extension structure 2122 in its height direction.
  • the height H1 may be the minimum dimension of the first extension structure 2122 in its height direction.
  • the height direction of the first extension structure 2122 is perpendicular to the surface of the main body 2121, or in other words, the height direction of the first extension structure 2122 is the thickness direction of the main body 2121.
  • the thickness direction of the main body 2121 is the thickness direction Y of the battery cell 20
  • the height direction of the first extension structure 2122 is also the thickness direction Y of the battery cell 20.
  • the height H1 of the first extension structure 2122 can affect the contact area between the first extension structure 2122 and the side wall 2113 of the shell 21. As shown in Figures 6 to 8, if the height H1 of the first extension structure 2122 is set too large, the contact area between the first extension structure 2122 and the side wall 2113 is large, but when the sealing connection is made, for example, by welding, the actual welding area does not need to be too large while ensuring the connection strength and sealing reliability between the shell 211 and the cover plate 212.
  • the height H1 of the first extension structure 2122 is set too large, it will not effectively increase the connection strength and sealing reliability between the shell 211 and the cover plate 212, but will increase the occupied space of the first extension structure 2122 and reduce the internal space utilization rate of the battery cell 20.
  • the height H1 of the first extension structure 2122 is set too small, the contact area between the first extension structure 2122 and the side wall 2113 is very small, and the connection strength and sealing reliability between the side wall 2113 and the first extension structure 2122 cannot be guaranteed, which increases the difficulty of processing.
  • the height H1 of the first extension structure 2122 should not be set too large or too small.
  • the height H1 of the first extension structure 2122 protruding from the main body 2121 ranges from [0.05mm, 0.2mm].
  • the height H1 of the first extension structure 2122 can be set to 0.05mm, 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.1mm, 0.11mm, 0.12mm, 0.13mm, 0.14mm, 0.15mm, 0.16mm, 0.17mm, 0.18mm, 0.19mm or 0.2mm.
  • the thickness T1 of the first extension structure 2122 is the dimension of the first extension structure 2122 in its thickness direction.
  • the thickness T2 may be the minimum dimension of the first extension structure 2122 in its thickness direction.
  • the thickness direction of the first extension structure 2122 is perpendicular to the height direction of the first extension structure 2122 and also perpendicular to the extension direction of the first extension structure 2122. For example, as shown in FIGS. 6 to 8 , if the thickness direction Y of the battery cell 20 is perpendicular to the main body 2121, the height direction of the first extension structure 2122 is the thickness direction Y of the battery cell 20.
  • the thickness direction is the height direction Z of the battery cell 20; or, for the first extension structure 2122 located at the edge of the main body 2121 parallel to the height direction Z of the battery cell, that is, for the first extension structure 2122 extending along the height direction Z of the battery cell, its thickness direction is the width direction X of the battery cell 20.
  • the value range of the thickness T1 of the first extension structure 2122 can be set according to the actual application. Specifically, if the thickness T1 of the first extension structure 2122 is set too small, the first extension structure 2122 is easily melted through when it is sealed and connected to the side wall 2113 by welding or the like, resulting in seal failure, reducing the processing qualification rate of the battery cell 20, and also reducing the processing efficiency of the battery cell 20. On the contrary, if the thickness T1 of the first extension structure 2122 is set too large, although it can avoid being melted through, it will increase the internal space of the battery cell 20 occupied by the first extension structure 2122, reduce the space utilization rate of the battery cell 20, and also reduce the energy density of the battery cell 20.
  • the thickness T1 of the first extension structure 2122 of the embodiment of the present application should not be set too large or too small.
  • the value range of the thickness T1 of the first extension structure 2122 is [0.05mm, 0.2mm].
  • the thickness T1 of the first extension structure 2122 can be set to 0.05mm, 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.1mm, 0.11mm, 0.12mm, 0.13mm, 0.14mm, 0.15mm, 0.16mm, 0.17mm, 0.18mm, 0.19mm or 0.2mm.
  • the extension 210 provided on the cover plate 212 of the embodiment of the present application may include a first extension structure 2122 of the cover plate 212, or, unlike what is shown in FIGS. 3 to 8, the extension 210 of the cover plate 212 may be realized by other means.
  • the extension 210 may be realized by increasing the thickness of the cover plate 212.
  • the cover plate 212 may be regarded as the extension 210 and the main body 2121 being stacked along the thickness direction of the cover plate 212, and the extension 210 is located on the side of the main body 2121 facing the inside of the battery cell 20.
  • the thickness of the cover plate 212 is increased, and the contact area between the cover plate 212 and the housing 211 may also be increased, thereby improving the connection strength and sealing reliability between the housing 211 and the cover plate 212.
  • the cover plate 212 may be the largest wall of the battery cell 20
  • the thickness of the cover plate 212 is increased, the internal space of the battery cell 20 will be reduced, and the energy density of the battery cell 20 will be reduced while the external volume of the battery cell 20 remains unchanged. Therefore, the embodiment of the present application is described by taking the first extending structure 2122 as a protrusion of the cover plate 212 as an example, but the embodiment of the present application is not limited thereto.
  • extension portion 210 provided on the cover plate 212 is described above in conjunction with the accompanying drawings.
  • the extension portion 210 provided on the housing 211 will be described below in conjunction with the accompanying drawings.
  • FIG9 shows another exploded structural schematic diagram of the battery cell 20 of the embodiment of the present application.
  • FIG9 may be another possible exploded structural schematic diagram of the battery cell 20 shown in FIG3 .
  • FIG10 shows a partial cross-sectional schematic diagram of the battery cell 20 of the embodiment of the present application.
  • the cross-sectional diagram shown in FIG10 may be a possible cross-sectional schematic diagram of the housing 211 and the cover plate 212 of the battery cell 20 shown in FIG9 , and the cross section is perpendicular to the height direction Z of the battery cell 20 .
  • FIG11 shows another partial cross-sectional schematic diagram of the battery cell 20 of the embodiment of the present application.
  • FIG11 may be an enlarged view of the area C shown in FIG10 .
  • FIG12 shows another partial cross-sectional schematic diagram of the battery cell 20 of the embodiment of the present application.
  • the cross-sectional diagram shown in FIG12 may be another possible cross-sectional schematic diagram of the housing 211 and the cover plate 212 of the battery cell 20 shown in FIG9 , and the cross section is perpendicular to the height direction Z of the battery cell 20, that is, the cross section may be consistent with the direction of the cross section shown in FIG10 .
  • FIG13 shows another partial cross-sectional schematic diagram of the battery cell 20 of the embodiment of the present application.
  • FIG13 may be an enlarged view of the area D shown in FIG12 .
  • the extension portion 210 includes a second extension structure 2112 arranged on the side wall 2113, at least a portion of the second extension structure 2112 is located in the edge area of the side wall 2113 for forming the opening 2111, and the second extension structure 2112 extends from the side wall 2113 toward the center of the opening 2111, and the second extension structure 2112 is used to connect with the cover plate 212.
  • the second extension structure 2112 is at least partially located in the edge area of the side wall 2113, and the portion of the second extension structure 2112 extending from the side wall 2113 toward the center of the opening 2111, then the contact area between the shell 211 and the cover plate 212 is expanded to include the contact area between the second extension structure 2112 and the cover plate 212; in this way, the sealed connection between the shell 211 and the cover plate 212 can be achieved by sealing the second extension structure 2112 and the cover plate 212, for example, by welding. This can reduce or even avoid the restriction of the thickness of the side wall 2113 of the shell 211 on the sealed connection between the shell 211 and the cover plate 212.
  • the sealing connection strength between the shell 211 and the cover plate 212 can be increased, the sealing reliability can be improved, and the processing efficiency and structural strength of the battery cell 20 can be improved.
  • the shape of the shell 211 in the embodiment of the present application can be set according to the actual application, and the shells 211 of different shapes can have different numbers of side walls 2113, wherein the side wall 2113 of the shell 211 in the embodiment of the present application can refer to the side wall of the shell 211 used to form the opening 2111, that is, the side wall 2113 of the shell 211 is the wall of the shell 211 adjacent to the opening 2111.
  • the shell 211 is a cylinder with an opening at the bottom, the shell 211 has a side wall 2113, and the side wall 2113 is a cylindrical surface; for another example, as shown in Figures 9 to 13, the embodiment of the present application takes the shell 211 as a rectangular parallelepiped with an opening at one end as an example, then the shell 211 has four intersecting side walls 2113, and each side wall 2113 is a rectangle.
  • the side wall 2113 of the shell 211 in the embodiment of the present application may be any one of the four side walls 2113 .
  • the description of the side wall 2113 of the shell 211 below may be applicable to all the side walls 2113 of the shell 211 .
  • the second extension structure 2112 of the embodiment of the present application can be disposed on at least one side wall 2113 of the shell 211.
  • the embodiment of the present application takes the second extension structure 2112 being located on all the side walls 2113 of the shell 211 as an example, that is, the second extension structure 2112 is disposed on all the side walls 2113 surrounding the opening 2111 of the shell 211, as shown in FIGS. 9 to 13, the second extension structure 2112 can be located on four side walls 2113 to maximize the sealing reliability between the shell 211 and the cover plate 212; or, differently from this, the second extension structure 2112 can also be located only on part of the side walls 2113, for example, different from FIGS. 9 to 13, the second extension structure 2112 can be located only on part of the side walls 2113 among the four side walls 2113, but the embodiment of the present application is not limited thereto.
  • At least a portion of the second extension structure 2112 of the embodiment of the present application is located at an edge area of the side wall 2113 for forming the opening 2111, wherein the edge area of the side wall 2113 is an area of the end surface of the side wall 2113 forming the opening 2111 of the shell 211, and is also an edge area of the side wall 2113 close to the cover plate 212.
  • the relative position of the second extension structure 2112 and the side wall 2113 of the embodiment of the present application can be set according to actual applications.
  • the side wall 2113 includes a thickness end face 2113a, which is the end face of the side wall 2113 facing the cover plate 212, and the thickness end face 2113a is flush with the surface of the second extension structure 2112 facing the cover plate 212, and the thickness end face 2113a and the second extension structure 2112 are used to connect with the cover plate 212.
  • the end face of the shell 211 facing the cover plate 212 is a plane, and there is no height difference between the side wall 2113 and the second extension structure 2112.
  • the side wall 2113 and the second extension structure 2112 can be quickly formed as one piece; on the other hand, if there is a height difference between the thickness end face 2113a of the side wall 2113 and the second extension structure 2112, when the cover plate 212 covers the opening 2111, the outer surface of the battery cell 20 is prone to depression or protrusion at the covering position, making the outer surface of the battery cell 20 uneven, which is easy to affect the installation between multiple battery cells 20, and further affect the installation efficiency of the battery 10.
  • the specific arrangement of the second extension structure 2112 of the embodiment of the present application can be flexibly selected according to the actual application.
  • the second extension structure 2112 is a protruding structure located in the edge area of the side wall 2113 for forming the opening 2111 and protruding from the inner surface of the side wall 2113, and the inner surface of the side wall 2113 is the surface of the side wall 2113 facing the inside of the battery cell 20.
  • the second extension structure 2112 is realized by a protruding structure, which is convenient for processing on the one hand, and can make the second extension structure 2112 smaller in size and occupy less internal space of the battery cell 20 on the other hand, which is conducive to ensuring the energy density of the battery cell 20.
  • the second extension structure 2112 may also be located on the outer surface of the side wall 2113.
  • the second extension structure 2112 is a protruding structure located in the edge region of the side wall 2113 for forming the opening 2111 and protruding from the outer surface of the side wall 2113 in a direction away from the side wall 2113.
  • the outer surface of the side wall 2113 is the surface of the side wall 2113 away from the interior of the battery cell 20.
  • the second extension structure 2112 is arranged on the outer surface of the side wall 2113, so that the space inside the battery cell 20 is not occupied, so as to improve the utilization rate of the internal space of the battery cell 20, thereby improving the energy density of the battery cell; and the second extension structure 2112 is arranged on the outer surface of the side wall 2113, so as to facilitate processing, facilitate the connection between the cover plate 212 and the shell 211, and improve the processing efficiency of the battery cell 20.
  • the size of the second extension structure 2112 can be set according to the actual application.
  • the value of the height H2 of the second extension structure 2112 protruding from the side wall 2113 can be flexibly set according to the actual application; and/or the value of the thickness T2 of the second extension structure 2112 can be flexibly set according to the actual application, wherein the thickness direction of the second extension structure 2112 is perpendicular to the height direction of the second extension structure 2112.
  • the height H2 of the second extension structure 2112 is the dimension of the second extension structure 2112 in its height direction.
  • the height H2 may be the minimum dimension of the second extension structure 2112 in its height direction.
  • the height direction of the second extension structure 2112 is perpendicular to the side wall 2113, or in other words, the height direction of the second extension structure 2112 is the thickness direction of the side wall 2113.
  • different side walls 2113 have different thickness directions. If the thickness direction of the side wall 2113 is the width direction X of the battery cell 20, the height direction of the second extension structure 2112 is also the width direction X of the battery cell 20. If the thickness direction of the side wall 2113 is the height direction Z of the battery cell 20, the height direction of the second extension structure 2112 is also the height direction Z of the battery cell 20.
  • the height H2 of the second extension structure 2112 can affect the contact area between the second extension structure 2112 and the cover plate 212. As shown in Figures 10 and 11, if the height H2 of the second extension structure 2112 is set too large, the contact area between the second extension structure 2112 and the cover plate 212 will be large, but when the sealing connection is made, such as by welding, the actual welding area does not need to be too large while ensuring the connection strength and sealing reliability between the shell 211 and the cover plate 212. Therefore, setting the height H2 of the second extension structure 2112 too large will not effectively increase the connection strength and sealing reliability between the shell 211 and the cover plate 212, but will increase the occupied space of the second extension structure 2112 and reduce the internal space utilization rate of the battery cell 20.
  • the height H2 of the second extension structure 2112 is set too small, the contact area between the second extension structure 2112 and the cover plate is very small, and the sealing connection between the shell 211 and the cover plate 212 is mainly limited by the thickness of the shell 211 and the cover plate 212.
  • the connection strength and sealing reliability between the shell 211 and the cover plate 212 cannot be improved by setting the second extension structure 2112, and the processing difficulty will be increased.
  • the height H2 of the second extension structure 2112 of the embodiment of the present application should not be set too large or too small.
  • the height H2 of the second extension structure 2112 protruding from the side wall 2113 ranges from [0.05mm, 0.2mm].
  • the height H2 of the second extension structure 2112 can be set to 0.05mm, 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.1mm, 0.11mm, 0.12mm, 0.13mm, 0.14mm, 0.15mm, 0.16mm, 0.17mm, 0.18mm, 0.19mm or 0.2mm.
  • the thickness T2 of the second extension structure 2112 is the dimension of the second extension structure 2112 in its thickness direction.
  • the thickness T2 may be the minimum value of the second extension structure 2112 in its thickness direction.
  • the thickness direction of the second extension structure 2112 is perpendicular to the bottom wall of the shell 211, or in other words, the thickness direction of the second extension structure 2112 is the thickness direction of the bottom wall of the shell 211, and the bottom wall of the shell 211 is the wall opposite to the opening 2111.
  • the thickness direction of the second extension structure 2112 is also the thickness direction Y of the battery cell 20.
  • the value range of the thickness T2 of the second extension structure 2112 can be set according to the actual application. Specifically, if the thickness T2 of the second extension structure 2112 is set too small, the second extension structure 2112 is easily melted through when it is sealed and connected to the cover plate 212 by welding or the like, resulting in failure of the sealing connection, reducing the processing qualification rate of the battery cell 20, and also reducing the processing efficiency of the battery cell 20. On the contrary, if the thickness T2 of the second extension structure 2112 is set too large, although it can avoid being melted through, it will increase the internal space of the battery cell 20 occupied by the second extension structure 2112, reduce the space utilization rate of the battery cell 20, and also reduce the energy density of the battery cell 20.
  • the thickness T2 of the second extension structure 2112 of the embodiment of the present application should not be set too large or too small.
  • the value range of the thickness T2 of the second extension structure 2112 is [0.05mm, 0.2mm].
  • the thickness T2 of the second extension structure 2112 can be set to 0.05mm, 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.1mm, 0.11mm, 0.12mm, 0.13mm, 0.14mm, 0.15mm, 0.16mm, 0.17mm, 0.18mm, 0.19mm or 0.2mm.
  • the second extension structure 2112 of the embodiment of the present application can also be implemented in other ways.
  • the size of the second extension structure 2112 along the first direction Y is equal to the size of the side wall 2113 along the first direction Y
  • the first direction Y is perpendicular to the cover plate 212.
  • the first direction is perpendicular to the cover plate 212, that is, the first direction is the thickness direction of the cover plate 212.
  • the thickness direction of the cover plate 212 is the thickness direction Y of the battery cell 20
  • the first direction is also the thickness direction of the battery cell 20.
  • the thickness end face 2113a perpendicular to the cover plate 212 is flush with the surface of the second extension structure 2112 facing the cover plate 212, if the dimension of the second extension structure 2112 along the first direction is equal to the dimension of the side wall 2113 along the first direction, then the size of the second extension structure 2112 is consistent with that of the side wall 2113, that is, the second extension structure 2112 can be realized by increasing the thickness of the original side wall 2113.
  • the thickened side wall 2113 can be regarded as the second extension structure 2112 and the original thin side wall 2113 are stacked along the thickness direction of the side wall 2113.
  • the thickness of the original side wall 2113 of the housing 211 is increased by the thickness of the second extension structure 2112, and the contact area between the cover plate 212 and the housing 211 can also be increased, thereby improving the connection strength and sealing reliability between the housing 211 and the cover plate 212.
  • the thickness T3 of the thickened side wall 2113 can be set according to the actual application.
  • the increased thickness of the side wall 2113 can be set according to the thickness T4 of the cover plate 212.
  • the difference between the total length T3 of the thickness end surface 2113a and the surface of the second extension structure 2112 facing the cover plate 212 along the second direction X and the thickness T4 of the cover plate 212 is greater than or equal to 0.01 mm, and the second direction X is perpendicular to the side wall 2113.
  • the difference between the total thickness T3 of the thickened side wall 2113 minus the thickness T4 of the cover plate 212 is generally greater than or equal to 0.01.
  • the thickness T3 of the side wall 2113 of the second extension structure 2112 is still small, and the contact area between the shell 211 and the cover plate 212 is still small.
  • the sealing connection between the shell 211 and the cover plate 212 is mainly limited by the thickness of the shell 211 and the cover plate 212.
  • the connection strength and sealing reliability between the shell 211 and the cover plate 212 cannot be improved by setting the second extension structure 2112, and the processing difficulty will be increased. Therefore, the difference between the thickness T3 and the thickness T4 should not be too small.
  • extension portion 210 of the embodiment of the present application is described above in conjunction with the drawings, and other parts of the battery cell 20 of the embodiment of the present application will be described below in conjunction with the drawings.
  • the housing 21 of the embodiment of the present application may also be provided with other components.
  • the housing 21 may also be provided with an injection hole 2151 and a sealing component 215 for sealing the injection hole 2151.
  • the first side wall 2112 or the second side wall 2113 of the battery cell 20 may be provided with an injection hole 2151 and a sealing component 215 for sealing the injection hole 2151, the injection hole 2151 is used to inject electrolyte into the battery cell 20, and the sealing component 215 seals the injection hole 2151, for example, by laser welding to improve the sealing reliability.
  • FIG14 shows a partial cross-sectional schematic diagram of a battery cell 20 according to an embodiment of the present application.
  • FIG14 may be a partial cross-sectional schematic diagram of a housing 211 of any one of the battery cells 20 according to the embodiment of the present application, wherein the cross section is perpendicular to the thickness direction Y of the battery cell 20; the battery cell 20 shown in FIG14 may be any one of the battery cells 20 shown in FIG3 to FIG13.
  • FIG15 shows an enlarged partial cross-sectional schematic diagram of a battery cell 20 according to an embodiment of the present application, for example, FIG15 is an enlarged view of the area E shown in FIG14;
  • FIG16 shows an exploded partial cross-sectional schematic diagram of a battery cell 20 according to an embodiment of the present application, for example, FIG16 is an exploded structural schematic diagram of a partial battery cell 20 shown in FIG15.
  • the first wall 21a of the battery cell 20 is provided with an electrode terminal 214, and the first wall 21a is provided with a first through hole 2101.
  • the battery cell 20 also includes: an insulating structure 22, the insulating structure 22 is provided on the side of the first wall 21a facing the interior of the battery cell 20, the insulating structure 22 is provided with a second through hole 221 corresponding to the first through hole 2101, and the electrode terminal 214 passes through the first through hole 2101 and the second through hole 221 so that the first wall 21a and the insulating structure 22 are riveted.
  • the first wall 21a in the embodiment of the present application is provided with an electrode terminal 214
  • the electrode terminal 214 can be any electrode terminal 214 included in the battery cell 20.
  • the electrode terminal 214 is used to electrically connect to the electrode assembly inside the battery cell 20 to output the electrical energy of the battery cell 20.
  • the battery cell 20 may include at least two electrode terminals 214, and the at least two electrode terminals 214 may include at least one positive electrode terminal 214a and at least one negative electrode terminal 214b, the positive electrode terminal 214a is used to electrically connect to the positive electrode tab of the electrode assembly, and the negative electrode terminal 214b is used to electrically connect to the negative electrode tab of the electrode assembly.
  • the positive electrode terminal 214a can be directly connected to the positive electrode tab or indirectly connected, and the negative electrode terminal 214b can be directly connected to the negative electrode tab or indirectly connected.
  • the positive electrode terminal 214 a is electrically connected to the positive electrode tab 222 a via a connecting member 23
  • the negative electrode terminal 214 b is electrically connected to the negative electrode tab 222 b via a connecting member 23 .
  • different electrode terminals 214 may be located on the same wall or different walls of the battery cell 20.
  • the embodiment of the present application takes the battery cell 20 as an example in which the battery cell 20 includes two electrode terminals 214, and the two electrode terminals 214 are located on the same wall, for example, both may be located on the first wall 21a.
  • the first wall 21a of the embodiment of the present application can be any wall of the shell 21 of the battery cell 20.
  • the shell 21 may include six faces, that is, six walls, wherein the first wall 21a may be the wall with the largest area or the wall with the smallest area or other walls, and the embodiment of the present application is not limited thereto.
  • the first wall 21a is taken as the side wall 2113 of the shell 211 as an example for easy processing.
  • the insulating structure 22 of the embodiment of the present application is arranged on the side of the first wall 21a facing the inside of the battery cell 20, that is, the insulating structure 22 and the first wall 21a are stacked along the thickness direction of the first wall 21a.
  • the specific shape of the insulating structure 22 can be set according to the actual application.
  • the insulating structure 22 can be plate-shaped to fit with the first wall 21a so that the first wall 21a is electrically isolated from the internal components of the battery cell 20.
  • the insulating structure 22 can be used to electrically isolate the first wall 21a from the electrode assembly inside the battery cell 20 to avoid short circuit.
  • the arrangement of the electrode terminal 214 in the embodiment of the present application can be flexibly selected according to practical applications.
  • the first wall 21a is provided with a first through hole 2101
  • the insulating structure 22 is provided with a second through hole 221 corresponding to the first through hole 2101
  • the electrode terminal 214 passes through the first through hole 2101 and the second through hole 221, so that the first wall 21a and the insulating structure 22 are riveted, which facilitates processing and realizes the fixation between the electrode terminal 214, the first wall 21a and the insulating structure 22.
  • the battery cell 20 also includes: a sealing structure 24, which is provided on the side of the first wall 21a away from the interior of the battery cell 20, and the sealing structure 24 is used to electrically isolate the electrode terminal 214 from the first wall 21a.
  • the sealing structure 24 is provided with a fifth through hole 241, at least part of the fifth through hole 241 is accommodated in the first through hole 2101, and the electrode terminal 214 passes through the fifth through hole 241 to seal the electrode terminal 214 and the first through hole 2101.
  • the sealing structure 24 is usually made of insulating material, and the sealing structure 24 is arranged between the first wall 21a and the electrode terminal 214, so as to avoid a short circuit between the electrode terminal 214 and the first wall 21a.
  • the sealing structure 24 is provided with a fifth through hole 241, and at least a portion of the hole wall forming the fifth through hole 241 is located in the first through hole 2101, or further, at least a portion of the hole wall of the fifth through hole 241 can also be located in the second through hole 221, so that when the electrode terminal 214 passes through the fifth through hole 241, a portion of the sealing structure 24 is arranged between the electrode terminal 214 and the first through hole 2101, or further, a portion of the sealing structure 24 can also be arranged between the electrode terminal 214 and the second through hole 221.
  • the first wall 21a is provided with a first through hole 2101 and the insulating structure 22 is provided with a second through hole 221, there may be gaps between the electrode terminal 214 and the first through hole 2101 and between the electrode terminal 214 and the second through hole 221, so the first through hole 2101 and the second through hole 221 can be sealed by the sealing structure 24.
  • the sealing structure 24 can be squeezed and deformed and then sealed to avoid leakage of internal electrolyte.
  • the electrode terminal 214 of the embodiment of the present application sequentially penetrates the sealing structure 24, the first wall 21a and the insulating structure 22.
  • the riveting effect of the electrode terminal 214 can limit the relative translation between the first wall 21a and the insulating structure 22, but cannot prevent the relative rotation between the first wall 21a and the insulating structure 22. Therefore, a limiting structure can be provided to further limit the misalignment between the first wall 21a and the insulating structure 22.
  • the first wall 21a is provided with a first limiting structure 201
  • the insulating structure 22 is provided with a second limiting structure 202 corresponding to the first limiting structure 201.
  • the second limiting structure 202 and the first limiting structure 201 cooperate with each other to prevent the relative movement between the insulating structure 22 and the first wall 21a.
  • the first wall 21a and the insulating structure 22 can be positioned to facilitate installation therebetween; on the other hand, misalignment between the first wall 21a and the insulating structure 22 can be avoided.
  • relative translation between the first wall 21a and the insulating structure 22 can be avoided, thereby ensuring the insulation performance of the insulating structure 22 between the first wall 21a and other components inside the battery cell 20, avoiding short circuits, and improving the safety performance of the battery cell 20.
  • the matching mode of the first limiting structure 201 and the second limiting structure 202 in the embodiment of the present application can be flexibly set according to the actual application.
  • the first limiting structure 201 includes a first protruding structure of the first wall 21a protruding toward the insulating structure 22, and the second limiting structure 202 includes a first groove structure of the insulating structure 22, the opening of the first groove structure is toward the first wall 21a, and at least part of the first protruding structure is accommodated in the first groove structure.
  • the surface of the first wall 21a facing the insulating structure 22 is provided with a first protruding structure protruding toward the insulating structure 22, and correspondingly, the surface of the insulating structure 22 facing the first wall 21a is provided with a first groove structure, and the opening of the first groove structure is toward the first wall 21a.
  • the first limiting structure 201 includes a first protrusion structure
  • the second limiting structure 202 includes a first groove structure.
  • the first limiting structure 201 and the second limiting structure 202 cooperate with each other and can include at least a portion of the first protrusion structure being accommodated in the first groove structure, so that the first groove structure can limit the movement of the first protrusion structure, and further limit the movement of the first wall 21a relative to the insulating structure 22, so as to achieve the positioning and fixing function and avoid misalignment between the first wall 21a and the insulating structure 22; and the above-mentioned setting method is simple, the structure is stable, and it is easy to process.
  • the first limiting structure 201 includes a second groove structure of the first wall 21a, the opening of the second groove structure faces the insulating structure 22, and the second limiting structure 202 includes a second protrusion structure of the insulating structure 22 protruding toward the first wall 21a, and at least part of the second protrusion structure is accommodated in the second groove structure.
  • the surface of the first wall 21a facing the insulating structure 22 is provided with a second groove structure
  • the opening of the second groove structure faces the insulating structure 22;
  • the surface of the insulating structure 22 facing the first wall 21a is provided with a second protrusion structure protruding toward the first wall 21a.
  • the first limiting structure 201 may include the second groove structure
  • the second limiting structure 202 may include the second protrusion structure.
  • the first limiting structure 201 and the second limiting structure 202 cooperate with each other to include at least a portion of the second protrusion structure being accommodated in the second groove structure, so that the second groove structure can limit the movement of the second protrusion structure, and further limit the movement of the insulating structure 22 relative to the first wall 21a, so as to achieve the positioning and fixing function and avoid misalignment between the first wall 21a and the insulating structure 22; and the above-mentioned setting method is simple, the structure is stable, and it is easy to process.
  • the first limiting structure 201 of the embodiment of the present application may include at least one first protrusion structure and/or at least one second groove structure, and correspondingly, the second limiting structure 202 may include at least one first groove structure and/or at least one second protrusion structure, and the embodiment of the present application is not limited thereto.
  • the first limiting structure 201 may include a first protrusion structure or a second groove structure disposed on the first wall 21a
  • the second limiting structure 202 may include a first groove structure or a second protrusion structure disposed on the insulating structure 22 for ease of processing.
  • the arrangement of the first protrusion structure, the first groove structure, the second protrusion structure and the second groove structure in the embodiment of the present application can be flexibly selected according to practical applications to improve the processing efficiency of the battery cell 20.
  • first protruding structure and the second protruding structure can be implemented by means of grooves.
  • the first protruding structure is a groove of the first wall 21a that is recessed toward the insulating structure 22 and protrudes from the surface of the first wall 21a that faces the inside of the battery cell 20; and/or, the second protruding structure is a groove of the insulating structure 22 that is recessed toward the first wall 21a and protrudes from the surface of the insulating structure 22 that is away from the inside of the battery cell 20.
  • the first wall 21a is recessed toward the insulating structure 22 to form a groove, and the bottom wall of the groove protrudes from the surface of the first wall 21a that faces the inside of the battery cell 20, and can then be used as the first protruding structure.
  • the insulating structure 22 is recessed toward the first wall 21a to form a groove, and the bottom wall of the groove protrudes from the surface of the insulating structure 22 that is away from the inside of the battery cell 20, and can then be used as the second protruding structure.
  • Arranging the first protrusion structure and/or the second protrusion structure by means of grooves can effectively reduce the weight of the first wall 21a and/or the insulating structure 22 compared to directly arranging a solid protrusion structure on the surface of the first wall 21a or the surface of the insulating structure 22, and the processing method is simple.
  • the first protrusion structure and the first groove structure can be processed simultaneously by stamping, or the second protrusion structure and the second groove structure can be processed simultaneously by stamping, thereby improving the processing efficiency of the battery cell 20.
  • first groove structure and the second groove structure may also be arranged with reference to the first protruding structure and the second protruding structure, respectively.
  • the first groove structure protrudes from the surface of the insulating structure 22 facing the inside of the battery cell 20; and/or, the second groove structure protrudes from the surface of the first wall 21a away from the inside of the battery cell 20.
  • the first groove structure of the insulating structure 22 is arranged to protrude from the surface of the insulating structure 22 facing the inside of the battery cell 20, and the depth of the first groove structure is less limited by the thickness of the insulating structure 22.
  • the depth of the first groove structure may be greater than the thickness of the insulating structure 22, so that the first protruding structure can be more accommodated in the first groove structure, so as to increase the stability between the first protruding structure and the first groove structure, and also increase the stability between the first limiting structure 201 and the second limiting structure 202.
  • the second groove structure of the first wall 21a is set to protrude from the surface of the first wall 21a away from the interior of the battery cell 20. The depth of the second groove structure is less limited by the thickness of the first wall 21a.
  • the depth of the second groove structure may be greater than the thickness of the first wall 21a, so that the second protrusion structure can be more accommodated in the second groove structure to increase the stability between the second protrusion structure and the second groove structure, thereby increasing the stability between the first limiting structure 201 and the second limiting structure 202.
  • the thickness of the bottom wall of the groove may be less than or equal to or slightly greater than the thickness of the first wall 21a where the groove is located or the thickness of the insulating structure 22 where the groove is located.
  • the first protruding structure may also be a thicker bump on the first wall 21a, for example, the thickness of the first protruding structure is greater than the thickness of other regions of the first wall 21a where the groove is located, so that the first protruding structure protrudes from the surface of the first wall 21a facing the insulating structure 22.
  • the second protruding structure may also be a thicker bump on the insulating structure 22, for example, the thickness of the second protruding structure is greater than the thickness of other regions of the insulating structure 22 where the groove is located, so that the second protruding structure protrudes from the surface of the insulating structure 22 facing the first wall 21a.
  • the first protruding structure can be integrated with the first wall 21a, for example, the first protruding structure can be formed on the first wall 21a by stamping, milling, etc.; or, the first protruding structure can also be formed separately from the first wall 21a, for example, the first wall 21a is formed with a through hole, and the first protruding structure is installed in the through hole, and the installation method can include welding, riveting, clamping, etc., and the present application does not impose special restrictions on this.
  • the second protruding structure can also be formed integrally with the insulating structure 22 or separately, and the present application does not impose special restrictions on this.
  • the battery cell 20 further includes: a connecting member 23, which is used to electrically connect to the electrode terminal 214.
  • the connecting member 23 is disposed on a side of the insulating structure 22 facing the inside of the battery cell 20, and the connecting member 23 is provided with a third through hole 231 corresponding to the second through hole 221.
  • the electrode terminal 214 passes through the third through hole 231, so that the connecting member 23, the insulating structure 22 and the first wall 21a are riveted.
  • the connecting member 23 of the embodiment of the present application can be used to electrically connect to the electrode terminal 214, and can also be used to electrically connect to the tab of the electrode assembly, so that the electrode terminal 214 is electrically connected to the tab.
  • the connecting member 23 is provided with a third through hole 231, and the first through hole 2101 of the first wall 21a, the second through hole 221 of the insulating structure 22 and the third through hole 231 of the connecting member 23 are stacked in sequence, so that the electrode terminal 214 can pass through the first through hole 2101, the second through hole 221 and the third through hole 231 in sequence, thereby realizing riveting fixation between the first wall 21a, the insulating structure 22 and the connecting member 23.
  • the processing process is simple, which is beneficial to improving the processing efficiency of the battery cell 20.
  • the electrode terminal 214 and the connecting member 23 may be connected by welding to further increase the connection stability between the electrode terminal 214 and the connecting member 23 and ensure the performance of the battery cell 20 .
  • the connecting member 23 further includes a third limiting structure 232, and the third limiting structure 232 cooperates with the second limiting structure 202 to prevent the relative movement between the connecting member 23 and the insulating structure 22.
  • the third limiting structure 232 of the connecting member 23 can cooperate with the second limiting structure 202, that is, the first limiting structure 201, the second limiting structure 202 and the third limiting structure 232 can cooperate with each other to prevent the relative movement between the first wall 21a, the insulating structure 22 and the connecting member 23, and the connecting member 23 can be fixed to facilitate the assembly and installation of the battery cell 20, and the insulating structure 22 can also ensure that the first wall 21a and the connecting member 23 are electrically isolated from each other to avoid a short circuit between the connecting member 23 and the first wall 21a.
  • the third limiting structure 232 can be flexibly arranged according to the actual application, for example, the third limiting structure 232 can be arranged accordingly according to the arrangement of the first limiting structure 201 and the second limiting structure 202.
  • the first limiting structure 201 includes a first protrusion structure
  • the second limiting structure 202 includes a first groove structure
  • the first groove can protrude from the surface of the insulating structure 22 toward the connecting member 23, and
  • the third limiting structure 232 can include a groove or a through hole arranged on the connecting member 23, the opening of which is toward the insulating structure 22, for accommodating at least part of the first groove structure, so as to achieve mutual cooperation between the third limiting structure 232 and the second limiting structure 202.
  • the third limiting structure 232 corresponding to the first limiting structure 201 and the second limiting structure 202 includes a fourth through hole of the connecting member 23, and the fourth through hole is used to accommodate at least part of the second limiting structure 202.
  • the first limiting structure 201 may include a first protruding structure of the first wall 21a
  • the second limiting structure 202 may include a first groove structure of the insulating structure 22, and the first groove structure protrudes from the surface of the insulating structure 22 facing the inside of the battery cell 20.
  • the third limiting structure 232 may include a fourth through hole to accommodate at least part of the first groove structure.
  • the fourth through hole can save the space occupied by the bottom wall of the groove, improve the space utilization rate inside the battery cell 20, and can also reduce the weight of the connecting member 23, and also can reduce the weight of the battery cell 20, thereby improving the performance of the battery cell 20.
  • a first groove structure of the insulating structure 22 is disposed between the inner wall of the fourth through hole and the first protrusion structure, which can also prevent the connection member 23 from short-circuiting with the first wall 21 a.
  • the third limiting structure 232 may include a third protrusion structure protruding toward the insulating structure 22, and the third protrusion structure is at least partially accommodated in the second protrusion structure to achieve mutual cooperation between the third limiting structure 232 and the second limiting structure 202.
  • the setting position and size of the first limiting structure 201 and the second limiting structure 202 in the embodiment of the present application can be flexibly set according to the actual application.
  • the size and position of the first limiting structure 201 can be set according to the size of the first wall 21a
  • the size and position of the second limiting structure 202 are related to the size and position of the first limiting structure 202, so that the first limiting structure 201 and the second limiting structure 202 can cooperate with each other.
  • the first wall 21a and the first limiting structure 201 are used as an example for description.
  • FIG17 is a schematic diagram of the outer surface of the first wall 21a of the battery cell 20 of the embodiment of the present application, and the outer surface of the first wall 21a is the surface of the first wall 21a away from the inside of the battery cell 20.
  • the ratio L1/L2 of the distance L1 between the electrode terminal 214 and the first limiting structure 201 to the length L2 of the first wall 21a is in the range of [10%, 48%].
  • the distance L1 between the first limiting structure 201 and the electrode terminal 214 in the length direction X of the first wall 21a is too large, and the first limiting structure 201 is too far away from the electrode terminal 214, which will cause the first limiting structure 201 to be unable to effectively limit the relative movement between the first wall 21a and the insulating structure 22 during the installation process of the electrode terminal 214, thereby affecting the processing efficiency of the battery cell 20.
  • the first wall 21a is provided with a first through hole 2101 for accommodating at least part of the electrode terminal 214.
  • the distance L1 between the first limiting structure 201 and the electrode terminal 214 is too small, the distance between the first limiting structure 201 and the first through hole 2101 will also be too small, and the two are likely to affect each other, thereby affecting the structural strength and stability of the first wall 21a, thereby reducing the installation efficiency of the battery cell 20 and increasing the difficulty of processing.
  • the value of L1/L2 should not be set too large or too small.
  • the value range of L1/L2 can be [10%, 48%]; or it can be [20%, 40%]; or the value of L1/L2 can be set to 10%, 15%, 20%, 25%, 30%, 35%, 40%, or 45%.
  • the distance L1 between the electrode terminal 214 and the first limiting structure 201 in the embodiment of the present application can also be expressed as: the distance between the center of the electrode terminal 214 and the center of the first limiting structure 201 along the length direction X of the first wall 21a.
  • the electrode terminal 214 in the distance L1 between the electrode terminal 214 and the first limiting structure 201 can represent any electrode terminal 214 on the first wall 21a.
  • L1 can be the distance between the first limiting structure 201 and the electrode terminal 214 closest to the first limiting structure 201. As shown in FIG.
  • L1 is the distance between the first limiting structure 201 and the positive electrode terminal 214a, but the embodiment of the present application is not limited thereto.
  • the ratio W1/W2 of the size W1 of the first limiting structure 201 to the width W2 of the first wall 21a has a value range of [15%, 95%]. If the value of W1/W2 is too large, the size W1 of the first limiting structure 201 in the width direction Y of the first wall 21a is too large, which will increase the difficulty of processing the first limiting structure 201, and the first limiting structure 201 is likely to affect other walls intersecting with the first wall 21a. On the contrary, if the value of W1/W2 is too small, the size W1 of the first limiting structure 201 in the width direction Y of the first wall 21a is too small.
  • the first limiting structure 201 with a smaller size will increase the difficulty of processing the first limiting structure 201, and it is also difficult to limit the relative movement between the first wall 21a and the insulating structure 22 by the first limiting structure 201 with too small size.
  • the value of W1/W2 should not be set too large or too small.
  • the value range of W1/W2 can be [15%, 95%]; or it can be [20%, 40%]; or the value of W1/W2 can be set to 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%.
  • the length direction X of the first wall 21a of the embodiment of the present application is perpendicular to the width direction Y, and the length L2 of the first wall 21a represents the dimension of the first wall 21a in the length direction X, the width W2 of the first wall 21a represents the dimension of the first wall 21a in the width direction Y, and the length L2 of the first wall 21a is greater than the width W2 of the first wall 21a.
  • FIG18 is a schematic diagram showing a surface of a cover plate 212 of an embodiment of the present application that is away from the interior of a battery cell 20.
  • the cover plate 212 shown in FIG19 may be the cover plate 212 of any one of the battery cells 20 shown in FIG3 to FIG16.
  • FIG19 is a partial cross-sectional schematic diagram of a cover plate 212 of an embodiment of the present application.
  • the cross-sectional schematic diagram may be a partial cross-sectional schematic diagram along the F-F' direction shown in FIG18.
  • the cover plate 212 of the embodiment of the present application is used to cover the opening 2111 of the housing 211 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the cover plate 212 can be adapted to the shape of the housing 211.
  • the housing 211 is a rectangular parallelepiped structure
  • the cover plate 212 is a rectangular plate-shaped structure adapted to the housing 211.
  • the inner space formed by the shell 211 and the cover plate 212 can be used to accommodate the electrode terminal.
  • the electrode assembly is a component where an electrochemical reaction occurs in the battery cell 20.
  • the electrode assembly may include a tab and an electrode body, wherein the tab of the electrode assembly may include a positive tab and a negative tab, the positive tab may be formed by stacking a portion of the positive electrode sheet that is not coated with the positive electrode active material layer, the negative tab may be formed by stacking a portion of the negative electrode sheet that is not coated with the negative electrode active material layer, and the electrode body may be formed by stacking or winding a portion of the positive electrode sheet that is coated with the positive electrode active material layer and a portion of the negative electrode sheet that is coated with the negative electrode active material layer.
  • the electrode assembly in the housing 211 can be set to one or more.
  • the electrode assembly can be a cylinder, a cuboid, etc. If the electrode assembly is a cylindrical structure, the housing 211 can also be a cylindrical structure. If the electrode assembly is a cuboid structure, the housing 211 can also be a cuboid structure.
  • the cover plate 212 of the embodiment of the present application can be any wall of the battery cell 20.
  • the cover plate 212 is the wall with the largest area of the battery cell 20. This facilitates the installation of components inside the battery cell 20, for example, it can facilitate the installation of the electrode assembly and speed up the processing speed of the battery cell 20.
  • the material of the housing 21 of the embodiment of the present application can be flexibly set according to the actual application, and the material of the cover plate 212 can be the same as or different from the material of the shell 211.
  • the material of the shell 211 includes stainless steel and/or alloy; and/or, the material of the cover plate 212 includes stainless steel and/or alloy, so that the shell 211 and the cover plate 212 have strong hardness to ensure the structural strength of the battery cell 20.
  • the material of the shell 211 can be multiple, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the material of the cover plate 212 can also be multiple, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the thickness of the shell 21 of the embodiment of the present application can be flexibly set according to the actual application, and the thickness of different walls of the shell 21 can be the same or different.
  • the thickness of the cover plate 212 can be the same as or different from the thickness of the shell 211; the thickness of different walls of the shell 211 can be the same or different.
  • the value range of the thickness T4 of the cover plate 212 is [50 ⁇ m, 200 ⁇ m] to ensure the structural strength of the battery cell 20.
  • the thickness T of the cover plate 212 can be set to 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the thickness of any wall of the shell 211 is in the range of [50 ⁇ m, 200 ⁇ m] to ensure the structural strength of the battery cell 20.
  • the thickness T of any wall of the shell 211 can be set to 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the total thickness T3 of the thickened side wall 2113 can be set in the range of [60 ⁇ m, 250 ⁇ m] to ensure the structural strength of the battery cell 20, as well as the connection strength and sealing reliability between the shell 211 and the cover plate 212.
  • the thickness T3 of the thickened sidewall 2113 can be set to 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m, 200 ⁇ m, 210 ⁇ m, 220 ⁇ m, 230 ⁇ m, 240 ⁇ m or 250 ⁇ m.
  • the housing 21 of the battery cell 20 of the embodiment of the present application may also be provided with a pressure relief mechanism 213.
  • the cover plate 212 is provided with a pressure relief mechanism 213; or, unlike FIGS. 18 and 19, the pressure relief mechanism 213 may also be provided on a wall opposite to the cover plate 212; or, the pressure relief mechanism may also be provided on other walls.
  • the pressure relief mechanism 213 of the embodiment of the present application is used to actuate to release the internal pressure or temperature of the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold.
  • the predetermined threshold value can be adjusted according to different design requirements.
  • the predetermined threshold value may depend on one or more materials of the positive electrode plate, negative electrode plate, electrolyte and isolation membrane in the battery cell 20.
  • the "actuation" mentioned in this application refers to the action of the pressure relief mechanism 213, so that the internal pressure and temperature of the battery cell 20 can be released.
  • the action produced by the pressure relief mechanism 213 may include but is not limited to: at least a part of the pressure relief mechanism 213 is broken, torn or melted, etc. After the pressure relief mechanism 213 is actuated, the high-temperature and high-pressure substances inside the battery cell 20 will be discharged from the pressure relief mechanism 213 as emissions. In this way, the battery cell 20 can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from the battery cells 20 mentioned in the present application include, but are not limited to: electrolyte, dissolved or split positive and negative electrode plates, fragments of the isolation membrane, high-temperature and high-pressure gas generated by the reaction, flames, and the like.
  • the pressure relief mechanism 213 on the battery cell 20 has an important impact on the safety of the battery. For example, when the battery cell 20 is short-circuited or overcharged, thermal runaway may occur inside the battery cell 20, causing a sudden increase in pressure or temperature. In this case, the pressure relief mechanism 213 can be activated to release the internal pressure and temperature to the outside to prevent the battery cell 20 from exploding or catching fire.
  • the pressure relief mechanism 213 of the embodiment of the present application can be arranged on any wall of the housing 21 of the battery cell 20.
  • the embodiment of the present application mainly takes the pressure relief mechanism 213 being arranged on the cover plate 212 as an example, but the relevant description is also applicable to the case where the pressure relief mechanism 213 is located on other walls.
  • the pressure relief mechanism 213 can be a part of the cover plate 212, or it can be a separate structure from the cover plate 212 and fixed to the cover plate 212 by, for example, welding.
  • the pressure relief mechanism 213 may also be a separate structure from the cover plate 212.
  • the pressure relief mechanism 213 may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically adopt pressure-sensitive or temperature-sensitive elements or structures. That is, when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold, the pressure relief mechanism 213 executes an action or a weak structure provided in the pressure relief mechanism 213 is destroyed, thereby forming an opening or channel for the internal pressure or temperature to be released.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is a part of the cover plate 212, for example, the pressure relief mechanism 213 can be formed by providing a notch on the cover plate 212, that is, the pressure relief mechanism 213 is a notch of the cover plate 212, then the thickness of the area where the notch is located is less than the thickness of other areas of the cover plate 212 except for the notch.
  • the notch is the weakest position of the pressure relief mechanism 213.
  • the pressure relief mechanism 213 may rupture at the notch, causing the inside and outside of the shell 211 to communicate with each other, and the gas pressure and temperature are released outward through the rupture of the pressure relief mechanism 213, thereby preventing the battery cell 20 from exploding.
  • the pressure relief mechanism 213 is an L-shaped notch provided on the surface of the cover plate 212 away from the inside of the battery cell 20, that is, the pressure relief mechanism 213 has two parts that are connected and perpendicular to each other, so that when the temperature or pressure inside the battery cell 20 reaches a preset threshold, the pressure relief mechanism 213 can be destroyed in any direction, so that the pressure relief mechanism 213 is destroyed in time, and the pressure and temperature inside the battery cell 20 are released in time to avoid the explosion of the battery cell 20.
  • the pressure relief mechanism 213 is provided on the outer surface of the cover plate 212 to prevent the electrolyte inside the battery cell 20 from accumulating in the notch and to prevent the electrolyte from corroding the pressure relief mechanism 213, thereby improving the safety of the pressure relief mechanism 213.
  • the cross-section of the notch can be an isosceles trapezoid, which is easy to process on the one hand, and on the other hand, compared with a rectangular cross-section, it can avoid stress concentration and improve the stability of the pressure relief mechanism 213 during normal use of the battery cell 20.
  • the cover plate 212 and/or the housing 211 have an extension portion 210, through which the housing 211 and the cover plate 212 can be connected.
  • an extension portion 210 extending toward the housing 211 can be provided at the edge region of the cover plate 212; for the housing 211, an extension portion 210 extending toward the center of the opening 2111 of the housing 211 can be provided at the edge region of the side wall 2113 of the housing 211.
  • the area of the connectable region between the shell body 211 and the cover plate 212 can be increased.
  • the area of the weldable region between the shell body 211 and the cover plate 212 can be increased.
  • the restriction of the thickness of the shell body 211 and the cover plate 212 on the sealed connection between the shell body 211 and the cover plate 212 can also be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池单体、电池和用电设备。电池单体包括:壳体,具有开口的中空结构;盖板,用于盖合该开口,其中,该盖板的边缘区域具有向该壳体延伸的延伸部,和/或,该壳体的用于形成该开口的侧壁的边缘区域具有向该开口的中心延伸的延伸部;该延伸部用于连接该壳体与该盖板。本申请实施例提供的电池单体、电池和用电设备,能够提高电池单体的加工效率。

Description

电池单体、电池和用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。在电池技术的飞速发展中,如何提高电池的加工生产效率,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池单体、电池和用电设备,能够提高电池单体的加工效率。
第一方面,提供了一种电池单体,包括:壳体,具有开口的中空结构;盖板,用于盖合该开口,其中,该盖板的边缘区域具有向该壳体延伸的延伸部,和/或,该壳体的用于形成该开口的侧壁的边缘区域具有向该开口的中心延伸的延伸部;该延伸部用于连接该壳体与该盖板。
在本申请实施例的电池单体中,盖板和/或壳体具有延伸部,通过该延伸部能够实现壳体和盖板之间的连接。例如,对于盖板,可以在盖板的边缘区域设置有向壳体延伸的延伸部;对于壳体,可以在该壳体的侧壁的边缘区域设置向壳体的开口的中心延伸的延伸部。通过设置的延伸部,可以增加壳体与盖板之间的接触面积,这样,在对壳体与盖板进行密封连接时,可以增加壳体与盖板之间的可连接区域的面积,例如,可以增加壳体与盖板之间的可焊接区域的面积;还可以减少壳体与盖板的厚度对壳体与盖板之间的密封连接的限制,可以通过设置的延伸部,增加壳体与盖板之间的密封连接强度,提高密封可靠性,提高电池单体的加工效率和结构强度。
在一些实施例中,该延伸部包括第一延伸结构,该盖板包括主体部和该第一延伸结构,该第一延伸结构自该主体部的边缘区域向该壳体延伸,该主体部用于盖合该开口,该第一延伸结构用于与该壳体连接。
盖板的第一延伸结构向壳体延伸,则盖板与壳体之间的接触区域扩大到包括第一延伸结构与壳体之间的接触区域;对应的,壳体与盖板之间的密封连接可以通过对壳体与第一延伸结构进行密封连接来实现,例如通过焊接的方式进行密封连接,则可以减少甚至避免盖板的厚度对壳体与盖板之间的密封连接的限制,通过合理设置第一延伸结构的尺寸,则可以增加壳体与盖板之间的密封连接强度,提高密封可靠性,提 高电池单体的加工效率和结构强度。
在一些实施例中,该第一延伸结构用于与该侧壁的内表面连接,该侧壁的内表面为该侧壁的朝向该电池单体的内部的表面。这样,该第一延伸结构不需要占用电池单体的外部空间,即该电池单体的外表面没有凸出部分,不会影响多个电池单体之间的安装,提高电池的安装效率。
在一些实施例中,该盖板还包括与该主体部相连的搭接部,该搭接部自该主体部边缘向远离该主体部的中心的方向延伸,该搭接部连接该侧壁的厚度端面,该厚度端面为该侧壁的朝向该盖板的端面。
通过设置搭接部,盖板与壳体的开口扣合时,可以将该盖板保持在壳体的侧壁的厚度端面a上,保证盖板与壳体之间的相对稳定性,进而便于壳体与盖板的第一延伸结构之间的连接,例如便于二者的焊接,提高电池单体的安装效率。
在一些实施例中,该第一延伸结构用于与该侧壁的外表面连接,该侧壁的外表面为该侧壁的远离该电池单体的内部的表面。这样,该第一延伸结构不需要占用电池单体的内部空间,可以避免第一延伸结构对电池单体的电极组件的影响,提高电池单体的内部空间利用率,有利于提高电池单体的能量密度。
在一些实施例中,该第一延伸结构的厚度的取值范围为[0.05mm,0.2mm];和/或,该第一延伸结构自该主体部凸出的高度的取值范围为[0.05mm,0.2mm]。
若该第一延伸结构的高度设置过大,则该第一延伸结构与侧壁之间的接触面积很大,但在密封连接时,例如通过焊接密封时,在保证壳体与盖板的连接强度和密封可靠性的情况下,实际焊接区域并不需要太大。所以第一延伸结构的高度设置过大并不会有效增加壳体与盖板的连接强度和密封可靠性,反而会增加第一延伸结构的占用空间,降低电池单体的内部空间利用率。相反地,若该第一延伸结构的高度设置过小,则该第一延伸结构与侧壁之间的接触面积很小,无法保证侧壁与第一延伸结构之间的连接强度和密封可靠性,增加了加工难度。
若该第一延伸结构的厚度设置过小,则该第一延伸结构与侧壁通过焊接等方式密封连接时,容易被熔穿,导致密封失效,降低电池单体的加工合格率,也降低了电池单体的加工效率。相反地,若该第一延伸结构的厚度设置过大,虽然可以避免被熔穿,但是会增加该第一延伸结构占用的电池单体的内部空间,降低电池单体的空间利用率,也就降低了电池单体的能量密度。
在一些实施例中,该延伸部包括设置于该侧壁的第二延伸结构,该第二延伸结构的至少部分位于该侧壁的用于形成该开口的边缘区域,且该第二延伸结构自该侧壁向该开口的中心延伸,该第二延伸结构用于与该盖板连接。
壳体与盖板之间的接触区域扩大到包括该第二延伸结构与盖板之间的接触区域;这样,壳体与盖板之间的密封连接可以通过对第二延伸结构与盖板之间进行密封连接来实现,例如通过焊接的方式进行密封连接,则可以减少甚至避免壳体的侧壁的厚度对壳体与盖板之间的密封连接的限制,通过合理设置第二延伸结构的尺寸,则可以增加壳体与盖板之间的密封连接强度,提高密封可靠性,提高电池单体的加工效率和结构强度。
在一些实施例中,该侧壁包括厚度端面,该厚度端面为该侧壁的朝向该盖板的端面,该厚度端面与该第二延伸结构的朝向该盖板的表面齐平,该厚度端面与该第二延伸结构用于与该盖板连接。
这样,该壳体的朝向盖板的端面是一个平面,侧壁与第二延伸结构之间不存在高度差,一方面便于侧壁的加工,使得侧壁和第二延伸结构可以快速一体成型;另一方面,若侧壁的厚度端面与第二延伸结构之间具有高度差,盖板盖合开口时,电池单体的外表面在盖合处容易出现凹陷或者凸起,使得该电池单体的外表面不平整,容易影响多个电池单体之间的安装,进而影响电池的安装效率。
在一些实施例中,该第二延伸结构为位于该侧壁的用于形成该开口的边缘区域且自该侧壁的内表面凸出的凸起结构,该侧壁的内表面为该侧壁的朝向该电池单体的内部的表面。通过凸起结构实现该第二延伸结构,一方面便于加工,另一方面可以使得该第二延伸结构体积较小,占用该电池单体的内部空间较小,有利于保证该电池单体的能量密度。
在一些实施例中,该第二延伸结构的厚度的取值范围为[0.05mm,0.2mm];和/或,该第二延伸结构自该侧壁凸出的高度的取值范围为[0.05mm,0.2mm]。
若该第二延伸结构的高度设置过大,则该第二延伸结构与盖板之间的接触面积很大,但在密封连接时,例如通过焊接密封时,在保证壳体与盖板的连接强度和密封可靠性的情况下,实际焊接区域并不需要太大。所以第二延伸结构的高度设置过大并不会有效增加壳体与盖板的连接强度和密封可靠性,反而会增加第二延伸结构的占用空间,降低电池单体的内部空间利用率。相反地,若该第二延伸结构的高度设置过小,则该第二延伸结构与盖板之间的接触面积很小,壳体与盖板之间的密封连接主要受到壳体与盖板的厚度限制,无法通过设置该第二延伸结构提高壳体与盖板之间的连接强度和密封可靠性,并且会增加加工难度。
若该第二延伸结构的厚度设置过小,则该第二延伸结构与盖板通过焊接等方式密封连接时,容易被熔穿,导致密封连接失效,降低电池单体的加工合格率,也降低了电池单体的加工效率。相反地,若该第二延伸结构的厚度设置过大,虽然可以避免被熔穿,但是会增加该第二延伸结构占用的电池单体的内部空间,降低电池单体的空间利用率,也就降低了电池单体的能量密度。
在一些实施例中,该第二延伸结构沿第一方向的尺寸等于该侧壁的沿第一方向的尺寸,该第一方向垂直于该盖板。
这样,在垂直于盖板的厚度端面与第二延伸结构的朝向盖板的表面齐平的情况下,若第二延伸结构的沿第一方向的尺寸等于侧壁的沿第一方向的尺寸,则该第二延伸结构与侧壁的尺寸一致,也就是可以通过增加原本侧壁的厚度的方式实现该第二延伸结构。因此,原本该壳体的侧壁的厚度增加了第二延伸结构的厚度,盖板与壳体之间的接触面积也可以增加,从而提高壳体与盖板之间连接强度和密封可靠性。
在一些实施例中,该厚度端面与该第二延伸结构的朝向该盖板的表面的沿第二方向的总长度与该盖板的厚度的差值大于或者等于0.01mm,该第二方向垂直于该侧壁。若该差值设置过小,由于盖板的厚度有限,则增加了第二延伸结构的侧壁的厚度仍然 较小,则该壳体与盖板之间的接触面积仍然很小,壳体与盖板之间的密封连接主要受到壳体与盖板的厚度限制,无法通过设置该第二延伸结构提高壳体与盖板之间的连接强度和密封可靠性,并且会增加加工难度。
在一些实施例中,该盖板为该电池单体的面积最大的壁,这样便于电池单体内部的部件的安装,例如,可以便于电极组件的安装,加快该电池单体的加工速度。
在一些实施例中,该壳体的材料包括不锈钢和/或合金;和/或,该盖板的材料包括不锈钢和/或合金。这样可以使得电池单体具有较强的硬度,保证该电池单体的结构强度。
在一些实施例中,该壳体的厚度的取值范围为[50μm,200μm];和/或,该盖板的厚度的取值范围为[50μm,200μm],以保证该电池单体的结构强度。
第二方面,提供了一种电池,包括:多个第一方面所述的电池单体。
第三方面,提供了一种用电设备,包括:第一方面所述的电池单体,所述电池单体用于为所述用电设备提供电能。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的结构示意图;
图4是本申请一实施例公开的一种电池单体的分解结构示意图;
图5是本申请一实施例公开的一种电池单体的局部截面示意图;
图6是本申请一实施例公开的一种电池单体的局部截面的放大示意图;
图7是本申请一实施例公开的一种电池单体的另一局部截面示意图;
图8是本申请一实施例公开的一种电池单体的另一局部截面的放大示意图;
图9是本申请一实施例公开的一种电池单体的另一分解结构示意图;
图10是本申请一实施例公开的一种电池单体的再一局部截面示意图;
图11是本申请一实施例公开的一种电池单体的再一局部截面的放大示意图;
图12是本申请一实施例公开的一种电池单体的再一局部截面示意图;
图13是本申请一实施例公开的一种电池单体的再一局部截面的放大示意图;
图14是本申请一实施例公开的一种电池单体的再一局部截面示意图;
图15是本申请一实施例公开的一种电池单体的再一局部截面的放大示意图;
图16是本申请一实施例公开的一种电池单体的局部截面分解示意图;
图17是本申请一实施例公开的一种电池单体的第一壁的外表面的示意图;
图18是本申请一实施例公开的一种盖板的表面的示意图;
图19是本申请一实施例公开的一种盖板的局部截面示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极 活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性和加工效率。电池单体通常包括具有开口的壳体和用于盖合该开口的盖板,其中,壳体与盖板之间可以通过焊接等方式密封连接。为了提高电池的能量密度,减少壳体和盖板之间密封连接产生的翻边结构,可以在盖板的边缘区域与壳体的开口处通过焊接等方式直接进行密封连接。但壳体与盖板的厚度通常较小,这种焊接方式会导致焊接效率较低,焊接可靠性也较低,不利于电池单体的加工效率。
因此,本申请实施例提供了一种电池单体、电池和用电设备,能够解决上述问题。在本申请实施例的电池单体中,盖板和/或壳体具有延伸部,通过该延伸部能够实现盖板和壳体之间的连接。例如,对于盖板,可以在盖板的边缘区域设置有向壳体延伸的延伸部;对于壳体,可以在该壳体的侧壁的边缘区域设置向壳体的开口的中心延伸的延伸部。通过设置的延伸部,可以增加盖板与壳体之间的接触面积,这样,在对壳体与盖板进行密封连接时,可以增加壳体与盖板之间的可连接区域的面积,减少壳体与盖板的厚度对壳体与盖板之间的密封连接的限制,可以通过设置的延伸部,增加壳体与盖板之间的密封连接强度,提高密封可靠性,提高电池单体的加工效率和结构强度。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。例如,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,图2示出了本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。图2示出了本申请实施例的箱体11的一种可能的实现 方式,如图2所示,箱体11可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合后的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。
再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
在一些实施例中,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。
根据不同的电力需求,电池10中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。另外,为了提高电池10内电池单体20的空间占用率,可以根据多个电池单体20的形状合理设置电池单体20的安装方向;并且,电池10内不同电池单体20的安装方向可以相同或者不同,本申请实施例对此不做限定。
图3示出了本申请实施例的电池单体20的结构示意图;图4示出了本申请实施例的电池单体20的分解结构示意图,例如,图4可以为图3所示的电池单体20的一种可能的分解结构示意图;图5示出了本申请实施例的电池单体20的局部截面示意图,例如,该图5所示的截面图可以为图4所示的电池单体20的壳体211与盖板212的一种可能的截面示意图,该截面垂直于该电池单体20的高度方向Z;图6示出了本申请实施例的电池单体20的另一局部截面示意图,例如,该图6可以为图5所示的区域A的放大图;图7示出了本申请实施例的电池单体20的再一局部截面示意图,例如,该图7所示的截面图可以为图4所示的电池单体20的壳体211与盖板212的另一种可能的截面示意图,该截面垂直于该电池单体20的高度方向Z,即该截面可以与图5所示的截面的方向一致;图8示出了本申请实施例的电池单体20的再一局部截面示意图,例如,该图8可以为图7所示的区域B的放大图。
如图3至图8所示,本申请实施例的电池单体20包括:壳体211,具有开口2111的中空结构;盖板212,用于盖合该开口2111,其中,该盖板212的边缘区域具有向该壳体211延伸的延伸部210,和/或,该壳体211的用于形成该开口2111的侧壁 2113的边缘区域具有向该开口2111的中心延伸的延伸部210;该延伸部210用于连接该壳体211与该盖板212。
应理解,本申请实施例的电池单体20包括外壳21,该外壳21可以为多面体的中空结构,该中空结构可以用于容纳电极组件。电池单体20的形状可以根据实际应用灵活设置,即该电池单体20可以为任意多面体结构,例如,可以设置为长方体或者圆柱体等。具体地,电池单体20可以包括外壳21,该外壳21包括多个壁,以使得该电池单体20为多面体结构。示例性的,如图3至图8所示,本申请实施例主要以外壳为长方体结构为例进行描述,对于长方体电池单体20,该外壳21可以包括六个壁。
具体地,对于长方形的电池单体20,为了便于描述,本申请实施例定义了三个参考方向。如图3至图8所示,该电池单体20的厚度方向为方向Y,该电池单体20的高度方向为方向Z,该电池单体20的宽度方向为方向X,其中,该电池单体20的厚度方向Y、高度方向Z和宽度方向X相互垂直。
本申请实施例的外壳21可以包括壳体211和盖板212。壳体211可以是一端或者多端形成开口2111的中空结构。例如,若壳体211为一端形成开口2111的空心结构,盖板212则可以设置为一个,以盖合壳体211的一个开口2111;若壳体211为相对的两端形成开口2111的空心结构,盖板212则可以设置为两个,两个盖板212分别盖合于壳体211两端的开口,但本申请实施例并不限于此。
为了便于说明,如图3至图8所示,本申请实施例以该壳体211具有一个开口2111为例,对应的,盖板212用于盖合该开口2111。可选地,本申请实施例的盖板212盖合壳体211的开口2111,例如,可以通过焊接的方式,实现壳体211与盖板212之间的密封连接,以提高密封可靠性。
在本申请实施例的电池单体20中,盖板212和/或壳体211具有延伸部210,通过该延伸部210能够实现壳体211和盖板212之间的连接。例如,对于盖板212,可以在盖板212的边缘区域设置有向壳体211延伸的延伸部210;对于壳体211,可以在该壳体211的侧壁2113的边缘区域设置向壳体211的开口2111的中心延伸的延伸部210。通过设置的延伸部210,可以增加壳体211与盖板212之间的接触面积,这样,在对壳体211与盖板212进行密封连接时,可以增加壳体211与盖板212之间的可连接区域的面积,例如,可以增加壳体211与盖板212之间的可焊接区域的面积;还可以减少壳体211与盖板212的厚度对壳体211与盖板212之间的密封连接的限制,可以通过设置的延伸部210,增加壳体211与盖板212之间的密封连接强度,提高密封可靠性,提高电池单体20的加工效率和结构强度。
下面将结合附图,首先对盖板212设置的延伸部210进行详细描述。具体地,延伸部210包括第一延伸结构2122,盖板212包括主体部2121和第一延伸结构2122,第一延伸结构2122自主体部2121的边缘区域向壳体211延伸,主体部2121用于盖合开口2111,第一延伸结构2122用于与壳体211连接。盖板212的第一延伸结构2122向壳体211延伸,则盖板212与壳体211之间的接触区域扩大到包括第一延伸结构2122与壳体211之间的接触区域;对应的,壳体211与盖板212之间的密封连接可以通过对壳体211与第一延伸结构2122进行密封连接来实现,例如通过焊接的方式进行密封连 接,则可以减少甚至避免盖板212的厚度对壳体211与盖板212之间的密封连接的限制,通过合理设置第一延伸结构2122的尺寸,则可以增加壳体211与盖板212之间的密封连接强度,提高密封可靠性,提高电池单体20的加工效率和结构强度。
应理解,本申请实施例的盖板212包括主体部2121,该主体部2121可以近似为平板状结构,以覆盖壳体211的开口2111。可选地,该主体部2121的表面的形状可以根据实际应用进行设置。例如,对于圆柱形电池单体20,壳体211的开口2111为圆柱形的底面,则该盖板212的主体部2121的表面可以为圆形,以覆盖圆形的开口2111。再例如,如图3至图8所示,对于长方体的电池单体20,壳体211的开口2111可以为长方体的任意一个面,则该盖板212的主体部2121的表面可以为矩形,以覆盖矩形的开口2111。
对应地,不同形状的主体部2121具有不同个数的边。例如,对于表面为圆形的主体部2121,该主体部2121包括一条连续的边;对于表面为矩形的主体部2121,该主体部2121包括四条相交的边。本申请实施例中的主体部2121的边缘区域为靠近该主体部2121的边的区域;盖板212的第一延伸结构2122自主体部2121的边缘区域向壳体211延伸,即该第一延伸结构2122位于靠近主体部2121的边的区域。并且,主体部2121包括至少一条边,该第一延伸结构2122可以位于至少部分边对应的边缘区域。例如,本申请实施例以该第一延伸结构2122可以位于该主体部2121的全部边对应的边缘区域为例,即该第一延伸结构2122环绕设置在主体部2121的边缘区域,如图3至图8所述,第一延伸结构2122可以位于全部四条边对应的边缘区域,以最大程度地提高壳体211与盖板212之间的密封可靠性;或者,与之不同地,该第一延伸结构2122也可以仅位于部分边缘区域,例如,不同于图3至图8,该第一延伸结构2122可以仅位于四条边中部分边对应的边缘区域,但本申请实施例并不限于此。
在本申请实施例中,第一延伸结构2122的具体设置方式可以根据实际应用灵活选择。例如,如图3至图8所示,本申请实施例主要以该第一延伸结构2122可以为该盖板212的朝向电池单体20的内部的表面的凸起为例,即该第一延伸结构2122凸出于该盖板212的主体部2121的朝向电池单体20的内部的表面。
可选地,该第一延伸结构2122与壳体211的相对位置也可以根据实际应用进行设置。例如,如图5和图6所示,第一延伸结构2122用于与侧壁2113的内表面连接,侧壁2113的内表面为侧壁2113的朝向电池单体20的内部的表面。这样,该第一延伸结构2122不需要占用电池单体20的外部空间,即该电池单体20的外表面没有凸出部分,不会影响多个电池单体20之间的安装,提高电池10的安装效率。
在本申请实施例中,如图5和图6所示,该盖板212还包括与该主体部2121相连的搭接部2123,该搭接部2123自该主体部2121边缘向远离该主体部2121的中心的方向延伸,该搭接部2123连接该侧壁2113的厚度端面2113a,该厚度端面2113a为该侧壁2113的朝向该盖板212的端面。通过设置搭接部2123,盖板212与壳体211的开口2111扣合时,可以将该盖板212保持在壳体211的侧壁2113的厚度端面2113a上,保证盖板212与壳体211之间的相对稳定性,进而便于壳体211与盖板212的第一延伸结构2122之间的连接,例如便于二者的焊接,提高电池单体20的安装效率。
再例如,如图7和图8所示,第一延伸结构2122用于与侧壁2113的外表面连接,侧壁2113的外表面为侧壁2113的远离电池单体20的内部的表面。这样,该第一延伸结构2122不需要占用电池单体20的内部空间,可以避免第一延伸结构2122对电池单体20的电极组件的影响,提高电池单体20的内部空间利用率,有利于提高电池单体20的能量密度。
可选地,还可以将上述两种方式相结合。例如,同时在壳体211的侧壁2113的内表面和外表面设置该第一延伸结构2122,以提高壳体211与盖板212之间的连接强度可靠性。
可选地,本申请实施例的第一延伸结构2122的各个方向的尺寸可以根据实际应用灵活设置。例如,如图6至图8所示,第一延伸结构2122自主体部2121凸出的高度H1的取值可以根据实际应用灵活设置;和/或,第一延伸结构2122的厚度T1的取值可以根据实际应用灵活设置,其中,该第一延伸结构2122的厚度方向与该第一延伸结构2122的高度方向垂直。
应理解,第一延伸结构2122的高度H1为该第一延伸结构2122在其高度方向上的尺寸,例如,高度H1可以为该该第一延伸结构2122在其高度方向上的最小尺寸。并且,该第一延伸结构2122的高度方向垂直于该主体部2121的表面,或者说,该第一延伸结构2122的高度方向为该主体部2121的厚度方向。例如,主体部2121的厚度方向为电池单体20的厚度方向Y时,则第一延伸结构2122的高度方向也为该电池单体20的厚度方向Y。
因此,该第一延伸结构2122的高度H1可以影响该第一延伸结构2122与壳体21的侧壁2113之间的接触面积。如图6至图8所示,若该第一延伸结构2122的高度H1设置过大,则该第一延伸结构2122与侧壁2113之间的接触面积很大,但在密封连接时,例如通过焊接密封时,在保证壳体211与盖板212的连接强度和密封可靠性的情况下,实际焊接区域并不需要太大。所以第一延伸结构2122的高度H1设置过大并不会有效增加壳体211与盖板212的连接强度和密封可靠性,反而会增加第一延伸结构2122的占用空间,降低电池单体20的内部空间利用率。相反地,若该第一延伸结构2122的高度H1设置过小,则该第一延伸结构2122与侧壁2113之间的接触面积很小,无法保证侧壁2113与第一延伸结构2122之间的连接强度和密封可靠性,增加了加工难度。
因此,该第一延伸结构2122的高度H1不宜设置过大或者过小。例如,第一延伸结构2122自主体部2121凸出的高度H1的取值范围为[0.05mm,0.2mm]。再例如,该第一延伸结构2122的高度H1可以设置为0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.11mm、0.12mm、0.13mm、0.14mm、0.15mm、0.16mm、0.17mm、0.18mm、0.19mm或者0.2mm。
应理解,第一延伸结构2122的厚度T1为该第一延伸结构2122在其厚度方向上的尺寸,例如,厚度T2可以为该第一延伸结构2122在其厚度方向上的最小尺寸。并且,该第一延伸结构2122的厚度方向垂直于该第一延伸结构2122的高度方向,也垂直于该第一延伸结构2122的延伸方向。例如,如图6至图8所示,若电池单体20的厚度方向Y垂直于主体部2121时,则第一延伸结构2122的高度方向为该电池单体20的厚 度方向Y。与之对应地,对于位于主体部2121的平行于沿电池单体的宽度方向X的边缘的第一延伸结构2122,即对于沿电池单体的宽度方向X延伸的第一延伸结构2122,其厚度方向为电池单体20的高度方向Z;或者,对于位于主体部2121的平行于沿电池单体的高度方向Z的边缘的第一延伸结构2122,即对于沿电池单体的高度方向Z延伸的第一延伸结构2122,其厚度方向为电池单体20的宽度方向X。
应理解,该第一延伸结构2122的厚度T1取值范围可以根据实际应用进行设置。具体地,若该第一延伸结构2122的厚度T1设置过小,则该第一延伸结构2122与侧壁2113通过焊接等方式密封连接时,容易被熔穿,导致密封失效,降低电池单体20的加工合格率,也降低了电池单体20的加工效率。相反地,若该第一延伸结构2122的厚度T1设置过大,虽然可以避免被熔穿,但是会增加该第一延伸结构2122占用的电池单体20的内部空间,降低电池单体20的空间利用率,也就降低了电池单体20的能量密度。
因此,本申请实施例的第一延伸结构2122的厚度T1不宜设置过大或者过小。例如,第一延伸结构2122的厚度T1的取值范围为[0.05mm,0.2mm]。再例如,该该第一延伸结构2122的厚度T1可以设置为0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.11mm、0.12mm、0.13mm、0.14mm、0.15mm、0.16mm、0.17mm、0.18mm、0.19mm或者0.2mm。
可选地,本申请实施例的盖板212上设置的延伸部210可以包括盖板212的第一延伸结构2122,或者,不同于图3至图8所示,也可以通过其他方式实现盖板212的延伸部210。例如,可以通过增加该盖板212的厚度实现延伸部210。具体地,该盖板212可以看做延伸部210与主体部2121沿盖板212的厚度方向层叠设置,延伸部210位于主体部2121的朝向电池单体20的内部的一侧。这样,该盖板212的厚度增加,盖板212与壳体211之间的接触面积也可以增加,从而提高壳体211与盖板212之间连接强度和密封可靠性。但考虑到该盖板212可能为电池单体20的面积最大壁,若增加盖板212的厚度,在电池单体20的外部体积不变的情况下,会减小电池单体20的内部空间,降低电池单体20的能量密度。因此,本申请实施例以第一延伸结构2122为盖板212的凸起为例进行说明,但本申请实施例并不限于此。
应理解,上文中结合附图对盖板212上设置的延伸部210进行了描述。下文将结合附图,对壳体211上设置的延伸部210进行描述。
图9示出了本申请实施例的电池单体20的另一分解结构示意图,例如,图9可以为图3所示的电池单体20的另一种可能的分解结构示意图;图10示出了本申请实施例的电池单体20的局部截面示意图,例如,该图10所示的截面图可以为图9所示的电池单体20的壳体211与盖板212的一种可能的截面示意图,该截面垂直于该电池单体20的高度方向Z;图11示出了本申请实施例的电池单体20的再一局部截面示意图,例如,该图11可以为图10所示的区域C的放大图;图12示出了本申请实施例的电池单体20的再一局部截面示意图,例如,该图12所示的截面图可以为图9所示的电池单体20的壳体211与盖板212的另一种可能的截面示意图,该截面垂直于该电池单体20的高度方向Z,即该截面可以与图10所示的截面的方向一致;图13示出了本申请实施例的电池单体20的再一局部截面示意图,例如,该图13可以为图12所示的区域D的放 大图。
如图9至图13所示,延伸部210包括设置于侧壁2113的第二延伸结构2112,第二延伸结构2112的至少部分位于侧壁2113的用于形成开口2111的边缘区域,且第二延伸结构2112自侧壁2113向开口2111的中心延伸,第二延伸结构2112用于与盖板212连接。第二延伸结构2112至少部分位于侧壁2113的边缘区域,并且第二延伸结构2112自侧壁2113向开口2111的中心延伸的部分,则壳体211与盖板212之间的接触区域扩大到包括该第二延伸结构2112与盖板212之间的接触区域;这样,壳体211与盖板212之间的密封连接可以通过对第二延伸结构2112与盖板212之间进行密封连接来实现,例如通过焊接的方式进行密封连接,则可以减少甚至避免壳体211的侧壁2113的厚度对壳体211与盖板212之间的密封连接的限制,通过合理设置第二延伸结构2112的尺寸,则可以增加壳体211与盖板212之间的密封连接强度,提高密封可靠性,提高电池单体20的加工效率和结构强度。
应理解,本申请实施例的壳体211的形状可以根据实际应用进行设置,并且不同形状的壳体211可以具有不同个数的侧壁2113,其中,本申请实施例中的壳体211的侧壁2113可以指壳体211的用于形成开口2111的侧壁,即壳体211的侧壁2113为壳体211的与开口2111相邻的壁。例如,若壳体211为底面开口的圆柱体,则该壳体211具有一个侧壁2113,该侧壁2113为圆柱面;再例如,如图9至图13所示,本申请实施例以壳体211为一端开口的长方体为例,则该壳体211具有四个相交的侧壁2113,每个侧壁2113为矩形。并且,本申请实施例中的壳体211的侧壁2113可以为该四个侧壁2113中的任意一个侧壁,例如,下文中的壳体211的侧壁2113的描述可以适用于壳体211的全部侧壁2113。
对应地,本申请实施例的第二延伸结构2112可以设置于壳体211的至少一个侧壁2113。例如,本申请实施例以该第二延伸结构2112位于该壳体211的全部侧壁2113为例,即该第二延伸结构2112环绕壳体211的开口2111设置在全部侧壁2113,如图9至图13所示,第二延伸结构2112可以位于四个侧壁2113,以最大程度地提高壳体211与盖板212之间的密封可靠性;或者,与之不同地,该第二延伸结构2112也可以仅位于部分侧壁2113上,例如,不同于图9至图13,该第二延伸结构2112可以仅位于四个侧壁2113中部分侧壁2113,但本申请实施例并不限于此。
本申请实施例的第二延伸结构2112的至少部分位于侧壁2113的用于形成开口2111的边缘区域,其中,侧壁2113的边缘区域为侧壁2113的形成该壳体211的开口2111的端面的区域,也是该侧壁2113的靠近盖板212的边缘区域。
可选地,本申请实施例的第二延伸结构2112与侧壁2113的相对位置可以根据实际应用进行设置。例如,如图9至图13所示,侧壁2113包括厚度端面2113a,厚度端面2113a为侧壁2113的朝向盖板212的端面,厚度端面2113a与第二延伸结构2112的朝向盖板212的表面齐平,厚度端面2113a与第二延伸结构2112用于与盖板212连接。这样,该壳体211的朝向盖板212的端面是一个平面,侧壁2113与第二延伸结构2112之间不存在高度差,一方面便于侧壁2113的加工,使得侧壁2113和第二延伸结构2112可以快速一体成型;另一方面,若侧壁2113的厚度端面2113a与第二延伸结构 2112之间具有高度差,盖板212盖合开口2111时,电池单体20的外表面在盖合处容易出现凹陷或者凸起,使得该电池单体20的外表面不平整,容易影响多个电池单体20之间的安装,进而影响电池10的安装效率。
可选地,本申请实施例的第二延伸结构2112具体设置方式可以根据实际应用灵活选择。例如,如图10和图11所示,第二延伸结构2112为位于侧壁2113的用于形成开口2111的边缘区域且自侧壁2113的内表面凸出的凸起结构,侧壁2113的内表面为侧壁2113的朝向电池单体20的内部的表面。通过凸起结构实现该第二延伸结构2112,一方面便于加工,另一方面可以使得该第二延伸结构2112体积较小,占用该电池单体20的内部空间较小,有利于保证该电池单体20的能量密度。
可选地,与图10和图11的设置方式相反,该第二延伸结构2112还可以位于侧壁2113的外表面。具体地,第二延伸结构2112为位于侧壁2113的用于形成开口2111的边缘区域且自侧壁2113的外表面向远离该侧壁2113的方向凸出的凸起结构,侧壁2113的外表面为侧壁2113的远离电池单体20的内部的表面。将该第二延伸结构2112设置在侧壁2113的外表面,可以不占用该电池单体20内部的空间,以提高该电池单体20内部空间利用率,从而提高电池单体的能量密度;并且,将该第二延伸结构2112设置在侧壁2113的外表面,便于加工,便于盖板212与壳体211之间的连接,提高电池单体20的加工效率。
可选地,在第二延伸结构2112为侧壁2113的内表面或者外表面的凸起结构的情况下,该第二延伸结构2112的尺寸可以根据实际应用进行设置。例如,该第二延伸结构2112自侧壁2113凸出的高度H2的取值可以根据实际应用灵活设置;和/或,第二延伸结构2112的厚度T2的取值可以根据实际应用灵活设置,其中,该第二延伸结构2112的厚度方向与该第二延伸结构2112的高度方向垂直。
应理解,第二延伸结构2112的高度H2为该第二延伸结构2112在其高度方向上的尺寸,例如,高度H2可以为第二延伸结构2112在其高度方向上的最小尺寸。并且,该第二延伸结构2112的高度方向垂直于侧壁2113,或者说,该第二延伸结构2112的高度方向为该侧壁2113的厚度方向。例如,如图10至图11所示,不同的侧壁2113的厚度方向不同。若侧壁2113的厚度方向为电池单体20的宽度方向X时,则第二延伸结构2112的高度方向也为该电池单体20的宽度方向X。若侧壁2113的厚度方向为电池单体20的高度方向Z时,则第二延伸结构2112的高度方向也为该电池单体20的高度方向Z。
该第二延伸结构2112的高度H2可以影响该第二延伸结构2112与盖板212之间的接触面积。如图10至图11所示,若该第二延伸结构2112的高度H2设置过大,则该第二延伸结构2112与盖板212之间的接触面积很大,但在密封连接时,例如通过焊接密封时,在保证壳体211与盖板212的连接强度和密封可靠性的情况下,实际焊接区域并不需要太大。所以第二延伸结构2112的高度H2设置过大并不会有效增加壳体211与盖板212的连接强度和密封可靠性,反而会增加第二延伸结构2112的占用空间,降低电池单体20的内部空间利用率。相反地,若该第二延伸结构2112的高度H2设置过小,则该第二延伸结构2112与盖板之间的接触面积很小,壳体211与盖板212之间的密封 连接主要受到壳体211与盖板212的厚度限制,无法通过设置该第二延伸结构2112提高壳体211与盖板212之间的连接强度和密封可靠性,并且会增加加工难度。
因此,本申请实施例的第二延伸结构2112的高度H2不宜设置过大或者过小。例如,第二延伸结构2112自侧壁2113凸出的高度H2的取值范围为[0.05mm,0.2mm]。再例如,该第二延伸结构2112的高度H2可以设置为0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.11mm、0.12mm、0.13mm、0.14mm、0.15mm、0.16mm、0.17mm、0.18mm、0.19mm或者0.2mm。
应理解,第二延伸结构2112的厚度T2为该第二延伸结构2112在其厚度方向上的尺寸,例如,厚度T2可以为第二延伸结构2112在其厚度方向上的最小值。并且,该第二延伸结构2112的厚度方向垂直于壳体211的底壁,或者说该第二延伸结构2112的厚度方向为壳体211的底壁的厚度方向,该壳体211的底壁为与开口2111相对的壁。例如,如图10至图11所示,例如,壳体211的底壁的厚度方向为电池单体20的厚度方向Y时,则第二延伸结构2112的厚度方向也为该电池单体20的厚度方向Y。
应理解,该第二延伸结构2112的厚度T2取值范围可以根据实际应用进行设置。具体地,若该第二延伸结构2112的厚度T2设置过小,则该第二延伸结构2112与盖板212通过焊接等方式密封连接时,容易被熔穿,导致密封连接失效,降低电池单体20的加工合格率,也降低了电池单体20的加工效率。相反地,若该第二延伸结构2112的厚度T2设置过大,虽然可以避免被熔穿,但是会增加该第二延伸结构2112占用的电池单体20的内部空间,降低电池单体20的空间利用率,也就降低了电池单体20的能量密度。
因此,本申请实施例的第二延伸结构2112的厚度T2不宜设置过大或者过小。例如,第二延伸结构2112的厚度T2的取值范围为[0.05mm,0.2mm]。再例如,该该第二延伸结构2112的厚度T2可以设置为0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.11mm、0.12mm、0.13mm、0.14mm、0.15mm、0.16mm、0.17mm、0.18mm、0.19mm或者0.2mm。
可选地,作为另一个实施例,还可以通过其他方式实现本申请实施例的第二延伸结构2112。例如,如图12至图13所示,在厚度端面2113a与第二延伸结构2112的朝向盖板212的表面齐平的情况下,第二延伸结构2112沿第一方向Y的尺寸等于侧壁2113的沿第一方向Y的尺寸,第一方向Y垂直于盖板212。具体地,该第一方向垂直于盖板212,即该第一方向为该盖板212的厚度方向。例如,若盖板212的厚度方向为电池单体20的厚度方向Y,则该第一方向也为电池单体20的厚度方向。这样,在垂直于盖板212的厚度端面2113a与第二延伸结构2112的朝向盖板212的表面齐平的情况下,若第二延伸结构2112的沿第一方向的尺寸等于侧壁2113的沿第一方向的尺寸,则该第二延伸结构2112与侧壁2113的尺寸一致,也就是可以通过增加原本侧壁2113的厚度的方式实现该第二延伸结构2112。
具体地,该加厚的侧壁2113可以看做第二延伸结构2112与原本的较薄的侧壁2113沿侧壁2113的厚度方向层叠设置。这样,原本该壳体211的侧壁2113的厚度增加了第二延伸结构2112的厚度,盖板212与壳体211之间的接触面积也可以增加,从 而提高壳体211与盖板212之间连接强度和密封可靠性。
可选地,加厚之后的侧壁2113的厚度T3可以根据实际应用进行设置。例如,可以根据盖板212的厚度T4设置侧壁2113增加的厚度。具体地,如图12至图13所示,厚度端面2113a与第二延伸结构2112的朝向盖板212的表面的沿第二方向X的总长度T3与盖板212的厚度T4的差值大于或者等于0.01mm,第二方向X垂直于侧壁2113。也就是说,加厚的侧壁2113的总厚度T3减去盖板212的厚度T4的差值通常大于或者等于0.01。相反地,若该差值设置过小,由于盖板212的厚度有限,则增加了第二延伸结构2112的侧壁2113的厚度T3仍然较小,则该壳体211与盖板212之间的接触面积仍然很小,壳体211与盖板212之间的密封连接主要受到壳体211与盖板212的厚度限制,无法通过设置该第二延伸结构2112提高壳体211与盖板212之间的连接强度和密封可靠性,并且会增加加工难度。因此,厚度T3与厚度T4的差值不宜过小。
应理解,上文中结合附图对本申请实施例的延伸部210进行了描述,下面将结合附图,对本申请实施例的电池单体20的其他部分进行描述。
可选地,本申请实施例的外壳21还可以设置有其他部件。例如,外壳21还可以设置有注液孔2151以及用于密封该注液孔2151的密封组件215。例如,如图3至图13所示,电池单体20的第一侧壁2112或者第二侧壁2113可以设置有注液孔2151以及用于密封该注液孔2151的密封组件215,该注液孔2151用于向电池单体20内部注入电解液,密封组件215密封该注液孔2151,例如,可以通过激光焊接的方式密封,以提高密封可靠性。
图14示出了本申请实施例的电池单体20的局部截面示意图,具体地,图14可以为本申请实施例的任意一种该电池单体20的壳体211的局部截面示意图,其中,该截面垂直于该电池单体20的厚度方向Y;该图14所示的电池单体20可以为如图3至图13中任意一个电池单体20。图15示出了本申请实施例的电池单体20的局部截面放大示意图,例如,该图15为图14所示的区域E的放大图;图16示出了本申请实施例的电池单体20的局部截面分解示意图,例如,该图16为图15所示的局部电池单体20的分解结构示意图。
如图14至图16所示,电池单体20的第一壁21a设置有电极端子214,第一壁21a设置有第一通孔2101,电池单体20还包括:绝缘结构22,绝缘结构22设置在第一壁21a的朝向电池单体20的内部的一侧,绝缘结构22设置有与第一通孔2101对应的第二通孔221,电极端子214贯穿第一通孔2101和第二通孔221,以使第一壁21a和绝缘结构22铆接。
应理解,本申请实施例中的第一壁21a设置有电极端子214,该电极端子214可以为电池单体20包括的任意一个电极端子214。具体地,电极端子214用于与电池单体20内部的电极组件电连接,以输出电池单体20的电能。如图14至图16所示,电池单体20可以包括至少两个电极端子214,该至少两个电极端子214可以包括至少一个正极电极端子214a和至少一个负极电极端子214b,正极电极端子214a用于与电极组件的正极极耳电连接,负极电极端子214b用于与电极组件的负极极耳电连接。正极电极端子214a与正极极耳可以直接连接,也可以间接连接,负极电极端子214b与负极 极耳可以直接连接,也可以间接连接。示例性的,正极电极端子214a通过一个连接构件23与正极极耳222a电连接,负极电极端子214b通过一个连接构件23与负极极耳222b电连接。
应理解,不同电极端子214可以位于电池单体20的同一个壁或者不同的壁。例如,如图14至图16所示,本申请实施例以电池单体20包括两个电极端子214,且该两个电极端子214位于同一个壁为例,例如,可以均位于第一壁21a上。
本申请实施例的第一壁21a可以为电池单体20的外壳21的任意一个壁。例如,若电池单体20为长方体结构,该外壳21可以包括六个面,即包括六个壁,其中,该第一壁21a可以为面积最大的壁或者面积最小的壁或者其他壁,本申请实施例并不限于此。再例如,如图14至图16所示,图中以该第一壁21a为壳体211的侧壁2113为例,以便于加工。
本申请实施例的绝缘结构22设置在第一壁21a的朝向电池单体20的内部的一侧,即该绝缘结构22与第一壁21a沿第一壁21a的厚度方向层叠设置。并且,该绝缘结构22的具体形状可以根据实际应用进行设置,例如,该绝缘结构22可以为板状,以与第一壁21a贴合,使得该第一壁21a与电池单体20的内部的部件电隔离,例如,该绝缘结构22可以用于使得第一壁21a与电池单体20的内部的电极组件电隔离,以避免短路。
可选地,本申请实施例的电极端子214的设置方式可以根据实际应用灵活选择。例如,第一壁21a设置有第一通孔2101,绝缘结构22设置有与第一通孔2101对应的第二通孔221,电极端子214贯穿第一通孔2101和第二通孔221,以使第一壁21a和绝缘结构22铆接,这样便于加工和实现电极端子214、第一壁21a和绝缘结构22之间的固定。
应理解,由于电池单体20的外壳21通常为金属材质,若电极端子214与第一壁21a直接接触,则可能发生短路。因此,电极端子214与第一壁21a之间可以设置有绝缘部件,以避免短路。具体地,电池单体20还包括:密封结构24,设置在第一壁21a的远离电池单体20的内部的一侧,密封结构24用于电隔离电极端子214与第一壁21a,密封结构24设置有第五通孔241,第五通孔241的至少部分容纳在第一通孔2101内,电极端子214贯穿第五通孔241,以使电极端子214与第一通孔2101之间密封。
一方面,该密封结构24通常采用绝缘材料,将密封结构24设置在第一壁21a和电极端子214之间,可以避免电极端子214与第一壁21a之间发生短路。另一方面,该密封结构24上设置有第五通孔241,形成该第五通孔241的孔壁的至少部分位于第一通孔2101,或者进一步地,该第五通孔241的孔壁的至少部分还可以位于第二通孔221内,以使该电极端子214贯穿该第五通孔241的情况下,该电极端子214与第一通孔2101之间设置有密封结构24的部分,或者进一步地,该电极端子214与第二通孔221之间也可以设置有密封结构24的部分。这样,由于第一壁21a设置有第一通孔2101,且绝缘结构22设置有第二通孔221,则电极端子214与第一通孔2101之间以及电极端子214与第二通孔221之间都可能存在空隙,所以可以通过该密封结构24密封第一通孔2101和第二通孔221,例如,可以在铆接挤压的过程中,密封结构24被挤压 变形进而密封,以避免内部电解液泄漏。
应理解,本申请实施例的电极端子214依次贯穿密封结构24、第一壁21a和绝缘结构22,但是,电极端子214的铆接作用能够限制第一壁21a与绝缘结构22之间的相对平移,却不能阻止第一壁21a与绝缘结构22之间的相对转动,所以可以通过设置限位结构,以进一步限制第一壁21a与绝缘结构22之间的错位。具体地,第一壁21a设置有第一限位结构201,绝缘结构22设置有与第一限位结构201对应的第二限位结构202,第二限位结构202和第一限位结构201相互配合,以阻止绝缘结构22与第一壁21a之间的相对移动。这样,一方面能够对第一壁21a和绝缘结构22进行定位,以便于二者之间的安装;另一方面还能够避免第一壁21a和绝缘结构22之间发生错位,例如,可以避免第一壁21a和绝缘结构22之间相对平移,也就保证了绝缘结构22对该第一壁21a与电池单体20内部其他部件之间的绝缘性能,避免短路,并提高电池单体20的安全性能。
应理解,本申请实施例中第一限位结构201和第二限位结构202的配合方式可以根据实际应用灵活设置。下面将结合附图,进行举例说明。
可选地,作为一个实施例,第一限位结构201包括第一壁21a的朝向绝缘结构22凸起的第一凸起结构,第二限位结构202包括绝缘结构22的第一凹槽结构,第一凹槽结构的开口朝向第一壁21a,第一凸起结构的至少部分容纳于第一凹槽结构内。具体地,如图14至图16所示,第一壁21a的朝向绝缘结构22的表面设置有朝向该绝缘结构22凸起的第一凸起结构,与之对应的,绝缘结构22的朝向第一壁21a的表面设置有第一凹槽结构,该第一凹槽结构的开口朝向第一壁21a。并且,第一限位结构201包括第一凸起结构,第二限位结构202包括第一凹槽结构,则第一限位结构201和第二限位结构202相互配合可以包括该第一凸起结构的至少部分容纳于该第一凹槽结构内,以使得第一凹槽结构可以限制该第一凸起结构的移动,进而限制第一壁21a相对于绝缘结构22的移动,以达到定位和固定的作用,避免第一壁21a和绝缘结构22之间发生错位;并且,上述设置方式简单,结构稳定,便于加工。
可选地,作为另一个实施例,第一限位结构201包括第一壁21a的第二凹槽结构,第二凹槽结构的开口朝向绝缘结构22,第二限位结构202包括绝缘结构22的朝向第一壁21a凸起的第二凸起结构,第二凸起结构的至少部分容纳于第二凹槽结构内。具体地,与图14至图16所示的设置方向相反地,该第一壁21a的朝向绝缘结构22的表面设置有第二凹槽结构,该第二凹槽结构的开口朝向该绝缘结构22;对应的,绝缘结构22的朝向第一壁21a的表面设置有朝向第一壁21a凸起的第二凸起结构。该第一限位结构201可以包括该第二凹槽结构,该第二限位结构202可以包括第二凸起结构,则第一限位结构201和第二限位结构202相互配合可以包括该第二凸起结构的至少部分容纳于该第二凹槽结构内,以使得第二凹槽结构可以限制该第二凸起结构的移动,进而限制绝缘结构22相对于第一壁21a的移动,以达到定位和固定的作用,避免第一壁21a和绝缘结构22之间发生错位;并且,上述设置方式简单,结构稳定,便于加工。
可选地,本申请实施例的第一限位结构201可以包括至少一个第一凸起结构和/或至少一个第二凹槽结构,与之相对应的,第二限位结构202可以包括至少一个第一 凹槽结构和/或至少一个第二凸起结构,本申请实施例并不限于此。例如,为了节省第一限位结构201占用第一壁21a的空间,以及第二限位结构202占用绝缘结构22的空间,该第一限位结构201可以包括设置于第一壁21a的一个第一凸起结构或者一个第二凹槽结构,与之相对应的,该第二限位结构202可以包括设置于绝缘结构22的一个第一凹槽结构或者一个第二凸起结构,以便于加工。
可选地,本申请实施例的第一凸起结构、第一凹槽结构、第二凸起结构和第二凹槽结构的设置方式可以根据实际应用灵活选择,以提高电池单体20的加工效率。
例如,对于第一凸起结构和第二凸起结构,可以通过凹槽的方式实现。第一凸起结构为第一壁21a的朝向绝缘结构22凹陷且凸出于第一壁21a的朝向电池单体20的内部的表面的凹槽;和/或,第二凸起结构为绝缘结构22的朝向第一壁21a凹陷且凸出于绝缘结构22的远离电池单体20的内部的表面的凹槽。具体地,如图14至图16所示,第一壁21a朝向绝缘结构22凹陷以形成凹槽,该凹槽的底壁凸出于第一壁21a的朝向电池单体20内部的表面,进而可以用作第一凸起结构。类似地,但与图14至图16所示的设置方向相反,绝缘结构22朝向第一壁21a凹陷以形成凹槽,该凹槽的底壁凸出于绝缘结构22的远离电池单体20内部的表面,进而可以用作第二凸起结构。通过凹槽的方式设置第一凸起结构和/或第二凸起结构,相比于直接在第一壁21a的表面或者绝缘结构22的表面设置实心的凸起结构的方式,可以有效降低第一壁21a和/或绝缘结构22的重量,且加工方式简单,例如,可以通过冲压的方式,同步加工第一凸起结构和第一凹槽结构,或者,可以通过冲压的方式,同步加工第二凸起结构和第二凹槽结构,提高了电池单体20的加工效率。
可选地,第一凹槽结构和第二凹槽结构也可以分别参照第一凸起结构和第二凸起结构进行设置。第一凹槽结构凸出于绝缘结构22的朝向电池单体20的内部的表面;和/或,第二凹槽结构凸出于第一壁21a的远离电池单体20的内部的表面。绝缘结构22的第一凹槽结构设置为凸出于该绝缘结构22的朝向电池单体20的内部的表面,则该第一凹槽结构的深度受到绝缘结构22的厚度限制较小,那么虽然绝缘结构22的厚度有限,但该第一凹槽结构的深度可能大于绝缘结构22的厚度,使得第一凸起结构能够更多的容纳于该第一凹槽结构内,以增加第一凸起结构和第一凹槽结构之间的稳定性,也就增加了第一限位结构201和第二限位结构202之间的稳定性。类似地,第一壁21a的第二凹槽结构设置为凸出于第一壁21a的远离电池单体20的内部的表面,则该第二凹槽结构的深度受到第一壁21a的厚度限制较小,那么虽然第一壁21a的厚度有限,但该第二凹槽结构的深度可能大于第一壁21a的厚度,使得第二凸起结构能够更多的容纳于该第二凹槽结构内,以增加第二凸起结构和第二凹槽结构之间的稳定性,也就增加了第一限位结构201和第二限位结构202之间的稳定性。
应理解,若第一凸起结构和第二凸起结构为凹槽,则凹槽的底壁的厚度可以小于或者等于或者略大于该凹槽所在的第一壁21a的厚度或者所在的绝缘结构22的厚度。或者,与之不同的,该第一凸起结构还可以为第一壁21a上的厚度较大的凸块,例如,该第一凸起结构的厚度大于所在的第一壁21a的其他区域的厚度,以使该第一凸起结构凸出于该第一壁21a的朝向绝缘结构22表面。类似的,该第二凸起结构也可以为绝 缘结构22上的厚度较大的凸块,例如,该第二凸起结构的厚度大于所在的绝缘结构22的其他区域的厚度,以使该第二凸起结构凸出于绝缘结构22的朝向第一壁21a表面。
可选地,对于第一凸起结构为厚度较大的凸块的情况,该第一凸起结构可以与第一壁21a一体,例如,可以通过冲压、铣削等方式在该第一壁21a上形成第一凸起结构;或者,该第一凸起结构也可以和第一壁21a分体形成,例如第一壁21a形成有通孔,第一凸起结构安装于该通孔,安装方式可以包括焊接、铆接、卡接等,本申请对此不做特殊限制。与第一凸起结构类似地,对于第二凸起结构为厚度较大的凸块的情况,该第二凸起结构也可以与绝缘结构22一体或者分体形成,本申请对此不做特殊限制。
可选地,电池单体20还包括:连接构件23,用于与电极端子214电连接,连接构件23设置在绝缘结构22的朝向电池单体20的内部的一侧,连接构件23设置有与第二通孔221对应的第三通孔231,电极端子214贯穿第三通孔231,以使连接构件23、绝缘结构22和第一壁21a铆接。具体地,如图14至图16所示,本申请实施例的连接构件23可以用于与电极端子214电连接,还可以用于与电极组件的极耳电连接,以使得电极端子214与极耳电连接。连接构件23设置有第三通孔231,将第一壁21a的第一通孔2101、绝缘结构22的第二通孔221以及连接构件23的第三通孔231依次堆叠设置,以使得该电极端子214可以依次贯穿该第一通孔2101、第二通孔221以及第三通孔231,从而实现第一壁21a、绝缘结构22和连接构件23之间铆接固定,加工过程简单,有利于提高电池单体20的加工效率。
可选地,还可以将电极端子214与连接构件23之间通过焊接的方式连接,以进一步增加电极端子214与连接构件23之间的连接稳定性,保证电池单体20的性能。
可选地,连接构件23还包括第三限位结构232,第三限位结构232与第二限位结构202相互配合,以阻止连接构件23与绝缘结构22之间的相对移动。具体地,该连接构件23的第三限位机构232可以与第二限位结构202相互配合,即第一限位结构201、第二限位结构202和第三限位结构232可以相互配合,以阻止第一壁21a、绝缘结构22和连接构件23之间相对移动,可以固定该连接构件23,以便于电池单体20的组合安装,还可以保证绝缘结构22将第一壁21a和连接构件23电隔离,避免连接构件23与第一壁21a之间发生短路。
可选地,该第三限位结构232的设置方式可以根据实际应用灵活设置,例如,可以根据第一限位结构201和第二限位结构202的设置方式,对应设置该第三限位结构232。例如,若第一限位结构201包括第一凸起结构,第二限位结构202包括第一凹槽结构,该第一凹槽可以朝向连接构件23凸出于绝缘结果22的表面,对应的,该第三限位结构232则可以包括设置在该连接构件23的开口朝向绝缘结构22的凹槽或者通孔,以用于容纳该第一凹槽结构的至少部分,以实现第三限位结构232与第二限位结构202之间的相互配合。
以如图14至图16所示为例,与第一限位结构201与第二限位结构202对应的,第三限位结构232包括连接构件23的第四通孔,第四通孔用于容纳第二限位结构202的至少部分。具体地,第一限位结构201可以包括第一壁21a的第一凸起结构,第二限 位结构202可以包括绝缘结构22的第一凹槽结构,且该第一凹槽结构凸出于该绝缘结构22的朝向电池单体20的内部的表面,则该第一凹槽结构能够容纳至少部分第一凸起结构的情况下,该第三限位结构232可以包括第四通孔,以用于容纳至少部分第一凹槽结构。这样,相比于将第三限位结构232设置为凹槽的情况,第四通孔可以节省凹槽的底壁占用的空间,提高该电池单体20内部的空间利用率,还可以减轻该连接构件23的重量,也就可以减轻该电池单体20的重量,从而提高电池单体20的性能。另外,该第四通孔的内壁与第一凸起结构之间设置有绝缘结构22的第一凹槽结构,还可以避免连接构件23与第一壁21a发生短路。
再例如,若第一限位结构201包括第二凹槽结构,第二限位结构202包括第二凸起结构,该第二凸起结构为设置在绝缘结构22上的凹槽,则该第三限位结构232可以包括向绝缘结构22凸起的第三凸起结构,该第三凸起结构至少部分容纳于第二凸起结构内,以实现第三限位结构232与第二限位结构202之间的相互配合。
应理解,本申请实施例的第一限位结构201和第二限位结构202的设置位置和尺寸可以根据实际应用灵活设置。例如,可以根据第一壁21a的尺寸设置该第一限位结构201的尺寸和位置,而第二限位结构202的尺寸和位置与第一限位结构202的尺寸和位置相关,以使该第一限位结构201与第二限位结构202能够相互配合。下面以第一壁21a与第一限位结构201为例进行说明。
图17示出了本申请实施例的电池单体20的第一壁21a的外表面的示意图,该第一壁21a的外表面为该第一壁21a的远离电池单体20内部的表面。如图17所示,沿该第一壁21a的长度方向X,该电极端子214与该第一限位结构201之间的距离L1与该第一壁21a的长度L2的比值L1/L2的取值范围为[10%,48%]。若L1/L2的值设置过大,则在该第一壁21a的长度方向X上,该第一限位结构201与该电极端子214之间的距离L1过大,而第一限位结构201距离电极端子214太远会导致电极端子214的安装过程中,该第一限位结构201不能有效限制第一壁21a与绝缘结构22之间的相对移动,进而会影响电池单体20的加工效率。相反地,若L1/L2的值设置过小,则第一限位结构201与电极端子214的距离L1会过小,第一限位结构201距离电极端子214太近则很可能影响电极端子214的安装。例如,第一壁21a设置有用于容纳至少部分电极端子214的第一通孔2101,第一限位结构201与电极端子214的距离L1过小,则该第一限位结构201距离该第一通孔2101的距离也会过小,二者之间很可能会相互影响,进而影响第一壁21a的结构强度和稳定性,进而降低电池单体20的安装效率以及提高加工难度。
因此,L1/L2的取值不宜设置过大或者过小。例如,L1/L2的取值范围可以为[10%,48%];或者也可以为[20%,40%];或者,L1/L2的取值可以设置为10%、15%、20%、25%、30%、35%、40%、或者45%。
应理解,如图17所示,本申请实施例中电极端子214与该第一限位结构201之间的距离L1也可以表示:沿第一壁21a的长度方向X,电极端子214的中心与第一限位结构201的中心之间的距离。另外,电极端子214与该第一限位结构201之间的距离L1中电极端子214可以表示该第一壁21a上的任意一个电极端子214。例如,L1可以 为第一限位结构201与距离该第一限位结构201最近的一个电极端子214之间的距离,如图17所示,若距离第一限位结构201最近的一个电极端子214为正极电极端子214a,则L1为第一限位结构201与该正极电极端子214a之间的距离,但本申请实施例并不限于此。
可选地,沿该第一壁21a的宽度方向Y,该第一限位结构201的尺寸W1与该第一壁21a的宽度W2的比值W1/W2的取值范围为[15%,95%]。若W1/W2的取值过大,则在该第一壁21a的宽度方向Y上,第一限位结构201的尺寸W1过大,会增加该第一限位结构201的加工难度,并且该第一限位结构201很可能影响与该第一壁21a相交的其他壁。相反地,若W1/W2的取值过小,则在该第一壁21a的宽度方向Y上,第一限位结构201的尺寸W1过小,由于第一壁21a的宽度W2有限,较小尺寸的第一限位结构201会增加该第一限位结构201的加工难度,并也很难通过尺寸过小的该第一限位结构201限制第一壁21a与绝缘结构22之间的相对移动。
因此,W1/W2的值不宜设置过大或者过小。例如,W1/W2的取值范围可以为[15%,95%];或者也可以为[20%,40%];或者,W1/W2的取值可以设置为15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或者95%。
应理解,本申请实施例的第一壁21a的长度方向X垂直于宽度方向Y,且该第一壁21a的长度L2表示该第一壁21a的长度方向X的尺寸,该第一壁21a的宽度W2表示该第一壁21a的宽度方向Y的尺寸,该第一壁21a的长度L2大于该第一壁21a的宽度W2。
图18示出了本申请实施例的盖板212的远离电池单体20的内部的表面的示意图,例如,该图19所示的盖板212可以为如图3至图16所示的任意一个电池单体20的盖板212。图19示出了本申请实施例的盖板212的局部截面示意图,例如,该截面示意图可以为沿图18所示的F-F’方向的截面的局部示意图。
可选地,本申请实施例的盖板212用于盖合于壳体211的开口2111,以将电池单体20的内部环境与外部环境隔绝的部件。盖板212的形状可以与壳体211的形状相适配,例如,如图18至图19所示,壳体211为长方体结构,盖板212为与壳体211相适配的矩形板状结构。
在该电池单体20中,壳体211与盖板212形成的内部空间可以用于容纳电极端子,该电极组件是电池单体20中发生电化学反应的部件。具体地,电极组件可以包括极耳和电极主体部,其中,电极组件的极耳可以包括正极极耳和负极极耳,正极极耳可以由正极极片上未涂覆正极活性物质层的部分层叠形成,负极极耳可以由负极极片上未涂覆负极活性物质层的部分层叠形成,电极主体部可以由正极极片上涂覆有正极活性物质层的部分和负极极片上涂覆有负极活性物质层的部分层叠形成或者卷绕形成。
应理解,根据实际使用需求,壳体211内的电极组件可设置为一个,也可以是多个。电极组件可以是圆柱体、长方体等,若电极组件为圆柱体结构,壳体211也可以为圆柱体结构,若电极组件为长方体结构,壳体211也可以为长方体结构。
可选地,本申请实施例的该盖板212可以为电池单体20的任意一个壁,例如,盖板212为电池单体20的面积最大的壁,这样便于电池单体20内部的部件的安装,例 如,可以便于电极组件的安装,加快该电池单体20的加工速度。
可选地,本申请实施例的外壳21的材质可以根据实际应用灵活设置,并且,盖板212的材质与壳体211的材质可以相同,也可以不同。例如,壳体211的材料包括不锈钢和/或合金;和/或,盖板212的材料包括不锈钢和/或合金,以使该壳体211和盖板212具有较强的硬度,保证该电池单体20的结构强度。再例如,在本申请实施例中,壳体211的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。盖板212的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
可选地,本申请实施例的外壳21的厚度可以根据实际应用灵活设置,并且,外壳21的不同的壁的厚度可以相同也可以不同。例如,盖板212的厚度与壳体211的厚度可以相同,也可以不同;壳体211的不同的壁的厚度可以相同,也可以不同。例如,如图18至图19所示,以盖板212为例,盖板212的厚度T4的取值范围为[50μm,200μm],以保证该电池单体20的结构强度。例如,该盖板212的厚度T可以设置为50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或者200μm。
与之类似的,壳体211的任意一个壁的厚度的取值范围为[50μm,200μm],以保证该电池单体20的结构强度。例如,该壳体211的任意一个壁的厚度T可以设置为50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或者200μm。再例如,对于如图12和图13所示的壳体211,由于其侧壁2113增加了第二延伸结构2112的厚度,因此,加厚之后的侧壁2113的总厚度T3的取值范围可以设置为[60μm,250μm],以保证该电池单体20的结构强度,以及壳体211与盖板212之间的连接强度和密封可靠性。例如,该加厚的侧壁2113的厚度T3可以设置为60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm、200μm、210μm、220μm、230μm、240μm或者250μm。
可选地,本申请实施例的电池单体20的外壳21还可以设置有泄压机构213。例如,如图18至图19所示,盖板212设置有泄压机构213;或者,不同于图18和图19,也可以在与盖板212相对设置的壁上设置该泄压机构213;或者,也可以在其他壁上设置该泄压机构。本申请实施例的该泄压机构213用于在电池单体20的内部压力或温度达到预定阈值时致动以泄放电池单体20的内部压力或温度。
该预定阈值可以根据设计需求不同而进行调整。该预定阈值可取决于电池单体20中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。本申请中所提到的“致动”是指泄压机构213产生动作,从而使得电池单体20的内部压力及温度得以被泄放。泄压机构213产生的动作可以包括但不限于:泄压机构213中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构213在致动后,电池单体20内部的高温高压物质作为排放物会从泄压机构213向外排出。以此方式能够在可控压力或温度的情况下使电池单体20发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体20的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体20上的泄压机构213对电池的安全性有着重要影响。例如,当电池单体20发生短路、过充等现象时,可能会导致电池单体20内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构213致动可以将内部压力及温度向外释放,以防止电池单体20爆炸、起火。
可选地,本申请实施例的该泄压机构213可以设置于电池单体20的外壳21的任意一个壁,例如,本申请实施例主要以该泄压机构213设置在盖板212上为例,但相关描述同样适用于泄压机构213位于其他壁的情况。另外,该泄压机构213可以为盖板212的一部分,也可以与盖板212为分体式结构,通过例如焊接的方式固定在盖板212上。
例如,泄压机构213也可以与盖板212为分体式结构,泄压机构213可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体20的内部压力或温度达到预定阈值时,泄压机构213执行动作或者泄压机构213中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
再例如,当泄压机构213为盖板212的一部分时,例如,泄压机构213可以通过在盖板212上设置刻痕的方式形成,即泄压机构213为盖板212的刻痕,那么该刻痕所在区域的厚度小于该盖板212的除该刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
例如,如图18至图19所示,泄压机构213为设置于盖板212的远离电池单体20的内部的表面的L型刻痕,即该泄压机构213具有相互连接且相互垂直的两部分,这样,电池单体20内部的温度或者压力达到预设阈值时,该泄压机构213可以沿任一方向被破坏,以便于泄压机构213及时被破坏,以及时泄放电池单体20的内部的压力和温度,避免电池单体20发生爆炸。另外,将泄压机构213的设置在盖板212的外表面,避免电池单体20内部的电解液在刻痕内堆积,避免电解液对泄压机构213的腐蚀,从而也可以提高泄压机构213的安全性。
可选地,如图19所示,本申请实施例的泄压机构213为刻痕时,该刻痕的横截面可以为等腰梯形,一方面便于加工,另一方面,相比于矩形的横截面,可以避免应力集中,提高电池单体20正常使用过程中该泄压机构213的稳定性。
在本申请实施例的电池单体20中,盖板212和/或壳体211具有延伸部210,通过该延伸部210能够实现壳体211和盖板212之间的连接。例如,对于盖板212,可以在盖板212的边缘区域设置有向壳体211延伸的延伸部210;对于壳体211,可以在该壳体211的侧壁2113的边缘区域设置向壳体211的开口2111的中心延伸的延伸部210。通过设置的延伸部210,可以增加壳体211与盖板212之间的接触面积,这样,在对壳体211与盖板212进行密封连接时,可以增加壳体211与盖板212之间的可连接区域的面积,例如,可以增加壳体211与盖板212之间的可焊接区域的面积;还可以减 少壳体211与盖板212的厚度对壳体211与盖板212之间的密封连接的限制,可以通过设置的延伸部210,增加壳体211与盖板212之间的密封连接强度,提高密封可靠性,提高电池单体20的加工效率和结构强度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池单体(20),其特征在于,包括:
    壳体(211),具有开口(2111)的中空结构;
    盖板(212),用于盖合所述开口(2111),
    其中,所述盖板(212)的边缘区域具有向所述壳体(211)延伸的延伸部(210),和/或,所述壳体(211)的用于形成所述开口(2111)的侧壁(2113)的边缘区域具有向所述开口(2111)的中心延伸的延伸部(210);所述延伸部(210)用于连接所述壳体(211)与所述盖板(212)。
  2. 根据权利要求1所述的电池单体(20),其特征在于,所述延伸部(210)包括第一延伸结构(2122),所述盖板(212)包括主体部(2121)和所述第一延伸结构(2122),所述第一延伸结构(2122)自所述主体部(2121)的边缘区域向所述壳体(211)延伸,所述主体部(2121)用于盖合所述开口(2111),所述第一延伸结构(2122)用于与所述壳体(211)连接。
  3. 根据权利要求2所述的电池单体(20),其特征在于,所述第一延伸结构(2122)用于与所述侧壁(2113)的内表面连接,所述侧壁(2113)的内表面为所述侧壁(2113)的朝向所述电池单体(20)的内部的表面。
  4. 根据权利要求3所述的电池单体(20),其特征在于,所述盖板(212)还包括与所述主体部(2121)相连的搭接部(2123),所述搭接部(2123)自所述主体部(2121)边缘向远离所述主体部(2121)的中心的方向延伸,所述搭接部(2123)连接所述侧壁(2113)的厚度端面(2113a),所述厚度端面(2113a)为所述侧壁(2113)的朝向所述盖板(212)的端面。
  5. 根据权利要求2所述的电池单体(20),其特征在于,所述第一延伸结构(2122)用于与所述侧壁(2113)的外表面连接,所述侧壁(2113)的外表面为所述侧壁(2113)的远离所述电池单体(20)的内部的表面。
  6. 根据权利要求2至5中任一项所述的电池单体(20),其特征在于,所述第一延伸结构(2122)的厚度的取值范围为[0.05mm,0.2mm];和/或,
    所述第一延伸结构(2122)自所述主体部(2121)凸出的高度的取值范围为[0.05mm,0.2mm]。
  7. 根据权利要求1至6中任一项所述的电池单体(20),其特征在于,所述延伸部(210)包括设置于所述侧壁(2113)的第二延伸结构(2112),所述第二延伸结构(2112)的至少部分位于所述侧壁(2113)的用于形成所述开口(2111)的边缘区域,且所述第二延伸结构(2112)自所述侧壁(2113)向所述开口(2111)的中心延伸,所述第二延伸结构(2112)用于与所述盖板(212)连接。
  8. 根据权利要求7所述的电池单体(20),其特征在于,所述侧壁(2113)包括厚度端面(2113a),所述厚度端面(2113a)为所述侧壁(2113)的朝向所述盖板(212)的端面,所述厚度端面(2113a)与所述第二延伸结构(2112)的朝向所述盖板(212) 的表面齐平,所述厚度端面(2113a)与所述第二延伸结构(2112)用于与所述盖板(212)连接。
  9. 根据权利要求7或8所述的电池单体(20),其特征在于,所述第二延伸结构(2112)为位于所述侧壁(2113)的用于形成所述开口(2111)的边缘区域且自所述侧壁(2113)的内表面凸出的凸起结构,所述侧壁(2113)的内表面为所述侧壁(2113)的朝向所述电池单体(20)的内部的表面。
  10. 根据权利要求9所述的电池单体(20),其特征在于,所述第二延伸结构(2112)的厚度的取值范围为[0.05mm,0.2mm];和/或,
    所述第二延伸结构(2112)自所述侧壁(2113)凸出的高度的取值范围为[0.05mm,0.2mm]。
  11. 根据权利要求8所述的电池单体(20),其特征在于,所述第二延伸结构(2112)沿第一方向的尺寸等于所述侧壁(2113)的沿第一方向的尺寸,所述第一方向垂直于所述盖板(212)。
  12. 根据权利要求11所述的电池单体(20),其特征在于,所述厚度端面(2113a)与所述第二延伸结构(2112)的朝向所述盖板(212)的表面的沿第二方向的总长度与所述盖板(212)的厚度的差值大于或者等于0.01mm,所述第二方向垂直于所述侧壁(2113)。
  13. 根据权利要求1至12中任一项所述的电池单体(20),其特征在于,所述盖板(212)为所述电池单体(20)的面积最大的壁。
  14. 根据权利要求1至13中任一项所述的电池单体(20),其特征在于,所述壳体(211)的材料包括不锈钢和/或合金;和/或,
    所述盖板(212)的材料包括不锈钢和/或合金。
  15. 根据权利要求1至14中任一项所述的电池单体(20),其特征在于,所述壳体(211)的厚度的取值范围为[50μm,200μm];和/或,
    所述盖板(212)的厚度的取值范围为[50μm,200μm]。
  16. 一种电池,其特征在于,包括:
    多个如权利要求1至15中任一项所述的电池单体(20)。
  17. 一种用电设备,其特征在于,包括:
    多个如权利要求1至15中任一项所述的电池单体(20),所述电池单体(20)用于为所述用电设备提供电能。
PCT/CN2022/125687 2022-10-17 2022-10-17 电池单体、电池和用电设备 WO2024082095A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125687 WO2024082095A1 (zh) 2022-10-17 2022-10-17 电池单体、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125687 WO2024082095A1 (zh) 2022-10-17 2022-10-17 电池单体、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024082095A1 true WO2024082095A1 (zh) 2024-04-25

Family

ID=90736513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125687 WO2024082095A1 (zh) 2022-10-17 2022-10-17 电池单体、电池和用电设备

Country Status (1)

Country Link
WO (1) WO2024082095A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243605A (zh) * 1997-11-07 2000-02-02 索尼株式会社 矩形密封电池
CN101785131A (zh) * 2007-07-23 2010-07-21 丰田自动车株式会社 具备电池壳体以及封口板的电池
CN211182258U (zh) * 2019-10-28 2020-08-04 宜兴市惠华复合材料有限公司 一种新型锂电池外壳以及应用该外壳的壳盖
CN114024068A (zh) * 2021-11-08 2022-02-08 孚能科技(赣州)股份有限公司 电池外壳结构、单体电池、电池模组及电池包
CN217134623U (zh) * 2022-01-27 2022-08-05 曙鹏科技(深圳)有限公司 扣式电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243605A (zh) * 1997-11-07 2000-02-02 索尼株式会社 矩形密封电池
CN101785131A (zh) * 2007-07-23 2010-07-21 丰田自动车株式会社 具备电池壳体以及封口板的电池
CN211182258U (zh) * 2019-10-28 2020-08-04 宜兴市惠华复合材料有限公司 一种新型锂电池外壳以及应用该外壳的壳盖
CN114024068A (zh) * 2021-11-08 2022-02-08 孚能科技(赣州)股份有限公司 电池外壳结构、单体电池、电池模组及电池包
CN217134623U (zh) * 2022-01-27 2022-08-05 曙鹏科技(深圳)有限公司 扣式电池

Similar Documents

Publication Publication Date Title
JP7422789B2 (ja) 電池、その関連装置、製造方法及び製造機器
CN216213942U (zh) 电池单体、电池以及用电装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
JP2023512947A (ja) 電池セル、電池及び電力消費装置
WO2022205069A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
US20230344033A1 (en) Battery, power consuming device, and method and device for manufacturing battery
WO2024092442A1 (zh) 电池和用电设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2024082095A1 (zh) 电池单体、电池和用电设备
WO2023050289A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023050278A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2024082097A1 (zh) 电池单体、电池和用电设备
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2024082093A1 (zh) 电池单体、电池和用电设备
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2022170487A1 (zh) 电池单体、电池、用电装置以及制备电池单体的方法
WO2024040534A1 (zh) 电池单体的壳体、电池单体、电池和用电设备
WO2024065468A1 (zh) 电池单体、电池及用电设备
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备