WO2023050278A1 - 电池单体及其制造方法和制造系统、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造系统、电池以及用电装置 Download PDF

Info

Publication number
WO2023050278A1
WO2023050278A1 PCT/CN2021/122101 CN2021122101W WO2023050278A1 WO 2023050278 A1 WO2023050278 A1 WO 2023050278A1 CN 2021122101 W CN2021122101 W CN 2021122101W WO 2023050278 A1 WO2023050278 A1 WO 2023050278A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
battery cell
protrusion
cover body
current collecting
Prior art date
Application number
PCT/CN2021/122101
Other languages
English (en)
French (fr)
Inventor
方堃
郭志君
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180081120.7A priority Critical patent/CN116529942A/zh
Priority to JP2023509716A priority patent/JP2023547006A/ja
Priority to PCT/CN2021/122101 priority patent/WO2023050278A1/zh
Priority to EP21953609.1A priority patent/EP4187690A1/en
Priority to KR1020237004869A priority patent/KR20230048044A/ko
Priority to US18/113,074 priority patent/US20230207984A1/en
Publication of WO2023050278A1 publication Critical patent/WO2023050278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell, a manufacturing method and system thereof, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery cell, a manufacturing method and a manufacturing system thereof, a battery and an electrical device, which can improve the safety of the battery cell.
  • an embodiment of the present application provides a battery cell, including: a housing with an opening; an electrode assembly housed in the housing, and the electrode assembly is provided with a first tab at an end facing the opening; and an end cover,
  • the end cap includes a cap body and a first protrusion connected to the cap body, the cap body is provided with a weakened portion, and the end cap is configured to rupture along the weakened portion when the internal pressure of the battery cell reaches a threshold value, so as to Relieve internal pressure.
  • the first protrusion protrudes from the cover body in a direction facing the electrode assembly, and is used to support the first tab, so that an avoidance gap for avoiding the weak part is formed between the first tab and the cover body.
  • the first protrusion protruding from the cover body can support the first tab, so as to reduce the shaking amplitude of the electrode assembly when the battery unit vibrates, and improve the stability of the electrode assembly.
  • the first protrusion supports the first tab to form an avoidance gap between the first tab and the cover body for avoiding the weak part, thereby reducing the risk of the electrode assembly pressing the weak part and reducing the possibility of failure of the weak part , improve the safety of the battery cell.
  • a first concave portion is formed on the end cap corresponding to the first convex portion from the outer surface of the cap body along the direction facing the electrode assembly, and the bottom surface of the first concave portion is smaller than the inner surface of the cap body. The surface is closer to the first lug.
  • the embodiment of the present application further ensures the degree of depression of the first recess, so as to improve the elasticity of the first protrusion and reduce the pressure damage of the first protrusion during the assembly process. An extreme risk.
  • the first protrusion is used to abut against and weld the first tab, so as to realize the electrical connection between the end cover and the first tab.
  • the end cap can be directly electrically connected to the first tab through the first protrusion, thereby simplifying the structure of the battery cell.
  • the battery cell further includes a current collecting member disposed between the end cover and the first tab.
  • the current collecting member is used for connecting the end cover and the first tab, so as to realize the electrical connection between the end cover and the first tab.
  • an escape gap is located between the current collecting member and the cap body.
  • the first protrusion protrudes from the cover body, so the first protrusion will separate the cover body from the first tab in the thickness direction; if the end cover and the first tab are directly connected, the first tab can only be connected to The first protrusion of the end cap, which will cause the area of the first tab that can directly transmit current to be limited by the first protrusion.
  • the current collecting member to connect the first tab and the end cap, the area of the first tab that can directly transmit current is no longer limited by the first protrusion, and the current of the first tab can pass through the collector.
  • the current collecting member merges into the end cover, so that the current collecting member can reduce the difference in the conductive path between different regions of the first tab and the end cover, improve the uniformity of the current density of the first pole piece, and reduce the internal resistance. Improve the over-current capability and charging efficiency of the battery cell.
  • the avoidance gap is located between the flow-collecting member and the cover body, which can not only reduce the risk of the flow-collecting member squeezing the weak part, but also reduce the possibility of the flow-collecting member blocking the exhaust channel when the weak part ruptures, ensuring smooth exhaust. Air, improve safety.
  • the current collecting member covers the weakened portion along the thickness direction of the end cap, so as to separate the weakened portion from the first tab.
  • the current collecting member can separate the weakened portion from the first tab, so as to reduce the active particles in the electrode assembly falling on the weakened portion and reduce the risk of the weakened portion being corroded.
  • the first protrusion surrounds the outer side of the cover body, and the current collecting member is used to connect the cover body and the first tab, so as to realize the electrical connection between the end cover and the first tab.
  • the current collecting member includes a first current collecting portion and a second current collecting portion connected to the first current collecting portion, the first current collecting portion is used to connect the first tab so that the current collecting member and the first current collecting portion The tabs are electrically connected, and the second current collecting portion is used to connect the cover body to electrically connect the current collecting member and the end cover.
  • the first current collecting part protrudes from the surface of the second current collecting part facing the electrode assembly, and the position of the current collecting member corresponding to the first current collecting part is formed with a
  • the avoidance recess is recessed in the direction of the electrode assembly to form an avoidance gap between the current collecting member and the cap body.
  • the avoidance recess is provided to form an avoidance gap and prevent the first collecting part from abutting against the cover body, thereby reducing the risk of the first collecting part pressing the weak part and improving safety.
  • the first current collecting part supports the middle area of the first tab, and the first convex part supports the edge area of the first tab, which can improve the uniformity of the force on the first tab and reduce the thickness of the pole piece of the electrode assembly. Risk of offset, misalignment.
  • the first current collecting part is used to abut and weld the first tab
  • the second current collecting part is used to abut and weld the cover body.
  • the avoidance recess can reduce the thickness of the first collecting part, so as to reduce the welding power required for welding the first collecting part and the first tab, reduce heat generation, and reduce the risk of other components being burned.
  • At least part of the current collecting member is located between the first protrusion and the first tab.
  • the first protrusion supports the first tab through the current collecting member.
  • the first protrusion supports the first tab through the current collecting member, so as to reduce the shaking amplitude of the electrode assembly when the battery unit vibrates, and improve the stability of the electrode assembly. Meanwhile, the first protrusion supports the current collecting member to form an avoidance gap between the current collecting member and the cover body.
  • a part of the current collecting member is used to abut and weld with the first tab, and another part of the current collecting member is used to abut and weld with the first protrusion.
  • welding can reduce the contact resistance between the current collecting member and the end cap and the contact resistance between the current collecting member and the first tab, and improve the overcurrent capability.
  • the current collecting member is a flat plate structure.
  • the flat current collecting member is easier to form.
  • the plate-shaped current collecting member can be in contact with the first tab as a whole, thereby increasing the flow area, and enabling the current collecting member to support the first tab more evenly, reducing the offset and misalignment of the pole pieces of the electrode assembly in the thickness direction risks of.
  • the plate-shaped current collecting member can also be completely separated from the cover body, so as to ensure an avoidance gap between the current collecting member and the cover body, and reduce the risk of contact between the current collecting member and the weak part.
  • the first protrusion surrounds the outside of the cover body.
  • the cover body surrounds the outside of the first protrusion.
  • the end cap further includes a second protrusion surrounding the outer side of the cap body.
  • the second protrusion protrudes from the inner surface of the cover body in the direction facing the electrode assembly, and the top end surface of the second protrusion is closer to the first tab than the top end surface of the first protrusion, so that the second protrusion abuts against the electrode assembly. connected to the first tab and used to support the first tab.
  • the first protrusion supports the middle area of the first tab through the current collecting member, and the second protrusion supports the edge area of the first tab, which can improve the uniformity of the force on the first tab and reduce the electrode assembly.
  • a second concave portion is formed on the end cap corresponding to the second convex portion from the outer surface of the cap body along the direction facing the electrode assembly, and the bottom surface of the second concave portion is lower than the inner surface of the cap body. The surface is closer to the first lug.
  • the concave degree of the second concave part is further ensured, so as to improve the elasticity of the second convex part and reduce the pressure damage of the first pole by the second convex part during the assembly process. ear risk.
  • the outer surface of the second protrusion abuts against the inner surface of the housing and is used for welding with the housing to close the opening.
  • welding can realize sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the second protrusion and the casing.
  • the second concave part can reduce the strength of the second convex part and improve the elasticity of the second convex part. In this way, in the process of welding the second convex part and the shell, the second convex part can release the welding stress through deformation, thereby reducing the welding area. Risk of deformation, cracking, improved sealing performance.
  • the cover body is a flat plate structure.
  • the cover body includes a main body and a third protrusion, the main body surrounds the outside of the third protrusion, the first protrusion surrounds the outside of the main body, and the weak portion is formed on the third protrusion.
  • the main body includes a first inner surface and a first outer surface opposite to each other, the first inner surface faces the electrode assembly, the first protrusion and the third protrusion protrude from the first inner surface in a direction facing the electrode assembly, and the second The top end surface of the first protrusion is closer to the first tab than the top end surface of the third protrusion, so as to form an avoidance gap for avoiding the weak part between the current collecting member and the third protrusion.
  • the strength of the end cap can be increased and the deformation of the end cap can be reduced by arranging the third protrusion in the middle of the end cap.
  • the third convex part is in a protruding state and is not easily deformed. Therefore, disposing the weak part on the third convex part can reduce the creep of the weak part, thereby reducing the risk of failure of the weak part.
  • an avoidance gap is formed between the third convex portion and the flow collecting member to reduce the risk of the flow collecting member blocking the exhaust channel when the weak portion breaks, to ensure smooth exhaust and reduce safety risks.
  • a third recess is formed on the cover body at a position corresponding to the third protrusion, which is recessed from the first outer surface in a direction facing the electrode assembly, and the third protrusion is on the bottom surface opposite to the third recess.
  • the area forms the weak point.
  • the weak portion is formed in the area of the third convex portion opposite to the bottom surface of the third concave portion, which can increase the distance between the weak portion and other external components and reduce the risk of the weak portion being crushed by external components.
  • the cover body is provided with a groove, and the area of the cover body opposite to the groove forms a weak portion.
  • the thickness and strength of the weak portion are reduced by setting the groove, so that the end cap can be broken along the weak portion when the internal pressure of the battery cell reaches a threshold value.
  • the end cap is electrically connected to the first tab and the housing.
  • the casing itself can be used as the output pole of the battery cell.
  • the housing can be electrically connected to the current flow component, which can not only increase the flow area, but also make the structural design of the current flow component more flexible.
  • the casing includes a side wall and a bottom wall connected to the side wall, the side wall extends along the thickness direction of the end cap and is arranged around the periphery of the electrode assembly, and the bottom wall is provided with an electrode lead-out hole.
  • the electrode assembly further includes a second tab, the first tab and the second tab have opposite polarities and are respectively located at two ends of the electrode assembly.
  • the battery cell also includes an electrode terminal installed in the electrode lead-out hole, and the electrode terminal is electrically connected to the second tab.
  • the bottom wall and the electrode terminals can be used as the two output poles of the battery cell, which can simplify the structure of the battery cell and ensure the overcurrent capability of the battery cell.
  • the bottom wall and the electrode terminals are located at the same end of the battery cells, so that when a plurality of battery cells are assembled into a group, the bus components can be assembled on the same side of the battery cells, which can simplify the assembly process and improve assembly efficiency.
  • the bottom wall and the side wall are integrally formed. This solution can save the connecting process of the bottom wall and the side wall.
  • the first tab is a negative tab
  • the base material of the casing is steel
  • the casing is electrically connected to the negative electrode tab, that is, the casing is in a low potential state.
  • the steel shell is not easily corroded by the electrolyte in a low potential state to reduce safety risks.
  • the base material of the shell and the base material of the end cap are the same. This solution can ensure the welding strength of the casing and the end cover, and ensure the sealing performance of the battery cells.
  • the battery cells are cylindrical battery cells.
  • an embodiment of the present application provides a battery, including a plurality of battery cells in any embodiment of the first aspect.
  • an embodiment of the present application provides an electrical device, including the battery in the second aspect, and the battery is used to provide electrical energy.
  • the embodiment of the present application provides a method for manufacturing a battery cell, including:
  • An electrode assembly is provided, and the electrode assembly is installed in the casing, and the electrode assembly is provided with a first tab at one end facing the opening;
  • An end cover is provided, the end cover includes a cover body and a first protrusion connected to the cover body, and the cover body is provided with a weak portion;
  • the end cap is configured to rupture along the weak portion when the internal pressure of the battery cell reaches a threshold value to release the internal pressure; the first protrusion protrudes from the cap body along the direction facing the electrode assembly, and is used to support the first pole ear, so that an avoidance gap for avoiding the weak part is formed between the first pole ear and the cover body.
  • the embodiment of the present application provides a battery cell manufacturing system, including:
  • the first providing device is used for providing a casing, the casing has an opening;
  • the second providing device is used to provide the electrode assembly and install the electrode assembly into the casing, and the electrode assembly is provided with a first tab at the end facing the opening;
  • the third providing device is used to provide the end cap, the end cap includes a cap body and a first protrusion connected to the cap body, and the cap body is provided with a weak portion;
  • the end cap is configured to rupture along the weak portion when the internal pressure of the battery cell reaches a threshold value to release the internal pressure; the first protrusion protrudes from the cap body along the direction facing the electrode assembly, and is used to support the first pole ear, so that an avoidance gap for avoiding the weak part is formed between the first pole ear and the cover body.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is an explosion schematic diagram of the battery module shown in FIG. 2;
  • Fig. 4 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application.
  • FIG. 6 is an enlarged schematic view of the battery cell shown in FIG. 5 at the circle frame A;
  • Fig. 7 is a schematic cross-sectional view of a battery cell provided by another embodiment of the present application.
  • FIG. 8 is an enlarged schematic view of the battery cell shown in FIG. 7 at the circle B;
  • Fig. 9 is a schematic cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • FIG. 10 is an enlarged schematic view of the battery cell shown in FIG. 9 at block C;
  • Fig. 11 is a schematic flowchart of a method for manufacturing a battery cell provided in some embodiments of the present application.
  • Fig. 12 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode coating area and a positive electrode tab connected to the positive electrode coating area, and the positive electrode coating area It is coated with a positive electrode active material layer, and the positive electrode tab is not coated with a positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum
  • the positive electrode active material layer includes the positive electrode active material
  • the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector;
  • the negative electrode current collector includes a negative electrode coating area and a negative electrode tab connected to the negative electrode coating area, and the negative electrode coating area The negative electrode active material layer is coated, and the negative electrode tab is not coated with the negative electrode active material layer.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the battery cell also includes a case and an end cover.
  • the case has an opening for accommodating the electrode assembly.
  • the electrode assembly can be assembled into the case through the opening of the case.
  • the end cap is used to cover the opening of the housing to achieve sealing.
  • the main safety hazard comes from the charging and discharging process, and at the same time, there is a suitable ambient temperature design.
  • the protective measures include at least the switching element, the selection of an appropriate spacer material, and a pressure relief mechanism.
  • the switching element refers to an element that can stop charging or discharging the battery when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive pole piece and the negative pole piece. When the temperature rises to a certain value, it can automatically dissolve the micron-scale (or even nanoscale) micropores attached to it, so that metal ions cannot pass through the separator. Terminate the internal reaction of the battery cell.
  • the pressure relief mechanism refers to an element or component that is activated to release the internal pressure when the internal pressure of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to design requirements. The threshold may depend on the materials of one or more of the positive pole piece, the negative pole piece, the electrolyte and the separator in the battery cell.
  • the "activation" mentioned in this application means that the pressure relief mechanism is activated or activated to a certain state, so that the internal pressure of the battery cell can be released.
  • Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the high-temperature and high-pressure material inside the battery cell will be discharged from the actuated part as discharge. In this manner, the battery cells can be depressurized under controllable pressure, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery cell. For example, when a short circuit, overcharge, etc. occur, it may cause thermal runaway inside the battery cell and a sudden increase in pressure. In this case, the internal pressure can be released outward by actuating the pressure relief mechanism to prevent the battery cells from exploding and igniting.
  • the pressure relief mechanism can take the form of an explosion-proof valve, gas valve, pressure relief valve or safety valve, etc., and can specifically adopt a pressure sensitive element or structure, that is, when the internal pressure of the battery cell reaches a predetermined threshold, the pressure relief mechanism executes A weak structure in the action or pressure relief mechanism ruptures, thereby creating an opening or channel through which internal pressure can escape.
  • the inventors tried to integrate the pressure relief mechanism into the end cap.
  • the inventors provided a weakened portion on the end cap, and the end cap is configured to rupture along the weakened portion when the internal pressure of the battery cell reaches a threshold value to release the internal pressure.
  • a short circuit, overcharge, etc. it may cause thermal runaway inside the battery cell and a sudden increase in pressure.
  • the internal pressure can be released through the rupture of the weak part to prevent the battery cell from exploding and catching fire. , thereby improving security.
  • the inventors have found through research that when the battery cell vibrates, the tabs of the electrode assembly are easy to squeeze and impact the weak part; due to the low strength of the weak part, when being squeezed and impacted by the tabs, the weak part may It will rupture when the internal pressure of the battery cell does not reach the threshold, causing the battery cell to fail and causing safety problems.
  • the embodiment of the present application provides a technical solution.
  • the end cap includes a cover body and a first protrusion connected to the cover body.
  • the cover body is provided with a weak portion, and the first protrusion faces the electrode assembly along the The direction protrudes from the cover body and is used to support the tabs of the electrode assembly, so that an avoidance gap for avoiding weak parts is formed between the tabs and the cover body.
  • the battery cell with this structure can reduce the risk of the electrode assembly pressing the weak part, and improve the safety of the battery cell.
  • Electric devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and electric tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4 , the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a box body 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box body 5 is used to accommodate the battery cells, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b, the first box body part 5a and the second box body part 5b cover each other, the first box body part 5a and the second box body part 5a
  • the two box parts 5b jointly define an accommodating space 5c for accommodating the battery cells.
  • the second box body part 5b can be a hollow structure with one end open, the first box body part 5a is a plate-shaped structure, and the first box body part 5a covers the opening side of the second box body part 5b to form an accommodating space 5c
  • the box body 5; the first box body portion 5a and the second box body portion 5b also can be a hollow structure with one side opening, and the opening side of the first box body portion 5a is covered on the opening side of the second box body portion 5b , to form a box body 5 with an accommodating space 5c.
  • the first box body part 5a and the second box body part 5b can be in various shapes, such as cylinders, cuboids and the like.
  • a sealant such as sealant, sealing ring, etc.
  • a sealant can also be arranged between the first box body part 5a and the second box body part 5b.
  • the first box part 5a covers the top of the second box part 5b
  • the first box part 5a can also be called an upper box cover
  • the second box part 5b can also be called a lower box.
  • the battery 2 there may be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel or in parallel.
  • the hybrid connection means that there are both series and parallel connections among the multiple battery cells.
  • a plurality of battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells is accommodated in the box 5; of course, it is also possible to first connect a plurality of battery cells in series or parallel or
  • the battery modules 6 are formed by parallel connection, and multiple battery modules 6 are connected in series or in parallel or in series to form a whole, and are housed in the box body 5 .
  • FIG. 3 is an exploded schematic diagram of the battery module shown in FIG. 2 .
  • FIG. 3 there are multiple battery cells 7 , and the multiple battery cells 7 are connected in series, in parallel, or in parallel to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series, in parallel or in parallel to form a whole, and accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a confluence component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • Fig. 4 is a schematic exploded view of a battery cell provided by some embodiments of the present application
  • Fig. 5 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application
  • Fig. 6 is a schematic diagram of the battery cell shown in Fig. An enlarged schematic diagram of the .
  • the battery cell 7 of the embodiment of the present application includes: a casing 20 with an opening 21 ;
  • the end cover 30 includes a cover body 31 and a first protrusion 32 connected to the cover body 31,
  • the cover body 31 is provided with a weak portion 311, the end cover 30 It is configured to rupture along the weakened portion 311 to release the internal pressure when the internal pressure of the battery cell 7 reaches a threshold value.
  • the first protrusion 32 protrudes from the cover body 31 in the direction facing the electrode assembly 10 , and is used to support the first tab 12 , so that an avoidance for avoiding the weak portion 311 is formed between the first tab 12 and the cover body 31 Gap G.
  • the electrode assembly 10 includes a first pole piece, a second pole piece and a spacer, and the spacer is used to separate the first pole piece from the second pole piece.
  • the polarity of the first pole piece and the second pole piece is opposite, in other words, one of the first pole piece and the second pole piece is a positive pole piece, and the other of the first pole piece and the second pole piece is a negative pole piece pole piece.
  • first pole piece, the second pole piece and the separator are all strip-shaped structures, and the first pole piece, the second pole piece and the separator are wound as a whole to form a winding structure.
  • the winding structure can be a cylindrical structure, a flat structure or other shapes.
  • the electrode assembly 10 includes a main body 11 , a first tab 12 and a second tab 13 , and the first tab 12 and the second tab 13 protrude from the main body 11 .
  • the first tab 12 is the part of the first pole piece not coated with the active material layer
  • the second tab 13 is the part of the second pole piece not coated with the active material layer.
  • one of the first tab 12 and the second tab 13 is a tab of positive polarity
  • the other is a tab of negative polarity.
  • the first tab 12 and the second tab 13 may protrude from the same side of the main body 11 , or may protrude from opposite sides respectively.
  • the first tab 12 and the second tab 13 are respectively provided on both sides of the main body 11 , in other words, the first tab 12 and the second tab 13 are respectively provided at both ends of the electrode assembly 10 .
  • the first tab 12 is located at the end of the electrode assembly 10 facing the end cap 30
  • the second tab 13 is located at the end of the electrode assembly 10 facing away from the end cap 30 .
  • the first tab 12 is wound in multiple turns around the central axis X of the electrode assembly 10 , in other words, the first tab 12 includes multiple turns of tab layers.
  • the first tab 12 is generally cylindrical, and there is a gap between two adjacent tab layers.
  • the first tab 12 can be treated to reduce the gap between the tab layers, so as to facilitate the connection of the first tab 12 with other conductive structures.
  • the first tab 12 can be kneaded and flattened so that the end area of the first tab 12 away from the main body 11 is gathered together; One end of the main body 11 forms a dense end surface, which reduces the gap between tab layers and facilitates the connection of the first tab 12 with other conductive structures.
  • a conductive material may also be filled between two adjacent tab layers, so as to reduce the gap between the tab layers.
  • the second tab 13 is wound in multiple turns around the central axis X of the electrode assembly 10 , and the second tab 13 includes multiple turns of tab layers.
  • the second tab 13 has also been smoothed to reduce the gap between the tab layers of the second tab 13 .
  • the casing 20 is a hollow structure with an opening on one side, and the end cap 30 covers the opening 21 of the casing 20 to form a sealed connection to form an accommodating chamber for accommodating the electrode assembly 10 and the electrolyte.
  • the casing 20 is a hollow structure, and a space for accommodating the electrode assembly 10 is formed inside it.
  • the housing 20 can be in various shapes, such as cylinder, cuboid and so on.
  • the shape of the case 20 may be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the casing 20 includes a side wall 22 and a bottom wall 23 , the side wall 22 surrounds the outer side of the electrode assembly 10 , and the bottom wall 23 is connected to one end of the side wall 22 .
  • the side wall 22 is a cylindrical structure, for example, the side wall 22 can be a cylinder or a square tube; the bottom wall 23 is a plate structure, and its shape corresponds to the shape of the side wall 22 .
  • an opening 21 is formed at one end of the side wall 22 , and the bottom wall 23 is connected to an end of the side wall 22 facing away from the opening 21 .
  • the side wall 22 and the bottom wall 23 may be integrally formed, that is, the housing 20 is an integrally formed member.
  • the side wall 22 and the bottom wall 23 can also be two components provided separately, and then connected together by means of welding, riveting, bonding or the like.
  • the end cap 30 may be electrically connected to the electrode assembly 10 , or may be insulated from the electrode assembly 10 .
  • the end cap 30 is electrically connected to the first tab 12 .
  • the end cover 30 may be directly electrically connected to the first tab 12 , or may be electrically connected to the first tab 12 through other conductive members.
  • the housing 20 may be positively charged, negatively charged, or uncharged.
  • the case 20 can be directly connected to the tab of the electrode assembly 10 , or can be electrically connected to the tab through other conductive members.
  • the end cap 30 and the housing 20 can be connected by welding, so that the end cap 30 and the housing 20 can have the same polarity.
  • the end cap 30 can be used to electrically connect the housing 20 to the positive pole lug; when the housing 20 needs to be negatively charged, the end cap 30 can be used to connect the housing 20 Electrically connected to the negative polarity tab.
  • the housing 20 may also be connected to the tab through other conductive structures, which is not limited in this embodiment.
  • the housing 20 and the end cap 30 can be made of the same material or different materials.
  • the cover body 31 is a plate-shaped structure, which has an inner surface and an outer surface oppositely disposed along the thickness direction Z of the end cover 30 , and the inner surface 31a of the cover body faces the electrode assembly 10 .
  • the inner surface 31a of the cover body may be a flat surface, a curved surface or a combination of flat and curved surfaces.
  • the outer surface 31b of the cover body may be a flat surface, a curved surface or a combination of flat and curved surfaces.
  • both the inner surface 31a of the cover body and the outer surface 31b of the cover body are planar and arranged in parallel.
  • the weak portion 311 is a part of the cover body 31 , and the strength of the weak portion 311 is smaller than other parts of the cover body 31 .
  • the strength of the weak portion 311 can be reduced by reducing the thickness of the weak portion 311 , changing the material of the weak portion 311 or other methods.
  • the weakened portion 311 may circle the central axis X of the electrode assembly 10 once, or may only circle the central axis for 1/2, 2/3 or 3/4 circle, etc., which is not limited in this embodiment.
  • the first protrusion 32 protrudes in a direction facing the electrode assembly 10 relative to the inner surface 31a of the cover body, so that at least a portion of the first protrusion 32 protrudes from the inner surface 31a of the cover body.
  • the extent to which the first protrusion 32 protrudes from the inner surface 31a of the cover body is not limited.
  • first protrusion 32 There may be one first protrusion 32, or there may be a plurality of them.
  • the plurality of first protrusions 32 may be arranged at intervals along the circumferential direction of the end cap 30 .
  • the first protrusion 32 can abut against the first tab 12 to directly support the first tab 12 ; of course, the first protrusion 32 can also indirectly support the first tab 12 by supporting other components.
  • the avoidance gap G is located between the first tab 12 and the cover body 31 .
  • the avoidance gap G is a space formed between the first tab 12 and the cover body 31 that is not filled by other solid members.
  • the avoidance gap G is opposite to the weak portion 311 along the thickness direction Z, thereby playing a role of avoiding the weak portion 311 .
  • the first protrusion 32 protruding from the cover body 31 can support the first tab 12, so as to reduce the shaking amplitude of the electrode assembly 10 when the battery cell 7 vibrates, and improve the stability of the electrode assembly 10. .
  • the first protrusion 32 supports the first tab 12 to form a clearance gap G for avoiding the weak portion 311 between the first tab 12 and the cover body 31, thereby reducing the risk of the electrode assembly 10 squeezing the weak portion 311, The possibility of failure of the weak portion 311 is reduced, and the safety of the battery cell 7 is improved.
  • the avoidance gap G is set to reduce the risk of the first tab 12 pressing the weak portion 311 and reduce the possibility of failure of the weak portion 311 .
  • the cover body 31 is provided with a groove 312 , and the area of the cover body 31 opposite to the groove 312 forms a weak portion 311 .
  • the groove 312 may be provided on the inner surface 31a of the cover body, and the weak portion 311 is a part of the cover body 31 between the bottom surface of the groove 312 and the outer surface 31b of the cover body.
  • the groove 312 may also be provided on the outer surface 31b of the cover body, and the weak portion 311 is a portion of the cover body 31 between the bottom surface of the groove 312 and the inner surface 31a of the cover body.
  • the groove 312 is provided to reduce the thickness and strength of the weak portion 311 , so that the end cap 30 can be broken along the weak portion 311 when the internal pressure of the battery cell 7 reaches a threshold.
  • the groove 312 may be provided on the inner surface 31a of the cover body. Groove 312 communicates with avoidance gap G.
  • the groove 312 in this embodiment can further increase the distance between the weak portion 311 and the first tab 12 , reducing the risk of the first tab 12 pressing the weak portion 311 .
  • the first tab 12 is electrically connected to the end cap 30 .
  • the end cover 30 may be directly connected to the first tab 12 , for example, the end cover 30 may be directly welded to the first tab 12 to realize the electrical connection between the end cover 30 and the first tab 12 .
  • the end cap 30 may also be indirectly connected to the first tab 12 through other conductive structures (such as a current collecting member described later).
  • the first protrusion 32 can be connected to the conductive structure, and the cover body 31 can also be connected to the conductive structure.
  • the end cap 30 can be charged, and it can be used as the output pole of the battery cell 7 , thereby saving a traditional electrode terminal and simplifying the structure of the battery cell 7 .
  • the end cap 30 is electrically connected to the first tab 12 and the housing 20 .
  • the casing 20 itself can serve as the output pole of the battery cell 7 .
  • the housing 20 can be electrically connected to the busbar, which can not only increase the flow area, but also make the structural design of the busbar more flexible.
  • the housing 20 includes a side wall 22 and a bottom wall 23 connected to the side wall 22.
  • the side wall 22 extends along the thickness direction Z of the end cover 30 and is arranged around the periphery of the electrode assembly 10.
  • the bottom wall 23 is provided with Electrode extraction hole 231 .
  • the electrode assembly 10 further includes a second tab 13 , the first tab 12 and the second tab 13 are opposite in polarity and are respectively located at two ends of the electrode assembly 10 .
  • the battery cell 7 further includes an electrode terminal 40 installed in the electrode lead-out hole 231 , and the electrode terminal 40 is electrically connected to the second tab 13 .
  • the second tab 13 may be directly electrically connected to the electrode terminal 40 , or may be indirectly electrically connected to the electrode terminal 40 through other conductive structures.
  • the electrode terminal 40 is insulated from the bottom wall 23 .
  • the electrode terminal 40 and the bottom wall 23 may have different polarities.
  • the electrode terminal 40 and the bottom wall 23 may serve as two output poles of the battery cell 7 .
  • the bottom wall 23 is the negative output pole of the battery cell 7
  • the electrode terminal 40 is the positive output pole of the battery cell 7
  • the bottom wall 23 is the positive output pole of the battery cell 7
  • the electrode terminal 40 is the negative output pole of the battery cell 7 .
  • the electrode terminal 40 is fixed on the bottom wall 23 .
  • the electrode terminals 40 can be integrally fixed on the outside of the bottom wall 23 , or can extend into the inside of the casing 20 through the electrode lead-out holes 231 .
  • the first tab 12 is located at one end of the electrode assembly 10 facing the end cover 30, so as to facilitate the electrical connection between the end cover 30 and the first tab 12; correspondingly, the second tab 13 is located at one end of the electrode assembly 10 facing the bottom wall 23 , so as to facilitate the electrical connection between the electrode terminal 40 and the second tab 13 .
  • the first tab 12 and the second tab 13 are arranged at both ends of the electrode assembly 10, which can reduce the risk of conduction between the first tab 12 and the second tab 13, and increase the size of the first tab. 12 and the second tab 13 flow area.
  • the bottom wall 23 and the electrode terminal 40 can be used as two output poles of the battery cell 7 , which can simplify the structure of the battery cell 7 and ensure the overcurrent capability of the battery cell 7 .
  • the bottom wall 23 and the electrode terminal 40 are located at the same end of the battery cells 7, so that when a plurality of battery cells 7 are assembled into groups, the confluence parts can be assembled to the same side of the battery cells 7, which can simplify the assembly process, Improve assembly efficiency.
  • the bottom wall 23 and the side wall 22 are integrated.
  • the connecting process of the bottom wall 23 and the side wall 22 can be omitted.
  • the housing 20 may be formed through a stretching process.
  • the electrode lead-out hole 231 in the embodiment of the present application is made after the casing 20 is stretched and formed.
  • the inventors have tried to roll the open end of the shell so that the open end of the shell is folded inward to form a flanging structure, and the flanging structure presses the end cap to fix the end cap.
  • the inventor installed the electrode terminal on the end cap, and used the flanging structure and the electrode terminal as the two output poles of the battery cell.
  • the larger the size of the flanged structure the higher the risk of curling and wrinkling after forming; if the flanged structure curls and folds, it will cause the surface of the flanged structure to be uneven.
  • welding there will be a problem of poor welding. Therefore, the size of the flange structure is relatively limited, resulting in insufficient flow capacity of the battery cell.
  • the electrode lead-out hole 231 for installing the electrode terminal 40 is formed on the bottom wall 23 by using the process of opening holes, so that the positive output pole and the negative output pole are arranged on the end of the battery cell 7 away from the opening 21; the bottom wall 23 is formed during the molding process of the casing 20, and the flatness of the bottom wall 23 can be ensured after the electrode lead-out hole 231 is opened, so as to ensure the connection strength between the bottom wall 23 and the confluence component.
  • the flatness of the bottom wall 23 is not restricted by its own size, so the bottom wall 23 can have a larger size, thereby improving the flow capacity of the battery cell 7 .
  • the first tab 12 is a negative tab
  • the base material of the casing 20 is steel
  • the casing 20 is electrically connected to the negative electrode tab, that is, the casing 20 is in a low potential state.
  • the steel casing 20 is not easily corroded by the electrolyte in a low potential state, so as to reduce safety risks.
  • housing 20 is welded to end cap 30 . Welding can not only realize the connection between the housing 20 and the end cover 30, improve the flow capacity between the housing 20 and the end cover 30, but also ensure the sealing.
  • the base material of the shell 20 and the base material of the end cap 30 are the same.
  • the base material of the shell 20 and the base material of the end cover 30 are both steel.
  • the base material of the housing 20 is the same as that of the end cover 30 , so that the welding strength between the housing 20 and the end cover 30 can be ensured, and the sealing of the battery cells 7 can be ensured.
  • the battery cells 7 are cylindrical battery cells.
  • the electrode assembly 10 is a cylindrical structure, and the casing 20 is a cylindrical hollow structure.
  • a first concave portion 33 is formed on the end cap 30 corresponding to the first convex portion 32 from the outer surface 31b of the cap body along the direction facing the electrode assembly 10, and the bottom surface of the first concave portion 33 is the same as It is closer to the first tab 12 than the inner surface 31a of the cover body.
  • the first concave portion 33 can reduce the strength of the first convex portion 32 and improve the elasticity of the first convex portion 32. In this way, when the first convex portion 32 extends into the housing 20 and presses against the first tab 12, the first The convex portion 32 can release stress through deformation, reduce the impact force, and reduce the risk of the first tab 12 being crushed.
  • the first concave portion 33 and the first convex portion 32 may be formed by stamping the end cap 30 .
  • the embodiment of the present application can ensure the degree to which the first protrusion 32 protrudes from the cover body 31 to more effectively support the first tab 12, increase the size of the avoidance gap G along the thickness direction Z, and further reduce the extrusion contact of the electrode assembly 10. Risk of Weakness Section 311.
  • the embodiment of the present application further ensures the concave degree of the first concave part 33, so as to improve the elasticity of the first convex part 32 and reduce the pressure of the first convex part during the assembly process. 32 Risk of crushing the first tab 12.
  • the bottom surface of the first recess 33 is a plane and parallel to the inner surface 31a of the cover body.
  • the battery cell 7 further includes a current collecting member 50 disposed between the end cover 30 and the first tab 12 .
  • the current collecting member 50 is used to connect the end cover 30 and the first tab 12 to realize the electrical connection between the end cover 30 and the first tab 12 .
  • an escape gap G is located between the current collecting member 50 and the cap body 31 .
  • the current collecting member 50 may be connected to the first tab 12 by welding, bonding or other means, so as to realize electrical connection with the first tab 12 .
  • the current collecting member 50 can be connected to the end cap 30 by welding, bonding or other means, so as to realize the electrical connection with the end cap 30 .
  • the current collecting member 50 can be connected to the first protrusion 32 , can also be connected to the cover body 31 , and can also be connected to other parts of the end cover 30 .
  • the first protrusion 32 protrudes from the cover body 31, so the first protrusion 32 will separate the cover body 31 from the first tab 12 in the thickness direction Z; if the end cover 30 and the first tab 12 are directly connected, Then the first tab 12 can only be connected to the first protrusion 32 of the end cap 30 .
  • first protrusion 32 and the first tab 12 are directly connected, only the part of the first tab 12 opposite to the first protrusion 32 can be directly connected with the first protrusion 32, resulting in the ability of the first tab 12 to The area for direct current transmission is limited by the first protrusion 32, resulting in insufficient flow area between the first protrusion 32 and the first tab 12; The current on the part needs to flow to the part of the first tab 12 welded to the first protrusion 32 first, and then flow to the first protrusion 32, which will cause the difference between different regions of the first tab 12 and the end cover 30 The differences in the conductive paths among them are relatively large, which affects the overcurrent capability and charging efficiency of the battery cells 7 .
  • the first tab 12 and the end cover 30 are connected by setting the current collecting member 50, so that the area of the first tab 12 that can directly transmit current is no longer limited by the first protrusion 32, and the first tab 12
  • the current of 12 can flow into the end cover 30 through the current collecting member 50, so that the current collecting member 50 can reduce the difference of the conductive path between different regions of the first tab 12 and the end cover 30, and improve the performance of the first pole piece.
  • the uniformity of the current density reduces the internal resistance and improves the overcurrent capability and charging efficiency of the battery cell 7 .
  • the avoidance gap G is located between the current collecting member 50 and the cover body 31, which can not only reduce the risk of the current collecting member 50 squeezing the weak portion 311, but also lower the current collecting member 50 when the weak portion 311 is broken.
  • the possibility of blocking the exhaust passage ensures smooth exhaust and improves safety.
  • the current collecting member 50 covers the weakened portion 311 along the thickness direction Z of the end cover 30 to separate the weakened portion 311 from the first tab 12 .
  • a part of the current collecting member 50 is spaced apart from the weakened portion 311 along the thickness direction Z and covers the weakened portion 311 .
  • the projection of the weakened portion 311 along the thickness direction Z is located within the projection of the current collecting member 50 along the thickness direction Z.
  • the current collecting member 50 can separate the weakened part 311 from the first tab 12, so as to reduce the active particles in the electrode assembly 10 falling on the weakened part 311, and reduce the risk of the weakened part 311 being corroded .
  • At least a portion of the current collecting member 50 is located between the first protrusion 32 and the first tab 12 .
  • the first protrusion 32 supports the first tab 12 through the current collecting member 50 .
  • the first protruding portion 32 supports the first tab 12 through the current collecting member 50 , so as to reduce the shaking amplitude of the electrode assembly 10 when the battery cell 7 vibrates, and improve the stability of the electrode assembly 10 . Meanwhile, the first protrusion 32 supports the current collecting member 50 to form an avoidance gap G between the current collecting member 50 and the cover body 31.
  • a part of the current collecting member 50 is used to abut and weld with the first tab 12 , and another part of the current collecting member 50 is used to abut and weld with the first protrusion 32 .
  • the current collecting member 50 When assembling the battery cell 7, the current collecting member 50 is first pressed and welded to the first tab 12 to form the first welding portion W1, and then the end cap 30 and the current collecting member 50 are welded to form the second welding portion W2 .
  • two different parts of the current collecting member 50 are respectively welded to the end cover 30 and the first tab 12 to reduce the risk of fusion of the first welding part W1 and the second welding part W2, and ensure that the current collecting member 50
  • the connection strength with the first tab 12 and the connection strength between the end cap 30 and the current collecting member 50 are respectively welded to the end cover 30 and the first tab 12 to reduce the risk of fusion of the first welding part W1 and the second welding part W2, and ensure that the current collecting member 50
  • the connection strength with the first tab 12 and the connection strength between the end cap 30 and the current collecting member 50 are respectively welded to the end cover 30 and the first tab 12 to reduce the risk of fusion of the first welding part W1 and the second welding part W2, and ensure that the current collecting member 50
  • the connection strength with the first tab 12 and the connection strength between the end cap 30 and the current collecting member 50 are respectively welded to the end cover 30 and the first tab 12 to reduce the risk of fusion of the first welding part W1 and the second welding part W2, and ensure that the current collecting
  • Welding can reduce the contact resistance between the current collecting member 50 and the end cap 30 and the contact resistance between the current collecting member 50 and the first tab 12 and improve the overcurrent capability.
  • the current collecting member 50 is a flat plate structure.
  • the flat current collecting member 50 is easier to form.
  • the plate-shaped current collecting member 50 can be in contact with the first tab 12 as a whole, so as to increase the flow area, and make the current collecting member 50 support the first tab 12 more evenly, and reduce the thickness of the pole piece of the electrode assembly 10. Risk of offset, misalignment on Z.
  • the plate-shaped current collecting member 50 can also be completely separated from the cover body 31 to ensure the avoidance gap G between the current collecting member 50 and the cover body 31 and reduce the risk of contact between the current collecting member 50 and the weak portion 311 .
  • the cover body 31 surrounds the outer side of the first protrusion 32 .
  • the cover body 31 is an annular structure surrounding the first protruding portion 32 .
  • the end cap 30 further includes a second protrusion 34 surrounding the outer side of the cap body 31 .
  • the second protrusion 34 protrudes from the inner surface 31a of the cover body in a direction facing the electrode assembly 10, and the top end surface of the second protrusion 34 is closer to the first tab 12 than the top end surface of the first protrusion 32, so that The second protrusion 34 abuts against the first tab 12 and is used to support the first tab 12 .
  • the second protrusion 34 is an annular structure surrounding the outer side of the cover body 31 .
  • the top end surface of the first protrusion 32 abuts against the current collecting member 50; optionally, the top end surface of the first protrusion 32 is a plane.
  • the top surface of the second protrusion 34 abuts against the first tab 12 ; optionally, the top surface of the second protrusion 34 is a plane or a curved surface.
  • the second protrusion 34 is spaced apart from the current collecting member 50 to prevent the second protrusion 34 from interfering with the contact between the current collecting member 50 and the first protrusion 32 , and to ensure that the first protrusion 32 is in close contact with the current collecting member 50 .
  • the second protrusion 34 surrounds the outer side of the current collecting member 50 .
  • the degree to which the second protrusion 34 protrudes from the inner surface 31a of the cover body is greater than the degree to which the first protrusion 32 protrudes from the inner surface 31a of the cover body, so that the top end surface of the second protrusion 34 is larger than that of the first protrusion 32.
  • the top surface is closer to the first tab 12 .
  • the first protruding part 32 supports the central area of the first tab 12 through the current collecting member 50, and the second protruding part 34 supports the edge area of the first tab 12, which can improve the receiving capacity of the first tab 12.
  • the uniformity of the force reduces the risk of the pole pieces of the electrode assembly 10 being shifted and dislocated in the thickness direction Z.
  • a second concave portion 35 is formed on the end cap 30 corresponding to the second convex portion 34 from the outer surface 31b of the cap body along the direction facing the electrode assembly 10, and the bottom surface of the second concave portion 35 is the same as It is closer to the first tab 12 than the inner surface 31a of the cover body.
  • the second concave portion 35 can reduce the strength of the second convex portion 34 and improve the elasticity of the second convex portion 34. In this way, when the second convex portion 34 extends into the housing 20 and presses against the first tab 12, the second The protrusion 34 can release the stress through deformation, reduce the impact force, and reduce the risk of the first tab 12 being crushed.
  • the second recess 35 and the second protrusion 34 may be formed by stamping the end cap 30 .
  • the concave degree of the second concave part 35 is further ensured, so as to improve the elasticity of the second convex part 34 and reduce the pressure of the second convex part 34 during the assembly process. Risk of injury to first lug 12.
  • the outer surface 341 of the second protrusion abuts against the inner surface of the housing 20 and is used for welding with the housing 20 to close the opening 21 .
  • the outer surface 341 of the second protrusion is a surface of the second protrusion 34 facing the side wall 22 of the housing 20 .
  • the outer surface 341 of the second protrusion is a cylinder, and optionally, the outer surface 341 of the second protrusion is a cylinder.
  • the part of the second protrusion 34 protruding into the housing 20 can be interference fit, transition fit or clearance fit with the housing 20 .
  • the part of the second protrusion 34 protruding into the housing 20 can be interference-fitted with the housing 20 , and the interference fit can increase the connection strength between the housing 20 and the end cap 30 and improve the sealing performance.
  • the second protrusion 34 is connected to the side wall 22 of the casing 20 by laser welding.
  • the laser is irradiated at the junction of the second protrusion 34 and the side wall 22 , and the laser melts and connects at least part of the outer surface 341 of the second protrusion and part of the inner surface of the housing 20 together.
  • the outer surface 341 of the second protrusion abuts against the inner surface of the housing 20 , which can reduce the risk of burning the electrode assembly 10 when the laser beam enters the housing 20 .
  • the laser light can also be irradiated on the outer surface of the side wall 22 away from the second protrusion 34 .
  • welding can achieve sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the second protrusion 34 and the housing 20 .
  • the second concave portion 35 can reduce the strength of the second convex portion 34 and improve the elasticity of the second convex portion 34, so that in the process of welding the second convex portion 34 and the housing 20, the second convex portion 34 can be released by deformation. Stress, thereby reducing the risk of deformation, cracking in the welded area, and improving sealing performance.
  • the concave degree of the second concave part 35 is further ensured to improve the elasticity of the second convex part 34, so that the second convex part 34 can release welding through deformation. stress.
  • the cover body 31 is a flat plate structure. Both the inner surface 31a of the cover body and the outer surface 31b of the cover body are planar and arranged in parallel.
  • FIG. 7 is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application;
  • FIG. 8 is an enlarged schematic view of the battery cell shown in FIG. 7 at the circle B.
  • the first protrusion 32 surrounds the outer side of the cover body 31 .
  • the first protrusion 32 is an annular structure surrounding the outer side of the cover body 31 .
  • the part of the first protruding portion 32 protruding into the housing 20 may be interference fit, transition fit or clearance fit with the housing 20 .
  • the part of the first protruding portion 32 protruding into the housing 20 can be interference-fitted with the housing 20 , and the interference fit can increase the connection strength between the housing 20 and the end cap 30 and improve the sealing performance.
  • the outer surface of the first protrusion 32 abuts against the inner surface of the housing 20 and is used for welding with the housing 20 to close the opening 21 .
  • the end cover 30 further includes an extension portion 36 surrounding the outside of the first protruding portion 32 , the surface of the extension portion 36 facing the first tab 12 abuts against the end surface of the housing 20 surrounding the opening 21 and Weld to close the opening 21.
  • the extension portion 36 includes an inner surface and an outer surface oppositely disposed along the thickness direction Z, and the inner surface of the extension portion 36 faces the first tab 12 .
  • the extension part 36 is an annular plate-shaped structure, and the inner surface of the extension part 36 and the outer surface of the extension part 36 are both planes.
  • the extension part 36 and the housing 20 are arranged along the thickness direction Z, and the inner surface of the extension part 36 may be arranged parallel to the end surface of the housing 20 .
  • the laser is irradiated at the junction of the end surface of the housing 20 and the inner surface of the extension 36; after welding, at least part of the inner surface of the extension 36 and at least part of the end surface of the housing 20 are melted and connect together.
  • the end surface of the housing 20 can function as an upper limit in the thickness direction Z, reducing the risk of excessive insertion of the end cover 30 into the housing 20 and improving assembly efficiency.
  • the cover body 31 can be flat as a whole, or protrude locally.
  • the cover body 31 includes a main body 313 and a third protrusion 314, the main body 313 surrounds the outside of the third protrusion 314, the first protrusion 32 surrounds the outside of the main body 313, and the weak portion 311 forms on the third protrusion 314 .
  • the main body 313 includes a first inner surface 313a and a first outer surface 313b oppositely disposed, the first inner surface 313a faces the electrode assembly 10, and the first protrusion 32 and the third protrusion 314 both face the electrode from the first inner surface 313a.
  • the direction of the component 10 protrudes, and the top end surface of the first protrusion 32 is closer to the first tab 12 than the top end surface of the third protrusion 314, so as to form a gap between the current collecting member 50 and the third protrusion 314.
  • the avoidance gap G of the weak portion 311 is avoided.
  • the main body 313 is a plate structure, and the first inner surface 313a and the first outer surface 313b are arranged opposite to each other along the thickness direction Z.
  • the main body 313 is a flat plate structure, and the first inner surface 313a and the first outer surface 313b are both plane and parallel.
  • the top surface of the first convex portion 32 and the top surface of the third convex portion 314 are both planar and arranged in parallel.
  • the inner surface of the cover body includes a first inner surface 313a, a top end surface of the third convex portion 314 and a side surface of the third convex portion 314, wherein the side surface of the third convex portion 314 connects the first inner surface 313a and the third convex portion 314 the top face of .
  • At least part of the first protrusion 32 protrudes from the top end surface of the third protrusion 314 along the direction facing the electrode assembly 10 .
  • the battery cell 7 may release a small amount of gas during the normal cycle, and the gas will increase the internal pressure of the battery cell 7, thereby causing the risk of deformation of the end cap 30; when the end cap 30 is deformed, the weak part 311 is easy to creep As a result, the weak portion 311 may rupture when the internal pressure of the battery cell 7 does not reach the threshold, causing the battery cell 7 to fail.
  • the strength of the end cap 30 can be increased and the deformation of the end cap 30 can be reduced by disposing the third protrusion 314 in the middle of the end cap 30 .
  • the third convex portion 314 is in a protruding state and is not easily deformed. Therefore, disposing the weak portion 311 on the third convex portion 314 can reduce the creep of the weak portion 311 , thereby reducing the risk of failure of the weak portion 311 .
  • an avoidance gap G is formed between the third convex portion 314 and the collecting member 50 to reduce the risk of the collecting member 50 blocking the exhaust channel when the weak portion 311 is broken, so as to ensure smooth exhaust and reduce safety. risk.
  • a third concave portion 315 is formed on the cover body 31 corresponding to the third convex portion 314 from the first outer surface 313b in a direction facing the electrode assembly 10, and the third convex portion 314 is in the same position as the third convex portion 314.
  • the area where the bottom surfaces of the three recesses 315 face each other forms the weak portion 311 .
  • a portion of the third convex portion 314 between the bottom surface of the third concave portion 315 and the top end surface of the third convex portion 314 is provided with a weakened portion 311 .
  • the bottom surface of the third concave portion 315 and the top surface of the third convex portion 314 are both planar and arranged in parallel.
  • the weakened portion 311 is formed on the area of the third convex portion 314 opposite to the bottom surface of the third recessed portion 315, so that the distance between the weakened portion 311 and other external components can be increased, and the risk of the weakened portion 311 being crushed by external components can be reduced.
  • FIG. 9 is a schematic cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • FIG. 10 is an enlarged schematic view of the battery cell shown in FIG. 9 at box C.
  • the first protrusion 32 surrounds the outside of the cover body 31 , and the current collecting member 50 is used to connect the cover body 31 and the first tab 12 to realize the end cover 30 Electrical connection with the first tab 12.
  • the current collecting member 50 includes a first collecting portion 51 and a second collecting portion 52 connected to the first collecting portion 51, the first collecting portion 51 is used to connect the first tab 12 so that The current collecting member 50 is electrically connected to the first tab 12 , and the second current collecting portion 52 is used to connect the cover body 31 so that the current collecting member 50 is electrically connected to the end cover 30 .
  • the first current collecting part 51 is protrudingly provided on the surface of the second current collecting part 52 facing the electrode assembly 10, and the position of the current collecting member 50 corresponding to the first current collecting part 51 is formed with a deviation from the second current collecting part 52.
  • the surface of the electrode assembly 10 is dented with an avoidance recess 53 in a direction facing the electrode assembly 10 to form an avoidance gap G between the current collecting member 50 and the cap body 31 .
  • the avoidance recess 53 is provided to form the avoidance gap G and prevent the first collector part 51 from abutting against the cover body 31, thereby reducing the risk of the first collector part 51 pressing the weak part 311 and improving safety.
  • the first current collecting part 51 supports the middle area of the first tab 12, and the first convex part 32 supports the edge area of the first tab 12, which can improve the uniformity of the force on the first tab 12 and reduce the stress of the electrode assembly 10. The risk of offset and dislocation of the pole piece in the thickness direction Z.
  • the first current collecting portion 51 is used to abut and weld the first tab 12
  • the second current collecting portion 52 is used to abut and weld the cover body 31 .
  • the avoidance recess 53 can reduce the thickness of the first current collecting part 51, so as to reduce the welding power required for welding the first current collecting part 51 and the first tab 12, reduce heat generation, and reduce the damage of other components (such as spacers). Risk of burns.
  • the second header portion 52 is a flat plate structure surrounding the first header portion 51 .
  • the cover body 31 can be flat as a whole, or protrude locally.
  • the cover body 31 includes a main body 313 and a third protrusion 314, the main body 313 surrounds the outside of the third protrusion 314, the first protrusion 32 surrounds the outside of the main body 313, and the weak portion 311 forms on the third protrusion 314 .
  • the main body 313 includes a first inner surface 313a and a first outer surface 313b oppositely disposed, the first inner surface 313a faces the electrode assembly 10, and the first protrusion 32 and the third protrusion 314 both face the electrode from the first inner surface 313a.
  • the direction of the component 10 protrudes, and the top end surface of the first protrusion 32 is closer to the first tab 12 than the top end surface of the third protrusion 314, so as to form a gap between the current collecting member 50 and the third protrusion 314.
  • the avoidance gap G of the weak portion 311 is avoided.
  • the escape recess 53 may provide a protruding space for the third protrusion 314 , for example, at least part of the third protrusion 314 protrudes into the avoidance recess 53 .
  • the first protrusion 32 is used to abut and weld the first tab 12 to realize the electrical connection between the end cover 30 and the first tab 12 .
  • the end cap 30 can be directly electrically connected to the first tab 12 through the first protrusion 32 , thereby simplifying the structure of the battery cell 7 , for example, the current collecting member 50 can be omitted.
  • FIG. 11 is a schematic flowchart of a method for manufacturing a battery cell provided by some embodiments of the present application.
  • the manufacturing method of the battery cell in the embodiment of the present application includes:
  • the electrode assembly is provided with a first tab at one end facing the opening;
  • the end cover includes a cover body and a first protrusion connected to the cover body, and the cover body is provided with a weak portion;
  • the end cap is configured to rupture along the weak portion when the internal pressure of the battery cell reaches a threshold value to release the internal pressure; the first protrusion protrudes from the cap body along the direction facing the electrode assembly, and is used to support the first pole ear, so that an avoidance gap for avoiding the weak part is formed between the first pole ear and the cover body.
  • the steps may be performed in the order mentioned in the embodiment, or may be different from the order mentioned in the embodiment Steps are executed, or several steps are executed simultaneously.
  • the steps S100 and S300 are not executed sequentially, and may also be executed simultaneously.
  • Fig. 12 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • the embodiment of the present application also provides a battery cell manufacturing system 90 including:
  • the first providing device 91 is used to provide a casing, the casing has an opening;
  • the second providing device 92 is used to provide the electrode assembly and install the electrode assembly into the casing, and the electrode assembly is provided with a first tab at the end facing the opening;
  • the third providing device 93 is used to provide an end cap, the end cap includes a cap body and a first protrusion connected to the cap body, and the cap body is provided with a weak portion;
  • An assembling device 94 is used for connecting the end cover to the housing, so that the end cover covers the opening;
  • the end cap is configured to rupture along the weak portion when the internal pressure of the battery cell reaches a threshold value to release the internal pressure; the first protrusion protrudes from the cap body along the direction facing the electrode assembly, and is used to support the first pole ear, so that an avoidance gap for avoiding the weak part is formed between the first pole ear and the cover body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造系统、电池以及用电装置。电池单体包括:壳体,具有开口;电极组件,容纳于壳体内,电极组件在面向开口的一端设有第一极耳;以及端盖,用于盖合开口,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部,端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力。第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑第一极耳,以使第一极耳和盖本体之间形成用于避让薄弱部的避让空隙。本申请能够降低第一极耳挤压薄弱部的风险,并提高电池单体和安全性能。

Description

电池单体及其制造方法和制造系统、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体及其制造方法和制造系统、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,安全问题也是一个不可忽视的问题。如果电池单体的安全问题不能保证,那该电池单体就无法使用。因此,如何增强电池单体的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池单体及其制造方法和制造系统、电池以及用电装置,其能提高电池单体的安全性。
第一方面,本申请实施例提供了一种电池单体,包括:壳体,具有开口;电极组件,容纳于壳体内,电极组件在面向开口的一端设有第一极耳;以及端盖,用于盖合开口,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部,端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力。第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑第一极耳,以使第一极耳和盖本体之间形成用于避让薄弱部的避让空隙。
上述方案中,凸出于盖本体的第一凸部可以支撑第一极耳,以减小电极组件在电池单体震动时的晃动幅度,提高电极组件的稳定性。第一凸部支撑第一极耳,以在第一极耳和盖本体之间形成用于避让薄弱部的避让空隙,从而降低电极组件挤压薄弱部的风险,减小薄弱部失效的可能性,提高电池单体的安全性。
在一些实施例中,端盖上与第一凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第一凹部,第一凹部的底面相较于盖本体的内表面更靠近第一极耳。
上述方案保证第一凸部凸出盖本体的程度,以更有效地支撑第一极耳,增大避让空隙沿厚度方向的尺寸,进一步降低电极组件挤压薄弱部的风险。同时,本申请实 施例在保证第一凸部的凸出程度的前提下,进一步保证第一凹部凹陷的程度,以提高第一凸部的弹性,降低在装配过程中第一凸部压伤第一极耳的风险。
在一些实施例中,第一凸部用于与第一极耳相抵并焊接,以实现端盖和第一极耳的电连接。
上述方案中,端盖可以通过第一凸部与第一极耳直接电连接,从而简化电池单体的结构。
在一些实施例中,电池单体还包括集流构件,设于端盖与第一极耳之间。集流构件用于连接端盖和第一极耳,以实现端盖和第一极耳的电连接。在端盖的厚度方向上,避让间隙位于集流构件和盖本体之间。
第一凸部凸出于盖本体,所以第一凸部会将盖本体与第一极耳在厚度方向上隔开;如果直接连接端盖和第一极耳,那么第一极耳只能连接到端盖的第一凸部,这会造成第一极耳的能够直接传输电流的区域受到第一凸部的限制。上述方案中,通过设置集流构件来连接第一极耳和端盖,使第一极耳的能够直接传输电流的区域不再受到第一凸部的限制,第一极耳的电流可以经由集流构件汇入端盖,这样,集流构件可以减小第一极耳的不同区域与端盖之间的导电路径的差异,提高第一极片的电流密度的均匀性,减小内阻,提高电池单体的过流能力和充电效率。避让间隙位于集流构件和盖本体之间,这样既可以降低集流构件挤压薄弱部的风险,还能够在薄弱部破裂时降低集流构件堵住排气通道的可能性,保证顺畅地排气,提高安全性。
在一些实施例中,集流构件沿端盖的厚度方向覆盖薄弱部,以将薄弱部与第一极耳隔开。
上述方案中,集流构件可以将薄弱部与第一极耳隔开,以减少掉落到薄弱部上的电极组件中的活性颗粒,降低薄弱部被腐蚀的风险。
在一些实施例中,第一凸部环绕在盖本体的外侧,集流构件用于连接盖本体和第一极耳,以实现端盖和第一极耳的电连接。
在一些实施例中,集流构件包括第一集流部和连接于第一集流部的第二集流部,第一集流部用于连接第一极耳以使集流构件和第一极耳电连接,第二集流部用于连接盖本体以使集流构件和端盖电连接。第一集流部凸设于第二集流部的面向电极组件的表面,集流构件与第一集流部相对应的位置上形成有从第二集流部的背离电极组件的表面沿面向电极组件的方向凹陷的避让凹部,以在集流构件和盖本体之间形成避让空隙。
上述方案中,通过设置避让凹部,以形成避让空隙并避免第一集流部抵接在盖本体上,从而降低第一集流部挤压薄弱部的风险,提高安全性。第一集流部支撑第一极耳的中部区域,第一凸部支撑第一极耳的边缘区域,这样可以提高第一极耳受力的均匀性,降低电极组件的极片在厚度方向上偏移、错位的风险。
在一些实施例中,第一集流部用于与第一极耳相抵并焊接,第二集流部用于与盖本体相抵并焊接。
上述方案中,避让凹部能够减小第一集流部的厚度,以减小第一集流部与第一极耳焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险。
在一些实施例中,集流构件的至少部分位于第一凸部和第一极耳之间。第一凸部通过集流构件支撑第一极耳。
上述方案中,第一凸部通过集流构件支撑第一极耳,以减小电极组件在电池单体震动时的晃动幅度,提高电极组件的稳定性。同时,第一凸部支撑集流构件,以在集流构件和盖本体之间形成避让空隙。
在一些实施例中,集流构件的一部分用于与第一极耳相抵并焊接,集流构件的另一部分用于与第一凸部相抵并焊接。
上述方案中,焊接可以减小集流构件和端盖之间的接触电阻以及集流构件和第一极耳之间的接触电阻,提高过流能力。
在一些实施例中,集流构件为平板结构。
上述方案中,平板状的集流构件更容易成型。平板状的集流构件可以整体与第一极耳接触,从而增大过流面积,并使集流构件更均匀地支撑第一极耳,降低电极组件的极片在厚度方向上偏移、错位的风险。平板状的集流构件还能够与盖本体完全隔开,以保证集流构件与盖本体之间的避让空隙,降低集流构件与薄弱部接触的风险。
在一些实施例中,第一凸部环绕在盖本体的外侧。
在一些实施例中,盖本体环绕在第一凸部的外侧。
在一些实施例中,端盖还包括第二凸部,第二凸部环绕在盖本体的外侧。第二凸部从盖本体的内表面沿面向电极组件的方向凸出,且第二凸部的顶端面相较于第一凸部的顶端面更靠近第一极耳,以使第二凸部抵接于第一极耳并用于支撑第一极耳。
上述方案中,第一凸部通过集流构件支撑第一极耳的中部区域,第二凸部支撑第一极耳的边缘区域,这样可以提高第一极耳受力的均匀性,降低电极组件的极片在厚度方向上偏移、错位的风险。
在一些实施例中,端盖上与第二凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第二凹部,第二凹部的底面相较于盖本体的内表面更靠近第一极耳。
上述方案中,在保证第二凸部的凸出程度的前提下,进一步保证第二凹部凹陷的程度,以提高第二凸部的弹性,降低在装配过程中第二凸部压伤第一极耳的风险。
在一些实施例中,第二凸部的外侧面抵接于壳体的内表面并用于与壳体焊接,以封闭开口。
上述方案中,焊接可以实现密封,降低电解液泄露的风险,并提高第二凸部和壳体之间的连接强度和过流能力。第二凹部能够降低第二凸部的强度,提高第二凸部的弹性,这样,在焊接第二凸部和壳体的过程中,第二凸部可以通过变形释放焊接应力,从而降低焊接区域变形、开裂的风险,改善密封性能。
在一些实施例中,盖本体为平板结构。
在一些实施例中,盖本体包括主板体和第三凸部,主板体环绕在第三凸部的外侧,第一凸部环绕在主板体的外侧,薄弱部形成于第三凸部。主板体包括相对设置的第一内表面和第一外表面,第一内表面面向电极组件,第一凸部和第三凸部均从第一内表面沿面向电极组件的方向凸出,且第一凸部的顶端面相较于第三凸部的顶端面更 靠近第一极耳,以在集流构件和第三凸部之间形成用于避让薄弱部的避让空隙。
上述方案中,通过在端盖的中部设置第三凸部,可以增大端盖的强度,减小端盖的变形。第三凸部呈凸出状态,不易变形,因此,将薄弱部设置在第三凸部上,可以减小薄弱部的蠕变,从而降低薄弱部失效的风险。上述方案通过在第三凸部与集流构件之间形成避让空隙,以在薄弱部破裂时降低集流构件堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,盖本体上与第三凸部相对应的位置形成有从第一外表面沿面向电极组件的方向凹陷的第三凹部,第三凸部在与第三凹部的底面相对的区域形成薄弱部。
上述方案中,薄弱部形成在第三凸部的与第三凹部的底面相对的区域,这样可以增大薄弱部与其它外部构件的距离,降低薄弱部被外部构件压伤的风险。
在一些实施例中,盖本体设置有凹槽,盖本体与凹槽相对的区域形成薄弱部。
上述方案中,通过设置凹槽来减小薄弱部的厚度和强度,从而使端盖能够在在电池单体的内部压力达到阈值时沿薄弱部破裂。
在一些实施例中,端盖电连接第一极耳和壳体。
上述方案中,壳体本身可以作为电池单体的输出极。在多个电池单体装配成组时,壳体可以与汇流部件电连接,这样既可以增大过流面积,还可以使汇流部件的结构设计更为灵活。
在一些实施例中,壳体包括侧壁和连接于侧壁的底壁,侧壁沿端盖的厚度方向延伸并环绕电极组件的外周设置,底壁设有电极引出孔。电极组件还包括第二极耳,第一极耳和第二极耳极性相反且分别位于电极组件的两端。电池单体还包括安装于电极引出孔的电极端子,电极端子电连接于第二极耳。
上述方案中,底壁和电极端子可以作为电池单体的两个输出极,这样可以简化电池单体的结构,并保证电池单体的过流能力。底壁和电极端子位于电池单体的同一端,这样,在将多个电池单体装配成组时,汇流部件可以装配到电池单体的同一侧,这样可以简化装配工艺,提高装配效率。
在一些实施例中,底壁和侧壁一体设置。本方案可以省去底壁和侧壁的连接工序。
在一些实施例中,第一极耳为负极极耳,壳体的基体材质为钢。
上述方案中,壳体与负极极耳电连接,即壳体处于低电位状态。钢制的壳体在低电位状态下不易被电解液腐蚀,以降低安全风险。
在一些实施例中,壳体的基体材质和端盖的基体材质相同。本方案可以保证壳体和端盖的焊接强度,保证电池单体的密封性。
在一些实施例中,电池单体为圆柱电池单体。
第二方面,本申请实施例提供了一种电池,包括多个第一方面任一实施例的电池单体。
第三方面,本申请实施例提供了一种用电装置,包括第二方面的电池,电池用于提供电能。
第四方面,本申请实施例提供了一种电池单体的制造方法,包括:
提供壳体,壳体具有开口;
提供电极组件,并将电极组件安装到壳体内,电极组件在面向开口的一端设有第一极耳;
提供端盖,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部;
将端盖连接于壳体,以使端盖盖合于开口;
其中,端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力;第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑第一极耳,以使第一极耳和盖本体之间形成用于避让薄弱部的避让空隙。
第五方面,本申请实施例提供了一种电池单体的制造系统,包括:
第一提供装置,用于提供壳体,壳体具有开口;
第二提供装置,用于提供电极组件,并将电极组件安装到壳体内,电极组件在面向开口的一端设有第一极耳;
第三提供装置,用于提供端盖,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部;
组装装置,用于将端盖连接于壳体,以使端盖盖合于开口;
其中,端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力;第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑第一极耳,以使第一极耳和盖本体之间形成用于避让薄弱部的避让空隙。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的爆炸示意图;
图4为本申请一些实施例提供的电池单体的爆炸示意图;
图5为本申请一些实施例提供的电池单体的剖视示意图;
图6为图5所示的电池单体在圆框A处的放大示意图;
图7为本申请另一些实施例提供的电池单体的剖视示意图;
图8为图7所示的电池单体在圆框B处的放大示意图;
图9为本申请又一些实施例提供的电池单体的剖视示意图;
图10为图9所示的电池单体在方框C处的放大示意图;
图11为本申请一些实施例提供的电池单体的制造方法的流程示意图;
图12为本申请一些实施例提供的电池单体的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异 物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极涂覆区和连接于正极涂覆区的正极极耳,正极涂覆区涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极涂覆区和连接于负极涂覆区的负极极耳,负极涂覆区涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括壳体和端盖,壳体具有开口且用于容纳电极组件,电极组件可以经由壳体的开口装配到壳体内。端盖用于盖合于壳体的开口以实现密封。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离件材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离件用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离件上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力达到预定阈值时致动以泄放内部压力的元件或部件。该阈值设计根据设计需求不同而不同。该阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离件的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池单体的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力骤升。这种情况下通过泄压机构致动可以将内部压力向外释放,以防止电池单体爆炸、起火。
泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造,即,当电池单体的内部压力达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构破裂,从而形成可供内部压力泄放的开口或通道。
为了简化电池单体的结构,发明人尝试将泄压机构集成到端盖上。例如,发明 人在端盖上设置薄弱部,而端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力。当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力骤升,这种情况下通过薄弱部的破裂可以将内部压力向外释放,以防止电池单体爆炸、起火,从而提高安全性。
然而,发明人经过研究发现,在电池单体震动时,电极组件的极耳容易挤压、冲击薄弱部;由于薄弱部的强度较低,在受到极耳的挤压、冲击时,薄弱部可能会在电池单体的内部压力未达到阈值时破裂,造成电池单体失效,引发安全问题。
鉴于此,本申请实施例提供一种技术方案,在该技术方案中,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部,第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑电极组件的极耳,以使极耳和盖本体之间形成用于避让薄弱部的避让空隙。具有这种结构的电池单体可以降低电极组件挤压薄弱部的风险,提高电池单体的安全性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部 5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的爆炸示意图。
在一些实施例中,如图3所示,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
图4为本申请一些实施例提供的电池单体的爆炸示意图;图5为本申请一些实施例提供的电池单体的剖视示意图;图6为图5所示的电池单体在圆框A处的放大示意图。
如图4至图6所示,本申请实施例的电池单体7包括:壳体20,具有开口21;电极组件10,容纳于壳体20内,电极组件10在面向开口21的一端设有第一极耳12;以及端盖30,用于盖合开口21,端盖30包括盖本体31和连接于盖本体31的第一凸部32,盖本体31设置有薄弱部311,端盖30被配置为在电池单体7的内部压力达到阈值时沿薄弱部311破裂,以泄放内部压力。第一凸部32沿面向电极组件10的方向凸出于盖本体31,并用于支撑第一极耳12,以使第一极耳12和盖本体31之间形成用于避让薄弱部311的避让空隙G。
电极组件10包括第一极片、第二极片和隔离件,隔离件用于将第一极片和第二极片隔开。第一极片和第二极片的极性相反,换言之,第一极片和第二极片中的一者为正极极片,第一极片和第二极片中的另一者为负极极片。
可选地,第一极片、第二极片和隔离件均为带状结构,第一极片、第二极片和隔离件卷绕为一体并形成卷绕结构。卷绕结构可以为圆柱状结构、扁平状结构或其它形状的结构。
从电极组件10的外形看,电极组件10包括主体部11、第一极耳12和第二极耳13,第一极耳12和第二极耳13凸出于主体部11。第一极耳12为第一极片的未涂覆活性物质层的部分,第二极耳13为第二极片的未涂覆活性物质层的部分。对应地,第一极耳12和第二极耳13中的一者为正极性的极耳,另一者为负极性的极耳。
第一极耳12和第二极耳13可以从主体部11的同一侧伸出,也可以分别从相反的两侧延伸出。
示例性地,第一极耳12和第二极耳13分别设于主体部11的两侧,换言之,第一极耳12和第二极耳13分别设于电极组件10的两端。可选地,第一极耳12位于电极组件10的面向端盖30的一端,第二极耳13位于电极组件10的背离端盖30的一端。
可选地,第一极耳12环绕电极组件10的中心轴线X卷绕为多圈,换言之,第一极耳12包括多圈极耳层。在卷绕完成后,第一极耳12大体为柱体状,相邻的两圈极耳层之间留有缝隙。本申请实施例可以对第一极耳12进行处理,以减小极耳层间的缝隙,便于第一极耳12与其它导电结构连接。例如,本申请实施例可对第一极耳12进行揉平处理,以使第一极耳12的远离主体部11的端部区域收拢、集合在一起;揉平处理在第一极耳12远离主体部11的一端形成致密的端面,减小极耳层间的缝隙,便于第一极耳12与其它导电结构连接。可替代地,本申请实施例也可以在相邻的两圈极耳层之间填充导电材料,以减小极耳层间的缝隙。
可选地,第二极耳13环绕电极组件10的中心轴线X卷绕为多圈,第二极耳13包括多圈极耳层。示例性地,且第二极耳13也经过了揉平处理,以减小第二极耳13的极耳层间的缝隙。
壳体20为一侧开口的空心结构,端盖30盖合于壳体20的开口21处并形成密封连接,以形成用于容纳电极组件10和电解液的容纳腔。
壳体20为空心结构,其内部形成用于容纳电极组件10的空间。壳体20可以是多种形状,比如,圆柱体、长方体等。壳体20的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。
壳体20包括侧壁22和底壁23,侧壁22环绕在电极组件10的外侧,底壁23连接于侧壁22的一端。侧壁22为筒状结构,例如,侧壁22可为圆筒或方筒;底壁23为板状结构,其形状与侧壁22的形状相对应。可选地,侧壁22的一端形成开口21,底壁23连接于侧壁22的背离开口21的一端。
侧壁22和底壁23可为一体形成结构,即壳体20为一体成形的构件。当然,侧壁22和底壁23也可以为分开提供的两个构件,然后通过焊接、铆接、粘接等方式连接在一起。
端盖30可以电连接于电极组件10,也可以与电极组件10绝缘设置。可选地,端盖30电连接于第一极耳12。当然,端盖30可以直接电连接于第一极耳12,也可以通过其它导电构件电连接到第一极耳12。
壳体20可以带正电、可以带负电、也可以不带电。当壳体20需要带电时,壳体20可以直接与电极组件10的极耳连接,也可以通过其它导电构件与极耳电连接。
端盖30和壳体20可通过焊接的方式相连,这样,端盖30和壳体20可带有相同的极性。示例性地,当壳体20需要带正电时,可利用端盖30将壳体20电连接到正极性的极耳;当壳体20需要带负电时,可利用端盖30将壳体20电连接到负极性的极耳。当然,壳体20也可通过其它导电结构连接到极耳,本实施例对此不作限制。
壳体20和端盖30可以由相同的材料制成,也可以由不同的材料制成。
盖本体31为板状结构,其具有沿端盖30的厚度方向Z相对设置的内表面和外 表面,盖本体的内表面31a面向电极组件10。盖本体的内表面31a可以为平面、曲面或平面与曲面的组合。盖本体的外表面31b可以为平面、曲面或平面与曲面的组合。可选地,盖本体的内表面31a和盖本体的外表面31b均为平面且平行设置。
薄弱部311为盖本体31的一部分,薄弱部311的强度小于盖本体31的其它部分。本实施例可以通过减小薄弱部311的厚度的方式、改变薄弱部311的材料的方式或其它方式来减小薄弱部311的强度。
薄弱部311可以环绕电极组件10的中心轴线X一圈,也可以仅环绕中心轴线1/2圈、2/3圈或3/4圈等,本实施例对此不作限制。
第一凸部32相对于盖本体的内表面31a沿面向电极组件10的方向凸出,以使第一凸部32的至少部分凸出于盖本体的内表面31a。本实施例对第一凸部32凸出盖本体的内表面31a的程度不作限制。
第一凸部32可以为一个,也可以为多个。可选地,当第一凸部32为多个时,多个第一凸部32可以沿着端盖30的周向间隔设置。
第一凸部32可以抵接于第一极耳12,以直接支撑第一极耳12;当然,第一凸部32也可以通过支撑其它构件来间接地支撑第一极耳12。
在厚度方向Z上,避让空隙G位于第一极耳12和盖本体31之间。避让空隙G为形成于第一极耳12和盖本体31之间的未被其它固体构件填充的空间。避让空隙G与薄弱部311沿厚度方向Z相对,从而起到避让薄弱部311的作用。
第一极耳12和盖本体31之间可以设置其它构件,只要避让空隙G能够将该构件与薄弱部311避开即可。当然,第一极耳12和盖本体31之间也可不设其它构件。
在本实施例中,凸出于盖本体31的第一凸部32可以支撑第一极耳12,以减小电极组件10在电池单体7震动时的晃动幅度,提高电极组件10的稳定性。第一凸部32支撑第一极耳12,以在第一极耳12和盖本体31之间形成用于避让薄弱部311的避让空隙G,从而降低电极组件10挤压薄弱部311的风险,减小薄弱部311失效的可能性,提高电池单体7的安全性。
特别地,对于具有卷绕结构的第一极耳12,其背离主体部11的端面平整度较差,如果第一极耳12的端面挤压薄弱部311,薄弱部311更容易破裂。本申请通过设置避让空隙G,以降低第一极耳12挤压薄弱部311的风险,减小薄弱部311失效的可能性。
在一些实施例中,盖本体31设置有凹槽312,盖本体31与凹槽312相对的区域形成薄弱部311。
可选地,凹槽312可以设置于盖本体的内表面31a,薄弱部311为盖本体31的位于凹槽312的底面和盖本体的外表面31b之间的部分。可替代地,凹槽312也可以设置于盖本体的外表面31b,薄弱部311为盖本体31的位于凹槽312的底面和盖本体的内表面31a之间的部分。
本实施例通过设置凹槽312来减小薄弱部311的厚度和强度,从而使端盖30能够在在电池单体7的内部压力达到阈值时沿薄弱部311破裂。
在一些实施例中,凹槽312可以设置于盖本体的内表面31a。凹槽312与避让 空隙G连通。
本实施例的凹槽312可以进一步增大薄弱部311与第一极耳12之间的间距,减小第一极耳12挤压薄弱部311的风险。
在一些实施例中,第一极耳12电连接于端盖30。
端盖30可以直接与第一极耳12相连,例如,端盖30可以直接焊接于第一极耳12,以实现端盖30和第一极耳12的电连接。
可替代地,端盖30也可以通过其它导电结构(例如后述的集流构件)与第一极耳12间接地相连。本实施例既可以将第一凸部32连接到导电结构,也可以将盖本体31连接到导电结构。
本实施例中,端盖30可以带电,其可以作为电池单体7的输出极,从而省去一个传统的电极端子,简化电池单体7的结构。
在一些实施例中,端盖30电连接第一极耳12和壳体20。
在本实施例中,壳体20本身可以作为电池单体7的输出极。在多个电池单体7装配成组时,壳体20可以与汇流部件电连接,这样既可以增大过流面积,还可以使汇流部件的结构设计更为灵活。
在一些实施例中,壳体20包括侧壁22和连接于侧壁22的底壁23,侧壁22沿端盖30的厚度方向Z延伸并环绕电极组件10的外周设置,底壁23设有电极引出孔231。电极组件10还包括第二极耳13,第一极耳12和第二极耳13极性相反且分别位于电极组件10的两端。电池单体7还包括安装于电极引出孔231的电极端子40,电极端子40电连接于第二极耳13。
第二极耳13可以直接电连接于电极端子40,也可以通过其它导电结构间接地电连接于电极端子40。
电极端子40绝缘设置于底壁23,电极端子40和底壁23可以具有不同的极性,电极端子40和底壁23可以分别作为电池单体7的两个输出极。
在第一极耳12为负极极耳、第二极耳13为正极极耳时,底壁23为电池单体7的负输出极,而电极端子40为电池单体7的正输出极。在第一极耳12为正极极耳、第二极耳13为负极极耳时,底壁23为电池单体7的正输出极,而电极端子40为电池单体7的负输出极。
电极端子40固定于底壁23。电极端子40可以整体固定在底壁23的外侧,也可以通过电极引出孔231伸入到壳体20的内部。
第一极耳12位于电极组件10的面向端盖30的一端,以便于端盖30与第一极耳12电连接;对应地,第二极耳13位于电极组件10的面向底壁23的一端,以便于电极端子40与第二极耳13电连接。本申请实施例将第一极耳12和第二极耳13设于电极组件10的两端,可以降低第一极耳12和第二极耳13导通的风险,并增大第一极耳12的过流面积和第二极耳13的过流面积。
在本实施例中,底壁23和电极端子40可以作为电池单体7的两个输出极,这样可以简化电池单体7的结构,并保证电池单体7的过流能力。底壁23和电极端子40位于电池单体7的同一端,这样,在将多个电池单体7装配成组时,汇流部件可以装配 到电池单体7的同一侧,这样可以简化装配工艺,提高装配效率。
在一些实施例中,底壁23和侧壁22一体设置。本实施例可以省去底壁23和侧壁22的连接工序。壳体20可通过拉伸工艺成型。
本申请实施例的电极引出孔231是在壳体20拉伸成型后制成。
发明人曾尝试辊压的壳体的开口端,以使壳体的开口端向内翻折并形成翻边结构,翻边结构压住端盖以实现端盖的固定。发明人将电极端子安装到端盖上,并以翻边结构和电极端子作为电池单体的两个输出极。然而,翻边结构的尺寸越大,其在成型后出现卷曲和褶皱的风险越高;如果翻边结构出现卷曲和褶皱,那么会造成翻边结构的表面不平整,当翻边结构与汇流部件焊接时,会存在焊接不良的问题。因此,翻边结构的尺寸比较受限,造成电池单体的过流能力不足。
本实施例利用开孔的工艺在底壁23上形成用于安装电极端子40的电极引出孔231,以将正输出极和负输出极设置在电池单体7的背离开口21的一端;底壁23是在壳体20的成型过程中形成,开设电极引出孔231后也能够保证底壁23的平整性,保证底壁23和汇流部件的连接强度。同时,底壁23的平整性不受自身尺寸的约束,所以底壁23可以具有较大的尺寸,从而提高电池单体7的过流能力。
在一些实施例中,第一极耳12为负极极耳,壳体20的基体材质为钢。
壳体20与负极极耳电连接,即壳体20处于低电位状态。钢制的壳体20在低电位状态下不易被电解液腐蚀,以降低安全风险。
在一些实施例中,壳体20焊接于端盖30。焊接既可以实现壳体20和端盖30的连接,提高壳体20和端盖30之间的过流能力,还能保证密封性。
在一些实施例中,壳体20的基体材质和端盖30的基体材质相同。可选地,壳体20的基体材质与端盖30的基体材质均为钢。
本实施例中,壳体20的基体材质和端盖30的基体材质相同,这样可以保证壳体20和端盖30的焊接强度,保证电池单体7的密封性。
在一些实施例中,电池单体7为圆柱电池单体。对应地,电极组件10为圆柱结构,壳体20为圆柱状的中空结构。
在一些实施例中,端盖30上与第一凸部32相对应的位置形成有从盖本体的外表面31b沿面向电极组件10的方向凹陷的第一凹部33,第一凹部33的底面相较于盖本体的内表面31a更靠近第一极耳12。
第一凹部33能够降低第一凸部32的强度,提高第一凸部32的弹性,这样,在第一凸部32伸入壳体20并抵压第一极耳12的过程中,第一凸部32能够通过变形释放应力,减小冲击力,降低第一极耳12被压伤的风险。
第一凹部33和第一凸部32可通过冲压端盖30形成。第一凹部33沿厚度方向Z的深度越大,第一凸部32凸出盖本体的内表面31a的程度也就越大,避让空隙G也就越大。
本申请实施例能够保证第一凸部32凸出盖本体31的程度,以更有效地支撑第一极耳12,增大避让空隙G沿厚度方向Z的尺寸,进一步降低电极组件10挤压接触薄弱部311的风险。同时,本申请实施例在保证第一凸部32的凸出程度的前提下,进一 步保证第一凹部33凹陷的程度,以提高第一凸部32的弹性,降低在装配过程中第一凸部32压伤第一极耳12的风险。
可选地,第一凹部33的底面为平面且平行于盖本体的内表面31a。
在一些实施例中,电池单体7还包括集流构件50,设于端盖30与第一极耳12之间。集流构件50用于连接端盖30和第一极耳12,以实现端盖30和第一极耳12的电连接。在端盖30的厚度方向Z上,避让空隙G位于集流构件50和盖本体31之间。
集流构件50可以通过焊接、粘接或其它方式连接于第一极耳12,以实现与第一极耳12的电连接。集流构件50可以通过焊接、粘接或其它方式连接于端盖30,以实现与端盖30的电连接。
集流构件50可以连接于第一凸部32,也可以连接于盖本体31,还可以连接于端盖30的其它部分。
第一凸部32凸出于盖本体31,所以第一凸部32会将盖本体31与第一极耳12在厚度方向Z上隔开;如果直接连接端盖30和第一极耳12,那么第一极耳12只能连接到端盖30的第一凸部32。如果直接连接第一凸部32和第一极耳12,那么只有第一极耳12的与第一凸部32相对的部分能够与第一凸部32直接相连,造成第一极耳12的能够直接传输电流的区域受到第一凸部32的限制,导致第一凸部32和第一极耳12之间的过流面积不足;第一极耳12的与盖本体31沿厚度方向Z相对的部分上的电流需要先流动到第一极耳12的焊接于第一凸部32的部分,然后再流动到第一凸部32,这会造成第一极耳12的不同区域与端盖30之间的导电路径的差异性偏大,影响电池单体7的过流能力和充电效率。
本申请实施例通过设置集流构件50来连接第一极耳12和端盖30,使第一极耳12的能够直接传输电流的区域不再受到第一凸部32的限制,第一极耳12的电流可以经由集流构件50汇入端盖30,这样,集流构件50可以减小第一极耳12的不同区域与端盖30之间的导电路径的差异,提高第一极片的电流密度的均匀性,减小内阻,提高电池单体7的过流能力和充电效率。
在本实施例中,避让空隙G位于集流构件50和盖本体31之间,这样既可以降低集流构件50挤压薄弱部311的风险,还能够在薄弱部311破裂时降低集流构件50堵住排气通道的可能性,保证顺畅地排气,提高安全性。
在一些实施例中,集流构件50沿端盖30的厚度方向Z覆盖薄弱部311,以将薄弱部311与第一极耳12隔开。
集流构件50的一部分与薄弱部311沿厚度方向Z间隔设置并覆盖薄弱部311。薄弱部311沿厚度方向Z的投影位于集流构件50沿厚度方向Z的投影之内。
在本实施例中,集流构件50可以将薄弱部311与第一极耳12隔开,以减少掉落到薄弱部311上的电极组件10中的活性颗粒,降低薄弱部311被腐蚀的风险。
在一些实施例中,集流构件50的至少部分位于第一凸部32和第一极耳12之间。第一凸部32通过集流构件50支撑第一极耳12。
第一凸部32通过集流构件50支撑第一极耳12,以减小电极组件10在电池单体7震动时的晃动幅度,提高电极组件10的稳定性。同时,第一凸部32支撑集流构件 50,以在集流构件50和盖本体31之间形成避让空隙G。
在一些实施例中,集流构件50的一部分用于与第一极耳12相抵并焊接,集流构件50的另一部分用于与第一凸部32相抵并焊接。
在装配电池单体7时,先将集流构件50抵压并焊接于第一极耳12并形成第一焊接部W1,然后再焊接端盖30和集流构件50并形成第二焊接部W2。
本实施例在将集流构件50的两个不同的部分分别焊接于端盖30和第一极耳12,以降低第一焊接部W1与第二焊接部W2熔接的风险,保证集流构件50和第一极耳12的连接强度以及端盖30和集流构件50的连接强度。
焊接可以减小集流构件50和端盖30之间的接触电阻以及集流构件50和第一极耳12之间的接触电阻,提高过流能力。
在一些实施例中,集流构件50为平板结构。
平板状的集流构件50更容易成型。平板状的集流构件50可以整体与第一极耳12接触,从而增大过流面积,并使集流构件50更均匀地支撑第一极耳12,降低电极组件10的极片在厚度方向Z上偏移、错位的风险。平板状的集流构件50还能够与盖本体31完全隔开,以保证集流构件50与盖本体31之间的避让空隙G,降低集流构件50与薄弱部311接触的风险。
在一些实施例中,盖本体31环绕在第一凸部32的外侧。换言之,盖本体31为环绕在第一凸部32外侧的环形结构。
在一些实施例中,端盖30还包括第二凸部34,第二凸部34环绕在盖本体31的外侧。第二凸部34从盖本体的内表面31a沿面向电极组件10的方向凸出,且第二凸部34的顶端面相较于第一凸部32的顶端面更靠近第一极耳12,以使第二凸部34抵接于第一极耳12并用于支撑第一极耳12。
第二凸部34为环绕在盖本体31外侧的环形结构。第一凸部32的顶端面抵接于集流构件50;可选地,第一凸部32的顶端面为平面。第二凸部34的顶端面抵接于第一极耳12;可选地,第二凸部34的顶端面为平面或曲面。
第二凸部34与集流构件50间隔设置,以避免第二凸部34干涉集流构件50与第一凸部32的抵接,保证第一凸部32紧贴于集流构件50。可选地,第二凸部34环绕在集流构件50的外侧。
第二凸部34凸出盖本体的内表面31a的程度大于第一凸部32凸出盖本体的内表面31a的程度,以使第二凸部34的顶端面相较于第一凸部32的顶端面更靠近第一极耳12。
在本实施例中,第一凸部32通过集流构件50支撑第一极耳12的中部区域,第二凸部34支撑第一极耳12的边缘区域,这样可以提高第一极耳12受力的均匀性,降低电极组件10的极片在厚度方向Z上偏移、错位的风险。
在一些实施例中,端盖30上与第二凸部34相对应的位置形成有从盖本体的外表面31b沿面向电极组件10的方向凹陷的第二凹部35,第二凹部35的底面相较于盖本体的内表面31a更靠近第一极耳12。
第二凹部35能够降低第二凸部34的强度,提高第二凸部34的弹性,这样,在 第二凸部34伸入壳体20并抵压第一极耳12的过程中,第二凸部34能够通过变形释放应力,减小冲击力,降低第一极耳12被压伤的风险。
第二凹部35和第二凸部34可通过冲压端盖30形成。第二凹部35沿厚度方向Z的深度越大,第二凸部34凸出盖本体的内表面31a的程度也就越大。
本申请实施例在保证第二凸部34的凸出程度的前提下,进一步保证第二凹部35凹陷的程度,以提高第二凸部34的弹性,降低在装配过程中第二凸部34压伤第一极耳12的风险。
在一些实施例中,第二凸部的外侧面341抵接于壳体20的内表面并用于与壳体20焊接,以封闭开口21。
第二凸部的外侧面341为第二凸部34的面向壳体20的侧壁22的表面。第二凸部的外侧面341为柱面,可选地,第二凸部的外侧面341为圆柱面。
第二凸部34伸入壳体20的部分可与壳体20过盈配合、过渡配合或间隙配合。可选地,第二凸部34伸入壳体20的部分可与壳体20过盈配合,过盈配合可以增大壳体20和端盖30之间的连接强度,改善密封性能。
可选地,第二凸部34和壳体20的侧壁22通过激光焊接相连。焊接时,激光照射在第二凸部34和侧壁22的交界处,激光将第二凸部的外侧面341的至少部分和壳体20的内表面的部分熔化并连接在一起。第二凸部的外侧面341抵接于壳体20的内表面,这样可以降低激光射入壳体20内部烧伤电极组件10的风险。
可替代地,激光也可以照射在侧壁22的背离第二凸部34的外表面。
在本实施例中,焊接可以实现密封,降低电解液泄露的风险,并提高第二凸部34和壳体20之间的连接强度和过流能力。
第二凹部35能够降低第二凸部34的强度,提高第二凸部34的弹性,这样,在焊接第二凸部34和壳体20的过程中,第二凸部34可以通过变形释放焊接应力,从而降低焊接区域变形、开裂的风险,改善密封性能。本实施例在保证第二凸部34的凸出程度的前提下,进一步保证第二凹部35凹陷的程度,以提高第二凸部34的弹性,使第二凸部34能够通过变形来释放焊接应力。
在一些实施例中,盖本体31为平板结构。盖本体的内表面31a和盖本体的外表面31b均为平面且平行设置。
图7为本申请另一些实施例提供的电池单体的剖视示意图;图8为图7所示的电池单体在圆框B处的放大示意图。
如图7和图8所示,在一些实施例中,第一凸部32环绕在盖本体31的外侧。换言之,第一凸部32为环绕在盖本体31外侧的环形结构。
在一些实施例中,第一凸部32伸入壳体20的部分可与壳体20过盈配合、过渡配合或间隙配合。可选地,第一凸部32伸入壳体20的部分可与壳体20过盈配合,过盈配合可以增大壳体20和端盖30之间的连接强度,改善密封性能。
在一些实施例中,第一凸部32的外侧面抵接于壳体20的内表面并用于与壳体20焊接,以封闭开口21。
在另一些实施例中,端盖30还包括环绕在第一凸部32的外侧的延伸部36,延 伸部36的面向第一极耳12的表面与壳体20的环绕开口21的端面相抵并焊接,以封闭开口21。
延伸部36包括沿厚度方向Z相对设置的内表面和外表面,延伸部36的内表面面向第一极耳12。可选地,延伸部36为环形的板状结构,延伸部36的内表面和延伸部36的外表面均为平面。
延伸部36和壳体20沿厚度方向Z布置,延伸部36的内表面可与壳体20的端面平行设置。
可选地,在焊接时,激光照射在壳体20的端面和延伸部36的内表面的交界处;在焊接后,延伸部36的内表面的至少部分和壳体20的端面的至少部分熔化并连接在一起。
在本实施例中,在装配端盖30和壳体20时,壳体20的端面可以起到在厚度方向Z上限位的作用,降低端盖30过度插入壳体20的风险,提高装配效率。
盖本体31可以整体为平板状,也可以局部凸出。
在一些实施例中,盖本体31包括主板体313和第三凸部314,主板体313环绕在第三凸部314的外侧,第一凸部32环绕在主板体313的外侧,薄弱部311形成于第三凸部314。主板体313包括相对设置的第一内表面313a和第一外表面313b,第一内表面313a面向电极组件10,第一凸部32和第三凸部314均从第一内表面313a沿面向电极组件10的方向凸出,且第一凸部32的顶端面相较于第三凸部314的顶端面更靠近第一极耳12,以在集流构件50和第三凸部314之间形成用于避让薄弱部311的避让空隙G。
主板体313为板状结构,第一内表面313a和第一外表面313b沿厚度方向Z相对设置。可选地,主板体313为平板结构,第一内表面313a和第一外表面313b均为平面且平行设置。
可选地,第一凸部32的顶端面和第三凸部314的顶端面均为平面且平行设置。
盖本体的内表面包括第一内表面313a、第三凸部314的顶端面以及第三凸部314的侧面,其中,第三凸部314的侧面连接第一内表面313a和第三凸部314的顶端面。第一凸部32的至少部分沿面向电极组件10的方向凸出于第三凸部314的顶端面。
电池单体7在正常循环过程中可能会释放出少量的气体,气体会使电池单体7的内压增大,从而引发端盖30变形的风险;端盖30变形时,薄弱部311容易蠕变,导致薄弱部311可能会在电池单体7的内部压力未达到阈值时破裂,造成电池单体7失效。
本实施例通过在端盖30的中部设置第三凸部314,可以增大端盖30的强度,减小端盖30的变形。第三凸部314呈凸出状态,不易变形,因此,将薄弱部311设置在第三凸部314上,可以减小薄弱部311的蠕变,从而降低薄弱部311失效的风险。
本实施例通过在第三凸部314与集流构件50之间形成避让空隙G,以在薄弱部311破裂时降低集流构件50堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,盖本体31上与第三凸部314相对应的位置形成有从第一外表面313b沿面向电极组件10的方向凹陷的第三凹部315,第三凸部314在与第三凹部 315的底面相对的区域形成薄弱部311。
第三凸部314的位于第三凹部315的底面与第三凸部314的顶端面之间的部分设置有薄弱部311。可选地,第三凹部315的底面与第三凸部314的顶端面均为平面且平行设置。
薄弱部311形成在第三凸部314的与第三凹部315的底面相对的区域,这样可以增大薄弱部311与其它外部构件的距离,降低薄弱部311被外部构件压伤的风险。
图9为本申请又一些实施例提供的电池单体的剖视示意图;图10为图9所示的电池单体在方框C处的放大示意图。
如图9和图10所示,在一些实施例中,第一凸部32环绕在盖本体31的外侧,集流构件50用于连接盖本体31和第一极耳12,以实现端盖30和第一极耳12的电连接。
在一些实施例中,集流构件50包括第一集流部51和连接于第一集流部51的第二集流部52,第一集流部51用于连接第一极耳12以使集流构件50和第一极耳12电连接,第二集流部52用于连接盖本体31以使集流构件50和端盖30电连接。第一集流部51凸设于第二集流部52的面向电极组件10的表面,集流构件50与第一集流部51相对应的位置上形成有从第二集流部52的背离电极组件10的表面沿面向电极组件10的方向凹陷的避让凹部53,以在集流构件50和盖本体31之间形成避让空隙G。
在本实施例中,通过设置避让凹部53,以形成避让空隙G并避免第一集流部51抵接在盖本体31上,从而降低第一集流部51挤压薄弱部311的风险,提高安全性。
第一集流部51支撑第一极耳12的中部区域,第一凸部32支撑第一极耳12的边缘区域,这样可以提高第一极耳12受力的均匀性,降低电极组件10的极片在厚度方向Z上偏移、错位的风险。
在一些实施例中,第一集流部51用于与第一极耳12相抵并焊接,第二集流部52用于与盖本体31相抵并焊接。
避让凹部53能够减小第一集流部51的厚度,以减小第一集流部51与第一极耳12焊接所需的焊接功率,减少产热,降低其它构件(例如隔离件)被烧伤的风险。
在一些实施例中,第二集流部52为环绕在第一集流部51的外侧的平板结构。
盖本体31可以整体为平板状,也可以局部凸出。
在一些实施例中,盖本体31包括主板体313和第三凸部314,主板体313环绕在第三凸部314的外侧,第一凸部32环绕在主板体313的外侧,薄弱部311形成于第三凸部314。主板体313包括相对设置的第一内表面313a和第一外表面313b,第一内表面313a面向电极组件10,第一凸部32和第三凸部314均从第一内表面313a沿面向电极组件10的方向凸出,且第一凸部32的顶端面相较于第三凸部314的顶端面更靠近第一极耳12,以在集流构件50和第三凸部314之间形成用于避让薄弱部311的避让空隙G。
避让凹部53可以为第三凸部314提供凸出的空间,例如,第三凸部314的至少部分伸入到避让凹部53内。
在一些实施例中,第一凸部32用于与第一极耳12相抵并焊接,以实现端盖30 和第一极耳12的电连接。
在本实施例中,端盖30可以通过第一凸部32与第一极耳12直接电连接,从而简化电池单体7的结构,例如,可以省去集流构件50。
图11为本申请一些实施例提供的电池单体的制造方法的流程示意图。
如图11所示,本申请实施例的电池单体的制造方法包括:
S100、提供壳体,壳体具有开口;
S200、提供电极组件,并将电极组件安装到壳体内,电极组件在面向开口的一端设有第一极耳;
S300、提供端盖,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部;
S400、将端盖连接于壳体,以使端盖盖合于开口;
其中,端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力;第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑第一极耳,以使第一极耳和盖本体之间形成用于避让薄弱部的避让空隙。
需要说明的是,通过上述电池单体的制造方法制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
在基于上述的电池单体的制造方法组装电池单体时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100、S300的执行不分先后,也可以同时进行。
图12为本申请一些实施例提供的电池单体的制造系统的示意性框图。
如图12所示,本申请实施例还提供了一种电池单体的制造系统90包括:
第一提供装置91,用于提供壳体,壳体具有开口;
第二提供装置92,用于提供电极组件,并将电极组件安装到壳体内,电极组件在面向开口的一端设有第一极耳;
第三提供装置93,用于提供端盖,端盖包括盖本体和连接于盖本体的第一凸部,盖本体设置有薄弱部;
组装装置94,用于将端盖连接于壳体,以使端盖盖合于开口;
其中,端盖被配置为在电池单体的内部压力达到阈值时沿薄弱部破裂,以泄放内部压力;第一凸部沿面向电极组件的方向凸出于盖本体,并用于支撑第一极耳,以使第一极耳和盖本体之间形成用于避让薄弱部的避让空隙。
通过上述制造系统制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进 行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种电池单体,包括:
    壳体,具有开口;
    电极组件,容纳于所述壳体内,所述电极组件在面向所述开口的一端设有第一极耳;以及
    端盖,用于盖合所述开口,所述端盖包括盖本体和连接于所述盖本体的第一凸部,所述盖本体设置有薄弱部,所述端盖被配置为在所述电池单体的内部压力达到阈值时沿所述薄弱部破裂,以泄放所述内部压力;
    其中,所述第一凸部沿面向所述电极组件的方向凸出于所述盖本体,并用于支撑所述第一极耳,以使所述第一极耳和所述盖本体之间形成用于避让所述薄弱部的避让空隙。
  2. 根据权利要求1所述的电池单体,其中,所述端盖上与所述第一凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第一凹部,所述第一凹部的底面相较于所述盖本体的内表面更靠近所述第一极耳。
  3. 根据权利要求1或2所述的电池单体,其中,所述第一凸部用于与所述第一极耳相抵并焊接,以实现所述端盖和所述第一极耳的电连接。
  4. 根据权利要求1或2所述的电池单体,还包括集流构件,设于所述端盖与所述第一极耳之间;
    所述集流构件用于连接所述端盖和所述第一极耳,以实现所述端盖和所述第一极耳的电连接;
    在所述端盖的厚度方向上,所述避让间隙位于所述集流构件和所述盖本体之间。
  5. 根据权利要求4所述的电池单体,其中,所述集流构件沿所述端盖的厚度方向覆盖所述薄弱部,以将所述薄弱部与所述第一极耳隔开。
  6. 根据权利要求4或5所述的电池单体,其中,所述第一凸部环绕在所述盖本体的外侧,所述集流构件用于连接所述盖本体和所述第一极耳,以实现所述端盖和所述第一极耳的电连接。
  7. 根据权利要求6所述的电池单体,其中,所述集流构件包括第一集流部和连接于所述第一集流部的第二集流部,所述第一集流部用于连接所述第一极耳以使所述集流构件和所述第一极耳电连接,所述第二集流部用于连接所述盖本体以使所述集流构件和所述端盖电连接;
    所述第一集流部凸设于所述第二集流部的面向所述电极组件的表面,所述集流构件与所述第一集流部相对应的位置上形成有从所述第二集流部的背离所述电极组件的表面沿面向所述电极组件的方向凹陷的避让凹部,以在所述集流构件和所述盖本体之间形成所述避让空隙。
  8. 根据权利要求7所述的电池单体,其中,所述第一集流部用于与所述第一极耳相抵并焊接,所述第二集流部用于与所述盖本体相抵并焊接。
  9. 根据权利要求4或5所述的电池单体,其中,所述集流构件的至少部分位于所述第一凸部和所述第一极耳之间;
    所述第一凸部通过所述集流构件支撑所述第一极耳。
  10. 根据权利要求9所述的电池单体,其中,所述集流构件的一部分用于与所述第一极耳相抵并焊接,所述集流构件的另一部分用于与所述第一凸部相抵并焊接。
  11. 根据权利要求10所述的电池单体,其中,所述集流构件为平板结构。
  12. 根据权利要求9-11任一项所述的电池单体,其中,所述第一凸部环绕在所述盖本体的外侧。
  13. 根据权利要求9-11任一项所述的电池单体,其中,所述盖本体环绕在所述第一凸部的外侧。
  14. 根据权利要求13所述的电池单体,其中,所述端盖还包括第二凸部,所述第二凸部环绕在所述盖本体的外侧;
    所述第二凸部从所述盖本体的内表面沿面向所述电极组件的方向凸出,且所述第二凸部的顶端面相较于所述第一凸部的顶端面更靠近所述第一极耳,以使所述第二凸部抵接于所述第一极耳并用于支撑所述第一极耳。
  15. 根据权利要求14所述的电池单体,其中,所述端盖上与所述第二凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第二凹部,所述第二凹部的底面相较于所述盖本体的内表面更靠近所述第一极耳。
  16. 根据权利要求13-15任一项所述的电池单体,其中,所述第二凸部的外侧面抵接于所述壳体的内表面并用于与所述壳体焊接,以封闭所述开口。
  17. 根据权利要求6-16任一项所述的电池单体,其中,所述盖本体为平板结构。
  18. 根据权利要求6-12任一项所述的电池单体,其中,所述盖本体包括主板体和第三凸部,所述主板体环绕在所述第三凸部的外侧,所述第一凸部环绕在所述主板体的外侧,所述薄弱部形成于所述第三凸部;
    所述主板体包括相对设置的第一内表面和第一外表面,所述第一内表面面向所述电极组件,所述第一凸部和所述第三凸部均从所述第一内表面沿面向所述电极组件的方向凸出,且所述第一凸部的顶端面相较于所述第三凸部的顶端面更靠近所述第一极耳,以在所述集流构件和所述第三凸部之间形成用于避让所述薄弱部的所述避让空隙。
  19. 根据权利要求18所述的电池单体,其中,所述盖本体上与所述第三凸部相对应的位置形成有从所述第一外表面沿面向所述电极组件的方向凹陷的第三凹部,所述第三凸部在与所述第三凹部的底面相对的区域形成所述薄弱部。
  20. 根据权利要求1-19任一项所述的电池单体,其中,所述盖本体设置有凹槽,所述盖本体与所述凹槽相对的区域形成所述薄弱部。
  21. 根据权利要求1-20中任一项所述的电池单体,其中,所述端盖电连接所述第一极耳和所述壳体。
  22. 根据权利要求21所述的电池单体,其中,所述壳体包括侧壁和连接于所述侧壁的底壁,所述侧壁沿所述端盖的厚度方向延伸并环绕所述电极组件的外周设置,所述底壁设有电极引出孔;
    所述电极组件还包括第二极耳,所述第一极耳和所述第二极耳极性相反且分别位于所述电极组件的两端;
    所述电池单体还包括安装于所述电极引出孔的电极端子,所述电极端子电连接于所述第二极耳。
  23. 根据权利要求22所述的电池单体,其中,所述底壁和所述侧壁一体设置。
  24. 根据权利要求21-23任一项所述的电池单体,其中,所述第一极耳为负极极耳,所述壳体的基体材质为钢。
  25. 根据权利要求1-24中任一项所述的电池单体,其中,所述壳体的基体材质和所述端盖的基体材质相同。
  26. 根据权利要求1-25中任一项所述的电池单体,其中,所述电池单体为圆柱电池单体。
  27. 一种电池,包括多个根据权利要求1-26中任一项所述的电池单体。
  28. 一种用电装置,包括根据权利要求27所述的电池,所述电池用于提供电能。
  29. 一种电池单体的制造方法,包括:
    提供壳体,所述壳体具有开口;
    提供电极组件,并将所述电极组件安装到所述壳体内,所述电极组件在面向所述开口的一端设有第一极耳;
    提供端盖,所述端盖包括盖本体和连接于所述盖本体的第一凸部,所述盖本体设置有薄弱部;
    将所述端盖连接于所述壳体,以使所述端盖盖合于所述开口;
    其中,所述端盖被配置为在所述电池单体的内部压力达到阈值时沿所述薄弱部破裂,以泄放所述内部压力;所述第一凸部沿面向所述电极组件的方向凸出于所述盖本体,并用于支撑所述第一极耳,以使所述第一极耳和所述盖本体之间形成用于避让所述薄弱部的避让空隙。
  30. 一种电池单体的制造系统,包括:
    第一提供装置,用于提供壳体,所述壳体具有开口;
    第二提供装置,用于提供电极组件,并将所述电极组件安装到所述壳体内,所述电极组件在面向所述开口的一端设有第一极耳;
    第三提供装置,用于提供端盖,所述端盖包括盖本体和连接于所述盖本体的第一凸部,所述盖本体设置有薄弱部;
    组装装置,用于将所述端盖连接于所述壳体,以使所述端盖盖合于所述开口;
    其中,所述端盖被配置为在所述电池单体的内部压力达到阈值时沿所述薄弱部破裂,以泄放所述内部压力;所述第一凸部沿面向所述电极组件的方向凸出于所述盖本体,并用于支撑所述第一极耳,以使所述第一极耳和所述盖本体之间形成用于避让所述薄弱部的避让空隙。
PCT/CN2021/122101 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置 WO2023050278A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180081120.7A CN116529942A (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置
JP2023509716A JP2023547006A (ja) 2021-09-30 2021-09-30 電池単体、その製造方法および製造システム、電池および電力使用装置
PCT/CN2021/122101 WO2023050278A1 (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置
EP21953609.1A EP4187690A1 (en) 2021-09-30 2021-09-30 Battery cell and method and system for manufacturing same, and battery and electric device
KR1020237004869A KR20230048044A (ko) 2021-09-30 2021-09-30 전지 셀 및 그의 제조 방법, 제조 시스템, 전지 및 전기 장치
US18/113,074 US20230207984A1 (en) 2021-09-30 2023-02-23 Battery cell, method and system for manufacturing same, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122101 WO2023050278A1 (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/113,074 Continuation US20230207984A1 (en) 2021-09-30 2023-02-23 Battery cell, method and system for manufacturing same, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023050278A1 true WO2023050278A1 (zh) 2023-04-06

Family

ID=85780390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122101 WO2023050278A1 (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置

Country Status (6)

Country Link
US (1) US20230207984A1 (zh)
EP (1) EP4187690A1 (zh)
JP (1) JP2023547006A (zh)
KR (1) KR20230048044A (zh)
CN (1) CN116529942A (zh)
WO (1) WO2023050278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116231181A (zh) * 2023-05-09 2023-06-06 宁德时代新能源科技股份有限公司 电池、电池的制造方法及用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031918A1 (en) * 2001-08-09 2003-02-13 Eveready Battery Company, Inc. Electrochemical cell having can vent and cover terminal
CN1622364A (zh) * 2003-11-28 2005-06-01 松下电器产业株式会社 方形电池及其制造方法
CN106030855A (zh) * 2014-03-28 2016-10-12 三洋电机株式会社 圆筒形密闭电池及电池组
CN212342702U (zh) * 2020-05-12 2021-01-12 路华置富电子(深圳)有限公司 电池盖帽及使用该盖帽的电池
CN112385075A (zh) * 2018-08-08 2021-02-19 杜拉塞尔美国经营公司 具有通气口的电池
CN113258124A (zh) * 2021-07-06 2021-08-13 江苏时代新能源科技有限公司 电池单体、电池、用电设备及电池单体的制造方法和设备
CN214013033U (zh) * 2020-12-30 2021-08-20 中山市小万能源科技有限公司 一种电池盖板以及电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031918A1 (en) * 2001-08-09 2003-02-13 Eveready Battery Company, Inc. Electrochemical cell having can vent and cover terminal
CN1622364A (zh) * 2003-11-28 2005-06-01 松下电器产业株式会社 方形电池及其制造方法
CN106030855A (zh) * 2014-03-28 2016-10-12 三洋电机株式会社 圆筒形密闭电池及电池组
CN112385075A (zh) * 2018-08-08 2021-02-19 杜拉塞尔美国经营公司 具有通气口的电池
CN212342702U (zh) * 2020-05-12 2021-01-12 路华置富电子(深圳)有限公司 电池盖帽及使用该盖帽的电池
CN214013033U (zh) * 2020-12-30 2021-08-20 中山市小万能源科技有限公司 一种电池盖板以及电池
CN113258124A (zh) * 2021-07-06 2021-08-13 江苏时代新能源科技有限公司 电池单体、电池、用电设备及电池单体的制造方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116231181A (zh) * 2023-05-09 2023-06-06 宁德时代新能源科技股份有限公司 电池、电池的制造方法及用电设备
CN116231181B (zh) * 2023-05-09 2023-10-20 宁德时代新能源科技股份有限公司 电池、电池的制造方法及用电设备

Also Published As

Publication number Publication date
US20230207984A1 (en) 2023-06-29
JP2023547006A (ja) 2023-11-09
CN116529942A (zh) 2023-08-01
KR20230048044A (ko) 2023-04-10
EP4187690A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
CN216213942U (zh) 电池单体、电池以及用电装置
CN216213727U (zh) 电池单体、电池以及用电装置
US20230344044A1 (en) End cover assembly, battery, electric device, battery cell, and manufacturing method thereof
CN216085200U (zh) 电池单体、电池以及用电装置
WO2023137976A1 (zh) 电池单体、电池以及用电装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050835A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
CN216085238U (zh) 电池单体、电池以及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023023917A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023056719A1 (zh) 端盖、电池单体、电池以及用电装置
WO2023050278A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20230411746A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
CN115715438A (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050281A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023142620A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2023004722A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023065173A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023023915A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050285A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050282A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023133855A1 (zh) 电池、用电设备及电池的制备方法和制备装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237004869

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023509716

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021953609

Country of ref document: EP

Effective date: 20230223

WWE Wipo information: entry into national phase

Ref document number: 202180081120.7

Country of ref document: CN