WO2023050285A1 - 电池单体及其制造方法和制造系统、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造系统、电池以及用电装置 Download PDF

Info

Publication number
WO2023050285A1
WO2023050285A1 PCT/CN2021/122108 CN2021122108W WO2023050285A1 WO 2023050285 A1 WO2023050285 A1 WO 2023050285A1 CN 2021122108 W CN2021122108 W CN 2021122108W WO 2023050285 A1 WO2023050285 A1 WO 2023050285A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
battery cell
current collecting
collecting member
protrusion
Prior art date
Application number
PCT/CN2021/122108
Other languages
English (en)
French (fr)
Inventor
方堃
郭志君
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023511827A priority Critical patent/JP2023547757A/ja
Priority to PCT/CN2021/122108 priority patent/WO2023050285A1/zh
Priority to EP21953018.5A priority patent/EP4184669A1/en
Priority to CN202180081157.XA priority patent/CN116529947A/zh
Priority to KR1020237005553A priority patent/KR20230048051A/ko
Priority to CN202280007961.8A priority patent/CN116569408A/zh
Priority to PCT/CN2022/122805 priority patent/WO2023051731A1/zh
Priority to EP22875112.9A priority patent/EP4333191A1/en
Priority to US18/110,381 priority patent/US20230198108A1/en
Publication of WO2023050285A1 publication Critical patent/WO2023050285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell, a manufacturing method and system thereof, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery cell, a manufacturing method and a manufacturing system thereof, a battery and an electrical device, which can improve the safety of the battery cell.
  • the embodiment of the present application provides a battery cell, including: a casing with an opening; an electrode assembly housed in the casing, the electrode assembly has a first tab at an end facing the opening; an end cap for Covering the opening to seal the electrode assembly in the casing; the current collecting member is arranged between the end cover and the first tab, and the current collecting member is configured to be welded to the end cover and the first tab respectively to realize the end cover electrical connection to the first tab.
  • the electrical connection between the end cap and the first tab is realized by welding the current collecting member, the end cap, and the first tab respectively.
  • the current collecting member can be closely attached to the end cover to reduce the risk of microcracks in the end cover, improve sealing performance, reduce potential safety hazards, and improve safety.
  • the current collecting member is welded to the first tab, even if the current collecting member has microcracks, it will not affect the sealing performance of the battery cell.
  • a part of the current collecting member is used to abut and weld with the end cap to form a first welding portion, and another part of the current collecting member is used to abut and weld with the first lug to form a second welding portion .
  • the projection of the first welding portion along the thickness direction of the end cap and the projection of the second welding portion along the thickness direction of the end cap do not overlap.
  • the projection of the first welding portion along the thickness direction of the end cap and the projection of the second welding portion along the thickness direction of the end cap do not overlap, so that the welding of the end cap and the current collecting member is not affected by the second welding portion. Influence, improve the welding reliability of the end cover and current collecting member.
  • the electrode assembly is wound along the central axis to form a first tab
  • the first tab includes N layer structures arranged around the central axis
  • the extension direction of the central axis is parallel to the thickness direction of the end cap.
  • the first annular portion is welded to the current collecting member to form a first portion
  • the second annular portion is welded to the current collecting member to form a second portion connected to the first portion
  • the second welded portion is composed of the first portion and the second portion.
  • the electrons in the region corresponding to the first annular part in the electrode assembly can move along the first current path formed by the first annular part, the first part, the current collecting member, the first welding part and the end cap, and the electrode assembly
  • Electrons in a region corresponding to the second annular portion can move along a second current path formed by the second annular portion, the second portion, the current collecting member, the first welding portion, and the end cap, and the first annular portion and the second
  • the boundary between the two annular parts is roughly located in the middle area of the first tab in the radial direction, that is to say, some layer structures in the middle area of the first tab are welded to the current collecting member and form a part of the second welded part, which can Reduce the difference between the first current path and the second current path to a certain extent, so as to improve the uniformity of the current density, reduce the internal resistance, and improve the overcurrent capability.
  • the N3 continuous layer structures disposed close to the second annular part in the first annular part are welded to the current collecting member and form the first part, and the N4 continuous layer structures disposed close to the first annular part in the second annular part
  • the continuous layer structure is welded with the current collecting member to form the second part, N3 continuous layer structures and N4 continuous layer structures are arranged continuously, N4>N3 ⁇ 1, N3 and N4 are positive integers.
  • the second annular portion surrounds the outer side of the first annular portion, the perimeter of the layer structure in the second annular portion is larger than the perimeter of the layer structure in the first annular portion, and the electrode assembly and the second annular portion The electrons in the corresponding regions take a longer path for transport between the layer structures of the second annular portion.
  • N4>N3 which can increase the layer structure connected to the second part, reduce the transmission of electrons between the layer structures of the second ring part, thereby shortening the second current path, further reducing the first current path and the second
  • the difference between the two current paths is to improve the uniformity of the current density, reduce the internal resistance and improve the over-current capability.
  • M consecutive layer structures in all layer structures are welded to the current collecting member to form a second welding part, wherein, 1/3 ⁇ M/N ⁇ 1/2, M ⁇ 2, and M is positive integer.
  • the area of the current collecting member is constant, the larger the value of M/N, the smaller the area of the first welding portion, and the lower the flow capacity between the current collecting member and the end cap.
  • the above scheme limits the value of M/N to 1/3-1/2 to balance the flow capacity between the first tab and the current collecting member and the flow capacity between the current collecting member and the end cap, and optimize the battery single flow capacity.
  • the end cover includes a cover body and a first protrusion protruding from the inner surface of the cover body in a direction facing the first lug, the first protrusion is used to abut against and weld the current collecting member to form a The first welding part, and a first avoidance gap for avoiding the second welding part is formed between the current collecting member and the cover body.
  • the second welding portion is prevented from contacting the cover body, and the risk of the second welding portion crushing the cover body is reduced. If the second welding part abuts against the cover body, over-positioning will be formed between the end cap and the current collecting member, causing the second welding part to interfere with the abutment of the first convex part and the current collecting member; The gap can prevent the second welding part from interfering with the contact between the first protrusion and the current collecting member, and ensure the connection strength between the first protrusion and the current collecting member.
  • a first concave portion is formed on the end cap corresponding to the first convex portion from the outer surface of the cap body along the direction facing the electrode assembly, and the bottom surface of the first concave portion is smaller than the inner surface of the cap body. The surface is closer to the first lug.
  • the thickness of the first convex portion is reduced by setting the first concave portion, which can reduce the welding power required for welding the first convex portion and the current collecting member, reduce heat generation, and reduce the risk of other components being burned.
  • the first concave part can reduce the strength of the first convex part and improve the elastic deformation ability of the first convex part. In this way, when the first convex part is pressed against the current collecting member, the first convex part can release the stress through deformation and reduce the stress of the first convex part. Small impact force reduces the risk of crushing the current collecting member and the first tab.
  • this solution further ensures the concave degree of the first concave part, so as to improve the elastic deformation capacity of the first convex part and reduce the pressure damage of the current collecting member by the first convex part during the assembly process. and the risk of the first lug.
  • the first protrusion surrounds the outer side of the cover body, and the first welding portion is disposed on the outer side of the second welding portion.
  • the outer surface of the first protrusion abuts against the inner surface of the casing and is used for welding with the casing to close the opening.
  • welding can realize sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the housing and the first protrusion.
  • the end cap further includes an extension surrounding the outer side of the first protrusion, and a surface of the extension facing the first lug is abutted against and welded to an end surface of the casing surrounding the opening to close the opening.
  • the end surface of the housing can function as a limit in the thickness direction, reducing the risk of excessive insertion of the end cover into the housing and improving assembly efficiency.
  • the end cover further includes a second protrusion
  • the cover body surrounds the outer side of the second protrusion
  • the second protrusion protrudes from the inner surface of the cover body in a direction facing the first tab.
  • a second recess recessed from the outer surface of the cover body along a direction facing the electrode assembly is formed on the end cap at a position corresponding to the second protrusion.
  • the strength of the end cap can be increased and the deformation of the end cap can be reduced by arranging the second convex part and the second concave part in the middle part of the end cap.
  • the area of the second convex portion opposite to the bottom surface of the second concave portion is provided with a weakened portion for rupturing when the internal pressure of the battery cell reaches a threshold to release the internal pressure.
  • a weak portion is provided on the second convex portion to release the internal pressure when the battery cell is thermally out of control, thereby improving the safety performance.
  • the weakened portion is formed in the area where the second convex portion is opposite to the bottom surface of the second concave portion, so that the distance between the weakened portion and other external components can be increased, and the risk of the weakened portion being crushed by external components can be reduced.
  • a second avoidance gap is formed between the second protrusion and the current collecting member.
  • the second avoidance gap is formed between the second convex portion and the flow collecting member to reduce the risk of the flow collecting member blocking the exhaust channel when the weak portion is broken, ensuring smooth exhaust and reducing safety risks.
  • the cover body surrounds the outer side of the first protrusion, and the first welding portion is disposed on the inner side of the second welding portion.
  • a first recess recessed from the outer surface of the cover body along a direction facing the electrode assembly is formed on the end cap at a position corresponding to the first protrusion.
  • a groove is provided on the bottom surface of the first recess, and the bottom of the groove is used for welding with the current collecting member to form the first welding portion.
  • the part of the first protrusion between the bottom surface of the groove and the top end of the first protrusion forms a connecting part
  • the connecting part is used for welding with the current collecting member to form the first welding part.
  • the end cover further includes a second protrusion surrounding the outer side of the cover body, the second protrusion protrudes from the inner surface of the cover body in a direction facing the first tab, and the second protrusion is used to support first pole ear.
  • the second protrusion can support the first tab, so as to reduce the shaking amplitude of the electrode assembly when the battery cell vibrates, and improve the stability of the electrode assembly.
  • the outer surface of the second protrusion abuts against the inner surface of the housing and is used for welding with the housing to close the opening. Welding can realize sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the second protrusion and the housing.
  • a second concave portion is formed on the end cap corresponding to the second convex portion from the outer surface of the cap body along the direction facing the electrode assembly, and the bottom surface of the second concave portion is lower than the inner surface of the cap body. The surface is closer to the first lug.
  • the second concave part can reduce the strength of the second convex part and improve the elasticity of the second convex part, so that in the process of welding the second convex part and the housing, the second convex part can release the welding stress through deformation, Thereby reducing the risk of deformation and cracking in the welding area and improving the sealing performance.
  • the concave degree of the second concave part is further ensured, so as to improve the elasticity of the second convex part, so that the second convex part can release welding stress through deformation.
  • the cover body is provided with a weakened portion, and the weakened portion is used to rupture when the internal pressure of the battery cell reaches a threshold, so as to release the internal pressure.
  • a weak portion is provided on the cover body to release the internal pressure when the battery cell is thermally out of control, so as to improve the safety performance.
  • a first avoidance gap is formed between the flow collecting member and the cover body, so as to reduce the risk of the flow collecting member blocking the exhaust channel when the weak portion is broken, ensure smooth exhaust, and reduce safety risks.
  • the current collecting member is a flat plate structure.
  • the flat current collecting member is easier to form.
  • the plate-shaped current collecting member can be in contact with the first tab as a whole, thereby increasing the flow area, and enabling the current collecting member to support the first tab more evenly, reducing the offset and misalignment of the pole pieces of the electrode assembly in the thickness direction risks of.
  • the plate-shaped current collecting member can also be in close contact with the first protrusion, so as to reduce the risk of microcracks in the first protrusion during welding, and improve sealing and safety.
  • the first protrusion supports the first tab through the current collecting member.
  • the first protrusion supports the first tab through the current collecting member, so as to reduce the shaking amplitude of the electrode assembly when the battery unit vibrates, and improve the stability of the electrode assembly.
  • the current collecting member includes: a first current collecting part, which is used to abut and weld the end cover to form a first welding part; a second current collecting part, which is used to abut and weld the first tab, To form the second welding part, the second current collecting part is protruded on the surface of the first current collecting part facing the electrode assembly, and the second current collecting part is provided with an avoidance recess on the side away from the electrode assembly, and the avoidance recess is used to avoid Second weld.
  • the avoidance recess for avoiding the second welding part is provided to prevent the second welding part from interfering with the abutment between the first current collecting part and the end cover, so as to ensure the connection strength between the first current collecting part and the end cover, and Reduces the risk of crushing the end cap by the second weld.
  • the avoidance recess can reduce the thickness of the second current collecting part, so as to reduce the welding power required for welding the second current collecting part and the first tab, reduce heat generation, and reduce the risk of other components being burned.
  • the end cap includes: a cap body for welding with the first header to form a first welding portion; and a first protrusion surrounding the outer side of the cap body and extending from the inner surface of the cap body Protruding along a direction facing the first pole ear, the first protrusion is used to abut against the first pole ear to support the first pole ear.
  • the second current collecting part supports the middle area of the first tab
  • the first convex part supports the edge area of the first tab, which can improve the uniformity of the force on the first tab and reduce the pole pieces of the electrode assembly. Risk of offset, misalignment in the thickness direction.
  • a first concave portion is formed on the end cap corresponding to the first convex portion from the outer surface of the cap body along the direction facing the electrode assembly, and the bottom surface of the first concave portion is smaller than the inner surface of the cap body. The surface is closer to the first lug.
  • the concave degree of the first concave part is further ensured, so as to improve the elasticity of the first convex part and reduce the pressure when the first convex part is pressed against the first tab. Small impact force reduces the risk of the first tab being crushed.
  • the outer surface of the first protrusion abuts against the inner surface of the casing and is used for welding with the casing to close the opening.
  • welding can realize sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the first protrusion and the housing.
  • the end cover further includes a second protrusion
  • the cover body surrounds the outer side of the second protrusion
  • the second protrusion protrudes from the inner surface of the cover body along the direction facing the first tab and extends into the avoidance recessed part.
  • a second recess recessed from the outer surface of the cover body along a direction facing the electrode assembly is formed on the end cap at a position corresponding to the second protrusion.
  • the strength of the end cap can be increased and the deformation of the end cap can be reduced by arranging the second convex part and the second concave part in the middle part of the end cap.
  • the area of the second convex portion opposite to the bottom surface of the second concave portion is provided with a weakened portion for rupturing when the internal pressure of the battery cell reaches a threshold to release the internal pressure.
  • the escape recess is also used to separate the second collecting part from the weak part.
  • a weak portion is provided on the second convex portion to release the internal pressure when the battery cell is thermally out of control, thereby improving the safety performance.
  • the weakened portion is formed in the area where the second convex portion is opposite to the bottom surface of the second concave portion, so that the distance between the weakened portion and other external components can be increased, and the risk of the weakened portion being crushed by external components can be reduced.
  • the avoidance recess can reduce the risk of the flow-collecting member blocking the exhaust channel when the weak part is broken, ensures smooth exhaust, and reduces safety risks.
  • the end cap is used to electrically connect the first tab and the housing.
  • the casing itself can be used as the output pole of the battery cell, thereby saving a traditional electrode terminal and simplifying the structure of the battery cell.
  • the housing can be electrically connected to the current flow component, which can not only increase the flow area, but also make the structural design of the current flow component more flexible.
  • the casing further includes a side wall and a bottom wall connected to the side wall, the side wall extends along the thickness direction of the end cap and is arranged around the periphery of the electrode assembly, and the bottom wall is provided with an electrode lead-out hole.
  • the electrode assembly further includes a second tab, the first tab and the second tab have opposite polarities and are respectively located at two ends of the electrode assembly.
  • the battery cell also includes an electrode terminal installed in the electrode lead-out hole, and the electrode terminal is electrically connected to the second tab.
  • the bottom wall and the electrode terminals can be used as the two output poles of the battery cell, which can simplify the structure of the battery cell and ensure the overcurrent capability of the battery cell.
  • the bottom wall and the electrode terminals are located at the same end of the battery cells, so that when a plurality of battery cells are assembled into a group, the bus components can be assembled on the same side of the battery cells, which can simplify the assembly process and improve assembly efficiency.
  • the bottom wall and the side walls are integrally formed structures. In this way, the connecting process of the bottom wall and the side wall can be omitted.
  • the first tab is a negative tab
  • the base material of the casing is steel
  • the housing is electrically connected to the negative electrode tab, and the housing is in a low potential state.
  • the steel shell is not easily corroded by the electrolyte in a low potential state to reduce safety risks.
  • the base material of the shell and the base material of the end cap are the same.
  • the base material of the casing is the same as that of the end cap, so that the welding strength between the shell and the end cap can be ensured, and the sealing performance of the battery cells can be ensured.
  • the battery cells are cylindrical battery cells.
  • an embodiment of the present application provides a battery, including a plurality of battery cells in any embodiment of the first aspect.
  • an embodiment of the present application provides an electrical device, including the battery in the second aspect, and the battery is used to provide electrical energy.
  • the embodiment of the present application provides a method for manufacturing a battery cell, including:
  • the electrode assembly has a first tab
  • the end cap and the current collecting member are welded to realize the electrical connection between the end cap and the first tab.
  • the embodiment of the present application provides a battery cell manufacturing system, including:
  • a first providing device configured to provide an electrode assembly, the electrode assembly has a first tab
  • the second providing device is used to provide a current collecting member, and weld the current collecting member to the first tab;
  • the third providing device is used for providing a casing, and the casing has an opening;
  • the first assembly device is used to install the electrode assembly and the current collecting member into the casing, and make the first tab be located at one end of the electrode assembly facing the opening;
  • the fourth providing device is used to provide an end cover, and cover the end cover to the opening, so that the electrode assembly is sealed in the casing, and the current collecting member is arranged between the end cover and the first tab;
  • the second assembly device is used for welding the end cap and the current collecting member to realize the electrical connection between the end cap and the first tab.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is an explosion schematic diagram of the battery module shown in FIG. 2;
  • Fig. 4 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application.
  • FIG. 6 is an enlarged schematic view of the battery cell shown in FIG. 5 at box A;
  • Fig. 7 is a schematic diagram of assembly of a current collecting member and an electrode assembly of a battery cell provided in some embodiments of the present application;
  • Fig. 8 is a schematic structural diagram of the electrode assembly shown in Fig. 7;
  • FIG. 9 is a schematic cross-sectional view of a battery cell provided by another embodiment of the present application.
  • Fig. 10 is a schematic cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • FIG. 11 is an enlarged schematic view of the battery cell shown in FIG. 10 at the circle B;
  • Fig. 12 is a schematic cross-sectional view of a battery cell provided in some further embodiments of the present application.
  • FIG. 13 is an enlarged schematic diagram of the battery cell shown in FIG. 12 at block C;
  • Fig. 14 is a schematic flowchart of a method for manufacturing a battery cell provided in some embodiments of the present application.
  • Fig. 15 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector; The region is coated with a positive active material layer, and at least part of the positive tab is not coated with a positive active material layer.
  • the material of the positive electrode current collector can be aluminum
  • the positive electrode active material layer includes the positive electrode active material
  • the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode collector; the negative electrode collector includes a negative electrode collector area and a negative electrode tab protruding from the negative electrode collector area, and the negative electrode collector The region is coated with the negative active material layer, and at least part of the negative electrode tab is not coated with the negative active material layer.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the battery cell also includes a case and an end cover.
  • the case has an opening for accommodating the electrode assembly.
  • the electrode assembly can be assembled into the case through the opening of the case.
  • the end cap is used to cover the opening of the housing to achieve sealing.
  • the inventor welded the end cap to the tab.
  • the end surface where the tab contacts the end cap is uneven, making it difficult to fit the end cap tightly.
  • the end cap may have microcracks, which may cause the risk of seal failure of the end cap , causing a safety hazard.
  • the embodiment of the present application provides a technical solution, by arranging a current collecting member in the battery cell, and welding the current collecting member, the end cap and the tab respectively, so as to realize the electrical connection between the end cap and the tab.
  • the current collecting member can be closely attached to the end cover to reduce the risk of microcracks in the end cover, improve sealing performance, and reduce safety hazards. When the current-collecting member is welded to the tab, even if the current-collecting member has microcracks, it will not affect the sealing of the battery cell.
  • Electric devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and electric tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the electric device is taken as an example for description.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4 , the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • Fig. 2 is a schematic explosion diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a box body 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box body 5 is used to accommodate the battery cells, and the box body 5 may have various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b, the first box body part 5a and the second box body part 5b cover each other, the first box body part 5a and the second box body part 5a
  • the two box parts 5b jointly define an accommodating space 5c for accommodating the battery cells.
  • the second box body part 5b can be a hollow structure with one end open, the first box body part 5a is a plate-shaped structure, and the first box body part 5a covers the opening side of the second box body part 5b to form an accommodating space 5c
  • the box body 5; the first box body portion 5a and the second box body portion 5b also can be a hollow structure with one side opening, and the opening side of the first box body portion 5a is covered on the opening side of the second box body portion 5b , to form a box body 5 with an accommodating space 5c.
  • the first box body part 5a and the second box body part 5b can be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealant such as sealant, sealing ring, etc.
  • a sealant can also be arranged between the first box body part 5a and the second box body part 5b.
  • the first box part 5a covers the top of the second box part 5b
  • the first box part 5a can also be called an upper box cover
  • the second box part 5b can also be called a lower box.
  • the battery 2 there may be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel or in parallel.
  • the hybrid connection means that there are both series and parallel connections among the multiple battery cells.
  • a plurality of battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of a plurality of battery cells is accommodated in the box 5; of course, it is also possible to first connect a plurality of battery cells in series or parallel or
  • the battery modules 6 are formed by parallel connection, and multiple battery modules 6 are connected in series or in parallel or in series to form a whole, and are housed in the box body 5 .
  • FIG. 3 is an exploded schematic diagram of the battery module shown in FIG. 2 .
  • FIG. 3 there are multiple battery cells 7 , and the multiple battery cells 7 are connected in series, in parallel, or in parallel to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series, in parallel or in parallel to form a whole, and accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a confluence component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • Fig. 4 is a schematic exploded view of a battery cell provided by some embodiments of the present application
  • Fig. 5 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application
  • Fig. 6 is a schematic diagram of the battery cell shown in Fig.
  • Figure 7 is a schematic diagram of assembly of a current collecting member and an electrode assembly of a battery cell provided in some embodiments of the present application
  • Figure 8 is a schematic structural diagram of the electrode assembly shown in Figure 7 .
  • the battery cell 7 of the embodiment of the present application includes: a casing 20 with an opening 21 ; an electrode assembly 10 housed in the casing 20 , and the electrode assembly 10 has a first A pole ear 12; an end cover 30, used to cover the opening 21, so as to seal the electrode assembly 10 in the casing 20; and a current collecting member 50, arranged between the end cover 30 and the first pole ear 12, collecting current
  • the member 50 is configured to be welded with the end cover 30 and the first tab 12 respectively, so as to realize the electrical connection between the end cover 30 and the first tab 12 .
  • the electrode assembly 10 includes a first pole piece, a second pole piece and a spacer, and the spacer is used to separate the first pole piece from the second pole piece.
  • the polarity of the first pole piece and the second pole piece is opposite, in other words, one of the first pole piece and the second pole piece is a positive pole piece, and the other of the first pole piece and the second pole piece is a negative pole piece pole piece.
  • first pole piece, the second pole piece and the separator are all strip-shaped structures, and the first pole piece, the second pole piece and the separator are wound as a whole to form a winding structure.
  • the winding structure can be a cylindrical structure, a flat structure or other shapes.
  • the electrode assembly 10 includes a main body 11 , a first tab 12 and a second tab 13 , and the first tab 12 and the second tab 13 are connected to the main body 11 .
  • the first tab 12 is the part of the first pole piece not coated with the active material layer
  • the second tab 13 is the part of the second pole piece not coated with the active material layer.
  • one of the first tab 12 and the second tab 13 is a tab of positive polarity
  • the other is a tab of negative polarity.
  • the first tab 12 and the second tab 13 are respectively provided on both sides of the main body 11 , in other words, the first tab 12 and the second tab 13 are respectively provided at both ends of the electrode assembly 10 .
  • the first tab 12 is located at the end of the electrode assembly 10 facing the end cap 30
  • the second tab 13 is located at the end of the electrode assembly 10 facing away from the end cap 30 .
  • the first tab 12 is wound around the central axis X of the electrode assembly 10 , and the first tab 12 is generally cylindrical.
  • the first tab 12 includes N layer structures 121 arranged around the central axis X, where N is a positive integer greater than 1.
  • the two ends of the first tab 12 along the winding direction Y are the inner end 12a and the outer end 12b respectively.
  • the layered structure 121 is divided based on the inner end 12a of the first tab 12 .
  • the inner end 12a of the first tab 12 is the head end of the first layer structure 121, and the trailing end of the first layer structure 121 and the head end of the first layer structure 121 are at the diameter of the first tab 12.
  • the first layer structure 121 makes a circle around the central axis X.
  • the tail end of the first layer structure 121 is the head end of the second layer structure 121, and so on, N layer structures 121 are connected end to end along the winding direction Y.
  • the head end of each layered structure 121 is aligned with the inner end 12 a of the first tab 12 in the radial direction of the first tab 12 .
  • the radial direction of the first tab 12 is perpendicular to the central axis X and passes through the central axis X.
  • the inner end 12 a and the outer end 12 b of the first tab 12 are aligned in the radial direction of the first tab 12 , so that each layer structure 121 circles around the central axis X once.
  • the inner end 12a and the outer end 12b of the first tab 12 may not be aligned in the radial direction of the first tab 12, so that the last layer structure 121 circles the central axis X for less than one circle, for example, The last layer structure 121 can make 1/4 turn, 1/3 turn, 1/2 turn, 2/3 turn or 3/4 turn around the central axis X.
  • the first tab 12 is generally cylindrical, and there is a gap between two adjacent layer structures 121 .
  • the first tab 12 can be treated to reduce the gap between the layer structures 121 , so as to facilitate the connection between the first tab 12 and the current collecting member 50 .
  • the first tab 12 can be kneaded and flattened so that the end area of the first tab 12 away from the main body 11 is gathered together; One end of the main body 11 forms a dense end surface, which reduces the gap between the layer structures 121 and facilitates the connection between the first tab 12 and the current collecting member 50 .
  • a conductive material may also be filled between two adjacent circles of layer structures 121 to reduce the gap between the layer structures 121 .
  • the second tab 13 is wound around the central axis X of the electrode assembly 10 in multiple turns, and the second tab 13 includes multiple layer structures.
  • the second tab 13 has also been smoothed to reduce the gap between the layer structures of the second tab 13 .
  • the casing 20 is a hollow structure with an opening on one side, and the end cap 30 covers the opening 21 of the casing 20 to form a sealed connection to form an accommodating chamber for accommodating the electrode assembly 10 and the electrolyte.
  • the casing 20 is a hollow structure, and a space for accommodating the electrode assembly 10 is formed inside it.
  • the housing 20 can be in various shapes, such as cylinder, cuboid and so on.
  • the shape of the case 20 may be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the casing 20 includes a side wall 22 and a bottom wall 23 , the side wall 22 surrounds the outer side of the electrode assembly 10 , and the bottom wall 23 is connected to one end of the side wall 22 .
  • the side wall 22 is a cylindrical structure, for example, the side wall 22 can be a cylinder or a square tube; the bottom wall 23 is a plate structure, and its shape corresponds to the shape of the side wall 22 .
  • an opening 21 is formed at one end of the side wall 22 , and the bottom wall 23 is connected to an end of the side wall 22 facing away from the opening 21 .
  • the side wall 22 and the bottom wall 23 may be integrally formed, that is, the housing 20 is an integrally formed member.
  • the side wall 22 and the bottom wall 23 can also be two components provided separately, and then connected together by means of welding, riveting, bonding or the like.
  • the housing 20 may be positively charged, negatively charged, or uncharged.
  • the case 20 can be directly connected to the tab of the electrode assembly 10 , or can be electrically connected to the tab through other conductive members.
  • the end cap 30 and the housing 20 can be connected by welding, so that the end cap 30 and the housing 20 can have the same polarity.
  • the end cap 30 can be used to electrically connect the housing 20 to the positive pole lug; when the housing 20 needs to be negatively charged, the end cap 30 can be used to connect the housing 20 Electrically connected to the negative polarity tab.
  • the housing 20 may also be connected to the tab through other conductive structures, which is not limited in this embodiment.
  • the housing 20 and the end cap 30 can be made of the same material or different materials.
  • the current collecting member 50 can connect the end cover 30 with the first tab 12 , and then make the polarity of the end cover 30 and the first tab 12 the same.
  • the current collecting member 50 is a plate-like structure made of metal material.
  • the current collecting member 50 is first welded to the first tab 12 .
  • the current collecting member 50 can be pressed against the first tab 12 first, and then a laser is irradiated on the surface of the current collecting member 50 away from the first tab 12, and the laser connects a part of the current collecting member 50 to the first tab. Part of 12 melts and connects.
  • the end cap 30 is closed to the opening 21 of the case 20 and the end cap 30 and the current collecting member 50 are welded.
  • a laser is irradiated on the surface of the end cap 30 facing away from the current collecting member 50 , and the laser melts and connects a part of the end cap 30 and a part of the current collecting member 50 .
  • At least part of the current collecting member 50 abuts against and closely fits the end cap 30 , so as to facilitate welding of the current collecting member 50 and the end cap 30 .
  • the surface of the current collecting member 50 abutting against the end cover 30 is a plane.
  • the current collecting member 50 is an independently formed member, which is different from the first tab 12 formed by winding.
  • the shape of the current collecting member 50 can be adjusted adaptively according to the shape of the end cap 30 to ensure that the current collecting member 50 can be tightly attached to on the end cap 30.
  • the electrical connection between the end cap 30 and the first tab 12 is achieved by welding the current collecting member 50 to the end cap 30 and the first tab 12 respectively.
  • the current collecting member 50 can be closely attached to the end cap 30, so as to reduce the risk of microcracks in the end cap 30, improve sealing performance, reduce potential safety hazards, and improve safety.
  • the current collecting member 50 is welded to the first tab 12 , even if micro cracks occur in the current collecting member 50 , it will not affect the sealing performance of the battery cell 7 .
  • the end cap 30 is used to electrically connect the first tab 12 and the housing 20 .
  • the casing 20 itself can be used as the output pole of the battery cell 7 , thereby saving a conventional electrode terminal and simplifying the structure of the battery cell 7 .
  • the housing 20 can be electrically connected to the busbar, which can not only increase the flow area, but also make the structural design of the busbar more flexible.
  • housing 20 is welded to end cap 30 . Welding can not only realize the connection between the housing 20 and the end cover 30, improve the flow capacity between the housing 20 and the end cover 30, but also ensure the sealing.
  • the casing 20 further includes a side wall 22 and a bottom wall 23 connected to the side wall 22.
  • the side wall 22 extends along the thickness direction Z of the end cover 30 and is arranged around the periphery of the electrode assembly 10.
  • the bottom wall 23 is arranged There are electrode extraction holes 231 .
  • the electrode assembly 10 further includes a second tab 13 , the first tab 12 and the second tab 13 are opposite in polarity and are respectively located at two ends of the electrode assembly 10 .
  • the battery cell 7 further includes an electrode terminal 40 installed in the electrode lead-out hole 231 , and the electrode terminal 40 is electrically connected to the second tab 13 .
  • the second tab 13 may be directly electrically connected to the electrode terminal 40 , or may be indirectly electrically connected to the electrode terminal 40 through other conductive structures.
  • the electrode terminal 40 is insulated from the bottom wall 23 .
  • the electrode terminal 40 and the bottom wall 23 may have different polarities.
  • the electrode terminal 40 and the bottom wall 23 may serve as two output poles of the battery cell 7 .
  • the bottom wall 23 is the negative output pole of the battery cell 7
  • the electrode terminal 40 is the positive output pole of the battery cell 7
  • the bottom wall 23 is the positive output pole of the battery cell 7
  • the electrode terminal 40 is the negative output pole of the battery cell 7 .
  • the electrode terminal 40 is fixed on the bottom wall 23 .
  • the electrode terminals 40 can be integrally fixed on the outside of the bottom wall 23 , or can extend into the inside of the casing 20 through the electrode lead-out hole 231 .
  • the first tab 12 is located at one end of the electrode assembly 10 facing the end cover 30, so as to facilitate the electrical connection between the end cover 30 and the first tab 12; correspondingly, the second tab 13 is located at one end of the electrode assembly 10 facing the bottom wall 23 , so as to facilitate the electrical connection between the electrode terminal 40 and the second tab 13 .
  • the first tab 12 and the second tab 13 are arranged at both ends of the electrode assembly 10, which can reduce the risk of conduction between the first tab 12 and the second tab 13, and increase the size of the first tab. 12 and the second tab 13 flow area.
  • the bottom wall 23 and the electrode terminal 40 can be used as two output poles of the battery cell 7 , which can simplify the structure of the battery cell 7 and ensure the overcurrent capability of the battery cell 7 .
  • the bottom wall 23 and the electrode terminal 40 are located at the same end of the battery cells 7, so that when a plurality of battery cells 7 are assembled into groups, the confluence parts can be assembled to the same side of the battery cells 7, which can simplify the assembly process, Improve assembly efficiency.
  • the bottom wall 23 and the side wall 22 are integrally formed. In this embodiment, the connecting process of the bottom wall 23 and the side wall 22 can be omitted.
  • the housing 20 may be formed through a stretching process.
  • the electrode lead-out hole 231 in the embodiment of the present application is made after the casing 20 is stretched and formed.
  • the inventors have tried to roll the open end of the shell so that the open end of the shell is folded inward to form a flanging structure, and the flanging structure presses the end cap to fix the end cap.
  • the inventor installed the electrode terminal on the end cap, and used the flanging structure and the electrode terminal as the two output poles of the battery cell.
  • the larger the size of the flanged structure the higher the risk of curling and wrinkling after forming; if the flanged structure curls and folds, it will cause the surface of the flanged structure to be uneven.
  • welding there will be a problem of poor welding. Therefore, the size of the flange structure is relatively limited, resulting in insufficient flow capacity of the battery cell.
  • the electrode lead-out hole 231 for installing the electrode terminal 40 is formed on the bottom wall 23 by using the process of opening holes, so that the positive output pole and the negative output pole are arranged on the end of the battery cell 7 away from the opening 21; the bottom wall 23 is formed during the molding process of the casing 20, and the flatness of the bottom wall 23 can be ensured after the electrode lead-out hole 231 is opened, so as to ensure the connection strength between the bottom wall 23 and the confluence component.
  • the flatness of the bottom wall 23 is not restricted by its own size, so the bottom wall 23 can have a larger size, thereby improving the flow capacity of the battery cell 7 .
  • the first tab 12 is a negative tab
  • the base material of the casing 20 is steel
  • the casing 20 is electrically connected to the negative electrode tab, that is, the casing 20 is in a low potential state.
  • the steel casing 20 is not easily corroded by the electrolyte in a low potential state, so as to reduce safety risks.
  • the base material of the shell 20 and the base material of the end cap 30 are the same.
  • the base material of the shell 20 and the base material of the end cover 30 are both steel.
  • the base material of the housing 20 is the same as that of the end cover 30 , so that the welding strength between the housing 20 and the end cover 30 can be ensured, and the sealing of the battery cells 7 can be ensured.
  • the battery cells 7 are cylindrical battery cells.
  • the electrode assembly 10 is a cylindrical structure, and the casing 20 is a cylindrical hollow structure.
  • a part of the current collecting member 50 is used to abut and weld the end cover 30 to form the first welding portion W1
  • another part of the current collecting member 50 is used to abut and weld the first tab 12 to form the first welding portion W1.
  • the second weld W2 is formed. The projection of the first welding portion W1 along the thickness direction Z of the end cap 30 and the projection of the second welding portion W2 along the thickness direction Z of the end cap 30 do not overlap.
  • two different parts of the current collecting member 50 are respectively welded to the end cover 30 and the first tab 12, so that the projection of the first welding part W1 along the thickness direction Z of the end cover 30 and the second welding part The projections of W2 along the thickness direction Z of the end cap 30 do not overlap.
  • the first welding part W1 and the second welding part W2 are structures formed after the materials are melted, cooled and solidified, and their surfaces are uneven.
  • the current collecting member 50 When assembling the battery cell 7, the current collecting member 50 is first pressed and welded to the first tab 12 to form the second welding portion W2, and then the end cap 30 and the current collecting member 50 are welded to form the first welding portion W1 . If the projection of the first welding portion W1 along the thickness direction Z of the end cap 30 and the projection of the second welding portion W2 along the thickness direction Z of the end cap 30 overlap, then when the end cap 30 and the current collecting member 50 are welded, the end cap 30 The part used for welding with the current collecting member 50 needs to be pressed against the second welding part W2.
  • the projection of the first welding portion W1 along the thickness direction Z of the end cap 30 and the projection of the second welding portion W2 along the thickness direction Z of the end cap 30 do not overlap, so that the end cap 30 and the current collector can be welded together.
  • the component 50 is not affected by the second welding portion W2, and the welding reliability between the end cover 30 and the current collecting component 50 is improved.
  • the electrode assembly 10 is wound along the central axis X to form the first tab 12, the first tab 12 includes N layer structures 121 arranged around the central axis X, and the extension direction of the central axis X is parallel to the end The thickness direction Z of the cover 30 .
  • the first tab 12 is composed of a first annular portion 122 and a second annular portion 123 surrounding the first annular portion 122, the number of layer structures 121 in the first annular portion 122 is N1, and in the second annular portion 123
  • the first annular portion 122 is welded with the current collecting member 50 and forms a first portion W21
  • the second annular portion 123 is welded with the current collecting member 50 and forms a second portion W22 connected to the first portion W21
  • the second welded portion W2 is composed of the first portion W21.
  • the second part W22 composition is composed of the first portion W21.
  • Each layer structure 121 in the first annular portion 122 circles the central axis X once.
  • the junction of the first annular portion 122 and the second annular portion 123 is radially aligned with the inner end 12 a of the first tab 12 .
  • Electrons in the region of the electrode assembly 10 corresponding to the first annular portion 122 can move along the first current path formed by the first annular portion 122 , the first portion W21 , the current collecting member 50 , the first welding portion W1 and the end cap 30 , the electrons in the region corresponding to the second annular portion 123 in the electrode assembly 10 can follow the second current formed by the second annular portion 123 , the second portion W22 , the current collecting member 50 , the first welding portion W1 and the end cap 30
  • the path moves, and the boundary between the first annular portion 122 and the second annular portion 123 is roughly located in the middle area of the first tab along the radial direction.
  • the boundary between the first annular portion 122 and the second annular portion 123 is approximately located in the middle area of the first tab 12 in the radial direction, and some layer structures 121 in the middle area of the first tab 12 are connected to the current collector.
  • the component 50 is welded and forms a part of the second welding part W2, which can reduce the difference between the first current path and the second current path to a certain extent, so as to improve the uniformity of the current density, reduce the internal resistance, and improve the overcurrent ability.
  • the N3 continuous layer structures 121 disposed close to the second annular portion 123 in the first annular portion 122 are welded with the current collecting member 50 to form the first portion W21, and the N3 continuous layer structures 121 disposed close to the first annular portion 123
  • the N4 continuous layer structures 121 arranged in the annular part 122 are welded with the current collecting member 50 to form the second part W22, and the N3 continuous layer structures 121 are arranged continuously with the N4 continuous layer structures 121, N4>N3 ⁇ 1, N3 and N4 are positive integers.
  • the second annular portion 123 surrounds the outer side of the first annular portion 122, the perimeter of the layer structure 121 in the second annular portion 123 is larger than the perimeter of the layer structure 121 in the first annular portion 122, and the electrode assembly 10 and the first annular portion 122 The electrons in the corresponding regions of the second ring portion 123 have a longer path for transmission between the layer structures 121 of the second ring portion 123 .
  • N4 >N3, so that the layer structure 121 connected to the second part W22 can be increased, and the transmission of electrons between the layer structures 121 of the second ring part 123 can be reduced, thereby shortening the second current path and further reducing the
  • the difference between the first current path and the second current path is to improve the uniformity of the current density, reduce the internal resistance, and improve the overcurrent capability.
  • M consecutive layer structures 121 in all layer structures 121 are welded to the current collecting member 50 to form the second welding part W2, wherein, 1/3 ⁇ M/N ⁇ 1/2, M ⁇ 2 , M is a positive integer.
  • M N3+N4.
  • the inventor limited the value of M/N to 1/3-1/2 to balance the flow capacity between the first tab 12 and the current collecting member 50 and between the current collecting member 50 and the end cover 30
  • the overcurrent capability of the battery cell 7 is optimized.
  • the plurality of second welding portions W2 are arranged at intervals along the circumferential direction of the first tab 12 .
  • the present application is not limited thereto.
  • there may be one second welding portion W2 for example, the second welding portion W2 may be circular, spiral or linear.
  • the end cover 30 includes a cover body 31 and a first protrusion 32 protruding from an inner surface 311 of the cover body in a direction facing the first tab 12 .
  • the cover body 31 is a plate-shaped structure, which has an inner surface and an outer surface oppositely disposed along the thickness direction Z, and the inner surface 311 of the cover body faces the electrode assembly 10 .
  • both the inner surface 311 of the cover body and the outer surface 312 of the cover body are planar and arranged in parallel.
  • the first protrusion 32 protrudes in a direction facing the electrode assembly 10 relative to the inner surface 311 of the cover body, so that at least part of the first protrusion 32 protrudes from the inner surface 311 of the cover body.
  • the extent to which the first protrusion 32 protrudes from the inner surface 311 of the cover body is not limited.
  • the first protrusion 32 is connected to the cover body 31 .
  • the first protrusion 32 is an annular structure surrounding the outer side of the cover body 31 .
  • the cover body 31 can also surround the outside of the first protrusion 32 .
  • the current collecting member 50 may be welded to the first protrusion 32 or to the cover body 31 , which is not limited in this embodiment.
  • the end cover 30 includes a cover body 31 and a first protrusion 32 protruding from the inner surface 311 of the cover body in a direction facing the first tab 12, and the first protrusion 32 is used to communicate with the current collecting member. 50 are abutted against and welded to form a first welding portion W1 , and a first escape gap G1 for avoiding the second weld portion W2 is formed between the current collecting member 50 and the cover body 31 .
  • the top end surface of the first protrusion 32 presses and supports the current collecting member 50 to at least space the cover body 31 and the current collecting member 50 in the thickness direction Z. As shown in FIG.
  • the projection of the second welding portion W2 along the thickness direction Z at least partially overlaps the projection of the cover body 31 along the thickness direction Z.
  • the projection of the second welding portion W2 along the thickness direction Z is located within the projection of the cover body 31 along the thickness direction Z.
  • the second welding portion W2 is prevented from abutting against the cover body 31 and the risk of the second welding portion W2 crushing the cover body 31 is reduced. If the second welding portion W2 abuts against the cover body 31 , over-positioning will be formed between the end cap 30 and the current collecting member 50 , causing the second welding portion W2 to interfere with the contact between the first protrusion 32 and the current collecting member 50 ; In this embodiment, by setting the first avoidance gap G1, the second welding portion W2 can be prevented from interfering with the abutment between the first convex portion 32 and the current collecting member 50, and the connection strength between the first convex portion 32 and the current collecting member 50 can be ensured.
  • a first recess 33 recessed from the outer surface 312 of the cover body along a direction facing the electrode assembly 10 is formed on the end cap 30 at a position corresponding to the first protrusion 32 .
  • a laser may be applied to the bottom surface of the first concave portion 33 to weld the first convex portion 32 and the current collecting member 50 from the outside.
  • the thickness of the first convex portion 32 is reduced by setting the first concave portion 33, which can reduce the welding power required for welding the first convex portion 32 and the current collecting member 50, reduce heat generation, and reduce the risk of other components being burned. risk.
  • the first protrusion 32 is a solid structure with a certain thickness; for example, the first protrusion 32 is a thin-walled structure.
  • the first recess 33 is a cavity without a solid structure.
  • the first concave portion 33 can reduce the strength of the first convex portion 32 and improve the elastic deformation capacity of the first convex portion 32. In this way, when the first convex portion 32 is pressed against the current collecting member 50, the first convex portion 32 can The stress is released through deformation, the impact force is reduced, and the risk of crushing the current collecting member 50 and the first tab 12 is reduced.
  • the bottom surface of the first concave portion 33 is closer to the first tab 12 than the inner surface 311 of the cover body.
  • the first concave portion 33 and the first convex portion 32 may be formed by stamping the end cap 30 .
  • the embodiment of the present application can ensure the degree to which the first protrusion 32 protrudes from the inner surface 311 of the cover body, so as to support the current collecting member 50 more effectively and reduce the risk of contact between the second welding portion W2 and the end cover 30 .
  • the embodiment of the present application further ensures the concave degree of the first concave part 33, so as to improve the elastic deformation ability of the first convex part 32 and reduce the first Risk of crushing the current collecting member 50 and the first lug 12 by the protrusion 32 .
  • the cover body 31 surrounds the outside of the first protrusion 32 , and the first welding portion W1 is disposed inside the second welding portion W2 .
  • both inside and outside are positions relative to the central axis X.
  • the first protrusion 32 is closer to the central axis X than the cover body 31
  • the first weld W1 is closer to the central axis X than the second weld W2 .
  • a first recess 33 recessed from the outer surface 312 of the cover body along a direction facing the electrode assembly 10 is formed on the end cap 30 at a position corresponding to the first protrusion 32 .
  • the bottom surface of the first concave portion 33 is provided with a groove 34 , and the bottom of the groove 34 is used for welding with the current collecting member 50 to form a first welding portion W1 .
  • the groove 34 is recessed from the bottom surface of the first recess 33 in a direction facing the electrode assembly 10 .
  • a portion of the first protrusion 32 between the bottom surface of the groove 34 and the top end surface of the first protrusion 32 forms a connecting portion for welding with the current collecting member 50 and forms a first welding portion W1.
  • the thickness of the connecting portion of the first convex portion 32 is reduced by setting the first concave portion 33 and the groove 34, which can reduce the welding power required for welding the connecting portion and the current collecting member 50, reduce heat generation, and reduce Risk of burns to other components (eg spacers).
  • the end cover 30 further includes a second protrusion 35 surrounding the outer side of the cover body 31 , and the second protrusion 35 protrudes from the inner surface 311 of the cover body in a direction facing the first tab 12 .
  • the two protrusions 35 are used to support the first tab 12 .
  • the second protrusion 35 is an annular structure surrounding the outer side of the cover body 31 . In the radial direction, the second protrusion 35 is closer to the side wall 22 than the cover body 31 is.
  • the second protrusion 35 may directly support the first tab 12 , or may support the first tab 12 through other components (such as the current collecting component 50 ).
  • the second protrusion 35 can support the first tab 12 to reduce the shaking amplitude of the electrode assembly 10 when the battery cell 7 vibrates and improve the stability of the electrode assembly 10 .
  • the second protrusion 35 directly abuts against and supports the first tab 12 .
  • the second protrusion 35 is spaced apart from the current collecting member 50, so as to prevent the second protrusion 35 from interfering with the abutment between the current collecting member 50 and the first protrusion 32, and ensure that the first protrusion 32 is in close contact with the first protrusion 32.
  • the current collecting member 50 .
  • the second protrusion 35 surrounds the outer side of the current collecting member 50 .
  • the outer surface 351 of the second protrusion abuts against the inner surface of the housing 20 and is used for welding with the housing 20 to close the opening 21 .
  • the outer surface 351 of the second protrusion is a surface of the second protrusion 35 facing the side wall 22 of the housing 20 .
  • the outer surface 351 of the second protrusion is a cylinder, and optionally, the outer surface 351 of the second protrusion is a cylinder.
  • the part of the second protrusion 35 protruding into the housing 20 can be interference fit, transition fit or clearance fit with the housing 20 .
  • the part of the second protrusion 35 protruding into the housing 20 can have an interference fit with the housing 20 , and the interference fit can increase the connection strength between the housing 20 and the end cover 30 and improve the sealing performance.
  • the second protrusion 35 is connected to the side wall 22 of the casing 20 by laser welding.
  • the laser is irradiated at the junction of the second protrusion 35 and the side wall 22 , and the laser melts and connects at least part of the outer surface 351 of the second protrusion and part of the inner surface of the housing 20 together.
  • the outer surface 351 of the second convex part abuts against the inner surface of the housing 20 , which can reduce the risk of burning the electrode assembly 10 when the laser beam penetrates into the housing 20 .
  • the laser can also be irradiated on the outer surface of the side wall 22 away from the second protrusion 35 .
  • welding can achieve sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the second protrusion 35 and the housing 20 .
  • a second concave portion 36 recessed from the outer surface 312 of the cap body along a direction facing the electrode assembly 10 is formed on the end cap 30 at a position corresponding to the second convex portion 35 .
  • the second concave portion 36 can reduce the strength of the second convex portion 35 and improve the elasticity of the second convex portion 35, so that in the process of welding the second convex portion 35 and the housing 20, the second convex portion 35 can be deformed to release the welding. Stress, thereby reducing the risk of deformation, cracking in the welded area, and improving sealing performance.
  • the bottom surface of the second concave portion 36 is closer to the first tab 12 than the inner surface 311 of the cover body.
  • the second recess 36 and the second protrusion 35 may be formed by stamping the end cap 30 .
  • the embodiment of the present application can ensure that the second protrusion 35 protrudes from the inner surface 311 of the cover body to support the first tab 12 .
  • the embodiment of the present application further ensures the concave degree of the second concave part 36, so as to improve the elasticity of the second convex part 35, so that the second convex part 35 can pass through deformation. to relieve welding stress.
  • the cover body 31 is provided with a weakened portion V, which is used to rupture when the internal pressure of the battery cell 7 reaches a threshold value, so as to release the internal pressure.
  • the threshold design varies according to design requirements.
  • the threshold may depend on the materials of one or more of the positive pole piece, the negative pole piece, the electrolyte and the separator in the battery cell 7 .
  • the emissions from battery cells 7 mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative pole pieces, fragments of separators, high-temperature and high-pressure gas generated by reactions, flames, etc. .
  • the weak portion V is provided on the cover body 31 to release the internal pressure when the battery cell 7 is thermally out of control, so as to improve the safety performance.
  • a first avoidance gap G1 is formed between the flow collecting member 50 and the cover body 31 to reduce the risk of the flow collecting member 50 blocking the exhaust channel when the weak portion V is broken, to ensure smooth exhaust, and to reduce safety risks .
  • the current collecting member 50 is a flat plate structure.
  • the flat current collecting member 50 is easier to form.
  • the plate-shaped current collecting member 50 can be in contact with the first tab 12 as a whole, so as to increase the flow area, and make the current collecting member 50 support the first tab 12 more evenly, and reduce the thickness of the pole piece of the electrode assembly 10. Risk of offset, misalignment in Z.
  • the plate-shaped current collecting member 50 can also be in close contact with the first protrusion 32, so as to reduce the risk of microcracks in the first protrusion 32 during welding, and improve sealing and safety.
  • the first protrusion 32 supports the first tab 12 through the current collecting member 50 .
  • the first protrusion 32 supports the first tab 12 through the current collecting member 50 to reduce the shaking amplitude of the electrode assembly 10 when the battery cell 7 vibrates and improve the stability of the electrode assembly 10 .
  • the current collecting member 50 can support the electrode assembly 10 through the first tab 12 , so as to reduce the risk of offset and dislocation of the pole piece of the electrode assembly 10 in the thickness direction Z.
  • the first protrusion 32 supports the middle area of the first tab 12 through the current collecting member 50, and the second protrusion 35 supports the edge area of the first tab 12, which can improve the uniformity of the stress on the first tab 12 and reduce the
  • the pole pieces of the electrode assembly 10 may be displaced or dislocated in the thickness direction Z.
  • Fig. 9 is a schematic cross-sectional view of a battery cell provided by another embodiment of the present application
  • Fig. 10 is a schematic cross-sectional view of a battery cell provided by another embodiment of the present application
  • Fig. 11 is a schematic cross-sectional view of a battery cell shown in Fig. 10 The enlarged schematic diagram at circle B.
  • the first protrusion 32 surrounds the outer side of the cover body 31 , and the first welding portion W1 is disposed on the outer side of the second welding portion W2 .
  • the outer side is the position relative to the central axis X.
  • the cover body 31 is closer to the central axis X than the first protrusion 32
  • the second weld W2 is closer to the central axis X than the first weld W1 .
  • the outer surface 321 of the first protrusion abuts against the inner surface of the housing 20 and is used for welding with the housing 20 to close the opening.
  • the outer surface 321 of the first protrusion is a surface of the first protrusion 32 facing the side wall 22 of the casing 20 .
  • the outer surface 321 of the first protrusion is a cylindrical surface.
  • the outer surface 321 of the first protrusion is a cylindrical surface.
  • the part of the first protrusion 32 protruding into the housing 20 can be interference fit, transition fit or clearance fit with the housing 20 .
  • the part of the first protruding portion 32 protruding into the housing 20 can be interference-fitted with the housing 20 , and the interference fit can increase the connection strength between the housing 20 and the end cap 30 and improve the sealing performance.
  • the first protrusion 32 and the side wall 22 of the casing 20 are connected by laser welding.
  • the laser is irradiated at the junction of the first protrusion 32 and the side wall 22 , and the laser melts and connects at least part of the outer surface 321 of the first protrusion and part of the inner surface of the housing 20 together.
  • the outer surface 321 of the first protrusion abuts against the inner surface of the housing 20 , which can reduce the risk of burning the electrode assembly 10 when the laser beam penetrates into the housing 20 .
  • the laser light can also be irradiated on the outer surface of the side wall 22 away from the first protrusion 32 .
  • welding can achieve sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity between the housing 20 and the first protrusion 32 .
  • the end cover 30 further includes an extension 37 surrounding the outside of the first protrusion 32 , and the surface of the extension 37 facing the first tab 12 is in contact with the shell 20 The end face 24 surrounding the opening 21 is butted and welded to close the opening 21.
  • the extension portion 37 includes an inner surface and an outer surface oppositely disposed along the thickness direction Z, and the inner surface of the extension portion 37 faces the first tab 12 .
  • the extension part 37 is an annular plate-shaped structure, and the inner surface of the extension part 37 and the outer surface of the extension part 37 are both planes.
  • the extension part 37 and the housing 20 are arranged along the thickness direction Z, and the inner surface of the extension part 37 can be arranged parallel to the end surface 24 of the housing 20 .
  • the laser is irradiated at the junction of the end surface 24 of the housing 20 and the inner surface of the extension 37; after welding, at least part of the inner surface of the extension 37 and at least part of the end surface 24 of the housing 20 Parts melt and join together.
  • the end surface 24 of the housing 20 can play a position-limiting role in the thickness direction Z, reducing the risk of the end cover 30 being excessively inserted into the housing 20 and improving the assembly process. efficiency.
  • the end cover 30 further includes a second protrusion 35, the cover body 31 surrounds the outside of the second protrusion 35, and the second protrusion 35 extends from the inner surface 311 of the cover body along the side facing the first lug 12.
  • the direction is convex.
  • a second recess 36 is formed on the end cap 30 corresponding to the second protrusion 35 from the outer surface 312 of the cap body in a direction facing the electrode assembly 10 .
  • the second protrusion 35 and the second recess 36 may be formed by stamping the end cap 30 .
  • the battery cell 7 may release a small amount of gas during a normal cycle, and the gas will increase the internal pressure of the battery cell 7 , thereby causing the risk of deformation of the end cap 30 .
  • the strength of the end cap 30 can be increased and the deformation of the end cap 30 can be reduced by providing the second convex portion 35 and the second concave portion 36 in the middle of the end cap 30 .
  • the area of the second convex portion 35 opposite to the bottom surface of the second concave portion 36 is provided with a weakened portion V, which is used to rupture when the internal pressure of the battery cell 7 reaches a threshold value, so as to release the internal pressure. pressure.
  • the weak part V is provided on the second convex part 35 to release the internal pressure when the battery cell 7 is thermally out of control, so as to improve the safety performance.
  • the weakened portion V is formed in the area of the second convex portion 35 opposite to the bottom surface of the second recessed portion 36 , so that the distance between the weak portion V and other external components can be increased, and the risk of the weak portion V being crushed by external components can be reduced.
  • a second avoidance gap G2 is formed between the second protrusion 35 and the current collecting member 50 .
  • the degree to which the first protrusion 32 protrudes from the inner surface 311 of the cover body is greater than the degree to which the second protrusion 35 protrudes from the inner surface 311 of the cover body, so that the first protrusion 32 can support the current collecting member 50 to move in the second position.
  • a second avoidance gap G2 is formed between the convex portion 35 and the current collecting member 50 .
  • the second avoidance gap G2 is formed between the second convex portion 35 and the flow collecting member 50 to reduce the risk of the flow collecting member 50 blocking the exhaust channel when the weak portion V is broken, so as to ensure smooth exhaust. Reduce security risks.
  • FIG. 12 is a schematic cross-sectional view of a battery cell provided by some further embodiments of the present application
  • FIG. 13 is an enlarged schematic view of the battery cell shown in FIG. 12 at box C.
  • the current collecting member 50 includes: a first current collecting portion 51 for abutting and welding with the end cap 30 to form a first welding portion W1; a second current collecting portion
  • the part 52 is used to abut and weld the first tab 12 to form the second welding part W2.
  • the flow portion 52 is provided with an escape recess 53 on a side away from the electrode assembly 10 , and the escape recess 53 is used to avoid the second welding portion W2.
  • the end cap 30 can be flat or other shapes.
  • the avoidance recess 53 for avoiding the second welding part W2
  • the second welding part W2 is prevented from interfering with the abutment between the first current collecting part 51 and the end cover 30, ensuring that the first current collecting part 51
  • the connection strength with the end cap 30 is improved, and the risk of crushing the end cap 30 by the second welding portion W2 is reduced.
  • the avoidance recess 53 can reduce the thickness of the second current collecting part 52, so as to reduce the welding power required for welding the second current collecting part 52 and the first tab 12, reduce heat generation, and reduce the damage of other components (such as spacers). Risk of burns.
  • the first header portion 51 is a flat plate structure surrounding the second header portion 52 .
  • the end cap 30 includes: a cap body 31 for welding with the first collector portion 51 to form a first welding portion W1; and a first convex portion 32 surrounding the outer side of the cap body 31 and Protrudes from the inner surface of the cover body along the direction facing the first tab 12 , and the first protrusion 32 is used to abut against the first tab 12 to support the first tab 12 .
  • the second current collecting portion 52 supports the middle area of the first tab 12, and the first convex portion 32 supports the edge area of the first tab 12, which can improve the uniformity of force applied to the first tab 12. , to reduce the risk of offset and dislocation of the pole pieces of the electrode assembly 10 in the thickness direction Z.
  • a first concave portion 33 is formed on the end cap 30 corresponding to the first convex portion 32 from the outer surface of the cap body in a direction facing the electrode assembly 10 , and the bottom surface of the first concave portion 33 is compared with The inner surface of the cover body is closer to the first tab 12 .
  • the first concave portion 33 and the first convex portion 32 may be formed by stamping the end cap 30 .
  • the embodiment of the present application can ensure that the first protrusion 32 protrudes from the inner surface of the cover body to support the first tab 12 .
  • the embodiment of the present application further ensures the concave degree of the first concave part 33, so as to improve the elasticity of the first convex part 32, and press the first convex part 32 When reaching the first tab 12, the impact force is reduced, reducing the risk of the first tab 12 being crushed.
  • the outer surface of the first protrusion abuts against the inner surface of the housing 20 and is used for welding with the housing 20 to close the opening 21 .
  • the outer surface of the first protrusion is the surface of the first protrusion 32 facing the side wall 22 of the housing 20 .
  • the outer surface of the first protrusion is a cylinder, and optionally, the outer surface of the first protrusion is a cylinder.
  • the part of the first protrusion 32 protruding into the housing 20 can be interference fit, transition fit or clearance fit with the housing 20 .
  • the part of the first protruding portion 32 protruding into the housing 20 can be interference-fitted with the housing 20 , and the interference fit can increase the connection strength between the housing 20 and the end cap 30 and improve the sealing performance.
  • the first protrusion 32 and the side wall 22 of the casing 20 are connected by laser welding.
  • the laser is irradiated at the junction of the first protrusion 32 and the side wall 22 , and the laser melts and connects at least part of the outer surface 321 of the first protrusion and part of the inner surface of the housing 20 together.
  • the outer surface of the first protrusion abuts against the inner surface of the housing 20 , which can reduce the risk of burning the electrode assembly 10 when the laser beam penetrates into the housing 20 .
  • the laser light can also be irradiated on the outer surface of the side wall 22 away from the first protrusion 32 .
  • welding can achieve sealing, reduce the risk of electrolyte leakage, and improve the connection strength and flow-through capacity of the first protrusion 32 and the housing 20 .
  • the end cover 30 further includes a second protrusion 35, the cover body 31 surrounds the outside of the second protrusion 35, and the second protrusion 35 extends from the inner surface 311 of the cover body along the side facing the first lug 12.
  • the direction protrudes and extends into the escape recess 53 .
  • a second recess 36 is formed on the end cap 30 corresponding to the second protrusion 35 from the outer surface of the cap body in a direction facing the electrode assembly 10 .
  • the second protrusion 35 and the second recess 36 may be formed by stamping the end cap 30 .
  • the battery cell 7 may release a small amount of gas during a normal cycle, and the gas will increase the internal pressure of the battery cell 7 , thereby causing the risk of deformation of the end cap 30 .
  • the strength of the end cap 30 can be increased and the deformation of the end cap 30 can be reduced by providing the second convex portion 35 and the second concave portion 36 in the middle of the end cap 30 .
  • the area of the second convex portion 35 opposite to the bottom surface of the second concave portion 36 is provided with a weakened portion V, which is used to rupture when the internal pressure of the battery cell 7 reaches a threshold value, so as to release the internal pressure. pressure.
  • the escape recess 53 is also used to separate the second collecting portion 52 from the weak portion V. As shown in FIG.
  • the weak portion V is provided on the second convex portion 35 to release the internal pressure when the battery cell 7 is thermally out of control, so as to improve the safety performance.
  • the weakened portion V is formed in the area of the second convex portion 35 opposite to the bottom surface of the second recessed portion 36 , so that the distance between the weak portion V and other external components can be increased, and the risk of the weak portion V being crushed by external components can be reduced.
  • the avoidance recess 53 in this embodiment can reduce the risk of the exhaust channel being blocked by the flow collecting member 50 when the weak portion V is broken, so as to ensure smooth exhaust and reduce safety risks.
  • the end cover 30 further includes an extension (not shown) surrounding the outside of the first protrusion, and the surface of the extension facing the first lug is abutted against and welded to the end surface of the casing surrounding the opening, to close the opening.
  • FIG. 14 is a schematic flowchart of a method for manufacturing a battery cell provided by some embodiments of the present application.
  • the manufacturing method of the battery cell in the embodiment of the present application includes:
  • the steps may be performed in the order mentioned in the embodiment, or may be different from the order mentioned in the embodiment Steps are executed, or several steps are executed simultaneously.
  • the steps S100 and S300 are not executed sequentially, and may also be executed simultaneously.
  • Fig. 15 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • the embodiment of the present application also provides a battery cell manufacturing system 90 including:
  • the first providing device 91 is used to provide the electrode assembly, the electrode assembly has a first tab;
  • the second providing device 92 is used to provide a current collecting member, and weld the current collecting member to the first tab;
  • the third providing device 93 is used to provide a casing, the casing has an opening;
  • the first assembly device 94 is used to install the electrode assembly and the current collecting member into the case, and make the first tab be located at the end of the electrode assembly facing the opening;
  • the fourth providing device 95 is used to provide an end cover, and cover the end cover to the opening, so that the electrode assembly is sealed in the casing, and the current collecting member is arranged between the end cover and the first tab;
  • the second assembly device 96 is used for welding the end cap and the current collecting member, so as to realize the electrical connection between the end cap and the first tab.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造系统、电池以及用电装置。本申请实施例的电池单体包括:壳体,具有开口;电极组件,容纳于壳体内,电极组件在面向开口的一端具有第一极耳;端盖,用于盖合开口,以将电极组件密封于壳体内;集流构件,设于端盖和第一极耳之间,集流构件被配置为与端盖、第一极耳分别焊接,以实现端盖和第一极耳的电连接。本申请能够在焊接端盖时降低端盖产生微裂纹的风险,提高密封性和安全性。

Description

电池单体及其制造方法和制造系统、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体及其制造方法和制造系统、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,安全问题也是一个不可忽视的问题。如果电池单体的安全问题不能保证,那该电池单体就无法使用。因此,如何增强电池单体的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池单体及其制造方法和制造系统、电池以及用电装置,其能提高电池单体的安全性。
第一方面,本申请实施例提供了一种电池单体,包括:壳体,具有开口;电极组件,容纳于壳体内,电极组件在面向开口的一端具有第一极耳;端盖,用于盖合开口,以将电极组件密封于壳体内;集流构件,设于端盖和第一极耳之间,集流构件被配置为与端盖、第一极耳分别焊接,以实现端盖和第一极耳的电连接。
上述方案中,通过将集流构件与端盖、第一极耳分别焊接,以实现端盖和第一极耳的电连接。集流构件可以与端盖紧密贴合,以降低端盖产生微裂纹的风险,提高密封性能,减少安全隐患,提高安全性。集流构件与第一极耳焊接时,即使集流构件产生微裂纹,也不会影响电池单体的密封性。
在一些实施例中,集流构件的一部分用于与端盖相抵并焊接,以形成第一焊接部,集流构件的另一部分用于与第一极耳相抵并焊接,以形成第二焊接部。第一焊接部沿端盖的厚度方向的投影和第二焊接部沿端盖的厚度方向的投影不重叠。
上述方案中,第一焊接部沿端盖的厚度方向的投影和第二焊接部沿端盖的厚度方向的投影不重叠,这样可以在焊接端盖和集流构件时不受第二焊接部的影响,提高端盖和集流构件的焊接可靠性。
在一些实施例中,电极组件沿中心轴线卷绕并形成第一极耳,第一极耳包括环 绕中心轴线设置的N个层结构,中心轴线的延伸方向平行于端盖的厚度方向。第一极耳由第一环形部和环绕在第一环形部的外侧的第二环形部组成,第一环形部中的层结构的数量为N1,第二环形部中的层结构的数量为N2,N=N1+N2,|N1-N2|的值小于或等于2,N1、N2为正整数。第一环形部与集流构件焊接并形成第一部分,第二环形部与集流构件焊接并形成连接于第一部分的第二部分,第二焊接部由第一部分和第二部分组成。
上述方案中,电极组件中与第一环形部相对应区域的电子能够沿着由第一环形部、第一部分、集流构件、第一焊接部和端盖形成的第一电流路径运动,电极组件中与第二环形部相对应区域的电子能够沿着由第二环形部、第二部分、集流构件、第一焊接部和端盖形成的第二电流路径运动,并且第一环形部和第二环形部的分界处大致位于第一极耳沿径向的中部区域,也就是说,第一极耳的中部区域的一些层结构与集流构件焊接并形成第二焊接部的一部分,这样可以在一定程度上减小第一电流路径和第二电流路径之间的差异,以提高电流密度的均匀性,降低内阻,提高过流能力。
在一些实施例中,第一环形部中的靠近第二环形部设置的N3个连续的层结构与集流构件焊接并形成第一部分,第二环形部中的靠近第一环形部设置的N4个连续的层结构与集流构件焊接并形成第二部分,N3个连续的层结构与N4个连续的层结构连续设置,N4>N3≥1,N3和N4为正整数。
上述方案中,由于第二环形部环绕在第一环形部的外侧,第二环形部中的层结构的周长大于第一环形部中的层结构的周长,电极组件中与第二环形部相对应区域的电子在第二环形部的层结构之间传输的路径较长。本方案中,N4>N3,这样可以增加与第二部分相连的层结构,减少电子在第二环形部的层结构之间传输,从而缩短第二电流路径,进一步减小第一电流路径和第二电流路径之间的差异,以提高电流密度的均匀性,降低内阻,提高过流能力。
在一些实施例中,所有层结构中的M个连续的层结构与集流构件焊接并形成第二焊接部,其中,1/3≤M/N≤1/2,M≥2,M为正整数。
M/N的值越大,第一极耳的内阻越小,第二焊接部的面积也越大,第一极耳与集流构件之间的过流能力越强。但是,在集流构件的面积一定时,M/N的值越大,第一焊接部的面积越小,集流构件与端盖之间的过流能力也就越低。上述方案将M/N的值限定在1/3-1/2,以平衡第一极耳与集流构件之间的过流能力以及集流构件与端盖之间的过流能力,优化电池单体的过流能力。
在一些实施例中,端盖包括盖本体和从盖本体的内表面沿面向第一极耳的方向凸出的第一凸部,第一凸部用于与集流构件相抵并焊接,以形成第一焊接部,并使集流构件和盖本体之间形成用于避让第二焊接部的第一避让空隙。
上述方案中,通过设置用于避让第二焊接部的第一避让空隙,避免第二焊接部抵接到盖本体,降低第二焊接部压伤盖本体的风险。如果第二焊接部抵接到盖本体,那么端盖与集流构件之间会形成过定位,造成第二焊接部干涉第一凸部与集流构件的抵接;本方案通过设置第一避让空隙,可以避免第二焊接部干涉第一凸部与集流构件的抵接,保证第一凸部与集流构件的连接强度。
在一些实施例中,端盖上与第一凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第一凹部,第一凹部的底面相较于盖本体的内表面更靠近第一极耳。
上述方案中,通过设置第一凹部来减小第一凸部厚度,这样可以减小第一凸部与集流构件焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险。第一凹部能够降低第一凸部的强度,提高第一凸部的弹性变形能力,这样,在第一凸部抵压到集流构件的过程中,第一凸部能够通过变形释放应力,减小冲击力,降低集流构件和第一极耳被压伤的风险。本方案在保证第一凸部的凸出程度的前提下,进一步保证第一凹部凹陷的程度,以提高第一凸部的弹性变形能力,降低在装配过程中第一凸部压伤集流构件和第一极耳的风险。
在一些实施例中,第一凸部环绕在盖本体的外侧,第一焊接部设于第二焊接部的外侧。
在一些实施例中,第一凸部的外侧面抵接于壳体的内表面并用于与壳体焊接,以封闭开口。
上述方案中,焊接可以实现密封,降低电解液泄露的风险,提高壳体和第一凸部之间的连接强度和过流能力。
在一些实施例中,端盖还包括环绕在第一凸部的外侧的延伸部,延伸部的面向第一极耳的表面与壳体的环绕开口的端面相抵并焊接,以封闭开口。
上述方案中,在装配端盖和壳体时,壳体的端面可以在厚度方向上起到限位的作用,降低端盖过度插入壳体的风险,提高装配效率。
在一些实施例中,端盖还包括第二凸部,盖本体环绕在第二凸部的外侧,第二凸部从盖本体的内表面沿面向第一极耳的方向凸出。端盖上与第二凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第二凹部。
上述方案中,通过在端盖的中部设置第二凸部和第二凹部,可以增大端盖的强度,减小端盖的变形。
在一些实施例中,第二凸部的与第二凹部的底面相对的区域设置有薄弱部,薄弱部用于在电池单体的内部压力达到阈值时破裂,以泄放内部压力。
上述方案中,通过在第二凸部上设置薄弱部,以在电池单体热失控时释放内部压力,提高安全性能。薄弱部形成在第二凸部在与第二凹部的底面相对的区域,这样可以增大薄弱部与其它外部构件的距离,降低薄弱部被外部构件压伤的风险。
在一些实施例中,第二凸部与集流构件之间形成有第二避让空隙。
上述方案中,通过在第二凸部与集流构件之间形成第二避让空隙,以在薄弱部破裂时降低集流构件堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,盖本体环绕在第一凸部的外侧,第一焊接部设于第二焊接部的内侧。
在一些实施例中,端盖上与第一凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第一凹部。第一凹部的底面设有凹槽,凹槽的底部用于与集流构件焊接并形成第一焊接部。
上述方案中,第一凸部的位于凹槽的底面与第一凸部的顶端面之间的部分形成连接部,连接部用于与集流构件焊接并形成第一焊接部。本方案通过设置第一凹部和凹槽来减小第一凸部的连接部的厚度,这样可以减小连接部与集流构件焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险。
在一些实施例中,端盖还包括环绕在盖本体的外侧的第二凸部,第二凸部从盖本体的内表面沿面向第一极耳的方向凸出,第二凸部用于支撑第一极耳。
上述方案中,第二凸部可以支撑第一极耳,以减小电极组件在电池单体震动时的晃动幅度,提高电极组件的稳定性。
在一些实施例中,第二凸部的外侧面抵接于壳体的内表面并用于与壳体焊接,以封闭开口。焊接可以实现密封,降低电解液泄露的风险,并提高第二凸部和壳体之间的连接强度和过流能力。
在一些实施例中,端盖上与第二凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第二凹部,第二凹部的底面相较于盖本体的内表面更靠近第一极耳。
上述方案中,第二凹部能够降低第二凸部的强度,提高第二凸部的弹性,这样,在焊接第二凸部和壳体的过程中,第二凸部可以通过变形释放焊接应力,从而降低焊接区域变形、开裂的风险,改善密封性能。本方案在保证第二凸部的凸出程度的前提下,进一步保证第二凹部凹陷的程度,以提高第二凸部的弹性,使第二凸部能够通过变形来释放焊接应力。
在一些实施例中,盖本体设置有薄弱部,薄弱部用于在电池单体的内部压力达到阈值时破裂,以泄放内部压力。
在本方案中,通过在盖本体上设置薄弱部,以在电池单体热失控时释放内部压力,提高安全性能。本实施例在集流构件和盖本体之间形成第一避让空隙,以在薄弱部破裂时降低集流构件堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,集流构件为平板结构。
上述方案中,平板状的集流构件更容易成型。平板状的集流构件可以整体与第一极耳接触,从而增大过流面积,并使集流构件更均匀地支撑第一极耳,降低电极组件的极片在厚度方向上偏移、错位的风险。平板状的集流构件还能够与第一凸部紧贴,以降低第一凸部在焊接过程中产生微裂纹的风险,提高密封性和安全性。
在一些实施例中,第一凸部通过集流构件支撑第一极耳。
上述方案中,第一凸部通过集流构件支撑第一极耳,以减小电极组件在电池单体震动时的晃动幅度,提高电极组件的稳定性。
在一些实施例中,集流构件包括:第一集流部,用于与端盖相抵并焊接,以形成第一焊接部;第二集流部,用于与第一极耳相抵并焊接,以形成第二焊接部,第二集流部凸设于第一集流部的面向电极组件的表面,且第二集流部在背离电极组件的一侧设有避让凹部,避让凹部用于避让第二焊接部。
上述方案中,通过设置用于避让第二焊接部的避让凹部,以避免第二焊接部干涉第一集流部与端盖的抵接,保证第一集流部与端盖的连接强度,并降低第二焊接部 压伤端盖的风险。避让凹部能够减小第二集流部的厚度,以减小第二集流部与第一极耳焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险。
在一些实施例中,端盖包括:盖本体,用于与第一集流部焊接,并形成第一焊接部;以及第一凸部,环绕在盖本体的外侧,并从盖本体的内表面沿面向第一极耳的方向凸出,第一凸部用于与第一极耳相抵,以支撑第一极耳。
上述方案中,第二集流部支撑第一极耳的中部区域,第一凸部支撑第一极耳的边缘区域,这样可以提高第一极耳受力的均匀性,降低电极组件的极片在厚度方向上偏移、错位的风险。
在一些实施例中,端盖上与第一凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第一凹部,第一凹部的底面相较于盖本体的内表面更靠近第一极耳。
上述方案中,保证第一凸部的凸出程度的前提下,进一步保证第一凹部凹陷的程度,以提高第一凸部的弹性,在将第一凸部抵压到第一极耳时减小冲击力,降低第一极耳被压伤的风险。
在一些实施例中,第一凸部的外侧面抵接于壳体的内表面并用于与壳体焊接,以封闭开口。
上述方案中,焊接可以实现密封,降低电解液泄露的风险,并提高第一凸部与壳体的连接强度和过流能力。
在一些实施例中,端盖还包括第二凸部,盖本体环绕在第二凸部的外侧,第二凸部从盖本体的内表面沿面向第一极耳的方向凸出并伸入避让凹部。端盖上与第二凸部相对应的位置形成有从盖本体的外表面沿面向电极组件的方向凹陷的第二凹部。
上述方案中,通过在端盖的中部设置第二凸部和第二凹部,可以增大端盖的强度,减小端盖的变形。
在一些实施例中,第二凸部的与第二凹部的底面相对的区域设置有薄弱部,薄弱部用于在电池单体的内部压力达到阈值时破裂,以泄放内部压力。避让凹部还用于将第二集流部与薄弱部隔开。
上述方案中,通过在第二凸部上设置薄弱部,以在电池单体热失控时释放内部压力,提高安全性能。薄弱部形成在第二凸部在与第二凹部的底面相对的区域,这样可以增大薄弱部与其它外部构件的距离,降低薄弱部被外部构件压伤的风险。避让凹部可以在薄弱部破裂时降低集流构件堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,端盖用于将第一极耳和壳体电连接。
上述方案中,壳体本身可以作为电池单体的输出极,从而省去一个传统的电极端子,简化电池单体的结构。在多个电池单体装配成组时,壳体可以与汇流部件电连接,这样既可以增大过流面积,还可以使汇流部件的结构设计更为灵活。
在一些实施例中,壳体还包括侧壁和连接于侧壁的底壁,侧壁沿端盖的厚度方向延伸并环绕电极组件的外周设置,底壁设有电极引出孔。电极组件还包括第二极耳,第一极耳和第二极耳极性相反且分别位于电极组件的两端。电池单体还包括安装于电 极引出孔的电极端子,电极端子电连接于第二极耳。
上述方案中,底壁和电极端子可以作为电池单体的两个输出极,这样可以简化电池单体的结构,并保证电池单体的过流能力。底壁和电极端子位于电池单体的同一端,这样,在将多个电池单体装配成组时,汇流部件可以装配到电池单体的同一侧,这样可以简化装配工艺,提高装配效率。
在一些实施例中,底壁和侧壁为一体形成结构。这样可以省去底壁和侧壁的连接工序。
在一些实施例中,第一极耳为负极极耳,壳体的基体材质为钢。
上述方案中,壳体与负极极耳电连接,壳体处于低电位状态。钢制的壳体在低电位状态下不易被电解液腐蚀,以降低安全风险。
在一些实施例中,壳体的基体材质和端盖的基体材质相同。
上述方案中,壳体的基体材质和端盖的基体材质相同,这样可以保证壳体和端盖的焊接强度,保证电池单体的密封性。
在一些实施例中,电池单体为圆柱电池单体。
第二方面,本申请实施例提供了一种电池,包括多个第一方面任一实施例的电池单体。
第三方面,本申请实施例提供了一种用电装置,包括第二方面的电池,电池用于提供电能。
第四方面,本申请实施例提供了一种电池单体的制造方法,包括:
提供电极组件,电极组件具有第一极耳;
提供集流构件,并将集流构件焊接于第一极耳;
提供壳体,壳体具有开口;
将电极组件和集流构件安装到壳体内,并使第一极耳位于电极组件的面向开口的一端;
提供端盖,并将端盖盖合于开口,以使电极组件密封于壳体内、集流构件设于端盖和第一极耳之间;
焊接端盖和集流构件,以实现端盖和第一极耳的电连接。
第五方面,本申请实施例提供了一种电池单体的制造系统,包括:
第一提供装置,用于提供电极组件,电极组件具有第一极耳;
第二提供装置,用于提供集流构件,并将集流构件焊接于第一极耳;
第三提供装置,用于提供壳体,壳体具有开口;
第一组装装置,用于将电极组件和集流构件安装到壳体内,并使第一极耳位于电极组件的面向开口的一端;
第四提供装置,用于提供端盖,并将端盖盖合于开口,以使电极组件密封于壳体内、集流构件设于端盖和第一极耳之间;
第二组装装置,用于焊接端盖和集流构件,以实现端盖和第一极耳的电连接。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的爆炸示意图;
图4为本申请一些实施例提供的电池单体的爆炸示意图;
图5为本申请一些实施例提供的电池单体的剖视示意图;
图6为图5所示的电池单体在方框A处的放大示意图;
图7为本申请一些实施例提供的电池单体的集流构件和电极组件的装配示意图;
图8为图7所示的电极组件的结构示意图;
图9为本申请另一些实施例提供的电池单体的剖视示意图;
图10为本申请又一些实施例提供的电池单体的剖视示意图;
图11为图10所示的电池单体在圆框B处的放大示意图;
图12为本申请再一些实施例提供的电池单体的剖视示意图;
图13为图12所示的电池单体在方框C处的放大示意图;
图14为本申请一些实施例提供的电池单体的制造方法的流程示意图;
图15为本申请一些实施例提供的电池单体的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流区和凸出于正极集流区的正极极耳,正极集流区涂覆有正极活性物质层,正极极耳的至少部分未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流区和凸出于负极集流区的负极极耳,负极集流区涂覆有负极活性物质层,负极极耳的至少部分未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括壳体和端盖,壳体具有开口且用于容纳电极组件,电极组件可以经由壳体的开口装配到壳体内。端盖用于盖合于壳体的开口以实现密封。
发明人尝试将端盖电连接于电极组件的极耳,以便于引出电极组件的电流。为了实现端盖和极耳的电连接,发明人将端盖焊接于极耳。然而,发明人研究发现,极耳与端盖相抵的端面不平整,难以与端盖紧密贴合,在焊接端盖和极耳后,端盖可能 会产生微裂纹,引发端盖密封失效的风险,造成安全隐患。
鉴于此,本申请实施例提供一种技术方案,通过在电池单体中设置集流构件,并将集流构件与端盖、极耳分别焊接,以实现端盖和极耳的电连接。集流构件可以与端盖紧密贴合,以降低端盖产生微裂纹的风险,提高密封性能,减少安全隐患。集流构件与极耳焊接时,即使集流构件产生微裂纹,也不会影响电池单体的密封性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多 个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的爆炸示意图。
在一些实施例中,如图3所示,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
图4为本申请一些实施例提供的电池单体的爆炸示意图;图5为本申请一些实施例提供的电池单体的剖视示意图;图6为图5所示的电池单体在方框A处的放大示意图;图7为本申请一些实施例提供的电池单体的集流构件和电极组件的装配示意图;图8为图7所示的电极组件的结构示意图。
如图4至图8所示,本申请实施例的电池单体7包括:壳体20,具有开口21;电极组件10,容纳于壳体20内,电极组件10在面向开口21的一端具有第一极耳12;端盖30,用于盖合开口21,以将电极组件10密封于壳体20内;以及集流构件50,设于端盖30和第一极耳12之间,集流构件50被配置为与端盖30、第一极耳12分别焊接,以实现端盖30和第一极耳12的电连接。
电极组件10包括第一极片、第二极片和隔离件,隔离件用于将第一极片和第二极片隔开。第一极片和第二极片的极性相反,换言之,第一极片和第二极片中的一者为正极极片,第一极片和第二极片中的另一者为负极极片。
可选地,第一极片、第二极片和隔离件均为带状结构,第一极片、第二极片和隔离件卷绕为一体并形成卷绕结构。卷绕结构可以为圆柱状结构、扁平状结构或其它形状的结构。
从电极组件10的外形看,电极组件10包括主体部11、第一极耳12和第二极耳13,第一极耳12和第二极耳13连接于主体部11。第一极耳12为第一极片的未涂覆活性物质层的部分,第二极耳13为第二极片的未涂覆活性物质层的部分。对应地,第一极耳12和第二极耳13中的一者为正极性的极耳,另一者为负极性的极耳。
第一极耳12和第二极耳13分别设于主体部11的两侧,换言之,第一极耳12和第二极耳13分别设于电极组件10的两端。可选地,第一极耳12位于电极组件10的面向端盖30的一端,第二极耳13位于电极组件10的背离端盖30的一端。
第一极耳12环绕电极组件10的中心轴线X卷绕,且第一极耳12大体为柱体状。第一极耳12包括环绕中心轴线X设置的N个层结构121,N为大于1的正整数。
第一极耳12沿卷绕方向Y的两端分别为内端12a和外端12b,本实施例以第一极耳12的内端12a为基准划分层结构121。
具体地,第一极耳12的内端12a为第一个层结构121的首端,第一个层结构121的尾端与第一个层结构121的首端在第一极耳12的径向上对齐,第一个层结构121环绕中心轴线X一圈。对应地,第一个层结构121的尾端即为第二个层结构121的首 端,以此类推,N个层结构121沿卷绕方向Y首尾相连。在划分层结构121时,每个层结构121的首端与第一极耳12的内端12a沿在第一极耳12的径向上对齐。第一极耳12的径向垂直于中心轴线X并通过中心轴线X。
示例性地,第一极耳12的内端12a和外端12b在第一极耳12的径向上对齐,这样,每一个层结构121环绕中心轴线X一圈。
当然,可替代地,第一极耳12的内端12a和外端12b在第一极耳12的径向上也可以不对齐,这样,最后一个层结构121环绕中心轴线X不足一圈,例如,最后一个层结构121可以环绕中心轴线X1/4圈、1/3圈、1/2圈、2/3圈或3/4圈。
在卷绕完成后,第一极耳12大体为柱体状,相邻的两个层结构121之间留有缝隙。本申请实施例可以对第一极耳12进行处理,以减小层结构121间的缝隙,便于第一极耳12与集流构件50连接。例如,本申请实施例可对第一极耳12进行揉平处理,以使第一极耳12的远离主体部11的端部区域收拢、集合在一起;揉平处理在第一极耳12远离主体部11的一端形成致密的端面,减小层结构121间的缝隙,便于第一极耳12与集流构件50连接。可替代地,本申请实施例也可以在相邻的两圈层结构121之间填充导电材料,以减小层结构121间的缝隙。
可选地,第二极耳13环绕电极组件10的中心轴线X卷绕为多圈,第二极耳13包括多个层结构。示例性地,且第二极耳13也经过了揉平处理,以减小第二极耳13的层结构间的缝隙。
壳体20为一侧开口的空心结构,端盖30盖合于壳体20的开口21处并形成密封连接,以形成用于容纳电极组件10和电解液的容纳腔。
壳体20为空心结构,其内部形成用于容纳电极组件10的空间。壳体20可以是多种形状,比如,圆柱体、长方体等。壳体20的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。
壳体20包括侧壁22和底壁23,侧壁22环绕在电极组件10的外侧,底壁23连接于侧壁22的一端。侧壁22为筒状结构,例如,侧壁22可为圆筒或方筒;底壁23为板状结构,其形状与侧壁22的形状相对应。可选地,侧壁22的一端形成开口21,底壁23连接于侧壁22的背离开口21的一端。
侧壁22和底壁23可为一体形成结构,即壳体20为一体成形的构件。当然,侧壁22和底壁23也可以为分开提供的两个构件,然后通过焊接、铆接、粘接等方式连接在一起。
壳体20可以带正电、可以带负电、也可以不带电。当壳体20需要带电时,壳体20可以直接与电极组件10的极耳连接,也可以通过其它导电构件与极耳电连接。
端盖30和壳体20可通过焊接的方式相连,这样,端盖30和壳体20可带有相同的极性。示例性地,当壳体20需要带正电时,可利用端盖30将壳体20电连接到正极性的极耳;当壳体20需要带负电时,可利用端盖30将壳体20电连接到负极性的极耳。当然,壳体20也可通过其它导电结构连接到极耳,本实施例对此不作限制。
壳体20和端盖30可以由相同的材料制成,也可以由不同的材料制成。
集流构件50能够将端盖30与第一极耳12导通,进而使端盖30与第一极耳12的极性相同。可选地,集流构件50为由金属材料制成的板状结构。
在装配电池单体7时,先将集流构件50与第一极耳12焊接。例如,可以先将集流构件50抵压在第一极耳12上,然后在集流构件50的背离第一极耳12的表面照射激光,激光将集流构件50的一部分和第一极耳12的一部分熔融并连接。
在电极组件10和集流构件50安装到壳体20之内后,再将端盖30盖合到壳体20的开口21并焊接端盖30和集流构件50。例如,在端盖30的背离集流构件50的表面照射激光,激光将端盖30的一部分和集流构件50的一部分熔融并连接。
集流构件50的至少部分与端盖30相抵并紧密贴合,以便于实现集流构件50与端盖30的焊接。可选地,集流构件50的抵接于端盖30的表面为平面。
集流构件50为独立成型的构件,其不同于卷绕成形的第一极耳12,集流构件50的形状可以根据端盖30的形状适应性的调整,以保证集流构件50能够紧贴于端盖30。
在本实施例中,通过将集流构件50与端盖30、第一极耳12分别焊接,以实现端盖30和第一极耳12的电连接。集流构件50可以与端盖30紧密贴合,以降低端盖30产生微裂纹的风险,提高密封性能,减少安全隐患,提高安全性。集流构件50与第一极耳12焊接时,即使集流构件50产生微裂纹,也不会影响电池单体7的密封性。
在一些实施例中,端盖30用于将第一极耳12和壳体20电连接。
在本实施例中,壳体20本身可以作为电池单体7的输出极,从而省去一个传统的电极端子,简化电池单体7的结构。在多个电池单体7装配成组时,壳体20可以与汇流部件电连接,这样既可以增大过流面积,还可以使汇流部件的结构设计更为灵活。
在一些实施例中,壳体20焊接于端盖30。焊接既可以实现壳体20和端盖30的连接,提高壳体20和端盖30之间的过流能力,还能保证密封性。
在一些实施例中,壳体20还包括侧壁22和连接于侧壁22的底壁23,侧壁22沿端盖30的厚度方向Z延伸并环绕电极组件10的外周设置,底壁23设有电极引出孔231。电极组件10还包括第二极耳13,第一极耳12和第二极耳13极性相反且分别位于电极组件10的两端。电池单体7还包括安装于电极引出孔231的电极端子40,电极端子40电连接于第二极耳13。
第二极耳13可以直接电连接于电极端子40,也可以通过其它导电结构间接地电连接于电极端子40。
电极端子40绝缘设置于底壁23,电极端子40和底壁23可以具有不同的极性,电极端子40和底壁23可以分别作为电池单体7的两个输出极。
在第一极耳12为负极极耳、第二极耳13为正极极耳时,底壁23为电池单体7的负输出极,而电极端子40为电池单体7的正输出极。在第一极耳12为正极极耳、第二极耳13为负极极耳时,底壁23为电池单体7的正输出极,而电极端子40为电池单体7的负输出极。
电极端子40固定于底壁23。电极端子40可以整体固定在底壁23的外侧,也可以通过电极引出孔231伸入到壳体20的内部。
第一极耳12位于电极组件10的面向端盖30的一端,以便于端盖30与第一极耳12电连接;对应地,第二极耳13位于电极组件10的面向底壁23的一端,以便于电极端子40与第二极耳13电连接。本申请实施例将第一极耳12和第二极耳13设于电极组件10的两端,可以降低第一极耳12和第二极耳13导通的风险,并增大第一极耳12的过流面积和第二极耳13的过流面积。
在本实施例中,底壁23和电极端子40可以作为电池单体7的两个输出极,这样可以简化电池单体7的结构,并保证电池单体7的过流能力。底壁23和电极端子40位于电池单体7的同一端,这样,在将多个电池单体7装配成组时,汇流部件可以装配到电池单体7的同一侧,这样可以简化装配工艺,提高装配效率。
在一些实施例中,底壁23和侧壁22为一体形成结构。本实施例可以省去底壁23和侧壁22的连接工序。壳体20可通过拉伸工艺成型。
本申请实施例的电极引出孔231是在壳体20拉伸成型后制成。
发明人曾尝试辊压的壳体的开口端,以使壳体的开口端向内翻折并形成翻边结构,翻边结构压住端盖以实现端盖的固定。发明人将电极端子安装到端盖上,并以翻边结构和电极端子作为电池单体的两个输出极。然而,翻边结构的尺寸越大,其在成型后出现卷曲和褶皱的风险越高;如果翻边结构出现卷曲和褶皱,那么会造成翻边结构的表面不平整,当翻边结构与汇流部件焊接时,会存在焊接不良的问题。因此,翻边结构的尺寸比较受限,造成电池单体的过流能力不足。
本实施例利用开孔的工艺在底壁23上形成用于安装电极端子40的电极引出孔231,以将正输出极和负输出极设置在电池单体7的背离开口21的一端;底壁23是在壳体20的成型过程中形成,开设电极引出孔231后也能够保证底壁23的平整性,保证底壁23和汇流部件的连接强度。同时,底壁23的平整性不受自身尺寸的约束,所以底壁23可以具有较大的尺寸,从而提高电池单体7的过流能力。
在一些实施例中,第一极耳12为负极极耳,壳体20的基体材质为钢。
壳体20与负极极耳电连接,即壳体20处于低电位状态。钢制的壳体20在低电位状态下不易被电解液腐蚀,以降低安全风险。
在一些实施例中,壳体20的基体材质和端盖30的基体材质相同。可选地,壳体20的基体材质与端盖30的基体材质均为钢。
本实施例中,壳体20的基体材质和端盖30的基体材质相同,这样可以保证壳体20和端盖30的焊接强度,保证电池单体7的密封性。
在一些实施例中,电池单体7为圆柱电池单体。对应地,电极组件10为圆柱结构,壳体20为圆柱状的中空结构。
在一些实施例中,集流构件50的一部分用于与端盖30相抵并焊接,以形成第一焊接部W1,集流构件50的另一部分用于与第一极耳12相抵并焊接,以形成第二焊接部W2。第一焊接部W1沿端盖30的厚度方向Z的投影和第二焊接部W2沿端盖30的厚度方向Z的投影不重叠。
本实施例在将集流构件50的两个不同的部分分别焊接于端盖30和第一极耳12,以使第一焊接部W1沿端盖30的厚度方向Z的投影和第二焊接部W2沿端盖30的厚度方 向Z的投影不重叠。
第一焊接部W1和第二焊接部W2是材料经过熔化、冷却凝固等过程之后形成的结构,两者的表面凹凸不平。
在装配电池单体7时,先将集流构件50抵压并焊接于第一极耳12以形成第二焊接部W2,然后再焊接端盖30和集流构件50以形成第一焊接部W1。如果第一焊接部W1沿端盖30的厚度方向Z的投影和第二焊接部W2沿端盖30的厚度方向Z的投影重叠,那么在焊接端盖30和集流构件50时,端盖30的用于与集流构件50的焊接的部分需要抵压在第二焊接部W2上。由于第二焊接部W2的表面凹凸不平,如果端盖30的用于与集流构件50的焊接的部分抵压在第二焊接部W2上,那么端盖30难以和第二焊接部W2紧密贴合,这样会造成焊接不良,影响端盖30和集流构件50的连接强度,并引发端盖30形成微裂纹的风险。
在本实施例中,第一焊接部W1沿端盖30的厚度方向Z的投影和第二焊接部W2沿端盖30的厚度方向Z的投影不重叠,这样可以在焊接端盖30和集流构件50时不受第二焊接部W2的影响,提高端盖30和集流构件50的焊接可靠性。
在一些实施例中,电极组件10沿中心轴线X卷绕并形成第一极耳12,第一极耳12包括环绕中心轴线X设置的N个层结构121,中心轴线X的延伸方向平行于端盖30的厚度方向Z。第一极耳12由第一环形部122和环绕在第一环形部122的外侧的第二环形部123组成,第一环形部122中的层结构121的数量为N1,第二环形部123中的层结构121的数量为N2,N=N1+N2,|N1-N2|的值小于或等于2,N1、N2为正整数。第一环形部122与集流构件50焊接并形成第一部分W21,第二环形部123与集流构件50焊接并形成连接于第一部分W21的第二部分W22,第二焊接部W2由第一部分W21和第二部分W22组成。
第一环形部122中的各层结构121均环绕中心轴线X一圈。第一环形部122和第二环形部123的连接处与第一极耳12的内端12a沿径向对齐。
电极组件10中与第一环形部122相对应区域的电子能够沿着由第一环形部122、第一部分W21、集流构件50、第一焊接部W1和端盖30形成的第一电流路径运动,电极组件10中与第二环形部123相对应区域的电子能够沿着由第二环形部123、第二部分W22、集流构件50、第一焊接部W1和端盖30形成的第二电流路径运动,并且第一环形部122和第二环形部123的分界处大致位于第一极耳沿径向的中部区域。
在本实施例中,第一环形部122和第二环形部123的分界处大致位于第一极耳12沿径向的中部区域,第一极耳12的中部区域的一些层结构121与集流构件50焊接并形成第二焊接部W2的一部分,这样可以在一定程度上减小第一电流路径和第二电流路径之间的差异,以提高电流密度的均匀性,降低内阻,提高过流能力。
在一些实施例中,第一环形部122中的靠近第二环形部123设置的N3个连续的层结构121与集流构件50焊接并形成第一部分W21,第二环形部123中的靠近第一环形部122设置的N4个连续的层结构121与集流构件50焊接并形成第二部分W22,N3个连续的层结构121与N4个连续的层结构121连续设置,N4>N3≥1,N3和N4为正整数。
由于第二环形部123环绕在第一环形部122的外侧,第二环形部123中的层结 构121的周长大于第一环形部122中的层结构121的周长,电极组件10中与第二环形部123相对应区域的电子在第二环形部123的层结构121之间传输的路径较长。本实施例中,N4>N3,这样可以增加与第二部分W22相连的层结构121,减少电子在第二环形部123的层结构121之间传输,从而缩短第二电流路径,进一步减小第一电流路径和第二电流路径之间的差异,以提高电流密度的均匀性,降低内阻,提高过流能力。
在一些实施例中,所有层结构121中的M个连续的层结构121与集流构件50焊接并形成第二焊接部W2,其中,1/3≤M/N≤1/2,M≥2,M为正整数。
可选地,M=N3+N4。
M/N的值越大,第一极耳12的内阻越小,第二焊接部W2的面积也越大,第一极耳12与集流构件50之间的过流能力越强。但是,在集流构件50的面积一定时,M/N的值越大,第一焊接部W1的面积越小,集流构件50与端盖30之间的过流能力也就越低。
发明人经过试验,将M/N的值限定在1/3-1/2,以平衡第一极耳12与集流构件50之间的过流能力以及集流构件50与端盖30之间的过流能力,优化电池单体7的过流能力。
在一些实施例中,第二焊接部W2为多个,多个第二焊接部W2沿第一极耳12的周向间隔设置。当然,本申请不限于此,在另一些实施例中,第二焊接部W2也可以为一个,例如,第二焊接部W2可为环形、螺旋形或直线形。
在一些实施例中,端盖30包括盖本体31和从盖本体的内表面311沿面向第一极耳12的方向凸出的第一凸部32。
盖本体31为板状结构,其具有沿厚度方向Z相对设置的内表面和外表面,盖本体的内表面311面向电极组件10。可选地,盖本体的内表面311和盖本体的外表面312均为平面且平行设置。
第一凸部32相对于盖本体的内表面311沿面向电极组件10的方向凸出,以使第一凸部32的至少部分凸出于盖本体的内表面311。本实施例对第一凸部32凸出盖本体的内表面311的程度不作限制。
第一凸部32连接于盖本体31。示例性地,第一凸部32为环绕在盖本体31外侧的环形结构。当然,可替代地,盖本体31也可以环绕在第一凸部32的外侧。
集流构件50可以焊接于第一凸部32,也可以焊接于盖本体31,本实施例对此不作限制。
在一些实施例中,端盖30包括盖本体31和从盖本体的内表面311沿面向第一极耳12的方向凸出的第一凸部32,第一凸部32用于与集流构件50相抵并焊接,以形成第一焊接部W1,并使集流构件50和盖本体31之间形成用于避让第二焊接部W2的第一避让空隙G1。
第一凸部32的顶端面抵压并支撑集流构件50,以至少将盖本体31和集流构件50在厚度方向Z上间隔开。
第二焊接部W2沿厚度方向Z的投影与盖本体31沿厚度方向Z的投影至少部分地重叠。可选地,第二焊接部W2沿厚度方向Z的投影位于盖本体31沿厚度方向Z的投 影之内。
在本实施例中,通过设置用于避让第二焊接部W2的第一避让空隙G1,避免第二焊接部W2抵接到盖本体31,降低第二焊接部W2压伤盖本体31的风险。如果第二焊接部W2抵接到盖本体31,那么端盖30与集流构件50之间会形成过定位,造成第二焊接部W2干涉第一凸部32与集流构件50的抵接;本实施例通过设置第一避让空隙G1,可以避免第二焊接部W2干涉第一凸部32与集流构件50的抵接,保证第一凸部32与集流构件50的连接强度。
在一些实施例中,端盖30上与第一凸部32相对应的位置形成有从盖本体的外表面312沿面向电极组件10的方向凹陷的第一凹部33。
在装配端盖30和集流构件50时,可将激光作用在第一凹部33的底面,以从外侧将第一凸部32和集流构件50焊接。本实施例通过设置第一凹部33来减小第一凸部32厚度,这样可以减小第一凸部32与集流构件50焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险。
第一凸部32为具有一定厚度的实体结构;示例性地,第一凸部32为薄壁结构。第一凹部33为不具备实体结构的空腔。
第一凹部33能够降低第一凸部32的强度,提高第一凸部32的弹性变形能力,这样,在第一凸部32抵压到集流构件50的过程中,第一凸部32能够通过变形释放应力,减小冲击力,降低集流构件50和第一极耳12被压伤的风险。
在一些实施例中,第一凹部33的底面相较于盖本体的内表面311更靠近第一极耳12。
第一凹部33和第一凸部32可通过冲压端盖30形成。第一凹部33沿厚度方向Z的深度越大,第一凸部32凸出盖本体的内表面311的程度也就越大,第一避让空隙G1也就越大。
本申请实施例能够保证第一凸部32凸出盖本体的内表面311的程度,以更有效地支撑集流构件50,降低第二焊接部W2与端盖30接触的风险。同时,本申请实施例在保证第一凸部32的凸出程度的前提下,进一步保证第一凹部33凹陷的程度,以提高第一凸部32的弹性变形能力,降低在装配过程中第一凸部32压伤集流构件50和第一极耳12的风险。
在一些实施例中,盖本体31环绕在第一凸部32的外侧,第一焊接部W1设于第二焊接部W2的内侧。
在本实施例中,内侧和外侧均是相对于中心轴线X的位置。第一凸部32比盖本体31更靠近中心轴线X,而第一焊接部W1比第二焊接部W2更靠近中心轴线X。
在一些实施例中,端盖30上与第一凸部32相对应的位置形成有从盖本体的外表面312沿面向电极组件10的方向凹陷的第一凹部33。第一凹部33的底面设有凹槽34,凹槽34的底部用于与集流构件50焊接并形成第一焊接部W1。
凹槽34从第一凹部33的底面沿面向电极组件10的方向凹陷。第一凸部32的位于凹槽34的底面与第一凸部32的顶端面之间的部分形成连接部,连接部用于与集流构件50焊接并形成第一焊接部W1。
本实施例通过设置第一凹部33和凹槽34来减小第一凸部32的连接部的厚度,这样可以减小连接部与集流构件50焊接所需的焊接功率,减少产热,降低其它构件(例如隔离件)被烧伤的风险。
在一些实施例中,端盖30还包括环绕在盖本体31的外侧的第二凸部35,第二凸部35从盖本体的内表面311沿面向第一极耳12的方向凸出,第二凸部35用于支撑第一极耳12。
第二凸部35为环绕在盖本体31外侧的环形结构。在径向上,第二凸部35比盖本体31更靠近侧壁22。
第二凸部35可以直接支撑第一极耳12,也可以通过其它构件(例如集流构件50)支撑第一极耳12。
在本实施例中,第二凸部35可以支撑第一极耳12,以减小电极组件10在电池单体7震动时的晃动幅度,提高电极组件10的稳定性。
在一些实施例中,第二凸部35直接抵接并支撑第一极耳12。
在一些实施例中,第二凸部35与集流构件50间隔设置,以避免第二凸部35干涉集流构件50与第一凸部32的抵接,保证第一凸部32紧贴于集流构件50。
可选地,第二凸部35环绕在集流构件50的外侧。
在一些实施例中,第二凸部的外侧面351抵接于壳体20的内表面并用于与壳体20焊接,以封闭开口21。
第二凸部的外侧面351为第二凸部35的面向壳体20的侧壁22的表面。第二凸部的外侧面351为柱面,可选地,第二凸部的外侧面351为圆柱面。
第二凸部35伸入壳体20的部分可与壳体20过盈配合、过渡配合或间隙配合。可选地,第二凸部35伸入壳体20的部分可与壳体20过盈配合,过盈配合可以增大壳体20和端盖30之间的连接强度,改善密封性能。
可选地,第二凸部35和壳体20的侧壁22通过激光焊接相连。焊接时,激光照射在第二凸部35和侧壁22的交界处,激光将第二凸部的外侧面351的至少部分和壳体20的内表面的部分熔化并连接在一起。第二凸部的外侧面351抵接于壳体20的内表面,这样可以降低激光射入壳体20内部烧伤电极组件10的风险。
可替代地,激光也可以照射在侧壁22的背离第二凸部35的外表面。
在本实施例中,焊接可以实现密封,降低电解液泄露的风险,并提高第二凸部35和壳体20之间的连接强度和过流能力。
在一些实施例中,端盖30上与第二凸部35相对应的位置形成有从盖本体的外表面312沿面向电极组件10的方向凹陷的第二凹部36。
第二凹部36能够降低第二凸部35的强度,提高第二凸部35的弹性,这样,在焊接第二凸部35和壳体20的过程中,第二凸部35可以通过变形释放焊接应力,从而降低焊接区域变形、开裂的风险,改善密封性能。
在一些实施例中,第二凹部36的底面相较于盖本体的内表面311更靠近第一极耳12。
第二凹部36和第二凸部35可通过冲压端盖30形成。第二凹部36沿厚度方向 Z的深度越大,第二凸部35凸出盖本体的内表面311的程度也就越大。
本申请实施例能够保证第二凸部35凸出盖本体的内表面311的程度,以支撑第一极耳12。同时,本申请实施例在保证第二凸部35的凸出程度的前提下,进一步保证第二凹部36凹陷的程度,以提高第二凸部35的弹性,使第二凸部35能够通过变形来释放焊接应力。
在一些实施例中,盖本体31设置有薄弱部V,薄弱部V用于在电池单体7的内部压力达到阈值时破裂,以泄放内部压力。
该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体7中的正极极片、负极极片、电解液和隔离件中一种或几种的材料。
薄弱部V破裂后,形成可供内部压力泄放的通道。薄弱部V破裂后,电池单体7的内部的高温高压物质作为排放物会从破裂的部位向外排出。以此方式能够在可控压力的情况下使电池单体7发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体7的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离件的碎片、反应产生的高温高压气体、火焰,等等。
本实施例通过在盖本体31上设置薄弱部V,以在电池单体7热失控时释放内部压力,提高安全性能。本实施例在集流构件50和盖本体31之间形成第一避让空隙G1,以在薄弱部V破裂时降低集流构件50堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,集流构件50为平板结构。平板状的集流构件50更容易成型。平板状的集流构件50可以整体与第一极耳12接触,从而增大过流面积,并使集流构件50更均匀地支撑第一极耳12,降低电极组件10的极片在厚度方向Z上偏移、错位的风险。平板状的集流构件50还能够与第一凸部32紧贴,以降低第一凸部32在焊接过程中产生微裂纹的风险,提高密封性和安全性。
在一些实施例中,第一凸部32通过集流构件50支撑第一极耳12。
在本实施例中,第一凸部32通过集流构件50支撑第一极耳12,以减小电极组件10在电池单体7震动时的晃动幅度,提高电极组件10的稳定性。集流构件50能够通过第一极耳12支撑电极组件10,以降低电极组件10的极片在厚度方向Z上偏移、错位的风险。
第一凸部32通过集流构件50支撑第一极耳12的中部区域,第二凸部35支撑第一极耳12的边缘区域,这样可以提高第一极耳12受力的均匀性,降低电极组件10的极片在厚度方向Z上偏移、错位的风险。
图9为本申请另一些实施例提供的电池单体的剖视示意图;图10为本申请又一些实施例提供的电池单体的剖视示意图;图11为图10所示的电池单体在圆框B处的放大示意图。
如图9所示,在一些实施例中,第一凸部32环绕在盖本体31的外侧,第一焊接部W1设于第二焊接部W2的外侧。
本实施例中,外侧是相对于中心轴线X的位置。盖本体31比第一凸部32更靠近中心轴线X,而第二焊接部W2比第一焊接部W1更靠近中心轴线X。
在一些实施例中,第一凸部的外侧面321抵接于壳体20的内表面并用于与壳体20焊接,以封闭开口。
第一凸部的外侧面321为第一凸部32的面向壳体20的侧壁22的表面。第一凸部的外侧面321为柱面,可选地,第一凸部的外侧面321为圆柱面。
第一凸部32伸入壳体20的部分可与壳体20过盈配合、过渡配合或间隙配合。可选地,第一凸部32伸入壳体20的部分可与壳体20过盈配合,过盈配合可以增大壳体20和端盖30之间的连接强度,改善密封性能。
可选地,第一凸部32和壳体20的侧壁22通过激光焊接相连。焊接时,激光照射在第一凸部32和侧壁22的交界处,激光将第一凸部的外侧面321的至少部分和壳体20的内表面的部分熔化并连接在一起。第一凸部的外侧面321抵接于壳体20的内表面,这样可以降低激光射入壳体20内部烧伤电极组件10的风险。
可替代地,激光也可以照射在侧壁22的背离第一凸部32的外表面。
在本实施例中,焊接可以实现密封,降低电解液泄露的风险,提高壳体20和第一凸部32之间的连接强度和过流能力。
如图10和图11所示,在一些实施例中,端盖30还包括环绕在第一凸部32的外侧的延伸部37,延伸部37的面向第一极耳12的表面与壳体20的环绕开口21的端面24相抵并焊接,以封闭开口21。
延伸部37包括沿厚度方向Z相对设置的内表面和外表面,延伸部37的内表面面向第一极耳12。可选地,延伸部37为环形的板状结构,延伸部37的内表面和延伸部37的外表面均为平面。
延伸部37和壳体20沿厚度方向Z布置,延伸部37的内表面可与壳体20的端面24平行设置。
可选地,在焊接时,激光照射在壳体20的端面24和延伸部37的内表面的交界处;在焊接后,延伸部37的内表面的至少部分和壳体20的端面24的至少部分熔化并连接在一起。
在本实施例中,在装配端盖30和壳体20时,壳体20的端面24可以在厚度方向Z上起到限位的作用,降低端盖30过度插入壳体20的风险,提高装配效率。
在一些实施例中,端盖30还包括第二凸部35,盖本体31环绕在第二凸部35的外侧,第二凸部35从盖本体的内表面311沿面向第一极耳12的方向凸出。端盖30上与第二凸部35相对应的位置形成有从盖本体的外表面312沿面向电极组件10的方向凹陷的第二凹部36。
第二凸部35和第二凹部36可通过冲压端盖30形成。
电池单体7在正常循环过程中可能会释放出少量的气体,气体会使电池单体7的内压增大,从而引发端盖30变形的风险。本实施例通过在端盖30的中部设置第二凸部35和第二凹部36,可以增大端盖30的强度,减小端盖30的变形。
在一些实施例中,第二凸部35的与第二凹部36的底面相对的区域设置有薄弱部V,薄弱部V用于在电池单体7的内部压力达到阈值时破裂,以泄放内部压力。
本实施例通过在第二凸部35上设置薄弱部V,以在电池单体7热失控时释放内 部压力,提高安全性能。薄弱部V形成在第二凸部35在与第二凹部36的底面相对的区域,这样可以增大薄弱部V与其它外部构件的距离,降低薄弱部V被外部构件压伤的风险。
在一些实施例中,第二凸部35与集流构件50之间形成有第二避让空隙G2。
第一凸部32凸出盖本体的内表面311的程度大于第二凸部35凸出盖本体的内表面311的程度,这样,第一凸部32能够支撑集流构件50,以在第二凸部35与集流构件50之间形成第二避让空隙G2。
本实施例通过在第二凸部35与集流构件50之间形成第二避让空隙G2,以在薄弱部V破裂时降低集流构件50堵住排气通道的风险,保证顺畅地排气,降低安全风险。
图12为本申请再一些实施例提供的电池单体的剖视示意图,图13为图12所示的电池单体在方框C处的放大示意图。
如图12和图13所示,在一些实施例中,集流构件50包括:第一集流部51,用于与端盖30相抵并焊接,以形成第一焊接部W1;第二集流部52,用于与第一极耳12相抵并焊接,以形成第二焊接部W2,第二集流部52凸设于第一集流部51的面向电极组件10的表面,且第二集流部52在背离电极组件10的一侧设有避让凹部53,避让凹部53用于避让第二焊接部W2。
端盖30可以为平板状,也可以为其它形状。
在本实施例中,通过设置用于避让第二焊接部W2的避让凹部53,以避免第二焊接部W2干涉第一集流部51与端盖30的抵接,保证第一集流部51与端盖30的连接强度,并降低第二焊接部W2压伤端盖30的风险。避让凹部53能够减小第二集流部52的厚度,以减小第二集流部52与第一极耳12焊接所需的焊接功率,减少产热,降低其它构件(例如隔离件)被烧伤的风险。
在一些实施例中,第一集流部51为环绕在第二集流部52的外侧的平板结构。
在一些实施例中,端盖30包括:盖本体31,用于与第一集流部51焊接,并形成第一焊接部W1;以及第一凸部32,环绕在盖本体31的外侧,并从盖本体的内表面沿面向第一极耳12的方向凸出,第一凸部32用于与第一极耳12相抵,以支撑第一极耳12。
在本实施例中,第二集流部52支撑第一极耳12的中部区域,第一凸部32支撑第一极耳12的边缘区域,这样可以提高第一极耳12受力的均匀性,降低电极组件10的极片在厚度方向Z上偏移、错位的风险。
在一些实施例中,端盖30上与第一凸部32相对应的位置形成有从盖本体的外表面沿面向电极组件10的方向凹陷的第一凹部33,第一凹部33的底面相较于盖本体的内表面更靠近第一极耳12。
第一凹部33和第一凸部32可通过冲压端盖30形成。第一凹部33沿厚度方向Z的深度越大,第一凸部32凸出盖本体的内表面的程度也就越大。
本申请实施例能够保证第一凸部32凸出盖本体的内表面的程度,以支撑第一极耳12。同时,本申请实施例在保证第一凸部32的凸出程度的前提下,进一步保证第一凹部33凹陷的程度,以提高第一凸部32的弹性,在将第一凸部32抵压到第一极耳 12时减小冲击力,降低第一极耳12被压伤的风险。
在一些实施例中,第一凸部的外侧面抵接于壳体20的内表面并用于与壳体20焊接,以封闭开口21。
第一凸部的外侧面为第一凸部32的面向壳体20的侧壁22的表面。第一凸部的外侧面为柱面,可选地,第一凸部的外侧面为圆柱面。
第一凸部32伸入壳体20的部分可与壳体20过盈配合、过渡配合或间隙配合。可选地,第一凸部32伸入壳体20的部分可与壳体20过盈配合,过盈配合可以增大壳体20和端盖30之间的连接强度,改善密封性能。
可选地,第一凸部32和壳体20的侧壁22通过激光焊接相连。焊接时,激光照射在第一凸部32和侧壁22的交界处,激光将第一凸部的外侧面321的至少部分和壳体20的内表面的部分熔化并连接在一起。第一凸部的外侧面抵接于壳体20的内表面,这样可以降低激光射入壳体20内部烧伤电极组件10的风险。
可替代地,激光也可以照射在侧壁22的背离第一凸部32的外表面。
在本实施例中,焊接可以实现密封,降低电解液泄露的风险,并提高第一凸部32与壳体20的连接强度和过流能力。
在一些实施例中,端盖30还包括第二凸部35,盖本体31环绕在第二凸部35的外侧,第二凸部35从盖本体的内表面311沿面向第一极耳12的方向凸出并伸入避让凹部53。端盖30上与第二凸部35相对应的位置形成有从盖本体的外表面沿面向电极组件10的方向凹陷的第二凹部36。
第二凸部35和第二凹部36可通过冲压端盖30形成。
电池单体7在正常循环过程中可能会释放出少量的气体,气体会使电池单体7的内压增大,从而引发端盖30变形的风险。本实施例通过在端盖30的中部设置第二凸部35和第二凹部36,可以增大端盖30的强度,减小端盖30的变形。
在一些实施例中,第二凸部35的与第二凹部36的底面相对的区域设置有薄弱部V,薄弱部V用于在电池单体7的内部压力达到阈值时破裂,以泄放内部压力。避让凹部53还用于将第二集流部52与薄弱部V隔开。
本实施例通过在第二凸部35上设置薄弱部V,以在电池单体7热失控时释放内部压力,提高安全性能。薄弱部V形成在第二凸部35在与第二凹部36的底面相对的区域,这样可以增大薄弱部V与其它外部构件的距离,降低薄弱部V被外部构件压伤的风险。
本实施例的避让凹部53可以在薄弱部V破裂时降低集流构件50堵住排气通道的风险,保证顺畅地排气,降低安全风险。
在一些实施例中,端盖30还包括环绕在第一凸部的外侧的延伸部(未示出),延伸部的面向第一极耳的表面与壳体的环绕开口的端面相抵并焊接,以封闭开口。
图14为本申请一些实施例提供的电池单体的制造方法的流程示意图。
如图14所示,本申请实施例的电池单体的制造方法包括:
S100、提供电极组件,电极组件具有第一极耳;
S200、提供集流构件,并将集流构件焊接于第一极耳;
S300、提供壳体,壳体具有开口;
S400、将电极组件和集流构件安装到壳体内,并使第一极耳位于电极组件的面向开口的一端;
S500、提供端盖,并将端盖盖合于开口,以使电极组件密封于壳体内、集流构件设于端盖和第一极耳之间;
S600、焊接端盖和集流构件,以实现端盖和第一极耳的电连接。
需要说明的是,通过上述电池单体的制造方法制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
在基于上述的电池单体的制造方法组装电池单体时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100、S300的执行不分先后,也可以同时进行。
图15为本申请一些实施例提供的电池单体的制造系统的示意性框图。
如图15所示,本申请实施例还提供了一种电池单体的制造系统90包括:
第一提供装置91,用于提供电极组件,电极组件具有第一极耳;
第二提供装置92,用于提供集流构件,并将集流构件焊接于第一极耳;
第三提供装置93,用于提供壳体,壳体具有开口;
第一组装装置94,用于将电极组件和集流构件安装到壳体内,并使第一极耳位于电极组件的面向开口的一端;
第四提供装置95,用于提供端盖,并将端盖盖合于开口,以使电极组件密封于壳体内、集流构件设于端盖和第一极耳之间;
第二组装装置96,用于焊接端盖和集流构件,以实现端盖和第一极耳的电连接。
通过上述制造系统制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (37)

  1. 一种电池单体,包括:
    壳体,具有开口;
    电极组件,容纳于所述壳体内,所述电极组件在面向所述开口的一端具有第一极耳;
    端盖,用于盖合所述开口,以将所述电极组件密封于所述壳体内;
    集流构件,设于所述端盖和所述第一极耳之间,所述集流构件被配置为与所述端盖、所述第一极耳分别焊接,以实现所述端盖和所述第一极耳的电连接。
  2. 根据权利要求1所述的电池单体,其中,所述集流构件的一部分用于与所述端盖相抵并焊接,以形成第一焊接部,所述集流构件的另一部分用于与所述第一极耳相抵并焊接,以形成第二焊接部;
    所述第一焊接部沿所述端盖的厚度方向的投影和所述第二焊接部沿所述端盖的厚度方向的投影不重叠。
  3. 根据权利要求2所述的电池单体,其中,所述电极组件沿中心轴线卷绕并形成第一极耳,所述第一极耳包括环绕所述中心轴线设置的N个层结构,所述中心轴线的延伸方向平行于所述端盖的厚度方向;
    所述第一极耳由第一环形部和环绕在所述第一环形部的外侧的第二环形部组成,所述第一环形部中的所述层结构的数量为N1,所述第二环形部中的所述层结构的数量为N2,N=N1+N2,|N1-N2|的值小于或等于2,N1、N2为正整数;
    所述第一环形部与所述集流构件焊接并形成第一部分,所述第二环形部与所述集流构件焊接并形成连接于所述第一部分的第二部分,所述第二焊接部由所述第一部分和所述第二部分组成。
  4. 根据权利要求3所述的电池单体,其中,所述第一环形部中的靠近所述第二环形部设置的N3个连续的层结构与所述集流构件焊接并形成所述第一部分,所述第二环形部中的靠近所述第一环形部设置的N4个连续的层结构与所述集流构件焊接并形成所述第二部分,所述N3个连续的层结构与所述N4个连续的层结构连续设置,N4>N3≥1,N3和N4为正整数。
  5. 根据权利要求3或4所述的电池单体,其中,所有层结构中的M个连续的层结构与所述集流构件焊接并形成所述第二焊接部,其中,1/3≤M/N≤1/2,M≥2,M为正整数。
  6. 根据权利要求2-5任一项所述的电池单体,其中,所述端盖包括盖本体和从所述盖本体的内表面沿面向所述第一极耳的方向凸出的第一凸部,所述第一凸部用于与所述集流构件相抵并焊接,以形成所述第一焊接部,并使所述集流构件和所述盖本体之间形成用于避让所述第二焊接部的第一避让空隙。
  7. 根据权利要求6所述的电池单体,其中,所述端盖上与所述第一凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第一凹部,所述 第一凹部的底面相较于所述盖本体的内表面更靠近所述第一极耳。
  8. 根据权利要求6或7所述的电池单体,其中,所述第一凸部环绕在所述盖本体的外侧,所述第一焊接部设于所述第二焊接部的外侧。
  9. 根据权利要求8所述的电池单体,其中,所述第一凸部的外侧面抵接于所述壳体的内表面并用于与所述壳体焊接,以封闭所述开口。
  10. 根据权利要求8所述的电池单体,其中,所述端盖还包括环绕在所述第一凸部的外侧的延伸部,所述延伸部的面向所述第一极耳的表面与所述壳体的环绕所述开口的端面相抵并焊接,以封闭所述开口。
  11. 根据权利要求8-10任一项所述的电池单体,其中,所述端盖还包括第二凸部,所述盖本体环绕在所述第二凸部的外侧,所述第二凸部从所述盖本体的内表面沿面向所述第一极耳的方向凸出;
    所述端盖上与所述第二凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第二凹部。
  12. 根据权利要求11所述的电池单体,其中,所述第二凸部的与所述第二凹部的底面相对的区域设置有薄弱部,所述薄弱部用于在所述电池单体的内部压力达到阈值时破裂,以泄放所述内部压力。
  13. 根据权利要求12所述的电池单体,其中,所述第二凸部与所述集流构件之间形成有第二避让空隙。
  14. 根据权利要求6或7所述的电池单体,其中,所述盖本体环绕在所述第一凸部的外侧,所述第一焊接部设于所述第二焊接部的内侧。
  15. 根据权利要求14所述的电池单体,其中,
    所述端盖上与所述第一凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第一凹部;
    所述第一凹部的底面设有凹槽,所述凹槽的底部用于与所述集流构件焊接并形成所述第一焊接部。
  16. 根据权利要求14或15所述的电池单体,其中,所述端盖还包括环绕在所述盖本体的外侧的第二凸部,所述第二凸部从所述盖本体的内表面沿面向所述第一极耳的方向凸出,所述第二凸部用于支撑所述第一极耳。
  17. 根据权利要求16所述的电池单体,其中,所述第二凸部的外侧面抵接于所述壳体的内表面并用于与所述壳体焊接,以封闭所述开口。
  18. 根据权利要求16或17所述的电池单体,其中,所述端盖上与所述第二凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第二凹部,所述第二凹部的底面相较于所述盖本体的内表面更靠近所述第一极耳。
  19. 根据权利要求14-18任一项所述的电池单体,其中,所述盖本体设置有薄弱部,所述薄弱部用于在所述电池单体的内部压力达到阈值时破裂,以泄放所述内部压力。
  20. 根据权利要求6-19任一项所述的电池单体,其中,所述集流构件为平板结构。
  21. 根据权利要求6-20任一项所述的电池单体,其中,所述第一凸部通过所述集流构件支撑所述第一极耳。
  22. 根据权利要求2-5任一项所述的电池单体,其中,所述集流构件包括:
    第一集流部,用于与所述端盖相抵并焊接,以形成所述第一焊接部;
    第二集流部,用于与所述第一极耳相抵并焊接,以形成所述第二焊接部,所述第二集流部凸设于所述第一集流部的面向所述电极组件的表面,且所述第二集流部在背离所述电极组件的一侧设有避让凹部,所述避让凹部用于避让所述第二焊接部。
  23. 根据权利要求22所述的电池单体,其中,所述端盖包括:
    盖本体,用于与所述第一集流部焊接,并形成所述第一焊接部;以及
    第一凸部,环绕在所述盖本体的外侧,并从所述盖本体的内表面沿面向所述第一极耳的方向凸出,所述第一凸部用于与所述第一极耳相抵,以支撑所述第一极耳。
  24. 根据权利要求23所述的电池单体,其中,所述端盖上与所述第一凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第一凹部,所述第一凹部的底面相较于所述盖本体的内表面更靠近所述第一极耳。
  25. 根据权利要求23或24所述的电池单体,其中,所述第一凸部的外侧面抵接于所述壳体的内表面并用于与所述壳体焊接,以封闭所述开口。
  26. 根据权利要求23-25任一项所述的电池单体,其中,所述端盖还包括第二凸部,所述盖本体环绕在所述第二凸部的外侧,所述第二凸部从所述盖本体的内表面沿面向所述第一极耳的方向凸出并伸入所述避让凹部;
    所述端盖上与所述第二凸部相对应的位置形成有从所述盖本体的外表面沿面向所述电极组件的方向凹陷的第二凹部。
  27. 根据权利要求26所述的电池单体,其中,所述第二凸部的与所述第二凹部的底面相对的区域设置有薄弱部,所述薄弱部用于在所述电池单体的内部压力达到阈值时破裂,以泄放所述内部压力;
    所述避让凹部还用于将所述第二集流部与所述薄弱部隔开。
  28. 根据权利要求1-27中任一项所述的电池单体,其中,所述端盖用于将所述第一极耳和所述壳体电连接。
  29. 根据权利要求28所述的电池单体,其中,所述壳体还包括侧壁和连接于所述侧壁的底壁,所述侧壁沿所述端盖的厚度方向延伸并环绕所述电极组件的外周设置,所述底壁设有电极引出孔;
    所述电极组件还包括第二极耳,所述第一极耳和所述第二极耳极性相反且分别位于所述电极组件的两端;
    所述电池单体还包括安装于所述电极引出孔的电极端子,所述电极端子电连接于所述第二极耳。
  30. 根据权利要求29所述的电池单体,其中,所述底壁和所述侧壁为一体形成结构。
  31. 根据权利要求28-30任一项所述的电池单体,其中,所述第一极耳为负极极耳,所述壳体的基体材质为钢。
  32. 根据权利要求1-31中任一项所述的电池单体,其中,所述壳体的基体材质和所述端盖的基体材质相同。
  33. 根据权利要求1-32中任一项所述的电池单体,其中,所述电池单体为圆柱电池单体。
  34. 一种电池,包括多个根据权利要求1-33中任一项所述的电池单体。
  35. 一种用电装置,包括根据权利要求34所述的电池,所述电池用于提供电能。
  36. 一种电池单体的制造方法,包括:
    提供电极组件,所述电极组件具有第一极耳;
    提供集流构件,并将所述集流构件焊接于所述第一极耳;
    提供壳体,所述壳体具有开口;
    将所述电极组件和所述集流构件安装到所述壳体内,并使所述第一极耳位于所述电极组件的面向所述开口的一端;
    提供端盖,并将所述端盖盖合于所述开口,以使所述电极组件密封于所述壳体内、所述集流构件设于所述端盖和所述第一极耳之间;
    焊接所述端盖和所述集流构件,以实现所述端盖和所述第一极耳的电连接。
  37. 一种电池单体的制造系统,包括:
    第一提供装置,用于提供电极组件,所述电极组件具有第一极耳;
    第二提供装置,用于提供集流构件,并将所述集流构件焊接于所述第一极耳;
    第三提供装置,用于提供壳体,所述壳体具有开口;
    第一组装装置,用于将所述电极组件和所述集流构件安装到所述壳体内,并使所述第一极耳位于所述电极组件的面向所述开口的一端;
    第四提供装置,用于提供端盖,并将所述端盖盖合于所述开口,以使所述电极组件密封于所述壳体内、所述集流构件设于所述端盖和所述第一极耳之间;
    第二组装装置,用于焊接所述端盖和所述集流构件,以实现所述端盖和所述第一极耳的电连接。
PCT/CN2021/122108 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置 WO2023050285A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2023511827A JP2023547757A (ja) 2021-09-30 2021-09-30 電池セル及びその製造方法と製造システム、電池及び電力使用装置
PCT/CN2021/122108 WO2023050285A1 (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置
EP21953018.5A EP4184669A1 (en) 2021-09-30 2021-09-30 Battery cell and manufacturing method and manufacturing system therefor, battery, and power consuming device
CN202180081157.XA CN116529947A (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置
KR1020237005553A KR20230048051A (ko) 2021-09-30 2021-09-30 전지 셀 및 그의 제조 방법, 제조 시스템, 전지 및 전기 장치
CN202280007961.8A CN116569408A (zh) 2021-09-30 2022-09-29 电池单体、电池以及用电装置
PCT/CN2022/122805 WO2023051731A1 (zh) 2021-09-30 2022-09-29 电池单体、电池以及用电装置
EP22875112.9A EP4333191A1 (en) 2021-09-30 2022-09-29 Battery cell, battery, and electrical device
US18/110,381 US20230198108A1 (en) 2021-09-30 2023-02-16 Battery cell, method and system for manufacturing same, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122108 WO2023050285A1 (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/110,381 Continuation US20230198108A1 (en) 2021-09-30 2023-02-16 Battery cell, method and system for manufacturing same, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023050285A1 true WO2023050285A1 (zh) 2023-04-06

Family

ID=85780343

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/122108 WO2023050285A1 (zh) 2021-09-30 2021-09-30 电池单体及其制造方法和制造系统、电池以及用电装置
PCT/CN2022/122805 WO2023051731A1 (zh) 2021-09-30 2022-09-29 电池单体、电池以及用电装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122805 WO2023051731A1 (zh) 2021-09-30 2022-09-29 电池单体、电池以及用电装置

Country Status (6)

Country Link
US (1) US20230198108A1 (zh)
EP (2) EP4184669A1 (zh)
JP (1) JP2023547757A (zh)
KR (1) KR20230048051A (zh)
CN (2) CN116529947A (zh)
WO (2) WO2023050285A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209200018U (zh) * 2018-12-05 2019-08-02 宁德时代新能源科技股份有限公司 二次电池以及电池模组
CN111106299A (zh) * 2018-11-07 2020-05-05 宁德时代新能源科技股份有限公司 二次电池及其制造方法
CN111162205A (zh) * 2018-11-07 2020-05-15 宁德时代新能源科技股份有限公司 二次电池以及二次电池的制造方法
CN112290168A (zh) * 2020-10-16 2021-01-29 武汉逸飞激光设备有限公司 一种全极耳锂电池及其制备方法
US20210098764A1 (en) * 2019-09-30 2021-04-01 Samsung Sdi Co., Ltd. Secondary battery
CN112771714A (zh) * 2019-11-25 2021-05-07 宁德时代新能源科技股份有限公司 电池单体、电池模块、电池组、使用电池单体作为电源的装置及电池单体的组装方法
CN113270696A (zh) * 2021-05-16 2021-08-17 泰兴市宁辉锂电池有限公司 一种钢壳结构圆柱锂电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928401A (zh) * 2021-01-26 2021-06-08 苏州宇量电池有限公司 一种多极耳圆柱锂离子电池
CN113258124B (zh) * 2021-07-06 2021-12-28 江苏时代新能源科技有限公司 电池单体、电池、用电设备及电池单体的制造方法和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106299A (zh) * 2018-11-07 2020-05-05 宁德时代新能源科技股份有限公司 二次电池及其制造方法
CN111162205A (zh) * 2018-11-07 2020-05-15 宁德时代新能源科技股份有限公司 二次电池以及二次电池的制造方法
CN209200018U (zh) * 2018-12-05 2019-08-02 宁德时代新能源科技股份有限公司 二次电池以及电池模组
US20210098764A1 (en) * 2019-09-30 2021-04-01 Samsung Sdi Co., Ltd. Secondary battery
CN112771714A (zh) * 2019-11-25 2021-05-07 宁德时代新能源科技股份有限公司 电池单体、电池模块、电池组、使用电池单体作为电源的装置及电池单体的组装方法
CN112290168A (zh) * 2020-10-16 2021-01-29 武汉逸飞激光设备有限公司 一种全极耳锂电池及其制备方法
CN113270696A (zh) * 2021-05-16 2021-08-17 泰兴市宁辉锂电池有限公司 一种钢壳结构圆柱锂电池

Also Published As

Publication number Publication date
CN116529947A (zh) 2023-08-01
WO2023051731A1 (zh) 2023-04-06
EP4333191A1 (en) 2024-03-06
KR20230048051A (ko) 2023-04-10
US20230198108A1 (en) 2023-06-22
JP2023547757A (ja) 2023-11-14
EP4184669A1 (en) 2023-05-24
CN116569408A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN216213942U (zh) 电池单体、电池以及用电装置
CN216085238U (zh) 电池单体、电池以及用电装置
CN216085200U (zh) 电池单体、电池以及用电装置
WO2024027034A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023025108A1 (zh) 电池单体、电池以及用电装置
CN217158403U (zh) 电池单体、电池以及用电装置
US20230411746A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
US20230216118A1 (en) Battery cell, method and system for manufacture same, battery, and power consuming device
US20230207992A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
WO2023050278A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023065173A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050285A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050282A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20230055271A1 (en) Battery cell, method and system for manufacturing a battery cell, battery and electrical device
WO2023050197A1 (zh) 电池单体及其制造方法和制造系统、电池及用电装置
WO2023133806A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023245430A1 (zh) 电池单体、电池及用电设备
WO2024082112A1 (zh) 电池单体、电池以及用电装置
WO2024055257A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023511827

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237005553

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021953018

Country of ref document: EP

Effective date: 20230215

WWE Wipo information: entry into national phase

Ref document number: 202180081157.X

Country of ref document: CN