WO2024082112A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2024082112A1
WO2024082112A1 PCT/CN2022/125783 CN2022125783W WO2024082112A1 WO 2024082112 A1 WO2024082112 A1 WO 2024082112A1 CN 2022125783 W CN2022125783 W CN 2022125783W WO 2024082112 A1 WO2024082112 A1 WO 2024082112A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collecting
collecting member
battery cell
electrode terminal
electrode
Prior art date
Application number
PCT/CN2022/125783
Other languages
English (en)
French (fr)
Inventor
柴志生
金海族
姜玲燕
孙东升
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/125783 priority Critical patent/WO2024082112A1/zh
Publication of WO2024082112A1 publication Critical patent/WO2024082112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals

Definitions

  • the present application relates to the technical field of batteries, and more specifically, to a battery cell, a battery, and an electrical device.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptop computers, electric vehicles, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, and electric tools, etc.
  • Battery cells can include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, and secondary alkaline zinc-manganese battery cells, etc.
  • the present application provides a battery cell, a battery, and an electrical device, which can improve reliability.
  • an embodiment of the present application provides a battery cell, comprising a housing, an electrode terminal, an electrode assembly, and a current collecting member.
  • the electrode terminal is disposed in the housing.
  • the electrode assembly is accommodated in the housing, and a first pole ear is disposed at one end of the electrode assembly facing the electrode terminal.
  • the current collecting member is connected to the first pole ear, and at least a portion of the current collecting member is located on a side of the electrode terminal facing the first pole ear, and is abutted against and connected to the electrode terminal.
  • the electrode terminal can be abutted against the current collecting component; when the electrode assembly shakes, the electrode terminal can be limited from the side of the current collecting component away from the electrode assembly, thereby reducing the amplitude of the shaking of the current collecting component, reducing the risk of failure of the connection between the current collecting component and the electrode terminal, and improving the reliability of the battery cell.
  • the current collecting member abuts against and is connected to an end surface of the first electrode tab that faces the electrode terminal.
  • the end surface of the first electrode tab and the electrode terminal can clamp the current collecting member from both sides, so that the first electrode tab and the electrode terminal are in stable contact with the current collecting member, reducing the shaking of the current collecting member when the battery cell is subjected to external impact, thereby improving the reliability of the battery cell.
  • the electrode terminal has an abutting surface against the current collecting member, the abutting surface has a diameter D 1 , the current collecting member has a diameter D 2 , and the minimum thickness of the current collecting member is t 1 .
  • D 1 , D 2 and t satisfy: t 1 ⁇ D 1 /D 2 ⁇ 0.4.
  • the value of t1 is too large, then when the electrode terminal and the current collecting member are pressed, the current collecting member is difficult to deform under pressure due to its high strength, making it difficult for the current collecting member to fit tightly with the electrode terminal, resulting in a larger gap between the current collecting member and the electrode terminal.
  • the strength of the current collecting member can be reduced, so that the current collecting member can be adaptively deformed when under pressure to adapt to the shape of the abutting surface.
  • the above technical solution can reduce the gap between the current collecting member and the electrode terminal and improve the connection strength between the current collecting member and the electrode terminal by limiting the value of t 1 ⁇ D 1 /D 2 to be less than or equal to 0.4.
  • D 1 , D 2 and t 1 satisfy: 0.05 ⁇ t 1 ⁇ D 1 /D 2 ⁇ 0.3.
  • the above technical solution can better reduce the gap between the current collecting member and the electrode terminal and improve the connection strength between the current collecting member and the electrode terminal.
  • t 1 ⁇ D 1 /D 2 ⁇ 0.05 the current flow capacity between the current collecting member and the electrode terminal can be improved, heat generation can be reduced, and the reliability and safety of the battery cell can be improved.
  • t1 is 0.1 mm-1 mm.
  • the value of t1 is too large, then when the electrode terminal and the current collecting member are pressed, the current collecting member is difficult to deform under pressure due to its high strength, making it difficult for the current collecting member to fit tightly with the electrode terminal, resulting in a larger gap between the current collecting member and the electrode terminal.
  • the smaller the value of t1 the smaller the flow area of the current collecting member, and the lower the flow capacity of the current collecting member. If the value of t1 is too small, the current collecting member may generate too much heat, affecting the reliability and safety of the battery cell.
  • the above technical solution limits t1 to 0.1 mm-1 mm, improves the current-carrying capacity of the current collecting component, reduces the gap between the current collecting component and the electrode terminal, and improves the connection strength between the current collecting component and the electrode terminal.
  • t1 is 0.2 mm-0.6 mm.
  • the above technical solution can further improve the current carrying capacity of the current collecting component, reduce the gap between the current collecting component and the electrode terminal, and improve the connection strength between the current collecting component and the electrode terminal.
  • a surface of the electrode terminal closest to the electrode assembly abuts against the current collecting member.
  • the current collecting member first abuts against the surface of the electrode terminal closest to the electrode assembly, which can shorten the stroke of the current collecting member entering the shell and improve assembly efficiency.
  • the electrode terminal includes a stopper and a first protrusion
  • the stopper is accommodated in the shell.
  • the stopper overlaps the shell at least partially, and the top end surface of the first protrusion is closer to the electrode assembly than the stopper.
  • the top end surface of the first protrusion abuts against the current collecting member.
  • the limiting part can be limited by the shell to reduce the risk of the electrode terminal penetrating outside the shell and improve the reliability of the battery cell.
  • the top surface of the first protrusion protrudes from the limiting part, so as to form a gap between the limiting part and the current collecting member, reduce the fitting area between the current collecting member and the electrode terminal, and further reduce the gap between the current collecting member and the first protrusion, thereby improving the connection strength between the current collecting member and the electrode terminal.
  • a dimension t2 of the first protrusion protruding from the limiting portion is 0.05 mm-0.35 mm.
  • the above technical solution limits the value of t2 to 0.05mm-0.35mm, which can reduce the risk of the limiting portion abutting against the current collecting member, reduce the gap between the current collecting member and the top surface of the first protrusion, and reduce the loss of space utilization rate of the battery cell.
  • t2 is 0.15 mm-0.25 mm.
  • the above technical solution can further reduce the risk of the limiting portion abutting against the current collecting member, reduce the gap between the current collecting member and the top end surface of the first protrusion, and reduce the loss of space utilization of the battery cell.
  • a region of the electrode terminal corresponding to a top end surface of the first protrusion is welded to the current collecting member and forms a first welding portion.
  • the top end surface of the first protrusion directly contacts the current collecting member, and the gap between the two is small. Welding the electrode terminal and the area corresponding to the top end surface of the first protrusion to the current collecting member can reduce the risk of cold welding and improve the welding strength.
  • the first welding portion is annular, the outer diameter of the first welding portion is D 3 , the diameter of the top end surface of the first protrusion is D 4 , and D 3 is smaller than D 4 .
  • the welding equipment may have errors, resulting in fluctuations in the welding position. If D3 is equal to D4 , then when the welding position fluctuates, welding may occur outside the top surface of the first convex portion, causing the risk of a cold weld.
  • D3 smaller than D4 to absorb welding errors, reduce the risk of a cold weld, and improve welding strength.
  • a first recess is provided on a side of the electrode terminal away from the first electrode tab, a portion between a bottom surface of the first recess and a top surface of the first protrusion forms a connecting portion, and the connecting portion is welded to the current collecting member to form a first welding portion.
  • the thickness of the connecting portion is reduced by opening the first recess on the electrode terminal, thereby reducing the welding power required for welding the connecting portion and the current collecting component, reducing heat generation, reducing the risk of burning other components, and improving safety.
  • the diameter of the bottom surface of the first concave portion is D 5
  • the diameter of the top surface of the first convex portion is D 4
  • D 5 is smaller than D 4 .
  • the first concave portion will reduce the thickness of the electrode terminal in the area opposite to the bottom surface of the first concave portion, while the first convex portion will increase the thickness of the electrode terminal in the area opposite to the top surface of the first convex portion.
  • the thickness of the connecting portion is constant, if D5 is greater than or equal to D4 , due to process errors, part of the bottom surface of the first concave portion may not be opposite to the top surface of the first convex portion, resulting in a local thickness of the electrode terminal being less than the thickness of the connecting portion, resulting in a local strength of the electrode terminal being relatively low, and the electrode terminal may break when the battery cell is subjected to external impact.
  • the above technical solution makes D5 smaller than D4 , so as to reduce the influence of the first concave portion on the strength of the electrode terminal, reduce the risk of electrode terminal breakage, and improve the reliability of the battery cell.
  • the first protrusion in the thickness direction of the current collecting member, is entirely closer to the electrode assembly than the limiting portion.
  • the electrode terminal is provided with an annular recess on a side facing the electrode assembly, and the annular recess is arranged around the first protrusion.
  • the annular recess is recessed relative to the surface of the stopper facing the electrode assembly, and separates at least part of the stopper from the first protrusion.
  • the annular recess can separate at least part of the limiting portion from the first convex portion, so as to reduce the force acting on the limiting portion when the first convex portion is under pressure, thereby reducing the risk of deformation of the limiting portion.
  • the current collecting member is welded to the first electrode tab to form a second welding portion.
  • the second welding portion does not overlap with a top end surface of the first protrusion.
  • the second welding portion and the top end surface of the first protrusion do not overlap in the thickness direction, thereby reducing the risk of the top end surface of the first protrusion abutting against the second welding portion, reducing the gap between the top end surface of the first protrusion and the current collecting component, and improving the welding strength.
  • At least a portion of the second welding portion is located on a side of the electrode terminal facing the first electrode tab and is spaced apart from the electrode terminal.
  • the second welding portion is spaced apart from the electrode terminal, which can reduce the risk of the second welding portion interfering with the abutment between the electrode terminal and the current collecting member and reduce over-positioning.
  • the second welding portion can extend to the area of the first electrode tab that is opposite to the electrode terminal in the thickness direction, thereby improving the current carrying capacity.
  • the diameter of the current collecting member is D 2
  • the diameter of the top end surface of the first protrusion is D 4
  • the current collecting component includes a current collecting body and a second protrusion, the current collecting body is connected to the first electrode tab, the second protrusion protrudes from the surface of the current collecting body facing the electrode terminal, and the top end surface of the second protrusion abuts against the electrode terminal; the current collecting body is spaced apart from the electrode terminal.
  • a gap can be formed between the current collecting body and the electrode terminal, thereby reducing the fitting area between the current collecting component and the electrode terminal, thereby reducing the gap between the second protrusion and the current collecting component, and improving the connection strength between the current collecting component and the electrode terminal.
  • a dimension t3 of the second protrusion protruding from the current collecting body is 0.05 mm-0.25 mm.
  • the above technical solution limits the value of t 3 to 0.05mm-0.25mm, which can reduce the risk of the current collector body abutting against the electrode terminal, reduce the gap between the electrode terminal and the top surface of the second protrusion, and reduce the loss of space utilization rate of the battery cell.
  • t3 is 0.1 mm-0.2 mm.
  • the above technical solution can further reduce the risk of the current collector body abutting against the electrode terminal, reduce the gap between the electrode terminal and the top end surface of the second protrusion, and reduce the loss of space utilization of the battery cell.
  • the area of the current collector surrounding the outer side of the second protrusion is welded to the first electrode tab. During welding, the second protrusion will not block the area of the current collector surrounding the outer side of the second protrusion, which can reduce the welding difficulty and welding power.
  • the diameter of the current collecting member is D 2
  • the diameter of the top end surface of the second protrusion is L
  • the electrode terminal includes a first protrusion, and a top end surface of the first protrusion abuts against a top end surface of the second protrusion.
  • the above technical solution simultaneously provides the first convex portion and the second convex portion to further reduce the contact area between the current collecting component and the electrode terminal, thereby reducing the gap between the first convex portion and the second convex portion and improving the connection strength between the current collecting component and the electrode terminal.
  • a second concave portion is disposed on a side of the electrode terminal facing the current collecting member, at least a portion of the second convex portion is accommodated in the second concave portion, and a top end surface of the second convex portion abuts against a bottom surface of the second concave portion.
  • the second concave portion can position the second convex portion, thereby simplifying the assembly process of the electrode terminal and the current collecting member and improving the assembly efficiency.
  • the current collecting member further includes a third protrusion protruding from a surface of the current collecting body facing the first electrode tab.
  • the third protrusion can be embedded in the first electrode tab by pressing the first electrode tab, thereby improving the contact stability between the first electrode tab and the current collecting member.
  • the third protrusion and the second protrusion are symmetrical about the current collecting body.
  • the above technical solution can achieve fool-proofing.
  • the electrode assembly and the current collecting component there is no need to judge the front and back of the current collecting component, thereby improving assembly efficiency.
  • the current collecting member is provided with a third recess at a position corresponding to the second protrusion, and the third recess is recessed relative to the surface of the current collecting body facing the first electrode tab.
  • the third recess can reduce the space occupied by the current collecting member and reduce the weight of the current collecting member.
  • the electrode terminal is welded to the current collecting member.
  • the melting point of the electrode terminal is T 1
  • the melting point of the current collecting member is T 2
  • T 1 /T 2 is 0.8-1.1.
  • the above technical solution can reduce the difference between the melting point of the electrode terminal and the melting point of the current collecting member, improve the welding process, and enhance the welding strength.
  • the electrode terminal includes a first recess and a connecting portion at the bottom of the first recess.
  • the current collecting member is welded to the connecting portion to form a first welding portion, and in the thickness direction of the current collecting member, the first welding portion extends from a side of the connecting portion away from the current collecting member to at least the inside of the current collecting member.
  • the thickness of the connection part is reduced by providing the first recessed part on the electrode terminal, thereby reducing the welding power required for welding the connection part and the current collecting member, reducing heat generation, reducing the risk of other components being burned, and improving safety.
  • the first welding part extends from the connection part to the inside of the current collecting member to connect the current collecting member and the connection part, reducing the contact resistance between the current collecting member and the electrode terminal, and improving the current carrying capacity.
  • the shell includes a barrel and a cover connected to the barrel, the barrel is arranged around the outer circumference of the electrode assembly, the cover is provided with an electrode lead-out hole, and the electrode terminal is installed in the electrode lead-out hole.
  • the first welding portion and the cover are both annular, the outer diameter of the cover is D 6 , and the inner diameter of the first welding portion is D 7 .
  • D 6 and D 7 satisfy: 0.1 ⁇ D 7 /D 6 ⁇ 0.6.
  • D6 is positively correlated with the diameter of the electrode assembly.
  • the larger D6 is, the higher the capacity of the electrode assembly is, and the higher the battery cell's requirements for the flow area of the first welding portion are.
  • the smaller D7 is, the smaller the circumference of the first welding portion is, and the smaller the flow area of the first welding portion is. If D7 / D6 is too small, then because D6 is too large and D7 is too small, the flow area of the first welding portion will be insufficient, and the first welding portion will generate more heat during charging and discharging, making it difficult to meet the battery cell's requirements for flow capacity and temperature rise during fast charging.
  • the above technical solution limits D7 / D6 to greater than or equal to 0.1, which can meet the battery cell's requirements for flow capacity and temperature rise.
  • the larger D7 is, the larger the size of the electrode lead-out hole is, and the smaller the area of the cover is. Similarly, the smaller D6 is, the smaller the area of the cover is. If D7 / D6 is too large, then because D6 is too small and D7 is too large, the cover will be easily deformed when the battery cell vibrates, causing safety hazards.
  • the cover can be used as an output pole of the battery cell to connect with the busbar. If D7 / D6 is too large, the connection area between the cover and the busbar will be too small, the flow area between the cover and the busbar will be insufficient, and the heat generation at the connection between the cover and the busbar will be too high, making it difficult to meet the requirements of the battery cell for flow capacity and temperature rise during fast charging.
  • the above technical solution limits D7 / D6 to less than or equal to 0.6, which can meet the requirements of the battery cell for flow capacity and temperature rise and improve the safety of the battery cell.
  • 0.2 ⁇ D 7 /D 6 ⁇ 0.4 In some embodiments, 0.2 ⁇ D 7 /D 6 ⁇ 0.4. When 0.2 ⁇ D 7 /D 6 ⁇ 0.4, the requirements of the battery cell on the overcurrent capability and the temperature rise can be better met, thereby improving the safety of the battery cell.
  • D7 is 5 mm-14 mm.
  • D 7 If D 7 is too small, the flow area of the first welding part will be insufficient, and the first welding part will generate a lot of heat during charging and discharging, which makes it difficult to meet the requirements of the battery cell for flow capacity and temperature rise during fast charging. If D 7 is too large, the flow area between the cover and the current collecting component will be insufficient, and the heat generation at the connection between the cover and the current collecting component will be high. The above technical solution limits D 7 to 5mm-14mm, which can meet the requirements of the battery cell for flow capacity and temperature rise.
  • the cover body and the cylinder body are formed as an integral structure, which can omit the process of connecting the cover body and the cylinder body.
  • the cover body can be used to connect with external components.
  • the external components may pull the cover body, causing the connection between the cover body and the cylinder body to be subjected to force.
  • the above technical solution arranges the cover body and the cylinder body as one body, thereby improving the strength of the connection between the cover body and the cylinder body and reducing the risk of failure of the connection between the cover body and the cylinder body.
  • the size of the first welding portion is h
  • the thickness of the connecting portion is D 8 .
  • D 8 and h satisfy: 1 ⁇ h/D 8 ⁇ 1.5.
  • a thickness of a region of the current collecting member for welding with the connection portion is D 9 , and D 8 and D 9 satisfy: 0.5 ⁇ D 9 /D 8 ⁇ 1.2.
  • D8 is 0.4 mm-1.2 mm.
  • the above technical solution limits D 8 to 0.4mm-1.2mm, which can meet the requirements of the battery cell for current capacity and temperature rise, reduce welding heat generation, and improve safety.
  • the current collecting member is welded to the first electrode tab to form a second welding portion.
  • the first electrode tab is arranged around the central axis of the electrode assembly, and the cross section of the first electrode tab perpendicular to the central axis is annular.
  • the outer radius of the first electrode tab is R
  • the minimum spacing between the second welding portion and the central axis in the radial direction of the first electrode tab is D 10 , and D 10 and R satisfy: 0.2 ⁇ D 10 /R ⁇ 0.8.
  • R is positively correlated with the diameter of the electrode assembly.
  • the larger R is, the greater the current generated by the electrode assembly, and the higher the requirements of the battery cell for the flow area.
  • the part of the current collecting component close to the central axis can be used for welding with the connection part; the smaller D 10 is, the smaller the area of the current collecting component that can be welded with the connection part is, and the smaller the flow area between the current collecting component and the connection part is.
  • D 10 /R is too small, then because D 10 is too small and R is too large, the flow area between the current collecting component and the connection part will be insufficient, and the welding point between the current collecting component and the connection part will generate more heat during charging and discharging, which is difficult to meet the requirements of the battery cell for flow capacity and temperature rise during fast charging.
  • the above technical solution makes D 10 /R ⁇ 0.2 to meet the requirements of the battery cell for flow capacity and temperature rise.
  • the first pole tab usually includes multiple pole tab layers.
  • the larger D10 is, the outermost pole tab layer directly connected to the second welding portion is. If D10 is too large, the number of pole tab layers connected to the second welding portion will be too small, and the distance between the second welding portion and the innermost pole tab layer will be too large, resulting in a large difference between the current path between the outermost pole tab layer and the electrode terminal and the current path between the innermost pole tab layer and the electrode terminal, resulting in uneven current density of the first pole sheet of the electrode assembly and increased internal resistance.
  • the above technical solution makes D10 /R ⁇ 0.8, so as to reduce the difference in current path between the parts at different positions of the first pole tab and the electrode terminal, improve the uniformity of the current density of the first pole sheet of the electrode assembly, reduce internal resistance, and improve current capacity. .
  • D 10 and R satisfy: 0.2 ⁇ D 10 /R ⁇ 0.5.
  • the above technical solution can better improve the current carrying capacity of the battery cell and reduce the temperature rise of the battery cell.
  • D 10 is 3.5 mm - 10 mm.
  • D10 is too large, the number of tab layers connected to the second welding portion will be too small, and the distance between the tab layer close to the central axis and the second welding portion will be too large, resulting in a large internal resistance of the electrode assembly, which will affect the performance of the battery cell.
  • the above technical solution makes D10 ⁇ 10mm, which can reduce the internal resistance of the electrode assembly and improve the charge and discharge performance of the battery cell.
  • the diameter of the current collecting member is D 2
  • the diameter of the first electrode tab is D 11
  • D 2 is smaller than D 11 .
  • the current collecting member has a smaller diameter, which can save space and weight occupied by the current collecting member and improve the energy density of the battery cell.
  • D 2 and D 11 satisfy: 0.75 ⁇ D 2 /D 11 ⁇ 0.97.
  • D2 is 35 mm-44 mm.
  • the above technical solution limits D2 to 35mm-44mm, which can reduce the internal resistance of the electrode assembly, improve the charge and discharge performance of the battery cell, and reduce the risk of the current collecting component protruding from the outer peripheral surface of the electrode assembly due to errors.
  • an embodiment of the present application provides a battery, comprising a plurality of battery cells provided by any embodiment of the first aspect.
  • an embodiment of the present application provides an electrical device, comprising the battery provided in the second aspect, and the battery is used to provide electrical energy.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is an exploded schematic diagram of a battery provided in some embodiments of the present application.
  • FIG3 is a schematic structural diagram of the battery module shown in FIG2 ;
  • FIG4 is an exploded schematic diagram of a battery cell provided in some embodiments of the present application.
  • FIG5 is a schematic cross-sectional view of a battery cell provided in some embodiments of the present application.
  • FIG6 is a partial enlarged schematic diagram of the battery cell shown in FIG5 ;
  • FIG7 is an enlarged schematic diagram of FIG6 at block B;
  • FIG8 is an enlarged schematic diagram of FIG7 at the circle C;
  • FIG9 is a schematic structural diagram of an electrode assembly and a current collecting member of a battery cell provided in some embodiments of the present application.
  • FIG10 is a partial cross-sectional schematic diagram of a battery cell provided in some other embodiments of the present application.
  • FIG11 is a schematic cross-sectional view of the electrode terminal shown in FIG10 ;
  • FIG12 is a schematic cross-sectional view of the current collecting component shown in FIG10 ;
  • FIG13 is an enlarged schematic diagram of FIG12 at the circle E;
  • FIG14 is a partial cross-sectional schematic diagram of a battery cell provided in some other embodiments of the present application.
  • FIG15 is a schematic cross-sectional view of the electrode terminal shown in FIG14;
  • FIG16 is a schematic cross-sectional view of the current collecting component shown in FIG14;
  • FIG17 is a partial cross-sectional schematic diagram of a battery cell provided in some other embodiments of the present application.
  • FIG18 is an enlarged schematic diagram of FIG17 at block F;
  • FIG19 is a schematic cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • parallel includes not only the absolutely parallel situation, but also the roughly parallel situation conventionally recognized in engineering; at the same time, “vertical” includes not only the absolutely vertical situation, but also the roughly vertical situation conventionally recognized in engineering.
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells or magnesium-ion battery cells, etc., and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • a battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell mainly works by the movement of metal ions between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet includes a positive current collector and a positive active material layer, and the positive active material layer is coated on the surface of the positive current collector;
  • the positive current collector includes a positive current collector and a positive electrode tab, and the positive current collector is coated with a positive active material layer, and the positive electrode tab is not coated with the positive active material layer.
  • the material of the positive current collector may be aluminum, and the positive active material layer includes a positive active material, and the positive active material may be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative current collector and a negative active material layer, and the negative active material layer is coated on the surface of the negative current collector; the negative current collector includes a negative current collector and a negative electrode tab, and the negative current collector is coated with a negative active material layer, and the negative electrode tab is not coated with a negative active material layer.
  • the negative electrode current collector may be made of copper, the negative electrode active material layer includes a negative electrode active material, and the negative electrode active material may be carbon or silicon, etc.
  • the separator may be made of PP (polypropylene) or PE (polyethylene), etc.
  • the battery cell also includes a housing for accommodating the electrode assembly and an electrode terminal disposed on the housing, and the electrode terminal is used to be electrically connected to the electrode assembly to realize the charge and discharge of the electrode assembly.
  • the battery cell is usually connected to the electrode lug and the electrode terminal of the electrode assembly through a current collecting member.
  • the electrode assembly When the battery cell is subjected to external impact, the electrode assembly may shake up and down in the housing.
  • the inventors have noticed that when the electrode assembly shakes, it will also pull the current collecting member, causing the current collecting member to deform, causing the risk of failure of the connection between the current collecting member and the electrode terminal.
  • an embodiment of the present application provides a technical solution, which enables the electrode terminal to be against the current collecting component by setting at least part of the current collecting component to the side of the electrode terminal facing the electrode ear; when the electrode assembly shakes, the electrode terminal can be limited from the side of the current collecting component away from the electrode assembly, thereby reducing the amplitude of the shaking of the current collecting component, reducing the risk of failure of the connection between the current collecting component and the electrode terminal, and improving the reliability of the battery cell.
  • the electrical device may be a vehicle, a mobile phone, a portable device, a laptop computer, a ship, a spacecraft, an electric toy, an electric tool, and the like.
  • the vehicle may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle, and the like;
  • the spacecraft may include an airplane, a rocket, a space shuttle, and a spacecraft, and the like;
  • the electric toy may include a fixed or mobile electric toy, such as a game console, an electric car toy, an electric ship toy, and an electric airplane toy, and the like;
  • the electric tool may include a metal cutting electric tool, a grinding electric tool, an assembly electric tool, and an electric tool for railways, such as an electric drill, an electric grinder, an electric wrench, an electric screwdriver, an electric hammer, an impact drill, a concrete vibrator, and an electric planer, and the like.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • a battery 2 is disposed inside the vehicle 1, and the battery 2 can be disposed at the bottom, head, or tail of the vehicle 1.
  • the battery 2 can be used to power the vehicle 1, for example, the battery 2 can be used as an operating power source for the vehicle 1.
  • the vehicle 1 may further include a controller 3 and a motor 4 , wherein the controller 3 is used to control the battery 2 to supply power to the motor 4 , for example, to meet the power requirements of starting, navigating, and driving the vehicle 1 .
  • the battery 2 can not only serve as an operating power source for the vehicle 1, but also serve as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • Fig. 2 is an exploded schematic diagram of a battery provided in some embodiments of the present application.
  • the battery 2 comprises a box body 5 and a battery cell (not shown in Fig. 2 ), and the battery cell is accommodated in the box body 5 .
  • the box 5 is used to accommodate the battery cells, and the box 5 can be of various structures.
  • the box 5 can include a first box portion 5a and a second box portion 5b, the first box portion 5a and the second box portion 5b cover each other, and the first box portion 5a and the second box portion 5b jointly define a storage space 5c for accommodating the battery cells.
  • the second box portion 5b can be a hollow structure with one end open, the first box portion 5a is a plate-like structure, and the first box portion 5a covers the open side of the second box portion 5b to form a box 5 with a storage space 5c; the first box portion 5a and the second box portion 5b can also be hollow structures with one side open, and the open side of the first box portion 5a covers the open side of the second box portion 5b to form a box 5 with a storage space 5c.
  • the first box portion 5a and the second box portion 5b can be of various shapes, such as a cylinder, a cuboid, etc.
  • a sealing member such as a sealant, a sealing ring, etc., may also be provided between the first box body 5a and the second box body 5b.
  • the first box body portion 5a covers the top of the second box body portion 5b
  • the first box body portion 5a can also be called an upper box cover
  • the second box body portion 5b can also be called a lower box.
  • the battery 2 there can be one or more battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells are both connected in series and in parallel.
  • the multiple battery cells can be directly connected in series, in parallel, or in mixed connection, and then the whole formed by the multiple battery cells is accommodated in the box 5; of course, multiple battery cells can also be connected in series, in parallel, or in mixed connection to form a battery module 6, and the multiple battery modules 6 are then connected in series, in parallel, or in mixed connection to form a whole, and accommodated in the box 5.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2 .
  • FIG3 there are multiple battery cells 7, and the multiple battery cells 7 are first connected in series, in parallel, or in mixed connection to form a battery module 6.
  • the multiple battery modules 6 are then connected in series, in parallel, or in mixed connection to form a whole, and are accommodated in a box.
  • Multiple battery cells 7 in the battery module 6 can be electrically connected through a busbar 8 to achieve parallel connection, series connection or mixed connection of multiple battery cells 7 in the battery module 6.
  • FIG. 4 is an exploded schematic diagram of a battery cell provided in some embodiments of the present application
  • FIG. 5 is a cross-sectional schematic diagram of a battery cell provided in some embodiments of the present application
  • FIG. 6 is a partially enlarged schematic diagram of the battery cell shown in FIG. 5 .
  • the embodiment of the present application provides a battery cell 7, which includes a housing 20, an electrode terminal 30, an electrode assembly 10, and a current collecting member 40.
  • the electrode terminal 30 is disposed in the housing 20.
  • the electrode assembly 10 is accommodated in the housing 20, and a first pole tab 11 is disposed at one end of the electrode assembly 10 facing the electrode terminal 30.
  • the current collecting member 40 is connected to the first pole tab 11. At least a portion of the current collecting member 40 is located on a side of the electrode terminal 30 facing the first pole tab 11, and is abutted against and connected to the electrode terminal 30.
  • the electrode assembly 10 includes a first electrode sheet and a second electrode sheet with opposite polarities.
  • One of the first electrode sheet and the second electrode sheet is a positive electrode sheet, and the other is a negative electrode sheet.
  • the electrode assembly 10 generates electrical energy through oxidation and reduction reactions when ions are embedded/extracted in the positive electrode sheet and the negative electrode sheet.
  • the electrode assembly 10 also includes a separator, which is used to insulate and isolate the first electrode sheet from the second electrode sheet.
  • the first pole piece, the second pole piece, and the separator are all strip structures, and the first pole piece, the second pole piece, and the separator are wound around the central axis A as a whole to form a winding structure.
  • the winding structure can be a cylindrical structure, a flat structure, or a structure of other shapes.
  • the electrode assembly 10 can also be a laminated structure formed by a stacked arrangement of the first pole piece, the separator, and the second pole piece.
  • the first electrode tab 11 may be a portion of the first electrode sheet that is not coated with the active material layer.
  • the first electrode tab 11 may be a positive electrode tab or a negative electrode tab.
  • the shell 20 is a hollow structure, and a space for accommodating the electrode assembly 10 is formed inside the shell 20.
  • the shell 20 can be in various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism, etc.
  • the shape of the shell 20 can be determined according to the specific shape of the electrode assembly 10. For example, if the electrode assembly 10 is a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 10 is a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the electrode assembly 10 and the shell 20 are both cylindrical.
  • the shell 20 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the housing 20 may be positively charged, negatively charged, or uncharged.
  • the electrode terminal 30 can be used as an output electrode of the battery cell 7, which can electrically connect the battery cell 7 to an external circuit to realize charging and discharging of the battery cell 7.
  • the electrode terminal 30 is used to connect to a busbar component to realize electrical connection between the battery cells 7.
  • the electrode terminal 30 may be insulated and disposed on the housing 20 , or may be electrically connected to the housing 20 .
  • the embodiment of the present application does not limit this, as long as the positive electrode sheet and the negative electrode sheet are prevented from being conductive.
  • the current collecting member 40 electrically connects the first electrode tab 11 to the electrode terminal 30.
  • the embodiment of the present application does not limit the connection method between the first electrode tab 11 and the current collecting member 40.
  • the current collecting member 40 can be connected to the first electrode tab 11 by welding, abutting or bonding.
  • the embodiment of the present application does not limit the connection method between the current collecting member 40 and the electrode terminal 30.
  • the current collecting member 40 can be connected to the electrode terminal 30 by welding, abutting or bonding.
  • At least a portion of the current collecting member 40 is located between the first electrode tab 11 and the electrode terminal 30.
  • the current collecting member 40 may be located entirely between the first electrode tab 11 and the electrode terminal 30, or only partially between the first electrode tab 11 and the electrode terminal 30.
  • the electrode terminal 30 by disposing at least a portion of the current collecting component 40 to the side of the electrode terminal 30 facing the first electrode tab 11, the electrode terminal 30 can be abutted against the current collecting component 40; when the electrode assembly 10 shakes, the electrode terminal 30 can be limited from the side of the current collecting component 40 away from the electrode assembly 10, thereby reducing the amplitude of the shaking of the current collecting component 40, reducing the risk of failure of the connection between the current collecting component 40 and the electrode terminal 30, and improving the reliability of the battery cell 7.
  • the electrode assembly 10 includes a main body 12, a first pole tab 11 and a second pole tab 13, and the first pole tab 11 and the second pole tab 13 protrude from the main body 12.
  • the first pole tab 11 is a portion of the first pole piece that is not coated with an active material layer
  • the second pole tab 13 is a portion of the second pole piece that is not coated with an active material layer.
  • the first electrode tab 11 and the second electrode tab 13 may extend from the same side of the main body 12, or may extend from opposite sides.
  • the first electrode tab 11 is located at one end of the electrode assembly 10 facing the electrode terminal 30
  • the second electrode tab 13 is located at one end of the electrode assembly 10 away from the electrode terminal 30.
  • the first pole tab 11 is wound around the central axis A of the electrode assembly 10 for multiple turns.
  • the first pole tab 11 includes multiple turns of pole tab layers. After winding, the first pole tab 11 is generally cylindrical, and a gap is left between two adjacent turns of pole tab layers.
  • the embodiment of the present application can process the first pole tab 11 to reduce the gap between the pole tab layers, so as to facilitate the connection of the first pole tab 11 with the current collecting member 40.
  • the embodiment of the present application can flatten the first pole tab 11 so that the end area of the first pole tab 11 away from the main body 12 is gathered and gathered together; the flattening process forms a dense end face 111 at one end of the first pole tab 11 away from the main body 12, reduces the gap between the pole tab layers, and facilitates the connection of the first pole tab 11 with the current collecting member 40.
  • the embodiment of the present application can also fill the conductive material between the two adjacent turns of pole tab layers to reduce the gap between the pole tab layers.
  • the second pole tab 13 is wound around the central axis A of the electrode assembly 10 for multiple turns, and the second pole tab 13 includes multiple turns of pole tab layers.
  • the second pole tab 13 is also flattened to reduce the gap between the pole tab layers of the second pole tab 13.
  • the central axis A of the electrode assembly 10 is a virtual straight line.
  • the first pole piece, the second pole piece and the separator can be wound with the central axis A as a reference.
  • the shell 20 includes a barrel 21 and a cover 22 connected to the barrel 21 .
  • the barrel 21 is arranged around the periphery of the electrode assembly 10 .
  • the cover 22 is provided with an electrode lead-out hole 221 .
  • the electrode terminal 30 is installed in the electrode lead-out hole 221 .
  • the cover 22 and the cylinder 21 can be an integral structure, that is, the housing 20 is an integrally formed component.
  • the cover 22 and the cylinder 21 can also be two components provided separately, and then connected together by welding, riveting, bonding, etc.
  • the electrode lead-out hole 221 passes through the cover 22 so as to lead the electric energy in the electrode assembly 10 to the outside of the shell 20 .
  • the central axis A is a virtual straight line that passes through the electrode lead-out hole 221.
  • the central axis A of the electrode assembly 10 may coincide with the axis of the electrode lead-out hole 221, or may not coincide with the axis of the electrode lead-out hole 221.
  • the electrode terminal 30 is used to cooperate with the electrode lead-out hole 221 to cover the electrode lead-out hole 221.
  • the electrode terminal 30 may extend into the electrode lead-out hole 221, or may not extend into the electrode lead-out hole 221.
  • the electrode terminal 30 is fixed to the cover 22.
  • the electrode terminal 30 may be fixed as a whole to the outside of the cover 22, or may extend into the interior of the housing 20 through the electrode lead-out hole 221.
  • the cover 22 and the barrel 21 are formed as an integral structure, so that the connection process of the cover 22 and the barrel 21 can be omitted.
  • the cover 22 can be used to connect with an external component (such as a busbar).
  • an external component such as a busbar
  • the external component may pull the cover 22, so that the connection between the cover 22 and the barrel 21 is subjected to force; the above technical solution sets the cover 22 and the barrel 21 as a whole, thereby improving the strength of the connection between the cover 22 and the barrel 21 and reducing the risk of failure of the connection between the cover 22 and the barrel 21.
  • the housing 20 may be formed by a stretching process.
  • the housing 20 has an opening 23 at one end away from the electrode terminal 30 , and the battery cell 7 further includes a cover plate 50 for closing the opening.
  • the cylinder 21 has an opening 23 at one end away from the cover 22, and the cover 50 covers the opening of the cylinder 21 to close the opening 23 of the cylinder 21.
  • the cover 50 can be of various structures, for example, the cover 50 is a plate-shaped structure.
  • the cover plate 50 may be a circular cover plate, a rectangular cover plate, a square cover plate, a hexagonal cover plate, or a cover plate of other shapes.
  • the cover plate 50 is welded to the cylinder 21 .
  • the cover 22 is circular, the electrode assembly 10 is cylindrical, and the central axis A coincides with the axis of the electrode lead-out hole 221. This embodiment does not require that the central axis A coincides with the axis of the electrode lead-out hole 221 completely, and there may be a deviation between the two that is allowed by the process.
  • the electrode lead-out hole 221 is generally opened in the middle of the cover 22, and correspondingly, the electrode terminal 30 is also installed in the middle of the cover 22.
  • the positioning accuracy requirement of the electrode terminal 30 can be reduced, simplifying the assembly process.
  • the axis of the electrode lead-out hole 221 coincides with the axis of the cover body 22
  • the cover body 22 is an annular structure disposed around the axis of the electrode lead-out hole 221 .
  • the axis of the electrode terminal 30 coincides with the axis of the electrode lead-out hole 221 .
  • the cover 22 may also be rectangular, and the electrode assembly 10 may be flat.
  • the electrode lead-out hole 221 may be disposed near the end of the cover 22 along its length direction.
  • the electrode assembly 10 further includes a second electrode tab 13 having a polarity opposite to that of the first electrode tab 11, and the second electrode tab 13 is disposed around the central axis A of the electrode assembly 10.
  • the first electrode tab 11 is disposed at one end of the electrode assembly 10 facing the electrode terminal 30, and the second electrode tab 13 is disposed at one end of the electrode assembly 10 away from the electrode terminal 30, and the second electrode tab 13 is electrically connected to the housing 20.
  • the housing 20 itself can be used as an output electrode of the battery cell 7, thereby eliminating a traditional electrode terminal 30 and simplifying the structure of the battery cell 7.
  • the housing 20 can be electrically connected to the busbar, which can not only increase the flow area, but also make the structural design of the busbar more flexible.
  • the second electrode tab 13 is a negative electrode tab
  • the base material of the housing 20 is steel.
  • the housing 20 is electrically connected to the negative electrode tab, that is, the housing 20 is in a low potential state.
  • the steel housing 20 is not easily corroded by the electrolyte in a low potential state.
  • the barrel 21 is used to connect the second electrode tab 13 and the cover 22 so that the second electrode tab 13 and the cover 22 are electrically connected.
  • the barrel 21 may be directly electrically connected to the second pole tab 13 , or may be electrically connected to the second pole tab 13 through other components.
  • the second pole tab 13 is electrically connected to the barrel 21 through the cover plate 50 .
  • the cover 22 and the electrode terminal 30 have different polarities. At this time, one of the cover 22 and the electrode terminal 30 can be used as the positive output electrode of the battery cell 7, and the other can be used as the negative output electrode of the battery cell 7. In this embodiment, the positive output electrode and the negative output electrode are arranged on the same side of the battery cell 7, which can simplify the connection process between multiple battery cells 7.
  • the electrode lead-out hole 221 of the embodiment of the present application is formed after the shell 20 is stretched.
  • the inventor has tried to roll the open end of the cylinder so that the open end of the cylinder is folded inward and forms a flange structure, which presses the cover plate to fix the cover plate.
  • the inventor installed the electrode terminal on the cover plate, and used the flange structure and the electrode terminal as the two output poles of the battery cell.
  • the larger the size of the flange structure the higher the risk of curling and wrinkling after forming; if the flange structure curls and wrinkles, it will cause the surface of the flange structure to be uneven, and when the flange structure is welded to the external collector component, there will be a problem of poor welding. Therefore, the size of the flange structure is relatively limited, resulting in insufficient current capacity of the battery cell.
  • the electrode lead-out hole 221 for installing the electrode terminal 30 is formed on the cover 22 by using the hole-opening process, so that the positive output electrode and the negative output electrode are arranged at the end of the battery cell 7 away from the opening of the cylinder 21; the cover 22 is formed during the molding process of the shell 20, and the flatness can be ensured after the electrode lead-out hole 221 is opened, and the connection strength between the cover 22 and the current collecting component is ensured.
  • the flatness of the cover 22 is not restricted by its own size, so the cover 22 can have a larger size, thereby improving the current-carrying capacity of the battery cell 7.
  • the current collecting member 40 abuts against and is connected to the end surface 111 of the first electrode tab 11 facing the electrode terminal 30 .
  • the end surface 111 of the first electrode tab 11 and the electrode terminal 30 can clamp the current collecting member 40 from both sides, so that the first electrode tab 11 and the electrode terminal 30 are in stable contact with the current collecting member 40 , reducing the shaking of the current collecting member 40 when the battery cell 7 is subjected to external impact, thereby improving the reliability of the battery cell 7 .
  • the first electrode tab 11 and the electrode terminal 30 are respectively disposed on both sides of the current collecting member 40 .
  • the first pole tab 11 of the electrode assembly 10 when assembling the battery cell 7, may be welded to the current collecting member 40 first, and then the electrode assembly 10 and the current collecting member 40 may be placed in the housing 20. Specifically, during welding, the current collecting member 40 may be pressed against the flattened end surface 111 of the first pole tab 11, and then an external welding device may emit a laser on the surface of the current collecting member 40 away from the first pole tab 11, and the laser may weld the current collecting member 40 and the first pole tab 11.
  • FIG. 7 is an enlarged schematic diagram of the square frame B of FIG. 6 ;
  • FIG. 8 is an enlarged schematic diagram of the circular frame C of FIG. 7 ;
  • FIG. 9 is a structural schematic diagram of an electrode assembly and a current collecting member of a battery cell provided in some embodiments of the present application.
  • the electrode terminal 30 has a contact surface 30 a that contacts the current collecting member 40 .
  • the contact surface 30 a is a region where the outer surface of the electrode terminal 30 contacts the current collecting member 40 .
  • the embodiment of the present application does not limit the shape of the abutting surface 30a.
  • the abutting surface 30a may be square, circular, trapezoidal or other shapes.
  • the abutting surface 30a may be a plane or a curved surface.
  • the abutting surface 30a is a circular surface.
  • the circular shape refers to the outer contour of the abutting surface 30a.
  • the abutting surface 30a can be a solid circular surface or a hollow circular surface (ie, the abutting surface 30a can be a toroidal surface).
  • the abutment surface 30a is a circular plane.
  • the diameter of the abutting surface 30a is D1 .
  • D1 refers to the outer diameter of the toroidal surface.
  • the current collecting member 40 may be circular, rectangular, or other shapes.
  • the current collecting member 40 is circular.
  • the circular shape refers to the outer contour of the current collecting member 40.
  • the projection of the current collecting member 40 is circular.
  • the diameter of the current collecting member 40 is D 2
  • the minimum thickness of the current collecting member 40 is t 1 .
  • D 1 , D 2 , and t 1 satisfy: t 1 ⁇ D 1 /D 2 ⁇ 0.4.
  • the first electrode tab 11 is relatively soft, and after being flattened or otherwise processed, the end surface 111 of the first electrode tab 11 may have a flatness deviation. Similarly, due to the limitation of the production process, the surface of the prepared current collecting member 40 that is used to abut against the electrode terminal 30 may also have a flatness deviation.
  • the electrode terminal 30 and the current collecting member 40 When the electrode terminal 30 and the current collecting member 40 abut against each other, a small gap may exist between the abutting surface of the electrode terminal 30 and the current collecting member 40 due to the flatness deviation of the end surface 111 of the first electrode tab 11 and the flatness deviation of the surface of the current collecting member 40. If the gap is too large, it will affect the connection strength between the electrode terminal 30 and the current collecting member 40.
  • the electrode terminal 30 and the current collecting member 40 can be connected by welding; if the gap between the electrode terminal 30 and the current collecting member 40 is too large, it may cause the risk of cold welding.
  • the inventors attempted to compress the electrode terminal 30 and the current collecting member 40 to reduce the gap therebetween.
  • D 1 , D 2 and t 1 all affect the fit between the electrode terminal 30 and the current collecting member 40 .
  • the value of t1 is too large, then when the electrode terminal 30 and the current collecting member 40 are pressed, the current collecting member 40 is difficult to deform under pressure due to its high strength, making it difficult for the current collecting member 40 to be in close contact with the electrode terminal 30, resulting in a larger gap between the current collecting member 40 and the electrode terminal 30.
  • the strength of the current collecting member 40 can be reduced, so that the current collecting member 40 can be adaptively deformed when under pressure to adapt to the shape of the abutting surface 30a.
  • the area where the current collecting member 40 and the electrode terminal 30 need to be attached can be reduced, the gap between the electrode terminal 30 and the current collecting member 40 can be reduced, and the difficulty of pressing the current collecting member 40 and the electrode terminal 30 can be reduced.
  • the inventors found that when t 1 ⁇ D 1 /D 2 ⁇ 0.4, the gap between the current collecting member 40 and the electrode terminal 30 can be reduced, and the connection strength between the current collecting member 40 and the electrode terminal 30 can be improved.
  • t 1 ⁇ D 1 /D 2 ⁇ 0.3.
  • the inventors found that when t 1 ⁇ D 1 /D 2 ⁇ 0.3, the gap between the current collecting member 40 and the electrode terminal 30 can be better reduced, and the connection strength between the current collecting member 40 and the electrode terminal 30 can be improved.
  • t 1 ⁇ D 1 /D 2 ⁇ 0.05.
  • the inventors have found that if t 1 ⁇ D 1 /D 2 is too small, the flow area between the current collecting member 40 and the electrode terminal 30 may be insufficient, and the current collecting member 40 may generate excessive heat, affecting the reliability and safety of the battery cell 7 .
  • the inventors found that when t 1 ⁇ D 1 /D 2 ⁇ 0.05, the current flow capacity between the current collecting member 40 and the electrode terminal 30 can be improved, heat generation can be reduced, and the reliability and safety of the battery cell 7 can be improved.
  • the value of t 1 ⁇ D 1 /D 2 may be 0.05, 0.1, 0.2, 0.3, or 0.4.
  • t1 is 0.1 mm-1 mm.
  • the value of t1 is too large, then when the electrode terminal 30 and the current collecting member 40 are pressed, the current collecting member 40 is difficult to deform under pressure due to its high strength, making it difficult for the current collecting member 40 to be in close contact with the electrode terminal 30, resulting in a larger gap between the current collecting member 40 and the electrode terminal 30.
  • t1 The smaller the value of t1 is, the smaller the flow area of the current collecting member 40 is, and the lower the flow capacity of the current collecting member 40 is. If the value of t1 is too small, the current collecting member 40 may generate too much heat, affecting the reliability and safety of the battery cell 7.
  • limiting t1 to 0.1 mm-1 mm can improve the current flow capacity of the current collecting member 40, reduce the gap between the current collecting member 40 and the electrode terminal 30, and improve the connection strength between the current collecting member 40 and the electrode terminal 30.
  • the value of t1 is 0.1 mm, 0.2 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.8 mm or 1 mm.
  • t1 is 0.2 mm-0.6 mm.
  • limiting t1 to 0.2 mm-0.6 mm can further improve the current flow capacity of the current collecting member 40, reduce the gap between the current collecting member 40 and the electrode terminal 30, and improve the connection strength between the current collecting member 40 and the electrode terminal 30.
  • the electrode terminal 30 is welded to the current collecting member 40.
  • the current collecting member 40 and the electrode terminal 30 are connected by laser welding.
  • the embodiment of the present application can reduce the gap between the current collecting member 40 and the electrode terminal 30 at the abutment point, reducing the risk of cold welding.
  • the electrode terminal 30 is welded to the current collecting member 40 and forms a first welding portion W1 .
  • a portion of the electrode terminal 30 and a portion of the current collecting member 40 are melted to form a molten pool, and the molten pool solidifies to form a first weld portion W1 .
  • the external welding equipment can weld the electrode terminal 30 and the current collecting member 40 from the side of the electrode terminal 30 away from the current collecting member 40 and form a first welding portion W1.
  • an external welding device can also pass through the electrode assembly 10 to weld the electrode terminal 30 and the current collecting member 40 from the side of the current collecting member 40 facing away from the electrode terminal 30 to form a first welding portion W1.
  • the embodiment of the present application does not impose any special restrictions on the shape, position, depth and number of the first welding portion W1.
  • the shape of the first welding portion W1 can be a straight line, a circle, a ring, a spiral, a V-shape or other shapes.
  • the first welding portion W1 can be one or more.
  • the melting point of the electrode terminal 30 is T 1
  • the melting point of the current collecting member 40 is T 2
  • T 1 /T 2 is 0.8-1.1
  • T1 is the melting point of the electrode terminal 30 under normal pressure
  • T2 is the melting point of the current collecting member 40 under normal pressure
  • a portion of the electrode terminal 30 and a portion of the current collecting member 40 are melted to form a molten pool, and the molten pool solidifies to form a first weld portion W1 .
  • the difference between the melting point of the electrode terminal 30 and the melting point of the current collecting member 40 may affect the welding strength of the electrode terminal 30 and the current collecting member 40 .
  • the inventors found that when T 1 /T 2 is less than 0.8, the melting point of the electrode terminal 30 is lower than the melting point of the current collecting member 40; if a lower welding power is used, the current collecting member 40 may be difficult to melt and form a miscible body with the electrode terminal 30; if a higher welding power is used, the electrode terminal 30 may melt and vaporize quickly, resulting in voids, making it difficult to form an effective weld mark.
  • the inventors found that when T 1 /T 2 is greater than 1.1, the melting point of the electrode terminal 30 is higher than the melting point of the current collecting member 40; if a lower welding power is used, the electrode terminal 30 is difficult to melt; if a higher welding power is used, when the welding parameters fluctuate, the depth of the molten pool will deviate, and the current collecting member 40 is easily melted through due to its lower melting point.
  • T 1 /T 2 to be 0.8-1.1, so as to reduce the difference between the melting points of the electrode terminal 30 and the current collecting member 40 , improve the welding process, and increase the welding strength.
  • T 1 /T 2 is 0.8, 0.9, 0.95, 1, 1.05 or 1.1.
  • the value of T 1 /T 2 is 0.95-1.05.
  • the electrode terminal 30 includes a first recess 31 and a connection portion 32 located at the bottom of the first recess 31.
  • the current collecting member 40 is welded to the connection portion 32 and forms a first weld portion W1.
  • the first recess 31 may be recessed from a side of the electrode terminal 30 away from the electrode assembly 10 in a direction facing the electrode assembly 10 , or may be recessed from a side of the electrode terminal 30 facing the electrode assembly 10 in a direction away from the electrode assembly 10 .
  • the first recess 31 may be a cylindrical recess, a conical recess, a stepped recess, or a recess of other shapes.
  • connection portion 32 may be a portion of the electrode terminal 30 corresponding to the bottom surface 311 of the first recess.
  • the first recess 31 is provided on the electrode terminal 30 to reduce the thickness of the connection portion 32 , thereby reducing the welding power required for welding the connection portion 32 to the current collecting component 40 , reducing heat generation, reducing the risk of other components being burned, and improving safety.
  • the first welding portion W1 extends from a side of the connection portion 32 facing away from the current collecting member 40 at least to the inside of the current collecting member 40 .
  • the first welding portion W1 may penetrate the current collecting member 40, for example, the first welding portion W1 penetrates the current collecting member 40 and the connecting portion 32, and the first welding portion W1 is exposed on the surface of the current collecting member 40 away from the connecting portion 32.
  • the first welding portion W1 may not penetrate the current collecting member 40, that is, the first welding portion W1 is not exposed on the surface of the current collecting member 40 away from the connecting portion 32.
  • the first welding portion W1 extends from the connection portion 32 to the inside of the current collecting member 40 to connect the current collecting member 40 and the connection portion 32, thereby reducing the contact resistance between the current collecting member 40 and the electrode terminal 30 and improving the current passing capacity.
  • the first welding portion W1 does not extend beyond the surface of the current collecting member 40 away from the connection portion 32.
  • the first welding portion W1 is spaced a predetermined distance from the surface of the current collecting member 40 away from the connection portion 32 to prevent the current collecting member 40 from being melted through, reduce the risk of metal particles generated on the surface of the current collecting member 40 away from the connection portion 32, and improve safety.
  • the housing 20 includes a barrel 21 and a cover 22 connected to the barrel 21, the barrel 21 is arranged around the outer circumference of the electrode assembly 10, the cover 22 is provided with an electrode lead-out hole 221, and the electrode terminal 30 is installed in the electrode lead-out hole 221.
  • the first welding portion W1 and the cover 22 are both annular, the outer diameter of the cover 22 is D 6 , and the inner diameter of the first welding portion W1 is D 7.
  • D 6 and D 7 satisfy: 0.1 ⁇ D 7 /D 6 ⁇ 0.6.
  • the first welding portion W1 can be a closed structure or a non-closed structure.
  • the first welding portion W1 can be a semicircular ring or a full circular ring.
  • the central angle of the circular first welding portion W1 is 180°-360°.
  • D 6 is positively correlated with the diameter of the electrode assembly 10.
  • the larger D 6 is, the higher the capacity of the electrode assembly 10 is, and the higher the requirement of the battery cell 7 for the flow area of the first welding portion W1 is.
  • the smaller D 7 is, the smaller the circumference of the first welding portion W1 is, and the smaller the flow area of the first welding portion W1 is. If D 7 /D 6 is too small, then because D 6 is too large and D 7 is too small, the flow area of the first welding portion W1 will be insufficient, and the first welding portion W1 will generate more heat during charging and discharging, making it difficult to meet the requirements of the battery cell 7 for flow capacity and temperature rise during fast charging. After in-depth research and a large number of experiments, the inventor found that when D 7 /D 6 ⁇ 0.1, the requirements of the battery cell 7 for flow capacity and temperature rise can be met.
  • the larger D 7 is, the larger the size of the electrode lead-out hole 221 is, and the smaller the area of the cover 22 is. Similarly, the smaller D 6 is, the smaller the area of the cover 22 is. If D 7 /D 6 is too large, then because D 6 is too small and D 7 is too large, the cover 22 will be easily deformed when the battery cell 7 vibrates, causing safety hazards.
  • the cover 22 can be used as an output pole of the battery cell 7 to connect with the busbar.
  • D 7 /D 6 If D 7 /D 6 is too large, the connection area between the cover 22 and the busbar will be too small, the flow area between the cover 22 and the busbar will be insufficient, and the heat generation at the connection between the cover 22 and the busbar will be too high, making it difficult to meet the requirements of the battery cell 7 for flow capacity and temperature rise during fast charging.
  • the inventor found that when D 7 /D 6 ⁇ 0.6, the requirements of the battery cell 7 for flow capacity and temperature rise can be met, and the safety of the battery cell 7 can be improved.
  • D 7 /D 6 may be 0.1, 0.2, 0.3, 0.4, 0.5 or 0.6.
  • the inventors found after in-depth research and a large number of experiments that when 0.2 ⁇ D 7 /D 6 ⁇ 0.4, the requirements of the battery cell 7 on the current capacity and temperature rise can be better met, thereby improving the safety of the battery cell 7 .
  • D7 is 5 mm-14 mm.
  • D 7 If D 7 is too small, the flow area of the first welding part W1 will be insufficient, and the first welding part W1 will generate a lot of heat during charging and discharging, which makes it difficult to meet the requirements of the battery cell 7 for flow capacity and temperature rise during fast charging. If D 7 is too large, the flow area between the cover 22 and the converging component will be insufficient, and the heat generation at the connection between the cover 22 and the converging component will be high. After in-depth research and a large number of experiments, the inventors found that limiting D 7 to 5mm-14mm can meet the requirements of the battery cell 7 for flow capacity and temperature rise.
  • D7 is 5mm, 7mm, 9mm, 10mm, 12mm or 14mm.
  • the size of the first welding portion W1 is h
  • the thickness of the connecting portion 32 is D 8 .
  • D 8 and h satisfy: 1 ⁇ h/D 8 ⁇ 1.5.
  • the first weld W1 is annular, and due to process errors, different regions of the first weld W1 may have different penetration depths in the thickness direction Z.
  • h may be the size of the region of the first weld W1 with the smallest penetration depth along the thickness direction Z.
  • connection portion 32 is a flat plate structure with uniform thickness, and any part of the connection portion 32 can be used for welding with the current collecting member 40, and D8 is the thickness of the connection portion 32.
  • connection portion 32 is a structure with uneven thickness, and the area of the connection portion 32 with a smaller thickness can be the area of the connection portion 32 used for welding with the current collecting member 40, which can reduce the power required for welding and reduce heat generation; in this case, D8 can be the minimum thickness of the connection portion 32.
  • the penetration of the first weld W1 is small, and the first weld W1 is formed entirely on the connecting portion 32, resulting in a cold weld, and the first weld W1 is difficult to effectively connect the current collecting member 40 and the connecting portion 32.
  • D 8 is constant, the larger h is, the greater the power required for welding, and the higher the heat generated during welding. If h is too large, the high temperature generated by welding is likely to damage the components around the electrode terminal 30, causing safety hazards.
  • the inventors found that when 1 ⁇ h/D 8 ⁇ 1.5, the strength of the connection between the current collecting member 40 and the connecting portion 32 can be improved, welding heat generation can be reduced, and welding difficulty can be reduced.
  • h/ D8 is 1.05, 1.1, 1.2, 1.3, 1.4 or 1.5.
  • the thickness of the region of the current collecting member 40 for welding with the connection portion 32 is D 9 , and D 8 and D 9 satisfy: 0.5 ⁇ D 9 /D 8 ⁇ 1.2.
  • the region of the current collecting member 40 for welding with the connection portion 32 refers to a region corresponding to a surface of the current collecting member 40 that abuts against the connection portion 32 .
  • D 8 is constant, the smaller D 9 is, the easier it is for the current collecting member 40 to be melted through during welding, and the easier it is for the high-temperature particles generated by welding to fall into the battery cell 7; the larger D 9 is, the greater the space and weight occupied by the current collecting member 40, and the lower the energy density of the battery cell 7.
  • the inventors found that when 0.5 ⁇ D 9 /D 8 ⁇ 1.2, the risk of the current collecting member 40 being melted through can be reduced, and the loss of energy density of the battery cell 7 can be reduced.
  • D 9 /D 8 is 0.5, 0.7, 0.9, 1.0 or 1.2.
  • D8 is 0.4 mm-1.2 mm.
  • D 8 is 0.4 mm, 0.5 mm, 0.6 mm, 0.8 mm, 1.0 mm or 1.2 mm.
  • D9 is 0.2 mm to 0.6 mm.
  • D9 is 0.3 mm to 0.5 mm.
  • the current collecting member 40 is welded to the first electrode tab 11 and forms a second welding portion W2 .
  • the first pole tab 11 of the electrode assembly 10 When assembling the battery cell 7, the first pole tab 11 of the electrode assembly 10 may be welded to the current collecting member 40 first, and then the electrode assembly 10 and the current collecting member 40 may be placed in the housing 20. Specifically, when welding the first pole tab 11 and the current collecting member 40, the current collecting member 40 may be pressed against the flattened end surface 111 of the first pole tab 11, and then an external welding device may emit a laser on the surface of the current collecting member 40 away from the first pole tab 11, and the laser may weld the current collecting member 40 and the first pole tab 11.
  • the second welding portion W2 may be in a linear, C-shaped, annular, spiral, V-shaped or other shapes, which are not limited in this embodiment.
  • the second welding portion W2 may be one or more.
  • the second welding portion W2 can reduce the contact resistance between the current collecting member 40 and the first electrode tab 11 and improve the current carrying capacity.
  • the first electrode tab 11 is disposed around the central axis A of the electrode assembly 10, and a cross section of the first electrode tab 11 perpendicular to the central axis A is annular.
  • the outer radius of the first electrode tab 11 is R
  • the minimum distance between the second welding portion W2 and the central axis A in the radial direction of the first electrode tab 11 is D10
  • D10 and R satisfy: 0.2 ⁇ D10 /R ⁇ 0.8.
  • the cross section of the first pole tab 11 perpendicular to the central axis A is not required to be an absolute circular ring, and a certain deviation is allowed.
  • R is positively correlated with the diameter of the electrode assembly 10.
  • the larger R is, the greater the current generated by the electrode assembly 10, and the higher the requirement of the battery cell 7 for the flow area.
  • the portion of the current collecting member 40 close to the central axis A can be used for welding with the connecting portion 32; the smaller D 10 is, the smaller the area of the current collecting member 40 that can be welded with the connecting portion 32 is, and the flow area between the current collecting member 40 and the connecting portion 32 is also smaller.
  • the first pole tab 11 includes a plurality of pole tab layers, each of which is arranged around the central axis A. In the radial direction of the first pole tab 11, a plurality of pole tab layers are stacked along the radial direction of the first pole tab 11.
  • the current on the pole tab layer directly connected to the second welding portion W2 can be directly conducted to the current collecting component 40 through the second welding portion W2; the current on the pole tab layer not connected to the second welding portion W2 needs to be first conducted to the pole tab layer directly connected to the second welding portion W2, and then can be conducted to the current collecting component 40 through the second welding portion W2, which causes a difference in the conductive paths between the plurality of pole tab layers and the electrode terminal. If the difference is too large, polarization problems are likely to occur.
  • D10 the further outward the tab layer directly connected to the second welding portion W2 is. If D10 is too large, the number of tab layers connected to the second welding portion W2 will be too small, and the distance between the second welding portion W2 and the innermost tab layer will be too large, resulting in a large difference between the current path between the outermost tab layer and the electrode terminal 30 and the current path between the innermost tab layer and the electrode terminal 30, resulting in uneven current density of the first pole sheet and increased internal resistance.
  • D 10 /R is 0.2, 0.3, 0.5, 0.7 or 0.8.
  • the inventors have found, after in-depth research and a large number of experiments, that when 0.2 ⁇ D 10 /R ⁇ 0.5, the current carrying capacity of the battery cell 7 can be better improved and the temperature rise of the battery cell 7 can be reduced.
  • D 10 is 3.5 mm - 10 mm.
  • D 10 is 3.5 mm, 4 mm, 5 mm, 7 mm, 8.5 mm or 10 mm.
  • R is 20 mm-22.8 mm.
  • the second welding portion W2 is annular.
  • the annular second welding portion W2 has a larger flow area, which can improve the uniformity of the current density of the first pole piece, reduce the internal resistance, and improve the flow capacity.
  • the diameter of the current collecting member 40 is D 2
  • the diameter of the first electrode tab 11 is D 11
  • D 2 is smaller than D 11 .
  • D2 refers to the diameter of the outer edge of the current collecting member 40, ie, the outer diameter of the current collecting member 40.
  • the current collecting member 40 has a smaller diameter, which can save space and weight occupied by the current collecting member 40 and improve the energy density of the battery cell 7 .
  • D 2 and D 11 satisfy: 0.75 ⁇ D 2 /D 11 ⁇ 0.97.
  • D 2 /D 11 may be 0.75, 0.8, 0.85, 0.9, 0.95 or 0.97.
  • D 2 is 35 mm to 44 mm. After in-depth research and a large number of experiments, the inventors found that limiting D 2 to 35 mm to 44 mm can reduce the internal resistance of the electrode assembly 10, improve the charge and discharge performance of the battery cell 7, and reduce the risk of the current collecting member 40 protruding from the outer peripheral surface of the electrode assembly 10 due to error.
  • D2 may be 35mm, 38mm, 40mm, 41mm, 43mm or 44mm.
  • the inventors found, after in-depth research and a large number of experiments, that limiting D 2 to 38 mm-41 mm can better reduce the internal resistance of the electrode assembly 10 and improve the charge and discharge performance of the battery cell 7 .
  • a first through hole 321 is disposed on the connecting portion 32 , and the first through hole 321 is used to connect the space on the side of the connecting portion 32 away from the electrode assembly 10 to the internal space of the shell 20 .
  • the first through hole 321 is formed as an opening on the bottom surface 311 of the first recess.
  • the first through hole 321 may be used in multiple molding processes.
  • the first through hole 321 may be used in a liquid injection process, a formation process or other processes.
  • the first through hole 321 is used to inject electrolyte into the inner space of the housing 20 .
  • the injection head of the injection device presses against the connecting portion 32 , and then the injection head injects electrolyte into the housing 20 through the first through hole 321 .
  • gas is generated in the housing 20 .
  • the first through hole 321 can also be used to communicate with an external negative pressure device to extract the gas in the housing 20 .
  • the current collecting member 40 is provided with a second through hole 41 , which is configured to be disposed opposite to the first through hole 321 , so that the electrolyte can flow into the inner space of the housing 20 through the second through hole 41 .
  • the electrode assembly 10 is a winding structure, and the electrode assembly 10 has a third through hole 14 at the center of the winding, the third through hole 14 passes through the electrode assembly 10, and the third through hole 14 is arranged opposite to the first through hole 321 and the second through hole 41, so that the electrolyte can flow into the interior of the electrode assembly 10 through the third through hole 14.
  • the battery cell 7 further includes a sealing plate 60 connected to the electrode terminal 30 and closing an opening of the first recess 31 .
  • the sealing plate 60 may be entirely located outside the first recess 31 , or may be partially accommodated in the first recess 31 , as long as the sealing plate 60 can close the opening of the first recess 31 .
  • the sealing plate 60 can protect the connection portion 32 from the outside, reduce external impurities entering the first recess 31 , reduce the risk of the connection portion 32 being damaged by external impurities, and improve the sealing performance of the battery cell 7 .
  • the sealing plate 60 can also seal the first through hole 321. After the battery cell 7 is formed, the sealing plate 60 can reduce the risk of electrolyte leakage through the first through hole 321 and the first recess 31, and improve the sealing performance.
  • a step surface is provided on the side wall of the first recess 31 , at least a portion of the sealing plate 60 is accommodated in the first recess 31 , and the step surface is used to support the sealing plate 60 .
  • Figure 10 is a partial cross-sectional schematic diagram of a battery cell provided in other embodiments of the present application;
  • Figure 11 is a cross-sectional schematic diagram of the electrode terminal shown in Figure 10;
  • Figure 12 is a cross-sectional schematic diagram of the current collecting component shown in Figure 10;
  • Figure 13 is an enlarged schematic diagram of Figure 12 at the circle E.
  • the surface of the electrode terminal 30 closest to the electrode assembly 10 abuts against the current collecting member 40 .
  • the current collecting member 40 first abuts against the surface of the electrode terminal 30 closest to the electrode assembly 10 , which can shorten the insertion stroke of the current collecting member 40 and improve assembly efficiency.
  • the surface of the electrode terminal 30 closest to the electrode assembly 10 is a plane perpendicular to the thickness direction Z.
  • the electrode terminal 30 includes a stopper 33 and a first protrusion 34, and the stopper 33 is accommodated in the shell 20.
  • the stopper 33 In the thickness direction Z of the current collecting member 40, the stopper 33 at least partially overlaps with the shell 20, and the top end surface 341 of the first protrusion is closer to the electrode assembly 10 than the stopper 33.
  • the top end surface 341 of the first protrusion abuts against the current collecting member 40.
  • the top end surface 341 of the first protrusion is a surface of the electrode terminal 30 that is closest to the electrode assembly 10 in the thickness direction Z.
  • the top end surface 341 of the first protrusion includes an abutting surface of the electrode terminal 30 .
  • the entire top surface 341 of the first protrusion may abut against the current collecting member 40 , or only a partial area thereof may abut against the current collecting member 40 .
  • the first protrusion 34 protrudes to the side of the stopper 33 facing the electrode assembly 10.
  • the first protrusion 34 may protrude as a whole to the side of the stopper 33 facing the electrode assembly 10, or may only protrude partially to the side of the stopper 33 facing the electrode assembly 10.
  • the limiting portion 33 may be directly connected to the first protrusion 34 , or may be indirectly connected to the first protrusion 34 through other parts of the electrode terminal 30 .
  • the embodiment of the present application does not limit the structure of the current collecting component 40 , and the current collecting component 40 may be a flat plate structure or other structures.
  • the limiting portion 33 can be limited by the housing 20 to reduce the risk of the electrode terminal 30 penetrating outside the housing 20, thereby improving the reliability of the battery cell 7.
  • the top end surface 341 of the first protrusion protrudes from the limiting portion 33, thereby forming a gap between the limiting portion 33 and the current collecting member 40, reducing the fitting area between the current collecting member 40 and the electrode terminal 30, thereby reducing the gap between the current collecting member 40 and the first protrusion 34, and improving the connection strength between the current collecting member 40 and the electrode terminal 30.
  • the limiting portion 33 at least partially overlaps with the cover 22 .
  • the electrode terminal 30 further includes a columnar portion 35 and an outer flange 36 .
  • the columnar portion 35 passes through the electrode lead-out hole 221 , and the outer flange 36 is located outside the cover 22 and protrudes from the outer circumferential surface of the columnar portion 35 .
  • the stopper 33 and the outer flange 36 can clamp a portion of the cover 22 from both sides to fix the electrode terminal to the cover 22.
  • the stopper 33 and the outer flange 36 can clamp the cover 22 directly or indirectly through other components (such as the insulating seal 70).
  • the limiting portion 33 is an annular structure surrounding the columnar portion 35 .
  • the first protrusion 34 protrudes from the surface of the columnar portion 35 facing the electrode assembly 10.
  • the first concave portion 31 is opened in the columnar portion 35.
  • the surface of the limiting portion 33 facing the electrode assembly 10 is flush with the surface of the columnar portion 35 facing the electrode assembly 10 .
  • a dimension t 2 of the first protrusion 34 protruding from the stop portion 33 is 0.05 mm-0.35 mm.
  • the larger t2 is, the larger the space occupied by the electrode terminal 30 is, and the lower the space utilization rate inside the battery cell 7 is.
  • limiting the value of t2 to 0.05mm-0.35mm can reduce the risk of abutment between the limiting portion 33 and the current collecting member 40, reduce the gap between the current collecting member 40 and the top end surface 341 of the first protrusion, and reduce the loss of space utilization of the battery cell 7.
  • t2 is 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, 0.3 mm or 0.35 mm.
  • t2 is 0.15 mm-0.25 mm.
  • the inventors found that limiting the value of t2 to 0.15 mm-0.25 mm can further reduce the risk of the limit portion 33 abutting against the current collecting member 40, reduce the gap between the current collecting member 40 and the top end surface 341 of the first convex portion, and reduce the loss of space utilization of the battery cell 7.
  • a region of the electrode terminal 30 corresponding to the top end surface 341 of the first protrusion is welded to the current collecting member 40 and forms a first welding portion W1 .
  • the top end surface 341 of the first protrusion may be circular, rectangular or other shapes.
  • the region of the electrode terminal 30 corresponding to the top surface 341 of the first protrusion refers to the substantial portion of the electrode terminal 30 corresponding to the top surface 341 of the first protrusion in the thickness direction Z. During welding, at least a portion of the region of the electrode terminal 30 corresponding to the top surface 341 of the first protrusion melts.
  • the top end surface 341 of the first protrusion directly abuts against the current collecting component 40, and a small gap therebetween is provided; welding the electrode terminal 30 and the area corresponding to the top end surface 341 of the first protrusion to the current collecting component 40 can reduce the risk of cold welding and improve welding strength.
  • the first welding portion W1 is in a circular ring shape, and the outer diameter of the first welding portion W1 is D 3 .
  • the first welding portion W1 may be a closed structure or a non-closed structure.
  • the first welding portion W1 may be a semicircular ring or a full circular ring.
  • the top end surface 341 of the first convex portion is a circular surface.
  • the top end surface 341 of the first convex portion can be a solid circular surface or a hollow circular surface (ie, the top end surface 341 of the first convex portion can be a toroidal surface).
  • the diameter of the top end surface 341 of the first protrusion is D 4 .
  • the top end surface 341 of the first protrusion is a toroidal surface
  • D 4 is the outer diameter of the toroidal surface.
  • D 3 is less than D 4 .
  • D3 is equal to D4 , then when the welding position fluctuates, welding may occur outside the top surface 341 of the first convex portion, causing the risk of a cold weld.
  • D3 is smaller than D4 to absorb welding errors, reduce the risk of a cold weld, and improve welding strength.
  • a first recess 31 is provided on a side of the electrode terminal 30 away from the first electrode tab 11 , and a portion between a bottom surface 311 of the first recess and a top surface 341 of the first protrusion forms a connecting portion 32 , which is welded to the current collecting member 40 to form a first welding portion W1 .
  • the embodiment of the present application does not limit the size relationship between the bottom surface 311 of the first concave portion and the top surface 341 of the first convex portion.
  • the bottom surface 311 of the first concave portion at least partially overlaps with the top surface 341 of the first convex portion in the thickness direction Z.
  • the overlapping region of the bottom surface 311 of the first concave portion and the top surface 341 of the first convex portion in the thickness direction Z forms the connecting portion 32 .
  • the thickness of the connecting portion 32 is reduced by opening the first recess 31 on the electrode terminal 30, thereby reducing the welding power required for welding the connecting portion 32 and the current collecting member 40, reducing heat generation, reducing the risk of other components being burned, and improving safety.
  • a projection of the bottom surface 311 of the first concave portion is located within a projection of the top surface 341 of the first convex portion.
  • the bottom surface 311 of the first concave portion is a circular surface.
  • the bottom surface 311 of the first concave portion is a circular surface.
  • the bottom surface 311 of the first concave portion can be a solid circular surface or a hollow circular surface (ie, the bottom surface 311 of the first concave portion can be a toroidal surface).
  • the diameter of the bottom surface 311 of the first recess is D 5 .
  • D 5 is the outer diameter of the torus.
  • the bottom surface 311 of the first recess is a plane.
  • D 5 is less than D 4 .
  • the first recess 31 reduces the thickness of the electrode terminal 30 in the area opposite to the bottom surface 311 of the first recess, while the first protrusion 34 increases the thickness of the electrode terminal 30 in the area opposite to the top surface 341 of the first protrusion.
  • the thickness of the connection portion 32 is constant, if D5 is greater than or equal to D4 , due to process errors, a part of the bottom surface 311 of the first recess may not be opposite to the top surface 341 of the first protrusion, resulting in a local thickness of the electrode terminal 30 being smaller than the thickness of the connection portion 32, resulting in a local strength of the electrode terminal 30 being relatively low, and the electrode terminal 30 may be broken when the battery cell 7 is subjected to external impact.
  • D 5 is smaller than D 4 , so as to reduce the influence of the first recess 31 on the strength of the electrode terminal 30 , reduce the risk of fracture of the electrode terminal 30 , and improve the reliability of the battery cell 7 .
  • the first protrusion 34 is overall closer to the electrode assembly 10 than the limiting portion 33 .
  • the current collecting member 40 is welded to the first electrode tab 11 to form a second welding portion W2 .
  • the second welding portion W2 does not overlap with the top end surface 341 of the first protrusion.
  • the surface of the second welding portion W2 is uneven. If the top surface 341 of the first protrusion is pressed against the second welding portion W2, the gap between the top surface 341 of the first protrusion and the current collecting member 40 may be increased, affecting the welding effect between the current collecting member 40 and the electrode terminal 30.
  • the second welding portion W2 and the top end surface 341 of the first protrusion do not overlap in the thickness direction Z, thereby reducing the risk of the top end surface 341 of the first protrusion abutting the second welding portion W2, reducing the gap between the top end surface 341 of the first protrusion and the current collecting component 40, and improving the welding strength.
  • At least a portion of the second welding portion W2 is located on a side of the electrode terminal 30 facing the first electrode tab 11 and is spaced apart from the electrode terminal 30 .
  • the first protrusion 34 may abut against the current collecting member 40 to form a gap between the electrode terminal 30 and the current collecting member 40 , and the gap may avoid the second welding portion W2 .
  • the second welding portion W2 is spaced apart from the electrode terminal 30, which can reduce the risk of the second welding portion W2 interfering with the abutment of the electrode terminal 30 and the current collecting member 40, and reduce over-positioning.
  • the second welding portion W2 can extend to the area of the first pole tab 11 that is opposite to the electrode terminal 30 along the thickness direction Z, so that the second welding portion W2 can connect more pole tab layers, thereby improving the current capacity and reducing the polarization of the pole piece.
  • the diameter of the current collecting member 40 is D 2
  • the diameter of the top end surface 341 of the first protrusion is D 4
  • the area where the current collecting member 40 and the top surface 341 of the first protrusion need to fit together can be reduced, the gap between the electrode terminal 30 and the current collecting member 40 can be reduced, and the difficulty of pressing the current collecting member 40 and the first protrusion 34 can be reduced.
  • the inventors found that when D 4 /D 2 ⁇ 0.4, the gap between the current collecting member 40 and the first protrusion 34 can be reduced, and the connection strength between the current collecting member 40 and the first protrusion 34 can be improved.
  • the current collecting member 40 may be a flat plate structure.
  • the embodiment of the present application may also adopt a current collecting member as shown in FIG. 6 .
  • the current collecting member 40 includes a current collecting body 42 and a second protrusion 43, the current collecting body 42 is connected to the first electrode tab 11, the second protrusion 43 protrudes from the surface of the current collecting body 42 facing the electrode terminal 30, and the top end surface 431 of the second protrusion abuts against the electrode terminal 30.
  • the current collecting body 42 is spaced apart from the electrode terminal 30.
  • the electrode terminal 30 may adopt the electrode terminal shown in FIG6, that is, the electrode terminal may not be provided with the first convex portion.
  • the electrode terminal may also adopt the electrode terminal shown in FIG10, that is, the electrode terminal may be provided with the first convex portion.
  • At least a portion of the top end surface 431 of the second protrusion abuts against the electrode terminal 30 .
  • a gap can be formed between the current collecting body 42 and the electrode terminal 30, thereby reducing the fitting area between the current collecting component 40 and the electrode terminal 30, thereby reducing the gap between the second protrusion 43 and the current collecting component 40, and improving the connection strength between the current collecting component 40 and the electrode terminal 30.
  • the second protrusion 43 may be a solid protrusion or a hollow protrusion.
  • a dimension t3 of the second protrusion 43 protruding from the current collecting body 42 is 0.05 mm-0.25 mm.
  • t3 is 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm or 0.25 mm.
  • t3 is 0.1 mm-0.2 mm. After in-depth research and a large number of experiments, the inventors found that limiting the value of t3 to 0.1 mm-0.2 mm can further reduce the risk of the current collector 42 abutting against the electrode terminal 30, reduce the gap between the electrode terminal 30 and the top end surface 431 of the second protrusion, and reduce the loss of space utilization of the battery cell 7.
  • the area of the current collecting body 42 surrounding the outer side of the second protrusion 43 is welded to the first electrode tab 11 .
  • the second protrusion 43 will not block the area of the current collecting body 42 surrounding the outside of the second protrusion 43 , which can reduce the welding difficulty and the welding power.
  • the top end surface 431 of the second protrusion is a circular surface.
  • the top end surface 431 of the second protrusion can be a solid circular surface or a hollow circular surface (ie, the top end surface 431 of the second protrusion can be a toroidal surface).
  • the diameter of the top end surface 431 of the second protrusion is L.
  • the top end surface 431 of the second protrusion is a toroidal surface
  • L is the outer diameter of the toroidal surface.
  • the diameter of the current collecting member 40 is D 2
  • the diameter of the top end surface 431 of the second protrusion is L
  • L/ D2 The larger the value of L/ D2 , the larger the area that the electrode terminal 30 and the top surface 431 of the second protrusion need to fit, and when the flatness of the current collecting member 40 deviates, the larger the maximum gap between the top surface 431 of the second protrusion and the electrode terminal 30. Similarly, the larger the value of L/ D2 , the more difficult it is to reduce the gap by pressing the electrode terminal 30 and the current collecting member 40.
  • the area where the electrode terminal 30 and the top surface 431 of the second protrusion need to fit together can be reduced, the gap between the electrode terminal 30 and the current collecting member 40 can be reduced, and the difficulty of pressing the electrode terminal 30 and the second protrusion 43 can be reduced.
  • the inventors found that when L/D 2 ⁇ 0.4, the gap between the electrode terminal 30 and the second protrusion 43 can be reduced, thereby improving the connection strength between the electrode terminal 30 and the second protrusion 43 .
  • the electrode terminal 30 includes a first protrusion 34 , and a top end surface 341 of the first protrusion abuts against a top end surface 431 of the second protrusion.
  • the embodiment of the present application does not limit the size of the top end surface 341 of the first convex portion and the top end surface 431 of the second convex portion.
  • the projection of the top end surface 341 of the first convex portion falls within the projection of the top end surface 431 of the second convex portion; in other examples, in the thickness direction Z, the projection of the top end surface 431 of the second convex portion falls within the projection of the top end surface 341 of the first convex portion; in still other examples, in the thickness direction Z, the projection of the top end surface 431 of the second convex portion partially overlaps with the projection of the top end surface 341 of the first convex portion.
  • the first convex portion 34 and the second convex portion 43 are provided at the same time to further reduce the contact area between the current collecting component 40 and the electrode terminal 30 , thereby reducing the gap between the first convex portion 34 and the second convex portion 43 , and improving the connection strength between the current collecting component 40 and the electrode terminal 30 .
  • the current collecting member 40 further includes a third protrusion 44 protruding from a surface of the current collecting body 42 facing the first electrode tab 11 .
  • the third protrusion 44 may press the first electrode tab 11 and be embedded in the first electrode tab 11 , thereby improving the stability of the contact between the first electrode tab 11 and the current collecting member 40 .
  • the second protrusion 43 and the third protrusion 44 at least partially overlap.
  • the third protrusion 44 and the second protrusion 43 are symmetrical about the current collecting body 42.
  • the current collecting body 42 is a flat plate structure with uniform thickness.
  • the embodiment of the present application can play a fool-proof role.
  • the electrode assembly 10 and the current collecting member 40 there is no need to judge the front and back of the current collecting member 40 , thereby improving assembly efficiency.
  • FIG. 14 is a partial cross-sectional schematic diagram of a battery cell provided in some other embodiments of the present application;
  • FIG. 15 is a cross-sectional schematic diagram of the electrode terminal shown in FIG. 14 ;
  • FIG. 16 is a cross-sectional schematic diagram of the current collecting component shown in FIG. 14 .
  • the electrode terminal 30 has a second recess 37 on one side facing the current collecting member 40. At least part of the second protrusion 43 is received in the second recess 37, and the top surface 431 of the second protrusion abuts against the bottom surface 371 of the second recess.
  • the bottom surface 371 of the second recessed portion includes a contact surface for the electrode terminal 30 .
  • the second concave portion 37 can position the second convex portion 43 , thereby simplifying the assembly process of the electrode terminal 30 and the current collecting member 40 and improving assembly efficiency.
  • the electrode terminal 30 is provided with a first recess 31 on one side away from the current collecting member 40.
  • the portion between the bottom surface 311 of the first recess and the bottom surface 371 of the second recess forms a connection portion 32.
  • the connection portion 32 is welded to the second protrusion 43 and forms a first welding portion W1.
  • the first recess 31 has a stepped surface.
  • the embodiment of the present application reduces the thickness of the connecting portion 32 by simultaneously providing the first recess 31 and the second recess 37, which can reduce the depth requirement of the first recess 31 and simplify the molding process.
  • the second recess 37 can also increase the internal space of the battery cell 7 and improve the energy density.
  • the current collecting member 40 is provided with a third recess 45 at a position corresponding to the second protrusion 43 , and the third recess 45 is recessed relative to the surface of the current collecting body 42 facing the first electrode tab 11 .
  • the third recess 45 can reduce the space occupied by the current collecting member 40 and reduce the weight of the current collecting member 40.
  • the second protrusion 43 and the third recess 45 are formed by punching the current collecting member 40.
  • FIG17 is a schematic partial cross-sectional view of a battery cell provided in some other embodiments of the present application;
  • FIG18 is an enlarged schematic view of box F in FIG17 .
  • the electrode terminal 30 is provided with an annular recess 38 on the side facing the electrode assembly 10, and the annular recess 38 is arranged around the first protrusion 34.
  • the annular recess 38 is recessed relative to the surface of the stopper 33 facing the electrode assembly 10, and separates at least a portion of the stopper 33 from the first protrusion 34.
  • the limiting portion 33 is formed at the periphery of the first protrusion 34 , and the limiting portion 33 has a shape bent toward the inner surface of the cover body 22 so as to be riveted to the inner surface of the cover body 22 .
  • the limiting portion 33 is an annular structure disposed around the first protrusion 34 .
  • the limiting portion 33 and the first protrusion 34 define an annular recess 38.
  • the first protrusion 34 protrudes from the bottom end of the annular recess 38.
  • the annular recess 38 can separate at least a portion of the limiting portion 33 from the first convex portion 34 to reduce the force transmitted to the limiting portion 33 when the first convex portion 34 is compressed, thereby reducing the risk of deformation of the limiting portion 33 .
  • the electrode terminal 30 can be squeezed from the inner side of the housing 20 to make the material of the electrode terminal 30 flow toward the periphery and form a limit portion 33 that is bent and folded outward.
  • the electrode terminal 30 forms an annular recess 38 at the compressed position.
  • FIG19 is a schematic cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • the battery cell 7 may be a square battery cell.
  • the housing 20 includes a cylinder 21 and a cover 22 that are integrally formed, and the cylinder 21 is disposed around the outer circumference of the electrode assembly 10.
  • the cylinder 21 may be a square cylinder.
  • the cylinder 21 has an opening at one end away from the cover 22, and the cover plate 50 covers the opening of the cylinder 21 to close the opening of the cylinder 21.
  • the cover plate 50 is welded to the cylinder 21.
  • the battery cell 7 further includes a first electrode terminal 30 b and a second electrode terminal 30 c with opposite polarities, wherein the first electrode terminal 30 b is used to electrically connect to the first electrode tab of the electrode assembly 10 , and the second electrode terminal 30 c is used to electrically connect to the second electrode tab of the electrode assembly 10 .
  • the first electrode terminal 30 b and the second electrode terminal 30 c are both mounted on the cover 22 .
  • the busbar connects the electrode terminals of the plurality of battery cells 7 to connect the plurality of battery cells 7 in series, in parallel or in mixed series.
  • the first electrode terminal 30b and the second electrode terminal 30c can be used to connect to the busbar.
  • the current collecting component When the battery is subjected to external impact, the current collecting component will pull the cover 22 through the first electrode terminal 30b and the second electrode terminal 30c, so that the connection between the cover 22 and the cylinder 21 is subjected to force. If the cover 22 and the cylinder 21 are separate structures, for example, the cover 22 and the cylinder 21 are connected by welding, then the connection between the cover 22 and the cylinder 21 may fail under the action of force. In the embodiment of the present application, the cover 22 and the cylinder 21 are integrally arranged, thereby improving the strength of the connection between the cover 22 and the cylinder 21 and reducing the risk of connection failure between the cover 22 and the cylinder 21.
  • the case 20 is not electrically connected to the positive electrode of the electrode assembly 10, nor is it electrically connected to the negative electrode of the electrode assembly 10. In other words, the case 20 is not charged.
  • the first electrode tab and the second electrode tab of the electrode assembly 10 are located on the same side of the electrode assembly 10 facing the cover 22 .
  • the first electrode terminal 30 b may be the electrode terminal shown in FIG. 6 , the electrode terminal shown in FIG. 10 , the electrode terminal shown in FIG. 14 , or other types of electrode terminals.
  • the first electrode terminal 30b is electrically connected to the first tab through the current collecting member 40.
  • the current collecting member 40 of the square battery cell may also be the current collecting member shown in FIG. 6, the current collecting member shown in FIG. 10, the current collecting member shown in FIG. 14, or other types of current collecting members.
  • a battery is further provided, comprising a plurality of battery cells according to any of the above embodiments.
  • an electric device comprising a battery in any of the above embodiments, the battery being used to provide electric energy to the electric device.
  • the electric device may be any of the above-mentioned devices or systems using battery cells.
  • the embodiment of the present application provides a cylindrical battery cell 7 , which includes an electrode assembly 10 , a housing 20 , an electrode terminal 30 , a current collecting member 40 , and a cap plate 50 .
  • the housing 20 includes an integrally formed cylinder 21 and a cover 22, the cylinder 21 being disposed around the periphery of the electrode assembly 10, the cover 22 being provided with an electrode lead-out hole 221, and the electrode terminal 30 being mounted in the electrode lead-out hole 221.
  • the cylinder 21 has an opening at one end away from the cover 22, and the cover plate 50 is covered at the opening of the cylinder 21 to close the opening of the cylinder 21.
  • the electrode assembly 10 includes a main body 12, a first electrode tab 11 and a second electrode tab 13, which protrude from the main body 12.
  • the first electrode tab 11 is located at one end of the electrode assembly 10 facing the electrode terminal 30, and the second electrode tab 13 is located at one end of the electrode assembly 10 away from the electrode terminal 30.
  • the electrode terminal 30 has an abutting surface 30a abutting against the current collecting member 40.
  • the abutting surface 30a is a circular plane.
  • the diameter of the abutting surface 30a is D1 .
  • the diameter of the current collecting member 40 is D2 , and the minimum thickness of the current collecting member 40 is t1 .
  • D1 , D2 and t1 satisfy: t1 ⁇ D1 / D2 ⁇ 0.4 .
  • the electrode terminal 30 includes a first recess 31 and a connection portion 32 located at the bottom of the first recess 31.
  • the current collecting member 40 is welded to the connection portion 32 and forms a first weld portion W1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体、电池以及用电装置。电池单体包括壳体、电极端子、电极组件和集流构件。电极端子设置于壳体。电极组件容纳于壳体内,电极组件面向电极端子的一端设有第一极耳。集流构件连接于第一极耳,集流构件的至少部分位于电极端子面向第一极耳的一侧、并与电极端子相抵且连接。

Description

电池单体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,如何提高电池单体的可靠性,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池单体、电池以及用电装置,其能提高可靠性。
第一方面,本申请实施例提供了一种电池单体,包括壳体、电极端子、电极组件和集流构件。电极端子设置于壳体。电极组件容纳于壳体内,电极组件面向电极端子的一端设有第一极耳。集流构件连接于第一极耳,集流构件的至少部分位于电极端子面向第一极耳的一侧、并与电极端子相抵且连接。
在上述技术方案中,通过将集流构件的至少部分设置到电极端子面向第一极耳的一侧,使电极端子能够与集流构件相抵;在电极组件晃动时,电极端子可以从集流构件背离电极组件的一侧进行限位,减小集流构件晃动的幅度,降低集流构件与电极端子连接失效的风险,提高电池单体的可靠性。
在一些实施例中,集流构件与第一极耳的面向电极端子的端面相抵并连接。
第一极耳的端面和电极端子可以从两侧夹持集流构件,以使第一极耳和电极端子均与集流构件保持稳定接触,在电池单体受到外部冲击时减小集流构件的晃动,提高电池单体的可靠性。
在一些实施例中,电极端子具有与集流构件相抵的抵接面,抵接面的直径为D 1。集流构件的直径为D 2,集流构件的最小厚度为t 1。D 1、D 2和t满足:t 1×D 1/D 2≤0.4。
t 1的值越大,集流构件的强度越高,集流构件受压时越不易变形。当电极端子和集流构件之间因平面度问题而出现缝隙时,如果t 1的值过大,那么在压紧电极端子和集流构件时,集流构件因强度较高而难以在压力的作用下变形,造成集流构件难以 与电极端子紧贴,导致集流构件与电极端子之间的缝隙偏大。通过减小t 1的值,可以减小集流构件的强度,使集流构件能够在受压时能够适应性地变形,以适配抵接面的形状。
D 1/D 2的值越大,集流构件与电极端子需要贴合的面积也越大,当集流构件的平面度出现偏差时,电极端子与集流构件之间的最大缝隙也越大。同样地,D 1/D 2的值越大,通过压紧电极端子和集流构件来减小缝隙的难度也越大。通过减小D 1/D 2的值,可以减小集流构件和电极端子需要贴合的面积,减小电极端子和集流构件之间的缝隙,降低将集流构件和电极端子压紧的难度。
上述技术方案通过将t 1×D 1/D 2的值限定为小于或等于0.4,可以减小集流构件和电极端子之间的缝隙,提高集流构件和电极端子之间的连接强度。
在一些实施例中,D 1、D 2和t 1满足:0.05≤t 1×D 1/D 2≤0.3。
上述技术方案可以更好地减小集流构件和电极端子之间的缝隙,提高集流构件和电极端子之间的连接强度。当t 1×D 1/D 2≥0.05时,可以改善集流构件与电极端子之间的过流能力,减少产热,提高电池单体的可靠性和安全性。
在一些实施例中,t 1为0.1mm-1mm。
t 1的值越大,集流构件的强度越高,集流构件受压时越不易变形。当电极端子和集流构件之间因平面度问题而出现缝隙时,如果t 1的值过大,那么在压紧电极端子和集流构件时,集流构件因强度较高而难以在压力的作用下变形,造成集流构件难以与电极端子紧贴,导致集流构件与电极端子之间的缝隙偏大。t 1的值越小,集流构件的过流面积越小,集流构件的过流能力越低。如果t 1的值过小,可能会造成集流构件的产热过多,影响电池单体的可靠性和安全性。
上述技术方案将t 1限定为0.1mm-1mm,改善集流构件的过流能力,减小集流构件与电极端子之间的缝隙,提高集流构件和电极端子之间的连接强度。
在一些实施例中,t 1为0.2mm-0.6mm。
上述技术方案可进一步地改善集流构件的过流能力,减小集流构件与电极端子之间的缝隙,提高集流构件和电极端子之间的连接强度。
在一些实施例中,在集流构件的厚度方向上,电极端子的最靠近电极组件的表面与集流构件相抵。
在电极组件和集流构件入壳的过程中,集流构件最先与电极端子最靠近电极组件的表面相抵,这样可以缩短集流构件入壳的行程,提高装配效率。
在一些实施例中,电极端子包括限位部和第一凸部,限位部容纳于壳体内。在集流构件的厚度方向上,限位部与壳体至少部分地重叠,第一凸部的顶端面比限位部更靠近电极组件。第一凸部的顶端面与集流构件相抵。
在上述技术方案中,限位部可以受到壳体的限位,以降低电极端子穿出到壳体外部风险,提高电池单体的可靠性。第一凸部的顶端面凸出于限位部,从而在限位部与集流构件之间形成间隙,减小集流构件与电极端子之间的贴合面积,进而减小集流构件与第一凸部之间的缝隙,提高集流构件和电极端子之间的连接强度。
在一些实施例中,在集流构件的厚度方向上,第一凸部凸出限位部的尺寸t 2为 0.05mm-0.35mm。
t 2越小,集流构件与限位部抵压的风险越高;如果t 2过小,限位部可能会影响第一凸部的顶端面与集流构件的抵接。t 2越大,电极端子占用的空间也越大,电池单体内部的空间利用率越低。上述技术方案将t 2的值限定为0.05mm-0.35mm,可以降低限位部与集流构件抵接的风险,减小集流构件与第一凸部的顶端面之间的缝隙,并减少电池单体的空间利用率的损失。
在一些实施例中,t 2为0.15mm-0.25mm。
上述技术方案可以进一步降低限位部与集流构件抵接的风险,减小集流构件与第一凸部的顶端面之间的缝隙,并减少电池单体的空间利用率的损失。
在一些实施例中,电极端子的与第一凸部的顶端面对应的区域焊接于集流构件并形成第一焊接部。
上述技术方案中,第一凸部的顶端面与集流构件直接相抵,两者之间的缝隙较小。将电极端子与第一凸部的顶端面对应的区域焊接于集流构件,可以降低虚焊风险,提高焊接强度。
在一些实施例中,第一焊接部为圆环形,第一焊接部的外直径为D 3,第一凸部的顶端面的直径为D 4,D 3小于D 4
在焊接时,焊接设备可能会出现误差,导致焊接的位置出现波动。如果D 3等于D 4,那么当焊接位置波动时,可能会焊接到第一凸部的顶端面之外,引发虚焊的风险。上述技术方案使D 3小于D 4,以吸收焊接误差,降低虚焊风险,提高焊接强度。
在一些实施例中,电极端子背离第一极耳的一侧设有第一凹部,第一凹部的底面与第一凸部的顶端面之间的部分形成连接部,连接部与集流构件焊接并形成第一焊接部。
上述技术方案中,通过在电极端子上开设第一凹部来减小连接部的厚度,从而减小连接部与集流构件焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险,提高安全性。
在一些实施例中,第一凹部的底面的直径为D 5,第一凸部的顶端面的直径为D 4,D 5小于D 4
开设第一凹部会减小电极端子与第一凹部的底面相对的区域的厚度,而第一凸部会会增加电极端子与第一凸部的顶端面相对的区域的厚度。在连接部的厚度一定时,如果D 5大于或等于D 4,由于工艺误差,第一凹部的底面的部分区域可能无法与第一凸部的顶端面相对,从而造成电极端子局部的厚度小于连接部的厚度,导致电极端子局部的强度偏小,电极端子在电池单体受到外部冲击时可能会出现断裂。上述技术方案使D 5小于D 4,以减小第一凹部对电极端子的强度的影响,降低电极端子断裂的风险,提高电池单体的可靠性。
在一些实施例中,在集流构件的厚度方向上,第一凸部整体比限位部更靠近电极组件。
在一些实施例中,电极端子在面向电极组件的一侧设有环形凹部,环形凹部环绕第一凸部设置。环形凹部相对于限位部的面向电极组件的表面凹陷,并将限位部的 至少部分与第一凸部隔开。
上述技术方案中,环形凹部可以将限位部的至少部分与第一凸部分离,以在第一凸部受压时减小传导是限位部的作用力,降低限位部变形的风险。
在一些实施例中,集流构件焊接于第一极耳并形成第二焊接部。在集流构件的厚度方向上,第二焊接部与第一凸部的顶端面不重叠。
在上述技术方案中,第二焊接部与第一凸部的顶端面在厚度方向上不重叠,从而降低第一凸部的顶端面与第二焊接部抵接的风险,减小第一凸部的顶端面与集流构件之间的缝隙,提高焊接强度。
在一些实施例中,第二焊接部的至少部分位于电极端子面向第一极耳的一侧并与电极端子间隔设置。
在上述技术方案中,将第二焊接部与电极端子间隔设置,可以降低第二焊接部干涉电极端子和集流构件抵接的风险,减少过定位。第二焊接部可以延伸到第一极耳的与电极端子沿厚度方向相对的区域,从而提高过流能力。
在一些实施例中,集流构件的直径为D 2,第一凸部的顶端面的直径为D 4,D 4/D 2≤0.4。
D 4/D 2的值越大,集流构件与第一凸部的顶端面需要贴合的面积也越大,当集流构件的平面度出现偏差时,第一凸部的顶端面与集流构件之间的最大缝隙也越大。同样地,D 4/D 2的值越大,通过压紧电极端子和集流构件来减小缝隙的难度也越大。上述技术方案使D 4/D 2≤0.4时,可以减小集流构件和第一凸部之间的缝隙,提高集流构件和第一凸部之间的连接强度。
在一些实施例中,集流构件包括集流主体和第二凸部,集流主体连接于第一极耳,第二凸部凸出于集流主体面向电极端子的表面,第二凸部的顶端面与电极端子相抵;集流主体与电极端子间隔设置。
上述技术方案中,通过在集流构件上设置第二凸部,可以在集流主体与电极端子之间形成间隙,减小集流构件与电极端子之间的贴合面积,进而减小第二凸部与集流构件之间的缝隙,提高集流构件和电极端子之间的连接强度。
在一些实施例中,在集流构件的厚度方向上,第二凸部凸出集流主体的尺寸t 3为0.05mm-0.25mm。
t 3越小,集流主体与电极端子抵压的风险越高;如果t 3过小,集流主体可能会影响第二凸部的顶端面与电极端子的抵接。t 3越大,集流构件占用的空间也越大,电池单体内部的空间利用率越低。上述技术方案将t 3的值限定为0.05mm-0.25mm,可以降低集流主体与电极端子抵接的风险,减小电极端子与第二凸部的顶端面之间的缝隙,并减少电池单体的空间利用率的损失。
在一些实施例中,t 3为0.1mm-0.2mm。
上述技术方案可以进一步降低集流主体与电极端子抵接的风险,减小电极端子与第二凸部的顶端面之间的缝隙,并减少电池单体的空间利用率的损失。
在一些实施例中,集流主体的环绕在第二凸部外侧的区域焊接于第一极耳。在焊接时,第二凸部不会遮挡集流主体环绕在第二凸部外侧的区域,这样可以降低焊接 难度,减小焊接功率。
在一些实施例中,集流构件的直径为D 2,第二凸部的顶端面的直径为L,L/D 2≤0.4。
L/D 2的值越大,电极端子与第二凸部的顶端面需要贴合的面积也越大,当集流构件的平面度出现偏差时,第二凸部的顶端面与电极端子之间的最大缝隙也越大。同样地,L/D 2的值越大,通过压紧电极端子和集流构件来减小缝隙的难度也越大。上述技术方案使L/D 2≤0.4时,可以减小电极端子和第二凸部之间的缝隙,提高电极端子和第二凸部之间的连接强度。
在一些实施例中,电极端子包括第一凸部,第一凸部的顶端面与第二凸部的顶端面相抵。
上述技术方案同时设置第一凸部和第二凸部,以进一步减小集流构件与电极端子之间的贴合面积,进而减小第一凸部与第二凸部之间的缝隙,提高集流构件和电极端子之间的连接强度。
在一些实施例中,电极端子面向集流构件的一侧设有第二凹部。第二凸部的至少部分容纳于第二凹部,且第二凸部的顶端面与第二凹部的底面相抵。
上述技术方案中,第二凹部可以对第二凸部进行定位,从而简化电极端子与集流构件的装配工艺,提高装配效率。
在一些实施例中,集流构件还包括第三凸部,第三凸部凸出于集流主体面向第一极耳的表面。
在装配电极组件和集流构件时,第三凸部可通过挤压第一极耳嵌入到第一极耳,从而提高第一极耳与集流构件接触的稳定性。
在一些实施例中,第三凸部和第二凸部关于集流主体对称。
上述技术方案可以实现防呆,在装配电极组件和集流构件时,无需判断集流构件的正反,从而提高装配效率。
在一些实施例中,集流构件在与第二凸部对应的位置设有第三凹部,第三凹部相对于集流主体的面向第一极耳的表面凹陷。第三凹部能够降低集流构件占用的空间,减小集流构件的重量。
在一些实施例中,电极端子焊接于集流构件。电极端子的熔点为T 1,集流构件的熔点为T 2,T 1/T 2为0.8-1.1。
上述技术方案可以减小电极端子的熔点与集流构件的熔点的差异,改善焊接工艺,提高焊接强度。
在一些实施例中,电极端子包括第一凹部和位于第一凹部底部的连接部。集流构件焊接于连接部并形成第一焊接部,在集流构件的厚度方向上,第一焊接部从连接部背离集流构件的一侧至少延伸至集流构件的内部。
上述技术方案中,通过在电极端子上开设第一凹部来减小连接部的厚度,从而减小连接部与集流构件焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险,提高安全性。第一焊接部从连接部延伸至集流构件的内部,以连接集流构件和连接部,减小集流构件与电极端子之间的接触电阻,提高过流能力。
在一些实施例中,壳体包括筒体和连接于筒体的盖体,筒体环绕电极组件的外周设置,盖体设有电极引出孔,电极端子安装于电极引出孔。第一焊接部和盖体均为圆环状,盖体的外直径为D 6,第一焊接部的内直径为D 7。D 6和D 7满足:0.1≤D 7/D 6≤0.6。
D 6与电极组件的直径正相关,D 6越大,电极组件的容量越高,电池单体对第一焊接部的过流面积的要求也越高。D 7越小,第一焊接部的周长也越小,第一焊接部的过流面积也越小。如果D 7/D 6过小,那么因D 6偏大而D 7偏小,将会造成第一焊接部的过流面积不足,第一焊接部在充放电时产热较大,难以满足电池单体在快充时对过流能力和温升的要求。上述技术方案将D 7/D 6限定为大于或等于0.1,可以满足电池单体对过流能力和温升的要求。
D 7越大,电极引出孔的尺寸也越大,盖体的面积也越小。同样地,D 6越小,盖体的面积也越小。如果D 7/D 6过大,那么因D 6偏小而D 7偏大,将会造成盖体在电池单体震动时易变形,引发安全隐患。盖体可作为电池单体的一个输出极,以与汇流部件连接。如果D 7/D 6过大,将会造成盖体与汇流部件之间的连接面积偏小,盖体与汇流部件之间的过流面积不足,盖体与汇流部件之间的连接处的产热偏高,难以满足电池单体在快充时对过流能力和温升的要求。上述技术方案将D 7/D 6限定为小于或等于0.6,可以满足电池单体对过流能力和温升的要求,提高电池单体的安全性。
在一些实施例中,0.2≤D 7/D 6≤0.4。当0.2≤D 7/D 6≤0.4时,可以更好地满足电池单体对过流能力和温升的要求,提高电池单体的安全性。
在一些实施例中,D 7为5mm-14mm。
如果D 7过小,那么将会造成第一焊接部的过流面积不足,第一焊接部在充放电时产热较大,难以满足电池单体在快充时对过流能力和温升的要求。如果D 7过大,那么将会造成盖体与汇流部件之间的过流面积不足,盖体与汇流部件之间的连接处的产热偏高。上述技术方案将D 7限定在5mm-14mm,可以满足电池单体对过流能力和温升的要求。
在一些实施例中,盖体和筒体为一体形成结构,这样可以省去盖体和筒体的连接工序。
盖体可用于与外部构件相连,在电池单体受到外部冲击时,外部构件可能会拉扯盖体,使盖体和筒体的连接处受到力的作用;上述技术方案将盖体和筒体一体设置,从而提高盖体和筒体连接处的强度,降低盖体和筒体连接失效的风险。
在一些实施例中,在集流构件的厚度方向上,第一焊接部的尺寸为h,连接部的厚度为D 8。D 8和h满足:1<h/D 8≤1.5。
如果h/D 8≤1,那么第一焊接部的熔深较小,第一焊接部整体形成于连接部,从而造成虚焊,第一焊接部难以有效地连接集流构件和连接部。在D 8一定时,h越大,焊接所需的功率越大,在焊接过程中的产热越高。如果h过大,焊接产生的高温容易损伤电极端子周围的部件,引发安全隐患。在上述技术方案中,当满足1<h/D 8≤1.5时,可以在提升集流构件和连接部连接的强度,减少焊接产热,降低焊接难度。
在一些实施例中,集流构件的用于与连接部焊接的区域的厚度为D 9,D 8和D 9满足:0.5≤D 9/D 8≤1.2。
在D 8一定时,D 9越小,集流构件越容易在焊接过程中被熔穿,焊接产生的高温颗粒越容易掉落到电池单体内;D 9越大,集流构件占用的空间和重量越大,电池单体的能量密度越低。在上述技术方案中,当满足0.5≤D 9/D 8≤1.2时,可以降低集流构件被熔穿的风险,并减少电池单体的能量密度的损失。
在一些实施例中,D 8为0.4mm-1.2mm。
D 8越小,连接部的过流能力越低。如果D 8过小,连接部可能难以满足电池单体在快充时对过流能力和温升的要求。D 8越大,焊接所需的功率越大,在焊接过程中的产热越高。如果D 8过大,焊接产生的高温容易损伤电极端子周围的部件,引发安全隐患。上述技术方案将D 8限定在0.4mm-1.2mm,可以满足电池单体对过流能力和温升的要求,并减少焊接产热,提高安全性。
在一些实施例中,集流构件焊接于第一极耳并形成第二焊接部。第一极耳环绕电极组件的中心轴线设置,第一极耳的垂直于中心轴线的截面为圆环形。第一极耳的外半径为R,第二焊接部与中心轴线在第一极耳的径向上的最小间距为D 10,D 10和R满足:0.2≤D 10/R≤0.8。
R与电极组件的直径正相关,R越大,电极组件产生的电流越大,电池单体对过流面积的要求也越高。集流构件的靠近中心轴线的部分可用于与连接部焊接;D 10越小,集流构件的能够与连接部焊接的区域也越小,集流构件与连接部之间的过流面积也越小。如果D 10/R过小,那么因D 10偏小而R偏大,将会造成集流构件与连接部之间的过流面积不足,集流构件与连接部的焊接处在充放电时产热较大,难以满足电池单体在快充时对过流能力和温升的要求。上述技术方案使D 10/R≥0.2,以满足电池单体对过流能力和温升的要求。
第一极耳通常包括多个极耳层。D 10越大,与第二焊接部直接相连的极耳层越靠外。如果D 10过大,将会造成第二焊接部连接的极耳层的数量偏少,第二焊接部与最内侧的极耳层的间距过大,造成最外侧的极耳层和电极端子之间的电流路径与最内侧的极耳层和电极端子之间的电流路径之间的差异偏大,导致电极组件的第一极片的电流密度不均,增大内阻。上述技术方案使D 10/R≤0.8,以减小第一极耳不同位置的部分与电极端子之间的电流路径的差异,提高电极组件的第一极片的电流密度的均匀性,降低内阻,提高过流能力。。
在一些实施例中,D 10和R满足:0.2≤D 10/R≤0.5。
上述技术方案可以更好地改善电池单体的过流能力,降低电池单体的温升。
在一些实施例中,D 10为3.5mm-10mm。
如果D 10过小,将会造成集流构件与连接部之间的过流面积不足,集流构件与连接部的焊接处在充放电时产热较大,难以满足电池单体在快充时对过流能力和温升的要求。上述技术方案使D 10≥3.5mm,可以满足电池单体对过流能力和温升的要求。
如果D 10过大,将会造成第二焊接部连接的极耳层的数量偏少,靠近中心轴线的极耳层与第二焊接部的距离过大,导致电极组件的内阻偏大,影响电池单体性能。上述技术方案使D 10≤10mm,可以减小电极组件的内阻,改善电池单体的充放电性能。
在一些实施例中,集流构件的直径为D 2,第一极耳的直径为D 11,D 2小于D 11。集 流构件具有较小的直径,可节省集流构件的占用的空间和重量,提升电池单体的能量密度。
在一些实施例中,D 2和D 11满足:0.75≤D 2/D 11≤0.97。
D 11一定时,如果D 2过小,那么第一极耳的靠外的部分与集流构件之间的距离过大,第一极耳的靠外的部分与集流构件之间的导电路径过长,导致电极组件的内阻偏大,影响电池单体性能。上述技术方案使D 2/D 11≥0.75,可以减小电极组件的内阻,改善电池单体的充放电性能。
D 11一定时,如果D 2过大,那么由于装配误差,集流构件与电极组件的同轴度产生波动,造成集流构件凸出于电极组件的外周面,导致集流构件和电极组件入壳困难,影响装配效率和产品优率。上述技术方案使D 2/D 11≤0.97,可以降低集流构件因误差凸出与电极组件的外周面的风险,提升装配效率和产品优率。
在一些实施例中,D 2为35mm-44mm。
上述技术方案将D 2限定在35mm-44mm,可减小电极组件的内阻,改善电池单体的充放电性能,并降低集流构件因误差凸出与电极组件的外周面的风险。
第二方面,本申请实施例提供了一种电池,包括多个第一方面任一实施例提供的电池单体。
第三方面,本申请实施例提供了一种用电装置,包括第二方面提供的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的结构示意图;
图4为本申请一些实施例提供的电池单体的爆炸示意图;
图5为本申请一些实施例提供的电池单体的剖视示意图;
图6为图5所示的电池单体的局部放大示意图;
图7为图6在方框B处的放大示意图;
图8为图7在圆框C处的放大示意图;
图9为本申请一些实施例提供的电池单体的电极组件和集流构件的结构示意图;
图10为本申请另一些实施例提供的电池单体的局部剖视示意图;
图11为图10所示的电极端子的剖视示意图;
图12为图10所示的集流构件的剖视示意图;
图13为图12在圆框E处的放大示意图;
图14为本申请另一些实施例提供的电池单体的局部剖视示意图;
图15为图14所示的电极端子的剖视示意图;
图16为图14所示的集流构件的剖视示意图;
图17为本申请另一些实施例提供的电池单体的局部剖视示意图;
图18为图17在方框F处的放大示意图;
图19为本申请另一些实施例提供的电池单体的剖视示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认 知的大致垂直的情况。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括用于容纳电极组件的壳体和设置于壳体的电极端子,电极端子用于电连接到电极组件,以实现电极组件的充放电。为了便于实现装配,并保证电池单体的过流能力,电池单体通常通过集流构件来连接电极组件的极耳和电极端子。
在电池单体受到外部冲击时,电极组件可能会在壳体内上下晃动。发明人注意到,电极组件晃动时还会拉扯集流构件,造成集流构件变形,引发集流构件与电极端子连接失效的风险。
鉴于此,本申请实施例提供了一种技术方案,其通过将集流构件的至少部分设置到电极端子面向极耳的一侧,使电极端子能够与集流构件相抵;在电极组件晃动时,电极端子可以从集流构件背离电极组件的一侧进行限位,减小集流构件晃动的幅度,降低集流构件与电极端子连接失效的风险,提高电池单体的可靠性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块的结构示意图。
在一些实施例中,如图3所示,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件8实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。汇流部件可为一个或多个,各汇流部件8用于将至少两个电池单体电连接。
图4为本申请一些实施例提供的电池单体的爆炸示意图;图5为本申请一些实施例提供的电池单体的剖视示意图;图6为图5所示的电池单体的局部放大示意图。
如图4至图6所示,本申请实施例提供了一种电池单体7,其包括壳体20、电极端子30、电极组件10和集流构件40。电极端子30设置于壳体20。电极组件10容 纳于壳体20内,电极组件10面向电极端子30的一端设有第一极耳11。集流构件40连接于第一极耳11。集流构件40的至少部分位于电极端子30面向第一极耳11的一侧、并与电极端子30相抵且连接。
电极组件10包括极性相反的第一极片和第二极片。第一极片和第二极片中的一者为正极极片,另一者为负极极片。示例性地,电极组件10通过离子在正极极片和负极极片中的嵌入/脱出时的氧化和还原反应来产生电能。可选地,电极组件10还包括隔离件,隔离件用于将第一极片和第二极片绝缘隔离。
在一些示例中,第一极片、第二极片和隔离件均为带状结构,第一极片、第二极片和隔离件绕中心轴线A卷绕为一体并形成卷绕结构。卷绕结构可以为圆柱状结构、扁平状结构或其它形状的结构。在另一些示例中,电极组件10也可以是由第一极片、隔离件和第二极片通过层叠布置形成的叠片式结构。
第一极耳11可为第一极片的未涂覆活性物质层的部分。第一极耳11可以为正极极耳,也可以是负极极耳。
壳体20为空心结构,其内部形成用于容纳电极组件10的空间。壳体20可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。壳体20的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。可选地,电极组件10和壳体20均为圆柱体。
壳体20的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
壳体20可以带正电、可以带负电、也可以不带电。
电极端子30可作为电池单体7的输出电极,其可将电池单体7与外电路电连接,以实现电池单体7的充放电。可选地,电极端子30用于与汇流部件连接,以实现电池单体7之间的电连接。
电极端子30可以绝缘地设置于壳体20,也可以电连接于壳体20,本申请实施例对此不作限制,只要避免正极极片和负极极片导通即可。
集流构件40将第一极耳11电连接于电极端子30。本申请实施例不限制第一极耳11和集流构件40的连接方式,例如,集流构件40可以通过焊接、抵接或粘接等方式连接于第一极耳11。
本申请实施例不限制集流构件40和电极端子30的连接方式,例如,集流构件40可以通过焊接、抵接或粘接等方式连接于电极端子30。
集流构件40的至少部分位于第一极耳11和电极端子30之间。集流构件40可以整体位于第一极耳11和电极端子30之间,也可仅部分位于第一极耳11和电极端子30之间。
本申请实施例通过将集流构件40的至少部分设置到电极端子30面向第一极耳11的一侧,使电极端子30能够与集流构件40相抵;在电极组件10晃动时,电极端子30可以从集流构件40背离电极组件10的一侧进行限位,减小集流构件40晃动的幅度,降低集流构件40与电极端子30连接失效的风险,提高电池单体7的可靠性。
在一些实施例中,电极组件10包括主体部12、第一极耳11和第二极耳13,第一极耳11和第二极耳13凸出于主体部12。示例性地,第一极耳11为第一极片的未涂覆活性物质层的部分,第二极耳13为第二极片的未涂覆活性物质层的部分。
第一极耳11和第二极耳13可以从主体部12的同一侧伸出,也可以分别从相反的两侧延伸出。示例性地,第一极耳11位于电极组件10的面向电极端子30的一端,第二极耳13位于电极组件10背离电极端子30的一端。
在一些实施例中,第一极耳11环绕电极组件10的中心轴线A卷绕为多圈,换言之,第一极耳11包括多圈极耳层。在卷绕完成后,第一极耳11大体为柱体状,相邻的两圈极耳层之间留有缝隙。本申请实施例可以对第一极耳11进行处理,以减小极耳层间的缝隙,便于第一极耳11与集流构件40连接。例如,本申请实施例可对第一极耳11进行揉平处理,以使第一极耳11的远离主体部12的端部区域收拢、集合在一起;揉平处理在第一极耳11远离主体部12的一端形成致密的端面111,减小极耳层间的缝隙,便于第一极耳11与集流构件40连接。可替代地,本申请实施例也可以在相邻的两圈极耳层之间填充导电材料,以减小极耳层间的缝隙。
在一些实施例中,第二极耳13环绕电极组件10的中心轴线A卷绕为多圈,第二极耳13包括多圈极耳层。示例性地,且第二极耳13也经过了揉平处理,以减小第二极耳13的极耳层间的缝隙。
电极组件10的中心轴线A是一条虚拟的直线。第一极片、第二极片和隔离件可以中心轴线A为基准进行卷绕。
在一些实施例中,壳体20包括筒体21和连接于筒体21的盖体22,筒体21环绕电极组件10的外周设置,盖体22设有电极引出孔221,电极端子30安装于电极引出孔221。
盖体22和筒体21可为一体形成结构,即壳体20为一体成形的构件。当然,盖体22和筒体21也可以为分开提供的两个构件,然后通过焊接、铆接、粘接等方式连接在一起。
电极引出孔221贯通盖体22,以便于电极组件10中的电能引出到壳体20的外部。
中心轴线A是一条虚拟的直线,其经过电极引出孔221。电极组件10的中心轴线A与电极引出孔221的轴线可以重合,也可以不重合。
电极端子30用于与电极引出孔221配合,以覆盖电极引出孔221。电极端子30可以伸入电极引出孔221,也可以不伸入电极引出孔221。电极端子30固定于盖体22。电极端子30可以整体固定在盖体22的外侧,也可以通过电极引出孔221伸入到壳体20的内部。
在一些实施例中,盖体22和筒体21为一体形成结构。这样可以省去盖体22和筒体21的连接工序。
当盖体22和筒体21电连接到电极组件10的正极或负极时,由于盖体22和筒体21的连接处为一体式结构,所以盖体22和筒体21连接处的电阻较小,从而提升过流能力。盖体22可用于与外部构件(例如汇流部件)相连,在电池单体7受到外部冲 击时,外部构件可能会拉扯盖体22,使盖体22和筒体21的连接处受到力的作用;上述技术方案将盖体22和筒体21一体设置,从而提高盖体22和筒体21连接处的强度,降低盖体22和筒体21连接失效的风险。
在一些实施例中,壳体20可通过拉伸工艺成型。
在一些实施例中,壳体20在背离电极端子30的一端具有开口23,电池单体7还包括用于封闭开口的盖板50。
具体地,筒体21在背离盖体22的一端具有开口23,盖板50盖合于筒体21的开口处,以封闭筒体21的开口23。盖板50可以是多种结构,比如,盖板50为板状结构。
在一些实施例中,盖板50可以为圆形盖板、长方形盖板、正方形盖板、六边形盖板或其它形状的盖板。
在一些实施例中,盖板50焊接于筒体21。
在一些实施例中,盖体22为圆形,电极组件10为圆柱形;中心轴线A与电极引出孔221的轴线重合。本实施例不要求中心轴线A与电极引出孔221的轴线完全重合,两者之间可以存着工艺允许的偏差。
在本实施例中,电极引出孔221大体开设在盖体22的中部,对应地,电极端子30也安装在盖体22的中部。在多个电池单体7装配成组时,可以降低对电极端子30的定位精度的要求,简化装配工艺。
示例性地,电极引出孔221的轴线与盖体22的轴线重合,盖体22为环绕电极引出孔221的轴线设置的环状结构。
示例性地,电极端子30的轴线与电极引出孔221的轴线重合。
在另一些实施例中,盖体22也可为长方形,电极组件10呈扁平状。电极引出孔221可靠近盖体22沿自身的长度方向的端部设置。
在一些实施例中,电极组件10还包括与第一极耳11极性相反的第二极耳13,第二极耳13环绕电极组件10的中心轴线A设置。第一极耳11设于电极组件10面向电极端子30的一端,第二极耳13设于电极组件10背离电极端子30的一端,第二极耳13与壳体20电连接。
壳体20本身可以作为电池单体7的一个的输出电极,从而省去一个传统的电极端子30,简化电池单体7的结构。在多个电池单体7装配成组时,壳体20可以与汇流部件电连接,这样既可以增大过流面积,还可以使汇流部件的结构设计更为灵活。
在一些实施例中,第二极耳13为负极极耳,壳体20的基体材质为钢。壳体20与负极极耳电连接,即壳体20处于低电位状态。钢制的壳体20在低电位状态下不易被电解液腐蚀。
在一些实施例中,筒体21用于连接第二极耳13和盖体22,以使第二极耳13和盖体22电连接。
筒体21可以直接电连接第二极耳13,也可以通过其它构件电连接第二极耳13。例如,第二极耳13通过盖板50电连接到筒体21。
盖体22和电极端子30具有不同的极性。此时,盖体22和电极端子30中的一 者可作为电池单体7的正输出极,另一者可作为电池单体7的负输出极。本实施例将正输出极和负输出极设置在电池单体7的同一侧,这样可以简化多个电池单体7之间的连接工艺。
本申请实施例的电极引出孔221是在壳体20拉伸成型后制成。
发明人曾尝试辊压筒体的开口端,以使筒体的开口端向内翻折并形成翻边结构,翻边结构压住盖板以实现盖板的固定。发明人将电极端子安装到盖板上,并以翻边结构和电极端子作为电池单体的两个输出极。然而,翻边结构的尺寸越大,其在成型后出现卷曲和褶皱的风险越高;如果翻边结构出现卷曲和褶皱,那么会造成翻边结构的表面不平整,当翻边结构与外部的汇流部件焊接时,会存在焊接不良的问题。因此,翻边结构的尺寸比较受限,造成电池单体的过流能力不足。
本实施例利用开孔的工艺在盖体22上形成用于安装电极端子30的电极引出孔221,以将正输出极和负输出极设置在电池单体7的背离筒体21开口的一端;盖体22是在壳体20的成型过程中形成,开设电极引出孔221后也能够保证平整性,保证盖体22和汇流部件的连接强度。同时,盖体22的平整性不受自身尺寸的约束,所以盖体22可以具有较大的尺寸,从而提高电池单体7的过流能力。
在一些实施例中,集流构件40与第一极耳11的面向电极端子30的端面111相抵并连接。
第一极耳11的端面111和电极端子30可以从两侧夹持集流构件40,以使第一极耳11和电极端子30均与集流构件40保持稳定接触,在电池单体7受到外部冲击时减小集流构件40的晃动,提高电池单体7的可靠性。
示例性地,沿集流构件40的厚度方向Z,第一极耳11和电极端子30分别设于集流构件40的两侧。
在一些实施例中,在装配电池单体7时,可先将电极组件10的第一极耳11焊接于集流构件40,再将电极组件10和集流构件40放入壳体20内。具体地,焊接时,可先将集流构件40抵压于第一极耳11揉平后的端面111,然后外部焊接设备在集流构件40背离第一极耳11的表面发射激光,激光将集流构件40和第一极耳11焊接。
图7为图6在方框B处的放大示意图;图8为图7在圆框C处的放大示意图;图9为本申请一些实施例提供的电池单体的电极组件和集流构件的结构示意图。
请一并参照图4至图9,在一些实施例中,电极端子30具有与集流构件40相抵的抵接面30a。抵接面30a为电极端子30的外表面与集流构件40接触的区域。
本申请实施例不限制抵接面30a的形状,例如,抵接面30a可以是方形、圆形、梯形或其它形状。抵接面30a可以是平面,也可以是弧面。
在一些实施例中,抵接面30a为圆形面。在本申请实施例中,圆形指的是抵接面30a的外轮廓。换言之,抵接面30a可以是实心的圆形面,也可以是空心的圆形面(即抵接面30a可以是圆环面)。
示例性地,抵接面30a是圆形平面。
抵接面30a的直径为D 1。示例性地,当抵接面30a为圆环面时,D 1是指圆环面的外直径。
在一些实施例中,集流构件40可以为圆形、矩形或其它形状。
在一些实施例中,集流构件40为圆形。圆形是指集流构件40的外轮廓。在集流构件40的厚度方向Z上,集流构件40的投影为圆形。
在一些实施例中,集流构件40的直径为D 2,集流构件40的最小厚度为t 1。D 1、D 2和t 1满足:t 1×D 1/D 2≤0.4。
第一极耳11较软,在经过揉平或其它处理后,第一极耳11的端面111可能会存在平面度偏差。同样地,由于生产工艺的限制,制备出的集流构件40的用于与电极端子30相抵的面也可能会存在平面度偏差。
在电极端子30和集流构件40相抵时,由于第一极耳11的端面111的平面度偏差和集流构件40的表面的平面度偏差,电极端子30的抵接面和集流构件40之间可能会存在微小缝隙。如果缝隙过大,将会影响电极端子30与集流构件40之间的连接强度。示例性地,电极端子30和集流构件40可通过焊接相连;如果电极端子30与集流构件40之间的缝隙过大,可能会引发虚焊的风险。
在装配时,发明人尝试将电极端子30和集流构件40压紧,以减小两者之间的缝隙。
发明人注意到,D 1、D 2和t 1均会影响电极端子30与集流构件40的贴合。
具体地,t 1的值越大,集流构件40的强度越高,集流构件40受压时越不易变形。当电极端子30和集流构件40之间因平面度问题而出现缝隙时,如果t 1的值过大,那么在压紧电极端子30和集流构件40时,集流构件40因强度较高而难以在压力的作用下变形,造成集流构件40难以与电极端子30紧贴,导致集流构件40与电极端子30之间的缝隙偏大。
通过减小t 1的值,可以减小集流构件40的强度,使集流构件40能够在受压时能够适应性地变形,以适配抵接面30a的形状。
D 1/D 2的值越大,集流构件40与电极端子30需要贴合的面积也越大,当集流构件40的平面度出现偏差时,电极端子30与集流构件40之间的最大缝隙也越大。同样地,D 1/D 2的值越大,通过压紧电极端子30和集流构件40来减小缝隙的难度也越大。
通过减小D 1/D 2的值,可以减小集流构件40和电极端子30需要贴合的面积,减小电极端子30和集流构件40之间的缝隙,降低将集流构件40和电极端子30压紧的难度。
发明人在经过深入的研究和大量的实验之后发现,当t 1×D 1/D 2≤0.4时,可以减小集流构件40和电极端子30之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
在一些实施例中,t 1×D 1/D 2≤0.3。
发明人在经过深入的研究和大量的实验之后发现,当t 1×D 1/D 2≤0.3时,可以更好地减小集流构件40和电极端子30之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
在一些实施例中,t 1×D 1/D 2≥0.05。
t 1的值越小,集流构件40的过流面积越小,集流构件40的过流能力越低。同 样地,D 1/D 2的值越小,集流构件40与电极端子30之间的接触面积越小,集流构件40与电极端子30之间的过流面积也越小。
发明人发现,如果t 1×D 1/D 2过小,可能会造成集流构件40与电极端子30之间的过流面积不足,集流构件40的产热过多,影响电池单体7的可靠性和安全性。
发明人在经过深入的研究和大量的实验之后发现,当t 1×D 1/D 2≥0.05时,可以改善集流构件40与电极端子30之间的过流能力,减少产热,提高电池单体7的可靠性和安全性。
在一些实施例中,t 1×D 1/D 2的值可为0.05、0.1、0.2、0.3或0.4。
在一些实施例中,t 1为0.1mm-1mm。
t 1的值越大,集流构件40的强度越高,集流构件40受压时越不易变形。当电极端子30和集流构件40之间因平面度问题而出现缝隙时,如果t 1的值过大,那么在压紧电极端子30和集流构件40时,集流构件40因强度较高而难以在压力的作用下变形,造成集流构件40难以与电极端子30紧贴,导致集流构件40与电极端子30之间的缝隙偏大。
t 1的值越小,集流构件40的过流面积越小,集流构件40的过流能力越低。如果t 1的值过小,可能会造成集流构件40的产热过多,影响电池单体7的可靠性和安全性。
发明人在经过深入的研究和大量的实验之后发现,将t 1限定在0.1mm-1mm,可改善集流构件40的过流能力,减小集流构件40与电极端子30之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
可选地,t 1的值为0.1mm、0.2mm、0.4mm、0.5mm、0.6mm、0.8mm或1mm。
在一些实施例中,t 1为0.2mm-0.6mm。
发明人在经过深入的研究和大量的实验之后发现,将t 1限定在0.2mm-0.6mm,可进一步地改善集流构件40的过流能力,减小集流构件40与电极端子30之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
在一些实施例中,电极端子30焊接于集流构件40。示例性地,集流构件40和电极端子30通过激光焊接相连。本申请实施例可减小集流构件40和电极端子30在抵接处的间隙,降低虚焊风险。
在一些实施例中,电极端子30焊接于集流构件40并形成第一焊接部W1。
在焊接时,电极端子30的一部分和集流构件40的一部分熔化并形成熔池,熔池凝固后形成第一焊接部W1。
可选地,当电极组件10和集流构件40安装至壳体20内,且集流构件40抵压于电极端子30之后,外部焊接设备能够从电极端子30的背离集流构件40的一侧将电极端子30和集流构件40焊接并形成第一焊接部W1。
可替代地,当电极组件10和集流构件40安装至壳体20内,且集流构件40抵压于电极端子30之后,外部焊接设备也可以穿过电极组件10,从集流构件40的背离电极端子30的一侧将电极端子30和集流构件40焊接并形成第一焊接部W1。
本申请实施例对第一焊接部W1的形状、位置、深度以及数量不作特殊限制。 例如,第一焊接部W1的形状可以是直线形、形、环形、螺旋形、V形或其它形状。第一焊接部W1可以为一个,也可以为多个。
在一些实施例中,电极端子30的熔点为T 1,集流构件40的熔点为T 2,T 1/T 2为0.8-1.1。
T 1为电极端子30在常压状态下的熔点,T 2为集流构件40在常压状态下的熔点。
在焊接时,电极端子30的一部分和集流构件40的一部分熔化并形成熔池,熔池凝固后形成第一焊接部W1。
电极端子30的熔点和集流构件40的熔点之间的差异会影响电极端子30和集流构件40的焊接强度。
发明人在经过深入的研究和大量的实验之后发现,在T 1/T 2小于0.8时,电极端子30的熔点相对于集流构件40的熔点较低;如果采用较低的焊接功率,集流构件40可能会难以熔化并与电极端子30形成互溶体;如果采用较高的焊接功率,电极端子30可能会快速熔化并汽化,产生空洞,难形成有效的焊印。
发明人在经过深入的研究和大量的实验之后发现,在T 1/T 2大于1.1时,电极端子30的熔点相对于集流构件40的熔点较高;如果采用较低的焊接功率,电极端子30难以熔化;如果采用较高的焊接功率,当焊接参数产生波动时,熔池深度会出现偏差,集流构件40因熔点较低而易被熔穿。
发明人将T 1/T 2限定在0.8-1.1,以减小电极端子30的熔点与集流构件40的熔点的差异,改善焊接工艺,提高焊接强度。
示例性地,T 1/T 2的值为0.8、0.9、0.95、1、1.05或1.1。可选地,T 1/T 2的值为0.95-1.05。
在一些实施例中,电极端子30包括第一凹部31和位于第一凹部31底部的连接部32。集流构件40焊接于连接部32并形成第一焊接部W1。
第一凹部31可以从电极端子30背离电极组件10的一侧沿面向电极组件10的方向凹陷,也可以从电极端子30面向电极组件10的一侧沿背离电极组件10的方向凹陷。
第一凹部31可以为柱形凹部、锥形凹部、台阶形凹部或其它形状的凹部。
示例性地,连接部32可为电极端子30的与第一凹部的底面311相对应的部分。
在本申请实施例中,通过在电极端子30上开设第一凹部31来减小连接部32的厚度,从而减小连接部32与集流构件40焊接所需的焊接功率,减少产热,降低其它构件被烧伤的风险,提高安全性。
在一些实施例中,在集流构件40的厚度方向Z上,第一焊接部W1从连接部32背离集流构件40的一侧至少延伸至集流构件40的内部。
第一焊接部W1可以贯穿集流构件40,例如,第一焊接部W1贯穿集流构件40和连接部32,且第一焊接部W1露出于集流构件40背离连接部32的表面。当然,第一焊接部W1也可以不贯穿集流构件40,即第一焊接部W1不露出于集流构件40背离连接部32的表面。
第一焊接部W1从连接部32延伸至集流构件40的内部,以连接集流构件40和 连接部32,减小集流构件40与电极端子30之间的接触电阻,提高过流能力。
在一些实施例中,在连接部32的厚度方向Z上,第一焊接部W1不超出集流构件40背离连接部32的表面。第一焊接部W1与集流构件40的背离连接部32的表面间隔预定的距离,以避免集流构件40被熔穿,降低集流构件40的背离连接部32的表面产生金属颗粒的风险,提高安全性。
在一些实施例中,壳体20包括筒体21和连接于筒体21的盖体22,筒体21环绕电极组件10的外周设置,盖体22设有电极引出孔221,电极端子30安装于电极引出孔221。第一焊接部W1和盖体22均为圆环状,盖体22的外直径为D 6,第一焊接部W1的内直径为D 7。D 6和D 7满足:0.1≤D 7/D 6≤0.6。
第一焊接部W1可以是封闭结构,也可以是非封闭结构。换言之,第一焊接部W1可以是半圆环,也可以是整圆环。可选地,圆环状的第一焊接部W1的圆心角为180°-360°。
D 6与电极组件10的直径正相关,D 6越大,电极组件10的容量越高,电池单体7对第一焊接部W1的过流面积的要求也越高。D 7越小,第一焊接部W1的周长也越小,第一焊接部W1的过流面积也越小。如果D 7/D 6过小,那么因D 6偏大而D 7偏小,将会造成第一焊接部W1的过流面积不足,第一焊接部W1在充放电时产热较大,难以满足电池单体7在快充时对过流能力和温升的要求。发明人在经过深入的研究和大量的实验之后发现,当D 7/D 6≥0.1时,可以满足电池单体7对过流能力和温升的要求。
D 7越大,电极引出孔221的尺寸也越大,盖体22的面积也越小。同样地,D 6越小,盖体22的面积也越小。如果D 7/D 6过大,那么因D 6偏小而D 7偏大,将会造成盖体22在电池单体7震动时易变形,引发安全隐患。盖体22可作为电池单体7的一个输出极,以与汇流部件连接。如果D 7/D 6过大,将会造成盖体22与汇流部件之间的连接面积偏小,盖体22与汇流部件之间的过流面积不足,盖体22与汇流部件之间的连接处的产热偏高,难以满足电池单体7在快充时对过流能力和温升的要求。发明人在经过深入的研究和大量的实验之后发现,当D 7/D 6≤0.6时,可以满足电池单体7对过流能力和温升的要求,提高电池单体7的安全性。
可选地,D 7/D 6可为0.1、0.2、0.3、0.4、0.5或0.6。
在一些实施例中,发明人在经过深入的研究和大量的实验之后发现,当0.2≤D 7/D 6≤0.4时,可以更好地满足电池单体7对过流能力和温升的要求,提高电池单体7的安全性。
在一些实施例中,D 7为5mm-14mm。
如果D 7过小,那么将会造成第一焊接部W1的过流面积不足,第一焊接部W1在充放电时产热较大,难以满足电池单体7在快充时对过流能力和温升的要求。如果D 7过大,那么将会造成盖体22与汇流部件之间的过流面积不足,盖体22与汇流部件之间的连接处的产热偏高。发明人在经过深入的研究和大量的实验之后发现,将D 7限定在5mm-14mm,可以满足电池单体7对过流能力和温升的要求。
可选地,D 7为5mm、7mm、9mm、10mm、12mm或14mm。
在一些实施例中,在集流构件40的厚度方向Z上,第一焊接部W1的尺寸为h, 连接部32的厚度为D 8。D 8和h满足:1<h/D 8≤1.5。
第一焊接部W1为环形,因工艺误差的原因,第一焊接部W1的不同区域在厚度方向Z上可能具有不同的熔深。h可为第一焊接部W1熔深最小的区域沿厚度方向Z的尺寸。
在一些示例中,连接部32为厚度均匀的平板结构,连接部32的任意部分均可用于与集流构件40焊接,D 8即为连接部32的厚度。在另一些示例中,连接部32为厚度不均匀的结构,连接部32的厚度较小的区域可为连接部32的用于与集流构件40焊接的区域,这样可以降低焊接所需的功率,减少产热;此时,D 8可为连接部32的最小厚度。
如果h/D 8≤1,那么第一焊接部W1的熔深较小,第一焊接部W1整体形成于连接部32,从而造成虚焊,第一焊接部W1难以有效地连接集流构件40和连接部32。在D 8一定时,h越大,焊接所需的功率越大,在焊接过程中的产热越高。如果h过大,焊接产生的高温容易损伤电极端子30周围的部件,引发安全隐患。
发明人在经过深入的研究和大量的实验之后发现,1<h/D 8≤1.5时,可以在提升集流构件40和连接部32连接的强度,减少焊接产热,降低焊接难度。
可选地,h/D 8为1.05、1.1、1.2、1.3、1.4或1.5。
在一些实施例中,集流构件40的用于与连接部32焊接的区域的厚度为D 9,D 8和D 9满足:0.5≤D 9/D 8≤1.2。
集流构件40的用于与连接部32焊接的区域指的是:集流构件40与连接部32相抵的面所对应的区域。
在D 8一定时,D 9越小,集流构件40越容易在焊接过程中被熔穿,焊接产生的高温颗粒越容易掉落到电池单体7内;D 9越大,集流构件40占用的空间和重量越大,电池单体7的能量密度越低。
发明人在经过深入的研究和大量的实验之后发现,当0.5≤D 9/D 8≤1.2时,可以降低集流构件40被熔穿的风险,并减少电池单体7的能量密度的损失。
可选地,D 9/D 8为0.5、0.7、0.9、1.0或1.2。
在一些实施例中,D 8为0.4mm-1.2mm。
D 8越小,连接部32的过流能力越低。如果D 8过小,连接部32可能难以满足电池单体7在快充时对过流能力和温升的要求。D 8越大,焊接所需的功率越大,在焊接过程中的产热越高。如果D 8过大,焊接产生的高温容易损伤电极端子30周围的部件,引发安全隐患。
发明人在经过深入的研究和大量的实验之后发现,将D 8限定在0.4mm-1.2mm,可以满足电池单体7对过流能力和温升的要求,并减少焊接产热,提高安全性。
可选地,D 8为0.4mm、0.5mm、0.6mm、0.8mm、1.0mm或1.2mm。
可选地,发明人在经过深入的研究和大量的实验之后发现,将D 8限定为0.6mm-1.0mm,可更好地满足电池单体7对过流能力和温升的要求,并减少焊接产热,提高安全性。
在一些实施例中,D 9为0.2mm-0.6mm。可选地,D 9为0.3mm-0.5mm。
在一些实施例中,集流构件40焊接于第一极耳11并形成第二焊接部W2。
在装配电池单体7时,可先将电极组件10的第一极耳11焊接于集流构件40,再将电极组件10和集流构件40放入壳体20内。具体地,焊接第一极耳11和集流构件40时,可先将集流构件40抵压于第一极耳11揉平后的端面111,然后外部焊接设备在集流构件40背离第一极耳11的表面发射激光,激光将集流构件40和第一极耳11焊接。
第二焊接部W2的形状可以是直线形、C形、环形、螺旋形、V形或其它形状,本实施例对此不作限制。第二焊接部W2的可以为一个,也可以为多个。
第二焊接部W2可以减小集流构件40和第一极耳11之间的接触电阻,提高过流能力。
在一些实施例中,第一极耳11环绕电极组件10的中心轴线A设置,第一极耳11的垂直于中心轴线A的截面为圆环形。第一极耳11的外半径为R,第二焊接部W2与中心轴线A在第一极耳11的径向上的最小间距为D 10,D 10和R满足:0.2≤D 10/R≤0.8。
第一极耳11的垂直于中心轴线A的截面并不要求是绝对的圆环形,允许存在一定的偏差。
R与电极组件10的直径正相关,R越大,电极组件10产生的电流越大,电池单体7对过流面积的要求也越高。集流构件40的靠近中心轴线A的部分可用于与连接部32焊接;D 10越小,集流构件40的能够与连接部32焊接的区域也越小,集流构件40与连接部32之间的过流面积也越小。如果D 10/R过小,那么因D 10偏小而R偏大,将会造成集流构件40与连接部32之间的过流面积不足,集流构件40与连接部32的焊接处在充放电时产热较大,难以满足电池单体7在快充时对过流能力和温升的要求。
第一极耳11包括多个极耳层,各极耳层绕中心轴线A一周。在第一极耳11的径向上,多个极耳层沿第一极耳11的半径方向层叠。与第二焊接部W2直接相连的极耳层上的电流,可以直接通过第二焊接部W2传导至集流构件40;而不与第二焊接部W2相连的极耳层上的电流,需要先传导至与第二焊接部W2直接相连的极耳层,然后才能通过第二焊接部W2传导至集流构件40,这造成多个极耳层与电极端子之间的导电路径存在差异。如果差异过大,容易引发极化问题。
如果D 10/R过小,那么第二焊接部W2与最外侧的极耳层的间距过大,造成最外侧的极耳层和电极端子30之间的电流路径与最内侧的极耳层和电极端子30之间的电流路径之间的差异偏大,导致电极组件10的第一极片的电流密度不均,增大内阻。
发明人在经过深入的研究和大量的实验之后发现,当D 10/R≥0.2时,可以满足电池单体7对过流能力和温升的要求。
D 10越大,与第二焊接部W2直接相连的极耳层越靠外。如果D 10过大,将会造成第二焊接部W2连接的极耳层的数量偏少,第二焊接部W2与最内侧的极耳层的间距过大,造成最外侧的极耳层和电极端子30之间的电流路径与最内侧的极耳层和电极端子30之间的电流路径之间的差异偏大,导致第一极片的电流密度不均,增大内阻。
发明人在经过深入的研究和大量的实验之后发现,当D 10/R≤0.8时,减小第一极耳11不同位置的部分与电极端子30之间的电流路径的差异,提高电极组件10的第 一极片的电流密度的均匀性,降低内阻,提高过流能力。
可选地,D 10/R为0.2、0.3、0.5、0.7或0.8。
在一些实施例中,发明人在经过深入的研究和大量的实验之后发现,当0.2≤D 10/R≤0.5时,可以更好地改善电池单体7的过流能力,降低电池单体7的温升。
在一些实施例中,D 10为3.5mm-10mm。
如果D 10过小,将会造成集流构件40与连接部32之间的过流面积不足,集流构件40与连接部32的焊接处在充放电时产热较大,难以满足电池单体7在快充时对过流能力和温升的要求。发明人在经过深入的研究和大量的实验之后发现,当D 10≥3.5mm时,可以满足电池单体7对过流能力和温升的要求。
如果D 10过大,将会造成第二焊接部W2连接的极耳层的数量偏少,靠近中心轴线A的极耳层与第二焊接部W2的距离过大,导致电极组件10的内阻偏大,影响电池单体7性能。发明人在经过深入的研究和大量的实验之后发现,当D 10≤10mm时,可以减小电极组件10的内阻,改善电池单体7的充放电性能。
可选地,D 10为3.5mm、4mm、5mm、7mm、8.5mm或10mm。
在一些实施例中,R为20mm-22.8mm。
在一些实施例中,第二焊接部W2为环形。环形的第二焊接部W2具有较大的过流面积,其能提高第一极片的电流密度的均匀性,降低内阻,提高过流能力。
在一些实施例中,集流构件40的直径为D 2,第一极耳11的直径为D 11,D 2小于D 11
D 2指的是集流构件40的外缘的直径,即集流构件40的外直径。D 11指的是第一极耳11的外缘的直径,即第一极耳11的外直径。示例性地,D 11=2*R。
集流构件40具有较小的直径,可节省集流构件40的占用的空间和重量,提升电池单体7的能量密度。
在一些实施例中,D 2和D 11满足:0.75≤D 2/D 11≤0.97。
D 11一定时,如果D 2过小,那么第一极耳11的靠外的部分与集流构件40之间的距离过大,第一极耳11的靠外的部分与集流构件40之间的导电路径过长,导致电极组件10的内阻偏大,影响电池单体7性能。发明人在经过深入的研究和大量的实验之后发现,当D 2/D 11≥0.75时,可以减小电极组件10的内阻,改善电池单体7的充放电性能。
D 11一定时,如果D 2过大,那么由于装配误差,集流构件40与电极组件10的同轴度产生波动,造成集流构件40凸出于电极组件10的外周面,导致集流构件40和电极组件10入壳困难,影响装配效率和产品优率。发明人在经过深入的研究和大量的实验之后发现,当D 2/D 11≤0.97时,可以降低集流构件40因误差凸出与电极组件10的外周面的风险,提升装配效率和产品优率。
可选地,D 2/D 11可为0.75、0.8、0.85、0.9、0.95或0.97。
在一些实施例中,D 2为35mm-44mm。发明人在经过深入的研究和大量的实验之后发现,将D 2限定在35mm-44mm,可减小电极组件10的内阻,改善电池单体7的充放电性能,并降低集流构件40因误差凸出与电极组件10的外周面的风险。
可选地,D 2可为35mm、38mm、40mm、41mm、43mm或44mm。
在一些实施例中,发明人在经过深入的研究和大量的实验之后发现,将D 2限定为38mm-41mm,可以更好地减小电极组件10的内阻,改善电池单体7的充放电性能。
在一些实施例中,连接部32上设有第一通孔321,第一通孔321用于将位于连接部32的背离电极组件10一侧的空间连通于壳体20的内部空间。
第一通孔321在第一凹部的底面311上形成开口。
在电池单体7的成型过程中,第一通孔321可用于多个成型工序,例如,第一通孔321可应用于注液工序、化成工序或其它工序。
具体地,第一通孔321用于向壳体20的内部空间注入电解液。当需要注液时,注液设备的注液头抵压在连接部32上,然后注液头通过第一通孔321向壳体20内注入电解液。
在电池单体7的化成工序中,壳体20内会产生气体,第一通孔321也可用于与外部负压设备连通,以抽出壳体20内的气体。
在一些实施例中,集流构件40设有第二通孔41,第二通孔41被配置为与第一通孔321相对设置,以使得电解液能够经第二通孔41流入壳体20的内部空间。
在一些实施例中,电极组件10为卷绕结构,电极组件10在卷绕中心处具有第三通孔14,第三通孔14贯通电极组件10,第三通孔14与第一通孔321、第二通孔41相对设置,以使得电解液能够经第三通孔14流入电极组件10的内部。
在一些实施例中,电池单体7还包括密封板60,密封板60连接于电极端子30并封闭第一凹部31的开口。
密封板60可以整体位于第一凹部31的外侧,也可以部分地容纳于第一凹部31内,只要密封板60能够封闭第一凹部31的开口即可。
密封板60可以从外侧保护连接部32,减少进入第一凹部31的外部杂质,降低连接部32被外部杂质损伤的风险,提高电池单体7的密封性能。
另外,密封板60还能够起到密封第一通孔321的作用。在电池单体7成型后,密封板60可以降低电解液经由第一通孔321和第一凹部31泄露的风险,提高密封性能。
在一些实施例中,第一凹部31的侧壁上设置有台阶面,密封板60至少一部分容纳于第一凹部31,并且台阶面用于支撑密封板60。
图10为本申请另一些实施例提供的电池单体的局部剖视示意图;图11为图10所示的电极端子的剖视示意图;图12为图10所示的集流构件的剖视示意图;图13为图12在圆框E处的放大示意图。
如图10至图13所示,在一些实施例中,在集流构件40的厚度方向Z上,电极端子30的最靠近电极组件10的表面与集流构件40相抵。
在电极组件10和集流构件40入壳的过程中,集流构件40最先与电极端子30最靠近电极组件10的表面相抵,这样可以缩短集流构件40入壳的行程,提高装配效率。
在一些实施例中,电极端子30最靠近电极组件10的表面为垂直于厚度方向Z 的平面。
在一些实施例中,电极端子30包括限位部33和第一凸部34,限位部33容纳于壳体20内。在集流构件40的厚度方向Z上,限位部33与壳体20至少部分地重叠,第一凸部的顶端面341比限位部33更靠近电极组件10。第一凸部的顶端面341与集流构件40相抵。
第一凸部的顶端面341为电极端子30在厚度方向Z上最靠近电极组件10的表面。第一凸部的顶端面341包括电极端子30的抵接面。
第一凸部的顶端面341可以整体与集流构件40相抵,也可以仅部分区域与集流构件40相抵。
在厚度方向Z上,第一凸部34的至少部分凸出到限位部33面向电极组件10的一侧。换言之,在厚度方向Z上,第一凸部34可以整体凸出到限位部33面向电极组件10的一侧,也可以仅部分凸出到限位部33面向电极组件10的一侧。
限位部33可以与第一凸部34直接相连,也可以通过电极端子30的其它部分与第一凸部34间接相连。
本申请实施例不限制集流构件40的结构,集流构件40可以为平板结构,也可以为其它结构。
在本申请实施例中,限位部33可以受到壳体20的限位,以降低电极端子30穿出到壳体20外部风险,提高电池单体7的可靠性。第一凸部的顶端面341凸出于限位部33,从而在限位部33与集流构件40之间形成间隙,减小集流构件40与电极端子30之间的贴合面积,进而减小集流构件40与第一凸部34之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
在一些实施例中,在集流构件40的厚度方向Z上,限位部33与盖体22至少部分地重叠。
在一些实施例中,电极端子30还包括柱状部35和外凸缘36,柱状部35从电极引出孔221穿过,外凸缘36位于盖体22的外侧且凸出于柱状部35的外周面。
限位部33和外凸缘36可以从两侧夹持盖体22的一部分,以将电极端子固定到盖体22上。限位部33和外凸缘36可以直接夹持盖体22,也可以通过其它构件(例如绝缘密封件70)间接地夹持盖体22。
在一些实施例中,限位部33为环绕柱状部35的环形结构。
在一些实施例中,第一凸部34从柱状部35的面向电极组件10的表面凸出。示例性地,第一凹部31开设于柱状部35。
在一些实施例中,限位部33面向电极组件10的表面与柱状部35面向电极组件10的表面齐平。
在一些实施例中,在集流构件40的厚度方向Z上,第一凸部34凸出限位部33的尺寸t 2为0.05mm-0.35mm。
t 2越小,集流构件40与限位部33抵压的风险越高;如果t 2过小,限位部33可能会影响第一凸部的顶端面341与集流构件40的抵接。t 2越大,电极端子30占用的空间也越大,电池单体7内部的空间利用率越低。
发明人在经过深入的研究和大量的实验之后发现,将t 2的值限定为0.05mm-0.35mm,可以降低限位部33与集流构件40抵接的风险,减小集流构件40与第一凸部的顶端面341之间的缝隙,并减少电池单体7的空间利用率的损失。
可选地,t 2为0.05mm、0.1mm、0.15mm、0.2mm、0.25mm、0.3mm或0.35mm。
在一些实施例中,t 2为0.15mm-0.25mm。发明人在经过深入的研究和大量的实验之后发现,将t 2的值限定为0.15mm-0.25mm,可以进一步降低限位部33与集流构件40抵接的风险,减小集流构件40与第一凸部的顶端面341之间的缝隙,并减少电池单体7的空间利用率的损失。
在一些实施例中,电极端子30的与第一凸部的顶端面341对应的区域焊接于集流构件40并形成第一焊接部W1。
第一凸部的顶端面341可以是圆形、矩形或其它形状。
电极端子30与第一凸部的顶端面341对应的区域是指:在厚度方向Z上,电极端子30的与第一凸部的顶端面341对应的实体部分。在焊接时,电极端子30与第一凸部的顶端面341对应的区域的至少部分熔化。
第一凸部的顶端面341与集流构件40直接相抵,两者之间的缝隙较小;将电极端子30与第一凸部的顶端面341对应的区域焊接于集流构件40,可以降低虚焊风险,提高焊接强度。
在一些实施例中,第一焊接部W1为圆环形,第一焊接部W1的外直径为D 3
第一焊接部W1可以是封闭结构,也可以是非封闭结构。换言之,第一焊接部W1可以是半圆环,也可以是整圆环。
在一些实施例中,第一凸部的顶端面341为圆形面。第一凸部的顶端面341可以是实心的圆形面,也可以是空心的圆形面(即第一凸部的顶端面341可以是圆环面)。
第一凸部的顶端面341的直径为D 4。示例性地,第一凸部的顶端面341为圆环面,D 4为圆环面的外直径。
在一些实施例中,D 3小于D 4
在焊接时,焊接设备可能会出现误差,导致焊接的位置出现波动。如果D 3等于D 4,那么当焊接位置波动时,可能会焊接到第一凸部的顶端面341之外,引发虚焊的风险。本申请实施例使D 3小于D 4,以吸收焊接误差,降低虚焊风险,提高焊接强度。
在一些实施例中,电极端子30背离第一极耳11的一侧设有第一凹部31,第一凹部的底面311与第一凸部的顶端面341之间的部分形成连接部32,连接部32与集流构件40焊接并形成第一焊接部W1。
本申请实施例对第一凹部的底面311和第一凸部的顶端面341的大小关系不作限定。
示例性地,在厚度方向Z上,第一凹部的底面311与第一凸部的顶端面341至少部分地重叠。第一凹部的底面311与第一凸部的顶端面341沿厚度方向Z重叠的区域形成连接部32。
在本申请实施例中,通过在电极端子30上开设第一凹部31来减小连接部32的厚度,从而减小连接部32与集流构件40焊接所需的焊接功率,减少产热,降低其它构 件被烧伤的风险,提高安全性。
在一些实施例中,在厚度方向Z上,第一凹部的底面311的投影位于第一凸部的顶端面341的投影内。
在一些实施例中,第一凹部的底面311为圆形面。第一凹部的底面311为圆形面。第一凹部的底面311可以是实心的圆形面,也可以是空心的圆形面(即第一凹部的底面311可以是圆环面)。
在一些实施例中,第一凹部的底面311的直径为D 5。示例性地,在第一凹部的底面311是圆环面时,D 5是圆环面的外直径。可选地,第一凹部的底面311为平面。
在一些实施例中,D 5小于D 4
开设第一凹部31会减小电极端子30与第一凹部的底面311相对的区域的厚度,而第一凸部34会增加电极端子30与第一凸部的顶端面341相对的区域的厚度。在连接部32的厚度一定时,如果D 5大于或等于D 4,由于工艺误差,第一凹部的底面311的部分区域可能无法与第一凸部的顶端面341相对,从而造成电极端子30局部的厚度小于连接部32的厚度,导致电极端子30局部的强度偏小,电极端子30在电池单体7受到外部冲击时可能会出现断裂。
本申请实施例使D 5小于D 4,以减小第一凹部31对电极端子30的强度的影响,降低电极端子30断裂的风险,提高电池单体7的可靠性。
在一些实施例中,在集流构件40的厚度方向Z上,第一凸部34整体比限位部33更靠近电极组件10。
在一些实施例中,集流构件40焊接于第一极耳11并形成第二焊接部W2。在集流构件40的厚度方向Z上,第二焊接部W2与第一凸部的顶端面341不重叠。
第二焊接部W2的表面凹凸不平,如果第一凸部的顶端面341抵压在第二焊接部W2上,可能会增大第一凸部的顶端面341与集流构件40之间的缝隙,影响集流构件40与电极端子30的焊接效果。
在本申请实施例中,第二焊接部W2与第一凸部的顶端面341在厚度方向Z上不重叠,从而降低第一凸部的顶端面341与第二焊接部W2抵接的风险,减小第一凸部的顶端面341与集流构件40之间的缝隙,提高焊接强度。
在一些实施例中,第二焊接部W2的至少部分位于电极端子30面向第一极耳11的一侧并与电极端子30间隔设置。
第一凸部34可以抵住集流构件40,以在电极端子30与集流构件40之间形成间隙,该间隙可以避让第二焊接部W2。
在本申请实施例中,将第二焊接部W2与电极端子30间隔设置,可以降低第二焊接部W2干涉电极端子30和集流构件40抵接的风险,减少过定位。第二焊接部W2可以延伸到第一极耳11的与电极端子30沿厚度方向Z相对的区域,这样可使第二焊接部W2连接更多的极耳层,从而提高过流能力,减少极片的极化。
在一些实施例中,集流构件40的直径为D 2,第一凸部的顶端面341的直径为D 4,D 4/D 2≤0.4。
D 4/D 2的值越大,集流构件40与第一凸部的顶端面341需要贴合的面积也越大, 当集流构件40的平面度出现偏差时,第一凸部的顶端面341与集流构件40之间的最大缝隙也越大。同样地,D 4/D 2的值越大,通过压紧电极端子30和集流构件40来减小缝隙的难度也越大。
通过减小D 4/D 2的值,可以减小集流构件40和第一凸部的顶端面341需要贴合的面积,减小电极端子30和集流构件40之间的缝隙,降低将集流构件40和第一凸部34压紧的难度。
发明人在经过深入的研究和大量的实验之后发现,当D 4/D 2≤0.4时,可以减小集流构件40和第一凸部34之间的缝隙,提高集流构件40和第一凸部34之间的连接强度。
在一些实施例中,集流构件40可为平板结构。示例性地,本申请实施例也可采用如图6所示的集流构件。
在一些实施例中,集流构件40包括集流主体42和第二凸部43,集流主体42连接于第一极耳11,第二凸部43凸出于集流主体42面向电极端子30的表面,第二凸部的顶端面431与电极端子30相抵。集流主体42与电极端子30间隔设置。
本申请实施例不限制电极端子30的结构。示例性地,电极端子30可采用图6所示的电极端子,即电极端子可不设置第一凸部。当然,可替代地,电极端子也可采用如10所示的电极端子,即电极端子可设有第一凸部。
第二凸部的顶端面431的至少部分与电极端子30相抵。
在本申请实施例中,通过在集流构件40上设置第二凸部43,可以在集流主体42与电极端子30之间形成间隙,减小集流构件40与电极端子30之间的贴合面积,进而减小第二凸部43与集流构件40之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
在一些实施例中,第二凸部43可以是实心凸部,也可以是空心凸部。
在一些实施例中,在集流构件40的厚度方向Z上,第二凸部43凸出集流主体42的尺寸t 3为0.05mm-0.25mm。
t 3越小,集流主体42与电极端子30抵压的风险越高;如果t 3过小,集流主体42可能会影响第二凸部的顶端面431与电极端子30的抵接。t 3越大,集流构件40占用的空间也越大,电池单体7内部的空间利用率越低。
发明人在经过深入的研究和大量的实验之后发现,将t 3的值限定为0.05mm-0.25mm,可以降低集流主体42与电极端子30抵接的风险,减小电极端子30与第二凸部的顶端面431之间的缝隙,并减少电池单体7的空间利用率的损失。
可选地,t 3为0.05mm、0.1mm、0.15mm、0.2mm或0.25mm。
在一些实施例中,t 3为0.1mm-0.2mm。发明人在经过深入的研究和大量的实验之后发现,将t 3的值限定为0.1mm-0.2mm,可以进一步降低集流主体42与电极端子30抵接的风险,减小电极端子30与第二凸部的顶端面431之间的缝隙,并减少电池单体7的空间利用率的损失。
在一些实施例中,集流主体42的环绕在第二凸部43外侧的区域焊接于第一极耳11。
在焊接时,第二凸部43不会遮挡集流主体42环绕在第二凸部43外侧的区域,这样可以降低焊接难度,减小焊接功率。
在一些实施例中,第二凸部的顶端面431为圆形面。第二凸部的顶端面431可以是实心的圆形面,也可以是空心的圆形面(即第二凸部的顶端面431可以是圆环面)。
第二凸部的顶端面431的直径为L。示例性地,第二凸部的顶端面431为圆环面,L为圆环面的外直径。
在一些实施例中,集流构件40的直径为D 2,第二凸部的顶端面431的直径为L,L/D 2≤0.4。
L/D 2的值越大,电极端子30与第二凸部的顶端面431需要贴合的面积也越大,当集流构件40的平面度出现偏差时,第二凸部的顶端面431与电极端子30之间的最大缝隙也越大。同样地,L/D 2的值越大,通过压紧电极端子30和集流构件40来减小缝隙的难度也越大。
通过减小L/D 2的值,可以减小电极端子30和第二凸部的顶端面431需要贴合的面积,减小电极端子30和集流构件40之间的缝隙,降低将电极端子30和第二凸部43压紧的难度。
发明人在经过深入的研究和大量的实验之后发现,当L/D 2≤0.4时,可以减小电极端子30和第二凸部43之间的缝隙,提高电极端子30和第二凸部43之间的连接强度。
在一些实施例中,电极端子30包括第一凸部34,第一凸部的顶端面341与第二凸部的顶端面431相抵。
本申请实施例对第一凸部的顶端面341和第二凸部的顶端面431的大小不作限定。在一些示例中,在厚度方向Z上,第一凸部的顶端面341的投影落在第二凸部的顶端面431的投影内;在另一些示例中,在厚度方向Z上,第二凸部的顶端面431的投影落在第一凸部的顶端面341的投影内;在又一些示例中,在厚度方向Z上,第二凸部的顶端面431的投影与第一凸部的顶端面341的投影部分地重叠。
本申请实施例同时设置第一凸部34和第二凸部43,以进一步减小集流构件40与电极端子30之间的贴合面积,进而减小第一凸部34与第二凸部43之间的缝隙,提高集流构件40和电极端子30之间的连接强度。
在一些实施例中,集流构件40还包括第三凸部44,第三凸部44凸出于集流主体42面向第一极耳11的表面。
在装配电极组件10和集流构件40时,第三凸部44可通过挤压第一极耳11并嵌入到第一极耳11,从而提高第一极耳11与集流构件40接触的稳定性。
在一些实施例中,在厚度方向Z上,第二凸部43和第三凸部44至少部分地重叠。
在一些实施例中,第三凸部44和第二凸部43关于集流主体42对称。示例性地,集流主体42为厚度均匀的平板结构。
本申请实施例可以起到防呆的作用,在装配电极组件10和集流构件40时,无需判断集流构件40的正反,从而提高装配效率。
图14为本申请另一些实施例提供的电池单体的局部剖视示意图;图15为图14所示的电极端子的剖视示意图;图16为图14所示的集流构件的剖视示意图。
如图14至图16所示,在一些实施例中,电极端子30面向集流构件40的一侧设有第二凹部37。第二凸部43的至少部分容纳于第二凹部37,且第二凸部的顶端面431与第二凹部的底面371相抵。
第二凹部的底面371包括电极端子30的抵接面。
第二凹部37可以对第二凸部43进行定位,从而简化电极端子30与集流构件40的装配工艺,提高装配效率。
在一些实施例中,电极端子30背离集流构件40的一侧设有第一凹部31。第一凹部的底面311与第二凹部的底面371之间的部分形成连接部32。连接部32与第二凸部43焊接并形成第一焊接部W1。示例性地,第一凹部31为具有台阶面。
本申请实施例通过同时设置第一凹部31和第二凹部37来减小连接部32的厚度,这样可以减小对第一凹部31深度的要求,简化成型工艺。通过设置第二凹部37还能够增大电池单体7的内部空间,提高能量密度。
在一些实施例中,集流构件40在与第二凸部43对应的位置设有第三凹部45,第三凹部45相对于集流主体42的面向第一极耳11的表面凹陷。
第三凹部45能够降低集流构件40占用的空间,减小集流构件40的重量。示例性地,第二凸部43和第三凹部45通过冲压集流构件40形成。
图17为本申请另一些实施例提供的电池单体的局部剖视示意图;图18为图17在方框F处的放大示意图。
如图17和图18所示,在一些实施例中,电极端子30在面向电极组件10的一侧设有环形凹部38,环形凹部38环绕第一凸部34设置。环形凹部38相对于限位部33的面向电极组件10的表面凹陷,并将限位部33的至少部分与第一凸部34隔开。
示例性地,限位部33形成于第一凸部34的周边,且限位部33具有朝向盖体22的内表面弯曲的形状,以铆接在盖体22的内表面。
示例性地,限位部33为环绕第一凸部34设置的环形结构。
限位部33和第一凸部34限定出环形凹部38。第一凸部34凸出于环形凹部38的底端。
环形凹部38可以将限位部33的至少部分与第一凸部34分离,以在第一凸部34受压时减小传导是限位部33的作用力,降低限位部33变形的风险。
在一些实施例中,在电极端子30插入电极引出孔221后,可以从壳体20的内侧挤压电极端子30,以使电极端子30的物料向外周流动并形成向外弯曲翻折的限位部33。电极端子30在受压的位置形成环形凹部38。
图19为本申请另一些实施例提供的电池单体的剖视示意图。
如图19所示,在一些实施例中,电池单体7可为方形电池单体。
在一些实施例中,壳体20包括一体形成的筒体21和盖体22,筒体21环绕电极组件10的外周设置。示例性地,筒体21可为方筒。
筒体21在背离盖体22的一端具有开口,盖板50盖合于筒体21的开口处,以 封闭筒体21的开口。示例性地,盖板50焊接于筒体21。
在一些实施例中,电池单体7还包括极性相反的第一电极端子30b和第二电极端子30c,第一电极端子30b用于电连接于电极组件10的第一极耳,第二电极端子30c用于电连接于电极组件10的第二极耳。
在一些实施例中,第一电极端子30b和第二电极端子30c均安装于盖体22。
在电池中,汇流部件连接多个电池单体7的电极端子,以将多个电池单体7串联、并联或混联。第一电极端子30b和第二电极端子30c均可用于与汇流部件连接。
在电池受到外部冲击时,汇流部件会通过第一电极端子30b和第二电极端子30c拉扯盖体22,从而使盖体22和筒体21的连接处受到力的作用。如果盖体22和筒体21为分体结构,例如盖体22和筒体21通过焊接相连,那么盖体22和筒体21的连接处在力的作用下可能会出现连接失效。本申请实施例时盖体22和筒体21一体设置,从而提高盖体22和筒体21连接处的强度,降低盖体22和筒体21连接失效的风险。
在一些实施例中,壳体20不与电极组件10的正极电连接,也不与电极组件10的负极电连接。换言之,壳体20不带电。
在一些实施例中,电极组件10的第一极耳和第二极耳位于电极组件10面向盖体22的同一侧。
在一些实施例中,第一电极端子30b可采用图6所示的电极端子、图10所示的电极端子、图14所示的电极端子或其它类型的电极端子。
在一些实施例中,第一电极端子30b通过集流构件40电连接于第一极耳。方形电池单体的集流构件40也可采用图6所示的集流构件、图10所示的集流构件、图14所示的集流构件或其它类型的集流构件。
根据本申请的一些实施例,还提供了一种电池,包括多个以上任一实施例的电池单体。
根据本申请的一些实施例,还提供了一种用电装置,包括以上任一实施例的电池,电池用于为用电装置提供电能。用电装置可以是前述任一应用电池单体的设备或系统。
参照图4至图9,本申请实施例提供了一种圆柱电池单体7,其包括电极组件10、壳体20、电极端子30、集流构件40和盖板50。
壳体20包括一体形成的筒体21和盖体22,筒体21环绕电极组件10的外周设置,盖体22设有电极引出孔221,电极端子30安装于电极引出孔221。筒体21在背离盖体22的一端具有开口,盖板50盖合于筒体21的开口处,以封闭筒体21的开口。
电极组件10包括主体部12、第一极耳11和第二极耳13,第一极耳11和第二极耳13凸出于主体部12。第一极耳11位于电极组件10的面向电极端子30的一端,第二极耳13位于电极组件10背离电极端子30的一端。
电极端子30具有与集流构件40相抵的抵接面30a。抵接面30a是圆形平面。抵接面30a的直径为D 1。集流构件40的直径为D 2,集流构件40的最小厚度为t 1。D 1、D 2和t 1满足:t 1×D 1/D 2≤0.4。
电极端子30包括第一凹部31和位于第一凹部31底部的连接部32。集流构件 40焊接于连接部32并形成第一焊接部W1。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (43)

  1. 一种电池单体,包括:
    壳体;
    电极端子,设置于所述壳体;
    电极组件,容纳于所述壳体内,所述电极组件面向所述电极端子的一端设有第一极耳;
    集流构件,连接于所述第一极耳,所述集流构件的至少部分位于所述电极端子面向所述第一极耳的一侧、并与所述电极端子相抵且连接。
  2. 根据权利要求1所述的电池单体,其中,所述集流构件与所述第一极耳的面向所述电极端子的端面相抵并连接。
  3. 根据权利要求1或2所述的电池单体,其中,所述电极端子具有与所述集流构件相抵的抵接面,所述抵接面的直径为D 1
    所述集流构件的直径为D 2,所述集流构件的最小厚度为t 1
    D 1、D 2和t满足:t 1×D 1/D 2≤0.4。
  4. 根据权利要求3所述的电池单体,其中,D 1、D 2和t 1满足:0.05≤t 1×D 1/D 2≤0.3。
  5. 根据权利要求3或4所述的电池单体,其中,t 1为0.1mm-1mm;可选地,t 1为0.2mm-0.6mm。
  6. 根据权利要求1-5任一项所述的电池单体,其中,在所述集流构件的厚度方向上,所述电极端子的最靠近所述电极组件的表面与所述集流构件相抵。
  7. 根据权利要求6所述的电池单体,其中,
    所述电极端子包括限位部和第一凸部,所述限位部容纳于所述壳体内;在所述集流构件的厚度方向上,所述限位部与所述壳体至少部分地重叠,所述第一凸部的顶端面比所述限位部更靠近所述电极组件;
    所述第一凸部的顶端面与所述集流构件相抵。
  8. 根据权利要求7所述的电池单体,其中,在所述集流构件的厚度方向上,所述第一凸部凸出所述限位部的尺寸t 2为0.05mm-0.35mm;可选地,t 2为0.15mm-0.25mm。
  9. 根据权利要求7或8所述的电池单体,其中,所述电极端子的与所述第一凸部的顶端面对应的区域焊接于所述集流构件并形成第一焊接部。
  10. 根据权利要求9所述的电池单体,其中,所述第一焊接部为圆环形,所述第一焊接部的外直径为D 3,所述第一凸部的顶端面的直径为D 4,D 3小于D 4
  11. 根据权利要求9或10所述的电池单体,其中,所述电极端子背离所述第一极耳的一侧设有第一凹部,所述第一凹部的底面与所述第一凸部的顶端面之间的部分形成连接部,所述连接部与所述集流构件焊接并形成所述第一焊接部。
  12. 根据权利要求11所述的电池单体,其中,所述第一凹部的底面的直径为D 5,所述第一凸部的顶端面的直径为D 4,D 5小于D 4
  13. 根据权利要求7-12任一项所述的电池单体,其中,在所述集流构件的厚度方向 上,所述第一凸部整体比所述限位部更靠近所述电极组件。
  14. 根据权利要求7-12任一项所述的电池单体,其中,所述电极端子在面向所述电极组件的一侧设有环形凹部,所述环形凹部环绕所述第一凸部设置;
    所述环形凹部相对于所述限位部的面向所述电极组件的表面凹陷,并将所述限位部的至少部分与所述第一凸部隔开。
  15. 根据权利要求7-14任一项所述的电池单体,其中,所述集流构件焊接于所述第一极耳并形成第二焊接部;
    在所述集流构件的厚度方向上,所述第二焊接部与所述第一凸部的顶端面不重叠。
  16. 根据权利要求15所述的电池单体,其中,所述第二焊接部的至少部分位于所述电极端子面向所述第一极耳的一侧并与所述电极端子间隔设置。
  17. 根据权利要求7-16任一项所述的电池单体,其中,所述集流构件的直径为D 2,所述第一凸部的顶端面的直径为D 4,D 4/D 2≤0.4。
  18. 根据权利要求1-17任一项所述的电池单体,其中,所述集流构件包括集流主体和第二凸部,所述集流主体连接于所述第一极耳,所述第二凸部凸出于所述集流主体面向所述电极端子的表面,所述第二凸部的顶端面与所述电极端子相抵;所述集流主体与所述电极端子间隔设置。
  19. 根据权利要求18所述的电池单体,其中,在所述集流构件的厚度方向上,所述第二凸部凸出所述集流主体的尺寸t 3为0.05mm-0.25mm;可选地,t 3为0.1mm-0.2mm。
  20. 根据权利要求18或19所述的电池单体,其中,所述集流主体的环绕在所述第二凸部外侧的区域焊接于所述第一极耳。
  21. 根据权利要求18-20任一项所述的电池单体,其中,所述集流构件的直径为D 2,所述第二凸部的顶端面的直径为L,L/D 2≤0.4。
  22. 根据权利要求18-21任一项所述的电池单体,其中,所述电极端子包括第一凸部,所述第一凸部的顶端面与所述第二凸部的顶端面相抵。
  23. 根据权利要求18-21任一项所述的电池单体,其中,所述电极端子面向所述集流构件的一侧设有第二凹部;
    所述第二凸部的至少部分容纳于所述第二凹部,且所述第二凸部的顶端面与所述第二凹部的底面相抵。
  24. 根据权利要求18-23任一项所述的电池单体,其中,所述集流构件还包括第三凸部,所述第三凸部凸出于所述集流主体面向所述第一极耳的表面。
  25. 根据权利要求24所述的电池单体,其中,所述第三凸部和所述第二凸部关于所述集流主体对称。
  26. 根据权利要求18-23任一项所述的电池单体,其中,所述集流构件在与所述第二凸部对应的位置设有第三凹部,所述第三凹部相对于所述集流主体的面向所述第一极耳的表面凹陷。
  27. 根据权利要求1-26任一项所述的电池单体,其中,所述电极端子焊接于所述集流构件;
    所述电极端子的熔点为T 1,所述集流构件的熔点为T 2,T 1/T 2为0.8-1.1。
  28. 根据权利要求1-27任一项所述的电池单体,其中,所述电极端子包括第一凹部和位于所述第一凹部底部的连接部;
    所述集流构件焊接于所述连接部并形成第一焊接部;在所述集流构件的厚度方向上,所述第一焊接部从所述连接部背离所述集流构件的一侧至少延伸至所述集流构件的内部。
  29. 根据权利要求28所述的电池单体,其中,所述壳体包括筒体和连接于所述筒体的盖体,所述筒体环绕所述电极组件的外周设置,所述盖体设有电极引出孔,所述电极端子安装于所述电极引出孔;
    所述第一焊接部和所述盖体均为圆环状,所述盖体的外直径为D 6,所述第一焊接部的内直径为D 7
    D 6和D 7满足:0.1≤D 7/D 6≤0.6。
  30. 根据权利要求29所述的电池单体,其中,0.2≤D 7/D 6≤0.4。
  31. 根据权利要求29或30所述的电池单体,其中,D 7为5mm-14mm。
  32. 根据权利要求29-31任一项所述的电池单体,其中,所述盖体和所述筒体为一体形成结构。
  33. 根据权利要求28-32任一项所述的电池单体,其中,在所述集流构件的厚度方向上,所述第一焊接部的尺寸为h,所述连接部的厚度为D 8
    D 8和h满足:1<h/D 8≤1.5。
  34. 根据权利要求33所述的电池单体,其中,所述集流构件的用于与所述连接部焊接的区域的厚度为D 9,D 8和D 9满足:0.5≤D 9/D 8≤1.2。
  35. 根据权利要求33或34所述的电池单体,其中,D 8为0.4mm-1.2mm。
  36. 根据权利要求1-35任一项所述的电池单体,其中,所述集流构件焊接于所述第一极耳并形成第二焊接部;
    所述第一极耳环绕所述电极组件的中心轴线设置,所述第一极耳的垂直于所述中心轴线的截面为圆环形;
    所述第一极耳的外半径为R,所述第二焊接部与所述中心轴线在所述第一极耳的径向上的最小间距为D 10,D 10和R满足:0.2≤D 10/R≤0.8。
  37. 根据权利要求36所述的电池单体,其中,D 10和R满足:0.2≤D 10/R≤0.5。
  38. 根据权利要求36或37所述的电池单体,其中,D 10为3.5mm-10mm。
  39. 根据权利要求1-38任一项所述的电池单体,其中,所述集流构件的直径为D 2,所述第一极耳的直径为D 11,D 2小于D 11
  40. 根据权利要求39所述的电池单体,其中,D 2和D 11满足:0.75≤D 2/D 11≤0.97。
  41. 根据权利要求39或40所述的电池单体,其中,D 2为35mm-44mm。
  42. 一种电池,包括多个根据权利要求1-41中任一项所述的电池单体。
  43. 一种用电装置,包括根据权利要求42所述的电池,所述电池用于提供电能。
PCT/CN2022/125783 2022-10-17 2022-10-17 电池单体、电池以及用电装置 WO2024082112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125783 WO2024082112A1 (zh) 2022-10-17 2022-10-17 电池单体、电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125783 WO2024082112A1 (zh) 2022-10-17 2022-10-17 电池单体、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024082112A1 true WO2024082112A1 (zh) 2024-04-25

Family

ID=90736587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125783 WO2024082112A1 (zh) 2022-10-17 2022-10-17 电池单体、电池以及用电装置

Country Status (1)

Country Link
WO (1) WO2024082112A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265846A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 円筒形電池およびその製造方法
CN215578764U (zh) * 2021-08-23 2022-01-18 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN215988974U (zh) * 2021-08-23 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN218769959U (zh) * 2021-08-23 2023-03-28 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265846A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 円筒形電池およびその製造方法
CN215578764U (zh) * 2021-08-23 2022-01-18 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN215988974U (zh) * 2021-08-23 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN218769959U (zh) * 2021-08-23 2023-03-28 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Similar Documents

Publication Publication Date Title
CN215988974U (zh) 电池单体、电池以及用电装置
CN216085200U (zh) 电池单体、电池以及用电装置
CN216054941U (zh) 电池单体、电池以及用电设备
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023025108A1 (zh) 电池单体、电池以及用电装置
WO2023092757A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电设备
US9559341B2 (en) Rechargeable battery having a vent unit at a joint in a cap plate
US20230207992A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
WO2023025104A1 (zh) 电池单体、电池以及用电装置
US20230207984A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
WO2024082112A1 (zh) 电池单体、电池以及用电装置
WO2023023915A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN218997009U (zh) 电池单体、电池以及用电装置
WO2024082141A1 (zh) 电池单体、电池及用电设备
WO2023051731A1 (zh) 电池单体、电池以及用电装置
WO2024077630A1 (zh) 电池单体、电池及用电设备
WO2024082140A1 (zh) 端盖、电池单体、电池及用电设备
WO2024082096A1 (zh) 电池单体、电池、储能装置及用电装置
WO2023050282A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20240162558A1 (en) Battery cell, battery, electrical apparatus, and method and apparatus for manufacturing battery cell
US20230055271A1 (en) Battery cell, method and system for manufacturing a battery cell, battery and electrical device
WO2023245430A1 (zh) 电池单体、电池及用电设备
WO2024065468A1 (zh) 电池单体、电池及用电设备
WO2024098257A1 (zh) 电池单体、电池及用电装置
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置