WO2024078343A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2024078343A1
WO2024078343A1 PCT/CN2023/122168 CN2023122168W WO2024078343A1 WO 2024078343 A1 WO2024078343 A1 WO 2024078343A1 CN 2023122168 W CN2023122168 W CN 2023122168W WO 2024078343 A1 WO2024078343 A1 WO 2024078343A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
outlet grille
air
bar
air guide
Prior art date
Application number
PCT/CN2023/122168
Other languages
English (en)
French (fr)
Inventor
张震
王皓楠
宋振兴
熊志洪
张健
耿付帅
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211228549.7A external-priority patent/CN115654587A/zh
Priority claimed from CN202310730929.9A external-priority patent/CN116857728A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024078343A1 publication Critical patent/WO2024078343A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/56Casing or covers of separate outdoor units, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular to an air conditioner.
  • the air conditioner mainly consists of an outdoor unit and an indoor unit.
  • the air outlet of the outdoor unit is equipped with an air outlet grille to prevent external debris from entering the outdoor unit and affecting its normal operation, and to prevent the user's hands from touching the fan in the outdoor unit and causing safety accidents.
  • the airflow generated by the fan in the outdoor unit needs to pass through the air outlet grille to reach the outside.
  • the air outlet grille plays a vital role in the operation of the outdoor unit.
  • An air conditioner comprising an indoor unit and an outdoor unit.
  • the indoor unit comprises an indoor heat exchanger.
  • the outdoor unit comprises a compressor, an outdoor heat exchanger, a casing, an outdoor fan, an air outlet grille and an air guide.
  • the casing comprises an installation opening and an accommodation cavity, the installation opening communicating with the outside and the accommodation cavity.
  • the outdoor fan is arranged in the accommodation cavity and is opposite to the installation opening.
  • the air outlet grille is arranged at the installation opening and connected to the casing.
  • the air guide is arranged in the accommodation cavity and is located at the installation opening; the air guide is connected to the casing and extends along the circumference of the installation opening.
  • the minimum radial dimension of the air guide is defined as D 1
  • the minimum radial dimension of the air outlet grille is defined as D 2
  • the minimum radial dimension D 1 of the air guide and the minimum radial dimension D 2 of the air outlet grille satisfy: 0 ⁇ (D 2 -D 1 )/D 1 ⁇ 0.25, so as to reduce the obstruction of the air flow by the air guide.
  • FIG1 is a structural diagram of an air conditioner according to some embodiments.
  • FIG2 is a structural diagram of an outdoor unit according to some embodiments.
  • FIG3 is a partial structural diagram of an outdoor unit according to some embodiments.
  • FIG4 is a structural diagram of another outdoor unit according to some embodiments.
  • FIG5 is a partial structural diagram of another outdoor unit according to some embodiments.
  • FIG6 is a partial structural diagram of another outdoor unit according to some embodiments.
  • FIG7 is a partial structural diagram of another outdoor unit according to some embodiments.
  • FIG8 is a graph showing the influence of the value of (D 2 -D 1 )/D 1 on the air volume in an outdoor unit according to some embodiments;
  • FIG9 is a structural diagram of an air outlet grille according to some embodiments.
  • FIG10 is a structural diagram of another air outlet grille according to some embodiments.
  • FIG11 is a structural diagram of another air outlet grille according to some embodiments.
  • FIG12 is a partial structural diagram of yet another outdoor unit according to some embodiments.
  • FIG13 is a partial enlarged view of circle S in FIG12 ;
  • FIG14 is a partial enlarged view of circle Z in FIG12;
  • FIG15 is a partial structural diagram of yet another outdoor unit according to some embodiments.
  • FIG16 is a simulated diagram of pressure distribution at an outdoor unit air outlet according to some embodiments.
  • FIG17 is another simulation diagram of pressure distribution at an outdoor unit air outlet according to some embodiments.
  • FIG18 is a partial structural diagram of an air outlet grille according to some embodiments.
  • FIG19 is a simulation effect diagram of the resistance of an air outlet grille to airflow according to some embodiments.
  • FIG20 is a simulation effect diagram of another air outlet grille's resistance to airflow according to some embodiments.
  • FIG21 is a simulation effect diagram of another air outlet grille's resistance to airflow according to some embodiments.
  • FIG22 is a simulation effect diagram of another air outlet grille's resistance to airflow according to some embodiments.
  • FIG23 is a partial structural diagram of yet another outdoor unit according to some embodiments.
  • FIG24 is a partial enlarged view of circle M in FIG23;
  • FIG25 is a partial structural diagram of another air outlet grille according to some embodiments.
  • FIG26 is a simulation effect diagram of another air outlet grille's resistance to airflow according to some embodiments.
  • FIG27 is a simulation effect diagram of another air outlet grille's resistance to airflow according to some embodiments.
  • FIG. 28 is a partial structural diagram of yet another outdoor unit according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • an air conditioner 100 includes an outdoor unit 1 and an indoor unit 2 .
  • the air conditioner 100 further includes an expansion valve configured to adjust a refrigerant flow rate in a pipeline of the air conditioner 100 .
  • the indoor unit 2 includes an indoor heat exchanger and an indoor fan.
  • the outdoor unit 1 includes an outdoor heat exchanger and a compressor.
  • the compressor, condenser (indoor heat exchanger or outdoor heat exchanger), expansion valve (indoor expansion valve and outdoor expansion valve) and evaporator (outdoor heat exchanger or indoor heat exchanger) perform the refrigerant cycle of the air conditioner 100.
  • the refrigerant cycle includes a series of processes involving compression, condensation, expansion and evaporation, and circulates and supplies refrigerant to the conditioned side.
  • the gas phase refrigerant in the low temperature and low pressure state is compressed by the compressor to become the gas phase refrigerant in the high temperature and high pressure state, and the gas phase refrigerant in the high temperature and high pressure state flows into the indoor heat exchanger.
  • the indoor heat exchanger condenses the gas phase refrigerant in the high temperature and high pressure state into the liquid phase refrigerant in the high pressure state, and the heat is released to the surrounding environment during the condensation process, thereby increasing the temperature of the indoor air.
  • the expansion valve throttles and reduces the pressure of the liquid phase refrigerant in the high pressure state and turns it into a gas-liquid two-phase refrigerant in the low pressure state.
  • the outdoor heat exchanger evaporates the gas-liquid two-phase refrigerant in the low pressure state to form a gas phase refrigerant in the low temperature and low pressure state, and the gas phase refrigerant in the low temperature and low pressure state returns to the compressor to form a heating cycle.
  • the high-temperature and high-pressure gas phase refrigerant discharged by the compressor flows into the outdoor heat exchanger.
  • the outdoor heat exchanger condenses the high-temperature and high-pressure gas phase refrigerant into a medium-temperature and high-pressure supercooled liquid phase refrigerant.
  • the expansion valve converts the medium-temperature and high-pressure supercooled liquid refrigerant into a low-temperature and low-pressure gas-liquid two-phase refrigerant after throttling and reducing the pressure.
  • the indoor heat exchanger evaporates the low-temperature and low-pressure gas-liquid two-phase refrigerant to form a low-temperature and low-pressure gas phase refrigerant, and absorbs heat from the surrounding environment during the evaporation process, thereby reducing the temperature of the indoor air.
  • the low-temperature and low-pressure gas phase refrigerant returns to the compressor to form a refrigeration cycle.
  • the outdoor unit 1 during the operation of the air conditioner 100, includes an air outlet grille and an air guide, and the air guide is in cooperation with the air outlet grille at the air outlet of the outdoor unit.
  • the outdoor unit 1 outputs the airflow formed by the heat-exchanged air to the outdoor environment through the air outlet grille.
  • the air outlet grille can prevent foreign matter from entering the outdoor unit 1, thereby affecting the normal operation of the outdoor unit 1.
  • the air outlet grille can also prevent the user from directly contacting the outdoor fan of the outdoor unit 1, thereby improving the safety performance of the outdoor unit 1.
  • the air outlet grille will produce resistance to the airflow blown out of the outdoor unit 1, resulting in a loss of air volume of the outdoor unit 1, affecting the The overall performance of the outdoor unit 1, and the matching part between the air outlet grille and the air guide part will also produce resistance to the airflow blown out by the outdoor unit 1.
  • the method of optimizing the inclination angle, shape and spacing between the bars of the air outlet grille is usually adopted to reduce the resistance of the air outlet grille to the air flow blown out by the outdoor fan of the outdoor unit.
  • the air outlet grille of the outdoor unit in the related art is usually made of plastic material.
  • the height, length and other parameters of the bars of the air outlet grille made of plastic will be limited, and it is difficult to design the bar structure of the air outlet grille completely according to the air outlet direction of the outdoor fan, resulting in the air outlet grille still having a large resistance to the air flow blown out by the fan.
  • it is necessary to increase the speed of the outdoor fan which will increase the power of the outdoor fan, resulting in an increase in the operating cost of the outdoor unit.
  • an air conditioner 100 which includes an outdoor unit 1.
  • the outdoor unit 1 includes an air guide and an air outlet grille.
  • the minimum radial dimension of the air guide is defined as D 1
  • the minimum radial dimension of the air outlet grille is defined as D 2 , so that D 1 and D 2 satisfy: 0 ⁇ (D 2 -D 1 )/D 1 ⁇ 0.25, so that the obstruction of the air guide to the airflow can be reduced.
  • the outdoor unit 1 includes a housing 10.
  • the housing 10 includes an installation opening 101 and a receiving cavity 102.
  • the installation opening 101 is provided on the housing 10, and the receiving cavity 102 is defined by the housing 10.
  • the receiving cavity 102 can be communicated with the outside of the housing 10 through the installation opening 101.
  • the outdoor unit 1 further includes an outdoor fan 20, which is disposed in the accommodating chamber 102 and is disposed corresponding to the mounting opening 101.
  • the outdoor fan 20 includes a motor 202 and at least one fan blade 201, and at least one fan blade 201 is connected to the motor 202 and is disposed at intervals along the axial direction of the motor 202.
  • the motor 202 is connected to the housing 10. It is configured to drive at least one fan blade 201 to rotate.
  • at least one fan blade 201 is disposed corresponding to the mounting opening 101.
  • the outdoor unit 1 further includes an air outlet grille 30 , which is disposed at the installation opening 101 and configured to cover the installation opening 101 .
  • the air outlet grille 30 covers the installation opening 101 , the air outlet grille 30 is connected to the casing 10 .
  • the outdoor unit 1 further includes an air guide portion 40 , which is disposed in the accommodating cavity 102 and located at the mounting opening 101 .
  • the air guide portion 40 is connected to the casing 10 and extends along the circumference of the mounting opening 101 .
  • outdoor air is composed of a large number of particles (such as various gas molecules, dust, etc.), and a large number of particles are suspended in the air. In the absence of external force, a large number of particles are moving freely in the air.
  • At least one fan blade 201 rotates along the axis of the motor 202 and strikes particles in the air.
  • the struck particles are transformed from free motion to rapid movement in a preset direction, thereby generating airflow.
  • the air in front of at least one fan blade 201 (for example, the direction O in Figure 3) is continuously blown away and blown out of the outdoor unit 1 after passing through the air guide portion 40 and the air outlet grille 30, thereby forming a low-pressure area in front of at least one fan blade 201.
  • a pressure difference is formed between the front of at least one fan blade 201 and the rear thereof (for example, the direction N in Figure 3). Under the action of the pressure difference, the air behind at least one fan blade 201 will flow toward the front thereof.
  • At least one fan blade 201 Since at least one fan blade 201 continues to rotate, at least one fan blade 201 will send away the air in front of it again, and the air behind at least one fan blade 201 will flow to the front again, and this cycle will form a continuous airflow.
  • At least one fan blade 201 includes an impeller surface.
  • the initial direction of the airflow generated by the operation of the outdoor fan 20 is perpendicular to the plane where the impeller surface of the at least one fan blade 201 is located.
  • the front of at least one fan blade 201 is the side thereof facing the air outlet grille 30
  • the rear of at least one fan blade 201 is the side thereof facing away from the air outlet grille 30 .
  • the air outlet grille 30 includes at least one bar 301 and a fixing portion 302.
  • the fixing portion 302 extends along the circumference of the air outlet grille 30 and is connected to the housing 10.
  • the fixing portion 302 is configured to support and fix the air outlet grille 30.
  • At least one bar 301 is disposed in the fixing portion 302 and is connected to the fixing portion 302.
  • the airflow flows out of the air guide 40, it is divided into a first part of the airflow and a second part of the airflow.
  • the first part of the airflow such as the airflow in part A in FIG. 3, is blown onto the air outlet grille 30.
  • the air outlet grille 30 includes a plurality of bars 301
  • the first part of the airflow is blown out of the outdoor unit 1 from the gap between any two of the plurality of bars 301 of the air outlet grille 30.
  • the second part of the airflow such as the airflow in part B in FIG. 3, is blown onto at least one bar 301 and the edge of the air outlet grille. Since the second part of the airflow is subject to resistance from at least one bar 301 and the edge of the air outlet grille 30, the air volume of the outdoor unit 1 is lost and reduced.
  • the minimum radial dimension of the air guide portion 40 is defined as D 1 .
  • the minimum radial dimension of the grille 30 is defined as D 2 , and D 1 and D 2 satisfy: 0 ⁇ (D 2 ⁇ D 1 )/D 1 ⁇ 0.25.
  • the minimum radial dimension D 2 of the air outlet grille 30 is greater than the minimum radial dimension D 1 of the air guide portion 40 , so that the airflow generated by the fan 20 can reach the air outlet grille 30 under the guidance of the air guide portion 40 , and the airflow is not hindered by the air guide portion 40 or the housing 10 before reaching the air outlet grille 30 .
  • the minimum radial dimension D2 of the air outlet grille 30 is smaller than the minimum radial dimension D1 of the air guide portion 40, the air outlet grille 30 is connected to the mounting port 101, and the minimum radial dimension of the mounting port 101 can be regarded as the minimum radial dimension D2 of the air outlet grille 30.
  • the minimum radial dimension D2 of the mounting port 101 is smaller than the minimum radial dimension D1 of the air guide portion 40.
  • a third part of the airflow is formed (such as the airflow of part C in FIG6 ).
  • the third part of the airflow is blown onto the casing 10. Since the casing 10 is a closed plate, the third part of the airflow cannot be blown out through the casing 10, so that the resistance to the airflow and the loss of air volume increase, resulting in a decrease in the air volume of the indoor unit 1.
  • the minimum radial dimension D 2 of the air outlet grille 30 is greater than the minimum radial dimension D 1 of the air guide portion 40.
  • the minimum radial dimension D 2 of the air outlet grille 30 increases relative to the minimum radial dimension D 1 of the air guide portion 40, the amount of air blown out from the gap between any two bars 301 of at least one bar 301 of the air outlet grille 30 no longer increases, that is, the amount of air blown to the edge of the air outlet grille 30 no longer decreases, and there is no obvious effect on reducing the resistance of the airflow to the air outlet grille 30.
  • the continued increase of the minimum radial dimension D 2 of the air outlet grille 30 relative to the minimum radial dimension D 1 of the air guide portion 40 will increase the production cost of the air outlet grille 30 and reduce the strength of the air outlet grille 30 itself.
  • D1 and D2 satisfy: 0.05 ⁇ ( D2 - D1 ) /D1 ⁇ 0.15
  • the exponential increase of the airflow blown by the outdoor fan 20 onto at least one bar 301 of the air outlet grille 30 increases, so that after the airflow generated by the outdoor fan 20 is guided by the air guide portion 40 to blow onto the air outlet grille 30, the resistance reduction effect of the air outlet grille 30 is more obvious.
  • the resistance generated by the air outlet grille 30 to the airflow blown out by the outdoor fan 20 can be further reduced.
  • the minimum radial dimension D2 of the air outlet grille 30 increases, and the minimum radial dimension D1 of the air guide portion 40 remains unchanged, then the minimum radial dimension D2 of the air outlet grille 30 increases relative to the minimum radial dimension D1 of the air guide portion 40.
  • the coverage area of the airflow guided by the air guide portion 40 to the air outlet grille 30 remains unchanged, while the area of the air outlet grille 30 increases, so that a part of the second part of the airflow originally blown to the edge of the air outlet grille 30 (such as the airflow of the part B in FIG. 3 ) can be blown to at least one bar 301 of the air outlet grille 30 (such as the airflow of the part B in FIG.
  • the minimum radial dimension D2 of the air outlet grille 30 remains unchanged, and the minimum radial dimension D1 of the air guide portion 40 is reduced, then the minimum radial dimension D2 of the air outlet grille 30 increases relative to the minimum radial dimension D1 of the air guide portion 40.
  • the coverage area of the airflow guided by the air guide portion 40 to the air outlet grille 30 is reduced, while the area of the air outlet grille 30 remains unchanged, so that a part of the second part of the airflow originally blown to the edge of the air outlet grille 30 can be blown to at least one bar 301 of the air outlet grille 30, and blown out of the outdoor unit 1 through the gap between any two bars 301 of at least one bar 301 of the air outlet grille 30.
  • the resistance of the second part of the airflow to the air outlet grille 30 can be reduced, thereby reducing the resistance of the air outlet grille 30 to the airflow blown out of the outdoor fan 20.
  • the minimum radial dimension D2 of the air outlet grille 30 increases, and the minimum radial dimension D1 of the air guide portion 40 decreases, then the minimum radial dimension D2 of the air outlet grille 30 increases relative to the minimum radial dimension D1 of the air guide portion 40.
  • the air outlet grille 30 also includes a support portion 303.
  • the support portion 303 is coaxially arranged with the air outlet grille 30 and is configured to support at least one bar 301.
  • At least one bar 301A of the air outlet grille 30A includes at least one first bar 3011A and at least one second bar 3012A.
  • One end of the at least one first bar 3011A is connected to the support portion 303A, and the other end extends along the radial direction of the air outlet grille 30A, or extends at a predetermined angle to the radial direction of the air outlet grille 30A, and is connected to the fixing portion 302A of the air outlet grille 30A.
  • the at least one first bar 3011A has the same length in the radial direction of the air outlet grille 30A.
  • the at least one second bar 3012A is spaced apart around the axis of the air outlet grille 30A.
  • the at least one bar 301A includes a plurality of second bars
  • the plurality of second grating bars 3012A are arranged at intervals along the radial direction of the air outlet grille 30A
  • at least one first grating bar 3011A is connected to each second grating bar 3012A.
  • the minimum radial dimension D2 of the air outlet grille 30A is the radial dimension of the air outlet grille 30A.
  • At least one bar 301B of the air outlet grille 30B includes at least one first bar 3011B and at least one second bar 3012B, one end of at least one first bar 3011B is connected to the support portion 303B, and the other end extends toward the fixing portion 302B and is connected to the fixing portion 302B, and at least one first bar 3011B protrudes along the circumference of the air outlet grille 30B (such as the X direction in FIG. 10 ).
  • At least one second bar 3012B is arranged around the center of the air outlet grille 30B, and when at least one bar 301B includes a plurality of second bars 3012B, the plurality of second bars 3012B are spaced apart and distributed along the radial direction of the air outlet grille 30B. At least one first bar 3011B is connected to each second bar 3012B.
  • the air outlet grille 30B includes a short axis and a long axis, wherein the short axis is the axis with the shortest radial dimension of the air outlet grille 30B, and the long axis is the axis with the longest radial dimension of the air outlet grille 30B.
  • the minor axis dimension of the air outlet grille 30B is defined as D 2
  • the major axis dimension is defined as D 4
  • the minimum radial dimension of the air outlet grille 30 is the minor axis dimension D 2 .
  • At least one bar 301C of the air outlet grille 30C includes at least one first bar 3011C and at least one second bar 3012C. At least one first bar 3011C is connected to the support portion 303C. When at least one first bar 3011C includes a plurality of first bars 3011C, two of the plurality of first bars 3011C are connected to the fixing portion 302C to form a closed area, and at least one second bar 3012C is disposed in the closed area. At least one second grid bar 3012C includes a first sub-grid bar 30121 and a second sub-grid bar 30122.
  • first sub-grid bar 30121 is connected to the fixing portion 302C, and the other end is connected to one of the two adjacent first grid bars 3011C; one end of the second sub-grid bar 30122 is connected to the fixing portion 302C, and the other end is connected to the other of the two adjacent first grid bars 3011C.
  • the first sub-grid bar 30121 and the second sub-grid bar 30122 are cross-connected.
  • the first sub-bar 30121 includes a first connecting portion 30121E and a second connecting portion 30121F, the first connecting portion 30121E is a straight line segment, and the first sub-bar 30121 is connected to the fixed portion 302C through the first connecting portion 30121E; the second connecting portion 30121F is an arc line, and the first sub-bar 30121 is connected to the first bar 3011C through the second connecting portion 30121F.
  • the minimum radial dimension D2 of the air outlet grille 30C is the radial dimension of the air outlet grille 30C.
  • the minimum radial dimension D 2 of the air outlet grille 30 satisfies: 400 mm ⁇ D 2 ⁇ 800 mm.
  • the dimension of the second bar 3012 in the axial direction of the fixing portion 302 is defined as a first dimension H 1
  • the dimension of the first bar 3011 in the axial direction of the fixing portion 302 is defined as a second dimension H 2 .
  • the first dimension H 1 satisfies: H 1 ⁇ 6 mm. In this way, the demolding requirements of the air outlet grille 30 can be guaranteed.
  • the first dimension H1 also satisfies: 0.011 ⁇ H1 / D2 ⁇ 0.014 ; the second dimension H2 satisfies: 0.011 ⁇ H2 / D2 ⁇ 0.014 .
  • the length of the second grid bar 3012 and the first grid bar 3011 in the axial direction of the fixing portion 302 is reduced, thereby reducing the length of the path through which the airflow flows through the gaps between the multiple grid bars 301 of the air outlet grille 30, thereby reducing the resistance of the airflow in the process of flowing through the air outlet grille 30, and further reducing the resistance of the air outlet grille 30 to the airflow blown out by the outdoor fan 20 of the outdoor unit 1, which can reduce the operating power of the outdoor fan 20 and reduce the operating cost of the outdoor unit 1.
  • the second dimension H2 and the first dimension H1 satisfy: H2 ⁇ H1 , and the end of the first grid bar 3011 away from the outdoor fan 20 is connected to the side of the second grid bar 3012 on the end away from the outdoor fan 20, close to the outdoor fan 20.
  • the end of the first grid bar 3011 close to the outdoor fan 20 is connected to the side of the second grid bar 3012 on the end close to the outdoor fan 20, away from the outdoor fan 20.
  • the distance between the end face of the end of the first grid bar 3011 away from the outdoor fan 20 and the end face of the end of the second grid bar 3012 away from the outdoor fan 20 is 0.2 mm
  • the distance between the end face of the end of the first grid bar 3011 close to the outdoor fan 2 and the end face of the second grid bar 3012 close to the fan 2 is 0.2 mm.
  • the connection between the first grid bar 3011 and the second grid bar 3012 can be made tighter, thereby increasing the structural strength of the air outlet grille 30 .
  • the motor 202 drives at least one fan blade 201 to rotate, and the diameter of the largest circular ring formed by the point on at least one fan blade 201 that is farthest from the axis of the outdoor fan 20 and rotates around the axis of the fan 20 is defined as D 3 .
  • D 3 and D 1 satisfy: 0.02 ⁇ (D 1 -D 3 )/D 3 ⁇ 0.1, and D 1 -D 3 ⁇ 12 mm.
  • the diameter D 3 of the largest circular ring formed by the rotation of at least one fan blade 201 can be made smaller than the minimum radial dimension D 1 of the air guide portion 40, so as to meet the assembly requirements of at least one fan blade 201, so that at least one fan blade 201 can be installed in the air guide portion 40 and will not collide with the air guide portion 40 during operation.
  • at least one fan blade 201 can be installed in the air guide portion 40 and will not collide with the air guide portion 40 during operation.
  • at least one fan blade 201 can be installed in the air guide portion 40 and will not collide with the air guide portion 40 during operation.
  • the airflow generated by one fan blade 201 will not be too dispersed, so that the airflow generated by the fan 20 will not collide too much with the air guide 40, the housing 10 and the air outlet grille 30, reducing the resistance to the airflow and the loss of air volume.
  • the diameter D 3 of the largest circular ring formed by the rotation of at least one blade 201 is smaller than the minimum radial dimension D 1 of the air guide portion 40. In this way, the airflow generated by at least one blade 201 will be too dispersed, so that the airflow generated by at least one blade 201 collides too much with the air guide portion 40, the housing 10 and the air outlet grille 30, thereby increasing the resistance to the airflow and the loss of air volume.
  • the dimension of the fixing portion 302 in the axial direction of the mounting opening 101 is L 1 , wherein L 1 satisfies: 5 mm ⁇ L 1 ⁇ 60 mm.
  • the air guide portion 40 includes a first sub-air guide portion 401 and a second sub-air guide portion 402.
  • the first sub-air guide portion 401 and the second sub-air guide portion 402 are connected, the first sub-air guide portion 401 is connected to the housing 10, and the second sub-air guide portion 402 is arranged on a side of the first sub-air guide portion 401 away from the housing 10.
  • the radial dimension of the first sub-air guide portion 401 gradually decreases in the direction thereof toward the second part 402.
  • the first sub-air guide portion 401 of the air guide portion 40 guides the airflow blown out by the fan 20, so that the airflow can be blown toward the air outlet grille 30, thereby reducing the collision between the airflow and the air guide portion 40, further reducing the resistance to the airflow, and increasing the air volume of the outdoor unit 1.
  • the dimension of the first sub-air guide portion 401 in the axial direction of the mounting opening 101 is defined as L 2 , and L 2 satisfies: 0 ⁇ L 2 ⁇ 20 mm.
  • L 2 satisfies: 0 ⁇ L 2 ⁇ 20 mm.
  • the first sub-air guide 401 will cause the airflow blown out by the outdoor fan 20 to be too dispersed after being guided by the first sub-air guide 401, resulting in an increase in the air volume blown toward the fixed portion 302 of the air outlet grille 30, thereby increasing the resistance to the airflow and the loss of air volume.
  • the first sub-air guide 401 of the air guide 40 includes an inner circumferential surface 4011, which is a circumferential surface of the first sub-air guide 401 facing the side of the installation opening 101.
  • the angle between the normal of the inner circumferential surface 4011 and the axis of the installation opening 101 is defined as ⁇ , and ⁇ satisfies: 75° ⁇ 90°, and ⁇ is, for example, 75°, 80°, 85° or 90°.
  • the first sub-air guide 401 can blow the airflow blown out by the outdoor fan 20 toward the air outlet grille 30 along the inner circumferential surface 4011, reduce the collision between the airflow and the air guide 40, further reduce the resistance of the airflow, and increase the air volume of the outdoor unit 1.
  • the axis of the installation opening 101 can be parallel to the axis of the installation opening 101.
  • the inner circumferential surface 4011 of the first sub-air guide portion 401 will extend on the central axis of the installation opening 101 in a direction away from the accommodating cavity 102, losing the function of guiding the airflow diffusion, causing the airflow to blow onto the air guide portion 40 and collide with the air guide portion 40, increasing the resistance of the air guide portion 40, thereby increasing the air volume loss of the outdoor unit 1.
  • the radial dimension of the first sub-air guide portion 401 gradually increases in the direction toward the second sub-air guide portion 402, and the inner circumferential surface 4011 of the first sub-air guide portion 401 makes the airflow blown out by the fan 20 concentrate toward the central axis of the mounting port 101, resulting in the inner circumferential surface 4011 of the first sub-air guide portion 401 blocking the airflow blown out by the fan 20, thereby increasing the resistance to the airflow and the loss of air volume.
  • the minimum radial dimension of the second sub-air guiding portion 402 is equal to the minimum radial dimension D 1 of the air guiding portion 40 .
  • the minimum radial dimension D2 of the air outlet grille 30 is the radial dimension of the smallest radius of the circle formed by the rotation of each point on the fixed portion 302 of the air outlet grille 30 around the center of the air outlet grille 30.
  • the minimum radial dimension D1 of the air guide portion 40 is the radial dimension of a circle with the smallest radius among the circles formed by the points on the edge of the air guide portion 40 rotating around the center of the air guide portion 40 .
  • the pressure applied to the fixed portion 302 of the air outlet grille 30 (such as position D in FIG16 ) is, for example, 5 Pa. At this time, the air outlet grille 30 has a large resistance to the airflow.
  • a part of the second part of the airflow originally blown to the fixed portion 302 of the air outlet grille 30 can be blown to at least one bar 301 of the air outlet grille 30, and blown out of the outdoor unit 1 through the gap between any two bars 301 of at least one bar 301 of the air outlet grille 30.
  • the pressure at the fixed portion 302 of the air outlet grille 30 (such as the position D in Figure 17) is close to 0Pa.
  • the angle between the extension directions of two adjacent first bars 3011 among the plurality of first bars 3011 is defined as ⁇ , and ⁇ satisfies: 7° ⁇ 11°, and ⁇ is, for example, 7°, 8°, 9°, 10°, or 11°.
  • the first bars 3011 can support at least one second bar 3012 to ensure that at least one second bar 3012 is not easily deformed in its radial direction.
  • the number of first bars 3011 included in the air outlet grille 30 is reduced, thereby reducing the resistance of the first bars 3011 to the airflow blown out by the outdoor fan 20.
  • the angle ⁇ between the extension directions of two adjacent first bars 3011 among the multiple first bars 3011 may be equal or unequal. In some embodiments of the present disclosure, the angle ⁇ between the extension directions of two adjacent first bars 3011 among the multiple first bars 3011 is equal, that is, the multiple first bars 3011 are arranged at equal intervals along the circumference of the fixed portion 302.
  • At least one first grid bar 3011 includes at least one first rib 30111 and at least one second rib 30112, and at least one first rib 30111 and at least one second rib 30112 are sequentially spaced in the circumferential direction of the fixing portion 302. At least one first rib 30111 and at least one second rib 30112 extend in the radial direction of the fixing portion 302, and the length of at least one first rib 30111 is greater than the length of at least one second rib 30112.
  • One end of at least one first rib 30111 and at least one second rib 30112 is connected to the fixing portion 302 , the other end of at least one first rib 30111 is connected to the supporting portion 303 , and at least one first rib 30111 is cross-connected with a plurality of second bars 3012 .
  • the distance from the axis of the fixing portion 302 to the end of the second rib 30112 away from the fixing portion 302 is defined as a first distance L 3 , and the first distance L 3 satisfies: 0.55 ⁇ 2L 3 /D 2 ⁇ 0.7.
  • the ratio of the first distance L3 to the radius of the fixing portion 302 may increase as the minimum radial dimension D2 of the air outlet grille 30 increases.
  • the range of the first distance L3 is determined by the above conditions, and the length range of the second rib 30112 is determined by the minimum radial dimension D2 of the air outlet grille 30A and the range of the first distance L3 .
  • the length of the second rib 30112 can be reduced and meet the requirements of mold processing and installation specifications.
  • the resistance of the second rib 30112 in the air outlet grille 30 to the airflow can be further reduced, thereby further reducing the resistance of the air outlet grille 30 to the airflow blown out by the fan 20.
  • the plurality of second bars 3012 further include a first circumferential rib 30123 , a second circumferential rib 30124 and a third circumferential rib 30125 .
  • One of the plurality of second bars 3012 between the fixing portion 302 and the supporting portion 303 and close to the fixing portion 302 is a first circumferential rib 30123, and the first circumferential rib 30123 is connected to each of the first bars 3011.
  • One of the plurality of second bars 3012 between the end of the second rib 30112 away from the fixing portion 302 and the axis of the air outlet grille 30 and close to the fixing portion 302 is a second circumferential rib 30124.
  • the third circumferential rib 30125 is connected to the end of the second rib 30112 away from the fixing portion 302, and the third circumferential rib 30125 and the second circumferential rib 30124 are adjacent to each other in the radial direction of the air outlet grille 30 and are arranged at intervals.
  • the radial distance between any two adjacent second bars 3012 in the plurality of second bars 3012 in the air outlet grille 30 is the same as the radial distance between a second bar 3012 in the plurality of second bars 3012 close to the fixing portion 302 and the fixing portion 302 in the air outlet grille 30 .
  • each second grid bar 3012 can be determined by determining at least one of the positional relationship between the first circumferential rib 30123 and the fixing portion 302 or the positional relationship between the second circumferential rib 30124 and the fixing portion 302 .
  • the first circumferential rib 30123 includes a first arc segment 30123Q, where the first arc segment 30123Q is an arc line of the first circumferential rib 30123 located between two adjacent first bars 3011 , for example, between adjacent first rib 30111 and second rib 30112 .
  • the arc length of the first arc segment 30123Q is defined as R 1 , and the arc length R 1 satisfies: 0.15 ⁇ 2R 1 /D 2 ⁇ 0.2. It should be noted that the ratio of the arc length R 1 to the radius of the outlet fixing portion 302 may increase as the minimum radial dimension D 2 of the outlet grille 30 increases.
  • the range of the arc length R1 of the first arc segment 30123Q is determined by the above conditions.
  • the radius of the first arc segment 30123Q can be determined, that is, the radius of the first circumferential rib 30123 can be determined, thereby determining the spacing between the first circumferential rib 30123 and the fixed portion 302, and further determining the spacing between any two adjacent second bars 3012.
  • the second circumferential rib 30124 includes a second arc segment 30124Q, and the second arc segment 30124Q is an arc of the second circumferential rib 30124 located between two adjacent first ribs 30111 .
  • the arc length of the second arc segment 30124Q is defined as R 2 , and the arc length R 2 satisfies: 0.15 ⁇ 2R 2 /D 2 ⁇ 0.2. It should be noted that the ratio of the arc length R 2 to the radius of the fixing portion 302 may increase as the minimum radial dimension D 2 of the air outlet grille 30 increases.
  • the range of the arc length R2 of the second arc segment 30124Q is determined by the above conditions.
  • the radius of the second arc segment 30124Q can be determined, that is, the radius of the second circumferential rib 30124 can be determined.
  • the radius of the third circumferential rib 30125 can be determined, so that the spacing between the second circumferential rib 30124 and the third circumferential rib 30125 can be determined, and then the spacing between any two adjacent second bars 3012 can be determined.
  • the spacing between any two adjacent second bars 3012 can be determined, so that the spacing between any two adjacent second bars 3012 is increased while the air outlet grille 30 meets the requirements of mold processing and installation specifications, thereby facilitating the airflow blown out of the outdoor fan 20 to flow out of the air outlet grille 30, thereby reducing the resistance of the air outlet grille 30 to the airflow blown out of the outdoor fan 20.
  • At least one second grid bar 3012 further includes a fourth circumferential rib 30126, and the fourth circumferential rib 30126 is disposed near the fixing portion 302.
  • the opening of the end of the fourth circumferential rib 30126 near the outdoor fan 20 is smaller than the opening of the end away from the outdoor fan 20, that is, the radial dimension of the fourth circumferential rib 30126 gradually decreases in the direction away from the outdoor fan 20.
  • the ratio of the radius J of at least one second grid bar 3012 to the first distance L 3 satisfies: 0.28 ⁇ J/L 3 ⁇ 0.44.
  • the airflow is guided by the fourth circumferential rib 30126 , and the vortex generated by the airflow at the fourth circumferential rib 30126 is reduced, the resistance encountered by the airflow at this point is reduced, and the flow rate is also more stable.
  • At least one second grid bar 3012 also includes a fifth circumferential rib 30127, which is located in the middle position of the fixed portion 302 and the supporting portion 303 in the radial direction of the air outlet grille 30.
  • the airflow at this position flows smoothly. Therefore, the radial dimension of the fifth circumferential rib 30127 does not change in the direction away from the outdoor fan 20.
  • the ratio of the radius J of at least one second grid bar 3012 to the first distance L 3 satisfies: 0.44 ⁇ J/L 3 ⁇ 0.78.
  • At least one second grid bar 3012 further includes a sixth circumferential rib 30128, which is located near the support portion 303, and an opening at one end of the sixth circumferential rib 30128 near the outdoor fan 20 is larger than an opening at an end away from the outdoor fan 20, that is, a radial dimension of the sixth circumferential rib 30128 gradually increases in a direction away from the outdoor fan 20, so that the sixth circumferential rib 30128 can guide the wind flowing to the position of the sixth circumferential rib 30128.
  • the ratio of the radius J of at least one second grid bar 3012 to the first distance L 3 satisfies: J/L 3 ⁇ 0.78.
  • the airflow is guided by the sixth circumferential rib 30128 , and the vortex generated by the airflow at the sixth circumferential rib 30128 is reduced, the resistance encountered by the airflow at this point is reduced, and the flow rate is also more stable.
  • the projection of the axis of at least one second grid bar 3012 on its inner wall surface is a first straight line segment.
  • the angle C 1 between the extension line of the first straight line segment and the axis of at least one second grid bar 3012 is 75-160 ⁇ (J/L 3 ).
  • At least one first grid bar 3011 includes a wind guide surface 3013.
  • the wind guide surface 3013 is the side of two adjacent first grid bars 3011 facing each other.
  • the wind guide surface 3013 includes a first side edge 30131 and a second side edge 30132, and the second side edge 30132 is located on a side of the first side edge 30131 away from the outdoor fan 20.
  • the wind guide surface 3013 is perpendicular to the end surface of the fixing portion 302 facing the air outlet grille 30 .
  • an angle ⁇ is formed between the wind guide surface 3013 and the end surface of the fixing portion 302 facing the air outlet grille 30, that is, in the axial direction of the fixing portion 302, along the rotation direction of the outdoor fan 20 (such as the direction Y in FIG. 24), the second side edge 30132 is located on one side of the first side edge 30131.
  • the angle ⁇ satisfies: 80° ⁇ 90°, for example, the angle ⁇ can be 80°, 82°, 84°, 85°, 86° or 89°. In this way, the wind guide surface 3013 can be conducive to guiding the airflow blown out by the outdoor fan 20, thereby reducing the resistance of the air outlet grille 30 to the airflow blown out by the outdoor fan 20.
  • the dimension of the fixing portion 302 in the axial direction is defined as a fourth dimension H 4 , and the fourth dimension H 4 satisfies: 5 mm ⁇ H 4 ⁇ 60 mm.
  • the fourth dimension H 4 may be 5 mm, 10 mm, 20 mm, 30 mm, 40 mm, 50 mm or 60 mm. In this way, the resistance of the fixing portion 302 to the airflow may be reduced.
  • the fixing portion 302 includes at least one through hole 3021, and the at least one through hole 3021 is disposed on a side of the fixing portion 302 away from the outdoor fan 20. In this way, the airflow flowing to the fixing portion 302 can flow out through the at least one through hole 3021, so as to further reduce the resistance of the fixing portion 302 to the airflow blown out by the outdoor fan 20.
  • the dimension of the through hole 3021 along the axial direction of the fixing portion 302 is defined as L 4 , and L 4 satisfies: 0.023 ⁇ 2L 4 /D 2 ⁇ 0.027.
  • the maximum dimension of the through hole 3021 along the circumference of the fixing portion 302 is defined as L 5 , and L 5 satisfies: 0.09 ⁇ 2L 5 /D 2 ⁇ 0.1. In this way, the area of the through hole 3021 can be made larger, which is more conducive to the airflow flowing out of the through hole 3021 .
  • Table 1 is a comparison table of size parameters and performance parameters of outdoor units according to some embodiments. As shown in Table 1, the size relationship between the air guide 40 and the air outlet grille 30 is simulated, and in some embodiments of the present disclosure, scheme 1 and scheme 2 are provided.
  • the minimum radial dimension D1 of the air guide 40 in scheme 1 is equal to the minimum radial dimension D1 of the air guide 40 in scheme 2, and the minimum radial dimension D2 of the air outlet grille 30 in scheme 1 is 40 mm smaller than the minimum radial dimension D2 of the air outlet grille 30 in scheme 2.
  • the value of ( D2 - D1 )/ D1 in scheme 2 is about 0.088
  • the value of ( D2 - D1 )/ D1 in scheme 1 is about 0.023
  • the value of ( D2 - D1 )/ D1 in scheme 2 is 0.065 greater than the value of ( D2 - D1 )/ D1 in scheme 1.
  • the air volume of outdoor unit 1 reaches the same value, for example, 4626m3/h.
  • the speed of fan 20 in scheme 1 is 681rpm
  • the speed of fan 20 in scheme 2 is 634rpm, that is, to achieve the same air volume
  • the speed of fan 20 required in scheme 2 is 47rpm lower than the speed of fan 20 required in scheme 1.
  • the noise generated by outdoor unit 1 in scheme 1 is 56.8dB
  • the noise generated by outdoor unit 1 in scheme 2 is 54.7dB
  • the noise generated by outdoor unit 1 in scheme 2 is 2.1dB lower than the noise generated by outdoor unit 1 in scheme 1.
  • the diameter of the largest circular ring formed by the rotation of the fan blade 201 is D 3 , and the value of D 3 is 600 mm.
  • the dimension of the fixing portion 302 of the air outlet grille 30 in the axial direction of the mounting opening 101 is L 1 , and L 1 is 30 mm.
  • the minimum radial dimension D 1 of the air guide portion 40 in Scheme 2 the diameter D 3 of the largest circle formed by the rotation of the fan blade 201 , and the dimension L 1 of the fixing portion 302 of the air outlet grille 30 in the axial direction of the mounting opening 101 are consistent with those in Scheme 1.
  • the airflow generated by the fan 20 is guided by the air guide part 40 to blow onto the air outlet grille 30, and the resistance of the air outlet grille 30 is reduced, so the air volume loss is reduced, the air volume of the outdoor unit 1 is increased, and the heat exchange efficiency of the outdoor unit 1 is improved.
  • the housing 10 includes a panel 11, the panel 11 includes a first plate body 111, a second plate body 112 and a third plate body 113, and the first plate body 111, the second plate body 112 and the third plate body 113 are connected in sequence along the radial direction of the installation port 101.
  • the first plate 111 is arranged around the second plate 112, the second plate 112 is arranged around the third plate 113, the third plate 113 is arranged on the side of the first plate 111 facing the accommodating cavity 102, and the mounting opening 101 is opened on the third plate 113.
  • the axial dimension of the outdoor unit 1 at the mounting opening 101 is smaller than the sum of the axial dimensions of the fixing portion 302 of the air outlet grille 30 and the housing 10 at the mounting opening 101, so that the demand for small-volume design of the outdoor unit 1 can be met.

Abstract

提供一种空调器(100),空调器(100)包括室内机(2)和室外机(1)。室内机(2)包括室内换热器。室外机(1)包括压缩机、室外换热器、机壳(10)、室外风机(20)、出风格栅(30)和导风部(40)。机壳(10)包括安装口(101)和容纳腔(102),安装口(101)连通外部与容纳腔(102)。室外风机(20)设置于容纳腔(102)内,且与安装口(101)相对。出风格栅(30)设置于安装口(101)处,且与机壳(10)连接。导风部(40)设置于容纳腔(102)内,且位于安装口(101)处;导风部(40)与机壳(10)连接,且沿安装口(101)的周向延伸。其中,定义导风部(40)的最小径向尺寸为D1,出风格栅(30)的最小径向尺寸为D2,导风部(40)的最小径向尺寸D1和出风格栅(30)的最小径向尺寸D2满足:0≤(D2-D1)/D1≤0.25,以减小导风部(40)对气流的阻碍。

Description

空调器
本申请要求于2022年10月09日提交的、申请号为202211228549.7的中国专利申请的优先权、要求于2023年06月19日提交的、申请号为202310730929.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节技术领域,尤其涉及一种空调器。
背景技术
空调主要包括室外机和室内机,室外机的出风口处设置有出风格栅,这样,可以避免外部的杂物进入室外机内影响室外机正常运转,且可以避免用户的手接触到室外机内的风机,造成安全事故,同时,室外机中的风机产生的气流需要通过出风格栅到达室外。出风格栅作为组成室外机的重要部件,在室外机运行中起到至关重要的作用。
发明内容
提供一种空调器,所述空调器包括室内机和室外机。所述室内机包括室内换热器。所述室外机包括压缩机、室外换热器、机壳、室外风机、出风格栅和导风部。所述机壳包括安装口和容纳腔,所述安装口连通外部与所述容纳腔。所述室外风机设置于所述容纳腔内,且与所述安装口相对。所述出风格栅设置于所述安装口处,且与所述机壳连接。所述导风部设置于所述容纳腔内,且位于所述安装口处;所述导风部与所述机壳连接,且沿所述安装口的周向延伸。其中,定义所述导风部的最小径向尺寸为D1,所述出风格栅的最小径向尺寸为D2,所述导风部的最小径向尺寸D1和所述出风格栅的最小径向尺寸D2满足:0≤(D2-D1)/D1≤0.25,以减小所述导风部对气流的阻碍。
附图说明
图1为根据一些实施例的一种空调器的结构图;
图2为根据一些实施例的一种室外机的结构图;
图3为根据一些实施例的一种室外机的局部结构图;
图4为根据一些实施例的另一种室外机的结构图;
图5为根据一些实施例的另一种室外机的局部结构图;
图6为根据一些实施例的又一种室外机的局部结构图;
图7为根据一些实施例的又一种室外机的局部结构图;
图8为根据一些实施例的一种室外机中(D2-D1)/D1的值对风量影响关系图;
图9为根据一些实施例的一种出风格栅的结构图;
图10为根据一些实施例的另一种出风格栅的结构图;
图11为根据一些实施例的又一种出风格栅的结构图;
图12为根据一些实施例的又一种室外机的局部结构图;
图13为图12中圈S的局部放大图;
图14为图12中圈Z的局部放大图;
图15为根据一些实施例的又一种室外机的局部结构图;
图16为根据一些实施例的一种室外机出风口压力分布模拟图;
图17为根据一些实施例的另一种室外机出风口压力分布模拟图;
图18为根据一些实施例的一种出风格栅的局部结构图;
图19为根据一些实施例的一种出风格栅对气流的阻力的仿真效果图;
图20为根据一些实施例的另一种出风格栅对气流的阻力的仿真效果图;
图21为根据一些实施例的又一种出风格栅对气流的阻力的仿真效果图;
图22为根据一些实施例的又一种出风格栅对气流的阻力的仿真效果图;
图23为根据一些实施例的又一种室外机的局部结构图;
图24为图23中圈M的局部放大图;
图25为根据一些实施例的另一种出风格栅的局部结构图;
图26为根据一些实施例的又一种出风格栅对气流的阻力的仿真效果图;
图27为根据一些实施例的又一种出风格栅对气流的阻力的仿真效果图;
图28为根据一些实施例的又一种室外机的局部结构图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如图1所示,在一些实施例中,空调器100包括室外机1和室内机2。
在一些实施例中,空调器100还包括膨胀阀,膨胀阀被配置为调节空调器100的管路内的冷媒流量。
在一些实施例中,室内机2包括室内换热器和室内风扇。室外机1包括室外换热器和压缩机。
压缩机、冷凝器(室内换热器或室外换热器)、膨胀阀(室内膨胀阀和室外膨胀阀)和蒸发器(室外换热器或室内换热器)来执行空调器100的冷媒循环。冷媒循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向被调节侧循环供应冷媒。
当空调器100运行在制热模式时,低温低压状态的气相冷媒经压缩机压缩后变为高温高压的气相冷媒,高温高压的气相冷媒流入室内换热器。室内换热器将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量随着冷凝过程释放到周围环境,从而使室内空气的温度升高。膨胀阀将高压状态的液相冷媒节流降压之后变成低压状态的气液两相态冷媒,室外换热器将低压状态的气液两相态冷媒蒸发形成低温低压的气相冷媒,低温低压状态的气相冷媒返回到压缩机中,形成制热循环。
当空调器100运行在制冷模式时,压缩机排出的高温高压的气相冷媒流入室外换热器。室外换热器将高温高压的气相冷媒冷凝为中温高压状态的过冷液相冷媒,膨胀阀将中温高压过冷液态冷媒在经过节流降压之后变成低温低压气液两相态冷媒,室内换热器将低温低压的气液两相态冷媒蒸发形成低温低压的气相冷媒,且蒸发过程中从周围环境中吸取热量,使室内空气的温度降低。低温低压的气相冷媒返回到压缩机中,形成制冷循环。
在一些实施例中,空调器100在运行过程中,室外机1包括出风格栅和导风部,导风部在室外机出风口处于出风格栅配合。室外机1将换热后的空气形成的气流通过出风格栅输出到室外环境中。出风格栅可以防止异物进入室外机1中,导致影响室外机1正常运转。出风格栅还可以避免用户与室外机1的室外风扇直接接触,提高了室外机1的安全性能。
但是,出风格栅对室外机1吹出的气流会产生阻力,造成了室外机1的风量的损失,影响了 室外机1的整机性能,并且,出风格栅与导风部的配合处同样会对室外机1吹出的气流产生阻力。
相关技术中,在室外机的设计生产中,通常采用优化出风格栅的栅条的倾斜角度、形状和栅条之间的间距的方法来减小出风格栅造成的对室外机的室外风机吹出的气流的阻力,例如,为了降低生产成本,相关技术中的室外机的出风格栅通常采用塑料材料制成。然而受制于模具加工和安装规范的要求,例如,料制成的出风格栅的栅条的高度、长度等参数将受到限制,较难做到出风格栅的栅条结构完全按照室外风机的出风方向设计,导致出风格栅对风机吹出的气流的阻力仍然较大。为满足室外机吹出的风量的需求,需要提高室外风机的转速,从而会提高室外风机的功率,导致室外机的运行成本增加。
为解决上述问题,本公开一些实施例一种空调器100,空调器100包括室外机1。室外机1包括导风部和出风格栅,在本公开一些实施例中,将导风部的最小径向尺寸定义为D1,并将出风格栅的最小径向尺寸定义为D2,使得D1和D2满足:0≤(D2-D1)/D1≤0.25,这样,可以减小导风部对气流的阻碍。
如图2所示,室外机1包括机壳10,在本公开一些实施例中,机壳10包括安装口101和容纳腔102。安装口101设置于机壳10上,容纳腔102由机壳10限定而成,容纳腔102可以通过安装口101与机壳10的外部连通。
室外机1还包括室外风机20,室外风机20设置于容纳腔102内,且与安装口101对应设置。在本公开一些实施例中,室外风机20包括电机202和至少一个扇叶201,至少一个扇叶201与电机202相连,且沿电机202的轴向间隔设置。电机202与机壳10相连。被配置为驱动至少一个扇叶201转动。在本公开一些实施例中,至少一个扇叶201与安装口101对应设置。
室外机1还包括出风格栅30,出风格栅30设置于安装口101处,被配置为盖合安装口101,当出风格栅30与安装口101盖合时,出风格栅30与机壳10连接。
室外机1还包括导风部40,导风部40设置于容纳腔102内,且位于安装口101处,导风部40与机壳10连接,且沿安装口101的周向延伸。
可以理解的是,室外空气由大量微粒(例如各种气体分子、灰尘等)组成,大量微粒悬浮在空气中,在没有外力介入的情况下,大量微粒都在空气中做着自由运动。
如图3所示,在本公开一些实施例中,当室外风机20运行时,至少一个扇叶201沿电机202的轴转动,并撞击空气中的微粒,被撞击到的微粒由自由运动转变成沿预设方向快速移动,从而产生了气流。
至少一个扇叶201的前方(例如图3中O方向)的空气被不断吹走,经导风部40与出风格栅30后被吹出室外机1,从而在至少一个扇叶201的前方形成了低气压区域,此时至少一个扇叶201的前方与其后方(例如图3中N方向)形成了气压差,在气压差的作用下,至少一个扇叶201的后方的空气会向其前方流动。
由于至少一个扇叶201继续转动,因此,至少一个扇叶201会再次将其前方的空气送走,至少一个扇叶201的后方的空气会再次向其前方流动,如此循环,便形成了不断的气流。
至少一个扇叶201包括叶轮面,在本公开一些实施例中,室外风机20运转产生的气流的流动的初始方向,垂直于至少一个扇叶201的叶轮面所在的平面。
需要说明的是,至少一个扇叶201的前方为其朝向出风格栅30的一侧,至少一个扇叶201的后方为其背离出风格栅30的一侧。
如图3所示,在本公开一些实施例中,出风格栅30包括至少一个栅条301和固定部302。固定部302沿出风格栅30的周向延伸,且与机壳10相连,固定部302被配置为支撑和固定出风格栅30。至少一个栅条301设置于固定部302内,且与固定部302相连。
在本公开一些实施例中,气流在流出导风部40后,被分为第一部分的气流和第二部分的气流。第一部分的气流,例如图3中A部分的气流,吹到出风格栅30上,当出风格栅30包括多个栅条301时,第一部分的气流从出风格栅30的多个栅条301中的任意两个栅条301之间的间隙吹出室外机1。第二部分的气流,例如图3中B部分的气流,被吹到至少一个栅条301上以及出风格栅的边缘处。由于第二部分的气流会受到至少一个栅条301和出风格栅30的边缘的阻力,造成了吹出室外机1的风量损失和减小。
如图4和图5所示,在本公开一些实施例中,导风部40的最小径向尺寸定义为D1,出风格 栅30的最小径向尺寸定义为D2,D1和D2满足:0≤(D2-D1)/D1≤0.25。这样,出风格栅30的最小径向尺寸D2大于导风部40的最小径向尺寸D1,可以使风机20产生的气流在导风部40的引导下到达出风格栅30,且气流在到达出风格栅30前不受导风部40或机壳10的阻碍。
需要说明的是,如图6所示,当D1和D2满足:(D2-D1)/D1<0时,出风格栅30的最小径向尺寸D2小于导风部40的最小径向尺寸D1,出风格栅30与安装口101连接,安装口101的最小径向尺寸可以视作出风格栅30的最小径向尺寸D2,此时,安装口101的最小径向尺寸D2小于导风部40的最小径向尺寸D1,室外风机20产生的气流在流出导风部40后,形成了第三部分的气流(如图6中C部分的气流),第三部分的气流被吹到机壳10上,由于机壳10为封闭的板材,第三部分的气流无法通过机壳10吹出,使得气流受到的阻力以及损失的风量增加,导致室内机1的出风量减小。
如图7所示,当D1和D2满足:(D2-D1)/D1>0.25时,出风格栅30的最小径向尺寸D2大于导风部40的最小径向尺寸D1,随着出风格栅30的最小径向尺寸D2相对于导风部40的最小径向尺寸D1的增加,可以从出风格栅30的至少一个栅条301中的任意两个栅条301之间的间隙中吹出的风量不再增加,即,吹到出风格栅30的边缘处的风量不再减小,对于减小气流受到出风格栅30的阻力无明显效果。并且,此时出风格栅30的最小径向尺寸D2相对于导风部40的最小径向尺寸D1的继续增加,会增加出风格栅30生产成本,并降低出风格栅30自身的强度。如图8所示,在本公开一些实施例中,当D1和D2满足:0.05≤(D2-D1)/D1≤0.15时,室外风机20吹到出风格栅30的至少一个栅条301上的气流增加量的指数增大,从而使室外风机20产生的气流经导风部40引导吹到出风格栅30上后,受到出风格栅30的阻力减小效果更加明显,在控制生产成本和保障出风格栅30的自身强度的前提下,可以进一步减小出风格栅30对室外风机20吹出的气流产生的阻力。
在本公开一些实施例中,出风格栅30的最小径向尺寸D2增加,且导风部40的最小径向尺寸D1不变,则出风格栅30最小径向尺寸D2相对于导风部40最小径向尺寸D1增加。这样,经导风部40的引导吹到出风格栅30上的气流的覆盖面积不变,而出风格栅30的面积增加,使原本吹到出风格栅30的边缘处的第二部分气流中的一部分气流(如图3中B部分的气流),可以吹到出风格栅30的至少一个栅条301上(如图5中B部分的气流),并通过出风格栅30的至少一个栅条301中的任意两个栅条301之间的间隙吹出室外机1。这样,可以减小第二部分气流受到出风格栅30的阻力,从而减小出风格栅30对风机20吹出的气流的阻力。
在本公开另一些实施例中,出风格栅30的最小径向尺寸D2不变,且导风部40的最小径向尺寸D1减小,则出风格栅30最小径向尺寸D2相对于导风部40最小径向尺寸D1增加。这样,经导风部40的引导吹到出风格栅30上的气流的覆盖面积减小,而出风格栅30的面积不变,使原本吹到出风格栅30的边缘处的第二部分气流中的一部分气流,可以吹到出风格栅30的至少一个栅条301上,并通过出风格栅30的至少一个栅条301中的任意两个栅条301之间的间隙吹出室外机1。这样,可以减小第二部分气流受到出风格栅30的阻力,从而减小出风格栅30对室外风机20吹出的气流的阻力。
在本公开又一些实施例中,出风格栅30的最小径向尺寸D2增大,且导风部40的最小径向尺寸D1减小,则出风格栅30最小径向尺寸D2相对于导风部40最小径向尺寸D1增加。这样,经导风部40的引导吹到出风格栅30上的气流的覆盖面积减小,而出风格栅30的面积增加,使原本吹到出风格栅30的边缘处的第二部分气流中的一部分气流,可以吹到出风格栅30的至少一个栅条301上,并通过出风格栅30的至少一个栅条301中的任意两个栅条301之间的间隙吹出室外机1。这样,可以减小第二部分气流受到出风格栅30的阻力,从而减小出风格栅30对室外风机20吹出的气流的阻力。如图9至图11所示,在本公开一些实施例中,出风格栅30还包括支撑部303。支撑部303与出风格栅30同轴心设置,被配置为支撑至少一个栅条301。
如图9所示,在本公开一些实施例中,出风格栅30A的至少一个栅条301A包括至少一个第一栅条3011A和至少一个第二栅条3012A。至少一个第一栅条3011A的一端与支撑部303A连接,另一端沿出风格栅30A的径向延伸,或与出风格栅30A的径向呈预定夹角延伸,且与出风格栅30A的固定部302A连接。至少一个第一栅条3011A在出风格栅30A的径向上长度一致。至少一个第二栅条3012A围绕出风格栅30A的轴心间隔设置,当至少一个栅条301A包括多个第二栅条 3012A时,多个第二栅条3012A沿出风格栅30A的径向间隔分布。至少一个第一栅条3011A和每个第二栅条3012A连接。
此时,出风格栅30A的最小径向尺寸D2即为出风格栅30A的径向尺寸。
如图10所示,在本公开另一些实施例中,出风格栅30B的至少一个栅条301B包括至少一个第一栅条3011B和至少一个第二栅条3012B,至少一个第一栅条3011B的一端与支撑部303B连接,另一端朝向固定部302B延伸,且与固定部302B连接,至少一个第一栅条3011B沿出风格栅30B的周向(如图10中的X方向)凸出。至少一个第二栅条3012B围绕出风格栅30B的中心设置,当至少一个栅条301B包括多个第二栅条3012B时,多个第二栅条3012B沿出风格栅30B的径向间隔分布。至少一个第一栅条3011B和每个第二栅条3012B连接。
区别于图9中的出风格栅30A,出风格栅30B包括短轴和长轴。其中,短轴为出风格栅30B径向尺寸最短的轴线,长轴为出风格栅30B径向尺寸最长的轴线。
此时,出风格栅30B的短轴尺寸定义为D2,长轴尺寸定义为D4,出风格栅30的最小径向尺寸为短轴的尺寸D2
如图11所示,在本公开又一些实施例中,出风格栅30C的至少一个栅条301C包括至少一个第一栅条3011C和至少一个第二栅条3012C。至少一个第一栅条3011C与支撑部303C相连,当至少一个第一栅条3011C包括多个第一栅条3011C时,多个第一栅条3011C中的其中两个第一栅条3011C与固定部302C连接形成一个封闭区域,至少一个第二栅条3012C设置于该封闭区域内。至少一个第二栅条3012C包括第一子栅条30121和第二子栅条30122,第一子栅条30121的一端与固定部302C连接,另一端与相邻两个第一栅条3011C中的一个第一栅条3011C连接;第二子栅条30122的一端与固定部302C连接,另一端与相邻两个第一栅条3011C中的另一个第一栅条3011C连接。第一子栅条30121和第二子栅条30122交叉连接。
在本公开一些实施例中,第一子栅条30121包括第一连接部30121E和第二连接部30121F,第一连接部30121E为直线段,第一子栅条30121通过第一连接部30121E与固定部302C连接;第二连接部30121F为弧线,第一子栅条30121通过第二连接部30121F与第一栅条3011C连接。
此时,出风格栅30C的最小径向尺寸D2即为出风格栅30C的径向尺寸。
需要说明的是,在本公开一些实施例中,出风格栅30的最小径向尺寸D2满足:400mm≤D2≤800mm。
在本公开一些实施例中,如图12和图13所示,第二栅条3012在固定部302的轴向上的尺寸定义为第一尺寸H1,第一栅条3011在固定部302的轴向上的尺寸定义为第二尺寸H2,第一尺寸H1满足:H1≥6mm,这样,可以保证出风格栅30的出模要求。
在本公开一些实施例中,第一尺寸H1还满足:0.011≤H1/D2≤0.014;第二尺寸H2满足:0.011≤H2/D2≤0.014。这样,在出风格栅30的大小确定时,减小了第二栅条3012和第一栅条3011在固定部302的轴向上的长度,从而减小气流从出风格栅30的多个栅条301之间的间隙流经的路径的长度,从而减小气流在流经出风格栅30的过程中受到的阻力,进而减小出风格栅30对室外机1的室外风机20吹出的气流产生的阻力,可以降低室外风机20的运行功率,降低室外机1的运行成本。
在本公开一些实施例中,第二尺寸H2和第一尺寸H1满足:H2<H1,且第一栅条3011远离室外风机20的一端与第二栅条3012远离室外风机20的一端上的,靠近室外风机20的一侧连接。第一栅条3011靠近室外风机20的一端与第二栅条3012靠近室外风机20的一端上的,远离室外风机20的一侧连接。例如,当第二尺寸H2比第一尺寸H1小0.4mm时,此时,第一栅条3011远离室外风机20的一端的端面与第二栅条3012远离室外风机20的一端的端面之间的距离为0.2mm,且第一栅条3011靠近室外风机2的一端的端面与第二栅条3012靠近风机2的一端的端面之间的距离为0.2mm。这样,可以使第一栅条3011和第二栅条3012的连接更加紧密,从而增加了出风格栅30的结构强度。
如图5所示,电机202驱动至少一个扇叶201转动,至少一个扇叶201上离室外风机20的轴最远的点,绕风机20的轴转动形成的最大的圆环的直径定义为D3。其中,D3和D1满足:0.02≤(D1-D3)/D3≤0.1,且D1-D3≥12mm。这样,可以使至少一个扇叶201转动形成的最大的圆环的直径D3小于导风部40的最小径向尺寸D1,以满足至少一个扇叶201的装配需求,使至少一个扇叶201可以安装在导风部40内,且在运行时不会和导风部40发生碰撞。并且,还可以使至少 一个扇叶201产生的气流不会过于分散,从而使风机20产生的气流与导风部40、机壳10以及出风格栅30不会产生过多的碰撞,减小气流受到的阻力以及风量的损失。
当D3和D1满足(D1-D3)/D3<0.02时,至少一个扇叶201无法安装在导风部40内,以至于无法满足至少一个扇叶201的装配要求。
当D3和D1满足(D1-D3)/D3>0.1时,至少一个扇叶201转动形成的最大的圆环的直径D3小于导风部40的最小径向尺寸D1,这样,会使得至少一个扇叶201产生的气流过于分散,从而使至少一个扇叶201产生的气流与导风部40、机壳10以及出风格栅30发生过多的碰撞,增加了气流受到的阻力和风量的损失。
在本公开一些实施例中,如图5所示,固定部302在安装口101的轴向上的尺寸为L1,其中,L1满足:5mm≤L1≤60mm。
需要说明的是,当L1<5mm时,固定部302的轴向尺寸过小,增加了固定部302的生产难度且减小了固定部302的强度,使得在室内机1的使用过程中,固定部302易被损坏。
当L1>60mm时,出风格栅30与风机20之间的距离过大,导致吹到出风格栅30上的气流过于分散,导致气流受到的阻力以及风量的损失增加。
在本公开一些实施例中,如图5和图15所示,导风部40包括第一子导风部401和第二子导风部402。第一子导风部401和第二子导风部402相连,第一子导风部401与机壳10相连,第二子导风部402设置于第一子导风部401远离机壳10的一侧。第一子导风部401的径向尺寸在其朝向第二部分402的方向上逐渐减小。
导风部40的第一子导风部401对风机20吹出的气流起到导向作用,可以使气流向出风格栅30吹去,减少了气流与导风部40之间的碰撞,进一步减小了气流受到的阻力,增加了室外机1的风量。
在本公开一些实施例中,如图5所示,第一子导风部401在安装口101的轴向上的尺寸定义为L2,L2满足:0<L2≤20mm,此时,室外风机20吹出的气流可以沿第一子导风部401向出风格栅30吹去,且不会使气流经过第一子导风部401的引导后过于分散,导致吹向出风格栅30的固定部302处的风量增加,进而导致对气流的阻力以及风量的损失增加。
需要说明的是,当L2>20mm时,第一子导风部401会使室外风机20吹出的气流经过第一子导风部401引导后过于分散,导致吹向出风格栅30的固定部302处的风量增加,进而导致对气流的阻力以及风量的损失增加。
如图15所示,导风部40的第一子导风部401包括内周面4011,内周面4011为第一子导风部401朝向安装口101一侧的圆周面,内周面4011的法线与安装口101的轴线的夹角定义为α,α满足:75°≤α<90°,α例如为75°、80°、85°或90°。这样,第一子导风部401可以将室外风机20吹出的气流沿内周面4011向出风格栅30吹去,减少气流与导风部40之间的碰撞,进一步减小气流受到的阻力,提升了室外机1的风量。需要说明的是,安装口101的轴线可以是平行于安装口101的轴线的方向。
需要说明的是,当α<75°时,会使室外风机20吹出的气流经第一子导风部401的内周面4011引导后过于分散,导致吹向出风格栅30的固定部302处的风量增加,进而导致对气流的阻力以及风量的损失增加。
当α=90°时,第一子导风部401的内周面4011将在安装口101的中心轴线上朝远离容纳腔102的方向延伸,失去了引导气流扩散的作用,导致气流吹到导风部40上,与导风部40发生碰撞,受到导风部40的阻力增大,从而使室外机1的风量的损失增加。
当α>90°时,第一子导风部401的径向尺寸在其朝着第二子导风部402的方向上逐渐增大,第一子导风部401的内周面4011使得风机20吹出的气流朝向安装口101的中心轴线集中,导致且第一子导风部401的内周面4011对风机20吹出的气流产生阻挡,增加了气流受到的阻力以及风量的损失。
在本公开一些实施例中,第二子导风部402的最小径向尺寸为即为导风部40的最小径向尺寸D1
可以理解的是,出风格栅30的最小径向尺寸D2为出风格栅30的固定部302上的各个点围绕出风格栅30中心转动所形成的圆环中,半径最小的圆环的径向尺寸。与出风格栅30对应的导风 部40的最小径向尺寸D1为其边沿上的点围绕导风部40的中心转动所形成的圆环中,半径最小的圆环的径向尺寸。
如图16所示,在导风部40和出风格栅30的尺寸关系未做改善时,出风格栅30的固定部302处(如图16中的D位置)所受到的压力例如为5Pa,此时,出风格栅30对气流的阻力大。
如图17所示,在导风部40和出风格栅30的尺寸关系改善后,原本吹到出风格栅30的固定部302处的第二部分气流中的一部分,可以吹到出风格栅30的至少一个栅条301上,并通过出风格栅30的至少一个栅条301中的任意两个栅条301之间的间隙吹出室外机1,出风格栅30的固定部302处(如图17中的D位置)所受到的压力接近于0Pa,这样,减小了出风格栅30的固定部302处所受的压力,使得出风格栅30对第二部分气流在的一部分气流的阻力减小,从而解决了出风格栅30对风机20吹出的气流的阻力大的问题。
如图18所示,多个第一栅条3011中相邻两个第一栅条3011的延伸方向之间的夹角定义为β,β满足:7°≤β<11°,β例如为7°、8°、9°、10°或11°。这样,可以使满足第一栅条3011对至少一个第二栅条3012的支撑,以保证至少一个第二栅条3012在其径向上不易发生变形,在满足模具加工和安装规范的要求的前提下,减少了出风格栅30所包括的第一栅条3011的数量,从而减小第一栅条3011对室外风机20吹出的气流的阻力。
需要说明的是,多个第一栅条3011中相邻两个第一栅条3011的延伸方向之间的夹角β可以相等,也可以不相等,在本公开一些实施例中,多个第一栅条3011中相邻两个第一栅条3011的延伸方向之间的夹角β相等,即多个第一栅条3011沿固定部302的周向等间隔设置。
如图18所示,在本公开一些实施例中,至少一个第一栅条3011包括至少一个第一筋条30111和至少一个第二筋条30112,至少一个第一筋条30111和至少一个第二筋条30112在固定部302的周向上依次间隔设置。至少一个第一筋条30111和至少一个第二筋条30112沿固定部302的径向延伸,且至少一个第一筋条30111的长度大于至少一个第二筋条30112的长度。
至少一个第一筋条30111和至少一个第二筋条30112的一端与固定部302连接,至少一个第一筋条30111的另一端与支撑部303连接,至少一个第一筋条30111与多个第二栅条3012交叉连接。
这样,可以解决由于靠近支撑部303的至少一个第二栅条3012的直径较小,将至少一个第一栅条301与所有第二栅条3012连接时,导致相邻两个第一栅条301在靠近支撑部303处的间隙小,从而对室外风机20吹出的气流造成较大的阻力的问题。
在本公开一些实施例中,固定部302的轴心到第二筋条30112的远离固定部302的一端的距离定义为第一距离L3,第一距离L3满足:0.55≤2L3/D2≤0.7。
需要说明的是,第一距离L3与固定部302的半径(即出风格栅30的最小径向尺寸D2的一半)的比值可以随着出风格栅30的最小径向尺寸D2的增大而增大。
在出风格栅30的最小径向尺寸D2确定的情况下,通过上述条件确定出第一距离L3的范围,并通过出风格栅30A的最小径向尺寸D2和第一距离L3的范围确定出第二筋条30112的长度范围。这样,可以使第二筋条30112的长度减小,并满足模具加工和安装规范的要求。并且,通过减小第二筋条30112的长度,可以进一步减小出风格栅30中第二筋条30112对气流的阻力,从而能够进一步减小出风格栅30对风机20吹出的气流的阻力。
在本公开一些实施例中,如图18所示,多个第二栅条3012还包括第一周向筋条30123、第二周向筋条30124和第三周向筋条30125。
固定部302与支撑部303之间的多个第二栅条3012中靠近固定部302的一个第二栅条3012为第一周向筋条30123,第一周向筋条30123与每个第一栅条3011连接。第二筋条30112的远离固定部302的一端与出风格栅30的轴心之间的多个第二栅条3012中靠近固定部302的一个第二栅条3012为第二周向筋条30124。第三周向筋条30125与第二筋条30112的远离固定部302的一端连接,且第三周向筋条30125与第二周向筋条30124在出风格栅30的径向上相邻且间隔设置。
多个第二栅条3012中的任意相邻两个第二栅条3012在出风格栅30的径向上的间距,与多个第二栅条3012中靠近固定部302的一个第二栅条3012与固定部302在出风格栅30的径向上的间距相同。
这样,可以通过确定第一周向筋条30123与固定部302的位置关系,或,确定第二周向筋条30124与固定部302的位置关系中的至少之一,即可确定出每个第二栅条3012的位置。
在本公开一些实施例中,如图18所示,第一周向筋条30123包括第一弧线段30123Q,第一弧线段30123Q为第一周向筋条30123位于相邻两个第一栅条3011,例如,位于相邻的第一筋条30111和第二筋条30112之间的弧线。
第一弧线段30123Q的弧长定义为R1,弧长R1满足:0.15≤2R1/D2≤0.2。需要说明的是,弧长R1与出固定部302的半径的比值可以随着出风格栅30的最小径向尺寸D2的增大而增大。
在出风格栅30的最小径向尺寸D2确定的情况下,通过上述条件确定出第一弧线段30123Q的弧长R1的范围,此时,由于相邻两个第一栅条3011的延伸方向之间的夹角β已确定,因此可以确定出第一弧线段30123Q的半径,即能够确定出第一周向筋条30123的半径,从而确定出第一周向筋条30123与固定部302之间的间距,进而确定出任意两个相邻的第二栅条3012之间的间距。
在本公开另一些实施例中,如图18所示,第二周向筋条30124包括第二弧线段30124Q,第二弧线段30124Q为第二周向筋条30124位于相邻两个第一筋条30111之间的弧线。
第二弧线段30124Q的弧长定义为R2,弧长R2满足:0.15≤2R2/D2≤0.2。需要说明的是,弧长R2与固定部302的半径的比值可以随着出风格栅30的最小径向尺寸D2的增大而增大。
因此,在出风格栅30的最小径向尺寸D2确定的情况下,通过上述条件确定出第二弧线段30124Q的弧长R2的范围,此时,由于相邻两个第一栅条3011的延伸方向之间的夹角β已确定,即,相邻两个第一筋条30111之间的夹角2β也能够确定,从而可以确定出第二弧线段30124Q的半径,即能够确定出第二周向筋条30124的半径,在第二筋条30112的长度确定的情况下,可以确定第三周向筋条30125的半径,从而能够确定出第二周向筋条30124和第三周向筋条30125之间的间距,进而确定出任意两个相邻的第二栅条3012之间的间距。
通过计算得到弧长R1与固定部302的半径的比值,或,计算得到弧长R2与固定部302的半径的比值中的至少之一,可以确定任意两个相邻第二栅条3012之间的间距,使得出风格栅30在满足模具加工和安装规范的要求的情况下,任意两个相邻第二栅条3012之间的间距增加,便于室外风机20吹出的气流从出风格栅30中流出,减小了出风格栅30对室外风机20吹出的气流的阻力。
如图14所示,在本公开一些实施例中,至少一个第二栅条3012还包括第四周向筋条30126,第四周向筋条30126靠近固定部302设置。第四周向筋条30126靠近室外风机20的一端开口小于其远离室外风机20的一端开口,即,第四周向筋条30126的径向尺寸沿远离室外风机20的方向逐渐减小。这样,可以便于对流动至第四周向筋条30126所在位置处的气流进行导流,并且解决了气流在流动至出风格栅30上的不同位置的风量不同,并且出风的方向也不同,导致在多个第二栅条3012的径向尺寸一致的情况下,对室外机1的风量造成影响的问题。
此时,至少一个第二栅条3012的半径J与第一距离L3的比值满足:0.28≤J/L3≤0.44。
如图19所示,第四周向筋条30126的径向尺寸未进行调整时,气流与第四周向筋条30126发生碰撞将会产生较大的漩涡,从而对气流造成较大的阻力。
如图20所示,第四周向筋条30126按照上述条件进行调整后,经过第四周向筋条30126对气流的导流,气流在第四周向筋条30126处产生的漩涡减小,气流在此处受到的阻力减小,流速也更加平稳。
在本公开一些实施例中,如图14所示,至少一个第二栅条3012还包括第五周向筋条30127,第五周向筋条30127位于固定部302和支撑部303在出风格栅30的径向上的中间位置,该位置的气流流动平缓,因此,第五周向筋条30127的径向尺寸沿远离室外风机20的方向上不发生变化。
此时,至少一个第二栅条3012的半径J与第一距离L3的比值满足:0.44≤J/L3≤0.78。
在本公开一些实施例中,如图14所示,至少一个第二栅条3012还包括第六周向筋条30128,第六周向筋条30128位于靠近支撑部303的位置,第六周向筋条30128靠近室外风机20的一端开口大于其远离室外风机20的一端开口,即,第六周向筋条30128的径向尺寸沿远离室外风机20的方向逐渐增大,以便于第六周向筋条30128对流动至第六周向筋条30128所在位置处的风进行导流。
此时,至少一个第二栅条3012的半径J与第一距离L3的比值满足:J/L3≥0.78。
如图21所示,第六周向筋条30128的径向尺寸未进行调整时,气流在第六周向筋条30128处与出风格栅30发生碰撞较为严重,并在靠近支撑部303的位置会产生较大的漩涡,从而对气流造成较大的阻力。
如图22所示,第六周向筋条30128按照上述条件进行调整后,经过第六周向筋条30128对气流的导流,气流在第六周向筋条30128处产生的漩涡减小,气流在此处受到的阻力减小,流速也更加平稳。
需要说明的是,在J/L3<0.28的情况下,至少一个第二栅条3012的半径J小于支撑部303的半径,此时,只能设置支撑部303,而无法设置至少一个第二栅条3012。在J/L3=0.28的情况下,至少一个第二栅条3012固定于支撑部303的周壁上。
在本公开一些实施例中,至少一个第二栅条3012的轴线在其内壁面上的投影为第一直线段。
如图14所示,当0.28≤J/L3≤0.44,即,第一直线段为第四周向筋条的轴线在其内壁面上的投影时,第一直线段的延长线与至少一个第二栅条3012的轴线之间的夹角C1=75-160×(J/L3)。
这样,可以对流动至出风格栅30的第四周向筋条30124处的气流进行更好的导流,从而减小出风格栅30对室外风机20吹出的气流的阻力。
在本公开一些实施例中,当J/L3≥0.78,即,第一直线段为第六周向筋条30128的轴线在第六周向筋条30128的内壁面上的投影时,第一直线段的延长线与至少一个第二栅条3012的轴线之间的夹角C2=50-64×(J/L3)。
这样,可以对流动至出风格栅30的第六周向筋条30128处的气流进行更好的导流,从而减小出风格栅30对室外风机20吹出的气流的阻力。
如图23和图24所示,至少一个第一栅条3011包括导风面3013。导风面3013为相邻两个第一栅条3011朝向彼此的侧面。导风面3013包括第一侧边30131和第二侧边30132,第二侧边30132位于第一侧边30131远离室外风机20的一侧。
在本公开一些实施例中,当室外风机20转速较低时,导风面3013垂直于固定部302的朝向出风格栅30的端面。
在本公开另一些实施例中,导风面3013与固定部302的朝向出风格栅30的端面之间形成夹角γ,即,在固定部302的轴向上,沿室外风机20的转动方向(如图24中的方向Y),第二侧边30132位于第一侧边30131的一侧。在本公开一些实施例中,夹角γ满足:80°≤γ<90°,例如,夹角γ可以为80°、82°、84°、85°、86°或89°。这样,可以使导风面3013有利于对室外风机20吹出的气流进行导流,从而减小出风格栅30对室外风机20吹出的气流产生的阻力。
在本公开一些实施例中,如图23所示,固定部302在其轴向上的尺寸定义为第四尺寸H4,第四尺寸H4满足:5mm≤H4≤60mm,例如,第四尺寸H4可以为5mm、10mm、20mm、30mm、40mm、50mm或60mm。这样,可以减小固定部302对气流的阻力。
需要说明的是,当H4<5mm时,会增加固定部302的生产难度,且使固定部302的强度减小,从而使固定部302在使用过程中容易被损坏。
当H4>60mm时,由于出风格栅30固定于固定部302的远离室外风机20的一端,因此会导致出风格栅30与室外风机20之间的距离过大,从而导致气流吹到出风格栅30上时过于分散,进而会增加气流受到的阻力以及风量损失。
在本公开一些实施例中,如图25所示,固定部302包括至少一个通孔3021,至少一个通孔3021设置于固定部302远离室外风机20的一侧。这样,可以使流动至固定部302处的气流通过至少一个通孔3021流出,以进一步减小固定部302对室外风机20吹出的气流的阻力。
通孔3021沿固定部302的轴向的尺寸定义为L4,L4满足:0.023≤2L4/D2≤0.027。
通孔3021沿固定部302的周向的最大尺寸定义为L5,L5满足:0.09≤2L5/D2≤0.1。这样,可以使通孔3021的面积较大,更有利于气流从通孔3021流出。
如图26所示,当固定部302的远离室外风机20的侧壁上未开设通孔3021时,流动至固定部302处的气流被固定部302阻挡,从而会与固定部302以及靠近固定部302处的至少一个栅条301发生冲击,从而影响气流在该处的流速,对气流在该处的流动造成阻力。
如图27所示,固定部302上开设通孔3021后,流动至固定部302处的气流,与固定部302以及靠近固定部302处的至少一个栅条301发生的冲击减小,气流在该处的流速也得到了改善,减小了固定部302对气流的阻力。
表1室外机尺寸参数与性能参数对比表

表1为根据一些实施例的室外机尺寸参数与性能参数对比表。如表1所示,对导风部40与出风格栅30的尺寸关系进行模拟,在本公开一些实施例中,提供方案1和方案2。方案1中的导风部40的最小径向尺寸D1与方案2中的导风部40的最小径向尺寸D1相等,且方案1中的出风格栅30的最小径向尺寸D2比方案2中的出风格栅30的最小径向尺寸D2小40mm。此时,方案2中(D2-D1)/D1的值约为0.088,方案1中(D2-D1)/D1的值约为0.023,方案2中(D2-D1)/D1的值比方案1中(D2-D1)/D1的值大0.065。
室外机1的出风量达到同一数值,例如达到4626m3/h。此时,方案1中的风机20的转速为681rpm,方案2中的风机20的转速为634rpm,即,为达到同等出风量,方案2所需的风机20的转速比方案1所需的风机20的转速低47rpm。并且,此时方案1中的室外机1产生的噪声为56.8dB,方案2的室外机1产生的噪声为54.7dB,方案2的室外机1产生的噪声比方案1的室外机1产生的噪声低2.1dB。
由表1可知,气流吹出导风部40后的扩散范围不变时,出风格栅30的最小径向尺寸D2相对于导风部40最小径向尺寸D1的增大,可以降低出风格栅30带来的出风量的损失,并且可以使得在室外机1达到同等风量并获得相同的换热效率时,所需的风机20的转速更低,且产生的噪声更低,提升了用户对室外机1的体验。
扇叶201转动形成的最大的圆环的直径为D3,D3的值为600mm,出风格栅30的固定部302在安装口101的轴向上的尺寸为L1,L1为30mm,方案2中的导风部40的最小径向尺寸D1、扇叶201转动形成的最大圆的直径D3、出风格栅30的固定部302在安装口101的轴向上的尺寸L1与方案1保持一致。
可以理解的是,风机20产生的气流经导风部40引导吹到出风格栅30上,受到出风格栅30的阻力减小,带来的风量损失减小,提高了室外机1的风量,从而提高了室外机1的换热效率。
如图28所示,在本公开一些实施例中,机壳10包括面板11,面板11包括第一板体111、第二板体112和第三板体113,第一板体111、第二板体112和第三板体113沿安装口101的径向依次相连。
第一板体111围绕第二板体112设置,第二板体112围绕第三板体113设置,第三板体113设置于第一板体111朝向容纳腔102的一侧,安装口101开设在第三板体113上。这样,可以在将出风格栅30安装到安装口101处时,室外机1在安装口101的轴向上的尺寸小于出风格栅30的固定部302和机壳10在安装口101的轴向上的尺寸之和,这样,可以满足室外机1小体积化设计的需求。
本领域的技术人员将会理解,本公开的公开范围不限于上述具体实施例,并且可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权利要求的限制。

Claims (20)

  1. 一种空调器,包括:
    室内机,包括室内换热器;
    室外机,包括:
    压缩机;
    室外换热器;
    机壳,包括安装口和容纳腔,所述安装口连通外部与所述容纳腔;
    室外风机,所述室外风机设置于所述容纳腔内,且与所述安装口相对;
    出风格栅,所述出风格栅设置于所述安装口处,且与所述机壳连接;以及
    导风部,所述导风部设置于所述容纳腔内,且位于所述安装口处;所述导风部与所述机壳连接,且沿所述安装口的周向延伸;
    其中,定义所述导风部的最小径向尺寸为D1,所述出风格栅的最小径向尺寸为D2,所述导风部的最小径向尺寸D1和所述出风格栅的最小径向尺寸D2满足:0≤(D2-D1)/D1≤0.25,以减小所述导风部对气流的阻碍。
  2. 根据权利要求1所述的空调器,其中,所述导风部的最小径向尺寸D1和所述出风格栅的最小径向尺寸D2还满足:0.05≤(D2-D1)/D1≤0.15。
  3. 根据权利要求1或2中所述的空调器,其中,所述室外风机包括:
    电机,与所述机壳相连;
    扇叶,与所述电机相连,所述扇叶与所述安装口相对设置;
    其中,所述电机被配置为驱动所述扇叶转动,定义所述扇叶转动形成的最大圆的直径为D3,所述导风部的最小径向尺寸D1和所述最大圆的直径D3满足:0.02≤(D1-D3)/D3≤0.1,且D1-D3≥12mm。
  4. 根据权利要求1至3中任一项所述的空调器,其中,所述出风格栅包括:
    固定部,沿所述出风格栅的边沿周向延伸,且与所述机壳相连;
    至少一个栅条所述至少一个栅条设置于所述固定部内,且与所述固定部相连;
    其中,定义所述固定部在所述安装口的轴向上的尺寸为L1,所述尺寸L1满足:5mm≤L1≤60mm。
  5. 根据权利要求1至4中任一项所述的空调器,其中,所述导风部包括:
    第一子导风部,所述第一子导风部与所述机壳相连;
    第二子导风部,所述第一子导风部和所述第二子导风部相连,且所述第二子导风部位于所述第一子导风部远离所述机壳的一侧;
    所述第一子导风部的径向尺寸沿由所述第一子导风部指向所述第二子导风部的方向减小。
  6. 根据权利要求5所述的空调器,其中,定义所述第一子导风部在所述安装口的轴向上的尺寸为L2,所述尺寸L2满足0<L2≤20mm。
  7. 根据权利要求5或6所述的空调器,其中,所述第一子导风部包括内周面,所述内周面的法线与所述安装口的轴线的夹角定义为α,其中,所述夹角α满足:75°≤α<90°。
  8. 根据权利要求5或6所述的空调器,其中,所述第二子导风部的最小径向尺寸为所述导风部的最小径向尺寸D1
  9. 根据权利要求1至6中任一项所述的空调器,其中,所述机壳包括面板;
    所述面板包括第一板体、第二板体和第三板体,所述第一板体、所述第二板体和所述第三板体沿所述安装口的径向依次相连;
    其中,所述第一板体围绕所述第二板体设置,所述第二板体围绕所述第三板体设置,所述第三板体设置于所述第一板体朝向所述容纳腔的一侧;
    所述安装口设置于在所述第三板体上。
  10. 根据权利要求1至9中任一项所述的空调器,其中,所述出风格栅包括:
    支撑部,与所述出风格栅同轴心设置,被配置为支撑至少一个栅条;
    固定部,沿所述出风格栅的轴心延伸,且与所述机壳相连;
    所述至少一个栅条,包括:
    至少一个第一栅条,所述至少一个第一栅条的一端与所述支撑部连接,所述至少一个第一栅条的另一端朝向所述固定部,沿所述出风格栅的径向延伸;
    至少一个第二栅条,围绕所述出风格栅的轴心间隔设置,且与所述至少一个第一栅条交叉连接;
    其中,定义所述至少一个第二栅条在所述固定部的轴向上的尺寸为第一尺寸H1,定义所述至少一个第一栅条在所述固定部的轴向上的尺寸为第二尺寸H2;所述第一尺寸H1和所述出风格栅的最小径向尺寸D2满足:H1≥6mm,且0.011≤H1/D2≤0.014;
    所述第二尺寸H2和所述出风格栅的最小径向尺寸D2满足:0.011≤H2/D2≤0.014。
  11. 根据权利要求10所述的空调器,其中,所述至少一个第一栅条包括多个第一栅条,定义所述多个第一栅条中相邻两个第一栅条的延伸方向之间的夹角为β,所述夹角β满足:7°≤β<11°。
  12. 根据权利要求10或11中任一项所述的空调器,其中,所述第二栅条沿所述环形边框的周向延伸一周;
    所述至少一个第一栅条包括:
    至少一个第一筋条和至少一个第二筋条;所述至少一个第一筋条和所述至少一个第二筋条在所述固定部的周向上依次间隔设置;所述至少一个第一筋条和所述至少一个第二筋条沿所述固定部的径向延伸,且所述至少一个第一筋条的长度大于所述至少一个第二筋条的长度。
  13. 根据权利要求12中所述的空调器,其中,定义所述固定部的轴心到所述第二筋条的远离所述固定部的一端的距离为第一距离L3;所述第一距离L3与所述最小径向尺寸D2满足:0.55≤2L3/D2≤0.7。
  14. 根据权利要求13所述的空调器,其中,
    所述至少一个第二栅条包括多个第二栅条,所述多个第二栅条中的任意相邻两个第二栅条在所述出风格栅的径向上的间距,与所述多个第二栅条中靠近所述固定部的一个第二栅条与所述固定部在所述出风格栅的径向上的间距相同;
    所述多个第二栅条中的至少一个包括:
    第一周向筋条,所述第一周向筋条与所述第一栅条连接;所述第一周向筋条包括第一弧线段;所述第一弧线段为所述第一周向筋条位于相邻两个第一栅条之间的弧线;
    第二周向筋条,所述第二周向筋条为所述第二筋条的远离所述固定部的一端与所述出风格栅的轴心之间的多个第二栅条中靠近所述固定部的一个第二栅条;所述第二周向筋条包括第二弧线段,所述第二弧线段为所述第二周向筋条位于相邻两个所述第一筋条之间的弧线;
    其中,定义所述第一弧线段的弧长为R1,所述弧长R1满足:0.15≤2R1/D2≤0.2;
    定义所述第二弧线段的弧长为R2,所述弧长R2满足:0.15≤2R2/D2≤0.2。
  15. 根据权利要求13或14所述的空调器,其中,
    定义所述至少一个第二栅条的半径为J;
    若确定所述第二栅条的半径J与所述第一距离L3满足:0.28≤J/L3≤0.44,则
    所述至少一个第二栅条的径向尺寸沿远离所述室外风机的方向减小;
    若确定所述第二栅条的半径J与所述第一距离L3满足:0.44≤J/L3≤0.78,则所述至少一个第二栅条的径向尺寸沿远离所述室外风机的方向不变;
    若确定所述第二栅条的半径J与所述第一距离L3满足:J/L3≥0.78,则所述至少一个第二栅条的径向尺寸沿远离所述室外风机的方向增大。
  16. 根据权利要求15所述的空调器,其中,定义所述至少一个第二栅条的轴线在其的内壁面上的投影为第一直线段;
    若确定所述第二栅条的半径J与所述第一距离L3满足:0.28≤J/L3≤0.44,则所述第一直线段的延长线与所述至少一个第二栅条的轴线之间的夹角C1=75-160×(J/L3);
    若确定所述第二栅条的半径J与所述第一距离L3满足:J/L3≥0.78,则所述第一直线段的延长线与所述至少一个第二栅条的轴线之间的夹角C2=50-64×(J/L3)。
  17. 根据权利要求12至14中任一项所述的空调器,其中,所述至少一个第一栅条包括导风面,所述导风面为相邻两个第一栅条朝向彼此的侧面;
    其中,所述导风面满足以下之一:
    所述导风面垂直于所述固定部的朝向所述出风格栅的端面;
    或,所述导风面与所述固定部的朝向所述出风格栅的端面之间形成夹角γ。
  18. 根据权利要求11至14中任一项所述的空调器,其中,所述固定部包括至少一个通孔,所述至少一个通孔设置于所述固定部远离所述室外风机的一侧。
  19. 根据权利要求18中所述的空调器,其中,所述通孔沿所述固定部的轴向的尺寸定义为L4,所述尺寸L4满足:0.023≤2L4/D2≤0.027;
    定义所述通孔沿所述固定部的周向的最大尺寸为L5,所述尺寸L5满足:0.09≤2L5/D2≤0.1。
  20. 根据权利要求11至14中任一项所述的空调器,其中,所述第一尺寸H1和所述第二尺寸H2满足:H2<H1
    且所述第一栅条远离所述室外风机的一端与所述第二栅条远离室外风机的一端上的,靠近所述室外风机的一侧连接;所述第一栅条靠近所述室外风机的一端与所述第二栅条靠近所述室外风机的一端上的,远离所述室外风机的一侧连接。
PCT/CN2023/122168 2022-10-09 2023-09-27 空调器 WO2024078343A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211228549.7A CN115654587A (zh) 2022-10-09 2022-10-09 一种空调室外机以及空调系统
CN202211228549.7 2022-10-09
CN202310730929.9 2023-06-19
CN202310730929.9A CN116857728A (zh) 2023-06-19 2023-06-19 一种空调室外机

Publications (1)

Publication Number Publication Date
WO2024078343A1 true WO2024078343A1 (zh) 2024-04-18

Family

ID=90668757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122168 WO2024078343A1 (zh) 2022-10-09 2023-09-27 空调器

Country Status (1)

Country Link
WO (1) WO2024078343A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065418A (ja) * 1998-08-25 2000-03-03 Hitachi Ltd 空気調和機
CN204665511U (zh) * 2015-03-31 2015-09-23 青岛海信日立空调系统有限公司 一种空调室外机出风结构及空调室外机
CN212378124U (zh) * 2020-04-08 2021-01-19 宁波奥克斯电气股份有限公司 一种导流圈及空调器
CN212408892U (zh) * 2020-10-12 2021-01-26 四川长虹空调有限公司 空调室外机
CN115654587A (zh) * 2022-10-09 2023-01-31 青岛海信日立空调系统有限公司 一种空调室外机以及空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065418A (ja) * 1998-08-25 2000-03-03 Hitachi Ltd 空気調和機
CN204665511U (zh) * 2015-03-31 2015-09-23 青岛海信日立空调系统有限公司 一种空调室外机出风结构及空调室外机
CN212378124U (zh) * 2020-04-08 2021-01-19 宁波奥克斯电气股份有限公司 一种导流圈及空调器
CN212408892U (zh) * 2020-10-12 2021-01-26 四川长虹空调有限公司 空调室外机
CN115654587A (zh) * 2022-10-09 2023-01-31 青岛海信日立空调系统有限公司 一种空调室外机以及空调系统

Similar Documents

Publication Publication Date Title
EP2835585B1 (en) Indoor unit for air conditioning device
JP5611360B2 (ja) 室外ユニットの送風機、室外ユニット及び冷凍サイクル装置
JP6434152B2 (ja) 遠心送風機、空気調和装置および冷凍サイクル装置
JP6225332B2 (ja) 送風機、およびその送風機を搭載した室外ユニット
CN110325745B (zh) 螺旋桨式风扇、送风机以及空调机
JPWO2013094082A1 (ja) 室外機及びこの室外機を備えた冷凍サイクル装置
KR101347932B1 (ko) 관류 팬, 성형용 금형 및 유체 이송 장치
WO2017145275A1 (ja) 送風機及びそれを用いた空気調和機
JP5295321B2 (ja) 送風機、室外機及び冷凍サイクル装置
JP5186166B2 (ja) 空気調和機
WO2024078343A1 (zh) 空调器
JP2017223173A (ja) 送風機および冷凍サイクル装置の室外機
JP5709607B2 (ja) ファンガード、室外ユニット及び冷凍サイクル装置
CN115654587A (zh) 一种空调室外机以及空调系统
JPWO2019116810A1 (ja) 送風装置及びこれを搭載する空気調和装置
JP6363033B2 (ja) 空気調和機の室内機およびこれを備えた空気調和機
JP4715857B2 (ja) 車両用空調装置
JP6695403B2 (ja) 遠心送風機および空気調和装置
JP6956794B2 (ja) 空気調和機の室内機
JP6229157B2 (ja) 送風機、およびその送風機を搭載した室外ユニット
WO2015166581A1 (ja) 送風機、室外ユニット及び冷凍サイクル装置
JP2001263286A (ja) 貫流送風機および空気調和機
JP7209844B2 (ja) 吹出グリル、室内機及び空気調和装置
JP2008095971A (ja) 空気調和装置の室内ユニット
JPWO2017085889A1 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置