WO2024078272A1 - 一种重灰生产工艺系统及其生产工艺 - Google Patents
一种重灰生产工艺系统及其生产工艺 Download PDFInfo
- Publication number
- WO2024078272A1 WO2024078272A1 PCT/CN2023/119622 CN2023119622W WO2024078272A1 WO 2024078272 A1 WO2024078272 A1 WO 2024078272A1 CN 2023119622 W CN2023119622 W CN 2023119622W WO 2024078272 A1 WO2024078272 A1 WO 2024078272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mother liquor
- production process
- ash
- porous plate
- saturated
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 129
- 239000013078 crystal Substances 0.000 claims abstract description 104
- 239000012452 mother liquor Substances 0.000 claims abstract description 91
- 239000002002 slurry Substances 0.000 claims abstract description 59
- 238000006703 hydration reaction Methods 0.000 claims abstract description 55
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 43
- 238000011033 desalting Methods 0.000 claims abstract description 39
- 239000002994 raw material Substances 0.000 claims abstract description 38
- 239000002245 particle Substances 0.000 claims abstract description 36
- 230000036571 hydration Effects 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 150000004682 monohydrates Chemical class 0.000 claims abstract description 15
- 238000002425 crystallisation Methods 0.000 claims abstract description 14
- 230000008025 crystallization Effects 0.000 claims abstract description 14
- 238000012805 post-processing Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 49
- 239000000243 solution Substances 0.000 claims description 43
- 239000007788 liquid Substances 0.000 claims description 33
- 239000003513 alkali Substances 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 239000002562 thickening agent Substances 0.000 claims description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 16
- 239000002699 waste material Substances 0.000 claims description 16
- 239000011148 porous material Substances 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011780 sodium chloride Substances 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 239000007791 liquid phase Substances 0.000 claims description 9
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 230000035485 pulse pressure Effects 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 239000012047 saturated solution Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 235000017550 sodium carbonate Nutrition 0.000 abstract description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 abstract description 8
- 239000010808 liquid waste Substances 0.000 abstract 1
- 239000002910 solid waste Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 11
- 238000007789 sealing Methods 0.000 description 10
- 238000007710 freezing Methods 0.000 description 8
- 230000008014 freezing Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- -1 silver ions Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012719 wet electrostatic precipitator Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
Definitions
- the invention relates to the technical field of alkali product production, and in particular to a heavy ash production process system and a production process thereof for producing low-salt high-quality heavy ash using high-turbidity light ash.
- Soda ash production enterprises need to strengthen the development and application of cutting-edge technologies, promote the transformation and upgrading of existing backward production capacity, apply green technology processes, use energy-saving equipment, apply new equipment technologies, reduce pollutant emissions, and achieve green and low-carbon development of enterprises.
- the solid phase hydration method fails to achieve sufficient contact between water and light ash, the reaction time is difficult to control, the hydration rate is relatively low, the finished product has poor particle size uniformity, poor strength, is fragile, and is prone to dust.
- the product quality cannot be adjusted in the hydration process, and the product particle size stability is difficult to control.
- the salt content of heavy ash is greatly affected by light ash, and it is difficult to achieve low salt content in heavy ash finished products.
- Liquid phase hydration method can make light ash and liquid fully mixed, with high hydration rate, uniform grains, good product particle size, controllable salt content, and easy production of low-salt high-quality heavy ash.
- its process has the following disadvantages and problems to be solved in the production and application process:
- the raw material of the hydration crystallizer is powder with a temperature of >150°C, and the feeding adopts "natural falling powder feeding"; the liquid in the hydration crystallizer is a saturated mother liquor with a temperature of 85-90°C, and the operating temperature range of the hydration crystallizer is 95-100°C (boiling point is 106.5°C).
- This traditional production process is affected by the feeding rate, circulating cooling water flow, etc., the reaction temperature is not easy to control, and the operation is difficult.
- the hydration reaction is an exothermic reaction, which easily vaporizes the water in the mother liquor.
- High-quality heavy soda ash requires the "mass fraction of water-insoluble matter" to be ⁇ 0.02%.
- no process method is used to reduce the content of water-insoluble matter. It can only be achieved by requiring the raw material light ash to reduce this index. Therefore, the traditional heavy ash production method requires that the light ash must be "superior” to ensure the quality of the heavy ash product. If the light ash turbidity index (determined by the mass fraction of water-insoluble matter) is unqualified, high-quality heavy ash cannot be produced. This not only increases the requirements for raw materials, but also restricts the production layout and process flow.
- the core equipment of the liquid phase hydration crystallization process, the hydration crystallizer, requires the installation of backup equipment.
- the subsequent process of the hydration reaction is long, the equipment is large, and the investment is higher than that of the solid phase hydration method, which affects the market competitiveness of this production process.
- the purpose of the present invention is to provide a heavy ash production process system in view of the technical defects existing in the prior art.
- Another object of the present invention is to provide a heavy ash production process.
- a heavy ash production process system comprising a raw material conveying device, a hydration reaction device, a product post-processing device and a waste solid and waste liquid processing device;
- the hydration reaction device comprises a hydrated crystal nucleus generator for generating crystal nuclei and a desalting slurry conditioner for growing crystal nuclei; the hydrated crystal nucleus generator and the desalting slurry conditioner are selectively connected or isolated;
- the hydrated crystal nucleus generator comprises a generator body, a light ash inlet opened at the top of the generator body, and a saturated mother liquor conveying pipeline passing through the side wall of the generator body and extending into the inner cavity thereof; a micro-interface generator is arranged at the end of the saturated mother liquor conveying pipeline located in the inner cavity of the generator body; the saturated mother liquor is conveyed through the saturated mother liquor conveying pipeline and dispersed into micron-sized droplets under the action of the micro-interface generator; the obtained micron-sized droplets contact with the light ash falling through the light ash inlet to undergo hydration reaction to form crystal nuclei;
- the desalting pulp mixer comprises a thickener body and a variable pitch propeller; the variable pitch propeller is driven by a motor reducer and is horizontally arranged in the inner cavity of the thickener body;
- the thickener body is provided with one or more mixture inlets for crystal nuclei to enter, a light ash inlet for replenishing light ash, a saturated mother liquor replenishing port for replenishing saturated mother liquor, a saline mother liquor outlet and a caustic soda mixture outlet; wherein the mixture inlet, light ash inlet and saturated mother liquor replenishing port are located at one end of the thickener body close to the motor reducer; the saline mother liquor outlet and the caustic soda mixture outlet are located at the other end of the thickener body.
- the number of the hydration nucleus generators is one or more.
- the micro-interface generator includes a primary porous plate covering the end of the saturated mother liquid delivery pipeline, a first sleeve containing a secondary porous plate, a second sleeve containing a tertiary porous plate, and a guide barrel;
- the saturated mother liquor flowing out through the primary porous plate enters the first sleeve and then flows out from the secondary porous plate; the saturated solution flowing out through the secondary porous plate enters the second sleeve and then flows out from the tertiary porous plate and enters the diversion barrel.
- the pore size of the first-level porous plate is 0.2-0.5mm; the pore size of the second-level porous plate is 0.1-0.2mm; the pore size of the tertiary porous plate is 0.05-0.08mm; the first-level porous plate is covered with a first-level wire mesh; the pore size of the first-level wire mesh is 75-100 ⁇ m; the second-level porous plate is covered with a second-level wire mesh; the pore size of the second-level wire mesh is 50-70 ⁇ m; the third-level porous plate is covered with a third-level wire mesh; the pore size of the third-level wire mesh is 5-25 ⁇ m.
- the guide barrel is in the shape of a trumpet opening upward.
- a heat exchange plate is also provided in the desalting slurry mixer to conduct away the reaction heat.
- the thickener body is also provided with a slurry circulation port, a circulation reflux port and an analysis sampling port.
- the raw material conveying device adopts pneumatic conveying.
- the product post-processing device includes a belt filter, a drying/cooling integrated heat exchange device and a product packaging machine which are connected in sequence.
- the waste solid and waste liquid treatment device includes a mother liquor preparation tank, a slurry filter, a frozen desalter, a resin exchanger and a high-salt mother liquor discharger;
- the salt-containing mother liquor outlet pipeline of the desalter slurry mixer is divided into two routes; one of which is connected to the slurry filter, the resin exchanger and the mother liquor preparation tank in sequence; the other is connected to the frozen desalter;
- the liquid phase outlet of the frozen desalter is connected to the high-salt mother liquor discharger to discharge the NaCl dissolved in the liquid along with the mother liquor;
- the slurry outlet of the frozen desalter is connected to the mother liquor preparation tank to send the cold-precipitated crystals to the mother liquor preparation tank.
- Another aspect of the present invention is a heavy ash production process, comprising the following steps:
- Step 1 The light ash raw material is transported to the mother liquor preparation tank through the raw material conveying device to prepare a saturated sodium carbonate solution; the saturated sodium carbonate solution is transported to the hydrated crystal nucleus generator in the hydrated crystal reaction device through the saturated mother liquor conveying pipeline under the drive of the pulse pressure pump, and is broken into micron-sized droplets under the action of the micro-interface generator; at the same time, the light ash raw material is transported by the raw material conveying device and enters the hydrated crystal nucleus generator through the light ash inlet;
- Step 2 The obtained micron-sized saturated sodium carbonate droplets are brought into contact with light ash particles to undergo a hydration reaction, which takes 90-150 seconds to form crystal nuclei;
- Step 3 connecting the hydrated crystal nucleus generator with the desalting slurry mixer, so that the crystal nuclei generated by the reaction enter the desalting slurry mixer in the hydrated crystallization reaction device described in claim 1; continuing to add light ash and saturated sodium carbonate solution into the desalting slurry mixer, so that the crystal nuclei continue to grow to the finished product size; during the growth of the crystal nuclei, under the drive and extrusion of the variable pitch propeller, the crystal nuclei gradually approach the heavy ash particle outlet, and form a hydrated alkali particle mixture at the heavy ash outlet; the hydrated alkali particle mixture is discharged through the hydrated alkali mixture outlet, and the hydrated crystallization reaction ends;
- Step 4 The obtained monohydrate granular mixture is processed by a product post-processing device to obtain a product.
- step 1 the mass ratio of light ash to saturated sodium carbonate solution is 1:(1.5-2.5);
- step 3 the mass ratio of the supplemented light ash to the saturated sodium carbonate solution is 1:(2.5-4).
- step 3 the growth temperature is 80-90°C; the growth pressure is 0.005-0.01MPa; and the growth time is 8-12min.
- a heavy ash production process system comprises a raw material conveying device, a hydration reaction device as claimed in any one of claims 1 to 7, a product post-processing device and a waste solid and waste liquid processing device;
- the raw material conveying device adopts pneumatic conveying
- the product post-processing device includes a belt filter, a drying/cooling integrated heat exchange device and a product packaging machine connected in sequence;
- the waste solid and waste liquid treatment device includes a mother liquor preparation tank, a slurry filter, a freezing desalter, a resin exchanger and a high-salt mother liquor discharger;
- the salt-containing mother liquor outlet pipeline of the desalter slurry mixer is divided into two routes; one of which is connected to the slurry filter, the resin exchanger and the mother liquor preparation tank in sequence; the other is connected to the freezing desalter;
- the liquid phase outlet of the freezing desalter is connected to the high-salt mother liquor discharger to discharge the NaCl dissolved in the liquid along with the mother liquor;
- the slurry outlet of the freezing desalter is connected to the mother liquor preparation tank to send the cold-precipitated crystals to the mother liquor preparation tank.
- the present invention has the following beneficial effects:
- the heavy ash production process system places the crystal nucleus generation and crystal growth in two chambers and cuts them off with valves.
- the time required for crystal nucleus formation accounts for a low proportion of the total hydration reaction time and can be considered to be completed instantaneously, while the crystal nucleus growth process takes a long time and this process is completed in the "desaltering slurry mixer".
- the "desaltering slurry mixer” is connected to 2-3 "crystal nucleus generators”. Therefore, the rotation cleaning of the hydrated crystal nucleus generator can be achieved without affecting the entire hydration reaction, and the continuous production can be ensured without setting up a spare main equipment (desaltering slurry mixer).
- the heavy ash production process system provided by the present invention can obtain uniform and dense monohydrate crystalline particles, and the particle size of the obtained product can meet and exceed the particle size index requirements of high-quality heavy ash, thereby improving product quality.
- the micro-interface generator of the heavy ash production process system provided by the present invention can break up the saturated solution into micron-sized droplets. Due to the reduction of the droplet size, the interface adhesion is enhanced, so that the water-insoluble matter that cannot generate monohydrate alkali under the traditional interface size forms monohydrate alkali crystal nuclei together with the high-quality light ash, and as the crystal nucleus grows, a qualified heavy ash product is formed, thereby getting rid of the requirement of the light ash turbidity index (mass fraction of water-insoluble matter) for heavy ash production.
- FIG1 is a schematic structural diagram of a hydration crystallization reaction device
- FIG2 is a schematic diagram showing the structure of a hydrated crystal nucleus generator
- FIG3 is a schematic diagram showing the structure of a micro-interface generator
- FIG4 is a schematic diagram showing the structure of a desalting slurry mixer
- FIG5 is a schematic diagram of a heavy ash production process system.
- 1-hydrated crystal nucleus generator 11-generator body, 12-light ash inlet, 13-saturated mother liquor conveying pipeline, 14-micro interface generator, 141-first-stage porous plate, 142-second-stage porous plate, 143-third-stage porous plate, 144-flow guide barrel, 145-upper sealing plate, 146-lower sealing plate, 2-desalting slurry mixer, 21-thickener body, 22-variable pitch propeller, 23-heat exchange plate, 24-mixture inlet, 25-light ash inlet, 26-saturated mother liquor replenishment port, 27-salty mother liquor outlet, 28-monohydrate alkali mixture outlet, 29-slurry circulation port, 210-circulation reflux port, 211-analysis sampling port, 3-automatic valve, 4-motor reducer.
- a heavy ash production process system includes a raw material conveying device, a hydration reaction device, a product post-processing device, and a waste solid and waste liquid processing device;
- the raw material conveying device adopts pneumatic conveying (that is, the powder conveying system described in Figure 5); see “Feasibility Study on Pneumatic Conveying of Light Ash and Heavy Ash in Soda Plant” (DOI: 10.16554/j.cnki.issn1005-8370.2020.03.008) for details.
- the hydration crystallization reaction device comprises a hydration crystal nucleus generator and a desalting slurry mixer; light ash and saturated mother liquor undergo hydration reaction in the hydration crystal nucleus generator to form crystal nuclei which then enter the desalting slurry mixer; the crystal nuclei grow to product size in the desalting slurry mixer.
- the product processing device includes a belt filter, a drying/cooling integrated heat exchanger and a product packaging machine.
- the caustic soda hydrate particle mixture with a solid-liquid ratio (volume ratio) of more than 60% discharged from the caustic soda hydrate mixture outlet 28 of the desalting slurry mixer 2 is filtered by the belt filter, enters the air drying/powder flow cooling integrated heat exchanger for cooling, and is finally packaged by the product packaging machine.
- the waste solid and waste liquid treatment device includes a mother liquor preparation tank, a slurry filter, a freezing desalter (the operating temperature is between 10-20 degrees Celsius), a resin exchanger (a silver ion solution is added to the resin for silver loading treatment, and the silver ions in the silver-loaded resin are exchanged with the sodium ions in the solution, and the silver ions are combined with chloride ions to form water-insoluble silver chloride precipitation, thereby achieving the purpose of desalting the mother liquor.
- a mother liquor preparation tank a slurry filter, a freezing desalter (the operating temperature is between 10-20 degrees Celsius)
- a resin exchanger a silver ion solution is added to the resin for silver loading treatment, and the silver ions in the silver-loaded resin are exchanged with the sodium ions in the solution, and the silver ions are combined with chloride ions to form water-insoluble silver chloride precipitation, thereby achieving the purpose of desalting the mother liquor.
- the mother liquor after desalting can be recycled) and a high-salt mother liquor discharger;
- the salt-containing mother liquor outlet 27 pipeline of the desalting slurry mixer 2 is divided into two paths; one of which is connected to the slurry filter, the resin exchanger and the mother liquor preparation tank in sequence; the other is connected to the freezing desalter;
- the liquid phase outlet of the freezing desalter is connected to the high-salt mother liquor discharger to discharge the NaCl dissolved in the liquid along with the mother liquor;
- the slurry outlet of the freezing desalter is connected to the mother liquor preparation tank to send the cold precipitated crystals to the mother liquor preparation tank.
- One is to filter through a slurry filter and then perform resin exchange in a resin exchanger, and then recycle it into a mother liquor preparation tank; the other is to desalinate through a refrigerated desalter, discharge the high-salt mother liquor, and recycle the remaining solution into a mother liquor preparation tank.
- the alkali dust recovery device is arranged between the hydrated crystal nucleus generator and the mother liquor preparation tank.
- the alkali dust recovery device is a wet electrostatic precipitator, which removes the alkali dust recovered from the hydrated crystal nucleus generator and then recycles it into the mother liquor preparation tank.
- the raw material conveying device is connected to the hydrated crystal nucleus generator and the desalting slurry mixer respectively, on the one hand, providing light ash for the hydration reaction to form crystal nuclei, and on the other hand, providing light ash for the growth of crystal nuclei.
- the mother liquor preparation tank is connected to the hydrated crystal nucleus generator to provide the latter with saturated mother liquor.
- This embodiment introduces the hydration crystallization reaction device based on the embodiment 1.
- a hydration crystallization reaction device as shown in FIG1 , comprises one or more hydrated crystal nucleus generators 1 for generating crystal nuclei and a desalting slurry regulator 2 for growing crystal nuclei; the hydrated crystal nucleus generator 1 and the desalting slurry regulator 2 are connected or isolated by an automatic control valve 3 .
- the hydrated crystal nucleus generator 1 is shown in Figure 2, which is a vertical container, including a generator body 11, a light ash inlet 12 opened at the top of the generator body 11, and a saturated mother liquor conveying pipe 13 that passes through the side wall of the generator body 11 and penetrates into its internal cavity; the saturated mother liquor conveying pipe 13 is located at the end of the internal cavity of the generator body 11 and is provided with a micro-interface generator 14; after the saturated mother liquor is conveyed through the saturated mother liquor conveying pipe 13, it is dispersed into micron-sized droplets (10-50 ⁇ m) under the action of the micro-interface generator 14, and contacts with the light ash falling through the light ash inlet 12 to undergo hydration reaction to form crystal nuclei.
- Figure 2 is a vertical container, including a generator body 11, a light ash inlet 12 opened at the top of the generator body 11, and a saturated mother liquor conveying pipe 13 that passes through the side wall of the generator body 11 and penetrates into its internal cavity; the saturated mother liquor conveying pipe 13 is
- the micro-interface generator 14 is shown in FIG3 , and includes a primary porous plate 141 covering the end of the saturated mother liquor delivery pipeline 13, a secondary porous plate 142 sleeved on the end of the saturated mother liquor delivery pipeline 13, a tertiary porous plate 143 sleeved on the outside of the secondary porous plate 142, and a guide barrel 144 sleeved on the outside of the tertiary porous plate 143; the upper and lower ends of the secondary porous plate 142 are respectively provided with an upper sealing plate 145 and a lower sealing plate 146; the secondary porous plate 142 is combined with the upper sealing plate 145 and the lower sealing plate 146 to form a first sleeve, and the saturated mother liquor flowing out of the primary porous plate 141 enters the first sleeve and then flows out of the secondary porous plate 142; the tertiary porous plate 143 is provided with an upper sealing plate 145 and a lower sealing plate 146.
- the lower end of the orifice plate 143 bends and extends inward, and is connected to the secondary porous plate 142; the upper end of the tertiary porous plate 143 is connected to the mother liquid delivery pipeline 13 through the upper sealing plate 145; the tertiary porous plate 143 and the upper sealing plate 145 are combined to form a second sleeve; the saturated solution flowing out of the secondary porous plate 142 enters the second sleeve and flows out of the tertiary porous plate 143 and enters the guide barrel 144; the guide barrel 144 is in the shape of a trumpet with an upward opening; the saturated mother liquid is driven by an external pulse pressure pump, passes through the primary porous plate 141, the secondary porous plate 142, and the tertiary porous plate 143, and is dispersed and sprayed upward under the action of the guide barrel 144, and contacts with the light ash.
- the pressure is continuously consumed, the droplets are broken
- the aperture of the primary porous plate 141 is 0.2-0.5 mm, the aperture of the secondary porous plate 142 is 0.1-0.2 mm, and the aperture of the tertiary porous plate 143 is 0.05-0.08 mm.
- the primary porous plate 141 is covered with a primary screen; the aperture of the primary screen is 75-100 ⁇ m; the secondary porous plate 142 is covered with a secondary screen; the aperture of the secondary screen is 50-70 ⁇ m; the tertiary porous plate 143 is covered with a tertiary screen; the aperture of the tertiary screen is 5-25 ⁇ m.
- the desalting slurry mixer 2 is shown in FIG4 , which is a horizontal container, comprising a thickener body 21 , a variable pitch propeller 22 and a heat exchange plate 23 ; the variable pitch propeller 22 is driven by a motor reducer 4 and is horizontally arranged in the internal cavity of the thickener body 21 ; the heat exchange plate 23 is welded in the internal cavity of the thickener body 21 to conduct reaction heat; the thickener body 21 is provided with one or more mixture inlets 24 for crystal nuclei to enter, a light ash inlet 25 for replenishing light ash, a saturated mother liquor replenishing port 26 for replenishing saturated mother liquor, a saline mother liquor outlet 27 and a caustic soda mixture outlet 28 ; wherein the mixture inlet 24 , the light ash inlet 25 and the saturated mother liquor replenishing port 26 are located at one end of the thickener body 21 close to the motor reducer 4 ; the saline mother liquor outlet 27 and the caustic soda mixture outlet 28 are located at the other
- the thickener body 21 is also provided with a slurry circulation port 29, a circulation reflux port 210 and an analysis sampling port 211; the analysis sampling port 211 is used to detect whether the product meets the expected indicators; the slurry circulation port 29 and the circulation reflux port 210 are connected by pipelines, and when the product does not meet the expected indicators, the material is circulated through the equipment inlet again to make the product indicators meet the standards.
- the crystal nuclei generated in the hydrated crystal nucleus generator 1 enter the thickener body 21 through the mixture inlet 24.
- the crystal nuclei continue to contact the light ash and saturated mother liquor in the thickener body 21, so that the crystal nuclei continue to grow to the finished product size.
- the saturated solution containing monohydrate is dehydrated and desalted (salt exists in the liquid phase, and the salt is removed while squeezing out the water.
- the volume change brought by the variable pitch screw, combined with the gravity sedimentation effect, will cause the liquid to be discharged from the upper part of the screw, and the water content of the mixture at the lower part will gradually decrease), forming a monohydrate granular mixture with a solid-liquid ratio (volume ratio) of more than 60%.
- the salt-containing mother liquor flows out through the salt-containing mother liquor outlet 27; the monohydrate granular mixture is discharged through the monohydrate mixture outlet 28.
- This embodiment introduces a heavy ash production process based on embodiments 1 and 2.
- a heavy ash production process comprises the following steps:
- Step 1 The light ash raw material is transported to the mother liquid preparation tank through the raw material conveying device, and a saturated sodium carbonate solution at 90° C. is prepared; the saturated sodium carbonate solution at 90° C. is transported to the hydrated crystal nucleus generator 1 through the saturated mother liquid conveying pipeline 13 under the drive of the pulse pressure pump, and is broken into micron-sized droplets under the action of the micro interface generator 14;
- the light ash raw material is transported by the raw material conveying device and enters the hydrated crystal nucleus generator 1 through the light ash inlet 12;
- the mass ratio of light ash to saturated sodium carbonate solution is 1:2.5;
- Step 2 Micron-sized saturated sodium carbonate droplets come into contact with light ash particles to undergo a hydration reaction, which takes 90-150 seconds to form crystal nuclei;
- Step 3 Open the automatic control valve 3 to allow the crystal nuclei produced by the reaction to enter the desalting slurry mixer 2; continue to add light ash and saturated sodium carbonate solution into the desalting slurry mixer 2 to allow the crystal nuclei to continue to grow to the finished product size; during the growth of the crystal nuclei, under the driving and extrusion of the variable pitch propeller 22, the crystal nuclei gradually approach the heavy ash particle outlet 28, and form a monohydrated alkali particle mixture with a solid-liquid ratio (volume ratio) of more than 60% at the monohydrated alkali mixture outlet 28; the monohydrated alkali particle mixture is discharged through the monohydrated alkali mixture outlet 28, and the hydration crystallization reaction is completed;
- the growth temperature is 90°C; the growth pressure is 0.01MPa; the growth time is 12min;
- the mass ratio of the supplemented light ash to the saturated sodium carbonate solution is 1:2.5.
- Step 4 The obtained monohydrate granular mixture is processed by a product post-processing device to obtain a product.
- This embodiment introduces a heavy ash production process based on embodiments 1 and 2.
- a heavy ash production process comprises the following steps:
- Step 1 The light ash raw material is transported to the mother liquid preparation tank through the raw material conveying device, and a saturated sodium carbonate solution at 90° C. is prepared; the saturated sodium carbonate solution at 90° C. is transported to the hydrated crystal nucleus generator 1 through the saturated mother liquid conveying pipeline 13 under the drive of the pulse pressure pump, and is broken into micron-sized droplets under the action of the micro interface generator 14;
- the light ash raw material is transported by the raw material conveying device and enters the hydrated crystal nucleus generator 1 through the light ash inlet 12;
- the mass ratio of light ash to saturated sodium carbonate solution is 1:1.5;
- Step 2 Micron-sized saturated sodium carbonate droplets come into contact with light ash particles to undergo a hydration reaction, which takes 90-150 seconds to form crystal nuclei;
- Step 3 Open the automatic control valve 3 to allow the crystal nuclei produced by the reaction to enter the desalting slurry mixer 2; continue to add light ash and saturated sodium carbonate solution into the desalting slurry mixer 2 to allow the crystal nuclei to continue to grow to the finished product size; during the growth of the crystal nuclei, under the driving and extrusion of the variable pitch propeller 22, the crystal nuclei gradually approach the heavy ash particle outlet 28, and form a monohydrated alkali particle mixture with a solid-liquid ratio (volume ratio) of more than 60% at the monohydrated alkali mixture outlet 28; the monohydrated alkali particle mixture is discharged through the monohydrated alkali mixture outlet 28, and the hydration crystallization reaction is completed;
- the growth temperature is 90°C; the growth pressure is 0.005MPa; the growth time is 12min;
- the mass ratio of the supplemented light ash to the saturated sodium carbonate solution is 1:4.
- Step 4 The obtained monohydrate granular mixture is processed by a product post-processing device to obtain a product.
- This embodiment introduces a heavy ash production process based on embodiments 1 and 2.
- a heavy ash production process comprises the following steps:
- Step 1 The light ash raw material is transported to the mother liquid preparation tank through the raw material conveying device, and a saturated sodium carbonate solution at 80° C. is prepared; the saturated sodium carbonate solution at 80° C. is transported to the hydrated crystal nucleus generator 1 through the saturated mother liquid conveying pipeline 13 under the drive of the pulse pressure pump, and is broken into micron-sized droplets under the action of the micro interface generator 14;
- the light ash raw material is transported by the raw material conveying device and enters the hydrated crystal nucleus generator 1 through the light ash inlet 12;
- the mass ratio of light ash to saturated sodium carbonate solution is 1:2.0;
- Step 2 Micron-sized saturated sodium carbonate droplets come into contact with light ash particles to undergo a hydration reaction, which takes 90-150 seconds to form crystal nuclei;
- Step 3 Open the automatic control valve 3 to allow the crystal nuclei produced by the reaction to enter the desalting slurry mixer 2; continue to add light ash and saturated sodium carbonate solution into the desalting slurry mixer 2 to allow the crystal nuclei to continue to grow to the finished product size; during the growth of the crystal nuclei, under the driving and extrusion of the variable pitch propeller 22, the crystal nuclei gradually approach the heavy ash particle outlet 28, and form a monohydrated alkali particle mixture with a solid-liquid ratio (volume ratio) of more than 60% at the monohydrated alkali mixture outlet 28; the monohydrated alkali particle mixture is discharged through the monohydrated alkali mixture outlet 28, and the hydration crystallization reaction is completed;
- the growth temperature is 80°C; the growth pressure is 0.01MPa; the growth time is 8min;
- the mass ratio of the supplemented light ash to the saturated sodium carbonate solution is 1:3.
- Step 4 The obtained monohydrate granular mixture is processed by a product post-processing device to obtain a product.
- This embodiment introduces a heavy ash production process based on embodiments 1 and 2.
- a heavy ash production process comprises the following steps:
- Step 1 The light ash raw material is transported to the mother liquid preparation tank through the raw material conveying device, and a saturated sodium carbonate solution at 80° C. is prepared; the saturated sodium carbonate solution at 80° C. is transported to the hydrated crystal nucleus generator 1 through the saturated mother liquid conveying pipeline 13 under the drive of the pulse pressure pump, and is broken into micron-sized droplets under the action of the micro interface generator 14;
- the light ash raw material is transported by the raw material conveying device and enters the hydrated crystal nucleus generator 1 through the light ash inlet 12;
- the mass ratio of light ash to saturated sodium carbonate solution is 1:2.5;
- Step 2 Micron-sized saturated sodium carbonate droplets come into contact with light ash particles to undergo a hydration reaction, which takes 90-150 seconds to form crystal nuclei;
- Step 3 Open the automatic control valve 3 to allow the crystal nuclei produced by the reaction to enter the desalting slurry mixer 2; continue to add light ash and saturated sodium carbonate solution into the desalting slurry mixer 2 to allow the crystal nuclei to continue to grow to the finished product size; during the growth of the crystal nuclei, under the driving and extrusion of the variable pitch propeller 22, the crystal nuclei gradually approach the heavy ash particle outlet 28, and form a monohydrated alkali particle mixture with a solid-liquid ratio (volume ratio) of more than 60% at the monohydrated alkali mixture outlet 28; the monohydrated alkali particle mixture is discharged through the monohydrated alkali mixture outlet 28, and the hydration crystallization reaction is completed;
- the growth temperature is 80°C; the growth pressure is 0.005MPa; the growth time is 8min;
- the mass ratio of the supplemented light ash to the saturated sodium carbonate solution is 1:3.5.
- Step 4 The obtained monohydrate granular mixture is processed by a product post-processing device to obtain a product.
- the obtained monohydrate soda ash crystal particles are uniform and dense, and the obtained product particle size can meet and exceed the index requirements of high-quality heavy ash for particle size, improving product quality. And after testing, the content of water-insoluble matter in the obtained products is less than 0.01%, meeting the product standards of high-quality heavy soda ash.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种重灰生产工艺系统及其生产工艺。重灰生产工艺系统包括原料输送装置、水合反应装置、产品后处理装置和废固废液处理装置。其中的水合结晶反应装置,包括用于晶核产生的水合晶核生成器和用于晶核生长的除盐调浆器;所述水合晶核生成器与所述除盐调浆器之间选择性连通或隔绝;轻灰和饱和母液在水合晶核生成器内水合反应,形成晶核然后进入除盐调浆器;晶核在除盐调浆器生长至产品尺寸。应用上述重质纯碱的生产系统所得的一水碱晶体颗粒均匀、密实,获得的产品颗粒度可以达到并优于优质重灰对粒度的指标要求,提升产品质量。
Description
本发明涉及碱制品生产技术领域,特别是涉及一种使用高浊度轻灰生产低盐优质重灰的重灰生产工艺系统及其生产工艺。
随着《纯碱行业节能降碳改造升级实施指南(2022)的出台,国家和行业要求“加强前沿技术开发应用,培育标杆示范企业”。纯碱生产企业,需要加强前沿技术的开发应用,推动现有落后产能的改造升级,应用绿色技术工艺、使用节能装备,应用新型装备技术,降低污染物排放,实现企业的绿色低碳发展。
以轻质纯碱(轻灰)为原料生产重质纯碱(重灰)的水合方法有两种:液相水合法和固相水合法。上述两种生产工艺研发时间均早于上世纪90年代,受当时技术水平和装配制造水平的制约,均存在一定的弊端。
固相水合法因水与轻灰未能实现充分接触,反应时间不易控制,水合率相对较低,成品粒度均匀性较差、强度较差、易碎,容易产生粉尘。产品质量无法在水合工序调节,产品粒度稳定性难以控制。重灰盐分受轻灰影响大,难以实现重灰成品的低盐化。
液相水合法可以使轻灰与液体充分混合,水合率高,晶粒均匀,产品粒度较好,盐分可以控制,易于生产低盐优质重灰。但其工艺方法在生产和应用过程中存在以下缺点和函待解决的问题:
1.水合结晶器原料为>150℃的粉体,进料采用“粉体自然坠落式投料”;水合结晶器内的液体为温度85-90℃的饱和母液,水合结晶器工作温度范围为95-100℃,(沸点为106.5℃)。这种传统的生产工艺方法受投料速度,循环冷却水流量等影响,反应温度不易控制,操作难度较高。水合反应属于放热反应,易使母液中的水分气化。粉体与水汽结合后,极易在容器内结疤,需要定期(倒罐)停用清洗。现有技术重灰液相水合工艺操作法中,主反应器需要设置用于清洗倒换的设备(3运行1倒用),无法实现单体设备长时间的连续生产(原专利CN02148849.5中“水合结晶器的使用周期为8天”)。
2.优质重质纯碱要求“水不溶物的质量分数”≤0.02%。而在重质纯碱的生产过程中,并没有采用工艺方法去降低水不溶物的含量,只能通过要求原料轻灰降低这一指标来实现,所以传统的重灰生产方法要求轻灰必须为“优等品”,进而保证重灰产品的质量。如果轻灰浊度指标(由水不溶物的质量分数决定)不合格,则无法生产出优质重灰。这不但提高了对原料的要求,而且限制了生产布置和工艺流程。
3.液相水合结晶工艺核心设备水合结晶器,需要设置备用设备,且水合反应后续流程长,设备多、投资比固相水合法高,影响了该生产工艺的市场竞争力。
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种重灰生产工艺系统。
本发明的另一目的,是提供一种重灰生产工艺。
为实现本发明的目的所采用的技术方案是:
一种重灰生产工艺系统,包括原料输送装置、水合反应装置、产品后处理装置和废固废液处理装置;
所述水合反应装置包括用于晶核产生的水合晶核生成器和用于晶核生长的除盐调浆器;所述水合晶核生成器与所述除盐调浆器之间选择性连通或隔绝;
所述水合晶核生成器包括生成器本体、开设在所述生成器本体顶部的轻灰入口和穿过所述生成器本体侧壁并深入至其内部空腔的饱和母液输送管道;所述饱和母液输送管道位于所述生成器本体内部空腔的端部设置有微界面发生器;饱和母液经所述饱和母液输送管道输送后在所述微界面发生器的作用下分散成微米级液滴;所得微米级液滴与经轻灰入口飘落的轻灰接触进行水合反应,形成晶核;
所述除盐调浆器包括稠厚器本体和变螺距螺旋桨;所述变螺距螺旋桨受电机减速机驱动水平设置在所述稠厚器本体的内部空腔内;
所述稠厚器本体上开设有一个或多个供晶核进入的混合物入口、用于补充轻灰的轻灰入口、用于补充饱和母液的饱和母液补充口、含盐母液出口和一水碱混合物出口;其中所述混合物入口、轻灰入口和饱和母液补充口位于稠厚器本体靠近电机减速机的一端;所述含盐母液出口和一水碱混合物出口位于稠厚器本体的另一端。
在上述技术方案中,所述水合晶核生成器的数量为一个或多个。
在上述技术方案中,所述微界面发生器包括覆盖在所述饱和母液输送管道端部的一级多孔板、含有二级多孔板的第一套筒、含有三级多孔板的第二套筒和导流桶;
经一级多孔板流出的饱和母液进入第一套筒后从所述二级多孔板流出;经二级多孔板流出的饱和溶液进入第二套筒后从三级多孔板流出,进入导流桶。
在上述技术方案中,所述一级多孔板的孔径为0.2-0.5mm;所述二级多孔板的孔径为0.1-0.2mm;所述三级多孔板的孔径为0.05-0.08mm;所述一级多孔板上覆盖有一级丝网;所述一级丝网的孔径为75-100μm;所述二级多孔板上覆盖有二级丝网;所述二级丝网的孔径为50-70μm;所述三级多孔板上覆盖有三级丝网;所述三级丝网的孔径为5-25μm。
在上述技术方案中,所述导流桶呈向上开口的喇叭状。
在上述技术方案中,所述除盐调浆器内还设置有换热板,以导出反应热。
在上述技术方案中,所述稠厚器本体上还开设有浆液循环口、循环回流口和分析取样口。
在上述技术方案中,所述原料输送装置采用气力输送。
在上述技术方案中,所述产品后处理装置包括依次连接的带式过滤机、干燥/冷却一体式换热设备和产品包装机。
在上述技术方案中,所述废固废液处理装置包括母液配制槽、浮浆过滤器、冷冻除盐器、树脂交换器和高盐母液外排器;所述除盐调浆器的含盐母液出口管道分成两路;其中一路依次与浮浆过滤器、树脂交换器和母液配制槽依次相连;另一路与冷冻除盐器相连;冷冻除盐器的液相出口与高盐母液外排器相连,以将溶解在液体里的NaCl随着母液外排;冷冻除盐器的浆料出口与母液配制槽相连,以将冷析结晶物送到母液配置槽。
本发明的另一方面,一种重灰生产工艺,包括以下步骤:
步骤1:轻灰原料经原料输送装置输送至母液配制槽,配置饱和碳酸钠溶液;将饱和碳酸钠溶液在脉冲加压泵的驱动下,经饱和母液输送管道输送至所述的水合结晶反应装置中的水合晶核生成器内,同时在微界面发生器的作用下破碎成微米级液滴;与此同时,轻灰原料经原料输送装置输送后经轻灰入口进入水合晶核生成器内;
步骤2:所得微米级饱和碳酸钠液滴与轻灰颗粒接触进行水合反应,反应90-150s形成晶核;
步骤3:连通所述水合晶核生成器与所述除盐调浆器,使反应生成的晶核进入权利要求1中所述的水合结晶反应装置中的除盐调浆器;继续向除盐调浆器内补充轻灰和饱和碳酸钠溶液,使晶核继续生长至成品尺寸;晶核生长过程中,在变螺距螺旋桨的驱动、挤压作用下,逐步接近重颗粒灰颗粒出口,并在重灰出口处形成一水碱颗粒混合物;一水碱颗粒混合物经一水碱混合物出口导出,水合结晶反应结束;
步骤4:所得一水碱颗粒混合物经产品后处理装置处理得产品。
在上述技术方案中,步骤1中,轻灰与饱和碳酸钠溶液的质量比为1:(1.5-2.5);
步骤3中,补充的轻灰和饱和碳酸钠溶液的质量比为1:(2.5-4)。
在上述技术方案中,步骤3中,生长温度为80-90℃;生长压力为0.005-0.01MPa;生长时间为8-12min。
本发明的另一方面,一种重灰生产工艺系统,包括原料输送装置、如权利要求1-7任一项所述的水合反应装置、产品后处理装置和废固废液处理装置;
所述原料输送装置采用气力输送;
所述产品后处理装置包括依次连接的带式过滤机、干燥/冷却一体式换热设备和产品包装机;
所述废固废液处理装置包括母液配制槽、浮浆过滤器、冷冻除盐器、树脂交换器和高盐母液外排器;所述除盐调浆器的含盐母液出口管道分成两路;其中一路依次与浮浆过滤器、树脂交换器和母液配制槽依次相连;另一路与冷冻除盐器相连;冷冻除盐器的液相出口与高盐母液外排器相连,以将溶解在液体里的NaCl随着母液外排;冷冻除盐器的浆料出口与母液配制槽相连,以将冷析结晶物送到母液配置槽。
与现有技术相比,本发明的有益效果是:
1.本发明提供的重灰生产工艺系统,将晶核生成和晶体长大分置于两个腔体内,用阀门切断。晶核形成所需时间占水合反应总时间的比例较低,可以认为是瞬时完成,而晶核长大过程占据时间长,这个过程在“除盐调浆器”内完成。“除盐调浆器”与2-3台“晶核生成器”相连接。因此可以在不影响整个水合反应的前提下,实现对水合晶核生成器的轮换清洗,实现不设置备用主体设备(除盐调浆器)的前提下,确保生产的连续进行。
2.本发明提供的重灰生产工艺系统,所得的一水碱晶体颗粒均匀、密实,获得的产品颗粒度可以达到并优于优质重灰对粒度的指标要求,提升产品质量。
3.本发明提供的重灰生产工艺系统,微界面发生器可以将饱和溶液打散形成微米级液滴。由于液滴尺寸的减小,界面附着力增强,使在传统界面尺寸下无法生成一水碱的水不溶物与优质轻灰一起形成一水碱晶核,并随着晶核成长,形成合格的重灰产品,从而摆脱重灰生产对轻灰浊度指标(水不溶物的质量分数%)的要求。
图1所示为水合结晶反应装置的结构示意图;
图2所示为水合晶核生成器的结构示意图;
图3所示为微界面发生器的结构示意图;
图4所示为除盐调浆器的结构示意图;
图5所示为重灰生产工艺系统的示意图。
图中:1-水合晶核生成器,11-生成器本体,12-轻灰入口,13-饱和母液输送管道,14-微界面发生器,141-一级多孔板,142-二级多孔板,143-三级多孔板,144-导流桶,145-上封板,146-下封板,2-除盐调浆器,21-稠厚器本体,22-变螺距螺旋桨,23-换热板,24-混合物入口,25-轻灰入口,26-饱和母液补充口,27-含盐母液出口,28-一水碱混合物出口,29-浆液循环口,210-循环回流口,211-分析取样口,3-自控阀,4-电机减速机。
以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种重灰生产工艺系统,如图5所示,包括原料输送装置、水合反应装置、产品后处理装置和废固废液处理装置;
其中,所述原料输送装置采用气力输送(即图5中所述的粉体输送系统);详见《联碱装置轻灰和重灰气力输送的可行性研究》(DOI:10.16554/j.cnki.issn1005-8370.2020.03.008)。
所述水合结晶反应装置包括水合晶核生成器和除盐调浆器;轻灰和饱和母液在水合晶核生成器内水合反应,形成晶核然后进入除盐调浆器;晶核在除盐调浆器生长至产品尺寸。
所述产品处理装置包括带式过滤机、干燥/冷却一体式换热设备和产品包装机。经除盐调浆器2一水碱混合物出口28导出的固液比(体积比)60%以上的一水碱颗粒混合物经带式过滤机过滤后,进入风干/粉体流冷却一体式换热器冷却,最后由产品包装机包装。
所述废固废液处理装置包括母液配制槽、浮浆过滤器、冷冻除盐器(操作温度在10-20摄氏度之间)、树脂交换器(在树脂中加入含银离子溶液进行载银处理,通过载银树脂中的银离子与溶液中的钠离子进行离子交换,银离子与氯离子结合生成不溶于水的氯化银沉淀,进而达到母液除盐的目的.实现除盐处理后的母液可以得到循环利用)和高盐母液外排器;所述除盐调浆器2的含盐母液出口27管道分成两路;其中一路依次与浮浆过滤器、树脂交换器和母液配制槽依次相连;另一路与冷冻除盐器相连;冷冻除盐器的液相出口与高盐母液外排器相连,以将溶解在液体里的NaCl随着母液外排;冷冻除盐器的浆料出口与母液配制槽相连,以将冷析结晶物送到母液配置槽。经含盐母液出口27流出的含盐母液有两种除盐方案,一种是经浮浆过滤器过滤后在树脂交换器内进行树脂交换,然后回收进入母液配制槽;另一种是经冷冻除盐器除盐后,将高盐母液排出,将剩余溶液回收进入母液配制槽。
所述水合晶核生成器与母液配制槽之间设置有碱尘回收装置,所述碱尘回收装置为湿式电除尘器,将从水合晶核生成器内回收回来的碱尘除尘后回收进入母液配制槽。
所述原料输送装置与水合晶核生成器和除盐调浆器分别连通,一方面为水合反应形成晶核提供轻灰,另一方面为晶核生长提供轻灰。
所述母液配制槽与所述水合晶核生成器相连通,为后者提供饱和母液。
本实施例是在实施例1的基础上介绍其水合结晶反应装置。
一种水合结晶反应装置,如图1所示,包括一个或多个用于晶核产生的水合晶核生成器1和一个用于晶核生长的除盐调浆器2;所述水合晶核生成器1与所述除盐调浆器2之间通过自控阀3控制其连通或隔绝。
所述水合晶核生成器1如图2所示,为立式容器,包括生成器本体11、开设在所述生成器本体11顶部的轻灰入口12和穿过所述生成器本体11侧壁并深入至其内部空腔的饱和母液输送管道13;所述饱和母液输送管道13位于所述生成器本体11内部空腔的端部设置有微界面发生器14;饱和母液经饱和母液输送管道13输送后在微界面发生器14的作用下分散成微米级液滴(10-50μm),与经轻灰入口12飘落的轻灰接触进行水合反应,形成晶核。
所述微界面发生器14如图3所示,包括覆盖在所述饱和母液输送管道13端部的一级多孔板141、套装在所述饱和母液输送管道13端部的二级多孔板142、套装在所述二级多孔板142外部的三级多孔板143和套装在所述三级多孔板143外部的导流桶144;所述二级多孔板142的上下两端分别设置有上封板145和下封板146;所述二级多孔板142与上封板145和下封板146组合形成第一套筒,经一级多孔板141流出的饱和母液进入第一套筒后从所述二级多孔板142流出;所述三级多孔板143的下端向内弯折延伸,与所述二级多孔板142相连;所述三级多孔板143的上端通过上封板145与母液输送管道13连接;所述三级多孔板143和所述上封板145组合形成第二套筒;经二级多孔板142流出的饱和溶液进入第二套筒后从三级多孔板143流出,进入导流桶144;所述导流桶144呈向上开口的喇叭状;饱和母液在外接脉冲加压泵的驱动下,经过一级多孔板141、二级多孔板142、三级多孔板143分散成微米级液滴在导流桶144的作用下向上分散喷射,与轻灰接触。在微米级液滴生成过程中,随着压力的不断消耗,使液滴被破碎,液体压力近似降为常压。
其中,一级多孔板141的孔径为0.2-0.5mm、二级多孔板142的孔径为0.1-0.2mm、三级多孔板143的孔径为0.05-0.08mm。为提高多孔板对饱和母液的破碎效果,所述一级多孔板141上覆盖有一级丝网;所述一级丝网的孔径为75-100μm;所述二级多孔板142上覆盖有二级丝网;所述二级丝网的孔径为50-70μm;所述三级多孔板143上覆盖有三级丝网;所述三级丝网的孔径为5-25μm。
所述除盐调浆器2如图4所示,为卧式容器,包括稠厚器本体21、变螺距螺旋桨22和换热板23;所述变螺距螺旋桨22受电机减速机4驱动水平设置在所述稠厚器本体21的内部空腔内;所述换热板23焊接在所述稠厚器本体21的内部空腔内以导出反应热;所述稠厚器本体21上开设有一个或多个供晶核进入的混合物入口24、用于补充轻灰的轻灰入口25、用于补充饱和母液的饱和母液补充口26、含盐母液出口27和一水碱混合物出口28;其中所述混合物入口24、轻灰入口25和饱和母液补充口26位于稠厚器本体21靠近电机减速机4的一端;所述含盐母液出口27和一水碱混合物出口28位于稠厚器本体21的另一端。所述稠厚器本体21上还开设有浆液循环口29、循环回流口210和分析取样口211;所述分析取样口211用于检测产品是否达到预期指标;所述浆液循环口29、循环回流口210通过管线连接,当产品没有达到预期指标使,使物料再经过设备入口进行一次循环,使产品指标合格。
水合晶核生成器1内生成的晶核通过混合物入口24进入稠厚器本体21,晶核在稠厚器本体21内继续接触轻灰及饱和母液,使晶核不断生长至成品尺寸。同时在变螺距螺旋桨22的作用下通过沉降、“挤压”(挤压是靠螺旋实现的,沉降是靠重力自然实现的)的方式使含有一水碱的饱和溶液脱水、除盐(盐分是存在于液相之中,将水分挤出的同时,即将盐分去除。变螺距螺旋所带来的体积的变化,配合重力沉降作用,会使液体从螺旋上部排除,下部的混合物的水分会逐渐变小),形成固液比(体积比)60%以上的一水碱颗粒混合物。其中含盐母液经含盐母液出口27流出;一水碱颗粒混合物经一水碱混合物出口28导出。
本实施例是在实施例1和2的基础上介绍一种重灰生产工艺。
一种重灰生产工艺,包括以下步骤:
步骤1:轻灰原料经原料输送装置输送至母液配制槽,配置90℃的饱和碳酸钠溶液;将90℃的饱和碳酸钠溶液在脉冲加压泵的驱动下,经饱和母液输送管道13输送至水合晶核生成器1内,同时在微界面发生器14的作用下破碎成微米级液滴;
与此同时,轻灰原料经原料输送装置输送后经轻灰入口12进入水合晶核生成器1内;
此步骤中,轻灰与饱和碳酸钠溶液的质量比为1:2.5;
步骤2:微米级饱和碳酸钠液滴与轻灰颗粒接触进行水合反应,反应90-150s形成晶核;
步骤3:打开自控阀3,使反应生产的晶核进入除盐调浆器2;继续向除盐调浆器2内补充轻灰和饱和碳酸钠溶液,使晶核继续生长至成品尺寸;晶核生长过程中,在变螺距螺旋桨22的驱动、挤压作用下,逐步接近重颗粒灰颗粒出口28,并在一水碱混合物出口28处形成固液比(体积比)60%以上的一水碱颗粒混合物;一水碱颗粒混合物经一水碱混合物出口28导出,水合结晶反应结束;
生长温度为90℃;生长压力为0.01MPa;生长时间为12min;
本步骤中,补充的轻灰和饱和碳酸钠溶液的质量比为1:2.5。
步骤4:所得一水碱颗粒混合物经产品后处理装置处理得产品。
本实施例是在实施例1和2的基础上介绍一种重灰生产工艺。
一种重灰生产工艺,包括以下步骤:
步骤1:轻灰原料经原料输送装置输送至母液配制槽,配置90℃的饱和碳酸钠溶液;将90℃的饱和碳酸钠溶液在脉冲加压泵的驱动下,经饱和母液输送管道13输送至水合晶核生成器1内,同时在微界面发生器14的作用下破碎成微米级液滴;
与此同时,轻灰原料经原料输送装置输送后经轻灰入口12进入水合晶核生成器1内;
此步骤中,轻灰与饱和碳酸钠溶液的质量比为1:1.5;
步骤2:微米级饱和碳酸钠液滴与轻灰颗粒接触进行水合反应,反应90-150s形成晶核;
步骤3:打开自控阀3,使反应生产的晶核进入除盐调浆器2;继续向除盐调浆器2内补充轻灰和饱和碳酸钠溶液,使晶核继续生长至成品尺寸;晶核生长过程中,在变螺距螺旋桨22的驱动、挤压作用下,逐步接近重颗粒灰颗粒出口28,并在一水碱混合物出口28处形成固液比(体积比)60%以上的一水碱颗粒混合物;一水碱颗粒混合物经一水碱混合物出口28导出,水合结晶反应结束;
生长温度为90℃;生长压力为0.005MPa;生长时间为12min;
本步骤中,补充的轻灰和饱和碳酸钠溶液的质量比为1:4。
步骤4:所得一水碱颗粒混合物经产品后处理装置处理得产品。
本实施例是在实施例1和2的基础上介绍一种重灰生产工艺。
一种重灰生产工艺,包括以下步骤:
步骤1:轻灰原料经原料输送装置输送至母液配制槽,配置80℃的饱和碳酸钠溶液;将80℃的饱和碳酸钠溶液在脉冲加压泵的驱动下,经饱和母液输送管道13输送至水合晶核生成器1内,同时在微界面发生器14的作用下破碎成微米级液滴;
与此同时,轻灰原料经原料输送装置输送后经轻灰入口12进入水合晶核生成器1内;
此步骤中,轻灰与饱和碳酸钠溶液的质量比为1:2.0;
步骤2:微米级饱和碳酸钠液滴与轻灰颗粒接触进行水合反应,反应90-150s形成晶核;
步骤3:打开自控阀3,使反应生产的晶核进入除盐调浆器2;继续向除盐调浆器2内补充轻灰和饱和碳酸钠溶液,使晶核继续生长至成品尺寸;晶核生长过程中,在变螺距螺旋桨22的驱动、挤压作用下,逐步接近重颗粒灰颗粒出口28,并在一水碱混合物出口28处形成固液比(体积比)60%以上的一水碱颗粒混合物;一水碱颗粒混合物经一水碱混合物出口28导出,水合结晶反应结束;
生长温度为80℃;生长压力为0.01MPa;生长时间为8min;
本步骤中,补充的轻灰和饱和碳酸钠溶液的质量比为1:3。
步骤4:所得一水碱颗粒混合物经产品后处理装置处理得产品。
本实施例是在实施例1和2的基础上介绍一种重灰生产工艺。
一种重灰生产工艺,包括以下步骤:
步骤1:轻灰原料经原料输送装置输送至母液配制槽,配置80℃的饱和碳酸钠溶液;将80℃的饱和碳酸钠溶液在脉冲加压泵的驱动下,经饱和母液输送管道13输送至水合晶核生成器1内,同时在微界面发生器14的作用下破碎成微米级液滴;
与此同时,轻灰原料经原料输送装置输送后经轻灰入口12进入水合晶核生成器1内;
此步骤中,轻灰与饱和碳酸钠溶液的质量比为1:2.5;
步骤2:微米级饱和碳酸钠液滴与轻灰颗粒接触进行水合反应,反应90-150s形成晶核;
步骤3:打开自控阀3,使反应生产的晶核进入除盐调浆器2;继续向除盐调浆器2内补充轻灰和饱和碳酸钠溶液,使晶核继续生长至成品尺寸;晶核生长过程中,在变螺距螺旋桨22的驱动、挤压作用下,逐步接近重颗粒灰颗粒出口28,并在一水碱混合物出口28处形成固液比(体积比)60%以上的一水碱颗粒混合物;一水碱颗粒混合物经一水碱混合物出口28导出,水合结晶反应结束;
生长温度为80℃;生长压力为0.005MPa;生长时间为8min;
本步骤中,补充的轻灰和饱和碳酸钠溶液的质量比为1:3.5。
步骤4:所得一水碱颗粒混合物经产品后处理装置处理得产品。
实施例3-6介绍的水合结晶反应工艺制得的成品尺寸分布如下表所示:
粒度 实施例 | >1.7mm (10目) | >850μm (20目) | >425μm (35目) | >250μm (60目) | >180μm (80目) | >106μm (150目) |
3 | 0% | 1.8% | 23.1% | 77.6% | 95.1% | 100% |
4 | 0% | 1.5% | 21.5% | 72.5% | 87.3% | 100% |
5 | 0% | 1.6% | 16.2% | 65.1% | 81.5% | 100% |
6 | 0% | 1.2% | 19.6% | 68.2% | 83.6% | 100% |
由上表可知,所得的一水碱晶体颗粒均匀、密实,获得的产品颗粒度可以达到并优于优质重灰对粒度的指标要求,提升产品质量。且经过测试,所得产品中水不溶物的含量均小于0.01%,满足优质重质纯碱的产品标准。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (13)
- 一种重灰生产工艺系统,其特征在于,包括原料输送装置、水合反应装置、产品后处理装置和废固废液处理装置;所述水合反应装置包括用于晶核产生的水合晶核生成器和用于晶核生长的除盐调浆器;所述水合晶核生成器与所述除盐调浆器之间选择性连通或隔绝;所述水合晶核生成器包括生成器本体、开设在所述生成器本体顶部的轻灰入口和穿过所述生成器本体侧壁并深入至其内部空腔的饱和母液输送管道;所述饱和母液输送管道位于所述生成器本体内部空腔的端部设置有微界面发生器;饱和母液经所述饱和母液输送管道输送后在所述微界面发生器的作用下分散成微米级液滴;所得微米级液滴与经轻灰入口飘落的轻灰接触进行水合反应,形成晶核;所述除盐调浆器包括稠厚器本体和变螺距螺旋桨;所述变螺距螺旋桨受电机减速机驱动水平设置在所述稠厚器本体的内部空腔内;所述稠厚器本体上开设有一个或多个供晶核进入的混合物入口、用于补充轻灰的轻灰入口、用于补充饱和母液的饱和母液补充口、含盐母液出口和一水碱混合物出口;其中所述混合物入口、轻灰入口和饱和母液补充口位于稠厚器本体靠近电机减速机的一端;所述含盐母液出口和一水碱混合物出口位于稠厚器本体的另一端。
- 如权利要求1所述的重灰生产工艺系统,其特征在于:所述水合晶核生成器的数量为一个或多个。
- 如权利要求1所述的重灰生产工艺系统,其特征在于:所述微界面发生器包括覆盖在所述饱和母液输送管道端部的一级多孔板、含有二级多孔板的第一套筒、含有三级多孔板的第二套筒和导流桶;经一级多孔板流出的饱和母液进入第一套筒后从所述二级多孔板流出;经二级多孔板流出的饱和溶液进入第二套筒后从三级多孔板流出,进入导流桶。
- 如权利要求3所述的重灰生产工艺系统,其特征在于:所述一级多孔板的孔径为0.2-0.5mm;所述二级多孔板的孔径为0.1-0.2mm;所述三级多孔板的孔径为0.05-0.08mm;所述一级多孔板上覆盖有一级丝网;所述一级丝网的孔径为75-100μm;所述二级多孔板上覆盖有二级丝网;所述二级丝网的孔径为50-70μm;所述三级多孔板上覆盖有三级丝网;所述三级丝网的孔径为5-25μm。
- 如权利要求3所述的重灰生产工艺系统,其特征在于:所述导流桶呈向上开口的喇叭状。
- 如权利要求1所述的重灰生产工艺系统,其特征在于:所述除盐调浆器内还设置有换热板,以导出反应热。
- 如权利要求6所述的重灰生产工艺系统,其特征在于:所述稠厚器本体上还开设有浆液循环口、循环回流口和分析取样口。
- 如权利要求1所述的重灰生产工艺系统,其特征在于:所述原料输送装置采用气力输送。
- 如权利要求1所述的重灰生产工艺系统,其特征在于:所述产品后处理装置包括依次连接的带式过滤机、干燥/冷却一体式换热设备和产品包装机。
- 如权利要求1所述的重灰生产工艺系统,其特征在于:所述废固废液处理装置包括母液配制槽、浮浆过滤器、冷冻除盐器、树脂交换器和高盐母液外排器;所述除盐调浆器的含盐母液出口管道分成两路;其中一路依次与浮浆过滤器、树脂交换器和母液配制槽依次相连;另一路与冷冻除盐器相连;冷冻除盐器的液相出口与高盐母液外排器相连,以将溶解在液体里的NaCl随着母液外排;冷冻除盐器的浆料出口与母液配制槽相连,以将冷析结晶物送到母液配置槽。
- 一种利用权利要求1所述重灰生产工艺系统的重灰生产工艺,其特征在于,包括以下步骤:步骤1:轻灰原料经原料输送装置输送至母液配制槽,配置饱和碳酸钠溶液;将饱和碳酸钠溶液在脉冲加压泵的驱动下,经饱和母液输送管道输送至水合晶核生成器内,同时在微界面发生器的作用下破碎成微米级液滴;与此同时,轻灰原料经原料输送装置输送后经轻灰入口进入水合晶核生成器内;步骤2:所得微米级饱和碳酸钠液滴与轻灰颗粒接触进行水合反应,反应90-150s形成晶核;步骤3:连通所述水合晶核生成器与除盐调浆器,使反应生成的晶核进入除盐调浆器;继续向除盐调浆器内补充轻灰和饱和碳酸钠溶液,使晶核继续生长至成品尺寸;晶核生长过程中,在变螺距螺旋桨的驱动、挤压作用下,逐步接近重颗粒灰颗粒出口,并在重灰出口处形成一水碱颗粒混合物;一水碱颗粒混合物经一水碱混合物出口导出,水合结晶反应结束;步骤4:所得一水碱颗粒混合物经产品后处理装置处理得产品。
- 如权利要求11所述的重灰生产工艺,其特征在于,步骤1中,轻灰与饱和碳酸钠溶液的质量比为1:(1.5-2.5);步骤3中,补充的轻灰和饱和碳酸钠溶液的质量比为1:(2.5-4)。
- 如权利要求11所述的重灰生产工艺,其特征在于,步骤3中,生长温度为80-90℃;生长压力为0.005-0.01MPa;生长时间为8-12min。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211258360.2 | 2022-10-14 | ||
CN202211258360.2A CN115417432B (zh) | 2022-10-14 | 2022-10-14 | 一种重灰生产工艺系统及其生产工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024078272A1 true WO2024078272A1 (zh) | 2024-04-18 |
Family
ID=84206542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/119622 WO2024078272A1 (zh) | 2022-10-14 | 2023-09-19 | 一种重灰生产工艺系统及其生产工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115417432B (zh) |
WO (1) | WO2024078272A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115417432B (zh) * | 2022-10-14 | 2023-07-28 | 天津渤化工程有限公司 | 一种重灰生产工艺系统及其生产工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2688496A1 (fr) * | 1992-03-12 | 1993-09-17 | Solvay | Procede et installation pour la production de cristaux de carbonate de sodium monohydrate. |
CN1413909A (zh) * | 2002-02-10 | 2003-04-30 | 江苏德邦化学工业集团有限公司 | 合成重质纯碱过程中晶浆分离的方法 |
CN102372328A (zh) * | 2010-08-04 | 2012-03-14 | 攀钢集团钢铁钒钛股份有限公司 | 卧式蒸发浓缩系统 |
CN114644350A (zh) * | 2022-05-23 | 2022-06-21 | 天津渤化永利化工股份有限公司 | 一种重质纯碱的生产方法 |
CN115417432A (zh) * | 2022-10-14 | 2022-12-02 | 天津渤化工程有限公司 | 一种重灰生产工艺系统及其生产工艺 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004886A (en) * | 1969-12-12 | 1977-01-25 | Stamicarbon B.V. | Two stage continuous process and apparatus for crystallization |
CN87217100U (zh) * | 1987-12-29 | 1988-11-16 | 天津碱厂 | 生产重质纯碱和一水碳酸钠的结晶器 |
TR200002222T2 (tr) * | 1998-01-28 | 2000-12-21 | Environmental Projects,Inc. | Sodyum karbonatın yeniden kristalleştirilmesi |
CN101367532A (zh) * | 2007-12-16 | 2009-02-18 | 崔怀奇 | 轻质纯碱重化造粒工艺 |
CN112552160A (zh) * | 2019-09-10 | 2021-03-26 | 南京延长反应技术研究院有限公司 | 一种间二甲苯氧化生产对苯二甲酸的控制系统及工艺 |
CN112499597A (zh) * | 2019-09-14 | 2021-03-16 | 南京延长反应技术研究院有限公司 | 一种基于异丙醇法制备双氧水的系统及工艺 |
CN112495310B (zh) * | 2019-09-14 | 2023-02-03 | 南京延长反应技术研究院有限公司 | 一种强化丙烯聚合的系统和工艺 |
-
2022
- 2022-10-14 CN CN202211258360.2A patent/CN115417432B/zh active Active
-
2023
- 2023-09-19 WO PCT/CN2023/119622 patent/WO2024078272A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2688496A1 (fr) * | 1992-03-12 | 1993-09-17 | Solvay | Procede et installation pour la production de cristaux de carbonate de sodium monohydrate. |
CN1413909A (zh) * | 2002-02-10 | 2003-04-30 | 江苏德邦化学工业集团有限公司 | 合成重质纯碱过程中晶浆分离的方法 |
CN102372328A (zh) * | 2010-08-04 | 2012-03-14 | 攀钢集团钢铁钒钛股份有限公司 | 卧式蒸发浓缩系统 |
CN114644350A (zh) * | 2022-05-23 | 2022-06-21 | 天津渤化永利化工股份有限公司 | 一种重质纯碱的生产方法 |
CN115417432A (zh) * | 2022-10-14 | 2022-12-02 | 天津渤化工程有限公司 | 一种重灰生产工艺系统及其生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN115417432B (zh) | 2023-07-28 |
CN115417432A (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024078272A1 (zh) | 一种重灰生产工艺系统及其生产工艺 | |
CN104030499B (zh) | 一种特种分子筛合成母液的综合处理方法 | |
CN109133448A (zh) | 一种粘胶废液的循环环保处理工艺及系统 | |
CN113620355A (zh) | 电池正极材料粉体制备方法及其制备装置 | |
CN109231371A (zh) | 一种三元前驱体废水电解处理系统及其处理方法 | |
CN106745100B (zh) | 电池级碳酸锂的制备系统及制备方法 | |
CN202089783U (zh) | 芒硝型卤水冷冻-结晶分离系统 | |
CN106587172A (zh) | 一种动力电池正级三元氧化物的生产工艺及生产装置 | |
CN206318826U (zh) | 脱硫废水处理系统及自动化废水处理系统 | |
CN206511931U (zh) | 电池级碳酸锂的制备系统 | |
CN202527151U (zh) | 一种振荡流管式反应结晶器 | |
CN218988831U (zh) | 一种剪切流水线系统 | |
CN110743476B (zh) | 一种具有多种功能的氢氧化钙制备罐及制备方法 | |
CN110304643A (zh) | 一种电池级超细碳酸锂的超重力制备方法和系统 | |
CN106809883B (zh) | 硫酸法钛白生产硫酸亚铁的装置及方法 | |
CN211972013U (zh) | 煤化工副产氯化钠饱和溶液中脱硫酸钠的装置 | |
CN210973907U (zh) | 一种制备纳米碳酸钙的微反应装置 | |
CN218579662U (zh) | 一种水合反应装置 | |
CN109264759B (zh) | 一种反应炉 | |
CN106745093B (zh) | 一种氯碱生产中十水芒硝脱水制元明粉的方法及所涉及的熔硝设备 | |
CN106317269A (zh) | 微悬浮法氯乙烯糊树脂生产过程中回收氯乙烯单体的设备和方法 | |
CN209367820U (zh) | 一种用于解决硫酸锰类物料晶体细小问题的设备 | |
CN201848238U (zh) | 碳酸二甲酯生产中粗丙二醇碳化装置 | |
CN111362471A (zh) | 煤化工副产氯化钠饱和溶液中脱硫酸钠的装置 | |
CN221245070U (zh) | 一种正极材料前驱体进料装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876477 Country of ref document: EP Kind code of ref document: A1 |