WO2024078094A1 - 风机控制方法、装置、计算机设备及存储介质 - Google Patents

风机控制方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2024078094A1
WO2024078094A1 PCT/CN2023/109623 CN2023109623W WO2024078094A1 WO 2024078094 A1 WO2024078094 A1 WO 2024078094A1 CN 2023109623 W CN2023109623 W CN 2023109623W WO 2024078094 A1 WO2024078094 A1 WO 2024078094A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
temperature
fan
interval
duty cycle
Prior art date
Application number
PCT/CN2023/109623
Other languages
English (en)
French (fr)
Inventor
赵红亮
安欣欣
骆飞燕
沈高松
林青斌
林文海
Original Assignee
深圳市华宝新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华宝新能源股份有限公司 filed Critical 深圳市华宝新能源股份有限公司
Publication of WO2024078094A1 publication Critical patent/WO2024078094A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery pack heat dissipation, for example, to a fan control method, device, computer equipment and storage medium.
  • the present application provides a fan control method, device, computer equipment and storage medium, which comprehensively consider the external environment temperature and the temperature of the battery pack, and control the duty cycle of the fan to achieve sufficient heat dissipation of the battery pack and low noise control of the fan.
  • an embodiment of the present application provides a fan control method.
  • the method is applied to an energy storage system, the energy storage system includes a battery pack, a fan and a temperature detection unit; the fan is configured to cool the battery pack; the temperature detection unit is configured to detect the ambient temperature and the temperature of the battery pack; the fan control method includes:
  • the fan In response to the current temperature of the battery pack being within the first temperature range [T1, T2] of the battery pack, the fan is controlled to operate at a preset duty cycle according to the 0-A% duty cycle linear rule.
  • an embodiment of the present application further provides a fan control device, the device comprising:
  • a first acquisition module is configured to acquire the ambient temperature and the charge and discharge rate of the battery pack
  • a first temperature interval determination module is configured to determine a first temperature interval [T1, T2] of the battery pack according to the ambient temperature; wherein, within the first temperature interval [T1, T2] of the battery pack, the fan operates according to a 0-A% duty cycle linear rule according to the charge and discharge rate of the battery pack, 0 ⁇ A% ⁇ 100%;
  • a second acquisition module is configured to acquire the current temperature of the battery pack
  • the fan control module is configured to control the fan to operate at a preset duty cycle according to the 0-A% duty cycle linear rule in response to the current temperature of the battery pack being within the first temperature range [T1, T2] of the battery pack.
  • an embodiment of the present application further provides a computer device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the fan control method as described in the first aspect is implemented.
  • an embodiment of the present application further provides a storage medium comprising computer executable instructions, wherein the computer executable instructions, when executed by a computer processor, are used to execute the wind turbine control method as described in the first aspect.
  • FIG1 is a flow chart of a fan control method provided by an embodiment of the present application.
  • FIG2 is a flow chart of another fan control method provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a fan control device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a computer device provided in an embodiment of the present application.
  • FIG. 1 is a flow chart of a fan control method provided by an embodiment of the present application. As shown in FIG. 1 , the method may include the following steps:
  • the method is applied to an energy storage system, which includes a battery pack, a fan and a temperature detection unit; the fan is configured to cool the battery pack; the temperature detection unit is configured to detect the ambient temperature and the temperature of the battery pack; the temperature detection unit may be a thermistor; in this embodiment, the temperature detection unit may be used to detect the ambient temperature and the temperature of the battery pack. Detecting the temperature of the battery pack; It should be noted that, due to the uneven distribution of the temperatures of various detection parts of the battery pack detected by the temperature detection unit during the charging and discharging process of the battery pack, in some embodiments, multiple battery pack temperatures may be detected, and the maximum value of the multiple battery pack temperatures may be selected as the battery pack temperature.
  • the charge and discharge ratio of the battery pack determines the amount of heat generated by the battery pack, and the heat dissipation efficiency of the fan varies according to the change in the amount of heat generated by the battery pack; generally, the higher the charge and discharge ratio of the battery pack, the more heat the battery pack generates during the charge and discharge process, and the fan needs to have a greater heat dissipation efficiency; the lower the charge and discharge ratio of the battery pack, the less heat the battery pack generates during the charge and discharge process, and the fan needs to have a smaller heat dissipation efficiency; this embodiment determines the amount of heat generated by the battery pack by obtaining the charge and discharge ratio of the battery pack, thereby determining the heat dissipation efficiency required for the fan.
  • the fan is controlled to operate according to the 0-A% duty cycle linear rule, that is, when the temperature of the battery pack is T1, the fan starts; then when the temperature of the battery pack gradually increases from T1 to T2, the fan duty cycle increases linearly; when the temperature of the battery pack is T2, the fan operates at the maximum duty cycle A; it can be understood that when the charge and discharge rate of the battery pack is higher, the heat generated by the battery pack is higher, and the heat dissipation efficiency required by the fan is greater, then the maximum duty cycle A is set larger, and the battery pack can be effectively cooled. That is, when the charge and discharge rate of the battery pack is higher, the A in the 0-A% duty cycle linear rule is larger.
  • the fan will directly adjust its duty cycle according to the temperature of the battery pack [0-Tmax] to achieve the purpose of cooling the battery pack.
  • this can improve the cooling capacity to a certain extent, it will also bring about noise. Since the ambient temperature will affect the cooling efficiency of the battery pack, under the same fan speed, the higher the ambient temperature, the lower the cooling efficiency of the battery pack. Therefore, the fan duty cycle needs to comprehensively consider the ambient temperature and the battery pack temperature.
  • different first battery pack temperature intervals [T1, T2] are determined by different ambient temperatures, so that the fan is started when the battery pack temperature reaches different T1, the fan linearly adjusts the speed within the battery pack temperature (T1, T2), and the fan adjusts the speed at the maximum duty cycle when the battery pack temperature reaches different T2.
  • the external ambient temperature and the battery pack temperature can be comprehensively considered, and the fan is preset to control the duty cycle, so as to achieve sufficient cooling of the battery pack.
  • the fan is started when the battery pack temperature reaches different T1 under different ambient temperatures, it is avoided that the fan is always in the starting process, and low noise control of the fan is also achieved.
  • the current battery pack temperature may be a maximum battery pack temperature among the temperatures of multiple battery packs detected at multiple detection points; the current battery pack temperature may be a maximum battery pack temperature during a battery charging process or a battery pack discharging process.
  • the fan when the current battery pack temperature is within the first battery pack temperature range [T1, T2], the fan is controlled to operate at a preset duty cycle according to the 0-A% duty cycle linear rule, thereby achieving sufficient heat dissipation of the battery pack and low noise control of the fan.
  • the battery pack stops operating; wherein the second temperature range [T3, T4] includes the first temperature range [T1, T2] of the battery pack; the battery pack operates safely within the second temperature range [T3, T4].
  • the fan operates at a duty cycle of A%.
  • the fan is controlled to operate at a duty cycle of B%, wherein 0 ⁇ B% ⁇ 100%.
  • the battery pack stops running, which can achieve over-temperature protection for the battery pack and avoid the battery pack from exploding.
  • the fan is controlled to run at a B% duty cycle, which can speed up cooling. In one embodiment, if a charging signal is detected, the fan is controlled to run at a 50% duty cycle, which can speed up cooling and increase the charging speed of subsequent battery packs.
  • FIG2 is a flow chart of another fan control method provided in an embodiment of the present application. As shown in FIG2, the method includes:
  • the heat dissipation efficiency of the battery pack multiple temperature levels with a certain temperature range are divided (for example, Roman numerals can be used to represent the temperature level, which can include level I, level II, level III...), that is, the heat dissipation efficiency of the battery pack is different at different temperature levels; generally, in the case of no fan heat dissipation or the same fan speed, the higher the temperature level, the lower the heat dissipation efficiency of the battery pack; when the temperature level reaches the preset temperature level, the heat dissipation efficiency of the battery pack is the lowest.
  • the heat dissipation efficiency of the battery pack is lower, and the fan needs to have a higher heat dissipation efficiency.
  • the preset temperature level may be one of the above-mentioned multiple temperature levels with a certain temperature range.
  • the right interval number T2 of the first temperature interval [T1, T2] of the battery pack only needs to be less than the right interval T4 in the second temperature interval [T3, T4].
  • the right interval number T2 of the first temperature interval [T1, T2] of the battery pack determines the time when the fan control ends; generally, under different ambient temperature levels, the right interval number T2 of the first temperature interval [T1, T2] of the battery pack is constant, that is, under different ambient temperature levels, the time when the fan control ends is basically the same.
  • the size of the left interval number T1 of the first temperature interval [T1, T2] of the battery pack determines the time when the fan starts. Under the condition that the time when the fan starts is constant, the earlier the fan starts and the longer the fan starts, the higher the heat dissipation efficiency of the fan; the shorter the fan starts, the lower the heat dissipation efficiency of the fan.
  • the heat dissipation efficiency of the battery pack decreases, and the heat dissipation efficiency required of the fan increases.
  • the higher the temperature level the lower the left interval number T1 of the first temperature interval [T1, T2] of the battery pack, the longer the fan start-up time is relatively, and the higher the heat dissipation efficiency of the fan;
  • the temperature level of the ambient temperature is greater than or equal to the preset temperature level, since the temperature level of the ambient temperature reaches the preset temperature level, the heat dissipation efficiency of the battery pack is the lowest.
  • the fan duty cycle temperature change rate has a greater impact on the fan heat dissipation efficiency; when the temperature level of the ambient temperature is greater than the preset temperature level, the left interval number T1 of the first temperature interval [T1, T2] of the battery pack is adjusted so that the fan duty cycle temperature change rate of the battery pack is greater than the fan duty cycle temperature change rate determined at the temperature level above the preset temperature level, so as to achieve sufficient heat dissipation of the battery pack; wherein, the fan duty cycle temperature change rate of the battery pack is: the ratio of the difference between A% and (T2-T1) in the first temperature interval [T1, T2] of the battery pack.
  • the fan since the fan is started when the battery pack temperature reaches different T1 at each temperature level, the fan is prevented from being in the startup process all the time at each temperature level, and low noise control of the fan is achieved.
  • the battery pack operation process includes the battery pack charging process and the battery pack discharging process.
  • this embodiment optionally also includes judging the charge and discharge state of the battery pack; when the battery pack is in the charging state, a first temperature range of a type-one battery pack is determined according to the ambient temperature; wherein, in the first temperature range of the type-one battery pack, the fan operates with a linear rule of 0-A% duty cycle according to the charging efficiency of the battery pack, and 0 ⁇ A% ⁇ 100%; when the battery pack is in the discharging state, a first temperature range of a type-two battery pack is determined according to the ambient temperature; wherein, in the first temperature range of the type-two battery pack, the fan operates with a linear rule of 0-A% duty cycle according to the discharge efficiency of the battery pack, and 0 ⁇ A% ⁇ 100%.
  • the left interval number T1 of the first temperature interval [T1, T2] of the battery pack can be adjusted to make the fan duty cycle temperature change rate at this temperature level (such as A%/5 in Table 2) greater than the fan duty cycle temperature change rate determined at the previous temperature level IV [30°C, 40°C) (such as A%/20 in Table 2) at this temperature level, so as to achieve effective heat dissipation of the battery pack during discharge.
  • the left interval number T1 of the first temperature interval [T1, T2] of the battery pack is determined according to the temperature level; the right interval number T2 of the first temperature interval [T1, T2] of the battery pack is determined according to the second temperature interval [T3, T4]; thus, different first temperature intervals [T1, T2] of the battery pack are determined according to different ambient temperatures, so that the fan is started when the temperature of the battery pack reaches different T1, the fan linearly adjusts the speed within the battery pack temperature range T1-T2, and adjusts the speed at the maximum duty cycle when the battery pack temperature reaches different T2.
  • the external ambient temperature and the battery pack temperature can be comprehensively considered, and the fan can be controlled by a preset duty cycle, thereby achieving sufficient heat dissipation of the battery pack and low noise control of the fan.
  • the second temperature range [T3, T4] includes a first type second temperature range and a second type second temperature range; optionally, if the current temperature of the battery pack exceeds the first type second temperature range or the second type second temperature range, the battery pack stops operating; wherein, the first type second temperature range includes a first type battery pack first temperature range; the battery pack is safely charged within the first type second temperature range; the second type second temperature range includes the second type battery pack first temperature range; and the battery pack is safely discharged within the second type second temperature range.
  • FIG3 is a structural schematic diagram of a fan control device provided by an embodiment of the present application, as shown in FIG3, the device includes:
  • a first acquisition module 10 is configured to acquire the ambient temperature and the charge and discharge rate of the battery pack
  • the first temperature interval determination module 20 is configured to determine the first temperature interval [T1, T2] of the battery pack according to the ambient temperature; wherein, within the first temperature interval [T1, T2] of the battery pack, the fan operates according to a 0-A% duty cycle linear rule according to the charge and discharge rate of the battery pack, 0 ⁇ A% ⁇ 100%;
  • a second acquisition module 30 is configured to acquire the current temperature of the battery pack
  • the fan control module 40 is configured to control the fan to operate at a preset duty cycle according to a 0-A% duty cycle linear rule in response to the current battery pack temperature being within a first battery pack temperature range [T1, T2].
  • the device further comprises:
  • the stop operation module is configured to stop the battery pack from operating when the current temperature of the battery pack exceeds the second temperature interval [T3, T4]; wherein the second temperature interval [T3, T4] includes the first temperature interval [T1, T2] of the battery pack; and the battery pack operates safely within the second temperature interval [T3, T4];
  • the first preset duty cycle operation module is configured to operate the fan at a duty cycle of A% when the current temperature of the battery pack is within a temperature interval (T2, T4].
  • the device further comprises:
  • a first judgment module is configured to judge whether a charging signal is detected when the current battery pack temperature is greater than T4;
  • the second preset duty cycle operation module is configured to control the fan to operate at a duty cycle of B% when a charging signal is detected; wherein 0 ⁇ B% ⁇ 100%.
  • the device further comprises:
  • a second judgment module is configured to divide the temperature into a plurality of temperature levels with a certain temperature range, and judge the temperature level of the ambient temperature;
  • the first temperature interval determination module 20 includes:
  • a left interval determination unit configured to determine a left interval number T1 of a first temperature interval [T1, T2] of the battery pack according to the temperature level;
  • a right interval determination unit configured to determine a right interval number T2 of the first temperature interval [T1, T2] of the battery pack according to the second temperature interval [T3, T4];
  • the first temperature interval determining unit is configured to determine a first temperature interval [T1, T2] of the battery pack according to the left interval number T1 and the right interval number T2.
  • the temperature change rate of the fan duty cycle is: the ratio of A% duty cycle to the temperature range (T2-T1) of the first temperature interval [T1, T2] of the battery pack.
  • the left interval determination unit is configured to determine the left interval number T1 of the first temperature interval [T1, T2] of the battery pack according to the temperature level in the following manner:
  • the higher the temperature level the lower the left interval number T1 of the first temperature interval [T1, T2] of the battery pack; wherein the heat dissipation efficiency of the battery pack is the lowest at the preset temperature level;
  • the left interval number T1 of the first temperature interval [T1, T2] of the battery pack is adjusted to make the fan duty cycle temperature change rate greater than the fan duty cycle temperature change rate determined at the previous temperature level of the preset temperature level.
  • the second preset duty cycle operation module is configured to control the fan to operate at a duty cycle of B% in the following manner:
  • the fan is controlled to run at 50% duty cycle.
  • the fan operates with a 0-A% duty cycle linear rule according to the charge and discharge rate of the battery pack, specifically:
  • the device further comprises:
  • a third judgment module is configured to judge the charge and discharge status of the battery pack
  • the first temperature interval determination module 20 includes:
  • a first determination unit is configured to determine a first temperature range of a type of battery pack according to the ambient temperature when the battery pack is in a charging state; wherein, in the first temperature range of the type of battery pack, the fan operates according to a 0-A% duty cycle linear rule according to the charging efficiency of the battery pack, 0 ⁇ A% ⁇ 100%;
  • the second determination unit is configured to determine the first temperature range of the Class II battery pack according to the ambient temperature when the battery pack is in a discharging state; wherein, in the first temperature range of the Class II battery pack, the fan operates according to a 0-A% duty cycle linear rule according to the discharge efficiency of the battery pack, 0 ⁇ A% ⁇ 100%.
  • the second temperature interval [T3, T4] includes a first type of second temperature interval and a second type of second temperature interval;
  • Stop running modules including:
  • the stop operation unit is configured to stop the battery pack from operating when the current temperature of the battery pack exceeds the first category second temperature range or the second category second temperature range; wherein the first category second temperature range includes the first category battery pack first temperature range; the battery pack is safely charged within the first category second temperature range; the second category second temperature range includes the first category second temperature range of the battery pack; and the battery pack is safely discharged within the second category second temperature range.
  • FIG4 is a schematic diagram of the structure of a computer device provided in an embodiment of the present application.
  • the device includes a processor 70, a memory 71, an input device 72, and an output device 73; the number of processors 70 in the device can be one or more, and FIG4 takes one processor 70 as an example; the processor 70, the memory 71, the input device 72, and the output device 73; The device 71, the input device 72 and the output device 73 may be connected via a bus or other means, and FIG. 4 takes the connection via a bus as an example.
  • the memory 71 can be used to store software programs, computer executable programs and modules, such as program instructions/modules corresponding to the fan control method in the embodiment of the present application (for example, the first acquisition module 10, the first temperature range determination module 20, the second acquisition module 30 and the fan control module 40 in the fan control device).
  • the processor 70 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 71, that is, realizes the above-mentioned fan control method.
  • the memory 71 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required for a function; the data storage area may store data created according to the use of the terminal, etc.
  • the memory 71 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 71 may include a memory remotely arranged relative to the processor 70, and these remote memories may be connected to the device via a network. Examples of the above-mentioned network include the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 72 may be used to receive input digital or character information and generate key signal input related to user settings and function control of the device.
  • the output device 73 may include a display device such as a display screen.
  • the embodiment of the present application further provides a storage medium containing computer executable instructions, wherein the computer executable instructions are used to execute a fan control method when executed by a computer processor, the method comprising:
  • the fan is controlled to operate at a preset duty cycle according to the 0-A% duty cycle linear rule.
  • the storage medium containing computer executable instructions provided in the embodiment of the present application is not limited to the method operations described above, and the computer executable instructions can also execute related operations in the fan control method provided in any embodiment of the present application.
  • the present application can be implemented by means of software and necessary general hardware, and of course can also be implemented by hardware, but it is very In many cases, the former is a better implementation method.
  • the technical solution of the present application, or the part that contributes to the prior art can be embodied in the form of a software product, which can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), random access memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including at least one instruction to enable a computer device (which can be a personal computer, server, or network device, etc.) to execute the methods described in each embodiment of the present application.
  • a computer-readable storage medium such as a computer floppy disk, read-only memory (ROM), random access memory (RAM), flash memory (FLASH), hard disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种风机控制方法,应用于储能系统,储能系统包括电池包、风机及温度检测单元;风机设置为为电池包降温;温度检测单元设置为检测环境温度及电池包的温度。还包括风机控制装置、计算机设备及存储介质。该风机控制方法包括:获取环境温度和电池包的充放电倍率;根据环境温度确定电池包第一温度区间[T1,T2];其中,在电池包第一温度区间[T1,T2]内,根据电池包的充放电倍率风机以0-A%占空比线性规则运行,0<A%≤100%;获取当前电池包的温度;若当前电池包的温度在电池包第一温度区间[T1,T2]内,则根据0-A%占空比线性规则控制风机以预设占空比运行。该方法实现对电池包的充分散热及风机的低噪声控制。

Description

风机控制方法、装置、计算机设备及存储介质
本公开要求在2022年10月10日提交中国专利局、申请号为202211231650.8的中国专利的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池包散热技术领域,例如涉及一种风机控制方法、装置、计算机设备及存储介质。
背景技术
目前,便携式储能设备(如锂电池)随着能量密度的增加,自然散热已经不能满足需求,需要引入风机强制风冷;由于风机强制风冷策略仅考虑储能设备的电芯温度,不考虑外界环境温度,这样虽然能提高一定的散热能力,但同时带来较大的噪声,导致用户体验变差。
发明内容
本申请提供一种风机控制方法、装置、计算机设备及存储介质,综合考虑外界环境温度及电池包的温度,对风机进行占空比控制,以实现对电池包的充分散热,以及风机的低噪声控制。
第一方面,本申请实施例提供了一种风机控制方法。该方法应用于储能系统,所述储能系统包括电池包、风机及温度检测单元;所述风机设置为为所述电池包降温;所述温度检测单元设置为检测环境温度及所述电池包的温度;所述风机控制方法包括:
获取所述环境温度和所述电池包的充放电倍率;
根据所述环境温度确定电池包第一温度区间[T1,T2];其中,在所述电池包第一温度区间[T1,T2]内,根据所述电池包的充放电倍率所述风机以0-A%占空比线性规则运行,0<A%≤100%;
获取当前所述电池包的温度;
响应于当前所述电池包的温度在所述电池包第一温度区间[T1,T2]内,根据所述0-A%占空比线性规则控制所述风机以预设占空比运行。
第二方面,本申请实施例还提供了一种风机控制装置,该装置包括:
第一获取模块,设置为获取环境温度和电池包的充放电倍率;
第一温度区间确定模块,设置为根据所述环境温度确定电池包第一温度区间[T1,T2];其中,在所述电池包第一温度区间[T1,T2]内,根据所述电池包的充放电倍率所述风机以0-A%占空比线性规则运行,0<A%≤100%;
第二获取模块,设置为获取当前所述电池包的温度;
风机控制模块,设置为响应于当前所述电池包的温度在所述电池包第一温度区间[T1,T2]内,根据所述0-A%占空比线性规则控制所述风机以预设占空比运行。
第三方面,本申请实施例还提供了一种计算机设备,计算机设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所述的风机控制方法。
第四方面,本申请实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如第一方面所述的风机控制方法。
附图说明
图1是本申请实施例提供的一种风机控制方法的流程图;
图2是本申请实施例提供的另一种风机控制方法的流程图;
图3是本申请实施例提供的一种风机控制装置的结构示意图;
图4为本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1是本申请实施例提供的一种风机控制方法的流程图,如图1所示,该方法可以包括如下步骤:
S110、获取环境温度和电池包的充放电倍率。
其中,该方法应用于储能系统,该储能系统包括电池包、风机及温度检测单元;风机,设置为为电池包降温;温度检测单元,设置为检测环境温度及电池包的温度;温度检测单元可以为热敏电阻;本实施例可以通过温度检测单元 检测电池包的温度;需说明的是,由于电池包充电及放电过程中,温度检测单元检测的电池包的各个检测部位温度分布不均匀。在一些实施例中,可以检测多个电池包温度,选择多个电池包温度中的最大值作为电池包的温度。
电池包的充放电倍率决定电池包的热量产生量,风机的散热效率则根据电池包的热量产生量的变化而变化;一般地,电池包的充放电倍率越高,电池包在充放电过程中产生的热量越多,则需风机具备较大的散热效率;电池包的充放电倍率越低,电池包在充放电过程中产生的热量越少,则需风机具备较小的散热效率;本实施例通过获取电池包的充放电倍率以确定电池包的热量产生量,从而确定风机所需具备的散热效率大小。
S120、根据环境温度确定电池包第一温度区间[T1,T2];其中,在电池包第一温度区间[T1,T2]内,根据电池包的充放电倍率风机以0-A%占空比线性规则运行,0<A%≤100%。
其中,当电池包的温度在电池包第一温度区间[T1,T2]内,控制风机以0-A%占空比线性规则运行,即在电池包的温度为T1时,风机启动;随后在电池包的温度从T1逐渐增加至T2,风机占空比线性增加;在电池包的温度为T2,风机以最大占空比A运行;可以理解的是,当电池包的充放电倍率越高,电池包的热量产生量越高,风机所需具备的散热效率越大,则设置的最大占空比A较大,可以有效地对电池包进行散热。也即,当电池包的充放电倍率越高,所述0-A%占空比线性规则中的A越大。
一般地,风机会直接根据电池包的温度[0-Tmax]直接调控其占空比以达到对电池包散热的目的,但是这样虽然能提高一定的散热能力,但同时相对会带来噪音。由于环境温度会影响电池包的散热效率,在风机转速相同情况下,环境温度越高,电池包的散热效率越低,因此风机占空比需综合考虑环境温度和电池包温度;本实施例由不同的环境温度确定不同的电池包第一温度区间[T1,T2],以在电池包的温度达到不同的T1时启动风机,在电池包的温度(T1,T2)内风机线性调速,在电池包的温度达到不同的T2风机以最大占空比调速,如此可以综合考虑外界环境温度及电池包的温度,对风机进行预设占空比控制,实现了对电池包的充分散热;另外,由于不同的环境温度下,电池包的温度达到不同的T1时启动风机,避免了风机一直处于启动过程,还实现了风机的低噪声控制。
S130、获取当前电池包的温度。
当前电池包的温度可以为多个检测点检测的多个电池包的温度中最大的电池包的温度;当前电池包的温度为在电池充电过程中或者在电池包放电过程中的一最大的电池包温度。
S140、若当前电池包的温度在电池包第一温度区间[T1,T2]内,则根据0-A%占空比线性规则控制风机以预设占空比运行。
其中,当当前电池包的温度在电池包第一温度区间[T1,T2]内,则根据0-A%占空比线性规则控制风机以一预设占空比运行,实现了对电池包的充分散热及风机的低噪声控制。
可选的,若当前电池包的温度超出第二温度区间[T3,T4],电池包停止运行;其中,第二温度区间[T3,T4]包含电池包第一温度区间[T1,T2];电池包在第二温度区间[T3,T4]内安全运行。
若当前电池包的温度在温度区间(T2,T4]内时,风机以A%的占空比运行。
若当前电池包的温度大于T4时,判断是否检测到充电信号;若检测到充电信号,则控制风机以B%占空比运行;其中,0<B%≤100%。
其中,电池包运行过程中,若当前电池包的温度超出第二温度区间[T3,T4],电池包停止运行,可以达到对电池包的过温保护,避免了发生电池包燃爆。在电池包停止运行后,即当过温保温后,若检测到充电信号,则控制风机以B%占空比运行,这样可以加快降温。在一实施例中,若检测到充电信号,则控制风机以50%占空比运行,这样可以加快降温,提高后续电池包的充电速度。
可选的,在上述实施例的基础上,对如何根据环境温度确定电池包第一温度区间[T1,T2]进行展开描述;图2是本申请实施例提供的另一种风机控制方法的流程图,如图2所示,该方法包括:
S210、获取环境温度和电池包的充放电倍率。
S220、划分多个具有一定温度区间的温度等级,判断环境温度的温度等级。
根据电池包的散热效率,划分多个具有一定温度区间的温度等级(如可以用罗马数字表示温度等级,温度等级可以包括I级、II级、III级...),即在不同的温度等级下,电池包的散热效率不同;一般地,在无风机的散热情况下或者风机转速相同情况下,温度等级越高,电池包的散热效率越低;当温度等级达到预设温度等级时,电池包的散热效率最低。为达到对电池包的有效散热,当温度等级越高时,电池包的散热效率越低,则风机需具备较高的散热效率。
在一实施例中,预设温度等级可以是上述多个具有一定温度区间的温度等级中的其中一个。
S230、根据温度等级确定电池包第一温度区间[T1,T2]的左区间数T1;根据第二温度区间[T3,T4]确定电池包第一温度区间[T1,T2]的右区间数T2;其中, 在电池包第一温度区间[T1,T2]内,根据电池包的充放电倍率风机以0-A%占空比线性规则运行,0<A%≤100%。
在实际的风机控制过程中,电池包第一温度区间[T1,T2]的右区间数T2仅需满足小于第二温度区间[T3,T4]中的右区间T4,电池包第一温度区间[T1,T2]的右区间数T2决定了风机控制结束的时间;一般地,不同环境温度等级下,电池包第一温度区间[T1,T2]的右区间数T2是恒定的,即不同环境温度等级下,风机控制结束的时间基本相同。电池包第一温度区间[T1,T2]的左区间数T1的大小决定了风机启动的时间,在风机启动结束的时间一定的情况下,风机启动的时间越早,风机启动的时间相对越长,则风机的散热效率越高;风机启动的时间相对越短,则风机的散热效率越低。
由于温度等级越高,电池包的散热效率越低,则风机所需具备的散热效率越高。示例性的,本实施例中,当环境温度所处的温度等级小于等于预设温度等级时,温度等级越高,则电池包第一温度区间[T1,T2]的左区间数T1越低,风机启动的时间相对越长,则风机的散热效率越高;当环境温度所处的温度等级大于等于预设温度等级时,由于环境温度的温度等级达到预设温度等级,电池包散热效率最低,与延长风机启动时间提高风机散热效率相比,风机占空比温度变化率对风机散热效率影响较大;当环境温度的温度等级大于预设温度等级时,调整电池包第一温度区间[T1,T2]的左区间数T1以使电池包的风机占空比温度变化率大于预设温度等级上一温度等级时确定的风机占空比温度变化率,可以达到对电池包的充分散热;其中,电池包的风机占空比温度变化率为:A%与电池包第一温度区间[T1,T2]中(T2-T1)之差的比值。另外,由于各温度等级下,电池包温度达到不同的T1时启动风机,避免了各温度等级下风机一直处于启动过程,还实现了风机的低噪声控制。
还需说明的是,电池包运行过程包括电池包充电过程及电池包放电过程,本实施例在获取环境温度和电池包的充放电倍率之后,可选的,还包括判断电池包的充放电状态;当电池包处于充电状态时,根据环境温度确定一类电池包第一温度区间;其中,在一类电池包第一温度区间,根据电池包的充电效率风机以0-A%占空比线性规则运行,0<A%≤100%;当电池包处于放电状态,根据环境温度确定二类电池包第一温度区间;其中,在二类电池包第一温度区间,根据电池包的放电效率风机以0-A%占空比线性规则运行,0<A%≤100%。
下面表格分别示意出电池包充电过程及电池包放电过程中风机的占空比调节:
电池包充电过程中风机占空比控制表1:

从表1可以看出:当电池包处于充电状态时,根据不同的环境温度确定不同的一类电池包第一温度区间;当环境温度所处的温度等级小于等于预设温度等级时,示例性的,以预设温度等级为III级为例,当温度等级在I级[0℃,10℃)、II级[10℃,25℃)或III级[25℃,35℃)时,一类电池包第一温度区间的左区间数与温度等级有关,随着温度等级的升高,电池包第一温度区间[T1,T2]的左区间数T1越低;而当温度等级大于预设温度等级时,示例性的,继续以预设温度等级为III级为例,当温度等级在IV级[35℃,50℃]时,可以调整电池包第一温度区间[T1,T2]的左区间数T1,以使在该温度等级[35℃-50℃]时的风机占空比温度变化率(如表1中的A%/10)大于在该预设温度等级上一温度等级[25℃,35℃)时确定的风机占空比温度变化率(如表1中的A%/17),以达到对电池包充电过程中的有效散热。
电池包放电过程中风机占空比控制表2:
从表2可以看出:当电池包处于放电状态时,根据不同的环境温度确定不同的二类电池包第一温度区间;当环境温度所处的温度等级小于等于预设温度等级时,示例性的,以预设温度等级为IV级为例,当温度等级在I级[-10℃,0℃)、II级[0℃,15℃)、III级[15℃,30℃)和IV级[30℃,40℃)时,二类电池包第一温度区间的左区间数与温度等级有关,随着温度等级的升高,电池包第一温度区间[T1,T2]的左区间数T1越低;当温度等级大于预设温度等级时,示例性 的,继续以预设温度等级为IV级为例,当温度等级在V级[40℃,60℃]时,可以调整电池包第一温度区间[T1,T2]的左区间数T1,以使在该温度等级时的风机占空比温度变化率(如表2中的A%/5)大于在该温度等级上一温度等级IV级[30℃,40℃)时确定的风机占空比温度变化率(如表2中的A%/20),以达到对电池包放电过程中的有效散热。
S240、获取当前电池包的温度。
S250、若当前电池包的温度在电池包第一温度区间[T1,T2]内,则根据0-A%占空比线性规则控制风机以预设占空比运行。
本方案在上述方案的基础上,在电池包运行过程中,根据温度等级确定电池包第一温度区间[T1,T2]的左区间数T1;根据第二温度区间[T3,T4]确定电池包第一温度区间[T1,T2]的右区间数T2;由此根据不同的环境温度确定不同的电池包第一温度区间[T1,T2],以在电池包的温度达到不同的T1时启动风机,在电池包的温度T1-T2内风机线性调速,在电池包的温度达到不同的T2风机以最大占空比调速,如此可以综合考虑外界环境温度及电池包温度,对风机进行预设占空比控制,实现了对电池包的充分散热及风机的低噪声控制。
另外,还需说明的是,基于电池包运行过程包括电池包充电过程及电池包放电过程,第二温度区间[T3,T4]包括一类第二温度区间和二类第二温度区间;可选的,若当前电池包的温度超出一类第二温度区间或者二类第二温度区间,电池包停止运行;其中,一类第二温度区间包含一类电池包第一温度区间;电池包在一类第二温度区间内安全充电;二类第二温度区间包含二类电池包第一温度区间;电池包在二类第二温度区间内安全放电。
其中,继续参照表1,当电池包在充电过程中,若当前电池包的温度超出一类第二温度区间[0℃,50℃],电池包停止运行,以达到对电池包充电过程中的过温保护,即电池包充电安全温度范围为[0℃,50℃];继续参照表2,当电池包在放电过程中,若当前电池包的温度超出二类第二温度区间[-10℃,60℃],电池包停止运行,以达到对电池包放电过程中的过温保护,即电池包放电安全温度范围为[-10℃,60℃]。
本申请实施例还提供了一种风机控制装置,该申请实施例所提供的风机控制装置可执行本申请任意实施例所提供的风机控制方法,具备执行方法相应的功能模块和有益效果。图3是本申请实施例提供的一种风机控制装置的结构示意图,如图3所示,该装置包括:
第一获取模块10,设置为获取环境温度和电池包的充放电倍率;
第一温度区间确定模块20,设置为根据环境温度确定电池包第一温度区间[T1,T2];其中,在电池包第一温度区间[T1,T2]内,根据电池包的充放电倍率风机以0-A%占空比线性规则运行,0<A%≤100%;
第二获取模块30,设置为获取当前电池包的温度;
风机控制模块40,设置为响应于当前电池包的温度在电池包第一温度区间[T1,T2]内,根据0-A%占空比线性规则控制风机以预设占空比运行。
可选的,该装置还包括:
停止运行模块,设置为当当前电池包的温度超出第二温度区间[T3,T4],电池包停止运行;其中,第二温度区间[T3,T4]包含电池包第一温度区间[T1,T2];电池包在第二温度区间[T3,T4]内安全运行;
第一预设占空比运行模块,设置为当当前电池包的温度在温度区间(T2,T4]内时,风机以A%的占空比运行。
可选的,该装置还包括:
第一判断模块,设置为当当前电池包温度大于T4时,判断是否检测到充电信号;
第二预设占空比运行模块,设置为当检测到充电信号,则控制风机以B%占空比运行;其中,0<B%≤100%。
可选的,该装置还包括:
第二判断模块,设置为划分多个具有一定温度区间的温度等级,并判断环境温度所处的温度等级;
第一温度区间确定模块20,包括:
左区间确定单元,设置为根据温度等级确定电池包第一温度区间[T1,T2]的左区间数T1;
右区间确定单元,设置为根据第二温度区间[T3,T4]确定电池包第一温度区间[T1,T2]的右区间数T2;
第一温度区间确定单元,设置为根据左区间数T1及右区间数T2确定电池包第一温度区间[T1,T2]。
可选的,风机占空比温度变化率为:A%占空比与电池包第一温度区间[T1,T2]的温度范围(T2-T1)的比值。
可选的,左区间确定单元,设置为通过以下方式根据所述温度等级确定电池包第一温度区间[T1,T2]的左区间数T1:
当温度等级小于等于预设温度等级时,温度等级越高,则电池包第一温度区间[T1,T2]的左区间数T1越低;其中,预设温度等级下电池包的散热效率最低;
当温度等级大于预设温度等级时,调整电池包第一温度区间[T1,T2]的左区间数T1以使风机占空比温度变化率大于预设温度等级上一温度等级时确定的风机占空比温度变化率。
可选的,第二预设占空比运行模块,设置为通过以下方式控制所述风机以B%占空比运行:
控制风机以50%占空比运行。
可选的,根据电池包的充放电倍率风机以0-A%占空比线性规则运行,具体为:
当电池包的充放电倍率越高,0-A%占空比线性规则中的A越大。
可选的,该装置还包括:
第三判断模块,设置为判断电池包的充放电状态;
第一温度区间确定模块20,包括:
第一确定单元,设置为当电池包处于充电状态时,根据环境温度确定一类电池包第一温度区间;其中,在一类电池包第一温度区间,根据电池包的充电效率风机以0-A%占空比线性规则运行,0<A%≤100%;
第二确定单元,设置为当电池包处于放电状态,根据环境温度确定二类电池包第一温度区间;其中,在二类电池包第一温度区间,根据电池包的放电效率风机以0-A%占空比线性规则运行,0<A%≤100%。
可选的,第二温度区间[T3,T4]包括一类第二温度区间和二类第二温度区间;
停止运行模块,包括:
停止运行单元,设置为当当前电池包的温度超出一类第二温度区间或者二类第二温度区间,电池包停止运行;其中,一类第二温度区间包含一类电池包第一温度区间;电池包在一类第二温度区间内安全充电;二类第二温度区间包含二类电池包第一温度区间;电池包在二类第二温度区间内安全放电。
图4为本申请实施例提供的一种计算机设备的结构示意图,如图4所示,该设备包括处理器70、存储器71、输入装置72和输出装置73;设备中处理器70的数量可以是一个或多个,图4中以一个处理器70为例;设备中的处理器70、存储 器71、输入装置72和输出装置73可以通过总线或其他方式连接,图4中以通过总线连接为例。
存储器71作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的风机控制方法对应的程序指令/模块(例如,风机控制装置中的第一获取模块10,第一温度区间确定模块20、第二获取模块30及风机控制模块40)。处理器70通过运行存储在存储器71中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的风机控制方法。
存储器71可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器71可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器71可包括相对于处理器70远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置72可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置73可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种风机控制方法,该方法包括:
获取所述环境温度和电池包的充放电倍率;
根据所述环境温度确定电池包第一温度区间[T1,T2];其中,在所述电池包第一温度区间[T1,T2]内,根据所述电池包的充放电倍率所述风机以0-A%占空比线性规则运行,0<A%≤100%;
获取当前所述电池包的温度;
若所述当前电池包温度在所述电池包第一温度区间[T1,T2]内,则根据所述0-A%占空比线性规则控制所述风机以预设占空比运行。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的风机控制方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很 多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括至少一个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述搜索装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的名称也只是为了便于相互区分。

Claims (13)

  1. 一种风机控制方法,该方法应用于储能系统,所述储能系统包括电池包、风机及温度检测单元;所述风机设置为为所述电池包降温;所述温度检测单元设置为检测环境温度及所述电池包的温度;所述风机控制方法包括:
    获取所述环境温度和所述电池包的充放电倍率;
    根据所述环境温度确定电池包第一温度区间[T1,T2];其中,在所述电池包第一温度区间[T1,T2]内,根据所述电池包的充放电倍率所述风机以0-A%占空比线性规则运行,0<A%≤100%;
    获取当前所述电池包的温度;
    响应于当前所述电池包的温度在所述电池包第一温度区间[T1,T2]内,根据所述0-A%占空比线性规则控制所述风机以预设占空比运行。
  2. 根据权利要求1所述的风机控制方法,所述方法还包括:
    响应于当前所述电池包的温度超出第二温度区间[T3,T4],所述电池包停止运行;其中,所述第二温度区间[T3,T4]包含所述电池包第一温度区间[T1,T2];所述电池包在所述第二温度区间[T3,T4]内安全运行;
    响应于当前所述电池包的温度在温度区间(T2,T4]内,所述风机以A%的占空比运行。
  3. 根据权利要求2所述的风机控制方法,所述方法还包括:
    响应于当前所述电池包的温度大于T4,判断是否检测到充电信号;
    响应于检测到所述充电信号,控制所述风机以B%占空比运行;其中,0<B%≤100%。
  4. 根据权利要求2所述的风机控制方法,所述方法还包括:
    划分多个具有一定温度区间的温度等级,判断所述环境温度所处的所述温度等级;
    所述根据所述环境温度确定电池包第一温度区间[T1,T2],包括:
    根据所述温度等级确定所述电池包第一温度区间[T1,T2]的左区间数T1;
    根据所述第二温度区间[T3,T4]确定所述电池包第一温度区间[T1,T2]的右区间数T2;
    根据所述左区间数T1及所述右区间数T2确定所述电池包第一温度区间[T1,T2]。
  5. 根据权利要求4所述的风机控制方法,其中,所述根据所述温度等级确 定所述电池包第一温度区间[T1,T2]的左区间数T1,包括:
    当所述温度等级小于等于预设温度等级时,所述温度等级越高,则所述电池包第一温度区间[T1,T2]的左区间数T1越低;其中,在所述预设温度等级下所述电池包的散热效率最低;
    当所述温度等级大于所述预设温度等级时,调整所述电池包第一温度区间[T1,T2]的左区间数T1,以使所述电池包在所述温度等级时的风机占空比温度变化率大于在所述温度等级上一温度等级时确定的风机占空比温度变化率。
  6. 根据权利要求5所述的风机控制方法,其中,所述风机占空比温度变化率为:A%占空比与所述电池包第一温度区间[T1,T2]的温度范围(T2-T1)的比值。
  7. 根据权利要求3所述的风机控制方法,其中,所述控制所述风机以B%占空比运行,包括:
    控制所述风机以50%占空比运行。
  8. 根据权利要求1所述的风机控制方法,其中,所述根据所述电池包的充放电倍率所述风机以0-A%占空比线性规则运行,包括:
    当所述电池包的充放电倍率越高,所述0-A%占空比线性规则中的A越大。
  9. 根据权利要求2所述的风机控制方法,所述方法还包括:
    判断所述电池包的充放电状态;
    所述根据所述环境温度确定电池包第一温度区间[T1,T2],包括:
    响应于所述电池包处于充电状态,根据所述环境温度确定一类电池包第一温度区间;其中,在所述一类电池包第一温度区间内,根据所述电池包的充电效率所述风机以0-A%占空比线性规则运行,0<A%≤100%;
    响应于所述电池包处于放电状态,根据所述环境温度确定二类电池包第一温度区间;其中,在所述二类电池包第一温度区间内,根据所述电池包的放电效率所述风机以0-A%占空比线性规则运行,0<A%≤100%。
  10. 根据权利要求9所述的风机控制方法,其中,所述第二温度区间[T3,T4]包括一类第二温度区间和二类第二温度区间;
    所述响应于当前所述电池包的温度超出第二温度区间[T3,T4],所述电池包停止运行,包括:
    响应于当前所述电池包的温度超出所述一类第二温度区间或者所述二类第二温度区间,所述电池包停止运行;其中,所述一类第二温度区间包含所述一 类电池包第一温度区间;所述电池包在所述一类第二温度区间内安全充电;所述二类第二温度区间包含所述二类电池包第一温度区间;所述电池包在所述二类第二温度区间内安全放电。
  11. 一种风机控制装置,包括:
    第一获取模块,设置为获取环境温度和电池包的充放电倍率;
    第一温度区间确定模块,设置为根据所述环境温度确定电池包第一温度区间[T1,T2];其中,在所述电池包第一温度区间[T1,T2]内,根据所述电池包的充放电倍率所述风机以0-A%占空比线性规则运行,0<A%≤100%;
    第二获取模块,设置为获取当前所述电池包的温度;
    风机控制模块,设置为响应于当前所述电池包的温度在所述电池包第一温度区间[T1,T2]内,根据所述0-A%占空比线性规则控制所述风机以预设占空比运行。
  12. 一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-10中任一所述的风机控制方法。
  13. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-10中任一所述的风机控制方法。
PCT/CN2023/109623 2022-10-10 2023-07-27 风机控制方法、装置、计算机设备及存储介质 WO2024078094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211231650.8 2022-10-10
CN202211231650.8A CN115289052B (zh) 2022-10-10 2022-10-10 一种风机控制方法、装置、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024078094A1 true WO2024078094A1 (zh) 2024-04-18

Family

ID=83819244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109623 WO2024078094A1 (zh) 2022-10-10 2023-07-27 风机控制方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN115289052B (zh)
WO (1) WO2024078094A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289052B (zh) * 2022-10-10 2023-03-07 深圳市华宝新能源股份有限公司 一种风机控制方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100225264A1 (en) * 2009-03-04 2010-09-09 Panasonic Ev Energy Co., Ltd. Battery cooling system for vehicle
US20130103240A1 (en) * 2011-10-25 2013-04-25 Hitachi Automotive Systems, Ltd. Battery Temperature Control Device
CN105609810A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池系统及其控制方法、以及燃料电池搭载车辆
CN210239829U (zh) * 2019-06-28 2020-04-03 潍柴动力股份有限公司 一种发动机的冷却系统
CN114204617A (zh) * 2020-09-02 2022-03-18 百度(美国)有限责任公司 用于电池热管理的自适应风扇速度控制
CN115289052A (zh) * 2022-10-10 2022-11-04 深圳市华宝新能源股份有限公司 一种风机控制方法、装置、计算机设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100225264A1 (en) * 2009-03-04 2010-09-09 Panasonic Ev Energy Co., Ltd. Battery cooling system for vehicle
US20130103240A1 (en) * 2011-10-25 2013-04-25 Hitachi Automotive Systems, Ltd. Battery Temperature Control Device
CN105609810A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池系统及其控制方法、以及燃料电池搭载车辆
CN210239829U (zh) * 2019-06-28 2020-04-03 潍柴动力股份有限公司 一种发动机的冷却系统
CN114204617A (zh) * 2020-09-02 2022-03-18 百度(美国)有限责任公司 用于电池热管理的自适应风扇速度控制
CN115289052A (zh) * 2022-10-10 2022-11-04 深圳市华宝新能源股份有限公司 一种风机控制方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
CN115289052A (zh) 2022-11-04
CN115289052B (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024078094A1 (zh) 风机控制方法、装置、计算机设备及存储介质
WO2020062238A1 (zh) 风扇转速调整方法、装置、设备、存储介质、程序产品
WO2021238984A1 (zh) 电子设备散热方法、装置及存储介质
CN112615405B (zh) 一种电池组的被动均衡方法、设备及装置
CN113497261A (zh) 一种燃料电池的输出功率的确定方法及装置
WO2014176980A1 (zh) 一种充电方法、装置及电子设备
WO2024140107A1 (zh) 一种容量衰减系数确定方法、设备及存储介质
JP2015056354A (ja) 二次電池システム、制御装置、制御方法及びプログラム
WO2024120081A1 (zh) 储能系统控制方法及相关装置
CN112009270B (zh) 电机输出功率控制方法、动力汽车及可读存储介质
WO2023143279A1 (zh) 电池soc可用窗口值的确定方法及相关装置
WO2024087459A1 (zh) 电池能量分配单元温度控制方法
US20230170720A1 (en) Charging Apparatus, Charging Method, and Computer-Readable Storage Medium
CN116613427A (zh) 家庭储能系统加热方法、装置、设备和存储介质
CN114264057B (zh) 空调的控制方法、装置、设备及计算机可读存储介质
CN113859049B (zh) 电池热管理方法、装置、电子设备及计算机可读存储介质
CN116243195A (zh) 一种电池模组寿命确定方法、装置、设备及存储介质
CN115289638A (zh) 一种空调频率控制方法、装置、设备和存储介质
CN117950469A (zh) 温度调节方法、装置、设备及存储介质
CN112349987B (zh) 一种电芯的温控系统的启动方法、装置、设备及存储介质
CN112331961B (zh) 一种电芯的温度控制方法、装置、设备及存储介质
CN114123383A (zh) 充电管理方法、充电装置、电子装置和存储介质
CN113007117B (zh) 一种基于多温感的风扇调速方法及装置
CN117162828B (zh) 一种充电设备工作环境自适应的控制方法及相关设备
CN112212517B (zh) 热水器的温度调节方法、系统、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876300

Country of ref document: EP

Kind code of ref document: A1