WO2023143279A1 - 电池soc可用窗口值的确定方法及相关装置 - Google Patents

电池soc可用窗口值的确定方法及相关装置 Download PDF

Info

Publication number
WO2023143279A1
WO2023143279A1 PCT/CN2023/072775 CN2023072775W WO2023143279A1 WO 2023143279 A1 WO2023143279 A1 WO 2023143279A1 CN 2023072775 W CN2023072775 W CN 2023072775W WO 2023143279 A1 WO2023143279 A1 WO 2023143279A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power
battery
soc
minimum
Prior art date
Application number
PCT/CN2023/072775
Other languages
English (en)
French (fr)
Inventor
康文蓉
王印
张君伟
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2023143279A1 publication Critical patent/WO2023143279A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a method for determining a battery SOC available window value and related devices.
  • the SOC (State Of Charge) of the battery is used to reflect the remaining power of the battery.
  • the available window value is an important parameter of the battery, which represents the state of the battery's discharge capacity at this temperature.
  • the SOC available window value When the actual SOC value of the battery is lower than the SOC available window value, it can be considered that the battery is in a dead state, and safety measures such as power limitation are required to prevent the battery from over-discharging and over-discharging on the premise of ensuring sufficient power for the user. That is, the battery will continue to discharge after the battery discharges the internally stored power and the voltage reaches a certain value.
  • the SOC available window value of the battery is usually calculated by the quotient of the unavailable capacity of the battery (that is, the difference between the rated capacity and the maximum available capacity) and the rated capacity of the battery.
  • the maximum available capacity refers to the full capacity of the fully charged battery pack that can be discharged continuously at a discharge rate of C/3 (one-third of the rated capacity of the battery) at a certain temperature until the battery voltage reaches the discharge cut-off voltage. value.
  • C/3 one-third of the rated capacity of the battery
  • the present application provides a method for determining a battery SOC available window value and a related device, so as to solve the problem that the battery SOC available window value is large and affects battery life and user experience.
  • the present application provides a method for determining a battery SOC available window value, including: Calculate the corresponding power value when the battery is discharged to the cut-off voltage, and use this power value as the target power value; Find the minimum SOC value corresponding to the target power value in the first minimum power map, and use the minimum SOC value as the SOC available window value;
  • the first minimum power map is a corresponding relationship diagram between SOC value and minimum power, and the minimum power corresponding to any SOC value indicates that the battery under the SOC value is discharged for a short time so that the battery voltage reaches the minimum cut-off voltage. Power; the time period of the short-time discharge is less than a preset duration.
  • the acquiring process of the first minimum power map includes: obtaining the current temperature of the battery; Obtaining the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; Under the same temperature and SOC value, the minimum value of the instantaneous power corresponding to various current impact durations is taken as the minimum power corresponding to the temperature and the SOC value, and the minimum power map is obtained; Finding the corresponding relationship between the SOC value and the minimum power at the current temperature in the minimum power map, and using the corresponding relationship between the SOC value and the minimum power at the current temperature as the first minimum power map.
  • the acquisition process of the instantaneous power includes: When the battery is at the same temperature and SOC value, discharge the battery with multiple different powers for a plurality of the impact current durations, and the power that can make the battery voltage impact to the discharge cut-off voltage is used as the power at the temperature and the SOC value. , the instantaneous power corresponding to the duration of multiple impulse currents.
  • the acquiring process of the first minimum power map includes: Obtain the current minimum temperature and the current maximum temperature of the battery, the current minimum temperature is the minimum value of the current temperatures corresponding to the multiple monomer batteries in the battery, and the current maximum temperature is the minimum value of the current temperatures corresponding to the multiple monomer batteries in the battery The maximum value of the current temperature corresponding to the battery; Obtaining the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; For the power map corresponding to each current impact duration, look up the corresponding relationship between the SOC value and instantaneous power at the current lowest temperature, and the correspondence between the SOC value and instantaneous power at the current highest temperature from the power map Relationship; for each SOC value in the power map, select the smaller value of the instantaneous power at the current highest temperature and the instantaneous power at the current lowest temperature corresponding to the SOC value as the power map The minimum power corresponding to the SOC value in
  • the calculating the corresponding power value when the battery is discharged to the cut-off voltage, and using the power value as the target power value includes: by formula , calculating the target power value; Wherein, P min represents the target power value, V j represents the cell cut-off voltage, n represents the number of cell strings included in the battery, and ⁇ represents the discharge rate.
  • the method before calculating the corresponding power value of the battery when it is discharged to the cut-off voltage, the method further includes: obtaining the current temperature of the battery; If the current temperature of the battery is in the normal temperature range, the SOC available window value of the battery is set to zero; If the current temperature of the battery is not in the normal temperature range, the step of calculating the corresponding power value when the battery is discharged to the cut-off voltage is performed.
  • the searching the minimum SOC value corresponding to the target power value in the first minimum power map, and using the minimum SOC value as the SOC available window value of the battery includes: When the minimum power equal to the target power value cannot be found in the first minimum power map, select the SOC value corresponding to the minimum power with the smallest difference with the target power value as the target The SOC available window value corresponding to the power value.
  • the searching the minimum SOC value corresponding to the target power value in the first minimum power map, and using the minimum SOC value as the SOC available window value of the battery includes: When the minimum power equal to the target power value cannot be found in the first minimum power map, the average value of the SOC values corresponding to the two minimum power values adjacent to the target power value is selected as The SOC available window value corresponding to the target power value.
  • the present application provides a device for determining a battery SOC available window value, which includes: The target power value calculation module is used to calculate the corresponding power value when the battery is discharged to the cut-off voltage, and use the power value as the target power value; The SOC available window value calculation module is used to find the minimum SOC value corresponding to the target power value in the first minimum power map, and use the minimum SOC value as the SOC available window value; Wherein, the first minimum power map is a corresponding relationship diagram between SOC value and minimum power, and the minimum power corresponding to any SOC value indicates that the battery under the SOC value is discharged for a short time so that the battery voltage reaches the minimum cut-off voltage. Power; the time period of the short-time discharge is less than a preset time period.
  • the device for determining the available window value of the battery SOC further includes a first minimum power map acquisition module, configured to: obtaining the current temperature of the battery; Obtaining the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; Under the same temperature and SOC value, the minimum value of the instantaneous power corresponding to various current impact durations is taken as the minimum power corresponding to the temperature and the SOC value, and the minimum power map is obtained; Finding the corresponding relationship between the SOC value and the minimum power at the current temperature in the minimum power map, and using the corresponding relationship between the SOC value and the minimum power at the current temperature as the first minimum power map.
  • a first minimum power map acquisition module configured to: obtaining the current temperature of the battery; Obtaining the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; Under the same temperature and SOC value, the minimum value of
  • the first minimum power map acquisition module is used for: Obtain the current minimum temperature and the current maximum temperature of the battery, the current minimum temperature is the minimum value of the current temperatures corresponding to the multiple monomer batteries in the battery, and the current maximum temperature is the minimum value of the current temperatures corresponding to the multiple monomer batteries in the battery The maximum value of the current temperature corresponding to the battery; Obtaining the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; For the power map corresponding to each current shock duration, find the corresponding relationship between the SOC value and instantaneous power at the current minimum temperature, and the SOC value and instantaneous power at the current maximum temperature from the power map corresponding relationship; for each SOC value in the power map, select the smaller value of the instantaneous power at the current highest temperature and the instantaneous power at the current lowest temperature corresponding to the SOC value as the The minimum power corresponding to the SOC value in the power map; The first
  • the target power value calculation module is used for: by formula , calculating the target power value; Wherein, P min represents the target power value, V j represents the cell cut-off voltage, n represents the number of cell strings included in the battery, and ⁇ represents the discharge rate.
  • the device also includes a temperature judging module, configured to: obtaining the current temperature of the battery; If the current temperature of the battery is in the normal temperature range, the SOC available window value of the battery is set to zero; If the current temperature of the battery is not in the normal temperature range, the functions of the target power value calculation module and the SOC available window value calculation module are executed.
  • a temperature judging module configured to: obtaining the current temperature of the battery; If the current temperature of the battery is in the normal temperature range, the SOC available window value of the battery is set to zero; If the current temperature of the battery is not in the normal temperature range, the functions of the target power value calculation module and the SOC available window value calculation module are executed.
  • the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the above A possible implementation manner of the first aspect is the steps of the described method.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the above-mentioned any possible implementation manner of the first aspect is implemented. steps of the method described above.
  • the present application provides an automobile, which includes the electronic device described in the third aspect above.
  • the embodiment of the present application provides a method for determining the available window value of battery SOC, which first calculates the corresponding power value when the battery is discharged to the cut-off voltage, and uses this power value as the target power value; then in the first minimum power map Find the minimum SOC value corresponding to the target power value in , the SOC value is the remaining power of the battery when the target power value is used to discharge to the point where it cannot be discharged, and the minimum SOC value is used as the SOC available window value.
  • the corresponding relationship between the minimum power and the SOC value in the minimum power map is determined by judging whether the cut-off voltage is reached after the battery is discharged for a short time with the minimum power at a certain SOC value, and the maximum available capacity is determined by using a fixed
  • the current of the discharge rate is to continuously discharge the battery from the fully charged state until the battery voltage reaches the discharge cut-off voltage.
  • the method provided in this embodiment The use of instantaneous power impact can usually make the battery discharge more power, so this embodiment obtains the SOC available window value of the battery based on the first minimum power map, which can expand the dischargeable power of the battery under the premise of ensuring battery safety. Battery life, optimize user experience.
  • FIG. 1 is an implementation flow chart of a method for determining a battery SOC available window value provided by an embodiment of the present application
  • Fig. 2 is the power map provided by the embodiment of the present application
  • 3 is a schematic structural diagram of a device for determining a battery SOC available window value provided by an embodiment of the present application
  • Fig. 4 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 it shows the implementation process of the method for determining the available window value of battery SOC provided by the embodiment of the present application.
  • the execution subject (electronic device) of this embodiment may be a battery management system, which is described in detail as follows: S101: Calculate the corresponding power value when the battery is discharged to the cut-off voltage, and use the power value as the target power value.
  • the power value mentioned here is the output power value of the battery
  • the target power value is the output power value of the battery when the battery is discharged to the cut-off voltage.
  • S102 Find the minimum SOC value corresponding to the target power value in the first minimum power map, and use the minimum SOC value as the SOC available window value; wherein, the first minimum power map is the correspondence between the SOC value and the minimum power In the relationship diagram, the minimum power corresponding to any SOC value indicates the minimum power for short-term discharge of the battery under the SOC value to make the battery voltage reach the cut-off voltage; the time period of short-time discharge is less than the preset duration.
  • the inventors found that when the maximum available capacity of the battery is exhausted, the remaining power of the battery is not enough to support continuous discharge at a C/3 rate, but it can still be used for a short period of time. Therefore, in the actual use of the battery, if the SOC available window value of the battery is only calculated according to the maximum available capacity, and then the battery power is limited to the user based on this value, a part of the available power of the battery will not be released, and the user will not be able to use it.
  • the first minimum power map of the battery is used to determine the SOC available window value.
  • Table 1 shows a first minimum power map.
  • the first minimum power map includes minimum powers corresponding to multiple SOC values within the full range of the SOC.
  • the minimum power corresponding to each SOC value indicates that the battery is discharged for a short time under the SOC value, and the battery voltage can reach the minimum power of the discharge cut-off voltage.
  • the corresponding minimum power also decreases; this is because when the battery SOC value is large, the internal resistance of the battery is small, and it needs to be discharged with a large current to impact the battery voltage to the cut-off voltage.
  • the SOC value of the battery is small, the internal resistance of the battery is large, and the battery voltage can be impacted to the cut-off voltage by discharging with a small current.
  • the preset duration may be 200 seconds (s), and the time period in the short-time discharge may be set to 10s, 20s, 30s, 50s, 100s, etc. less than 200s.
  • the minimum power corresponding to different SOC values may be the same or different.
  • the corresponding SOC values are 50, 60, 70, 80, 90, 95 and 100 respectively.
  • the battery management system can find the corresponding SOC value when the minimum power is the target power value through the first minimum power map, and then obtain the minimum value of at least one SOC value as the SOC available window value corresponding to the target power value.
  • the corresponding SOC available window value of 50 can be obtained by looking up Table 1.
  • the SOC value corresponding to the minimum power with the smallest difference with the target power value can be selected as the SOC available window corresponding to the target power value value.
  • An average value of SOC values corresponding to two minimum powers adjacent to the target power value may also be selected as the SOC available window value corresponding to the target power value.
  • the SOC available window value calculation method provided in this embodiment is determined based on the first minimum power map, and the corresponding relationship between the minimum power and the SOC value in the first minimum power map is for the battery at a certain time.
  • the SOC value is determined by using the minimum power for short-term discharge to determine whether the cut-off voltage is reached.
  • the calculation method of the SOC available window value is determined based on the maximum available capacity. The maximum available capacity is to use a fixed rate of current to continuously discharge the battery from a fully charged state until the battery voltage reaches the discharge cut-off voltage. electricity.
  • the polarization voltage of the battery is over before it has time to be activated, so the battery voltage is not easy to drop to the cut-off voltage, so compared with the method of calculating the SOC available window value based on the maximum available capacity, the method provided in this embodiment uses The instantaneous power impact can make the battery discharge more power, so the SOC available window value calculated by using the minimum power map is smaller.
  • the dischargeable power of the battery can be expanded, the endurance of the battery can
  • the process of obtaining the first minimum power map includes: S201: Obtain the current temperature of the battery; S202: Obtain the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; S203: Under the same temperature and SOC value, the minimum value of the instantaneous power corresponding to various current impact durations is used as the minimum power corresponding to the temperature and the SOC value to obtain a minimum power map; S204: Find the corresponding relationship between the SOC value and the minimum power at the current temperature in the minimum power map, and use the corresponding relationship between the SOC value and the minimum power at the current temperature as the first minimum power map.
  • FIG. 2 shows that under a certain inrush current duration, instantaneous Correspondence between power, temperature and SOC value.
  • the corresponding instantaneous power acquisition method is: when the battery is at this temperature and this SOC value, discharge the battery with a number of different powers for the duration of the above-mentioned impulse current, which will enable the battery to The power from the voltage impact to the discharge cut-off voltage is taken as the instantaneous power corresponding to the temperature and the SOC value.
  • the durations of the impulse currents in the power map are usually 10s, 30s and 100s respectively.
  • select the minimum power map which includes temperature, SOC value, minimum power, and the correspondence between the three. Because when the battery temperature and SOC value are consistent, using less power can usually discharge more power, so obtaining the minimum power map can get a smaller SOC available window value, so that the battery can be released more completely. The amount of electricity released.
  • the first minimum power map can be found according to the current temperature of the battery.
  • the first minimum power map can also be obtained through the following process, which is described in detail as follows: S301: Obtain the current minimum temperature and current maximum temperature of the battery, the current minimum temperature is the minimum value of the current temperature corresponding to multiple single cells in the battery, and the current maximum temperature is the maximum value of the current temperature corresponding to multiple single cells in the battery ; S302: Obtain the power map corresponding to various current shock durations of the battery respectively; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; S303: For the power map corresponding to each current impact duration, find the corresponding relationship between the SOC value and the instantaneous power at the current lowest temperature, and the corresponding relationship between the SOC value and the instantaneous power at the current highest temperature from the power map; For each SOC value in the power map, select the smaller value of the instantaneous power at the current highest temperature and the instantaneous power at the current lowest temperature corresponding to the SOC value as the SOC value in the power map Corresponding
  • the acquisition process of the first minimum power map given in S301 to S304 obtains the minimum power of the battery within the current temperature range by considering the current minimum temperature and the current maximum temperature of the battery, so that according to the smaller The minimum power of the SOC can be used to obtain the SOC available window value, which further expands the available range of the battery SOC.
  • the specific implementation process of S101 includes: by formula , calculate the corresponding target power value when the battery is discharged to the cut-off voltage according to the specified discharge rate; Wherein, P min represents the target power value, V j represents the cell cut-off voltage, n represents the number of cell strings included in the battery, and ⁇ represents the discharge rate.
  • the discharge rate is a measure of the discharge speed, which refers to the current value required by the battery to discharge its rated capacity within a specified time.
  • the specified discharge rate can be C/3, and C represents the rated capacity of the battery.
  • n is C/3.
  • the method for determining the available window value of the battery SOC provided by the present application further includes: Get the current temperature of the battery; If the current temperature of the battery is in the normal temperature range, do not execute S101 to S102, and directly set the SOC available window value of the battery to zero; If the current temperature of the battery is not in the normal temperature range, continue to execute S101 to S102.
  • the battery can actually release all the power, so when the battery is in the normal temperature range, the SOC available window value is directly set to zero, thereby expanding the available capacity of the battery at normal temperature.
  • the normal temperature range may be 22°C to 27°C.
  • Figure 3 shows a schematic structural diagram of the device for determining the available window value of battery SOC provided by the embodiment of the present application.
  • the device 100 for determining the available window value of the battery SOC includes:
  • the target power value calculation module 110 is used to calculate the corresponding power value when the battery is discharged to the cut-off voltage, and use the power value as the target power value;
  • the SOC available window value calculation module 120 is used to find the minimum SOC value corresponding to the target power value in the first minimum power map, and use the minimum SOC value as the SOC available window value;
  • the first minimum power map is the corresponding relationship between SOC value and minimum power, and the minimum power corresponding to any SOC value indicates the minimum power for short-term discharge of the battery under the SOC value, so that the battery voltage reaches the cut-off voltage ;
  • the time period of the short-time discharge is less than the preset duration.
  • the device 100 for determining the available window value of the battery SOC further includes a first minimum power map acquisition module, configured to: Get the current temperature of the battery; Obtain the power map of the battery corresponding to various current shock durations; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; Under the same temperature and SOC value, the minimum value of the instantaneous power corresponding to various current impact durations is taken as the minimum power corresponding to the temperature and the SOC value, and the minimum power map is obtained; Find the corresponding relationship between the SOC value and the minimum power at the current temperature in the minimum power map, and use the corresponding relationship between the SOC value and the minimum power at the current temperature as the first minimum power map.
  • a first minimum power map acquisition module configured to: Get the current temperature of the battery; Obtain the power map of the battery corresponding to various current shock durations; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; Under the same temperature and SOC value, the minimum value of the instantaneous
  • the first minimum power map acquisition module is used for: Obtain the current minimum temperature and the current maximum temperature of the battery, the current minimum temperature is the minimum value of the current temperature corresponding to the multiple single cells in the battery, and the current maximum temperature is the maximum value of the current temperature corresponding to the multiple single cells in the battery; Obtain the power map of the battery corresponding to various current shock durations; the power map includes the corresponding relationship between temperature, SOC value and instantaneous power; For the power map corresponding to each current shock duration, find the corresponding relationship between the SOC value and the instantaneous power at the current lowest temperature, and the corresponding relationship between the SOC value and the instantaneous power at the current highest temperature from the power map; For each SOC value in the power map, select the smaller value of the instantaneous power at the current highest temperature corresponding to the SOC value and the instantaneous power at the current lowest temperature as the corresponding SOC value in the power map. minimum power; A minimum value among the minimum powers corresponding to the same SOC value in
  • the target power value calculation module 110 is used for: by formula , to calculate the target power value; Wherein, P min represents the target power value, V j represents the cell cut-off voltage, n represents the number of cell strings included in the battery, and ⁇ represents the discharge rate.
  • the device also includes a temperature judging module, configured to: Get the current temperature of the battery; If the current temperature of the battery is in the normal temperature range, set the SOC available window value of the battery to zero; If the current temperature of the battery is not in the normal temperature range, the functions of the target power value calculation module 110 and the SOC available window value calculation module 120 are executed.
  • a temperature judging module configured to: Get the current temperature of the battery; If the current temperature of the battery is in the normal temperature range, set the SOC available window value of the battery to zero; If the current temperature of the battery is not in the normal temperature range, the functions of the target power value calculation module 110 and the SOC available window value calculation module 120 are executed.
  • the corresponding relationship between the minimum power and the SOC value in the minimum power map is determined by judging whether the cut-off voltage is reached after the battery is discharged for a short time with the minimum power at a certain SOC value, and
  • the maximum available capacity is the continuous discharge of the battery from a fully charged state with a fixed rate of current until the battery voltage reaches the discharge cut-off voltage.
  • this embodiment obtains the SOC available window of the battery based on the minimum power map. Value, on the premise of ensuring the safety of the battery, it can expand the dischargeable power of the battery, improve the endurance of the battery, and optimize the user experience.
  • the embodiment of the present application also provides a computer program product, which has a program code, and the program code executes any one of the methods for determining the available window value of the battery SOC when running in a corresponding processor, controller, computing device or electronic equipment
  • the steps in the embodiment are, for example, step S101 to step S102 shown in FIG. 1 .
  • Special purpose processors may include Application Specific Integrated Circuits (ASICs), Reduced Instruction Set Computers (RISCs), and/or Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • RISCs Reduced Instruction Set Computers
  • FPGAs Field Programmable Gate Arrays
  • the proposed methods and devices are preferably implemented as a combination of hardware and software.
  • the software is preferably installed as an application program on the program storage device. It is typically a computer platform based machine having hardware, such as one or more central processing units (CPUs), random access memory (RAM), and one or more input/output (I/O) interfaces.
  • An operating system is also typically installed on the computer platform. Various procedures and functions described herein may be part of the application program, or a part thereof may be executed by the operating system.
  • Fig. 4 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 4 of this embodiment includes: a processor 40 , a memory 41 , and a computer program 42 stored in the memory 41 and operable on the processor 40 .
  • the processor 40 executes the computer program 42
  • the steps in the embodiments of the methods for determining the available window values of the SOC of the battery are implemented, for example, steps S101 to S102 shown in FIG. 1 .
  • the processor 40 executes the computer program 42, it realizes the functions of each module/unit in the above-mentioned device embodiments, such as the functions of the target power value calculation module 110 to the SOC available window value calculation module 120 shown in FIG. 3 .
  • the computer program 42 can be divided into one or more modules/units, and one or more modules/units are stored in the memory 41 and executed by the processor 40 to complete/implement the solutions provided in this application .
  • One or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 42 in the electronic device 4 .
  • the computer program 42 may be divided into the target power value calculation module 110 to the SOC available window value calculation module 120 shown in FIG. 4 .
  • the electronic device 4 may include, but not limited to, a processor 40 and a memory 41 .
  • FIG. 4 is only an example of the electronic device 4, and does not constitute a limitation to the electronic device 4. It may include more or less components than those shown in the illustration, or combine some components, or different components. , for example, the electronic device may also include input and output devices, network access devices, buses, and so on.
  • the so-called processor 40 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 41 may be an internal storage unit of the electronic device 4 , such as a hard disk or memory of the electronic device 4 .
  • the memory 41 can also be an external storage device of the electronic device 4, such as a plug-in hard disk equipped on the electronic device 4, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) and so on. Further, the memory 41 may also include both an internal storage unit of the electronic device 4 and an external storage device.
  • the memory 41 is used to store computer programs and other programs and data required by the electronic device.
  • the memory 41 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device/electronic equipment and method can be implemented in other ways.
  • the device/electronic device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above embodiments of the method for determining the available window value of each battery SOC can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (Read-Only Memory, ROM) , random access memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, computer-readable media Excluding electrical carrier signals and telecommunication signals.
  • This embodiment provides an automobile, which includes the electronic device 4 as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池SOC可用窗口值的确定方法及相关装置,该方法包括:计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值(S101);在第一最小功率脉谱图中查找目标功率值对应的最小SOC值,并将该最小SOC值作为SOC可用窗口值(S102)。本方法能够在保证电池安全的前提下扩大电池的可放出电量,提高电池的续航能力,优化用户体验。

Description

电池SOC可用窗口值的确定方法及相关装置
本专利申请要求于2022年01月28日提交的中国专利申请No.CN 202210105957.7的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池SOC可用窗口值的确定方法及相关装置。
背景技术
电池的SOC(State Of Charge,荷电状态,用来反映电池的剩余电量)可用窗口值是电池的一项重要参数,代表电池在该温度下的放电能力状态。当电池的实际SOC值低于SOC可用窗口值时,可以认为电池处于无电状态,需要对电池进行限功率等安全措施,在保证提供给用户足够电量的前提下,防止电池过放,过放即电池放完内部储存的电量,电压达到一定值后继续放电。
目前,电池的SOC可用窗口值通常采用电池的不可用容量(即额定容量与最大可用容量的差值)与电池的额定容量的商计算得到。其中,最大可用容量是指在某温度下,满电电池包按照C/3(电池额定容量的三分之一)放电倍率的电流持续放电,直至电池电压为放电截止电压时能放出的所有容量值。发明人发现当最大可用容量用完后电池虽不能继续以固定电流持续的放电,但仍可以使用一小段时间,直接采用最大可用容量计算的SOC可用窗口值控制电池放电会导致一部分可用电量无法放出,从而影响续航及用户体验。
技术问题
本申请提供了一种电池SOC可用窗口值的确定方法及相关装置,以解决电池SOC可用窗口值较大,影响续航和用户体验的问题。
解决方案
第一方面,本申请提供了一种电池SOC可用窗口值的确定方法,包括:
计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值;
在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为SOC可用窗口值;
其中,所述第一最小功率脉谱图为SOC值和最小功率的对应关系图,任一SOC值对应的最小功率表示对该SOC值下的电池进行短时放电使电池电压达到截止电压的最小功率;所述短时放电的时间段小于预设时长。
在一个可能的实施例中,所述第一最小功率脉谱图的获取过程,包括:
获取所述电池的当前温度;
分别获取电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
将同一温度和SOC值下,各种电流冲击时长对应的瞬时功率中的最小值作为该温度和该SOC值对应的最小功率,得到最小功率脉谱图;
查找所述最小功率脉谱图中当前温度下SOC值及最小功率的对应关系,并将当前温度下SOC值及最小功率的对应关系作为所述第一最小功率脉谱图。
在一个可能的实施例中,所述瞬时功率的获取过程,包括:
当电池处于同一温度和SOC值时,以多个不同的功率对所述电池放电多个所述冲击电流时长,将能够使电池电压冲击至放电截止电压的功率,作为该温度和该SOC值下,多个所述冲击电流时长对应的瞬时功率。
在一个可能的实施例中,所述第一最小功率脉谱图的获取过程,包括:
获取所述电池的当前最低温度和当前最高温度,所述当前最低温度为所述电池中多个单体电池对应的当前温度的最小值,所述当前最高温度为所述电池中多个单体电池对应的当前温度的最大值;
分别获取电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
针对每个电流冲击时长对应的功率脉谱图,从该功率脉谱图中查找所述当前最低温度下SOC值和瞬时功率的对应关系,以及所述当前最高温度下SOC值和瞬时功率的对应关系;针对该功率脉谱图中的每个SOC值,选取该SOC值对应的所述当前最高温度下的瞬时功率和所述当前最低温度下的瞬时功率中的较小值作为该功率脉谱图中该SOC值对应的最小功率;
将多个功率脉谱图中同一SOC值对应的最小功率中的最小值作为该SOC值对应的最小功率,得到所述第一最小功率脉谱图。
在一个可能的实施例中,所述计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值,包括:
通过公式 ,计算所述目标功率值;
其中, P min表示所述目标功率值, V j表示单体截止电压, n表示所述电池包括的单体电池串数, η表示所述放电倍率。
在一个可能的实施例中,在所述计算电池在放电至截止电压时对应的功率值之前,所述方法还包括:
获取所述电池的当前温度;
若所述电池的当前温度处于常温区间,则将所述电池的SOC可用窗口值设置为零;
若所述电池的当前温度未处于所述常温区间,则执行所述计算电池在放电至截止电压时对应的功率值的步骤。
在一个可能的实施例中,所述在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为所述电池的SOC可用窗口值,包括:
当在所述第一最小功率脉谱图中无法查找到与所述目标功率值相等的最小功率时,选取与所述目标功率值的差值最小的最小功率对应的SOC值,作为所述目标功率值对应的SOC可用窗口值。
在一个可能的实施例中,所述在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为所述电池的SOC可用窗口值,包括:
当在所述第一最小功率脉谱图中无法查找到与所述目标功率值相等的最小功率时,选取与所述目标功率值相邻的两个最小功率对应的SOC值的平均值,作为所述目标功率值对应的SOC可用窗口值。
第二方面,本申请提供了一种电池SOC可用窗口值的确定装置,其包括:
目标功率值计算模块,用于计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值;
SOC可用窗口值计算模块,用于在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为SOC可用窗口值;
其中,所述第一最小功率脉谱图为SOC值和最小功率的对应关系图,任一SOC值对应的最小功率表示对该SOC值下的电池进行短时放电使电池电压达到截止电压的最小功率;所述短时放电的时间段小于预设时长。
在一个可能的实施例中,所述电池SOC可用窗口值的确定装置还包括第一最小功率脉谱图获取模块,用于:
获取所述电池的当前温度;
分别获取电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
将同一温度和SOC值下,各种电流冲击时长对应的瞬时功率中的最小值作为该温度和该SOC值对应的最小功率,得到最小功率脉谱图;
查找所述最小功率脉谱图中当前温度下SOC值及最小功率的对应关系,并将当前温度下SOC值及最小功率的对应关系作为所述第一最小功率脉谱图。
在一个可能的实施例中,第一最小功率脉谱图获取模块用于:
获取所述电池的当前最低温度和当前最高温度,所述当前最低温度为所述电池中多个单体电池对应的当前温度的最小值,所述当前最高温度为所述电池中多个单体电池对应的当前温度的最大值;
分别获取电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
针对每个电流冲击时长对应的功率脉谱图,从该功率脉谱图中查找所述当前最低温度下,SOC值和瞬时功率的对应关系,以及所述当前最高温度下,SOC值和瞬时功率的对应关系;针对该功率脉谱图中的每个SOC值,选取该SOC值对应的所述当前最高温度下的瞬时功率和所述当前最低温度下的瞬时功率中的较小值,作为该功率脉谱图中该SOC值对应的最小功率;
将多个功率脉谱图中同一SOC值对应的最小功率中的最小值作为该SOC值对应的最小功率,得到所述第一最小功率脉谱图。
在一个可能的实施例中,目标功率值计算模块用于:
通过公式 ,计算所述目标功率值;
其中, P min表示所述目标功率值, V j表示单体截止电压, n表示所述电池包括的单体电池串数, η表示所述放电倍率。
在一个可能的实施例中,所述装置还包括温度判断模块,用于:
获取所述电池的当前温度;
若所述电池的当前温度处于常温区间,则将所述电池的SOC可用窗口值设置为零;
若所述电池的当前温度未处于所述常温区间,则执行所述目标功率值计算模块和所述SOC可用窗口值计算模块的功能。
第三方面,本申请提供了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面可能的实现方式所述方法的步骤。
第四方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上第一方面任一种可能的实现方式所述方法的步骤。
第五方面,本申请提供了一种汽车,其包括如上第三方面所述的电子设备。
有益效果
本申请实施例提供一种电池SOC可用窗口值的确定方法,其首先计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值;然后在第一最小功率脉谱图中查找目标功率值对应的最小SOC值,该SOC值就是采用该目标功率值放电到不能放时电池剩余的电量,并将该最小SOC值作为SOC可用窗口值。由于最小功率脉谱图中最小功率和SOC值的对应关系,是对电池在某一SOC值时采用最小功率进行短时放电后,判断是否达到截止电压来确定的,而最大可用容量是采用固定放电倍率的电流,对电池从满电状态进行持续放电,直至电池电压达到放电截止电压时能够放出的所有电量,相较于基于最大可用容量计算SOC可用窗口值的方法,本实施例提供的方法采用瞬时功率冲击通常能够使电池放出更多的电量,因此本实施例基于第一最小功率脉谱图得到电池的SOC可用窗口值,能够在保证电池安全的前提下扩大电池的可放出电量,提高电池的续航能力,优化用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电池SOC可用窗口值的确定方法的实现流程图;
图2是本申请实施例提供的功率脉谱图;
图3是本申请实施例提供的电池SOC可用窗口值的确定装置的结构示意图;
图4是本申请实施例提供的电子设备的示意图。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
参见图1,其示出了本申请实施例提供的电池SOC可用窗口值的确定方法的实现流程,本实施例的执行主体(电子设备)可以为电池管理系统,详述如下:
S101:计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值。
具体地,此处提及的功率值为电池的输出功率值,目标功率值为电池放电至截止电压时电池的输出功率值。
S102:在第一最小功率脉谱图中查找目标功率值对应的最小SOC值,并将该最小SOC值作为SOC可用窗口值;其中,第一最小功率脉谱图为SOC值和最小功率的对应关系图,任一SOC值对应的最小功率表示对该SOC值下的电池进行短时放电,使电池电压达到截止电压的最小功率;短时放电的时间段小于预设时长。
具体地,发明人发现当电池的最大可用容量用完后,电池剩下的电虽不足以支持C/3倍率的电流继续持续放电,却仍可以短暂的使用一段时间。因此,电池实际使用过程中,如果仅按照最大可用容量来计算电池的SOC可用窗口值,然后依据该值向用户进行电池功率限制,会导致电池一部分的可用电量无法放出,用户无法使用。
本实施例采用电池的第一最小功率脉谱图来确定SOC可用窗口值。
具体的,表1示出了一种第一最小功率脉谱图,如表1所示,第一最小功率脉谱图中包括SOC全范围内多个SOC值对应的最小功率。每个SOC值对应的最小功率表示在该SOC值下对电池进行短时放电,能够使电池电压达到放电截止电压的最小功率。且随着电池SOC值的降低,相应的最小功率也跟着降低;这是由于当电池SOC值较大时,电池内阻较小,需要以较大的电流放电才能将电池电压冲击到截止电压,而电池SOC值较小时,电池内阻较大,以较小的电流放电就能够将电池电压冲击到截止电压。
具体地,预设时长可以为200秒(s),短时放电中的时间段可以设置为10s、20s、30s、50s、100s等小于200s的时间段。
表1
由表1可知,不同的SOC值对应的最小功率可能相同也可能不同。例如,表1中最小功率为93.6 KW时对应的SOC值分别为50、60、70、80、90、95和100。电池管理系统可以通过第一最小功率脉谱图查找最小功率为目标功率值时对应的SOC值,然后取得到的至少一个SOC值中的最小值作为该目标功率值对应的SOC可用窗口值。
示例性的,当目标功率值为93.6 KW时,通过查询表1可以得到对应的SOC可用窗口值为50。
当在第一最小功率脉谱图中无法查找到与目标功率值相等的最小功率时,可以选取与目标功率值的差值最小的最小功率对应的SOC值作为该目标功率值对应的SOC可用窗口值。也可以选取与目标功率值相邻的两个最小功率对应的SOC值的平均值作为该目标功率值对应的SOC可用窗口值。
从上述实施例可知,本实施例提供的SOC可用窗口值计算方法基于第一最小功率脉谱图确定,而第一最小功率脉谱图中最小功率和SOC值的对应关系,是对电池在某一SOC值时采用最小功率进行短时放电后判断是否达到截止电压来确定的。基于电池的物理特性,采用最小功率对电池进行短时放电时,电池的开路电压计算公式为: U ocv U I· DCR,其中, U ocv 表示电池的开路电压, U c 表示电池的测量电压, I表示电池的输出电流, DCR表示电池内阻, I· DCR表示电池的欧姆电压。而现有技术中SOC可用窗口值的计算方法是基于最大可用容量确定,最大可用容量是采用固定倍率的电流对电池从满电状态进行持续放电,直至电池电压达到放电截止电压时能够放出的所有电量。长时间放电时,电池的开路电压计算公式为: U ocv U I· DCRU h ,其中, U h 表示电池的极化电压。对比上述两种放电方式对应的开路电压计算公式可知,同样的放电功率下,长时间放电时由于已经激化出电池的极化电压来,因此更容易将电池电压降至截止电压,而短时放电时,电池的极化电压还没来得及被激化出来就已经结束,因此电池电压不容易降至截止电压,所以相较于基于最大可用容量计算SOC可用窗口值的方法,本实施例提供的方法采用瞬时功率冲击能够使电池放出更多的电量,所以采用最小功率脉谱图计算得到的SOC可用窗口值更小。能够在保证电池安全的前提下,扩大电池的可放出电量,提高电池的续航能力,优化用户体验。
在一个可能的实施例中,第一最小功率脉谱图的获取过程包括:
S201:获取电池的当前温度;
S202:分别获取电池在各种电流冲击时长对应的功率脉谱图;功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
S203:将同一温度和SOC值下,各种电流冲击时长对应的瞬时功率中的最小值作为该温度和该SOC值对应的最小功率,得到最小功率脉谱图;
S204:查找最小功率脉谱图中当前温度下SOC值及最小功率的对应关系,并将当前温度下SOC值及最小功率的对应关系作为第一最小功率脉谱图。
在本实施例中,电池在出厂时通常会给出多个不同冲击电流时长对应的功率脉谱图,功率脉谱图如图2所示,图2示出了某一冲击电流时长下,瞬时功率、温度和SOC值的对应关系。针对图2中的某一温度和SOC值,其对应的瞬时功率获取方法为:当电池处于该温度和该SOC值时,以多个不同的功率对电池放电上述冲击电流时长,将能够使电池电压冲击至放电截止电压的功率作为该温度和该SOC值对应的瞬时功率。
具体地,功率脉谱图中的冲击电流时长通常分别为10s、30s和100s。在得到多个冲击电流时长对应的功率脉谱图后,从中选取最小功率脉谱图,最小功率脉谱图包括温度、SOC值和最小功率,以及三者之间的对应关系。由于当电池温度和SOC值均一致时,采用更小的功率通常能够放出更多的电量,因此获取最小功率脉谱图能够得到较小的SOC可用窗口值,从而使电池能够更完全的释放可以放出的电量。
在获取到最小功率脉谱图后,根据电池的当前温度就能查找到第一最小功率脉谱图。
作为另一个可行的实施例,第一最小功率脉谱图还可以通过下述过程获得,详述如下:
S301:获取电池的当前最低温度和当前最高温度,当前最低温度为电池中多个单体电池对应的当前温度的最小值,当前最高温度为电池中多个单体电池对应的当前温度的最大值;
S302:分别获取电池在各种电流冲击时长对应的功率脉谱图;功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
S303:针对每个电流冲击时长对应的功率脉谱图,从该功率脉谱图中查找当前最低温度下SOC值和瞬时功率的对应关系,以及当前最高温度下SOC值和瞬时功率的对应关系;针对该功率脉谱图中的每个SOC值,选取该SOC值对应的当前最高温度下的瞬时功率和当前最低温度下的瞬时功率中的较小值,作为该功率脉谱图中该SOC值对应的最小功率;
S304:将多个功率脉谱图中同一SOC值对应的最小功率中的最小值作为该SOC值对应的最小功率,得到第一最小功率脉谱图。
在本实施例中,由图2可知,由于同一冲击电流和同一SOC值下,不同温度对应的瞬时功率不同,且温度和瞬时功率间没有可以遵循的固定对应关系,因此本实施例首先查找同一功率脉谱图中同一SOC值在最高温度和最低温度对应瞬时功率中的较小功率值,然后再在不同的功率脉谱图中查找同一SOC值的多个最小功率中的最小值作为该SOC值最终的最小功率,得到SOC值和最小功率的对应关系,即第一最小功率脉谱图。
相比于S201-S204,S301至S304给出的第一最小功率脉谱图的获取过程,通过考虑电池的当前最低温度和当前最高温度获得电池在当前温度范围内的最小功率,从而根据较小的最小功率得到SOC可用窗口值,进一步扩大电池SOC可用范围。
在一个可能的实施例中,S101的具体实现流程包括:
通过公式 ,计算电池在按照指定放电倍率放电至截止电压时对应的目标功率值;
其中, P min表示目标功率值, V j表示单体截止电压, n表示电池包括的单体电池串数, η表示放电倍率。
在本实施例中,放电倍率是放电快慢的一种量度,指电池在规定的时间放出其额定容量时所需要的电流值。指定放电倍率可以为C/3,C表示电池额定容量。
示例性的, η为C/3。
在一个实施例中,在S101之前,本申请提供的一种电池SOC可用窗口值的确定方法还包括:
获取电池的当前温度;
若电池的当前温度处于常温区间,则不执行S101至S102,直接将电池的SOC可用窗口值设置为零;
若电池的当前温度未处于常温区间,则继续执行S101至S102。
由于在常温区间内,电池实际上能够释放出所有的电量,因此在电池处于常温区间时,直接将SOC可用窗口值设置为零,从而扩大常温下电池的可用容量。
示例性的,常温区间可以为22℃至27℃。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以下为本申请的装置实施例,对于其中未详尽描述的细节,可以参考上述对应的方法实施例。
图3示出了本申请实施例提供的电池SOC可用窗口值的确定装置的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分,详述如下:
如图3所示,电池SOC可用窗口值的确定装置100包括:
目标功率值计算模块110,用于计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值;
SOC可用窗口值计算模块120,用于在第一最小功率脉谱图中查找该目标功率值对应的最小SOC值,并将该最小SOC值作为SOC可用窗口值;
其中,第一最小功率脉谱图为SOC值和最小功率的对应关系图,任一SOC值对应的最小功率表示对该SOC值下的电池进行短时放电,使电池电压达到截止电压的最小功率;短时放电的时间段小于预设时长。
在一个可能的实施例中,电池SOC可用窗口值的确定装置100还包括第一最小功率脉谱图获取模块,用于:
获取电池的当前温度;
分别获取电池在各种电流冲击时长对应的功率脉谱图;功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
将同一温度和SOC值下,各种电流冲击时长对应的瞬时功率中的最小值作为该温度和该SOC值对应的最小功率,得到最小功率脉谱图;
查找最小功率脉谱图中当前温度下SOC值及最小功率的对应关系,并将当前温度下SOC值及最小功率的对应关系作为第一最小功率脉谱图。
在一个可能的实施例中,第一最小功率脉谱图获取模块用于:
获取电池的当前最低温度和当前最高温度,当前最低温度为电池中多个单体电池对应的当前温度的最小值,当前最高温度为电池中多个单体电池对应的当前温度的最大值;
分别获取电池在各种电流冲击时长对应的功率脉谱图;功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
针对每个电流冲击时长对应的功率脉谱图,从该功率脉谱图中查找当前最低温度下SOC值和瞬时功率的对应关系,以及当前最高温度下SOC值和瞬时功率的对应关系;针对该功率脉谱图中的每个SOC值,选取该SOC值对应的当前最高温度下的瞬时功率和当前最低温度下的瞬时功率中的较小值,作为该功率脉谱图中该SOC值对应的最小功率;
将多个功率脉谱图中同一SOC值对应的最小功率中的最小值作为该SOC值对应的最小功率,得到第一最小功率脉谱图。
在一个可能的实施例中,目标功率值计算模块110用于:
通过公式 ,计算目标功率值;
其中, P min表示目标功率值, V j表示单体截止电压, n表示电池包括的单体电池串数, η表示放电倍率。
在一个可能的实施例中,装置还包括温度判断模块,用于:
获取电池的当前温度;
若电池的当前温度处于常温区间,则将电池的SOC可用窗口值设置为零;
若电池的当前温度未处于常温区间,则执行目标功率值计算模块110和SOC可用窗口值计算模块120的功能。
从上述实施例可知,由于最小功率脉谱图中最小功率和SOC值的对应关系,是对电池在某一SOC值时采用最小功率进行短时放电后,判断是否达到截止电压来确定的,而最大可用容量是采用固定倍率的电流对电池从满电状态进行持续放电,直至电池电压达到放电截止电压时能够放出的所有电量,相较于基于最大可用容量计算SOC可用窗口值的方法,本实施例提供的方法采用瞬时功率冲击通常能够使电池放出更多的电量,因此为了在保证电池安全的前提下使电池释放出最大的电量,本实施例基于最小功率脉谱图得到电池的SOC可用窗口值,能够在保证电池安全的前提下,扩大电池的可放出电量,提高电池的续航能力,优化用户体验。
本申请实施例还提供了一种计算机程序产品,其具有程序代码,该程序代码在相应的处理器、控制器、计算装置或电子设备中运行时执行上述任一个电池SOC可用窗口值的确定方法实施例中的步骤,例如图1所示的步骤S101至步骤S102。本领域技术人员应当理解,可以以硬件、软件、固件、专用处理器或其组合的各种形式来实现本申请实施例所提出的方法和所属的设备。专用处理器可以包括专用集成电路(ASIC)、精简指令集计算机(RISC)和/或现场可编程门阵列(FPGA)。所提出的方法和设备优选地被实现为硬件和软件的组合。该软件优选地作为应用程序安装在程序存储设备上。其典型地是基于具有硬件的计算机平台的机器,例如一个或多个中央处理器(CPU)、随机存取存储器(RAM)和一个或多个输入/输出(I/O)接口。操作系统典型地也安装在所述计算机平台上。这里描述的各种过程和功能可以是应用程序的一部分,或者其一部分可以通过操作系统执行。
图4是本申请实施例提供的电子设备的示意图。如图4所示,该实施例的电子设备4包括:处理器40、存储器41以及存储在存储器41中并可在处理器40上运行的计算机程序42。处理器40执行计算机程序42时实现上述各个电池SOC可用窗口值的确定方法实施例中的步骤,例如图1所示的步骤S101至步骤S102。或者,处理器40执行计算机程序42时实现上述各装置实施例中各模块/单元的功能,例如图3所示目标功率值计算模块110至SOC可用窗口值计算模块120的功能。
示例性的,计算机程序42可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器41中,并由处理器40执行,以完成/实施本申请所提供的方案。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序42在电子设备4中的执行过程。例如,计算机程序42可以被分割成图4所示的目标功率值计算模块110至SOC可用窗口值计算模块120。
电子设备4可包括,但不仅限于,处理器40、存储器41。本领域技术人员可以理解,图4仅仅是电子设备4的示例,并不构成对电子设备4的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如电子设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器40可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器41可以是电子设备4的内部存储单元,例如电子设备4的硬盘或内存。存储器41也可以是电子设备4的外部存储设备,例如电子设备4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器41还可以既包括电子设备4的内部存储单元也包括外部存储设备。存储器41用于存储计算机程序以及电子设备所需的其他程序和数据。存储器41还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个电池SOC可用窗口值的确定方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
本实施例提供了一种汽车,其包括如上所述的电子设备4。
此外,本申请附图中示出的实施例或本说明书中提到的各种实施例的特征不必理解为彼此独立的实施例。而是,可以将一个实施例的其中一个示例中描述的每个特征与来自其他实施例的个或多个其他期望的特征组合,从而产生未用文字或参考附图描述的其他实施例。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1.  一种电池SOC可用窗口值的确定方法,其特征在于,包括:
    计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值;
    在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为所述电池的SOC可用窗口值;
    其中,所述第一最小功率脉谱图为SOC值和最小功率的对应关系图,任一SOC值对应的最小功率表示对该SOC值下的电池进行短时放电,使电池电压达到截止电压的最小功率;所述短时放电的时间段小于预设时长。
  2.  根据权利要求1所述的电池SOC可用窗口值的确定方法,其特征在于,所述第一最小功率脉谱图的获取过程,包括:
    获取所述电池的当前温度;
    分别获取所述电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
    将同一温度和SOC值下,各种电流冲击时长对应的瞬时功率中的最小值作为该温度和该SOC值对应的最小功率,得到最小功率脉谱图;
    查找所述最小功率脉谱图中当前温度下SOC值及最小功率的对应关系,并将当前温度下SOC值及最小功率的对应关系作为所述第一最小功率脉谱图。
  3.  根据权利要求2所述的电池SOC可用窗口值的确定方法,其特征在于,所述瞬时功率的获取过程,包括:
    当电池处于同一温度和SOC值时,以多个不同的功率对所述电池放电多个所述冲击电流时长,将能够使电池电压冲击至放电截止电压的功率,作为该温度和该SOC值下,多个所述冲击电流时长对应的瞬时功率。
  4.  根据权利要求1所述的电池SOC可用窗口值的确定方法,其特征在于,所述第一最小功率脉谱图的获取过程,包括:
    获取所述电池的当前最低温度和当前最高温度,所述当前最低温度为所述电池中多个单体电池对应的当前温度的最小值,所述当前最高温度为所述电池中多个单体电池对应的当前温度的最大值;
    分别获取所述电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
    针对每个电流冲击时长对应的功率脉谱图,从该功率脉谱图中查找所述当前最低温度下SOC值和瞬时功率的对应关系,以及所述当前最高温度下SOC值和瞬时功率的对应关系;针对该功率脉谱图中的每个SOC值,选取该SOC值对应的所述当前最高温度下的瞬时功率和所述当前最低温度下的瞬时功率中的较小值,作为该功率脉谱图中该SOC值对应的最小功率;
    将多个功率脉谱图中同一SOC值对应的最小功率中的最小值作为该SOC值对应的最小功率,得到所述第一最小功率脉谱图。
  5.  根据权利要求1所述的电池SOC可用窗口值的确定方法,其特征在于,所述计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值,包括:
    通过公式 ,计算所述目标功率值;
    其中, P min表示所述目标功率值, V j表示单体截止电压, n表示所述电池包括的单体电池串数, η表示所述放电倍率。
  6.  根据权利要求1所述的电池SOC可用窗口值的确定方法,其特征在于,在所述计算电池在放电至截止电压时对应的功率值之前,所述方法还包括:
    获取所述电池的当前温度;
    若所述电池的当前温度处于常温区间,则将所述电池的SOC可用窗口值设置为零;
    若所述电池的当前温度未处于所述常温区间,则执行所述计算电池在放电至截止电压时对应的功率值的步骤。
  7.  根据权利要求1所述的电池SOC可用窗口值的确定方法,其特征在于,所述在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为所述电池的SOC可用窗口值,包括:
    当在所述第一最小功率脉谱图中无法查找到与所述目标功率值相等的最小功率时,选取与所述目标功率值的差值最小的最小功率对应的SOC值,作为所述目标功率值对应的SOC可用窗口值。
  8.  根据权利要求1所述的电池SOC可用窗口值的确定方法,其特征在于,所述在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为所述电池的SOC可用窗口值,包括:
    当在所述第一最小功率脉谱图中无法查找到与所述目标功率值相等的最小功率时,选取与所述目标功率值相邻的两个最小功率对应的SOC值的平均值,作为所述目标功率值对应的SOC可用窗口值。
  9.  一种电池SOC可用窗口值的确定装置,其特征在于,包括:
    目标功率值计算模块,用于计算电池在放电至截止电压时对应的功率值,并将该功率值作为目标功率值;
    SOC可用窗口值计算模块,用于在第一最小功率脉谱图中查找所述目标功率值对应的最小SOC值,并将该最小SOC值作为SOC可用窗口值;
    其中,所述第一最小功率脉谱图为SOC值和最小功率的对应关系图,任一SOC值对应的最小功率表示对该SOC值下的电池进行短时放电,使电池电压达到截止电压的最小功率;所述短时放电的时间段小于预设时长。
  10.  如权利要求9所述的电池SOC可用窗口值的确定装置,其特征在于,所述装置还包括第一最小功率脉谱图获取模块,用于:
    获取所述电池的当前温度;
    分别获取电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
    将同一温度和SOC值下,各种电流冲击时长对应的瞬时功率中的最小值作为该温度和该SOC值对应的最小功率,得到最小功率脉谱图;
    查找所述最小功率脉谱图中当前温度下SOC值及最小功率的对应关系,并将当前温度下SOC值及最小功率的对应关系作为所述第一最小功率脉谱图。
  11.  如权利要求9所述的电池SOC可用窗口值的确定装置,其特征在于,所述装置还包括第一最小功率脉谱图获取模块,用于:
    获取所述电池的当前最低温度和当前最高温度,所述当前最低温度为所述电池中多个单体电池对应的当前温度的最小值,所述当前最高温度为所述电池中多个单体电池对应的当前温度的最大值;
    分别获取所述电池在各种电流冲击时长对应的功率脉谱图;所述功率脉谱图包括温度、SOC值和瞬时功率的对应关系;
    针对每个电流冲击时长对应的功率脉谱图,从该功率脉谱图中查找所述当前最低温度下,SOC值和瞬时功率的对应关系,以及所述当前最高温度下,SOC值和瞬时功率的对应关系;针对该功率脉谱图中的每个SOC值,选取该SOC值对应的所述当前最高温度下的瞬时功率和所述当前最低温度下的瞬时功率中的较小值,作为该功率脉谱图中该SOC值对应的最小功率;
    将多个功率脉谱图中同一SOC值对应的最小功率中的最小值作为该SOC值对应的最小功率,得到所述第一最小功率脉谱图。
  12.  如权利要求9所述的电池SOC可用窗口值的确定装置,其特征在于,所述目标功率值计算模块用于:
    通过公式 ,计算所述目标功率值;
    其中, P min表示所述目标功率值, V j表示单体截止电压, n表示所述电池包括的单体电池串数, η表示所述放电倍率。
  13.  一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上的权利要求1至8中任一项所述电池SOC可用窗口值的确定方法的步骤。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上的权利要求1至8中任一项所述电池SOC可用窗口值的确定方法的步骤。
  15.  一种汽车,其特征在于,包括如权利要求13所述的电子设备。
PCT/CN2023/072775 2022-01-28 2023-01-18 电池soc可用窗口值的确定方法及相关装置 WO2023143279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210105957.7 2022-01-28
CN202210105957.7A CN115113077A (zh) 2022-01-28 2022-01-28 电池soc可用窗口值的确定方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023143279A1 true WO2023143279A1 (zh) 2023-08-03

Family

ID=83324608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072775 WO2023143279A1 (zh) 2022-01-28 2023-01-18 电池soc可用窗口值的确定方法及相关装置

Country Status (2)

Country Link
CN (1) CN115113077A (zh)
WO (1) WO2023143279A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115113077A (zh) * 2022-01-28 2022-09-27 长城汽车股份有限公司 电池soc可用窗口值的确定方法及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106314170A (zh) * 2016-08-18 2017-01-11 重庆长安汽车股份有限公司 一种动力电池系统的功率计算方法、系统及电动汽车
US20180120361A1 (en) * 2016-10-31 2018-05-03 Lg Chem, Ltd. Method for preventing battery overcharge and overdischarge and increasing battery efficiency
CN108072844A (zh) * 2017-12-15 2018-05-25 重庆长安汽车股份有限公司 一种车用动力电池可用功率估算方法
CN110261789A (zh) * 2019-05-31 2019-09-20 蜂巢能源科技有限公司 动力电池包的脉冲放电功率评估方法及电池管理系统
CN110400987A (zh) * 2019-07-03 2019-11-01 华人运通(江苏)技术有限公司 电池充放电电流的限制方法、电池管理系统及存储介质
US20200331452A1 (en) * 2017-08-30 2020-10-22 Renault S.A.S. Method for managing the state of charge of a hybrid vehicle
CN112485685A (zh) * 2020-11-30 2021-03-12 海马汽车有限公司 功率承受能力参数确定方法、装置及电子设备
CN115113077A (zh) * 2022-01-28 2022-09-27 长城汽车股份有限公司 电池soc可用窗口值的确定方法及相关装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106314170A (zh) * 2016-08-18 2017-01-11 重庆长安汽车股份有限公司 一种动力电池系统的功率计算方法、系统及电动汽车
US20180120361A1 (en) * 2016-10-31 2018-05-03 Lg Chem, Ltd. Method for preventing battery overcharge and overdischarge and increasing battery efficiency
US20200331452A1 (en) * 2017-08-30 2020-10-22 Renault S.A.S. Method for managing the state of charge of a hybrid vehicle
CN108072844A (zh) * 2017-12-15 2018-05-25 重庆长安汽车股份有限公司 一种车用动力电池可用功率估算方法
CN110261789A (zh) * 2019-05-31 2019-09-20 蜂巢能源科技有限公司 动力电池包的脉冲放电功率评估方法及电池管理系统
CN110400987A (zh) * 2019-07-03 2019-11-01 华人运通(江苏)技术有限公司 电池充放电电流的限制方法、电池管理系统及存储介质
CN112485685A (zh) * 2020-11-30 2021-03-12 海马汽车有限公司 功率承受能力参数确定方法、装置及电子设备
CN115113077A (zh) * 2022-01-28 2022-09-27 长城汽车股份有限公司 电池soc可用窗口值的确定方法及相关装置

Also Published As

Publication number Publication date
CN115113077A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US10965138B2 (en) Method, apparatus, and device for charging a battery and storage medium
EP3872957A1 (en) Charging method, electronic apparatus, and storage medium
CN109143076B (zh) 用于调节电池组的放电功率的方法
US20180358661A1 (en) Lithium-ion battery cut-off voltage adjustment
WO2021238198A1 (zh) 一种充电方法、充电芯片和终端设备
WO2023143279A1 (zh) 电池soc可用窗口值的确定方法及相关装置
CN112689934B (zh) 充电方法、电子装置以及存储介质
WO2020259039A1 (zh) 荷电状态修正方法及装置
CN113472037A (zh) 一种电池组均衡方法、电池组均衡装置及电池管理系统
US20210119461A1 (en) Electronic device and method for charging battery
US20230238822A1 (en) Charging method, electronic apparatus, and storage medium
CN114142112A (zh) 电池系统的控制方法、装置、设备以及存储介质
CN109100658B (zh) 用于调节电池组的放电功率的系统
US20230238818A1 (en) Charging method, electronic apparatus, and storage medium
US20230231405A1 (en) Charging method, electronic apparatus, and storage medium
CN111211381B (zh) 一种锂电池在低温下的放电控制方法及装置
EP4187751A1 (en) Charging apparatus, charging method, and computer-readable storage medium
US20220326308A1 (en) State-of-charge cut-off control method, apparatus and system, and storage medium
CN115021365A (zh) 基于储能系统的电池均衡方法、装置、设备及存储介质
WO2021077274A1 (zh) 充电方法、电子装置以及存储介质
CN116529620A (zh) 一种充电电流的测试方法、装置及充电测试系统
CN116259866B (zh) 充电方法、电池管理系统、电池及可读存储介质
CN117498505B (zh) 便携式电源的电量显示方法、便携式电源及芯片系统
CN111487541B (zh) 判断电量状态的方法及其电子装置
US20230238821A1 (en) Charging method, electronic apparatus, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746161

Country of ref document: EP

Kind code of ref document: A1