WO2021077274A1 - 充电方法、电子装置以及存储介质 - Google Patents

充电方法、电子装置以及存储介质 Download PDF

Info

Publication number
WO2021077274A1
WO2021077274A1 PCT/CN2019/112387 CN2019112387W WO2021077274A1 WO 2021077274 A1 WO2021077274 A1 WO 2021077274A1 CN 2019112387 W CN2019112387 W CN 2019112387W WO 2021077274 A1 WO2021077274 A1 WO 2021077274A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
charge
voltage
current
Prior art date
Application number
PCT/CN2019/112387
Other languages
English (en)
French (fr)
Inventor
关婷
朱珊
吴飞
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2019/112387 priority Critical patent/WO2021077274A1/zh
Priority to CN201980058974.6A priority patent/CN112740500A/zh
Priority to JP2021516869A priority patent/JP7250914B2/ja
Priority to EP19945475.2A priority patent/EP3843196B1/en
Publication of WO2021077274A1 publication Critical patent/WO2021077274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery charging method, electronic device and storage medium.
  • the charging method commonly used on lithium batteries is to continuously charge the lithium-ion battery to a certain voltage (which can be understood as the charging limit voltage) through a preset constant current, and then charge the lithium-ion battery at a constant voltage with this voltage to full Full state.
  • a certain voltage which can be understood as the charging limit voltage
  • the impedance of the battery increases, which will shorten the time of constant current charging of the battery and extend the time of constant voltage charging, resulting in the total charging time of the battery Getting longer and longer.
  • An embodiment of the present application provides a battery charging method, and the charging method includes:
  • the battery In the m-th charge and discharge cycle, the battery is charged with a constant current to the first state of charge SOC 1 with the first charging current I m , and the battery has a corresponding first cut-off voltage V 1 ;
  • the current I n charges the battery with a constant current to the second state of charge SOC 2 , and the battery has a second cut-off voltage V 2 when the constant current charge is cut off; the battery is charged with the second cut-off voltage V 2 Carry out constant voltage charging to full charge state;
  • I m I n +k ⁇ I n , 0 ⁇ k ⁇ 1, n is an integer greater than or equal to 0, m is any of 1, 2,..., x and greater than n Two or more integers, the value of k is different in at least two charge and discharge cycles
  • I n is the charge of the battery or another battery that is the same as the battery in the constant current charging stage in the nth charge and discharge cycle Current or a preset value, the constant current charging stage in the nth
  • the SOC 3 may also be the state of charge or a preset value of another battery that is the same as the battery when the constant current charging phase in the nth charge-discharge cycle ends.
  • U n is the battery or another battery the same as the battery charged with constant current in the nth charge and discharge cycle
  • U m-1 is the battery or another battery that is the same as the battery. Constant current is charged to the charge in the m-1th charge and discharge cycle.
  • R a is an anode impedance of said battery cell to another battery or the same in the n-th charge-discharge cycle
  • U m-2 is the battery or another battery with the same battery in the m-th -2
  • the charging method further includes: charging the battery at a constant voltage with the first cut-off voltage V 1 to the second charging current I n .
  • the charging method further includes: comparing the third cut-off voltage V 3 and the charge limit voltage U cl ; and determining that the battery is in the m-th charge-discharge cycle according to the comparison result The previous charging method.
  • the step of determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result includes: a first charging step: in the n-th charge-discharge cycle, when the first charge-discharge cycle The three cut-off voltage V 3 is less than the charging limit voltage U cl , the battery is continuously charged with the second charging current I n to the charging limit voltage U cl , and the charging limit voltage U cl is used to The battery is charged with a constant voltage to a fully charged state, where n ⁇ m-1; the second charging step: enters the next charge and discharge cycle, and the battery is charged with a constant current with the second charging current I n until the battery is fully charged.
  • the battery has the corresponding third cut-off voltage V 3 ; and repeat steps: repeat the first charging step and the second charging step until the third cut-off The voltage V 3 is greater than or equal to the charging limit voltage U cl .
  • the step of determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result further includes: when the third cut-off voltage V 3 is greater than or equal to the charge limit voltage U cl , charge the battery at a constant voltage with the third cut-off voltage V 3 to a fully charged state, and obtain the first state of charge SOC 1 and calculate the first charging current Im .
  • the charging method further includes: obtaining a fourth state of charge SOC 4 when the battery is charged with constant current in the nth charge and discharge cycle until the battery voltage is the charge limit voltage U cl Comparing the magnitude of the third state of charge SOC 3 and the fourth state of charge SOC 4 ; and determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result.
  • the step of determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result includes: a charging step: in the n-th charge-discharge cycle, when the The three-state-of-charge SOC 3 is less than the fourth state-of-charge SOC 4 , and the next charge-discharge cycle is entered, and the battery is charged with the second charge current I n at a constant current to the charge limit voltage U cl , the The battery has a corresponding fourth state of charge SOC 4 , and the battery is charged to a full charge state at a constant voltage with the charge limit voltage U cl, where n ⁇ m-1; and repeating steps: repeating the The charging step is performed until the third state of charge SOC 3 is greater than or equal to the fourth state of charge SOC 4 .
  • the step of determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result includes: when the third state of charge SOC 3 is greater than or equal to the fourth charge charged state SOC 4, computing and obtaining a first charging current I m is the first state of charge SOC.
  • I n is a preset value
  • I n is the charging current of the battery or another battery that is the same as the battery in the constant current charging stage in the nth charge and discharge cycle, and the nth time
  • the constant current charging stage in the charge-discharge cycle is to charge the battery with the second charging current I n
  • U n is the battery or another battery the same as the battery charged with constant current in the nth charge and discharge cycle
  • U m-1 is the battery or another battery that is the same as the battery. Constant current is charged to the charge in the m-1th charge and discharge cycle.
  • R a is an anode impedance of said battery cell to another battery or the same in the n-th charge-discharge cycle
  • U m-2 is the battery or another battery with the same battery in the m-th -2
  • the first cut-off voltage V 1 is also obtained by the following method: obtaining the battery impedance R of the battery in the m-1th charge and discharge cycle; and according to the charge limit voltage U cl the battery impedance R, the first charging current I m and the second charging current I n a first determining the cutoff voltage V 1.
  • the charging method further includes: charging the battery at a constant voltage with the first cut-off voltage V 1 to the second charging current I n .
  • the charging method further includes: comparing the third cut-off voltage V 3 and the charge limit voltage U cl ; and determining that the battery is in the m-th charge-discharge cycle according to the comparison result The previous charging method.
  • the step of determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result includes: a first charging step: in the n-th charge-discharge cycle, when the first charge-discharge cycle
  • the three cut-off voltage V 3 is less than the charging limit voltage U cl , the battery is continuously charged with the second charging current I n to the charging limit voltage U cl , and the charging limit voltage U cl is used to
  • the battery is charged with a constant voltage to a fully charged state, where n ⁇ m-1;
  • the second charging step enters the next charge and discharge cycle, and the battery is charged with a constant current with the second charging current I n until the battery is fully charged.
  • the step of determining the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result further includes: when the third cut-off voltage V 3 is greater than or equal to the charge limit voltage U cl , charge the battery at a constant voltage with the third cut-off voltage V 3 to a fully charged state, and calculate the first charging current Im .
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a battery and a processor, and the processor is configured to load and execute the charging method described above.
  • An embodiment of the present application provides a storage medium on which at least one computer instruction is stored, and the computer instruction is loaded by a processor and used to execute the battery charging method described above.
  • the battery charging method provided by the embodiments of the present application shortens the constant current charging time of the battery by increasing the charging current of the battery in the constant current stage, thereby shortening the total charging time of the battery.
  • the charging method provided by the embodiments of the present application can further shorten the total charging time of the battery by increasing the cut-off voltage of the battery in the constant current stage. In this way, the battery charging method, the electronic device, and the storage medium provided by the embodiments of the present application can shorten the full charge time of the battery, and can also ensure that the battery does not overcharge.
  • Fig. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Fig. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • Fig. 3 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 4 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 5 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 6 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 7 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 8 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 9 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 10 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 11 is a block diagram of a charging system according to an embodiment of the present application.
  • Constant voltage charging module 105 Constant voltage charging module 105
  • the charging system 10 runs in the electronic device 100.
  • the electronic device 100 includes, but is not limited to, a processor 11 and a battery 13.
  • the above-mentioned components may be connected via a bus or directly.
  • FIG. 1 is only an example of the electronic device 100.
  • the electronic device 100 may also include more or fewer elements, or have different element configurations.
  • the electronic device 100 may be an electric motorcycle, an electric bicycle, an electric car, a mobile phone, a tablet computer, a digital assistant, a personal computer, or any other suitable rechargeable equipment.
  • the battery 13 is a rechargeable battery for providing electrical energy to the electronic device 100.
  • the battery 13 may be a lead-acid battery, a nickel-cadmium battery, a nickel-hydrogen battery, a lithium ion battery, or a lithium polymer battery.
  • the battery 13 is logically connected to the processor 11 through the charging system 10, so that functions such as charging, discharging, and power consumption management are realized through the charging system 10.
  • the battery 13 includes a battery cell (not shown).
  • FIG. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • the constant current charging stage in the charging method is terminated by a state of charge (SOC, stage of charge).
  • SOC state of charge
  • the battery charging method may include the following steps:
  • Step S21 the m-th charge-discharge cycles at a first charging current I m is a constant current charge the battery to a first state of charge SOC 1.
  • the charging system 10 In the m-th charge-discharge cycles, the charging system 10 according to the present embodiment, a first charging current I m to the battery 13 to the first constant current charge state of charge SOC 1. Wherein, the battery 13 has a corresponding first cut-off voltage V 1 .
  • the SOC 1 is that the battery 13 or another battery that is the same as the battery 13 (such as a battery of the same model) is charged with constant current to the charge limit voltage U in the m-1th charge and discharge cycle.
  • U cl can be understood as the charging limit voltage as described in the background art, or the charging limit voltage written on the battery product information.
  • the I m satisfies the following formula:
  • k can be varied with the charge-discharge cycle number of different, i.e. different charge-discharge cycles, k value may be different, to give a first charging current I m is not the same; or, In different charge and discharge cycles, the first charge current Im may be the same or different.
  • n is an integer greater than or equal to 0
  • m is any two or more integers of 1, 2,..., x and greater than n
  • the value of k is different in at least two charge and discharge cycles, that is, in at least two charge and discharge cycles ,
  • the first charging current Im used is different.
  • the k satisfies the following formula:
  • the formula (2) shows that the value of k can vary with the number of cycles m, that is, in different charge and discharge cycles, the value of k can be the same or different.
  • 13 I n the same or another cell (e.g., the same type of battery) of the battery charge of the battery 13 in the constant current charging phase of the n-th charge-discharge cycle Current.
  • the second charging current I n can also be a preset value.
  • the battery capacity when the charging system 10 charges the battery 13 with the first charging current I m to the first state of charge SOC 1 at a constant current is Q m .
  • the Q m satisfies the following formula:
  • Q is the current actual capacity of the battery 13.
  • the charging system 10 is also used to obtain the discharge capacity or the current actual capacity of the battery 13 in each charge and discharge cycle.
  • the current actual capacity of the battery 13 in each charge and discharge cycle is the actual battery capacity of the battery 13 in the corresponding charge and discharge cycle, that is, the battery 13 is fully charged during each cycle.
  • the maximum capacity from the state to the fully-discharged state, and the discharge capacity can be measured by a fuel gauge.
  • the charging system 10 obtains the actual capacity of the battery 13 in each charge and discharge cycle, and records the temperature and rate of the battery, etc., according to the known correspondence between different temperatures and different rates of capacity, the battery The actual capacity of the battery 13 is converted and calculated, and then the actual charging temperature of the battery 13 and the maximum capacity at the charging rate are obtained. This maximum capacity is the actual capacity mentioned above.
  • the actual capacity of the battery 13 changes with the increase in the use time of the battery 13 or the number of charge-discharge cycles, and the actual capacity of the battery has a direct relationship with the aging of the battery cell.
  • the charging system 10 can obtain the actual capacity of the battery 13 in each charge and discharge cycle.
  • the charging system 10 when the charging system 10 uses the first charging current I m to charge the battery 13 with constant current to the first state of charge SOC 1 , the charging system 10 also The battery 13 is charged at a constant voltage with the first cut-off voltage V 1 to a second charging current I n .
  • Step S22 Perform constant current charging of the battery with the second charging current I n to the second state of charge SOC 2 .
  • the charging system 10 will charge the battery 13 at a constant current with the second charging current I n to the second state of charge SOC 2 .
  • the battery 13 has a second cut-off voltage V 2 when the constant current charging is cut off.
  • the constant current charging stage in the n-th charge-discharge cycle is to charge the battery 13 with constant current only with the second charging current I n to the charging limit voltage U cl or only with the second charging current I n n constant current charge the battery to a third state of charge SOC 3, and having the third state of charge SOC 3 corresponding to the third cutoff voltage V 3. That is, the constant current charging stage in the nth charge and discharge cycle can be to charge the battery 13 to the third state of charge SOC 3 with only the second charging current I n , or it can be a conventional method.
  • (Charge with constant current to the charge limit voltage U cl ) Charge the battery 13 to the charge limit voltage U cl .
  • the third state of charge SOC 3 may be another battery that is the same as the battery 13 (that is, a battery of the same model) during the constant current charging stage of the nth charge and discharge cycle.
  • the third state of charge SOC 3 may also be a preset value.
  • Step S23 Charge the battery at a constant voltage with the second cut-off voltage V 2 to a fully charged state.
  • the charging system 10 uses the second charging current I n to charge the battery 13 at a constant current to the second state of charge SOC 2 , the charging The system 10 will charge the battery 13 at a constant voltage with the second cut-off voltage V 2 to a fully charged state, so as to ensure that the battery 13 does not undergo lithium evolution and the battery does not overcharge.
  • the charging system 10 determines that the battery 13 may also be a first charging current I m when the m-th charge-discharge cycles by the following steps, the following steps:
  • Step S31 Obtain the first anode potential U n when the battery or another battery identical to the battery is charged to the charge limit voltage U cl at a constant current in the n-th charge and discharge cycle.
  • the charging system 10 is used to obtain the anode non-polarization charging curve, the anode impedance of the battery 13 in the nth charge and discharge cycle, and the second charge corresponding to the battery 13 when the constant current charging phase is cut off. Current I n .
  • the battery 13 can obtain the same cell or the another cell at the n-th charge-discharge cycles of the anode impedance by the impedance R a test.
  • the anode non-polarization charging curve can be expressed as using a small rate (such as 0.01C) to charge the battery 13. During this charging process, the state of charge of the battery 13 corresponds to it.
  • a small rate such as 0.01C
  • the charging system 10 can obtain the battery 13 or another battery identical to the battery to be charged with constant current to the charging limit voltage U cl in the nth charge and discharge cycle according to the anode non-polarization charging curve. (It can be understood as the charging limit voltage described in the background art) corresponding to the first anode potential U n .
  • Step S32 Obtain the second anode potential U m-1 when the battery or another battery identical to the battery is charged to the charge limit voltage U cl at a constant current in the m-1 th charge and discharge cycle.
  • the charging system 10 for acquiring the cell anode 13 in the n-th charge-discharge cycles and charge curve of a non-polar anode impedance R a.
  • the charging system 10 can obtain, according to the anode non-polarization charging curve, when the battery 13 or another battery that is the same as the battery is charged at a constant current to the charge limit voltage U cl in the m-1th charge and discharge cycle The corresponding second anode potential U m-1 .
  • Step S33 According to the first anode potential U n, the second anode potential U m-1, the anode impedance R a and the second charging current I n of the battery 13 is calculated at the m-th charge the first discharge cycle when the charging current I m.
  • the charging system 10 according to the first anode potential U n, the second anode potential U m-1, the anode impedance R a and the second charging current I n is calculated when the battery charge and discharge cycles of the m first charging current I m, and to said first charging current I m to charge the battery 13.
  • the first charging current I m can be calculated according to the following formula:
  • I m I n +(U m-1 -U n )/R a (4)
  • m is greater than 1, whereby the charging system 10 can (4) to obtain the first charging current I m according to the formula, in turn, can be charged according to a first charging current I m is determined the battery 13 .
  • the system 10 may further charging of the battery 13 to determine a first charging current I m when the m-th charge-discharge cycles by the following steps, the following steps:
  • Step S41 Obtain the third charging current Im-1 of the constant current charging stage of the battery or another battery identical to the battery in the m-1th charge and discharge cycle.
  • the charging system 10 for acquiring the battery 13 or another battery of the same battery 13 of the third charging current I m in the first constant-current charging stage m-1 charge and discharge cycles -1 .
  • the third charging current I m-1 may also be a preset value.
  • Step S42 Obtain the second anode potential U m-1 when the battery or another battery identical to the battery is charged to the charge limit voltage U cl at a constant current in the m-1 th charge and discharge cycle.
  • the charging system 10 for acquiring the cell anode 13 in the n-th charge-discharge cycles and charge curve of a non-polar anode impedance R a.
  • the charging system 10 can obtain that the battery 13 or another battery identical to the battery is charged to the charge limit voltage at a constant current in the m-1th charge and discharge cycle according to the anode non-polarization charge curve.
  • U cl is the corresponding second anode potential U m-1 .
  • Step S43 Obtain the third anode potential U m-2 when the battery or another battery that is the same as the battery is charged with constant current to the charge limit voltage U cl in the m-2 th charge and discharge cycle.
  • the charging system 10 can be used to obtain the constant current charging of the battery 13 or another battery that is the same as the battery according to the anode non-polarization charging curve.
  • Step S44 The second anode potential U m-1, the third anode potential U m-2, the anode and the impedance R a third charging current I m-1 of the battery 13 is calculated the m-th charge-discharge cycles when the first charging current I m.
  • the charging system 10 according to the second anode potential U m-1, the third anode potential U m-2, the anode and the impedance R a third charging current I m -1 calculating said first battery charging current I m when the m-th charge-discharge cycle, and to said first charging current I m to charge the battery 13.
  • R a may be the anode impedance measured by the three electrodes, and may be stored in advance in the memory or processor.
  • the first charging current I m can be calculated according to the following formula:
  • I m I m-1 +(U m-1 -U m-2 )/R a (5)
  • m is greater than 2, whereby the charging system 10 may be (5) to obtain the first charging current I m according to the formula, in turn, can be charged according to a first charging current I m is determined the battery 13 .
  • the charging system 10 may determine the charging mode of the battery 13 before the m-th charge-discharge cycle through the following steps, and the specific steps are as follows:
  • Step S51 Compare the magnitude of the third cut-off voltage V 3 and the charge limit voltage U cl to obtain a comparison result.
  • the charging system 10 will compare the third cut-off voltage V 3 with the charge limit voltage U cl .
  • Step S52 Determine the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result.
  • the charging system 10 is configured to determine the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result between the third cut-off voltage V 3 and the charge limit voltage U cl.
  • the charging system 10 when the third cut-off voltage V 3 is less than the charging limit voltage U cl , the charging system 10 will use the following steps to charge the battery 13, and the specific steps are as follows:
  • the first charging step in the nth charge and discharge cycle, when the third cut-off voltage V 3 is less than the charge limit voltage U cl , the charging system 10 will continue to charge with the second charging current I n The battery 13 is charged with a constant current to the charge limit voltage U cl . Then, the charging system 10 will charge the battery 13 at a constant voltage with the charge limit voltage U cl to a fully charged state, where n ⁇ m-1.
  • the second charging step entering the next charge-discharge cycle, the charging system 10 will charge the battery 13 to the third state of charge SOC 3 at a constant current with the second charging current I n , wherein, The battery 13 has the corresponding third cut-off voltage V 3 .
  • the charging system 10 will repeat the first charging step and the second charging step until the third cut-off voltage V 3 is greater than or equal to the charging limit voltage U cl .
  • the charging system 10 when the third cut-off voltage V 3 is greater than or equal to the charging limit voltage U cl , the charging system 10 will perform a constant voltage on the battery 13 with the third cut-off voltage V 3 Charge to full charge state. In addition, the charging system 10 will also obtain the first state of charge SOC 1 and calculate the first charging current Im .
  • the charging system 10 may also determine the charging mode of the battery 13 before the m-th charge-discharge cycle through the following steps, and the specific steps are as follows:
  • Step S61 Obtain the fourth state of charge SOC 4 when the battery is charged with constant current in the nth charge and discharge cycle until the battery voltage is the charge limit voltage U cl .
  • the charging system 10 obtains the fourth state of charge SOC 4 when the battery 13 is charged with constant current in the n-th charge and discharge cycle until the battery voltage is the charge limit voltage U cl .
  • Step S62 Compare the magnitude of the third state of charge SOC 3 and the fourth state of charge SOC 4.
  • the charging system 10 will compare the magnitude of the third state of charge SOC 3 and the fourth state of charge SOC 4.
  • Step S63 Determine the charging mode of the battery before the m-th charge-discharge cycle according to the comparison result.
  • the charging system 10 is configured to determine the charging mode of the battery before the m-th charge and discharge cycle according to the comparison result between the third state of charge SOC 3 and the fourth state of charge SOC 4.
  • the charging system 10 when the third state of charge SOC 3 is less than the fourth state of charge SOC 4 , the charging system 10 will use the following steps to charge the battery 13, and the specific steps are as follows:
  • Charging step in the nth charge and discharge cycle, when the third state of charge SOC 3 is less than the fourth state of charge SOC 4 , enter the next charge and discharge cycle, and use the second charge current I n to
  • the battery 13 is charged with a constant current to the charging limit voltage U cl , and the battery has the corresponding fourth state of charge SOC 4 . Then, the battery is charged at a constant voltage with the charging limit voltage U cl to a fully charged state, where n ⁇ m-1.
  • the charging system 10 when the third state of charge SOC 3 is greater than or equal to the fourth state of charge SOC 4 , the charging system 10 will also obtain the first state of charge SOC 1 and the calculation result.
  • the first charging current I m when the third state of charge SOC 3 is greater than or equal to the fourth state of charge SOC 4 , the charging system 10 will also obtain the first state of charge SOC 1 and the calculation result.
  • the first charging current I m when the third state of charge SOC 3 is greater than or equal to the fourth state of charge SOC 4 , the charging system 10 will also obtain the first state of charge SOC 1 and the calculation result.
  • the first charging current I m when the third state of charge SOC 3 is greater than or equal to the fourth state of charge SOC 4 , the charging system 10 will also obtain the first state of charge SOC 1 and the calculation result.
  • the first charging current I m when the third state of charge SOC 3 is greater than or equal to the fourth state of charge SOC 4 , the charging system 10 will also obtain the first
  • FIG. 7 is a flowchart of a battery charging method according to another embodiment of the present application.
  • the constant current charging stage in the charging method is terminated by a voltage.
  • the charging method of this embodiment may include the following steps:
  • Step S71 In the m-th charge-discharge cycle, charge the battery with a constant current with the first charge current I m to the first cut-off voltage V 1 .
  • the charging system 10 of this embodiment uses the first charging current I m to charge the battery 13 with a constant current to the first cut-off voltage V 1 .
  • the first charging current Im satisfies the following formula:
  • 0 ⁇ k ⁇ 1 0 ⁇ k ⁇ 1
  • the value of k is different in at least two charge and discharge cycles.
  • the k satisfies the following formula:
  • Equation (7) can explain that the value of k can vary with the number of cycles m, that is, in different charge and discharge cycles, the value of k can be the same or different.
  • the charging system 10 can also charge the battery 13 at a constant voltage with the first cut-off voltage V 1 to the second charging current I n .
  • Step S72 Perform constant current charging of the battery with the second charging current I n to the second cut-off voltage V 2 .
  • the charging system 10 will charge the battery 13 at a constant current with the second charging current I n to the second cut-off voltage V 2 .
  • the same I n another cell e.g., same cell type
  • the constant current charging stage in the nth charge and discharge cycle is to charge the battery 13 with the second charging current I n to the third cut-off voltage V 3 .
  • the second charging current I n may be a preset value.
  • the first cut-off voltage V 1 and the second cut-off voltage V2 may respectively satisfy the following formulas:
  • V 1 U cl +b (8)
  • V 2 U cl +b (9)
  • the U cl is the charge limit voltage or preset value of the battery 13 or another battery that is the same as the battery, n is an integer greater than or equal to 0, and m is any of 1, 2, ..., x and greater than n Two or more integers.
  • the b satisfies the following formula:
  • Formula (10) can explain that the value of b can vary with the number of cycles m, that is, in different charge and discharge cycles, the value of b can be the same or different.
  • Step S73 charge the battery at a constant voltage with the second cut-off voltage V 2 to a fully charged state.
  • the charging system 10 will charge the battery 13 at a constant voltage with the second cut-off voltage V 2 to a fully charged state.
  • the charging system 10 may also determine the first cut-off voltage V 1 through the following steps, and the specific steps are as follows:
  • Step S81 Obtain the battery impedance R of the battery in the m-1th charge and discharge cycle.
  • the charging system 10 is used to obtain the battery impedance R of the battery 13 in the m-1th charge and discharge cycle.
  • Step S82 According to the charging limit voltage U cl, the battery impedance R, the first charging current I m and the second charging current I n determining a first cut-off voltage of the battery V 1.
  • the charging system 10 may calculate the first cut-off voltage V 1 according to the following formula:
  • V 1 U cl +R ⁇ (I m -I n ) (11)
  • R is the battery impedance of the battery in the m-1th charge and discharge cycle, which may be the battery impedance during the charging process or the battery impedance during the discharge process.
  • the charging system 10 can calculate the first cut-off voltage V 1 according to formula (11), and then can use the first cut-off voltage V 1 to cut off the battery 13 in the m-th charge and discharge cycle.
  • the constant current charging stage is the battery impedance of the battery in the m-1th charge and discharge cycle, which may be the battery impedance during the charging process or the battery impedance during the discharge process.
  • the charging system 10 may also determine the second cut-off voltage V 2 through the following steps, and the specific steps are as follows:
  • Step S91 Obtain the first open circuit voltage OCV 1 of the battery or another battery identical to the battery at the end of the constant current charging stage in the x-th charge and discharge cycle, where 1 ⁇ x ⁇ m-1.
  • the charging system 10 will obtain the open circuit voltage OCV 1 of the battery at the end of the constant current charging phase in the nth charge and discharge cycle.
  • the charging system 10 will obtain the correspondence between the first open circuit voltage and the state of charge of the battery 13 or another battery that is the same as the battery, and the correspondence between the battery voltage and the state of charge.
  • the charging system 10 will also obtain the corresponding relationship between the open circuit voltage of the battery 13 and the state of charge and the corresponding relationship between the battery voltage and the state of charge to obtain that the battery 13 is in the xth charge and discharge cycle.
  • the first open circuit voltage OCV 1 at the end of the constant current charging stage at different temperatures corresponds to the charging rate. That is, the charging system 10 obtains the first open circuit voltage OCV 1 of the battery 13 in the x-th charge-discharge cycle and at the charge rate corresponding to the ambient temperature according to the above two corresponding relationships.
  • the corresponding relationship between the open circuit voltage of the battery 13 and the state of charge describes: before the battery 13 is charged, the open circuit voltage and the state of charge of the battery are collected, and the open circuit voltage of the battery and its charge are established in advance.
  • the corresponding relationship between the battery voltage and the state of charge of the battery 13 describes: before the battery 13 is charged, the battery voltage and the state of charge are collected, and the relationship between the battery voltage and the state of charge is established in advance The mapping relationship.
  • the first open circuit voltage OCV 1 of the battery when the constant current charging phase is cut off at different temperatures in each charge and discharge cycle can be obtained.
  • Step S92 Obtain the impedance growth rate K 1 of the battery or another battery that is the same as the battery.
  • the charging system 10 obtains the battery impedance of the battery 13 during the x-th charge and discharge cycle and at different temperatures, which is recorded as the first battery impedance R 1 .
  • the charging system 10 can obtain the battery impedance of the battery in any state of charge at different temperatures.
  • the charging system 10 will also obtain the battery impedance of the battery 13 in the m-1th charge and discharge cycle, which is recorded as the second battery impedance R 2 , where 1 ⁇ x ⁇ m-1 .
  • the charging system 10 can determine the impedance growth rate of the battery 13 according to the first battery impedance R 1 and the second battery impedance R 2.
  • the charging system 10 determines the impedance growth rate K 1 of the battery 13 by obtaining the first battery impedance R 1 and the second battery impedance R 2 at the same temperature and state of charge. .
  • the impedance growth rate of the battery 13 is denoted as K 1 , and then K 1 satisfies the following formula:
  • Step S93 Calculate the second cut-off voltage according to the open circuit voltage OCV 1 and the impedance growth rate K 1.
  • the second cut-off voltage V 2 satisfies the following formula:
  • V 2 OCV 1 +(U cl -OCV 1 ) ⁇ K 1 (13)
  • the charging system 10 may determine the third cut-off voltage V 3 through the following steps, and the specific steps are as follows:
  • Step S101 Obtain the second open circuit voltage OCV 2 of the battery or another battery identical to the battery at the end of the constant current charging phase in the y-th charge and discharge cycle, where 1 ⁇ y ⁇ n-1.
  • the charging system 10 can obtain the second open circuit voltage OCV of the battery when the constant current charging phase in the yth charge and discharge cycle is cut off according to the mapping relationship between the open circuit voltage and the state of charge established above. 2 .
  • Step S102 Obtain the impedance growth rate K 2 of the battery or another battery that is the same as the battery.
  • Step S103 Calculate the third cut-off voltage V 3 according to the open circuit voltage OCV 2 and the impedance growth rate K 2 .
  • the third cut-off voltage V 3 satisfies the following formula:
  • V 3 OCV 2 +(U cl -OCV 2 ) ⁇ K 2 (13)
  • R 3 is the third battery impedance of the battery 13 at the same temperature and the same state of charge in the y-th charge and discharge cycle
  • R 4 is the battery 13 at the n-th The impedance of the fourth battery at the same temperature and the same state of charge in one charge-discharge cycle, where 1 ⁇ y ⁇ n-1.
  • the charging system 10 will also obtain the third battery impedance R 3 and the fourth battery impedance R 4 .
  • the charging system 10 can determine the impedance growth rate K 2 of the battery 13 according to the third battery impedance R 3 and the fourth battery impedance R 4 .
  • the charging system 10 can calculate the third cut-off voltage V 3 according to formula (13), and then can use the third cut-off voltage V 3 to cut off the battery 13 in the m-th charge and discharge cycle.
  • the constant current charging stage The constant current charging stage.
  • the battery system used in each comparative example and each embodiment of this application uses LiCoO 2 as the cathode, graphite as the anode, plus a diaphragm, electrolyte and packaging shell, through mixing, coating, assembling, forming and aging processes production.
  • Part of the battery cell is added with a reference electrode between the cathode and anode pole pieces during the winding process to make a three-electrode battery, which is used to test the cathode and anode potential difference during the contrast charging process.
  • the comparative examples and embodiments of this application can also use batteries of other chemical systems, that is, using other materials as cathode materials, such as lithium manganate, lithium iron phosphate, ternary materials, etc. This is limited.
  • the charging limit voltage of the battery in each comparative example and each embodiment in this application is 4.45V as an example.
  • the charging method of this application can be applied to batteries of various voltage systems, and is not limited to the 4.45V system.
  • the charging method in the prior art of the comparative example (constant current and constant voltage charging) and the charging method embodiment of the application are used to conduct cycle performance tests, and the charging speed and capacity attenuation degree during the charging process are compared.
  • Comparative Example 1 discloses the specific method of using fresh batteries to perform the charging method of the prior art (that is, the constant current charging stage in each charge and discharge cycle is charged with the same fixed current and cut off with a fixed voltage). Implementation process.
  • Step 1 Use a constant current of 1.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V (can be understood as the charging limit voltage);
  • Step 2 Continue to use a constant voltage of 4.45V to charge the battery until the battery current reaches the cut-off current 0.05C;
  • Step 3 Leave the battery for 5 minutes
  • Step 4 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 5 Then let the battery stand for 5 minutes;
  • Step 6 Repeat the above 5 steps for 500 cycles.
  • the specific embodiments 1 to 4 described below use fresh batteries to obtain the corresponding charging parameters, and use the charging method in the embodiments of the present invention to charge the fresh batteries. It should be noted that the ambient temperature during the charging process of Examples 1 to 4 is the same as that of Comparative Example 1 and remains unchanged.
  • the fresh battery refers to a battery that has not been used before leaving the factory, or a battery whose number of charge and discharge cycles after leaving the factory is less than a preset number (such as 10 times, or other times).
  • Step 1 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 2 Let the battery stand for 5 minutes
  • Step 3 Use a constant current of 1.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V (can be understood as the charging limit voltage);
  • Step 4 Continue to charge the battery with a constant voltage of 4.45V until the battery current reaches the cut-off current 0.05C;
  • the SOC of the battery when the constant current charging is cut off is calculated as SOC 2 , and the SOC 2 is 70.6%.
  • I m changes according to the following law:
  • Step 1 Obtain the SOC when the charging voltage of the battery in the constant current stage of the last charging cycle is U cl (such as 4.45V) as SOC 1 , and obtain the current actual capacity Q of the battery;
  • Step 2 Using a constant current I m to charge the battery until the battery reaches a state of charge SOC 1 (i.e., the battery capacity SOC 1 ⁇ Q), I m in accordance with the predetermined equation and m varies with the number of cycles;
  • Step 3 Obtain the SOC with the charging voltage U cl in the constant current stage in step 2 as the SOC 1 in the charging process of the next cycle;
  • Step 4 Use a constant current of 1.5C to charge the battery until the state of charge of the battery reaches SOC 2 (ie 70.6%), that is, the total capacity of the battery at this time is 70.6% ⁇ Q;
  • Step 5 Obtain the cut-off voltage V 2 (ie, the second charging voltage) of the constant current charging stage in Step 4;
  • Step 6 Charge the battery with a constant voltage under the constant voltage of V 2 until the total capacity of the battery is Q;
  • Step 7 Let the battery stand for 5 minutes
  • Step 8 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 9 Obtain the discharge capacity in Step 8 to obtain the actual capacity Q of the battery as the cut-off capacity of the next charging cycle;
  • Step 10 Repeat the above steps 2 to 9 for 500 cycles.
  • Example 1 of SOC 2 (or SOC 3, SOC 2 SOC 3 ) of the same parameter acquisition process, the battery SOC obtained at the time of the constant current charge-cutoff 2, i.e. 70.6%.
  • I m during the battery cycle is set to change according to the following law:
  • Example 2 The charging procedure as Example 1, except for using I m and the charging procedure of Example 2 provided corresponding to the acquired the SOC 1 and Q.
  • I m , V 1 , V 2 , and V 3 change according to the following rules:
  • Step 1 Obtain the current actual capacity Q of the battery
  • Step 2 Use a constant current of I m to charge the battery until the battery voltage reaches the cut-off voltage V 1 , and I m and V 1 change with the number of cycles m according to a preset formula;
  • Step 3 Use a constant current of 1.5C to charge the battery until the charging voltage of the battery is V 2 , and V 2 changes with the number of cycles m according to the preset formula;
  • Step 4 Continue to use the constant voltage of V 2 to charge the battery until the total capacity of the battery is Q;
  • Step 5 Let the battery stand for 5 minutes
  • Step 6 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 7 Obtain the discharge capacity in Step 6 to obtain the actual capacity Q of the battery as the cut-off capacity of the next charging cycle;
  • Step 8 Repeat the above steps 2 to 7 for 500 cycles.
  • I m , V 1 , V 2 , and V 3 change according to the following rules:
  • V 2 OCV 1 +(U cl -OCV 1 ) ⁇ K 1 ;
  • V 3 OCV 2 +(U cl -OCV 2 ) ⁇ K 2 ;
  • U cl 4.45V
  • OCV 1 4.10V
  • OCV 2 4.10V
  • K 1 and K 2 are the impedance growth rate of the battery. It is necessary to collect the actual impedance of the battery and calculate the growth rate at any time during the battery cycle
  • K 1 R 2 /R 1
  • R 2 is the battery impedance when the SOC is 50% during the m-1th charge
  • R 1 is the battery impedance when the SOC is 50% during the first charge
  • K 2 R 4 /R 3
  • R 3 is the battery impedance when the SOC is 50% during the first charge
  • R 3 60mOhm
  • R 4 is the SOC of the battery during the n-1th charge is 50 % Battery impedance.
  • Step 1 Obtain the current actual capacity Q of the battery and the current impedance growth rate k of the battery;
  • Step 2 Use a constant current of I m to charge the battery until the battery voltage reaches the cut-off voltage V 1 , and I m and V 1 change with the number of cycles m according to a preset formula;
  • Step 3 Use a constant current of 1.5C to charge the battery until the charging voltage of the battery is V 2 , and V 2 changes with the number of cycles m according to the preset formula;
  • Step 4 Continue to use the constant voltage of V 2 to charge the battery until the total capacity of the battery is Q;
  • Step 5 Calculate the impedance growth rate of the battery in steps 3 and 4, and obtain the battery impedance R at the end of the constant current charging for the calculation of V 1 , V 2 and V 3 in the next charging cycle;
  • Step 6 Let the battery stand for 5 minutes
  • Step 7 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 8 Obtain the discharge capacity in step 7 to obtain the actual capacity Q of the battery as the cut-off capacity of the next charging cycle;
  • Step 9 Repeat the above steps 2 to 8 for 500 cycles.
  • Comparative Example 2 discloses a specific implementation process of using a battery that has been cycled 100 times to perform the charging method in the prior art.
  • the charging process is the same as that of Comparative Example 1, except that a battery that has been cycled 100 times is used to perform the charging process of Comparative Example 1.
  • Embodiments 5 and 7-9 disclose that fresh batteries are used to obtain the corresponding parameters
  • Embodiment 6 discloses that a battery that has been cycled 100 times is used to obtain the corresponding parameters, and according to the charging method of the present application
  • the specific implementation process of charging the battery that has been cycled for 100 times, and the ambient temperature during the charging process is the same as that of Comparative Example 1 and remains unchanged.
  • the parameter acquisition process is the same as in embodiment 1, except that m is increased from 101 to 500.
  • the charging process is the same as in Example 1, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the sixth embodiment discloses that a battery that has been cycled 100 times is used to obtain the corresponding charging parameters.
  • SOC is 68.7%, that is, SOC 2 is 68.7%;
  • I m during the battery cycle is set to change according to the following law:
  • the SOC when the battery voltage is U cl (such as U cl 4.45V) during the constant current charging and discharging cycles during m-1 charge and discharge cycles, and is extracted in real time according to the corresponding relationship between the anode potential and the SOC stored in advance.
  • the charging process is the same as in Example 1, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the parameter acquisition process is the same as in embodiment 2, except that m is increased from 101 to 500;
  • the charging process is the same as that of Embodiment 2, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the parameter acquisition process is the same as in embodiment 3, except that m is increased from 101 to 500;
  • the charging process is the same as that of Example 3, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the parameter acquisition process is the same as that of embodiment 4, except that m is increased from 101 to 500;
  • the charging process is the same as in Example 4, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • Table 1 shows the cut-off conditions of the constant current stage and the charging time of each stage for each comparative example and Examples 1-9
  • Embodiments 10-19 and the embodiments 1-9 described below are different from the specific embodiments 10-19 and the embodiments 1-9 described below.
  • a constant voltage charging step is added in the m-th charge and discharge cycle, that is, the battery is subjected to a constant voltage with the first cut-off voltage V 1 Charge to the second charging current I n .
  • Embodiments 10 to 13 use fresh batteries to obtain corresponding charging parameters, and use the charging method in the embodiments of the present invention to charge the fresh batteries.
  • the parameter acquisition process is the same as in Example 1.
  • the charging process is the same as that of embodiment 1, except that embodiment 10 adds a constant voltage charging stage between step 3 and step 4 of embodiment 1, that is, charging the battery with a constant voltage V 1 until the current of the battery is 1.5C (that is, the second charging current I n ).
  • the parameter acquisition process is the same as in Example 2.
  • Example 11 The same charging process as in Example 10, except for using I m and the charging procedure of Example 11 is provided in the embodiment corresponding to the acquired SOC 1 and Q.
  • the parameter acquisition process is the same as in Example 3.
  • the charging process is the same as that of embodiment 3, except that embodiment 12 adds a constant voltage charging stage between step 2 and step 3 of embodiment 3, that is, charging the battery with a constant voltage V 1 until the battery current is 1.5C (that is, the second charging current I n ).
  • the parameter acquisition process is the same as in embodiment 4.
  • the charging process is the same as that of embodiment 4, except that embodiment 13 adds a constant voltage charging stage between step 2 and step 3 of embodiment 4, that is, charging the battery with a constant voltage V 1 until the current of the battery is 1.5C (that is, the second charging current I n ).
  • the specific embodiments 14 to 18 described below use batteries that have been cycled 100 times to obtain the corresponding charging parameters, and use the charging method in the embodiments of the present invention to charge the batteries that have cycled 100 times.
  • Embodiments 14, 16-18 disclose that fresh batteries are used to obtain the corresponding parameters
  • Embodiment 15 discloses that a battery that has been cycled 100 times is used to obtain the corresponding parameters, and the charging method according to the present application
  • the specific implementation process of charging the battery that has been cycled for 100 times, and the ambient temperature during the charging process is the same as that of Comparative Example 1 and remains unchanged.
  • the parameter acquisition process is the same as in embodiment 1, except that m is increased from 101 to 500.
  • the charging process is the same as in Example 10, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the embodiment 15 discloses that a battery that has been cycled 100 times is used to obtain the corresponding charging parameters.
  • the parameter acquisition process is the same as in embodiment 6, except that m is increased from 101 to 500.
  • the charging process is the same as in Example 10, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the parameter acquisition process is the same as in Embodiment 2, except that m is increased from 101 to 500.
  • the charging process is the same as in Example 10, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the parameter acquisition process is the same as that of embodiment 3, except that m starts from 101 and increases to 500.
  • the charging process is the same as that of Example 3, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • the parameter acquisition process is the same as in embodiment 4, except that m is increased from 101 to 500.
  • the charging process is the same as in Example 4, except that a battery that has been cycled 100 times is used for charging, and m is increased from 101 to 500.
  • Table 2 shows the cut-off conditions of the constant current stage and the charging time of each stage for each comparative example and Examples 10-18
  • the charging method used in this embodiment 1-18 increases the constant current charging current in the first stage, shortens the constant current charging time in the first stage, and prolongs the constant current charging time in the second stage.
  • Current charging time and shortening the second stage constant voltage charging time can shorten the charging time of the battery and increase the charging rate of the battery.
  • the time of constant current charging in the first stage can be shortened, and the constant voltage charging time in the second stage can be greatly reduced, and the full charging time of the battery can be shortened.
  • the actual capacity of the battery controls the charging cut-off to ensure that the battery does not overcharge and does not affect the battery life.
  • the charging system 10 may be divided into one or more modules, and the one or more modules are stored in the processor 11 and executed by the processor 11 To complete this application.
  • the one or more modules may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the charging system 10 in the electronic device 100.
  • the charging system 10 may be divided into an acquisition module 101, a comparison module 102, a determination module 103, a constant current charging module 104, and a constant voltage charging module 105 in FIG. 10.
  • the acquiring module 101 is configured to acquire the first state of charge and the first charging current of the battery in the nth charge and discharge cycle and when the constant current charging phase at different temperatures corresponding to the charge rate is cut off.
  • the obtaining module 101 is configured to obtain cell anode at the n-th charge-discharge cycles charging curve of a non-polar, a first state of charge when the anode impedance R a and the constant current charging phase the charging current is turned off and the I n a second, and According to the anode non-polarization charging curve and the first state of charge, the first anode potential U n when the battery is charged to the charge limit voltage U cl at a constant current in the n-th charge and discharge cycle is obtained.
  • the acquiring module 101 is also used to acquire the charging curve of the battery in the m-1th charge-discharge cycle and the second state of charge when the constant current charging phase is cut off, and according to the battery’s anode non-polarized charging curve and all The second state of charge acquires the second anode potential U m-1 when the battery is charged with constant current to the charge limit voltage U cl in the m-1 th charge and discharge cycle.
  • the acquiring module 101 is also used to acquire the third anode potential U m-2 when the battery is charged to the charging limit voltage U cl at a constant current in the m-2 th charge and discharge cycle.
  • the acquiring module 101 is also used to acquire the third charging current Im-1 of the constant current charging stage of the battery in the m-1th charge-discharge cycle.
  • the determination module 102 according to the first anode potential U n, the second anode potential U m-1, the anode impedance R a and the second charging current I n of the battery is determined in the m a first charge and the charging current I m when the discharge cycle.
  • the determining module 102 is further configured to U m-2, the anode and the impedance R a third charging current I m-1 of the battery is determined according to m-1, the third anode potential of the second anode potential U a first charging current I m when the m-th charge-discharge cycle.
  • the constant current charging module 104 is used to charge the battery 13 with constant current until the voltage of the battery 13 reaches the cut-off voltage or the cut-off capacity.
  • the constant voltage charging module 105 is also used to charge the battery 13 at a constant voltage until the current of the battery 13 reaches the cut-off current or cut-off capacity.
  • the battery 13 can be charged and managed by the charging system 10 to improve the charging efficiency, service life and reliability of the battery.
  • the charging system 10 can be charged and managed by the charging system 10 to improve the charging efficiency, service life and reliability of the battery.
  • the processor 11 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, or the processor 12 may also be any other conventional processor or the like.
  • modules in the charging system 10 are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer readable storage medium. Based on this understanding, this application implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the computer program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunications signal
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.
  • module division described above is a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in the same processing unit, or each module may exist alone physically, or two or more modules may be integrated in the same unit.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • the electronic device 100 may further include a memory (not shown), and the one or more modules may also be stored in the memory and executed by the processor.
  • the memory may be an internal memory of the electronic device 100, that is, a memory built in the electronic device 100. In other embodiments, the memory may also be an external memory of the electronic device 100, that is, a memory external to the electronic device 100.
  • the memory is used to store program codes and various data, for example, to store the program codes of the charging system 10 installed in the electronic device 100, and to achieve high-speed, high-speed, Automatically complete program or data access.
  • the memory may include random access memory, and may also include non-volatile memory, such as a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) card, Flash Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) card, Flash Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.

Abstract

本申请实施方式提供一种充电方法,包括以下步骤:在第m次充放电循环中,以第一充电电流对所述电池进行恒流充电至第一荷电状态,所述电池具有相应的第一截止电压;以第二充电电流I n对所述电池进行恒流充电至第二荷电状态,所述电池具有恒流充电截止时的第二截止电压;以所述第二截止电压对所述电池进行恒压充电至满充状态。根据本申请提供的电池的充电方法、电子装置以及存储介质,可以缩短电池的满充时间,并且还可确保电池不发生过充电。

Description

充电方法、电子装置以及存储介质 技术领域
本申请涉及电池技术领域,尤其涉及一种电池的充电方法、电子装置以及存储介质。
背景技术
目前,普遍应用在锂电池上的充电方法是通过预设的恒定电流对锂离子电池持续充电至某一电压(可以理解为充电限制电压)后,再以此电压对锂离子电池恒压充电至满充状态。在此情况下,随着电池的充电循环次数以及使用时间的增加,电池的阻抗增大,将会使得电池的恒流充电的时间缩短及恒压充电的时间延长,从而导致电池的总充电时间越来越长。
发明内容
有鉴于此,有必要提供一种充电方法、电子装置以及存储介质,可以缩短电池的满充时间,并且还可确保电池不发生过充电。
本申请一实施方式提供一种电池的充电方法,所述充电方法包括:
在第m次充放电循环中,以第一充电电流I m对所述电池进行恒流充电至第一荷电状态SOC 1,所述电池具有相应的第一截止电压V 1;以第二充电电流I n对所述电池进行恒流充电至第二荷电状态SOC 2,所述电池具有恒流充电截止时的第二截止电压V 2;以所述第二截止电压V 2对所述电池进行恒压充电至满充状态;其中,I m=I n+k×I n,0<k≤1,n为大于等于0的整数,m为1、2、…、x且大于n的任意两个以上整数,k在至少两次充放电循环中的数值不相同,I n为所述电池或与所述电池相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流或预设值,所述第n次充放电循环中的恒流充电阶段为仅以所 述第二充电电流I n对所述电池进行恒流充电至充电限制电压U cl或仅以所述第二充电电流I n对所述电池进行恒流充电至第三荷电状态SOC 3,且具有与所述第三荷电状态SOC 3相对应的第三截止电压V 3,SOC 1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至充电限制电压U cl时的荷电状态,其中SOC 1≤SOC 3+S,SOC 3-S≤SOC 2≤SOC 3+S≤100%,0≤S≤10%。
根据本申请的一些实施方式,SOC 3还可以是与所述电池相同的另一电池在所述第n次充放电循环中恒流充电阶段截止时的荷电状态或预设值。
根据本申请的一些实施方式,所述k满足以下公式:k=k 1×m+k 2,0≤k 1≤0.001,0≤k 2≤0.2。
根据本申请的一些实施方式,所述第一充电电流I m满足以下公式:I m=I n+(U m-1-U n)/R a,m>1;或I m=I m-1+(U m-1-U m-2)/R a,m>2;其中,U n为所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电至所述充电限制电压U cl时的第一阳极电位,U m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至所述充电限制电压U cl时的第二阳极电位,R a为所述电池或与所述电池相同的另一电池在第n次充放电循环中的阳极阻抗,I m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电阶段的充电电流或预设值,U m-2为所述电池或与所述电池相同的另一电池在第m-2次充放电循环中恒流充电至所述充电限制电压U cl时的第三阳极电位。
根据本申请的一些实施方式,以所述第一充电电流I m对电池进行恒流充电至所述第一荷电状态SOC 1时的电池容量为Q m,Q m=SOC 1×Q,Q为所述电池当前的实际容量。
根据本申请的一些实施方式,所述充电方法还包括:以所述第一截止电压V 1对所述电池进行恒压充电至所述第二充电电流I n
根据本申请的一些实施方式,所述充电方法还包括:比较所述第三截止电压V 3与所述充电限制电压U cl的大小;及根据比较结果确定 所述电池在第m次充放电循环之前的充电方式。
根据本申请的一些实施方式,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:第一充电步骤:在第n次充放电循环中,当所述第三截止电压V 3小于所述充电限制电压U cl,以所述第二充电电流I n继续对所述电池进行恒流充电至所述充电限制电压U cl,以所述充电限制电压U cl对所述电池进行恒压充电至满充状态,其中n≤m-1;第二充电步骤:进入下一个充放电循环,以所述第二充电电流I n对所述电池进行恒流充电至所述第三荷电状态SOC 3,所述电池具有相应的所述第三截止电压V 3;及重复步骤:重复执行所述第一充电步骤和所述第二充电步骤,直至所述第三截止电压V 3大于或等于所述充电限制电压U cl
根据本申请的一些实施方式,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤还包括:当所述第三截止电压V 3大于或等于所述充电限制电压U cl,以所述第三截止电压V 3对所述电池进行恒压充电至满充状态,且获取所述第一荷电状态SOC 1和计算所述第一充电电流I m
根据本申请的一些实施方式,所述充电方法还包括:获取所述电池在第n次充放电循环中恒流充电至电池电压为所述充电限制电压U cl时的第四荷电状态SOC 4;比较所述第三荷电状态SOC 3与所述第四荷电状态SOC 4的大小;及根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
根据本申请的一些实施方式,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:充电步骤:在第n次充放电循环中,当所述所述第三荷电状态SOC 3小于第四荷电状态SOC 4,进入下一个充放电循环,以所述第二充电电流I n对所述电池进行恒流充电至所述充电限制电压U cl,所述电池具有相应的所述第四荷电状态SOC 4,以所述充电限制电压U cl对所述电池进行恒压充电至满充状态,其中n≤m-1;及重复步骤:重复执行所述充电步骤,直至所述第三荷电状态SOC 3大于或等于所述第四荷电状态SOC 4
根据本申请的一些实施方式,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:当所述第三荷电状态SOC 3大于或等于所述第四荷电状态SOC 4,获取所述第一荷电状态SOC 1和计算所述第一充电电流I m
本申请另一实施方式提供一种电池的充电方法,所述充电方法包括:在第m次充放电循环中,以第一充电电流I m对所述电池进行恒流充电至第一截止电压V 1;以第二充电电流I n对所述电池进行恒流充电至第二截止电压V 2,以所述第二截止电压V 2对所述电池进行恒压充电至满充状态;其中,I m=I n+k×I n,0<k≤1,k=k 1×m+k 2,0≤k 1≤0.002,0≤k 2≤1,k在至少两次充放电循环中的数值不相同,I n为预设值,或者I n为所述电池或与所述电池相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流,所述第n次充放电循环中的恒流充电阶段为仅以所述第二充电电流I n对所述电池进行恒流充电至第三截止电压V 3,其中,V 1=U cl+b,V 2=U cl+b,0≤b≤0.5,U cl为所述电池或所述另一电池的充电限制电压或预设值,n为大于等于0的整数,m为1、2、…、x且大于n的任意两个以上整数,b在至少两次充放电循环中的数值不相同。
根据本申请的一些实施方式,所述第一充电电流I m满足以下公式:I m=I n+(U m-1-U n)/R a,m>1;或I m=I m-1+(U m-1-U m-2)/R a,m>2;其中,U n为所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电至所述充电限制电压U cl时的第一阳极电位,U m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至所述充电限制电压U cl时的第二阳极电位,R a为所述电池或与所述电池相同的另一电池在第n次充放电循环中的阳极阻抗,I m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电阶段的充电电流或预设值,U m-2为所述电池或与所述电池相同的另一电池在第m-2次充放电循环中恒流充电至所述充电限制电压U cl时的第三阳极电位。
根据本申请的一些实施方式,所述b满足以下公式:b=b 1×m+b 2, 0≤b 1≤0.0005,0≤b 2≤0.1。
根据本申请的一些实施方式,所述第一截止电压V 1还通过以下方法获得:获取所述电池在第m-1次充放电循环中的电池阻抗R;及根据所述充电限制电压U cl、所述电池阻抗R、所述第一充电电流I m以及所述第二充电电流I n确定所述第一截止电压V 1
根据本申请的一些实施方式,所述第一截止电压V 1满足以下公式:V 1=U cl+R×(I m-I n)。
根据本申请的一些实施方式,所述第二截止电压V 2和V 3分别满足以下公式:V 2=OCV 1+(U cl-OCV 1)×K 1,其中,OCV 1为所述电池或所述另一电池在第x次充放电循环中的恒流充电阶段截止时的第一开路电压,K 1为所述电池或所述另一电池的阻抗增长率,1≤x<m-1;及V 3=OCV 2+(U cl-OCV 2)×K 2,其中,OCV 2为所述电池或所述另一电池在第y次充放电循环中的恒流充电阶段截止时的第二开路电压,K 2为所述电池或所述另一电池的阻抗增长率,1≤y<n-1。
根据本申请的一些实施方式,所述充电方法还包括:以所述第一截止电压V 1对所述电池进行恒压充电至所述第二充电电流I n
根据本申请的一些实施方式,所述充电方法还包括:比较所述第三截止电压V 3与所述充电限制电压U cl的大小;及根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
根据本申请的一些实施方式,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:第一充电步骤:在第n次充放电循环中,当所述第三截止电压V 3小于所述充电限制电压U cl,以所述第二充电电流I n继续对所述电池进行恒流充电至所述充电限制电压U cl,以所述充电限制电压U cl对所述电池进行恒压充电至满充状态,其中n≤m-1;第二充电步骤:进入下一个充放电循环,以所述第二充电电流I n对所述电池进行恒流充电至所述第三截止电压V 3;及重复步骤:重复执行所述第一充电步骤和所述第二充电步骤,直至所述第三截止电压V 3大于或等于所述充电限制电压U cl
根据本申请的一些实施方式,所述根据比较结果确定所述电池在 第m次充放电循环之前的充电方式的步骤还包括:当所述第三截止电压V 3大于或等于所述充电限制电压U cl,以所述第三截止电压V 3对所述电池进行恒压充电至满充状态,且计算所述第一充电电流I m
本申请一实施方式提供一种电子装置,所述电子装置包括:电池和处理器,所述处理器用于加载并执行如上述所述的充电方法。
本申请一实施方式提供一种存储介质,其上存储有至少一条计算机指令,所述计算机指令由处理器加载并用于执行如上所述的电池的充电方法。
本申请实施方式提供的电池的充电方法通过提高电池在恒流阶段的充电电流来缩短电池的恒流充电时间,进而可以缩短电池的总充电时间。另外,本申请实施方式提供的充电方法还可以通过提高电池在恒流阶段的截止电压,进而可以进一步缩短电池的总充电时间。如此,本申请实施方式提供的电池的充电方法、电子装置以及存储介质,可以缩短电池的满充时间,并且还可确保电池不发生过充电。
附图说明
图1是根据本申请一实施方式的电子装置的结构示意图。
图2是根据本申请一实施方式的电池的充电方法的流程图。
图3是根据本申请另一实施方式的电池的充电方法的流程图。
图4是根据本申请另一实施方式的电池的充电方法的流程图
图5是根据本申请另一实施方式的电池的充电方法的流程图。
图6是根据本申请另一实施方式的电池的充电方法的流程图。
图7是根据本申请另一实施方式的电池的充电方法的流程图。
图8是根据本申请另一实施方式的电池的充电方法的流程图。
图9是根据本申请另一实施方式的电池的充电方法的流程图。
图10是根据本申请另一实施方式的电池的充电方法的流程图。
图11是根据本申请一实施方式的充电系统的模块图。
主要元件符号说明
电子装置                       100
充电系统                       10
处理器                         11
电池                           13
获取模块                       101
比较模块                       102
确定模块                       103
恒流充电模块                   104
恒压充电模块                   105
如下具体实施方式将结合上述附图进一步详细说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。
基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都是属于本申请保护的范围。
请参阅图1,充电系统10运行于电子装置100中。所述电子装置100包括,但不仅限于,处理器11以及电池13,上述元件之间可以通过总线连接,也可以直接连接。
需要说明的是,图1仅为举例说明电子装置100。在其他实施方式中,电子装置100也可以包括更多或者更少的元件,或者具有不同的元件配置。所述电子装置100可以为电动摩托、电动单车、电动汽车、手机、平板电脑、个数数字助理、个人电脑,或者任何其他适合的可充电式设备。
在一个实施方式中,所述电池13为可充电电池,用于给所述电子装置100提供电能。例如,所述电池13可以是铅酸电池、镍镉电池、 镍氢电池、锂离子电池或锂聚合物电池等。所述电池13通过充电系统10与所述处理器11逻辑相连,从而通过所述充电系统10实现充电、放电以及功耗管理等功能。所述电池13包括电芯(图未示)。
请参阅图2,图2为根据本申请一实施方式的电池的充电方法的流程图,该充电方法中的恒流充电阶段以荷电状态(SOC,stage of charge)来截止。所述电池的充电方法可以包括以下步骤:
步骤S21:在第m次充放电循环中,以第一充电电流I m对所述电池进行恒流充电至第一荷电状态SOC 1
在第m次充放电循环中,本实施方式的所述充电系统10以第一充电电流I m对所述电池13进行恒流充电至第一荷电状态SOC 1。其中,所述电池13具有相应的第一截止电压V 1
本实施方式中,所述SOC 1为所述电池13或与所述电池13相同的另一电池(如相同型号的电池)在第m-1次充放电循环中恒流充电至充电限制电压U cl时的荷电状态。其中,U cl可理解为如背景技术所述的充电限制电压,或者电池产品信息上写的充电限制电压。
本实施方式中,所述I m满足以下公式:
I m=I n+k×I n  (1)
其中,0<k≤1,k能够随充放电循环数的不同而变化,即在不同的充放电循环中,k值可以不相同,得到的第一充电电流I m也不相同;或者说,在不同的充放电循环中,第一充电电流I m可以相同,也可以不相同。
n为大于等于0的整数,m为1、2、…、x且大于n的任意两个以上整数,k在至少两次充放电循环中的数值不相同,即在至少两次充放电循环中,所采用的第一充电电流I m不相同。
在本实施方式中,所述k满足以下公式:
k=k 1×m+k 2  (2)
其中,0≤k 1≤0.001,0≤k 2≤0.2。公式(2)说明k值可以随循环数m变化,即在不同的充放电循环中,k值可以相同,也可以不相同。
在一较佳实施方式中,所述I n为所述电池13或与所述电池13相 同的另一电池(如相同型号的电池)在第n次充放电循环中的恒流充电阶段的充电电流。在另一较佳实施方式中,所述第二充电电流I n也可为预设值。
在一实施方式中,所述充电系统10以所述第一充电电流I m对所述电池13进行恒流充电至所述第一荷电状态SOC 1时的电池容量为Q m
在本实施方式中,所述Q m满足以下公式:
Q m=SOC 1×Q  (3)
其中,Q为所述电池13当前的实际容量。
在本实施方式中,所述充电系统10还用于获取所述电池13在各充放电循环中的放电容量或当前实际容量。
具体地,所述电池13在各个充放电循环中的当前实际容量为所述电池13在相应的充放电循环中的真实电池容量,即所述电池13在各个循环过程中,将电池13满充状态至满放状态的最大容量,所述放电容量可通过电量计来测量。
其中,所述充电系统10获取所述电池13在各个充放电循环中的实际容量,并记录电池的温度及倍率等,根据已知的不同温度以及不同倍率间容量的对应关系,对所述电池13的实际容量进行转换计算,进而获取所述电池13的实际充电温度以及充电倍率下的最大容量。该最大容量即为上述的实际容量。
所述电池13的实际容量会随着所述电池13的使用时间或者充放电循环次数的增加而变化,电池的实际容量与电芯的老化衰退具有直接的关系。由此,所述充电系统10可获取所述电池13在各个充放电循环中的实际容量。
在另一实施方式中,在所述充电系统10以所述第一充电电流I m对所述电池13进行恒流充电至所述第一荷电状态SOC 1时,所述充电系统10还将以所述第一截止电压V 1对所述电池13进行恒压充电至第二充电电流I n
步骤S22:以第二充电电流I n对所述电池进行恒流充电至第二荷 电状态SOC 2
具体而言,所述充电系统10将以所述第二充电电流I n对所述电池13进行恒流充电至第二荷电状态SOC 2。其中,所述电池13具有恒流充电截止时的第二截止电压V 2
所述第n次充放电循环中的恒流充电阶段为仅以所述第二充电电流I n对所述电池13进行恒流充电至充电限制电压U cl或仅以所述第二充电电流I n对所述电池进行恒流充电至第三荷电状态SOC 3,且具有与所述第三荷电状态SOC 3相对应的第三截止电压V 3。即在第n次充放电循环中的恒流充电阶段可以是仅以所述第二充电电流I n对所述电池13进行恒流充电至第三荷电状态SOC 3,也可以是采用常规方法(恒流充电至充电限制电压U cl)对电池13充电至充电限制电压U cl。其中,SOC 1≤SOC 3+S,SOC 3-S≤SOC 2≤SOC 3+S≤100%,0≤S≤10%。在其它实施方式中,0≤S≤5%。
在一较佳实施方式中,所述第三荷电状态SOC 3可以是与所述电池13相同的另一电池(即型号相同的电池)在所述第n次充放电循环中恒流充电阶段截止时的荷电状态。在另一较佳实施方式中,所述第三荷电状态SOC 3也可为预设值。
步骤S23:以所述第二截止电压V 2对所述电池进行恒压充电至满充状态。
具体来说,在第m次充放电循环中,当所述充电系统10以所述第二充电电流I n对所述电池13进行恒流充电至第二荷电状态SOC 2时,所述充电系统10将以所述第二截止电压V 2对所述电池13进行恒压充电至满充状态,以保证所述电池13不发生析锂且电池不发生过充电现象。
请参阅图3,在另一种实施方式中,所述充电系统10还可通过以下步骤来确定所述电池13在第m次充放电循环时的第一充电电流I m,具体步骤如下:
步骤S31:获取所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电至充电限制电压U cl时的第一阳极电位U n
具体来说,所述充电系统10用于获取所述电池13在第n次充放电循环中的阳极无极化充电曲线、阳极阻抗以及所述电池13在恒流充电阶段截止时对应的第二充电电流I n
在一较佳实施方式中,可通过阻抗测试得到所述电池13或与所述电池相同的另一电池在第n次充放电循环中的阳极阻抗R a
在本实施方式中,所述阳极无极化充电曲线可表示为使用小倍率(如0.01C)对所述电池13进行充电,在此充电过程中,所述电池13的荷电状态和与其相对应的阳极电位之间的映射关系。
由此,所述充电系统10可根据所述阳极无极化充电曲线来获取所述电池13或与所述电池相同的另一电池在第n次充放电循环中恒流充电至充电限制电压U cl(可理解为背景技术中所述的充电限制电压)时对应的第一阳极电位U n
步骤S32:获取所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至充电限制电压U cl时的第二阳极电位U m-1
具体地,所述充电系统10用于获取所述电池13在第n次充放电循环中的阳极无极化充电曲线及阳极阻抗R a。所述充电系统10可根据所述阳极无极化充电曲线来获取所述电池13或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至充电限制电压U cl时对应的第二阳极电位U m-1
步骤S33:根据所述第一阳极电位U n、所述第二阳极电位U m-1、所述阳极阻抗R a以及所述第二充电电流I n来计算所述电池13在第m次充放电循环时的所述第一充电电流I m
在一实施方式中,所述充电系统10可根据所述第一阳极电位U n、所述第二阳极电位U m-1、所述阳极阻抗R a以及所述第二充电电流I n来计算所述电池在第m次充放电循环时的第一充电电流I m,并以所述第一充电电流I m来对所述电池13进行充电。具体来说,可以根据如下公式计算得到所述第一充电电流I m
I m=I n+(U m-1-U n)/R a  (4)
其中,m大于1,由此,所述充电系统10可根据计算公式(4) 得到所述第一充电电流I m,进而可根据所确定的第一充电电流I m对所述电池13进行充电。
请参阅图4,在另一种实施方式中,所述充电系统10还可以通过以下步骤来确定所述电池13在第m次充放电循环时的第一充电电流I m,具体步骤如下:
步骤S41:获取所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电阶段的第三充电电流I m-1
在一实施方式中,所述充电系统10用于获取所述电池13或与所述电池13相同的另一电池在第m-1次充放电循环中恒流充电阶段的第三充电电流I m-1。在另一较佳实施方式中,所述第三充电电流I m-1也可为预设值。
步骤S42:获取所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至充电限制电压U cl时的第二阳极电位U m-1
具体地,所述充电系统10用于获取所述电池13在第n次充放电循环中的阳极无极化充电曲线及阳极阻抗R a
进一步地,所述充电系统10可根据所述阳极无极化充电曲线来获取所述电池13或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至充电限制电压U cl时对应的第二阳极电位U m-1
步骤S43:获取所述电池或与所述电池相同的另一电池在第m-2次充放电循环中恒流充电至充电限制电压U cl时的第三阳极电位U m-2
在本实施方式中,所述充电系统10可用于根据所述阳极无极化充电曲线来获取所述电池13或与所述电池相同的另一电池在第m-2次充放电循环中恒流充电至充电限制电压U cl时对应的第三阳极电位U m-2
步骤S44:根据所述第二阳极电位U m-1、所述第三阳极电位U m-2、所述阳极阻抗R a以及所述第三充电电流I m-1来计算所述电池13在第m次充放电循环时的所述第一充电电流I m
在一实施方式中,所述充电系统10可根据所述第二阳极电位U m-1、所述第三阳极电位U m-2、所述阳极阻抗R a以及所述第三充电电 流I m-1来计算所述电池在第m次充放电循环时的第一充电电流I m,并以所述第一充电电流I m来对所述电池13进行充电。其中,阳极阻抗R a可通过三电极来测得,且可预先存储在存储器或处理器中。具体来说,可以根据如下公式计算得到所述第一充电电流I m
I m=I m-1+(U m-1-U m-2)/R a  (5)
其中,m大于2,由此,所述充电系统10可根据计算公式(5)得到所述第一充电电流I m,进而可根据所确定的第一充电电流I m对所述电池13进行充电。
请参阅图5,在一实施方式中,所述充电系统10可以通过以下步骤来确定所述电池13在第m次充放电循环之前的充电方式,具体步骤如下:
步骤S51:比较所述第三截止电压V 3与所述充电限制电压U cl的大小,以得到比较结果。
在本实施方式中,在所述电池13的充电过程中,所述充电系统10将会比较所述第三截止电压V 3与所述充电限制电压U cl的大小。
步骤S52:根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
所述充电系统10用于根据所述第三截止电压V 3与所述充电限制电压U cl之间的比较结果来确定所述电池在第m次充放电循环之前的充电方式。
本实施方式中,当所述第三截止电压V 3小于所述充电限制电压U cl时,所述充电系统10将会采用以下步骤对所述电池13进行充电,具体步骤如下:
第一充电步骤:在第n次充放电循环中,当所述第三截止电压V 3小于所述充电限制电压U cl时,所述充电系统10将以所述第二充电电流I n继续对所述电池13进行恒流充电至所述充电限制电压U cl,接着,所述充电系统10将会以所述充电限制电压U cl对所述电池13进行恒压充电至满充状态,其中n≤m-1。
第二充电步骤:进入到下一个充放电循环,所述充电系统10将以 所述第二充电电流I n对所述电池13进行恒流充电至所述第三荷电状态SOC 3,其中,所述电池13具有相应的所述第三截止电压V 3
重复步骤:所述充电系统10将会重复执行所述第一充电步骤和所述第二充电步骤,直至所述第三截止电压V 3大于或等于所述充电限制电压U cl
本实施方式中,当所述第三截止电压V 3大于或等于所述充电限制电压U cl时,所述充电系统10将会以所述第三截止电压V 3对所述电池13进行恒压充电至满充状态。此外,所述充电系统10还将获取所述第一荷电状态SOC 1和计算所述第一充电电流I m
请参阅图6,在另一种实施方式中,所述充电系统10还可以通过以下步骤来确定所述电池13在第m次充放电循环之前的充电方式,具体步骤如下:
步骤S61:获取所述电池在第n次充放电循环中恒流充电至电池电压为所述充电限制电压U cl时的第四荷电状态SOC 4
在本实施方式中,所述充电系统10将获取所述电池13在第n次充放电循环中恒流充电至电池电压为所述充电限制电压U cl时的第四荷电状态SOC 4
步骤S62:比较所述第三荷电状态SOC 3与所述第四荷电状态SOC 4的大小。
在本实施方式中,在所述电池13的充电过程中,所述充电系统10将会比较所述第三荷电状态SOC 3与所述第四荷电状态SOC 4的大小。
步骤S63:根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
所述充电系统10用于根据所述第三荷电状态SOC 3与所述第四荷电状态SOC 4之间的比较结果来确定所述电池在第m次充放电循环之前的充电方式。
在本实施方式中,当所述第三荷电状态SOC 3小于所述第四荷电状态SOC 4时,所述充电系统10将会采用以下步骤对所述电池13进 行充电,具体步骤如下:
充电步骤:在第n次充放电循环中,当所述第三荷电状态SOC 3小于所述第四荷电状态SOC 4,进入下一个充放电循环,以所述第二充电电流I n对所述电池13进行恒流充电至所述充电限制电压U cl,所述电池具有相应的所述第四荷电状态SOC 4。接着,再以所述充电限制电压U cl对所述电池进行恒压充电至满充状态,其中n≤m-1。
重复步骤:重复执行所述充电步骤,直至所述第三荷电状态SOC 3大于或等于所述第四荷电状态SOC 4
在本实施方式中,当所述第三荷电状态SOC 3大于或等于所述第四荷电状态SOC 4时,所述充电系统10还将获取所述第一荷电状态SOC 1和计算所述第一充电电流I m
请参阅图7,图7为根据本申请另一实施方式的电池的充电方法的流程图,该充电方法中的恒流充电阶段以电压来截止。本实施方式的充电方法可以包括以下步骤:
步骤S71:在第m次充放电循环中,以第一充电电流I m对所述电池进行恒流充电至第一截止电压V 1
在第m次充放电循环中,本实施方式的所述充电系统10利用所述第一充电电流I m对所述电池13进行恒流充电至所述第一截止电压V 1
在本实施方式中,所述第一充电电流I m满足以下公式:
I m=I n+k×I n  (6)
其中,0<k≤1,k在至少两次充放电循环中的数值不相同。
在本实施方式中,所述k满足以下公式:
k=k 1×m+k 2  (7)
其中,0≤k 1≤0.002,0≤k 2≤1。公式(7)可说明k值可以随循环数m变化,即在不同的充放电循环中,k值可以相同,也可以不相同。
在另一实施方式中,所述充电系统10还可以以所述第一截止电压V 1来对所述电池13进行恒压充电至第二充电电流I n
步骤S72:以第二充电电流I n对所述电池进行恒流充电至第二截 止电压V 2
在本实施方式中,所述充电系统10将以所述第二充电电流I n对所述电池13进行恒流充电至第二截止电压V 2
本实施方式中,所述I n为所述电池13或与所述电池13相同的另一电池(如相同型号的电池)在第n次充放电循环中的恒流充电阶段的充电电流,所述第n次充放电循环中的恒流充电阶段为以所述第二充电电流I n对所述电池13进行恒流充电至第三截止电压V 3。在另一实施方式中,所述第二充电电流I n也可为预设值。
本实施方式中,所述第一截止电压V 1及第二截止电压V2可分别满足以下公式:
V 1=U cl+b  (8)
V 2=U cl+b  (9)
其中,0≤b≤0.5,b在至少两次充放电循环中的数值不相同。
所述U cl为所述电池13或与所述电池相同的另一电池的充电限制电压或预设值,n为大于等于0的整数,m为1、2、…、x且大于n的任意两个以上整数。
本实施方式中,所述b满足以下公式:
b=b 1×m+b 2  (10)
其中,0≤b 1≤0.0005,0≤b 2≤0.1。公式(10)可说明b值可以随循环数m变化,即在不同的充放电循环中,b值可以相同,也可以不相同。
步骤S73:以所述第二截止电压V 2对所述电池进行恒压充电至满充状态。
在本实施方式中,所述充电系统10将以所述第二截止电压V 2对所述电池13进行恒压充电至满充状态。
请参阅图8,在另一实施方式中,所述充电系统10还可通过以下步骤来确定所述第一截止电压V 1,具体步骤如下:
步骤S81:获取所述电池在第m-1次充放电循环中的电池阻抗R。
在一实施方式中,所述充电系统10用于获取所述电池13在第 m-1次充放电循环中的电池阻抗R。
步骤S82:根据所述充电限制电压U cl、所述电池阻抗R、所述第一充电电流I m以及所述第二充电电流I n确定所述电池的第一截止电压V 1
具体地,在一实施方式中,所述充电系统10可根据如下公式计算得到所述第一截止电压V 1
V 1=U cl+R×(I m-I n)  (11)
其中,R为所述电池在第m-1次充放电循环中的电池阻抗,可以是充电过程中的电池阻抗,也可以是放电过程中的电池阻抗。由此,所述充电系统10可根据公式(11)计算得到所述第一截止电压V 1,进而在第m次充放电循环中可使用所述第一截止电压V 1来截止所述电池13的恒流充电阶段。
请参阅图9,在另一实施方式中,所述充电系统10还可通过以下步骤来确定所述第二截止电压V 2,具体步骤如下:
步骤S91:获取所述电池或与所述电池相同的另一电池在第x次充放电循环中恒流充电阶段截止时的第一开路电压OCV 1,其中1≤x<m-1。
在一实施方式中,所述充电系统10将获取所述电池在第n次充放电循环中恒流充电阶段截止时的开路电压OCV 1
具体来说,所述充电系统10将会获取所述电池13或与所述电池相同的另一电池的第一开路电压与荷电状态的对应关系及电池电压与荷电状态的对应关系。
进一步地,所述充电系统10还将根据所述电池13的开路电压与荷电状态的对应关系以及电池电压与荷电状态的对应关系,来获取所述电池13在第x次充放电循环中且在不同温度对应充电倍率下的恒流充电阶段截止时的第一开路电压OCV 1。即充电系统10根据上述两个对应关系获取电池13在第x次充放电循环中且在该环境温度对应的充电倍率下的第一开路电压OCV 1
其中,所述电池13的开路电压与荷电状态的对应关系描述的是: 在对所述电池13在进行充电之前,采集电池的开路电压以及荷电状态,并预先建立电池的开路电压与其荷电状态之间的映射关系。所述电池13的电池电压与荷电状态的对应关系描述的是:在对所述电池13在进行充电之前,采集电池的电压以及荷电状态,并预先建立电池的电压与其荷电状态之间的映射关系。
由此,可以获得电池在各个充放电循环中的不同温度下恒流充电阶段截止时的第一开路电压OCV 1
步骤S92:获取所述电池或与所述电池相同的另一电池的阻抗增长率K 1
具体来说,在本实施方式中,所述充电系统10将获取所述电池13在第x次充放电循环中且在不同温度下的电池阻抗,记为第一电池阻抗R 1
由此,所述充电系统10可以获得电池在不同温度下的任意荷电状态下的电池阻抗。
在本实施方式中,所述充电系统10还将会获取所述电池13在第m-1次充放电循环中的电池阻抗,记为第二电池阻抗R 2,其中1≤x<m-1。
所述充电系统10可根据所述第一电池阻抗R 1以及所述第二电池阻抗R 2确定所述电池13的阻抗增长率。
具体而言,所述充电系统10通过获取在相同温度和荷电状态下的所述第一电池阻抗R 1与所述第二电池阻抗R 2,来确定所述电池13的阻抗增长率K 1
在本实施方式中,所述电池13的阻抗增长率记为K 1,则K 1满足以下公式:
K 1=R 2/R 1  (12)
步骤S93:根据所述开路电压OCV 1及所述阻抗增长率K 1来计算所述第二截止电压。
具体来说,所述第二截止电压V 2满足以下公式:
V 2=OCV 1+(U cl-OCV 1)×K 1  (13)
请参阅图10,在一实施方式中,所述充电系统10可通过以下步骤来确定所述第三截止电压V 3,具体步骤如下:
步骤S101:获取所述电池或与所述电池相同的另一电池在第y次充放电循环中的恒流充电阶段截止时的第二开路电压OCV 2,其中1≤y<n-1。
在一实施方式中,所述充电系统10可根据上述建立的开路电压与荷电状态的映射关系获取所述电池在第y次充放电循环中的恒流充电阶段截止时的第二开路电压OCV 2
步骤S102:获取所述电池或与所述电池相同的另一电池的阻抗增长率K 2
步骤S103:根据所述开路电压OCV 2及所述阻抗增长率K 2来计算所述第三截止电压V 3
具体来说,所述第三截止电压V 3满足以下公式:
V 3=OCV 2+(U cl-OCV 2)×K 2  (13)
其中K 2=R 4/R 3,R 3为所述电池13在第y次充放电循环中相同温度和相同荷电状态下的第三电池阻抗,R 4为所述电池13在第n-1次充放电循环中相同温度和相同荷电状态下的第四电池阻抗,其中1≤y≤n-1。
在本实施方式中,所述充电系统10还将会获取所述第三电池阻抗R 3和所述第四电池阻抗R 4。所述充电系统10可根据所述第三电池阻抗R 3以及所述第四电池阻抗R 4确定所述电池13的阻抗增长率K 2
由此,所述充电系统10可根据公式(13)计算得到所述第三截止电压V 3,进而在第m次充放电循环中可使用所述第三截止电压V 3来截止所述电池13的恒流充电阶段。
为了使本申请的发明目的、技术方案和技术效果更加清晰,以下结合附图和实施例,对本申请进一步地详细说明。本申请的各对比例和各实施例采用的电池体系以LiCoO 2作为阴极,石墨作为阳极,再加上隔膜、电解液及包装壳,通过混料、涂布、装配、化成和陈化等工艺制成。部分电芯在卷绕过程中在阴阳极极片间加入参比电极,制 作成三电极电池,用以测试对比充电过程中的阴阳极电位差异。需要说明的是,本申请的各对比例和各实施例也可以采用其它化学体系的电池,即以其它物质作为阴极材料,如锰酸锂、磷酸铁锂、三元材料等,本申请不以此为限。本申请中各对比例和各实施例的电池的充电限制电压以4.45V为例,在此说明本申请的充电方法可适用于各种电压体系电池,并不局限于4.45V体系。对4.45V体系电池采用对比例现有技术中的充电方法(恒流恒压充电)和采用本申请的充电方法实施例进行循环性能测试,对比其充电过程中的充电速度和容量衰减程度。
以下陈述的对比例1和2为采用现有技术中的充电方法对电池进行充电。
对比例1:
需要说明的是,对比例1公开的是采用新鲜电池来执行现有技术的充电方法(即每个充放电循环中的恒流充电阶段以相同的固定电流来充电且以固定电压截止)的具体实施过程。
环境温度:25℃;
充电过程:
步骤一、使用1.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V(可理解为充电限制电压);
步骤二、继续使用4.45V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.05C;
步骤三、将电池静置5分钟;
步骤四、再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤五、接着再将电池静置5分钟;
步骤六、重复上述5个步骤500个循环。
以下陈述的具体实施例1~4为采用新鲜电池来获取相对应的充电参数,并采用本发明实施例中的充电方法对该新鲜电池进行充电。需要说明的是,实施例1~4在充电过程中的环境温度与对比例1相同且 保持不变。所述新鲜电池是指刚出厂未使用过的电池,或者是出厂后充放电循环次数小于预设次数(如10次,也可为其它次数)的电池。
实施例1
(1)参数设置
SOC 2和SOC 3的参数获取过程:
环境温度:25℃;
选择新鲜电池获取参数SOC 2(或SOC 3,SOC 2=SOC 3),具体获取过程如下;
步骤一:使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤二:将电池静置5分钟;
步骤三:使用1.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V(可理解为充电限制电压);
步骤四:继续使用4.45V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.05C;
计算获得以上充电过程中,电池在恒流充电截止时的SOC以作为SOC 2,SOC 2为70.6%。
电池循环过程中的I m按照如下规律变化:
I m=I n+(k 1×m+k 2)×I n,其中n=1,I n=1.5C,1≤m≤80,k 1=0,k 2=0,81≤m≤500,k 1=0.0003,k 2=0。
(2)充电过程
环境温度:25℃;
充电过程:
步骤一:获取电池在上一个充电循环中恒流阶段的充电电压为U cl(如4.45V)时的SOC以作为SOC 1,和获取电池当前的实际容量Q;
步骤二:使用I m的恒定电流对电池充电,直到电池的荷电状态达到SOC 1(即电池的容量为SOC 1×Q),I m按照预先设定的公式随循环次数m变化;
步骤三:获取步骤二中恒流阶段的充电电压为U cl的SOC以作为 下一个循环的充电过程中的SOC 1
步骤四:使用1.5C的恒定电流对电池充电,直到电池的荷电状态达到SOC 2(即70.6%),即此时电池的总容量为70.6%×Q;
步骤五:获取步骤四中的恒流充电阶段的截止电压V 2(即第二充电电压);
步骤六:在V 2的恒定电压下对电池进行恒压充电,直到电池的总容量为Q;
步骤七:将电池静置5分钟;
步骤八:再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤九:获取步骤八中的放电容量以得到电池的实际容量Q,以作为下一个充电循环的截止容量;
步骤十:重复上述步骤二至步骤九500个循环。
实施例2
(1)参数设置
SOC 2和SOC 3的参数获取过程:
与实施例1的SOC 2(或SOC 3,SOC 2=SOC 3)的参数获取过程相同,得到该电池在恒流充电截止时的SOC 2,即70.6%。
设置电池循环过程中的I m按照如下规律变化:
I m=I n+(U m-1-U n)/R a,其中n=1,I n=1.5C,R a为电池Fresh状态下的阳极阻抗,其数值为R a=30mOhm,U m-1和U 1为电池在第m-1次和第1次充放电循环中恒流充电阶段截止时的阳极电位,U 1=0.09V,U m-1需要根据所述电池在第m-1次充放电循环中恒流充电至电池的电压为U cl(如U cl=4.45V)的SOC,以及预先存储的阳极电位与SOC的对应关系实时提取。
(2)充电过程
与实施例1的充电过程一样,不同的是采用实施例2设置的I m和充电过程中获取的相对应的SOC 1和Q。
实施例3
(1)参数设置
电池循环过程中的I m、V 1、V 2、V 3按照如下规律变化:
I m的变化规律与实施例1相同;
V 1=U cl+b 1×m+b 2,其中U cl=4.45V,1≤m≤80,b 1=0,b 2=0;81≤m≤500,b 1=0.00004,b 2=0;
V 2=U cl+b 1×m+b 2,其中U cl=4.45V,1≤m≤80,b 1=0,b 2=0;81≤m≤500,b 1=0.0002,b 2=0;
V 3=U cl+b 1×m+b 2,其中U cl=4.45V,1≤m≤80,b 1=0,b 2=0;81≤m≤500,b 1=0.0002,b 2=0。
(2)充电过程
步骤一:获取电池当前的实际容量Q;
步骤二:使用I m的恒定电流对电池充电,直到电池的电压达到截止电压V 1,I m、V 1按照预先设定的公式随循环次数m变化;
步骤三:使用1.5C的恒定电流对电池充电,直到电池的充电电压为V 2,V 2按照预先设定的公式随循环次数m变化;
步骤四:继续使用V 2的恒定电压对电池进行充电,直到电池的总容量为Q;
步骤五:将电池静置5分钟;
步骤六:再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤七:获取步骤六中的放电容量以得到电池的实际容量Q,以作为下一个充电循环的截止容量;
步骤八:重复上述步骤二至步骤七500个循环。
实施例4
(1)参数设置
电池循环过程中的I m、V 1、V 2、V 3按照如下规律变化:
I m的变化规律与实施例2相同;
V 1=U cl+R×(I m-I n),U cl=4.45V,n=3,I n=1.5C,I m随循环次数变化,R为电池在循环过程中恒流充电截止时的电池阻抗;
V 2=OCV 1+(U cl-OCV 1)×K 1
V 3=OCV 2+(U cl-OCV 2)×K 2
U cl=4.45V,OCV 1=4.10V,OCV 2=4.10V,K 1和K 2为电池的阻抗增长率,需要在电池循环过程中随时采集电池实际阻抗并计算增长率,K 1=R 2/R 1,R 2为电池在第m-1次充电过程中SOC为50%时的电池阻抗,R 1为电池在第1次充电过程中SOC为50%时的电池阻抗,且数值为R 1=60mOhm。K 2=R 4/R 3,R 3为电池在第1次充电过程中SOC为50%时的电池阻抗,R 3=60mOhm,R 4为电池在第n-1次充电过程中SOC为50%时的电池阻抗。
(2)充电过程
步骤一:获取电池当前的实际容量Q以及电池当前的阻抗增长率k;
步骤二:使用I m的恒定电流对电池充电,直到电池的电压达到截止电压V 1,I m、V 1按照预先设定的公式随循环次数m变化;
步骤三:使用1.5C的恒定电流对电池充电,直到电池的充电电压为V 2,V 2按照预先设定的公式随循环次数m变化;
步骤四:继续使用V 2的恒定电压对电池进行充电,直到电池的总容量为Q;
步骤五:计算步骤三和步骤四中电池的阻抗增长率,并获取电池在恒流充电截止时的电池阻抗R,以用于计算下一个充电循环中的V 1、V 2和V 3
步骤六:将电池静置5分钟;
步骤七:再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤八:获取步骤七中的放电容量以得到电池的实际容量Q,以作为下一个充电循环的截止容量;
步骤九:重复上述步骤二至步骤八500个循环。
对比例2
需要说明的是,对比例2公开的是采用循环过100次的电池来执 行现有技术的充电方法的具体实施过程。
环境温度:25℃;
充电过程:
与对比例1的充电过程相同,不同的是采用循环过100次的电池来执行对比例1的充电过程。
需要说明的是,实施例5、7~9公开的是采用新鲜电池来获取相应的参数,实施例6公开的是采用循环过100次的电池来获取相应的参数,且根据本申请的充电方法对该循环过100次的电池进行充电的具体实施过程,同时在充电过程中的环境温度与对比例1相同且保持不变。
实施例5
(1)参数设置
与实施例1的参数获取过程相同,不同的是m从101开始递增至500。
(2)充电过程
与实施例1的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例6
需要说明的是,所述实施例6公开的是使用循环过100次的电池来获得对应的充电参数。
(1)参数设置
SOC 1的参数获取过程:
与实施例1的SOC 1的参数获取过程相同,不同的是使用循环过100次的电池来获得参数SOC 2(或SOC 3,SOC 2=SOC 3),且得到该电池恒流充电截止时的SOC为68.7%,即SOC 2为68.7%;
设置电池循环过程中的I m按照如下规律变化:
I m=I n+(U m-1-U n)/R a,其中n=100,I n=1.5C,R a为电池循环第100次的阳极阻抗,其数值为R a=30mOhm,U m-1和U n为电池在第m-1次和第100次充放电循环中恒流充电阶段截止时的阳极电位,U n=0.09V, U m-1需要根据所述电池在第m-1次充放电循环中恒流充电至电池的电压为U cl(如U cl=4.45V)时的SOC,以及根据预先存储的阳极电位与SOC的对应关系实时提取。
(2)充电过程
与实施例1的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例7
(1)参数设置
与实施例2的参数获取过程相同,不同的是m从101开始递增至500;
(2)充电过程
与实施例2的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例8
(1)参数设置
与实施例3的参数获取过程相同,不同的是m从101开始递增至500;
(2)充电过程
与实施例3的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例9
(1)参数获取过程
与实施例4的参数获取过程相同,不同的是m从101开始递增至500;
(2)充电过程
与实施例4的充电过程相同,不同的是采用循环过100次的电池来进行充电,m从101开始递增至500。
在实验过程中,记录每个对比例和实施例1-9的电池在不同充电阶段的参数(如电压、电流、时间等),并把结果记录在下表1中。
表1为各对比例和实施例1-9的恒流阶段截止条件和各阶段的充电时间
Figure PCTCN2019112387-appb-000001
Figure PCTCN2019112387-appb-000002
以下陈述的具体实施例10-19与实施例1-9的主要区别是在第m次充放电循环中增加恒压充电步骤,即以所述第一截止电压V 1对所述电池进行恒压充电至所述第二充电电流I n。具体的,实施例10~13为采用新鲜电池来获取相应的充电参数,并采用本发明实施例中的充电方法对该新鲜电池进行充电。
实施例10
(1)参数设置
与实施例1的参数获取过程相同。
(2)充电过程
与实施例1的充电过程相同,不同的是实施例10在实施例1的步骤三与步骤四之间增加恒压充电阶段,即使用恒定的电压V 1对电池进行充电,直到电池的电流为1.5C(即第二充电电流I n)。
实施例11
(1)参数设置
与实施例2的参数获取过程相同。
(2)充电过程
与实施例10的充电过程相同,不同的是采用实施例11设置的I m 和充电过程中获取的相对应的SOC 1和Q。
实施例12
(1)参数设置
与实施例3的参数获取过程相同。
(2)充电过程
与实施例3的充电过程相同,不同的是实施例12在实施例3的步骤二与步骤三之间增加恒压充电阶段,即使用恒定的电压V 1对电池进行充电,直到电池的电流为1.5C(即第二充电电流I n)。
实施例13
(1)参数设置
与实施例4的参数获取过程相同。
(2)充电过程
与实施例4的充电过程相同,不同的是实施例13在实施例4的步骤二与步骤三之间增加恒压充电阶段,即使用恒定的电压V 1对电池进行充电,直到电池的电流为1.5C(即第二充电电流I n)。
以下陈述的具体实施例14~18为采用循环过100次的电池来获取相应的充电参数,并采用本发明实施例中的充电方法对该循环过100次的电池进行充电。
需要说明的是,实施例14、16~18公开的是采用新鲜电池来获取相应的参数,实施例15公开的是采用循环过100次的电池来获取相应的参数,且根据本申请的充电方法对该循环过100次的电池进行充电的具体实施过程,同时在充电过程中的环境温度与对比例1相同且保持不变。
实施例14
(1)参数设置
与实施例1的参数获取过程相同,不同的是m从101开始递增至500。
(2)充电过程
与实施例10的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例15
需要说明的是,所述实施例15公开的是使用循环过100次的电池来获得对应的充电参数。
(1)参数设置
与实施例6的参数获取过程相同,不同的是m从101开始递增至500。
(2)充电过程
与实施例10的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例16
(1)参数设置
与实施例2的参数获取过程相同,不同的是m从101开始递增至500。
(2)充电过程
与实施例10的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例17
(1)参数设置
与实施例3的参数获取过程相同,不同的是m从101开始递增至500。
(2)充电过程
与实施例3的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
实施例18
(1)参数设置
与实施例4的参数获取过程相同,不同的是m从101开始递增至500。
(2)充电过程
与实施例4的充电过程相同,不同的是采用循环过100次的电池来进行充电,且m从101开始递增至500。
在实验过程中,记录每个对比例和实施例10-18的电池在不同充电阶段的参数(如电压、电流、时间等),并把结果记录在下表2中。
表2为各对比例和实施例10-18的恒流阶段截止条件和各阶段的充电时间
Figure PCTCN2019112387-appb-000003
Figure PCTCN2019112387-appb-000004
从表1的实验数据可以看出,采用本实施例1~18中所使用的充电方法通过增加第一阶段的恒流充电电流,并且缩短第一阶段的恒流充电时间,延长第二阶段恒流充电时间以及缩短第二阶段恒压充电时间,进而可以缩短电池的充电时间,提高电池的充电速率。
在对比例1、2的充电方法中,随着电池阻抗逐渐增大,电池的恒流阶段的充电时间缩短,恒压阶段的充电时间延长,使得总充电时间延长。与对比例1、2相比,采用具体实施例1~18中所使用的充电方法,即通过提高恒流充电阶段充电电流,来进一步缩短恒流阶段的充电时间,且能够大幅度地降低恒压阶段的充电时间,进而可以大幅度地缩短电池的满充时间,其充电速度明显地快于对比例中的充电速度。
与实施例1-9相比,当充放电循环次数达到一定次数时,实施例10-18的总充电时间的变化将会比较明显。
由此,使用本实施例1~18中的充电方法为电池充电时,可以缩短第一阶段恒流充电的时间,同时大幅度降低第二阶段恒压充电时间,缩短电池满充时间,并且通过电池实际容量来控制充电截止,确保电 池不发生过充电,不影响电池的使用寿命。
请参阅图11,在本实施方式中,所述充电系统10可以被分割成一个或多个模块,所述一个或多个模块存储在所述处理器11中,并由所述处理器11执行,以完成本申请。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,所述指令段用于描述所述充电系统10在所述电子装置100中的执行过程。例如,所述充电系统10可以被分割成图10中的获取模块101、比较模块102、确定模块103、恒流充电模块104以及恒压充电模块105。
所述获取模块101用于获取电池在第n次充放电循环中且在不同温度对应充电倍率下的恒流充电阶段截止时的第一荷电状态和第一充电电流。
所述获取模块101用于获取电池在第n次充放电循环中的阳极无极化充电曲线、阳极阻抗R a及恒流充电阶段截止时的第一荷电状态和第二充电电流I n,并根据所述阳极无极化充电曲线及所述第一荷电状态获取所述电池在第n次充放电循环中恒流充电至所述充电限制电压U cl时的第一阳极电位U n
所述获取模块101还用于获取电池在第m-1次充放电循环中的充电曲线及恒流充电阶段截止时的第二荷电状态,并根据所述电池的阳极无极化充电曲线及所述第二荷电状态获取所述电池在第m-1次充放电循环中恒流充电至所述充电限制电压U cl时的第二阳极电位U m-1
所述获取模块101还用于获取电池在第m-2次充放电循环中恒流充电至所述充电限制电压U cl时的第三阳极电位U m-2
所述获取模块101还用于获取电池在第m-1次充放电循环中恒流充电阶段的第三充电电流I m-1。所述确定模块102用于根据所述第一阳极电位U n、所述第二阳极电位U m-1、所述阳极阻抗R a以及所述第二充电电流I n确定所述电池在第m次充放电循环时的第一充电电流I m
所述确定模块102还用于根据所述第二阳极电位U m-1、第三阳极电位U m-2、所述阳极阻抗R a以及所述第三充电电流I m-1确定所述电池 在第m次充放电循环时的第一充电电流I m
所述控制模块103用于在第m次充放电循环中,根据所述第一充电电流I m对所述电池进行充电。
所述恒流充电模块104用于对电池13进行恒流充电,直到电池13的电压达到截止电压或截止容量。所述恒压充电模块105还用于对电池13进行恒压充电,直到电池13的电流达到截止电流或截止容量。
通过所述充电系统10可以对电池13进行充电管理,以提高电池的充电效率、使用寿命以及可靠性。具体内容可以参见上述电池的充电方法的实施例,在此不再详述。
在一实施方式中,所述处理器11可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器12也可以是其它任何常规的处理器等。
所述充电系统10中的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专 利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
可以理解的是,以上所描述的模块划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在相同处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在相同单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
在另一实施方式中,所述电子装置100还可包括存储器(图未示),所述一个或多个模块还可存储在存储器中,并由所述处理器执行。所述存储器可以是电子装置100的内部存储器,即内置于所述电子装置100的存储器。在其他实施例中,所述存储器也可以是电子装置100的外部存储器,即外接于所述电子装置100的存储器。
在一些实施例中,所述存储器用于存储程序代码和各种数据,例如,存储安装在所述电子装置100中的充电系统10的程序代码,并在电子装置100的运行过程中实现高速、自动地完成程序或数据的存取。
所述存储器可以包括随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将本申请上述的实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。

Claims (24)

  1. 一种电池的充电方法,其特征在于,包括:
    在第m次充放电循环中,以第一充电电流I m对所述电池进行恒流充电至第一荷电状态SOC 1,所述电池具有相应的第一截止电压V 1;以第二充电电流I n对所述电池进行恒流充电至第二荷电状态SOC 2,所述电池具有恒流充电截止时的第二截止电压V 2;以所述第二截止电压V 2对所述电池进行恒压充电至满充状态;
    其中,I m=I n+k×I n,0<k≤1,n为大于等于0的整数,m为1、2、…、x且大于n的任意两个以上整数,k在至少两次充放电循环中的数值不相同,
    I n为所述电池或与所述电池相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流或预设值,所述第n次充放电循环中的恒流充电阶段为仅以所述第二充电电流I n对所述电池进行恒流充电至充电限制电压U cl或仅以所述第二充电电流I n对所述电池进行恒流充电至第三荷电状态SOC 3,且具有与所述第三荷电状态SOC 3相对应的第三截止电压V 3
    SOC 1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至充电限制电压U cl时的荷电状态,
    其中SOC 1≤SOC 3+S,SOC 3-S≤SOC 2≤SOC 3+S≤100%,0≤S≤10%。
  2. 如权利要求1所述的充电方法,其特征在于,SOC 3还可以是与所述电池相同的另一电池在所述第n次充放电循环中恒流充电阶段截止时的荷电状态或预设值。
  3. 如权利要求1所述的充电方法,其特征在于,所述k满足以下公式:k=k 1×m+k 2,0≤k 1≤0.001,0≤k 2≤0.2。
  4. 如权利要求1所述的充电方法,其特征在于,所述第一充电电流I m满足以下公式:
    I m=I n+(U m-1-U n)/R a,m>1;或I m=I m-1+(U m-1-U m-2)/R a,m>2;
    其中,U n为所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电至所述充电限制电压U cl时的第一阳极电位,U m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至所述充电限制电压U cl时的第二阳极电位,R a为所述电池或与所述电池相同的另一电池在第n次充放电循环中的阳极阻抗,I m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电阶段的充电电流或预设值,U m-2为所述电池或与所述电池相同的另一电池在第m-2次充放电循环中恒流充电至所述充电限制电压U cl时的第三阳极电位。
  5. 如权利要求1所述的充电方法,其特征在于,以所述第一充电电流I m对电池进行恒流充电至所述第一荷电状态SOC 1时的电池容量为Q m,Q m=SOC 1×Q,Q为所述电池当前的实际容量。
  6. 如权利要求1所述的充电方法,其特征在于,所述充电方法还包括:以所述第一截止电压V 1对所述电池进行恒压充电至所述第二充电电流I n
  7. 如权利要求1所述的充电方法,其特征在于,所述充电方法还包括:
    比较所述第三截止电压V 3与所述充电限制电压U cl的大小;及
    根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
  8. 如权利要求7所述的充电方法,其特征在于,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:
    第一充电步骤:在第n次充放电循环中,当所述第三截止电压V 3小于所述充电限制电压U cl,以所述第二充电电流I n继续对所述电池进行恒流充电至所述充电限制电压U cl,以所述充电限制电压U cl对所述电池进行恒压充电至满充状态,其中n≤m-1;
    第二充电步骤:进入下一个充放电循环,以所述第二充电电流I n对所述电池进行恒流充电至所述第三荷电状态SOC 3,所述电池具有相应的所述第三截止电压V 3;及
    重复步骤:重复执行所述第一充电步骤和所述第二充电步骤,直至所述第三截止电压V 3大于或等于所述充电限制电压U cl
  9. 如权利要求7所述的充电方法,其特征在于,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤还包括:
    当所述第三截止电压V 3大于或等于所述充电限制电压U cl,以所述第三截止电压V 3对所述电池进行恒压充电至满充状态,且获取所述第一荷电状态SOC 1和计算所述第一充电电流I m
  10. 如权利要求1所述的充电方法,其特征在于,所述充电方法还包括:
    获取所述电池在第n次充放电循环中恒流充电至电池电压为所述充电限制电压U cl时的第四荷电状态SOC 4
    比较所述第三荷电状态SOC 3与所述第四荷电状态SOC 4的大小;及
    根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
  11. 如权利要求10所述的充电方法,其特征在于,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:
    充电步骤:在第n次充放电循环中,当所述第三荷电状态SOC 3小于所述第四荷电状态SOC 4时,进入下一个充放电循环,以所述第二充电电流I n对所述电池进行恒流充电至所述充电限制电压U cl,所述电池具有相应的所述第四荷电状态SOC 4,以所述充电限制电压U cl对所述电池进行恒压充电至满充状态,其中n≤m-1;及
    重复步骤:重复执行所述充电步骤,直至所述第三荷电状态SOC 3大于或等于所述第四荷电状态SOC 4
  12. 如权利要求10所述的充电方法,其特征在于,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:
    当所述第三荷电状态SOC 3大于或等于所述第四荷电状态SOC 4时,获取所述第一荷电状态SOC 1和计算所述第一充电电流I m
  13. 一种电池的充电方法,其特征在于,包括:
    在第m次充放电循环中,以第一充电电流I m对所述电池进行恒流充电至第一截止电压V 1;以所述第二充电电流I n对所述电池进行恒流充电至第二截止电压V 2,以所述第二截止电压V 2对所述电池进行恒压充电至满充状态;
    其中,I m=I n+k×I n,0<k≤1,k=k 1×m+k 2,0≤k 1≤0.002,0≤k 2≤1,k在至少两次充放电循环中的数值不相同,
    I n为预设值,或者I n为所述电池或与所述电池相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流,所述第n次充放电循环中的恒流充电阶段为仅以所述第二充电电流I n对所述电池进行恒流充电至第三截止电压V 3
    其中,V 1=U cl+b,V 2=U cl+b,0≤b≤0.5,U cl为所述电池或所述另一电池的充电限制电压或预设值,n为大于等于0的整数,m为1、2、…、x且大于n的任意两个以上整数,b在至少两次充放电循环中的数值不相同。
  14. 如权利要求13所述的充电方法,其特征在于,所述第一充电电流I m满足以下公式:
    I m=I n+(U m-1-U n)/R a,m>1;或I m=I m-1+(U m-1-U m-2)/R a,m>2;
    其中,U n为所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电至所述充电限制电压U cl时的第一阳极电位,U m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电至所述充电限制电压U cl时的第二阳极电位,R a为所述电池或与所述电池相同的另一电池在第n次充放电循环中的阳极阻抗,I m-1为所述电池或与所述电池相同的另一电池在第m-1次充放电循环中恒流充电阶段的充电电流或预设值,U m-2为所述电池或与所述电池相同的另一电池在第m-2次充放电循环中恒流充电至所述充电限制电压U cl时的第三阳极电位。
  15. 如权利要求13所述的充电方法,其特征在于,所述b满足以 下公式:b=b 1×m+b 2,0≤b 1≤0.0005,0≤b 2≤0.1。
  16. 如权利要求13所述的充电方法,其特征在于,所述第一截止电压V 1还通过以下方法获得:
    获取所述电池在第m-1次充放电循环中的电池阻抗R;及
    根据所述充电限制电压U cl、所述电池阻抗R、所述第一充电电流I m以及所述第二充电电流I n确定所述第一截止电压V 1
  17. 如权利要求16所述的充电方法,其特征在于,所述第一截止电压V 1满足以下公式:V 1=U cl+R×(I m-I n)。
  18. 如权利要求13所述的充电方法,其特征在于,所述第二截止电压V 2和V 3分别满足以下公式:
    V 2=OCV 1+(U cl-OCV 1)×K 1,其中,OCV 1为所述电池或所述另一电池在第x次充放电循环中的恒流充电阶段截止时的第一开路电压,1≤x<m-1,K 1为所述电池或所述另一电池的阻抗增长率;及
    V 3=OCV 2+(U cl-OCV 2)×K 2,其中,OCV 2为所述电池或所述另一电池在第y次充放电中的恒流充电阶段截止时的第二开路电压,1≤y<n-1,K 2为所述电池或所述另一电池的阻抗增长率。
  19. 如权利要求13所述的充电方法,其特征在于,所述充电方法还包括:以所述第一截止电压V 1对所述电池进行恒压充电至所述第二充电电流I n
  20. 如权利要求13所述的充电方法,其特征在于,所述充电方法还包括:
    比较所述第三截止电压V 3与所述充电限制电压U cl的大小;及
    根据比较结果确定所述电池在第m次充放电循环之前的充电方式。
  21. 如权利要求20所述的充电方法,其特征在于,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤包括:
    第一充电步骤:在第n次充放电循环中,当所述第三截止电压V 3小于所述充电限制电压U cl,以所述第二充电电流I n继续对所述电池进行恒流充电至所述充电限制电压U cl,以所述充电限制电压U cl对所 述电池进行恒压充电至满充状态,其中n≤m-1;
    第二充电步骤:进入下一个充放电循环,以所述第二充电电流I n对所述电池进行恒流充电至所述第三截止电压V 3;及
    重复步骤:重复执行所述第一充电步骤和所述第二充电步骤,直至所述第三截止电压V 3大于或等于所述充电限制电压U cl
  22. 如权利要求20所述的充电方法,其特征在于,所述根据比较结果确定所述电池在第m次充放电循环之前的充电方式的步骤还包括:
    当所述第三截止电压V 3大于等于所述充电限制电压U cl,以所述第三截止电压V 3对所述电池进行恒压充电至满充状态,且计算所述第一充电电流I m
  23. 一种电子装置,其特征在于,包括:
    电池;及
    处理器,用于加载并执行如权利要求1-22中任意一项所述的充电方法。
  24. 一种存储介质,其上存储有至少一条计算机指令,其特征在于,所述计算机指令由处理器加载并用于执行如权利要求1-22中任意一项所述的充电方法。
PCT/CN2019/112387 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质 WO2021077274A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/112387 WO2021077274A1 (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质
CN201980058974.6A CN112740500A (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质
JP2021516869A JP7250914B2 (ja) 2019-10-21 2019-10-21 充電方法、電子装置及び記憶媒体
EP19945475.2A EP3843196B1 (en) 2019-10-21 2019-10-21 Charging method, electronic apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112387 WO2021077274A1 (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质

Publications (1)

Publication Number Publication Date
WO2021077274A1 true WO2021077274A1 (zh) 2021-04-29

Family

ID=75589457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112387 WO2021077274A1 (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质

Country Status (4)

Country Link
EP (1) EP3843196B1 (zh)
JP (1) JP7250914B2 (zh)
CN (1) CN112740500A (zh)
WO (1) WO2021077274A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972411A (zh) * 2021-09-28 2022-01-25 天津力神电池股份有限公司 一种用于确定锂电池快充策略的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020070708A1 (en) * 2000-12-08 2002-06-13 Ten-Der Wu Battery charging device
CN105552465A (zh) * 2015-12-03 2016-05-04 北京交通大学 一种基于时间和温度的锂离子电池优化充电方法
CN105870526A (zh) * 2016-06-23 2016-08-17 宁德新能源科技有限公司 电池充电方法
CN106532160A (zh) * 2016-12-29 2017-03-22 宁德新能源科技有限公司 电池充电方法及装置
CN107171035A (zh) * 2017-05-24 2017-09-15 上海交通大学 锂离子电池的充电方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270491A (ja) * 1999-03-16 2000-09-29 Nissan Motor Co Ltd リチウムイオン電池充電方法及びリチウムイオン電池充電装置
JP2003274570A (ja) * 2002-03-14 2003-09-26 Fujitsu Ltd 定電流定電圧充電方法および定電流定電圧充電装置
KR20110022556A (ko) * 2008-06-12 2011-03-07 파나소닉 주식회사 리튬 이온 이차전지의 충전 방법 및 충방전 방법
JP5454023B2 (ja) 2009-09-07 2014-03-26 ダイキン工業株式会社 電動機
WO2011061902A1 (ja) * 2009-11-20 2011-05-26 パナソニック株式会社 充電制御回路、電池パック、及び充電システム
US8643342B2 (en) * 2009-12-31 2014-02-04 Tesla Motors, Inc. Fast charging with negative ramped current profile
US9490642B2 (en) * 2012-06-07 2016-11-08 Lg Chem, Ltd. Charging method of secondary battery with constant current using high charge rate
CN103018683A (zh) * 2012-12-24 2013-04-03 天津力神电池股份有限公司 一种电池循环性能加速评估方法
US20140320089A1 (en) * 2013-04-30 2014-10-30 Fang Wang Smart charging algorithm of lithium ion battery
KR102248599B1 (ko) * 2014-05-20 2021-05-06 삼성에스디아이 주식회사 배터리의 충전방법 및 이를 위한 배터리 관리 시스템
CN105207288B (zh) * 2015-09-11 2017-12-29 联想(北京)有限公司 一种充电方法及电子设备
KR102589963B1 (ko) * 2016-04-12 2023-10-13 삼성에스디아이 주식회사 배터리의 충방전 제어 장치 및 그 제어 방법
CN107808987A (zh) * 2016-09-08 2018-03-16 宁德新能源科技有限公司 二次电池充电方法
CN107808986A (zh) * 2016-09-08 2018-03-16 宁德新能源科技有限公司 二次电池充电方法
JP7159590B2 (ja) * 2018-03-28 2022-10-25 株式会社Gsユアサ 充電制御装置、蓄電装置、蓄電素子の充電制御方法、及びコンピュータプログラム
CN110085934B (zh) * 2019-05-30 2020-09-01 维沃移动通信有限公司 一种终端电池的充电方法及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020070708A1 (en) * 2000-12-08 2002-06-13 Ten-Der Wu Battery charging device
CN105552465A (zh) * 2015-12-03 2016-05-04 北京交通大学 一种基于时间和温度的锂离子电池优化充电方法
CN105870526A (zh) * 2016-06-23 2016-08-17 宁德新能源科技有限公司 电池充电方法
CN106532160A (zh) * 2016-12-29 2017-03-22 宁德新能源科技有限公司 电池充电方法及装置
CN107171035A (zh) * 2017-05-24 2017-09-15 上海交通大学 锂离子电池的充电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843196A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972411A (zh) * 2021-09-28 2022-01-25 天津力神电池股份有限公司 一种用于确定锂电池快充策略的方法

Also Published As

Publication number Publication date
CN112740500A (zh) 2021-04-30
EP3843196A4 (en) 2022-04-13
EP3843196A1 (en) 2021-06-30
EP3843196B1 (en) 2023-11-22
JP2022507003A (ja) 2022-01-18
JP7250914B2 (ja) 2023-04-03

Similar Documents

Publication Publication Date Title
WO2021077272A1 (zh) 充电方法、电子装置以及存储介质
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
WO2021077273A1 (zh) 充电方法、电子装置以及存储介质
US20210296921A1 (en) Charging Method and Apparatus
CN110011374B (zh) 一种电池充放电电流的控制方法、系统及终端设备
WO2021155538A1 (zh) 充电方法、电子装置以及存储介质
WO2021056687A1 (zh) 充电方法、电子装置及存储介质
CN107342608A (zh) 电池充电方法、装置、设备和存储介质
CN109671997A (zh) 电子装置与充电方法
US20210119461A1 (en) Electronic device and method for charging battery
WO2021155539A1 (zh) 充电方法、电子装置以及存储介质
KR20110087840A (ko) 이차 전지
US20230238822A1 (en) Charging method, electronic apparatus, and storage medium
US20230344260A1 (en) Battery charging method, electric device, and storage medium
WO2021077274A1 (zh) 充电方法、电子装置以及存储介质
JP7152548B2 (ja) 放電方法、電子装置及び記憶媒体
CN114552711A (zh) 一种电芯控制方法、装置和bms设备
CN113316878A (zh) 充电方法、电子装置以及存储介质
CN116259866B (zh) 充电方法、电池管理系统、电池及可读存储介质
WO2022133974A1 (zh) 充电方法、电子装置以及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516869

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019945475

Country of ref document: EP

Effective date: 20210326

NENP Non-entry into the national phase

Ref country code: DE