WO2021155538A1 - 充电方法、电子装置以及存储介质 - Google Patents

充电方法、电子装置以及存储介质 Download PDF

Info

Publication number
WO2021155538A1
WO2021155538A1 PCT/CN2020/074434 CN2020074434W WO2021155538A1 WO 2021155538 A1 WO2021155538 A1 WO 2021155538A1 CN 2020074434 W CN2020074434 W CN 2020074434W WO 2021155538 A1 WO2021155538 A1 WO 2021155538A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
soc
voltage
charge
Prior art date
Application number
PCT/CN2020/074434
Other languages
English (en)
French (fr)
Inventor
关婷
朱珊
吴飞
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080010050.1A priority Critical patent/CN113348603A/zh
Priority to PCT/CN2020/074434 priority patent/WO2021155538A1/zh
Publication of WO2021155538A1 publication Critical patent/WO2021155538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a method for charging a battery, an electronic device, and a storage medium.
  • the charging method commonly used on lithium batteries is to continuously charge the lithium-ion battery to a certain voltage (which can be understood as the charging limit voltage) through a preset constant current, and then charge the lithium-ion battery at a constant voltage with this voltage to full Full state.
  • a certain voltage which can be understood as the charging limit voltage
  • the impedance of the battery increases, which will shorten the time of constant current charging of the battery and extend the time of constant voltage charging, resulting in the total charging time of the battery Getting longer and longer.
  • An embodiment of the present application provides a battery charging method, and the charging method includes:
  • the battery In the m-th charge-discharge cycle, the battery is charged with N charging sub-phases in sequence, and each charging sub-phase includes j constant current phases and constant voltage phases, each of the constant current phase and the constant voltage phase
  • the charging phase is terminated by the state of charge, where m, N, and j are integers and m ⁇ 1, N ⁇ 1, and j ⁇ 1.
  • the battery is charged to the corresponding SOC mi1 , SOC mi2 , ..., SOC mij with sequential j constant currents I mi1, I mi2 , ..., I mij respectively;
  • the SOC mi1 , ..., SOC mij , SOC mi are the battery or another battery that is the same as the battery corresponding to the i-th charging substage in the n-th charge and discharge cycle
  • n is an integer greater than or equal to 0
  • m is an integer greater than n.
  • the step of charging the battery to SOC mi according to the voltage V mij includes:
  • the battery is charged according to the comparison result.
  • the step of charging the battery according to the comparison result includes:
  • the battery When the voltage V mij is greater than or equal to the preset cut-off voltage U icl of the i-th charging sub-stage, the battery is charged with the voltage V mij to the SOC mi at a constant voltage.
  • the step of charging the battery according to the comparison result includes:
  • the battery is charged at a constant voltage to SOC mi with the preset cut-off voltage U icl of the i-th charging sub-phase.
  • the batteries are respectively charged according to the sequential j groups of constant current and voltage [I mk1 , V mk1 ], [I mk2 , V mk2 ], ..., [I mkj, V mkj]
  • V mk1 , V mk2 , ..., V mkj are the respective constant currents I mk1 , I mk2 , ..., I mkj to charge the battery
  • the charging method further includes:
  • the kth charging sub-stage obtain the cut-off voltage of the battery in each constant current charging stage and the preset cut-off voltage of each constant voltage charging stage; compare the cut-off voltage with the corresponding preset cut-off voltage The size of the cut-off voltage; and charging the battery according to the comparison result.
  • the step of charging the battery according to the comparison result includes:
  • the battery is charged at a constant voltage with the corresponding preset cut-off voltage to the corresponding state of charge.
  • the SOC mk1 , SOC mk2 , ..., SOC mkj correspond to the kth charging substage in the nth charge and discharge cycle of the battery or another battery that is the same as the battery SOC mk10 , SOC mk20 , ..., SOC mkj0 is the battery or another battery same as the battery in the nth charge-discharge cycle
  • n is an integer greater than or equal to 0
  • m is an integer greater than n.
  • the charging capacity of each charging sub-phase is equal to the difference between the state of charge at the beginning of the next charging sub-phase and the state of charge at the end of the previous charging sub-phase Multiply by the capacity Q, which is the actual capacity of the battery.
  • An embodiment of the present application provides an electronic device, which includes:
  • Processor the processor loads and executes the charging method described above.
  • An embodiment of the present application provides a storage medium on which at least one computer instruction is stored, and the computer instruction is loaded by a processor and used to execute the battery charging method described above.
  • the embodiment of the present application uses the standard state of charge to stop the constant current charging phase of the battery after the mth charge and discharge cycle, which can extend the constant current charging time of the battery, thereby shortening the full charge time of the battery, and It can also ensure that the battery will not be overcharged.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Fig. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • Fig. 3 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 4 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 5 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 6 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 7 is a block diagram of a charging system according to an embodiment of the present application.
  • Constant voltage charging module 105 Constant voltage charging module 105
  • the charging system 10 runs in the electronic device 100.
  • the electronic device 100 includes, but is not limited to, at least one processor 11 and a battery 13.
  • the above-mentioned components may be connected via a bus or directly.
  • FIG. 1 is only an example of the electronic device 100.
  • the electronic device 100 may also include more or fewer elements, or have different element configurations.
  • the electronic device 100 may be an electric motorcycle, an electric bicycle, an electric car, a mobile phone, a tablet computer, a digital assistant, a personal computer, or any other suitable rechargeable equipment.
  • the battery 13 is a rechargeable battery for providing electrical energy to the electronic device 100.
  • the battery 13 may be a lead-acid battery, a nickel-cadmium battery, a nickel-hydrogen battery, a lithium ion battery, a lithium polymer battery, a lithium iron phosphate battery, and the like.
  • the battery 13 is logically connected to the processor 11 through the charging system 10, so that functions such as charging, discharging, and power consumption management are realized through the charging system 10.
  • the battery 13 includes a battery cell (not shown in the figure).
  • FIG. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • the battery charging method may include the following steps:
  • Step S21 In the m-th charge-discharge cycle, the battery is charged in N charging sub-stages in sequence.
  • the charging system 10 of this embodiment uses N successive charging sub-stages to charge the battery 13.
  • m and N are integers and m ⁇ 1 and N ⁇ 1.
  • Step S22 Each charging sub-phase includes j constant current phases and constant voltage phases, and each of the constant current phases and the constant voltage phases terminates charging in a state of charge.
  • j is an integer and j ⁇ 1.
  • the state of charge refers to the ratio of the remaining capacity of the battery to the full charge capacity of the battery.
  • the charging system 10 can control the state of charge of the battery 13 at the end of the constant current phase and the state of charge at the end of the constant voltage phase to a preset value.
  • the same state of charge can extend the time of constant current charging of the battery and shorten the time of constant voltage charging of the battery, thereby shortening the full charge time.
  • the charging system 10 uses N successive charging sub-stages to charge the battery, which can be specifically carried out through the following steps:
  • Step S31 The N charging sub-phases are respectively defined as the i-th charging sub-phase.
  • Step S32 In the i-th charging sub-phase, sequentially charge the battery to the corresponding state of charge with j constant currents in sequence.
  • the charging system 10 charges the battery 13 to the corresponding SOC mi1 , respectively according to j constant currents I mi1 , I mi2 , ..., I mij in sequence. SOC mi2 ,..., SOC mij .
  • the charging system 10 may use 4 constant The currents Im11 , Im12 , Im13 , and Im14 charge the battery until the state of charge of the battery is SOC m11 , SOC m12 , SOC m13 , and SOC m14, respectively .
  • the charging system 10 can use four sequential constant currents I m21 , Im22 , I m23 , and I m24 to charge the battery to the charge of the battery, respectively.
  • the status is SOC m21 , SOC m22 , SOC m23 , SOC m24 .
  • the charging system 10 first charges the battery 13 with the constant current I m11 to the SOC m11 , and then charges the battery 13 with the constant current I m12. to SOC m12, followed by a constant current I m13 to charge the battery 13 SOC m13, and finally I m14 constant current charge to the battery 13 SOC m14.
  • the charging system 10 After the second stage of the electronic charge, the charging system 10 to a constant current I m21 to charge the battery 13 SOC m21, then I m22 constant current charge to the battery 13 SOC m22, followed to The constant current Im23 charges the battery 13 to SOC m23 , and finally the constant current Im24 charges the battery 13 to SOC m24 .
  • I m21 to charge the battery 13 SOC m21
  • I m22 constant current charge to the battery 13 SOC m22
  • the constant current Im23 charges the battery 13 to SOC m23
  • the constant current Im24 charges the battery 13 to SOC m24 .
  • Step S33 obtaining corresponding to charge the battery when the SOC mij the voltage V mij.
  • the charging system 10 charges the battery 13 to the SOC mij with the constant current I mij , the battery 13 has the battery voltage V mij . In this case, the charging system 10 will obtain the corresponding battery 13 when the charge voltage to the SOC mij V mij.
  • Step S34 Charge the battery to SOC mi according to the voltage V mij .
  • the charging system 10 when the charging system 10 charges the battery 13 to SOC mij with a constant current I mij , the charging system 10 will charge the battery 13 to SOC according to the voltage V mij. mi .
  • the SOC mi1 , ..., SOC mij , SOC mi are the battery 13 or another battery that is the same as the battery 13 (for example, a battery of the same model) during the nth charge and discharge cycle
  • SOC m11 ,..., SOC m1j are the state of charge (ie These are SOC n11 , ..., SOC n1j in order )
  • SOC m1 is the state of charge of the battery 13 at the end of the constant voltage charging corresponding to the first charging sub-phase in the first charging and discharging cycle (that is, SOC n1 ).
  • SOC m21 ,..., SOC m2j are the respective constant current charging cut-off charges corresponding to the second charging sub-phase of the battery in the first charge-discharge cycle.
  • Electric state that is, SOC n21 , ..., SOC n2j in sequence ).
  • SOC m2 is the state of charge (ie SOC n2 ) of the battery at the end of the constant voltage charging corresponding to the second charging sub-phase in the first charge and discharge cycle.
  • N, n, and m take other values, the analogy can be applied.
  • the charging system 10 charges the battery to SOC mi according to the voltage V mij , which may include the following specific steps:
  • Step S41 Obtain the preset cut-off voltage U icl of the battery in the i-th charging sub-stage.
  • the charging system 10 will obtain the preset cut-off voltage U icl of the battery 13 in the i-th charging sub-stage.
  • the preset cut-off voltage U ic1 may also be the preset cut-off voltage of another battery (for example, a battery of the same model) that is the same as the battery 13 in the corresponding i-th charging sub-stage.
  • another battery for example, a battery of the same model
  • U icl is less than or equal to U cl
  • U cl is the charge limit voltage of the battery 13 (such as the charge limit voltage described in the background art, or the charge limit voltage written on the battery product information).
  • the U cl may be 4.45V, and in other embodiments, the U cl may also be other values.
  • Step S42 Compare the magnitude of the voltage V mij with the preset cut-off voltage U icl of the i-th charging sub-stage.
  • the charging system 10 will compare the voltage V mij with the preset cut-off voltage U icl of the i-th charging sub-stage.
  • Step S43 Charge the battery according to the comparison result.
  • the charging system 10 is configured to charge the battery 13 according to a comparison result between the voltage V mij and the preset cut-off voltage U icl of the i-th charging sub-stage.
  • the charging system 10 when the voltage V mij is greater than or equal to the predetermined cut-off voltage U icl of the i-th charging sub-stage, the charging system 10 will use the voltage V mij to The battery 13 is charged at a constant voltage to the state of charge SOC mi .
  • the charging system 10 when the voltage V mij is less than the preset cut-off voltage U icl of the i-th charging sub-stage, the charging system 10 will perform the charging on the battery 13 with the current I mij. Constant current charging to the preset cut-off voltage U icl of the i-th charging sub-stage.
  • the charging system 10 When the charging system 10 charges the battery 13 at a constant current with the current I mij to the preset cut-off voltage U icl of the i-th charging sub-stage, the charging system 10 will use the i-th charging sub-phase The preset cut-off voltage U icl of the charging sub-phase charges the battery 13 at a constant voltage to the state of charge SOC mi .
  • the charging system 10 may use N charging sub-stages to charge the battery in sequence. Specifically, the charging system may also perform the following steps:
  • Step S51 The N charging sub-stages are respectively defined as the k-th charging sub-stage.
  • Step S52 In the k-th charging sub-stage, the batteries are respectively charged to the corresponding state of charge according to the sequential j sets of constant currents and voltages.
  • the charging system 10 will respond to all the currents and voltages [I mk1, V mk1 ], [I mk2 , V mk2 ], ..., [I mkj , V mkj ], respectively, according to j groups of constant currents and voltages in sequence.
  • the battery 13 is charged to the corresponding state of charge SOC mk1 , SOC mk2 , ..., SOC mkj .
  • V mk1 , V mk2 , ..., V mkj are the respective constant currents I mk1 , I mk2 , ..., Imkj to charge the battery 13 to the state of charge SOC mk10 , SOC mk20 , ..., SOC when the cut-off voltage mkj0, V mk1 ⁇ V mk2 ⁇ ... ⁇ V mkj.
  • the charging system 10 may use four groups of constant The current and voltage [I m11 , V m11 ], [I m12 , V m12 ], [I m13 , V m13 ], [I m14 , V m14 ] respectively charge the battery 13 to the corresponding state of charge SOC m11 , SOC m12 , SOC m13 , SOC m14 .
  • V m11 , V m12 , V m13 , and V m14 are respectively when the battery is charged with constant current to the state of charge SOC m110 , SOC m120 , SOC m130 , SOC m140 with constant currents I m11 , I m12 , I m13 , and I m14 . Cut-off voltage.
  • the charging system 10 first charges the battery 13 to SOC m110 with a constant current I m11 , obtains the voltage V m11 when the state of charge is SOC m110 , and then uses a constant current I m11 to charge the battery 13 to SOC m110.
  • the voltage V m11 charges the battery 13 to SOC m11 ; after the battery 13 is charged to SOC m120 with a constant current I m12 , the voltage V m12 when the state of charge is SOC m120 is obtained, and then the constant voltage V m12 charges the battery 13 to SOC m12 ; then charges the battery 13 to SOC m130 with a constant current I m13 , obtains the voltage V m13 when the state of charge is SOC m130 , and then uses a constant voltage V m13 to The battery 13 is charged to SOC m13 ; after the battery 13 is charged to SOC m140 with a constant current I m14 , the voltage V m14 when the state of charge is SOC m140 is obtained, and then the constant voltage V m14 is used to charge the battery 13 The battery 13 is charged to SOC m14 .
  • the charging system 10 may use 4 sets of constant current and voltage [I m21 , V m21 ], [I m22 , V m22 ], [ I m23 , V m23 ], [I m24 , V m24 ] respectively charge the battery to the corresponding state of charge SOC m21 , SOC m22 , SOC m23 , SOC m24 .
  • V m21 , V m22 , V m23 , and V m24 are respectively when the constant current I m21 , I m22 , I m23 , and I m24 are used to charge the battery at a constant current to the state of charge SOC m210 , SOC m220 , SOC m230 , SOC m240 Cut-off voltage.
  • the charging system 10 first charges the battery 13 to SOC m210 with the constant current I m21 , obtains the voltage V m21 when the state of charge is SOC m210 , and then uses the constant voltage V m21 Charge the battery 13 to SOC m21 ; then charge the battery 13 to SOC m220 with the constant current I m22 , obtain the voltage V m22 when the state of charge is SOC m220 , and then use a constant current I m22 to charge the battery 13 to SOC m220.
  • the SOC mk10 , SOC mk20 , ..., SOC mkj0 correspond to the kth charging substage of the battery or another battery the same as the battery in the nth charge and discharge cycle The state of charge or the preset value when the constant current charging is cut off in each charging sub-stage.
  • the state of charge SOC mk1 , SOC mk2 , ..., SOC mkj is the kth charge of the battery 13 or another battery of the same type as the battery 13 (for example, a battery of the same model) in the nth charge and discharge cycle
  • SOC m110 ,..., SOC m1j0 are the state of charge (ie SOC n110 , ..., SOC n1j0 )
  • SOC m11 , ..., SOC m1j are the state of charge ( That is, SOC n11 ,..., SOC n1j ).
  • SOC m210, ..., SOC m2j0 are the respective constant current charge cut-off charges corresponding to the second charging sub-phase of the battery in the first charge-discharge cycle.
  • Electricity state that is, SOC n210 ,..., SOC n2j0 in sequence
  • SOC m21 ,..., SOC m2j are the respective constant voltage charging cutoffs corresponding to the second charging sub-stage of the battery in the first charge-discharge cycle State of charge (ie SOC n21 ,..., SOC n2j ).
  • N, n, and m take other values, the analogy can be applied.
  • the charging system 10 charges the battery to the corresponding state of charge according to j sets of constant currents and voltages in sequence, which may include the following specific steps:
  • the preset cut-off voltage of each constant-voltage charging phase can be represented by U mk1cl, U mk2cl ,..., U mkjcl, and so on, in other charging sub-phases , A similar representation method can also be used.
  • the charging system 10 will obtain the preset cut-off voltage of each constant voltage charging stage of the battery 13 in the kth charging substage , such as U mk1cl, U mk2cl ,..., U mkjcl and so on.
  • the charging system 10 will also obtain the cut-off voltage of each constant current charging stage of the battery 13 in the kth charging sub-stage, such as V mk1 , V mk2 , ..., V mkj and so on.
  • Step S62 Compare the magnitude of the cut-off voltage with the corresponding preset cut-off voltage.
  • the charging system 10 will compare the magnitude between the cut-off voltage and the corresponding preset cut-off voltage.
  • Step S63 Charge the battery according to the comparison result.
  • the charging system 10 is configured to charge the battery 13 according to the comparison result between the cut-off voltage and the corresponding preset cut-off voltage.
  • the charging system 10 When the cut-off voltage is greater than or equal to the corresponding preset cut-off voltage, the charging system 10 will charge the battery 13 with the cut-off voltage at a constant voltage to the corresponding state of charge.
  • the charging system 10 When the cut-off voltage is less than the corresponding preset cut-off voltage, the charging system 10 will charge the battery 13 with the corresponding current to the corresponding preset cut-off voltage at a constant current.
  • the charging system 10 uses the corresponding current to charge the battery 13 with constant current to the corresponding preset cut-off voltage, the charging system 10 will use the corresponding preset cut-off voltage To charge the battery 13 at a constant voltage to the corresponding state of charge.
  • the charging system 10 When j is equal to 1, when the cut-off voltage V m11 is greater than or equal to the corresponding preset cut-off voltage U m11cl , the charging system 10 will charge the battery 13 at a constant voltage with the cut-off voltage V m11 to the state of charge SOC m11 .
  • the charging system 10 When the V m11 is less than the U m11cl , the charging system 10 will continue to charge the battery 13 to U m11cl with a corresponding current I m11 at a constant current, and then use U m11cl to charge the battery 13 with a constant voltage. Charge to SOC m11 .
  • V m14 When V m14 is less than U m14cl , the charging system 10 will continue to charge the battery 13 at a constant current to U m14cl with the corresponding current I m14 , and then charge the battery 13 at a constant voltage to SOC m14 with U m14cl. .
  • V m21 When V m21 is less than U m21cl , the charging system 10 will continue to charge the battery 13 at a constant current to U m21cl with the corresponding current I m21 , and then charge the battery 13 at a constant voltage to SOC m21 at U m21cl. .
  • V m24 When V m24 is less than U m24cl , the charging system 10 will continue to charge the battery 13 at a constant current to U m24cl with the corresponding current I m24 , and then charge the battery 13 at a constant voltage to SOC m24 at U m24cl. .
  • the charging capacity of each charging sub-phase is equal to the difference between the state of charge at the beginning of the next charging sub-phase and the state of charge at the end of the previous charging sub-phase Multiply by the capacity Q, where the capacity Q is the actual capacity of the battery 13.
  • the charging system 10 is also used to obtain the discharge capacity or the current actual capacity of the battery 13 in each charge and discharge cycle.
  • the actual capacity of the battery 13 in each charge and discharge cycle is the true battery capacity of the battery 13 in the corresponding charge and discharge cycle, that is, the battery 13 will be
  • the battery 13 is discharged from the fully charged state to the maximum capacity of the fully discharged state, and the discharge capacity can be measured by a fuel gauge.
  • the fully discharged state is that after the battery is discharged, the power in the battery is zero. In other embodiments, the fully discharged state may be that the battery is discharged to a preset power level or a preset voltage.
  • the charging system 10 obtains the actual capacity of the battery 13 in each charge and discharge cycle, and records the temperature and rate of the battery.
  • the charging system 10 converts and calculates the actual capacity of the battery 13 according to the known capacity correspondence between different temperatures and different magnifications, and then obtains the actual charging temperature of the battery 13 and the charging magnification. Maximum capacity. This maximum capacity is the actual capacity mentioned above.
  • the actual capacity of the battery 13 will change with the increase in the use time of the battery 13 or the number of charge-discharge cycles, and the actual capacity of the battery has a direct relationship with the aging of the battery cell.
  • the charging system 10 can obtain the actual capacity of the battery 13 in each charge and discharge cycle.
  • the present application controls the termination of charging based on the state of charge and the actual capacity of the battery, which can greatly increase the charging rate of the battery 13 and ensure that the battery does not overcharge.
  • the battery system used in each comparative example and each embodiment of this application uses LiCoO 2 as the cathode, graphite as the anode, plus a diaphragm, electrolyte and packaging shell, through mixing, coating, assembling, forming and aging processes production.
  • Part of the battery cores add a reference electrode between the cathode and anode pole pieces during the winding process to make a three-electrode battery to test the cathode and anode potential difference during the comparative charging process.
  • the comparative examples and embodiments of this application can also use batteries of other chemical systems, that is, using other materials as cathode materials, such as lithium manganate, lithium iron phosphate, ternary materials, etc. This is limited.
  • the charging limit voltage of the battery in each comparative example and each embodiment of the present application is 4.45V as an example.
  • the charging method of the present application can be applied to batteries of various voltage systems, and is not limited to the 4.45V system.
  • the battery cells used in the system were charged with constant current and constant voltage using the charging method in the prior art of the comparative example and the charging method embodiments of the application were used to perform a cycle performance test to compare the charging speed.
  • Comparative Example 1 is a specific implementation process of using fresh batteries to perform the charging method in the prior art (that is, cutting off at a fixed voltage during the constant current charging stage).
  • Step 1 Use a constant current of 1.0C to charge the battery until the battery voltage reaches the cut-off voltage of 4.2V;
  • Step 2 Continue to use a constant voltage of 4.2V to charge the battery until the battery current reaches the cut-off current 0.5C;
  • Step 3 Use a constant current of 0.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V (can be understood as the charging limit voltage);
  • Step 4 Continue to use a constant voltage of 4.45V to charge the battery until the battery current reaches the cut-off current 0.025C;
  • Step 5 Let the battery stand for 5 minutes
  • Step 6 Use a constant current of 0.7C to discharge the battery until the battery voltage is 3.0V;
  • Step 7 Then let the battery stand for 5 minutes;
  • Step 8 Repeat the above 7 steps for 500 cycles.
  • the specific embodiments 1 to 2 stated below are for charging the battery using the charging method in the embodiment of the present invention. It should be noted that specific examples 1 to 2 disclose that fresh batteries are used to obtain the corresponding charging parameters, and the ambient temperature during the charging process is the same as that of Comparative Example 1 and remains unchanged.
  • the fresh battery refers to a battery that has not been used just after leaving the factory, or a battery whose number of charge and discharge cycles after leaving the factory is less than a preset number (such as 10 times, or other times).
  • Step 1 Use a constant current of 0.7C to discharge the battery until the battery voltage is 3.0V;
  • Step 2 Let the battery stand for 5 minutes
  • Step 3 Use a constant current of 1.0C to charge the battery until the battery voltage reaches the cut-off voltage of 4.2V;
  • Step 4 Continue to charge the battery with a constant voltage of 4.2V until the battery current reaches the cut-off current 0.5C;
  • Step 5 Use a constant current of 0.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V (can be understood as the charging limit voltage);
  • Step 6 Continue to use a constant voltage of 4.45V to charge the battery until the battery current reaches the cut-off current 0.025C;
  • Step 1 Obtain the actual capacity Q of the battery
  • Step 2 Use a constant current of 1.0C to charge the battery until the SOC of the battery reaches 52.5%;
  • Step 3 Obtain the voltage V 1 at which the constant current charging is cut off in step 2 and judge the magnitude of the voltage V 1. If V 1 ⁇ 4.2V (ie, the preset cut-off voltage), continue to use a constant current of 1.0C to perform the battery Charge with constant current until the battery voltage is 4.2V, if V 1 ⁇ 4.2V, proceed to the next constant voltage charge;
  • Step 4 Perform constant voltage charging on the battery under the charge cut-off voltage of the third step until the SOC of the battery reaches 66.3%;
  • Step 5 Use a constant current of 0.5C to charge the battery until the SOC of the battery reaches 85.9%;
  • Step 6 acquiring step 5 OFF constant current charging voltage V 2, and V 2 is the size of the judgment, if V 2 ⁇ 4.45V (i.e., the preset cutoff voltage), a constant current of 0.5C to continue using the battery constant Current charging until the battery voltage is 4.45V, if V 2 ⁇ 4.45V, proceed to the next constant voltage charging;
  • V 2 ⁇ 4.45V (i.e., the preset cutoff voltage)
  • Step 7 Charge the battery at a constant voltage under the charge cut-off voltage of the sixth step until the SOC of the battery reaches 100%.
  • the calculation of the SOC in the charging process from step 2 to step 7 above is performed based on the actual capacity Q calculate;
  • Step 8 Let the battery stand for 5 minutes
  • Step 9 Use a constant current of 0.7C to discharge the battery to 3V, and obtain the actual capacity Q of the battery to use as the capacity Q in the next charging cycle;
  • Step 10 Repeat the above steps 2 to 9 for 500 cycles.
  • the charging process is the same as in the first embodiment, except that the SOC 1 , SOC 2 , and SOC 3 set in the second embodiment are used.
  • Comparative Example 2 discloses a specific implementation process of the charging method in the prior art using a battery that has been cycled 100 times.
  • the charging process is the same as that of Comparative Example 1, except that a battery that has been cycled 100 times is used to perform the charging process of Comparative Example 1.
  • Embodiments 3 to 5 disclose the specific implementation process of the charging method described in this application by using a battery that has been cycled 100 times.
  • the third embodiment discloses the use of fresh batteries to obtain the corresponding charging parameters.
  • SOC 1 , SOC 2 , and SOC 3 are the same as those of the first embodiment.
  • the charging process is the same as in Example 1, except that a battery that has been cycled 100 times is used for charging.
  • the fourth embodiment discloses the use of fresh batteries to obtain the corresponding charging parameters.
  • SOC 1 , SOC 2 , and SOC 3 are the same as those of the second embodiment.
  • the charging process is the same as in Example 2, except that a battery that has been cycled 100 times is used for charging.
  • the embodiment 5 discloses that a battery that has been cycled 100 times is used to obtain the corresponding charging parameters.
  • the parameter acquisition process of SOC 1 , SOC 2 , SOC 3 is the same as that of embodiment 2, except that the battery that has been cycled 100 times is used to obtain the parameters SOC 1 , SOC 2 , SOC 3 , and the specific SOC 1 , SOC 2 , SOC
  • Table 3 The value of 3 is shown in Table 3 below:
  • the charging process is the same as the charging process in embodiment 1, except that a battery that has been cycled 100 times is used for charging, and the SOC 1 , SOC 2 , and SOC 3 set in embodiment 5 are used.
  • Table 5 The charging time of each constant current stage and constant voltage stage in each comparative example and Examples 1-5
  • Step 1 Use a constant current of 1.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V;
  • Step 2 Use a constant current of 1.0C to charge the battery until the battery voltage reaches the cut-off voltage of 4.5V;
  • Step 3 Continue to use a constant voltage of 4.5V to charge the battery until the battery current reaches the cut-off current 0.2C;
  • Step 4. Let the battery stand for 5 minutes
  • Step 5 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 6 Then let the battery stand for 5 minutes;
  • Step 7 Repeat the above 6 steps for 500 cycles.
  • Embodiments 6 to 10 described below are for charging the battery using the charging method in the embodiment of the present invention. It should be noted that Embodiments 6 to 9 disclose that fresh batteries are used to obtain the corresponding charging parameters, and the ambient temperature during the charging process is the same as that of Comparative Example 1 and remains unchanged.
  • the fresh battery refers to a battery that has not been used just after leaving the factory, or a battery whose number of charge and discharge cycles after leaving the factory is less than a preset number (such as 10 times, or other times).
  • Step 1 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 2 Let the battery stand for 5 minutes
  • Step 3 Use a constant current of 1.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V;
  • Step 4 Use a constant current of 1.0C to charge the battery until the battery voltage reaches the cut-off voltage of 4.5V;
  • Step 5 Continue to charge the battery with a constant voltage of 4.5V until the battery current reaches the cut-off current 0.2C;
  • Step 1 Obtain the actual capacity Q of the battery
  • Step 2 Use a constant current of 1.5C to charge the battery until the SOC of the battery reaches 70.9%;
  • Step 3 Use a constant current of 1.0C to charge the battery until the SOC of the battery reaches 82.5%;
  • Step 4 Obtain the cut-off voltage V 2 of the constant current charging in Step 3, and judge the magnitude of the voltage V 2. If V 2 ⁇ 4.5V (ie, the preset cut-off voltage), continue to use a constant current of 1.0C to perform the battery Charge with constant current until the battery voltage is 4.5V, if V 2 ⁇ 4.5V, proceed to the next constant voltage charge;
  • Step 5 Charge the battery at a constant voltage under the charge cut-off voltage of step 4 until the SOC of the battery reaches 100%.
  • the calculation of SOC in the charging process from step 2 to step 5 above is based on the actual capacity Q. ;
  • Step 6 Let the battery stand for 5 minutes
  • Step 7 Use a constant current of 1.0C to discharge the battery to 3V, and obtain the actual capacity Q of the battery to use as the capacity Q in the next charging cycle;
  • Step 8 Repeat the above steps 2 to 7 for 500 cycles.
  • the seventh embodiment discloses the use of fresh batteries to obtain the corresponding charging parameters.
  • the charging process is the same as the charging process in the sixth embodiment, except that the SOC 1 and SOC 2 set in the seventh embodiment are used.
  • Comparative Example 4 discloses a specific implementation process of using a battery that has been cycled 100 times to perform the charging method in the prior art.
  • the charging process is the same as that of Comparative Example 3, except that a battery that has been cycled 100 times is used to perform the charging process of Comparative Example 3.
  • the embodiment 8 discloses the use of fresh batteries to obtain the corresponding charging parameters.
  • the charging process is the same as in Example 6, except that a battery that has been cycled 100 times is used for charging.
  • the embodiment 9 discloses the use of fresh batteries to obtain the corresponding charging parameters.
  • the charging process is the same as in Example 7, except that a battery that has been cycled 100 times is used for charging.
  • the embodiment 10 discloses that a battery that has been cycled 100 times is used to obtain the corresponding charging parameters.
  • SOC 1 and SOC 2 The parameter acquisition process of SOC 1 and SOC 2 is the same as that of Example 6, except that the battery that has been cycled 100 times is used to obtain the parameters SOC 1 and SOC 2.
  • the specific values of SOC 1 and SOC 2 are shown in Table 8 below:
  • the charging process is the same as in the sixth embodiment, except that a battery that has been cycled 100 times is used for charging, and the SOC 1 and SOC 2 set in the embodiment 10 are used.
  • Table 9 shows the cut-off conditions of each charging stage in each comparative example and Examples 6-10
  • Table 10 shows the charging time of each charging stage in each comparative example and Examples 6-10
  • Example 1 By comparing Example 1 and Example 2, it can be found that the charging speed of Example 2 is faster than that of Example 1, that is, the full charging time of the battery can be shortened by increasing the SOC at the end of the constant current charging phase. By comparing Example 3 and Example 4, the same conclusion can be drawn.
  • the charging methods used in Examples 6-7 and Examples 8-10 can prolong the charging time in the constant current phase, and greatly reduce the charging time in the constant voltage phase, and furthermore The full charging time of the battery is greatly reduced, and the charging speed is significantly faster than that in Comparative Examples 3 and 4, and as the number of charging and discharging cycles increases, the total charging time will become shorter and shorter.
  • Example 6 By comparing Example 6 and Example 7, it can be found that the charging speed of Example 7 is faster than that of Example 6. That is, the full charge time of the battery can be shortened by increasing the SOC at the end of the constant current charging phase. By comparing Example 8 and Example 9, the same conclusion can be drawn.
  • the embodiments of the present application use the state of charge of the battery and the actual capacity Q as the cut-off conditions for each charging stage, which can prolong the time of constant current charging, shorten the time of constant voltage charging, and thereby shorten the full capacity of the battery.
  • the charging time and the full charging time are shorter than the time required by the charging method in the prior art, and it can also ensure that the battery does not overcharge and does not affect the service life of the battery.
  • the charging system 10 may be divided into one or more modules.
  • the one or more modules may be stored in the processor 11, and the processor 11 executes the charging method in the embodiment of the present application.
  • the one or more modules may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the charging system 10 in the electronic device 100.
  • the charging system 10 may be divided into an acquisition module 101, a comparison module 102, a determination module 103, a constant current charging module 104, and a constant voltage charging module 105 as shown in FIG. 7.
  • the acquiring module 101 is configured to acquire the corresponding voltage V mij when the battery 13 is charged to the state of charge SOC mij in the i-th charging substage.
  • the acquiring module 101 is further configured to acquire the preset cut-off voltage U icl of the battery 13 in the i-th charging sub-stage in the i-th charging sub-stage.
  • the acquiring module 101 is further configured to acquire the cut-off voltage of the battery 13 in each constant current charging stage and the preset cut-off voltage of each constant voltage charging stage in the kth charging sub-stage.
  • the comparison module 102 is configured to compare the voltage V mij with the preset cut-off voltage U icl of the i-th charging sub-stage in the i-th charging stage.
  • the comparison module 102 is further configured to compare the magnitude of the cut-off voltage with the corresponding preset cut-off voltage in the kth charging stage.
  • the determining module 103 is configured to determine the charging mode of the battery 13 according to the comparison result.
  • the constant current charging module 104 is used to charge the battery 13 with constant current until the voltage of the battery 13 reaches a preset cut-off voltage, charging capacity, or state of charge.
  • the constant voltage charging module 105 is used to charge the battery 13 at a constant voltage until the current of the battery 13 reaches a preset cut-off current, charging capacity, or state of charge.
  • the battery 13 can be charged and managed to improve the charging efficiency, service life, and reliability of the battery.
  • the processor 11 may be a central processing unit (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the processor 11 may also be other general-purpose processors and digital signal processors (Digital Signal Processor, DSP).
  • the processor 11 may also be an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, and discrete hardware Components, etc.
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the general-purpose processor may be a microprocessor, or the processor 11 may also be any other conventional processor or the like.
  • modules in the charging system 10 are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer readable storage medium.
  • the computer program may be stored in a computer-readable storage medium, and when the computer program is executed by a processor, the steps of the foregoing method embodiments may be implemented.
  • the computer program may include computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • computer-readable medium can be appropriately increased or decreased in accordance with the requirements of the legislation and patent practices in the jurisdiction.
  • computer-readable media do not include electrical carrier signals and telecommunication signals.
  • module division described above is a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in the same processing unit, or each module may exist alone physically, or two or more modules may be integrated in the same unit.
  • the electronic device 100 may further include a memory (not shown in the figure).
  • the one or more modules may also be stored in the memory and executed by the processor 11.
  • the memory may be an internal memory of the electronic device 100, that is, a memory built in the electronic device 100.
  • the memory may also be an external memory of the electronic device 100, that is, a memory external to the electronic device 100.
  • the memory is used to store program codes and various data.
  • the program code of the charging system 10 installed in the electronic device 100 is stored, and the program or data is accessed at high speed and automatically during the operation of the electronic device 100.
  • the memory may include a random access memory, and may also include a non-volatile memory.
  • it can be a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) card, a flash card (Flash Card), at least one disk storage device, a flash memory device, or For other volatile solid-state storage devices.
  • SMC Smart Media Card
  • SD Secure Digital
  • Flash Card flash card
  • the embodiment of the present application uses the standard state of charge to stop the constant current charging phase of the battery after the mth charge and discharge cycle, which can prolong the constant current charging time of the battery, thereby shortening the full charge of the battery. Time, and can also ensure that the battery will not be overcharged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池的充电方法,包括以下步骤:在第m次充放电循环中,采用依序的N个充电子阶段对电池进行充电,每个充电子阶段包括j个恒流阶段和恒压阶段,每个所述恒流阶段和所述恒压阶段以荷电状态来截止充电,其中m,N,j为整数且m≥1,N≥1,j≥1。根据本申请提供的电池的充电方法、电子装置以及存储介质,可以缩短电池的满充时间,并且还可确保电池不会发生过充电现象。

Description

充电方法、电子装置以及存储介质 技术领域
本申请涉及电池技术领域,尤其涉及一种电池的充电方法、电子装置以及存储介质。
背景技术
目前,普遍应用在锂电池上的充电方法是通过预设的恒定电流对锂离子电池持续充电至某一电压(可以理解为充电限制电压)后,再以此电压对锂离子电池恒压充电至满充状态。在此情况下,随着电池的充电循环次数以及使用时间的增加,电池的阻抗增大,将会使得电池的恒流充电的时间缩短及恒压充电的时间延长,从而导致电池的总充电时间越来越长。
发明内容
有鉴于此,有必要提供一种充电方法、电子装置以及存储介质,可以缩短电池的满充时间,并且还可以确保电池不会发生过充电的现象。
本申请一实施方式提供了一种电池的充电方法,所述充电方法包括:
在第m次充放电循环中,采用依序的N个充电子阶段对电池进行充电,每个充电子阶段包括j个恒流阶段和恒压阶段,每个所述恒流阶段和所述恒压阶段以荷电状态来截止充电,其中m,N,j为整数且m≥1,N≥1,j≥1。
根据本申请的一些实施方式,所述N个充电子阶段分别定义为第i充电子阶段,i=1、2、…、N;
在第i充电子阶段中,采用依序的j个恒定的电流I mi1、I mi2、…、 I mij分别对所述电池充电至对应的SOC mi1、SOC mi2、…、SOC mij;及
获取所述电池充电至所述SOC mij时相对应的电压V mij,根据所述电压V mij对所述电池充电至SOC mi
根据本申请的一些实施方式,所述SOC mi1、…、SOC mij、SOC mi为所述电池或与所述电池相同的另一电池在第n次充放电循环中第i个充电子阶段相对应的各个恒流充电和恒压充电截止时的荷电状态或预设值,n为大于等于0的整数,m为大于n的整数。
根据本申请的一些实施方式,所述根据所述电压V mij对所述电池充电至SOC mi的步骤包括:
获取所述电池在所述第i个充电子阶段的预设截止电压U icl
比较所述电压V mij与所述第i个充电子阶段的预设截止电压U icl的大小;及
根据比较结果对所述电池进行充电。
根据本申请的一些实施方式,所述根据比较结果对所述电池进行充电的步骤包括:
当所述电压V mij大于或等于所述第i个充电子阶段的预设截止电压U icl时,以所述电压V mij对所述电池进行恒压充电至SOC mi
根据本申请的一些实施方式,所述根据比较结果对所述电池进行充电的步骤包括:
当所述电压V mij小于所述第i个充电子阶段的预设截止电压U icl时,以所述电流I mij对所述电池进行恒流充电至所述第i个充电子阶段的预设截止电压U icl;及
以所述第i个充电子阶段的预设截止电压U icl对所述电池进行恒压充电至SOC mi
根据本申请一些实施方式中,所述N个充电子阶段分别定义为第k充电子阶段,k=1、…、N;
在第k充电子阶段中,根据依序的j组恒定的电流和电压[I mk1,V mk1]、[I mk2,V mk2]、…、[I mkj,V mkj]分别对所述电池充电至对应的荷电状态SOC mk1、SOC mk2、…、SOC mkj,其中V mk1、V mk2、…、V mkj为 以相应的恒定电流I mk1、I mk2、…、I mkj分别对所述电池充电至荷电状态SOC mk10、SOC mk20、…、SOC mkj0时的截止电压,V mk1<V mk2<…<V mkj
根据本申请的一些实施方式,所述充电方法还包括:
在所述第k充电子阶段中,获取所述电池在每个恒流充电阶段的截止电压和每个恒压充电阶段的预设截止电压;比较所述截止电压与相对应的所述预设截止电压的大小;及根据比较结果对所述电池进行充电。
根据本申请的一些实施方式,所述根据比较结果对所述电池进行充电的步骤包括:
当所述截止电压大于或等于相对应的所述预设截止电压时,以所述截止电压对所述电池进行恒压充电至相对应的荷电状态;及
当所述截止电压小于相对应的所述预设截止电压时,以相应的所述电流对所述电池进行恒流充电至相对应的所述预设截止电压;
以相对应的所述预设截止电压对所述电池进行恒压充电至相对应的荷电状态。
根据本申请的一些实施方式,所述SOC mk1、SOC mk2、…、SOC mkj为所述电池或与所述电池相同的另一电池在第n次充放电循环中第k个充电子阶段相对应的各个恒压充电截止时的荷电状态或预设值,所述SOC mk10、SOC mk20、…、SOC mkj0为所述电池或与所述电池相同的另一电池在第n次充放电循环中第k个充电子阶段相对应的各个充电子阶段中恒流充电截止时的荷电状态或预设值,n为大于等于0的整数,m为大于n的整数。
根据本申请的一些实施方式,每个所述充电子阶段的充电容量等于下一个所述充电子阶段起始时的荷电状态与上一个所述充电子阶段截止时的荷电状态的差值乘以容量Q,Q为所述电池的实际容量。
本申请一实施方式提供了一种电子装置,所述电子装置包括:
电池;
处理器;所述处理器加载并执行如上述所述的充电方法。
本申请一实施方式提供了一种存储介质,其上存储有至少一条计算机指令,所述计算机指令由处理器加载并用于执行如上所述的电池的充电方法。
本申请的实施方式通过所述标准荷电状态来截止所述电池在第m次充放电循环以后的恒流充电阶段,可以延长电池的恒流充电时间,进而可以缩短电池的满充时间,并且还可确保电池不会发生过充电现象。
附图说明
图1是根据本申请一实施方式的电子装置的结构示意图。
图2是根据本申请一实施方式的电池的充电方法的流程图。
图3是根据本申请另一实施方式电池的充电方法的流程图。
图4是根据本申请另一实施方式电池的充电方法的流程图。
图5是根据本申请另一实施方式电池的充电方法的流程图。
图6是根据本申请另一实施方式电池的充电方法的流程图。
图7是根据本申请一实施方式的充电系统的模块图。
主要元件符号说明
电子装置                  100
充电系统                  10
处理器                    11
电池                      13
获取模块                  101
比较模块                  102
确定模块                  103
恒流充电模块              104
恒压充电模块              105
如下具体实施方式将结合上述附图进一步详细说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。
基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都是属于本申请保护的范围。
请参阅图1,充电系统10运行于电子装置100中。所述电子装置100包括,但不仅限于,至少一个处理器11以及电池13,上述元件之间可以通过总线连接,也可以直接连接。
需要说明的是,图1仅为举例说明电子装置100。在其他实施方式中,电子装置100也可以包括更多或者更少的元件,或者具有不同的元件配置。
所述电子装置100可以为电动摩托、电动单车、电动汽车、手机、平板电脑、个数数字助理、个人电脑,或者任何其他适合的可充电式设备。
在一个实施方式中,所述电池13为可充电电池,用于给所述电子装置100提供电能。
例如,所述电池13可以是铅酸电池、镍镉电池、镍氢电池、锂离子电池、锂聚合物电池及磷酸铁锂电池等。
所述电池13通过充电系统10与所述处理器11逻辑相连,从而通过所述充电系统10实现充电、放电以及功耗管理等功能。所述电池13包括电芯(图中未示出)。
请参阅图2,图2为根据本申请一实施方式的电池的充电方法的流程图。
所述电池的充电方法可以包括以下步骤:
步骤S21:在第m次充放电循环中,采用依序的N个充电子阶段 对电池进行充电。
在第m次充放电循环中,本实施方式的所述充电系统10采用依序的N个充电子阶段对所述电池13进行充电。其中,m,N为整数且m≥1,N≥1。
步骤S22:每个充电子阶段包括j个恒流阶段和恒压阶段,每个所述恒流阶段和所述恒压阶段以荷电状态来截止充电。其中j为整数,j≥1。
其中,荷电状态(State of Charge,SOC)指电池的剩余容量与该电池的满充容量的比值。
具体来说,在第m次充放电循环中,所述充电系统10可以通过控制所述电池13的恒流阶段截止时的荷电状态及恒压阶段截止时的荷电状态与预先设定的荷电状态相同,可以延长电池恒流充电的时间,并缩短电池恒压充电的时间,从而缩短满充时间。
在一实施方式中,请参阅图3,所述充电系统10采用依序的N个充电子阶段对电池进行充电,具体可以通过以下步骤进行:
步骤S31:所述N个充电子阶段分别定义为第i充电子阶段。
在本实施方式中,所述充电系统10将所述N个充电子阶段分别定义为第i充电子阶段,其中,i=1、2、…、N。
步骤S32:在第i充电子阶段中,采用依序的j个恒定的电流分别对所述电池充电至对应的荷电状态。
本实施方式中,在第i充电子阶段中,所述充电系统10根据依序的j个恒定的电流I mi1、I mi2、…、I mij分别对所述电池13充电至对应的SOC mi1、SOC mi2、…、SOC mij
举例来说,在第m次充放电循环中,当N=2且j=4时,在第1充电子阶段(即i=1),所述充电系统10可采用依序的4个恒定的电流I m11、I m12、I m13、I m14分别对所述电池充电至电池的荷电状态为SOC m11、SOC m12、SOC m13、SOC m14
在第2充电子阶段(即i=2),所述充电系统10可采用依序的四个恒定的电流I m21、I m22、I m23、I m24分别对所述电池充电至电池的荷 电状态为SOC m21、SOC m22、SOC m23、SOC m24
可以理解的是,在第1充电子阶段,所述充电系统10先以恒定的所述电流I m11对所述电池13充电至SOC m11后,再以恒定的电流I m12对所述电池13充电至SOC m12,接着再以恒定的电流I m13对所述电池13充电至SOC m13,最后再以恒定的电流I m14对所述电池13充电至SOC m14
在第2充电子阶段,所述充电系统10先以恒定的电流I m21对所述电池13充电至SOC m21后,再以恒定的电流I m22对所述电池13充电至SOC m22,接着再以恒定的电流I m23对所述电池13充电至SOC m23,最后再以恒定的电流I m24对所述电池13充电至SOC m24。同理,当N和j取其它值时,可依此类推。
步骤S33:获取所述电池充电至所述SOC mij时相对应的所述电压V mij
具体而言,当所述充电系统10以恒定的所述电流I mij对所述电池13充电至SOC mij时,所述电池13具有所述电池电压V mij。此时,所述充电系统10将会获取所述电池13充电至所述SOC mij时相对应的电压V mij
步骤S34:根据所述电压V mij对所述电池充电至SOC mi
本实施方式中,当所述充电系统10以恒定的电流I mij对所述电池13充电至SOC mij时,所述充电系统10将会根据所述电压V mij对所述电池13进行充电至SOC mi
在一较佳实施方式中,所述SOC mi1、…、SOC mij、SOC mi为所述电池13或与所述电池13相同的另一电池(例如同一型号的电池)在第n次充放电循环中第i个充电子阶段相对应的各个恒流充电和恒压充电截止时的荷电状态或预设值,其中n为大于等于0的整数,m为大于n的整数。
比如,在第m次充放电循环中,当N=2和m=10时,n可以是0到9中的任意一个(如n=1),i依次取1和2,则在第1充电子阶段时(即i=1),SOC m11、…、SOC m1j为所述电池在第1次充放电循环 中第1个充电子阶段相对应的各个恒流充电截止时的荷电状态(即依次为SOC n11、…、SOC n1j),SOC m1为所述电池13在第1次充放电循环中第1个充电子阶段相对应的恒压充电截止时的荷电状态(即SOC n1)。
在第2充电子阶段时(即i=2),SOC m21、…、SOC m2j为所述电池在第1次充放电循环中第2个充电子阶段相对应的各个恒流充电截止时的荷电状态(即依次为SOC n21、…、SOC n2j)。SOC m2为所述电池在第1次充放电循环中第2个充电子阶段相对应的恒压充电截止时的荷电状态(即SOC n2)。同理,当N、n和m取其它值时,可依此类推。
请参考图4,所述充电系统10根据所述电压V mij对所述电池充电至SOC mi,可包括如下的具体步骤:
步骤S41:获取所述电池在所述第i个充电子阶段的预设截止电压U icl
在一实施方式中,所述充电系统10将会获取所述电池13在所述第i个充电子阶段的预设截止电压U icl
其中所述预设截止电压U icl还可为与所述电池13相同的另一电池(例如同一型号的电池)在相对应的第i个充电子阶段的预设截止电压。
其中,U icl小于或等于U cl,U cl为所述电池13的充电限制电压(如背景技术所述的充电限制电压,或者电池产品信息上写的充电限制电压)。
在一较佳实施方式中,所述U cl可为4.45V,在其他实施方式中,所述U cl也可为其它数值。
步骤S42:比较所述电压V mij与所述第i个充电子阶段的预设截止电压U icl的大小。
本实施方式中,在所述电池13的充电过程中,所述充电系统10将会比较所述电压V mij与所述第i个充电子阶段的预设截止电压U icl的大小。
步骤S43:根据比较结果对所述电池进行充电。
具体而言,所述充电系统10用于根据所述电压V mij与所述第i个充电子阶段的预设截止电压U icl之间的比较结果来对所述电池13进行充电。
在一较佳实施方式中,当所述电压V mij大于或等于所述第i个充电子阶段的所述预设截止电压U icl时,所述充电系统10将会以所述电压V mij对所述电池13进行恒压充电至荷电状态SOC mi
本实施方式中,当所述电压V mij小于所述第i个充电子阶段的所述预设截止电压U icl时,所述充电系统10将会以所述电流I mij对所述电池13进行恒流充电至所述第i个充电子阶段的所述预设截止电压U icl
当所述充电系统10以所述电流I mij对所述电池13恒流充电至所述第i个充电子阶段的预设截止电压U icl时,所述充电系统10将以所述第i个充电子阶段的预设截止电压U icl对所述电池13进行恒压充电至荷电状态SOC mi
请继续参考图5,在另一种实施方式中,所述充电系统10可采用依序的N个充电子阶段对电池进行充电,具体还可以通过以下步骤进行:
步骤S51:所述N个充电子阶段分别定义为第k充电子阶段。
本实施方式中,所述充电系统10将所述N个充电子阶段分别定义为第k充电子阶段,其中k=1、…、N。
步骤S52:在第k充电子阶段中,根据依序的j组恒定的电流和电压分别对所述电池充电至对应的荷电状态。
本实施方式中,所述充电系统10将根据依序的j组恒定的电流和电压[I mk1,V mk1]、[I mk2,V mk2]、…、[I mkj,V mkj]分别对所述电池13充电至对应的荷电状态SOC mk1、SOC mk2、…、SOC mkj。其中,所述V mk1、V mk2、…、V mkj为以相应的恒定电流I mk1、I mk2、…、I mkj分别对所述电池13充电至荷电状态SOC mk10、SOC mk20、…、SOC mkj0时的截止电压,V mk1<V mk2<…<V mkj
举例来说,在第m次充放电循环中,当N=2且j=4时,在第1充电子阶段(即k=1),所述充电系统10可以采用依序的四组恒定的电流和电压[I m11,V m11]、[I m12,V m12]、[I m13,V m13]、[I m14,V m14]分别对所述电池13充电至对应的荷电状态SOC m11、SOC m12、SOC m13、SOC m14
其中V m11、V m12、V m13、V m14分别为以恒定电流I m11、I m12、I m13、I m14对电池恒流充电至荷电状态SOC m110、SOC m120、SOC m130、SOC m140时的截止电压。
具体地,在第1充电子阶段,所述充电系统10先以恒定的电流I m11对所述电池13充电至SOC m110后,获取荷电状态为SOC m110时的电压V m11,再以恒定的电压V m11对所述电池13充电至SOC m11;再以恒定的电流I m12对所述电池13充电至SOC m120后,获取荷电状态为SOC m120时的电压V m12,再以恒定的电压V m12对所述电池13充电至SOC m12;再以恒定的电流I m13对所述电池13充电至SOC m130后,获取荷电状态为SOC m130时的电压V m13,再以恒定的电压V m13对所述电池13充电至SOC m13;再以恒定的电流I m14对所述电池13充电至SOC m140后,获取荷电状态为SOC m140时的电压V m14,再以恒定的电压V m14对所述电池13充电至SOC m14
接着,在第2充电子阶段(即k=2)时,所述充电系统10可采用依序的4组恒定的电流和电压[I m21,V m21]、[I m22,V m22]、[I m23,V m23]、[I m24,V m24]分别对所述电池充电至对应的荷电状态SOC m21、SOC m22、SOC m23、SOC m24
其中V m21、V m22、V m23、V m24分别为以恒定电流I m21、I m22、I m23、I m24对电池恒流充电至荷电状态SOC m210、SOC m220、SOC m230、SOC m240时的截止电压。
具体地,所述充电系统10先以恒定的所述电流I m21对所述电池13充电至SOC m210后,获取荷电状态为SOC m210时的电压V m21,再以恒定的所述电压V m21对所述电池13充电至SOC m21;再以恒定的所述电流I m22对所述电池13充电至SOC m220后,获取荷电状态为SOC m220 时的所述电压V m22,再以恒定的所述电压V m22对所述电池13充电至SOC m22;再以恒定的所述电流I m23对所述电池13充电至SOC m230后,获取荷电状态为SOC m230时的所述电压V m23,再以恒定的所述电压V m23对所述电池13充电至SOC m23;接着再以恒定的所述电流I m24对所述电池13充电至SOC m240后,获取荷电状态为SOC m240时的所述电压V m24,再以恒定的所述电压V m24对所述电池13充电至SOC m24。同理,当N和j取其它值时,可依此类推。
在一较佳实施方式中,所述SOC mk10、SOC mk20、…、SOC mkj0为所述电池或与所述电池相同的另一电池在第n次充放电循环中第k个充电子阶段相对应的各个充电子阶段中恒流充电截止时的荷电状态或预设值。
所述荷电状态SOC mk1、SOC mk2、…、SOC mkj为所述电池13或与所述电池13相同的另一电池(例如同一型号的电池)在第n次充放电循环中第k个充电子阶段相对应的各个恒压充电截止时的荷电状态或预设值,n为大于等于0的整数,m为大于n的整数。
比如,在第m次充放电循环中,当N=2和m=10时,n可以是0到9中的任意一个(如n=1),k依次取1和2,则在第1充电子阶段时(即k=1),SOC m110、…、SOC m1j0为所述电池在第1次充放电循环中第1个充电子阶段相对应的各个恒流充电截止时的荷电状态(即依次为SOC n110、…、SOC n1j0),SOC m11、…、SOC m1j为所述电池13在第1次充放电循环中第1个充电子阶段相对应的恒压充电截止时的荷电状态(即SOC n11、…、SOC n1j)。
在第2充电子阶段时(即k=2),SOC m210、…、SOC m2j0为所述电池在第1次充放电循环中第2个充电子阶段相对应的各个恒流充电截止时的荷电状态(即依次为SOC n210、…、SOC n2j0),SOC m21、…、SOC m2j为所述电池在第1次充放电循环中第2个充电子阶段相对应的各个恒压充电截止时的荷电状态(即SOC n21、…、SOC n2j)。同理,当N、n和m取其它值时,可依此类推。
请参考图6,在第k充电子阶段中,所述充电系统10根据依序的 j组恒定的电流和电压分别对所述电池充电至对应的荷电状态,可包括如下的具体步骤:
步骤S61:在所述第k充电子阶段中,获取所述电池在每个恒流充电阶段的截止电压和每个恒压充电阶段的预设截止电压,k=1、…、N。
可以理解的是,在第k充电子阶段中,每个恒压充电阶段的预设截止电压可用U mk1cl、U mk2cl、...、U mkjcl来表示,依次类推,在其它的充电子阶段时,也可采用类似的表示方法。
本实施方式中,所述充电系统10将获取所述电池13在所述第k个充电子阶段中每个恒压充电阶段的预设截止电压,如U mk1cl、U mk2cl、...、U mkjcl等。
进一步,所述充电系统10还将获取所述电池13在所述第k个充电子阶段中每个恒流充电阶段的截止电压,如V mk1、V mk2、…、V mkj等。
步骤S62:比较所述截止电压与相对应的所述预设截止电压的大小。
在一较佳实施方式中,在对所述电池13的充电过程中,所述充电系统10将会比较所述截止电压与相对应的所述预设截止电压之间的大小。
步骤S63:根据比较结果对所述电池进行充电。
在一较佳实施方式中,所述充电系统10用于根据所述截止电压与相对应的所述预设截止电压之间的比较结果来对所述电池13进行充电。
当所述截止电压大于或等于相对应的所述预设截止电压时,所述充电系统10将以所述截止电压对所述电池13进行恒压充电至相对应的荷电状态。
当所述截止电压小于相对应的所述预设截止电压时,所述充电系统10将以相应的所述电流对所述电池13进行恒流充电至相对应的所述预设截止电压。
当所述充电系统10以相应的所述电流对所述电池13进行恒流充电至相对应的所述预设截止电压时,所述充电系统10将会以相对应的所述预设截止电压来对所述电池13进行恒压充电至相对应的荷电状态。
举例而言,以步骤52和步骤61之间的具体例子(即当N=2且j=4时)为例,其中相同部分在此不再赘述。
在第1充电子阶段(即k=1),在每个恒压阶段分别设置有对应的预设截止电压U m11cl、U m12cl、U m13cl、U m14cl
在j等于1时,当截止电压V m11大于或等于对应的预设截止电压U m11cl时,所述充电系统10将以所述截止电压V m11对所述电池13进行恒压充电至荷电状态SOC m11
当所述V m11小于所述U m11cl时,所述充电系统10将以相应的电流I m11继续对所述电池13进行恒流充电至U m11cl,再以U m11cl对所述电池13进行恒压充电至SOC m11
以此类推,直至j等于4,当所述截止电压V m14大于或等于对应的所述预设截止电压U m14cl时,接着所述充电系统10将会以所述截止电压V m14对所述电池13进行恒压充电至所述荷电状态SOC m14
当V m14小于U m14cl时,所述充电系统10将以相应的电流I m14继续对所述电池13进行恒流充电至U m14cl,再以U m14cl对所述电池13进行恒压充电至SOC m14
接着,在第2充电子阶段(即k=2),在每个恒压阶段分别设置有对应的预设截止电压U m21cl、U m22cl、U m23cl、U m24cl,在j等于1时,当截止电压V m21大于或等于对应的预设截止电压U m21cl时,所述充电系统10将以所述截止电压V m21对所述电池13进行恒压充电至荷电状态SOC m21
当V m21小于U m21cl时,所述充电系统10将以相应的电流I m21继续对所述电池13进行恒流充电至U m21cl,再以U m21cl对所述电池13进行恒压充电至SOC m21
以此类推,直至j等于4,当截止电压V m24大于或等于对应的预 设截止电压U m24cl时,所述充电系统10将以所述截止电压V m24对所述电池13进行恒压充电至荷电状态SOC m24
当V m24小于U m24cl时,所述充电系统10将以相应的电流I m24继续对所述电池13进行恒流充电至U m24cl,再以U m24cl对所述电池13进行恒压充电至SOC m24
在本较佳实施方式中,每个所述充电子阶段的充电容量等于下一个所述充电子阶段起始时的荷电状态与上一个所述充电子阶段截止时的荷电状态的差值乘以容量Q,其中所述容量Q为所述电池13的实际容量。
在本实施方式中,所述充电系统10还用于获取所述电池13在各充放电循环中的放电容量或当前实际容量。
在本实施方式中,所述电池13在各个充放电循环中的实际容量为所述电池13在相应的充放电循环中的真实电池容量,即所述电池13在各个充放电循环过程中,将电池13从满充状态放电至满放状态的最大容量,所述放电容量可通过电量计来测量。
在本实施方式中,所述满放状态为所述电池放电后,所述电池中的电量为0。在其他实施方式中,所述满放状态可以为所述电池放电至预设电量或预定电压。
其中,所述充电系统10获取所述电池13在各个充放电循环中的实际容量,并记录电池的温度及倍率等。
具体地,所述充电系统10根据已知的不同温度以及不同倍率间容量的对应关系,对所述电池13的实际容量进行转换计算,进而获取所述电池13的实际充电温度以及充电倍率下的最大容量。该最大容量即为上述的实际容量。
具体地,所述电池13的实际容量会随着所述电池13的使用时间或者充放电循环次数的增加而变化,电池的实际容量与电芯的老化衰退具有直接的关系。
由此,所述充电系统10可获取所述电池13在各个充放电循环中的实际容量。
由此,本申请通过电池的荷电状态和实际容量来控制充电的截止,可以很大程度地提高所述电池13的充电速率且保证电池不发生过度充电的现象。
为了使本申请的发明目的、技术方案和技术效果更加清晰,以下结合附图和实施例,对本申请进一步地详细说明。本申请的各对比例和各实施例采用的电池体系以LiCoO 2作为阴极,石墨作为阳极,再加上隔膜、电解液及包装壳,通过混料、涂布、装配、化成和陈化等工艺制成。部分电芯在卷绕过程中在阴阳极极片间加入参比电极,制作成三电极电池,用以测试对比充电过程阴阳极电位差异。需要说明的是,本申请的各对比例和各实施例也可以采用其它化学体系的电池,即以其它物质作为阴极材料,如锰酸锂、磷酸铁锂、三元材料等,本申请不以此为限。
本申请各对比例和各实施例的电池的充电限制电压以4.45V为例,在此说明本申请的充电方法可适用于各种电压体系电池,并不局限于4.45V体系。对该体系使用后的电芯采用对比例现有技术中的充电方法恒流恒压充电和采用本申请的充电方法实施例进行循环性能测试,对比其充电速度。
以下陈述的对比例1、2、3、4均为采用现有技术中的充电方法对电池进行充电。
对比例1
需要说明的是,对比例1所公开的是采用新鲜电池来执行现有技术中的充电方法(即在恒流充电阶段以固定电压截止)的具体实施过程。
环境温度:25℃;
充电过程:
步骤一、使用1.0C的恒定电流对电池充电,直到电池的电压达到截止电压4.2V;
步骤二、继续使用4.2V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.5C;
步骤三、使用0.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V(可理解为充电限制电压);
步骤四、继续使用4.45V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.025C;
步骤五、将电池静置5分钟;
步骤六、再使用0.7C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤七、接着再将电池静置5分钟;
步骤八、重复上述7个步骤500个循环。
以下陈述的具体实施例1~2为采用本发明实施例中的充电方法对电池进行充电。需要说明的是,具体实施例1~2公开的是使用新鲜电池来获得对应的充电参数,同时在充电过程中的环境温度与对比例1相同且保持不变。所述新鲜电池是指刚出厂未使用过的电池,或者是出厂后充放电循环次数小于预设次数(如10次,也可为其它次数)的电池。
实施例1
(1)SOC 1、SOC 2、SOC 3的参数获取过程
环境温度:25℃;
选择新鲜电池(以已进行1次充放电循环的电池为例,即n=1)获取参数SOC 1、SOC 2、SOC 3,具体获取过程如下;
步骤一、使用0.7C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤二、将电池静置5分钟;
步骤三、使用1.0C的恒定电流对电池充电,直到电池的电压达到截止电压4.2V;
步骤四、继续使用4.2V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.5C;
步骤五、使用0.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V(可理解为充电限制电压);
步骤六、继续使用4.45V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.025C;
计算获得以上充电过程中,各恒流、恒压充电截止时的SOC,具体数据见下表1:
表1 第n次充电过程中各恒流、恒压充电阶段截止时的SOC
充电步骤 充电截止的SOC 实际SOC的取值
1.0C恒流充电至4.2V SOC 1=52.5% SOC 1=52.5%
4.2V恒压充电至0.5C SOC 2=66.3% SOC 2=66.3%
0.5C恒流充电至4.45V SOC 3=85.9% SOC 3=85.9%
4.45V恒压充电至0.025C SOC 4=100% SOC 4=100%
(2)充电过程
环境温度:25℃;
充电过程:
步骤一、获取电池的实际容量Q;
步骤二、使用1.0C的恒定电流对电池充电,直到电池的SOC达到52.5%;
步骤三、获取步骤二中恒流充电截止的电压V 1,并对电压V 1的大小进行判断,若V 1<4.2V(即预设截止电压),继续使用1.0C的恒定电流对电池进行恒流充电,直到电池的电压为4.2V,若V 1≥4.2V,进行下一步恒压充电;
步骤四、在第三步的充电截止电压下对所述电池进行恒压充电,直到电池的SOC达到66.3%;
步骤五、使用0.5C的恒定电流对电池充电,直到电池的SOC达到85.9%;
步骤六、获取步骤五中恒流充电截止的电压V 2,并对V 2的大小进行判断,若V 2<4.45V(即预设截止电压),继续使用0.5C的恒定电流对电池进行恒流充电,直到电池的电压为4.45V,若V 2≥4.45V,进行下一步恒压充电;
步骤七、在第六步的充电截止电压下对所述电池进行恒压充电,直到电池的SOC达到100%,以上步骤二至步骤七的充电流程中SOC 的计算均以实际容量Q为基准进行计算;
步骤八、将电池静置5分钟;
步骤九、使用0.7C的恒定电流对电池放电至3V,并获取电池的实际容量Q以用作下一次充电循环中的容量Q;
步骤十、重复上述步骤二至步骤九500个循环。
实施例2
(1)SOC 1、SOC 2、SOC 3的参数获取过程
与实施例1的所述SOC 1、SOC 2、SOC 3的参数获取过程相同,不同的是所述SOC 1、SOC 2、SOC 3的具体取值,具体的SOC取值见下表2:
表2 第n次充电过程中各恒流、恒压充电阶段截止时的SOC
充电步骤 充电截止的SOC 实际SOC的取值
1.0C恒流充电至4.2V SOC 1=52.5% SOC 1=53%
4.2V恒压充电至0.5C SOC 2=66.3% SOC 2=67%
0.5C恒流充电至4.45V SOC 3=85.9% SOC 3=86%
4.45V恒压充电至0.025C SOC 4=100% SOC 4=100%
(2)充电过程
与实施例1的充电过程一样,不同的是采用实施例2设置的SOC 1、SOC 2、SOC 3
对比例2:
需要说明的是,对比例2公开的是采用循环过100次的电池来执行现有技术的充电方法的具体实施过程。
环境温度:25℃;
充电过程:
与对比例1的充电过程相同,不同的是采用循环过100次的电池来执行对比例1的充电过程。
需要说明的是,实施例3~5公开的是采用循环过100次的电池来执行本申请所述的充电方法的具体实施过程。
实施例3
需要说明的是,所述实施例3公开的是使用新鲜电池来获得对应的充电参数。
(1)SOC 1、SOC 2、SOC 3的参数获取过程
与实施例1的SOC 1、SOC 2、SOC 3的参数获取过程和具体数值选择相同。
(2)充电过程
与实施例1的充电过程相同,不同的是采用循环过100次的电池来进行充电。
实施例4
需要说明的是,所述实施例4公开的是使用新鲜电池来获得对应的充电参数。
(1)SOC 1、SOC 2、SOC 3的参数获取过程
与实施例2的SOC 1、SOC 2、SOC 3的参数获取过程和具体数值选择相同。
(2)充电过程
与实施例2的充电过程一样,不同的是采用循环过100次的电池来进行充电。
实施例5
需要说明的是,所述实施例5公开的是使用循环过100次的电池来获得对应的充电参数。
(1)SOC 1、SOC 2、SOC 3的参数获取过程
与实施例2的SOC 1、SOC 2、SOC 3的参数获取过程相同,不同的是使用循环过100次的电池来获得参数SOC 1、SOC 2、SOC 3,具体的SOC 1、SOC 2、SOC 3的数值见下表3:
表3 第n次充电过程中各恒流、恒压充电阶段截止时的SOC
充电步骤 充电截止的SOC 实际SOC的取值
1.0C恒流充电至4.2V SOC 1=47.6% SOC 1=47.6%
4.2V恒压充电至0.5C SOC 2=63.8% SOC 2=63.8%
0.5C恒流充电至4.45V SOC 3=83.7% SOC 3=83.7%
4.45V恒压充电至0.025C SOC 4=100% SOC 4=100%
(2)充电过程
与实施例1的充电过程一样,不同的是采用循环过100次的电池来进行充电,且采用实施例5设置的SOC 1、SOC 2、SOC 3
在实验过程中,通过记录每个对比例和实施例1-5的电池在不同阶段的参数(例如电压、电流、充电时间等),并且把结果记录在下表4和表5中。
表4 各对比例和实施例1-5中各恒流阶段及恒压阶段的截止条件
Figure PCTCN2020074434-appb-000001
Figure PCTCN2020074434-appb-000002
表5 各对比例和实施例1-5中各恒流阶段及恒压阶段的充电时间
Figure PCTCN2020074434-appb-000003
以下陈述的对比例3、4均为采用现有技术中的充电方法对电池进行充电。
对比例3
环境温度:25℃;
充电过程:
步骤一、使用1.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V;
步骤二、使用1.0C的恒定电流对电池充电,直到电池的电压达到截止电压4.5V;
步骤三、继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.2C;
步骤四、将电池静置5分钟;
步骤五、再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤六、接着再将电池静置5分钟;
步骤七、重复上述6个步骤500个循环。
以下陈述的具体实施例6~10为采用本发明实施例中的充电方法对电池进行充电。需要说明的是,实施例6~9公开的是使用新鲜电池来获得对应的充电参数,同时在充电过程中的环境温度与对比例1相同且保持不变。所述新鲜电池是指刚出厂未使用过的电池,或者是出厂后充放电循环次数小于预设次数(如10次,也可为其它次数)的电池。
实施例6
(1)SOC 1、SOC 2的参数获取过程
环境温度:25℃;
选择新鲜电池(以已进行1次充放电循环的电池为例,即n=1)获取参数SOC 1、SOC 2,具体获取过程如下;
步骤一、使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤二、将电池静置5分钟;
步骤三、使用1.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V;
步骤四、使用1.0C的恒定电流对电池充电,直到电池的电压达到截止电压4.5V;
步骤五、继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.2C;
计算获得以上充电过程中,各恒流、恒压充电截止时的SOC,具体数据见下表6:
表6 第n次充电过程中各恒流、恒压充电阶段截止时的SOC
充电步骤 充电截止的SOC 实际SOC的取值
1.5C恒流充电至4.45V SOC 1=70.9% SOC 1=70.9%
1.0C恒流充电至4.5V SOC 2=82.5% SOC 2=82.5%
4.5V恒压充电至0.2C SOC 3=100% SOC 3=100%
(2)充电过程
环境温度:25℃;
充电过程:
步骤一、获取电池的实际容量Q;
步骤二、使用1.5C的恒定电流对电池充电,直到电池的SOC达到70.9%;
步骤三、使用1.0C的恒定电流对电池充电,直到电池的SOC达到82.5%;
步骤四、获取步骤三中恒流充电截止的电压V 2,并对电压V 2的大小进行判断,若V 2<4.5V(即预设截止电压),继续使用1.0C的恒定电流对电池进行恒流充电,直到电池的电压为4.5V,若V 2≥4.5V,进行下一步恒压充电;
步骤五、在步骤四的充电截止电压下对所述电池进行恒压充电,直到电池的SOC达到100%,以上步骤二至步骤五的充电流程中SOC的计算均以实际容量Q为基准进行计算;
步骤六、将电池静置5分钟;
步骤七、使用1.0C的恒定电流对电池放电至3V,并获取电池的实际容量Q以用作下一次充电循环中的容量Q;
步骤八、重复上述步骤二至步骤七500个循环。
实施例7
需要说明的是,所述实施例7公开的是使用新鲜电池来获得对应的充电参数。
(1)SOC 1、SOC 2的参数获取过程
与实施例6的SOC 1、SOC 2的参数获取过程,不同的是SOC 1、SOC 2的具体取值,具体的SOC取值见下表7:
表7 第n次充电过程中各恒流、恒压充电阶段截止时的SOC
充电步骤 充电截止的SOC 实际SOC的取值
1.5C恒流充电至4.45V SOC 1=70.9% SOC 1=71%
1.0C恒流充电至4.5V SOC 2=82.5% SOC 2=83%
4.5V恒压充电至0.2C SOC 3=100% SOC 3=100%
(2)充电过程
与实施例6的充电过程一样,不同的是采用实施例7设置的SOC 1、SOC 2
对比例4
需要说明的是,对比例4公开的是采用循环过100次的电池来执行现有技术的充电方法的具体实施过程。
环境温度:25℃;
充电过程:
与对比例3的充电过程相同,不同的是采用循环过100次的电池来执行对比例3的充电过程。
需要说明的是,其中实施例8~10所公开的是采用循环过100次的电池来执行本申请所述的充电方法的具体实施过程。
实施例8
需要说明的是,所述实施例8公开的是使用新鲜电池来获得对应的充电参数。
(1)SOC 1、SOC 2的参数获取过程:
与实施例6的所述SOC 1、SOC 2的参数获取过程和具体数值选择 相同;
(2)充电过程
与实施例6的充电过程一样,不同的是采用循环过100次的电池来进行充电。
实施例9
需要说明的是,所述实施例9公开的是使用新鲜电池来获得对应的充电参数。
(1)SOC 1、SOC 2的参数获取过程:
与实施例7的所述SOC 1、SOC 2的参数获取过程和具体数值选择相同;
(2)充电过程:
与实施例7的充电过程一样,不同的是采用循环过100次的电池来进行充电。
实施例10
需要说明的是,所述实施例10公开的是使用循环过100次的电池来获得对应的充电参数。
(1)SOC 1、SOC 2的参数获取过程:
与实施例6的SOC 1、SOC 2的参数获取过程相同,不同的是使用循环过100次的电池来获得参数SOC 1、SOC 2,具体的SOC 1、SOC 2的数值见下表8:
表8 第n次充电过程中各恒流、恒压充电阶段截止时的SOC
充电步骤 充电截止的SOC 实际SOC的取值
1.5C恒流充电至4.45V SOC 1=69.6% SOC 1=69.6%
1.0C恒流充电至4.5V SOC 2=81.4% SOC 2=81.4%
4.5V恒压充电至0.2C SOC 3=100% SOC 3=100%
(2)充电过程:
与实施例6的充电过程一样,不同的是采用循环过100次的电池来进行充电,且采用实施例10设置的SOC 1、SOC 2
在实验过程中,记录每个对比例和实施例6-10的电池在不同充电阶段的参数(如电压、电流、时间等),并把结果记录在下表9和表10中。
表9为各对比例和实施例6-10中各充电阶段截止条件
Figure PCTCN2020074434-appb-000004
表10为各对比例和实施例6-10中各充电阶段的充电时间
Figure PCTCN2020074434-appb-000005
Figure PCTCN2020074434-appb-000006
由表4和表5可知,在对比例1、2的充电方法中,随着电池阻抗逐渐增大,电池的恒流充电时间缩短,恒压充电时间延长,总充电时间延长。
与对比例1、2相比,采用实施例1~2与实施例3~5中所使用的充电方法可以延长恒流阶段的充电时间,且大幅度地降低恒压阶段的充电时间,进而可以大幅度地降低电池的满充时间,其充电速度明显地快于对比例1、2中的充电速度,且随着充放电循环次数的增加,其总充电时间会越来越短。
通过对比实施例1和实施例2,可以发现,实施例2的充电速度快于实施例1的充电速度,即通过提高恒流充电阶段截止时的SOC可以缩短电池的满充时间。通过比较实施例3和实施例4,也可以得出相同的结论。
由表9和表10可知,在对比例3、4的充电方法中,随着电池阻抗逐渐增大,电池的恒流充电时间缩短,恒压充电时间延长,总充电时间延长。
与对比例3、4相比,采用实施例6~7与实施例8~10中所使用的充电方法可以延长恒流阶段的充电时间,且大幅度地降低恒压阶段的 充电时间,进而可以大幅度地降低电池的满充时间,其充电速度明显地快于对比例3、4中的充电速度,且随着充放电循环次数的增加,其总充电时间会越来越短。
通过对比实施例6和实施例7,可以发现,实施例7的充电速度快于实施例6的充电速度。即通过提高恒流充电阶段截止时的SOC可以缩短电池的满充时间。通过比较实施例8和实施例9,也可以得出相同的结论。
在对比例1、2、3、4的充电方法中,随着电池的使用,阳极电压逐渐升高,而采用实施例1~5及实施例6~10中的充电方法可以降低阳极电压,但阳极电位依然大于新鲜电池,因此可使电池不会发生析锂。
综上所述,本申请的实施例通过电池的荷电状态和实际容量Q来作为各充电阶段的截止条件,可以延长恒流充电的时间,缩短其恒压充电时间,进而能够缩短电池的满充时间,满充时间均比现有技术中的充电方法所需要的时间更短,还可确保电池不发生过充电,不影响电池的使用寿命。
请参阅图7,本申请的一些实施方式中,所述充电系统10可以被分割成一个或多个模块。
具体地址,所述一个或多个模块可存储在所述处理器11中,并由所述处理器11执行本申请实施例的充电方法。
所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,所述指令段用于描述所述充电系统10在所述电子装置100中的执行过程。
例如,所述充电系统10可以被分割成如图7中的获取模块101、比较模块102、确定模块103、恒流充电模块104以及恒压充电模块105。
本申请较佳实施方式中,所述获取模块101用于在第i充电子阶段中获取所述电池13充电至所述荷电状态SOC mij时相对应的电压V mij
本申请的一些实施方式中,所述获取模块101还用于在所述第i充电子阶段中获取所述电池13在所述第i个充电子阶段的预设截止电压U icl
所述获取模块101还用于在所述第k充电子阶段中获取所述电池13在每个恒流充电阶段的截止电压和每个恒压充电阶段的预设截止电压。
本申请的一些实施方式中,所述比较模块102用于在第i充电阶段中比较所述电压V mij与所述第i个充电子阶段的预设截止电压U icl的大小。
所述比较模块102还用于在第k充电阶段中比较所述截止电压与相对应的所述预设截止电压的大小。
本申请的一些实施方式中,所述确定模块103用于根据比较结果确定所述电池13的充电方式。
本申请的一些实施方式中,所述恒流充电模块104用于对电池13进行恒流充电,直到电池13的电压达到预设的截止电压、充电容量或荷电状态。
本申请的一些实施方式中,所述恒压充电模块105用于对电池13进行恒压充电,直到电池13的电流达到预设的截止电流、充电容量或荷电状态。
通过该充电系统10可以对所述电池13进行充电管理,以提高电池的充电效率、使用寿命以及可靠性。
其具体内容可以参见上述电池的充电方法的实施例,在此不再详述。
在本申请的一实施方式中,所述处理器11可以是中央处理单元(Central Processing Unit,CPU)。
在本申请的一些实施方式中,所述处理器11还可以是其他通用处理器及数字信号处理器(Digital Signal Processor,DSP)。所述处理器11还可以是专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或 者其他可编程逻辑器件、分立门或者晶体管逻辑器件以及分立硬件组件等。
通用处理器可以是微处理器或者所述处理器11也可以是其它任何常规的处理器等。
所述充电系统10中的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
基于这样的理解,在本申请中实现上述实施例的电池的充电方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成。
所述的计算机程序可存储于一计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。
其中,所述计算机程序可以包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。
其中,所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减。例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
可以理解的是,以上所描述的模块划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式。
另外,在本申请各个实施例中的各功能模块可以集成在相同处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在相同单元中。
上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
在另一实施方式中,所述电子装置100还可以包括存储器(图中未示出)。
即所述一个或多个模块还可存储在存储器中,并由所述处理器11执行。
所述存储器可以是电子装置100的内部存储器,即内置于所述电子装置100的存储器。
在其他实施方式中,所述存储器也可以是电子装置100的外部存储器,即外接于所述电子装置100的存储器。
在本申请的一些实施方式中,所述存储器用于存储程序代码和各种数据。
例如,存储安装在所述电子装置100中的充电系统10的程序代码,并在电子装置100的运行过程中实现高速、自动地完成程序或数据的存取。
在本申请的一些实施方式中,所述存储器可以包括随机存取存储器,还可以包括非易失性存储器。
例如可以为硬盘、内存、插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或者为其他的易失性固态存储器件。
由此,本申请的实施方式通过所述标准荷电状态来截止所述电池在第m次充放电循环以后的恒流充电阶段,可以延长电池的恒流充电时间,进而可以缩短电池的满充时间,并且还可确保电池不会发生过充电现象。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。
因此,无论从哪一点来看,均应将本申请上述的实施例看作是示 范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。

Claims (13)

  1. 一种电池的充电方法,其特征在于,在第m次充放电循环中,采用依序的N个充电子阶段对电池进行充电,每个充电子阶段包括j个恒流阶段和恒压阶段,每个所述恒流阶段和所述恒压阶段以荷电状态来截止充电,其中m,N,j为整数且m≥1,N≥1,j≥1。
  2. 如权利要求1所述的充电方法,其特征在于,
    所述N个充电子阶段分别定义为第i充电子阶段,i=1、2、…、N;
    在第i充电子阶段中,采用依序的j个恒定的电流I mi1、I mi2、…、I mij分别对所述电池充电至对应的SOC mi1、SOC mi2、…、SOC mij;及
    获取所述电池充电至所述SOC mij时相对应的电压V mij,根据所述电压V mij对所述电池充电至SOC mi
  3. 如权利要求2所述的充电方法,其特征在于,所述SOC mi1、…、SOC mij、SOC mi为所述电池或与所述电池相同的另一电池在第n次充放电循环中第i个充电子阶段相对应的各个恒流充电和恒压充电截止时的荷电状态或预设值,n为大于等于0的整数,m为大于n的整数。
  4. 如权利要求2所述的充电方法,其特征在于,所述根据所述电压V mij对所述电池充电至SOC mi的步骤包括:
    获取所述电池在所述第i个充电子阶段的预设截止电压U icl
    比较所述电压V mij与所述第i个充电子阶段的预设截止电压U icl的大小;及
    根据比较结果对所述电池进行充电。
  5. 如权利要求4所述的充电方法,其特征在于,所述根据比较结果对所述电池进行充电的步骤包括:
    当所述电压V mij大于或等于所述第i个充电子阶段的预设截止电压U icl时,以所述电压V mij对所述电池进行恒压充电至SOC mi
  6. 如权利要求4所述的充电方法,其特征在于,所述根据比较结果对所述电池进行充电的步骤包括:
    当所述电压V mij小于所述第i个充电子阶段的预设截止电压U icl 时,以所述电流I mij对所述电池进行恒流充电至所述第i个充电子阶段的预设截止电压U icl;及
    以所述第i个充电子阶段的预设截止电压U icl对所述电池进行恒压充电至SOC mi
  7. 如权利要求1所述的充电方法,其特征在于,
    所述N个充电子阶段分别定义为第k充电子阶段,k=1、…、N;
    在第k充电子阶段中,根据依序的j组恒定的电流和电压[I mk1,V mk1]、[I mk2,V mk2]、…、[I mkj,V mkj]分别对所述电池充电至对应的荷电状态SOC mk1、SOC mk2、…、SOC mkj,其中V mk1、V mk2、…、V mkj为以相应的恒定电流I mk1、I mk2、…、I mkj分别对所述电池充电至荷电状态SOC mk10、SOC mk20、…、SOC mkj0时的截止电压。
  8. 如权利要求7所述的充电方法,其特征在于,所述充电方法还包括:
    在所述第k充电子阶段中,获取所述电池在每个恒流充电阶段的截止电压和每个恒压充电阶段的预设截止电压;
    比较所述截止电压与相对应的所述预设截止电压的大小;及
    根据比较结果对所述电池进行充电。
  9. 如权利要求8所述的充电方法,其特征在于,所述根据比较结果对所述电池进行充电的步骤包括:
    当所述截止电压大于或等于相对应的所述预设截止电压时,以所述截止电压对所述电池进行恒压充电至相对应的荷电状态;及
    当所述截止电压小于相对应的所述预设截止电压时,以相应的所述电流对所述电池进行恒流充电至相对应的所述预设截止电压;
    以相对应的所述预设截止电压对所述电池进行恒压充电至相对应的荷电状态。
  10. 如权利要求7所述的充电方法,其特征在于,所述SOC mk1、SOC mk2、…、SOC mkj为所述电池或与所述电池相同的另一电池在第n次充放电循环中第k个充电子阶段相对应的各个恒压充电截止时的荷电状态或预设值,所述SOC mk10、SOC mk20、…、SOC mkj0为所述电池或 与所述电池相同的另一电池在第n次充放电循环中第k个充电子阶段相对应的各个充电子阶段中恒流充电截止时的荷电状态或预设值,n为大于等于0的整数,m为大于n的整数。
  11. 如权利要求1所述的充电方法,其特征在于,每个所述充电子阶段的充电容量等于下一个所述充电子阶段起始时的荷电状态与上一个所述充电子阶段截止时的荷电状态的差值乘以容量Q,Q为所述电池的实际容量。
  12. 一种电子装置,其特征在于,包括:
    电池;及
    处理器,用于执行如权利要求1-11中任意一项所述的电池的充电方法。
  13. 一种存储介质,其上存储有至少一条计算机指令,其特征在于,所述计算机指令由处理器加载并用于执行如权利要求1-11中任意一项所述的电池的充电方法。
PCT/CN2020/074434 2020-02-06 2020-02-06 充电方法、电子装置以及存储介质 WO2021155538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080010050.1A CN113348603A (zh) 2020-02-06 2020-02-06 充电方法、电子装置以及存储介质
PCT/CN2020/074434 WO2021155538A1 (zh) 2020-02-06 2020-02-06 充电方法、电子装置以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074434 WO2021155538A1 (zh) 2020-02-06 2020-02-06 充电方法、电子装置以及存储介质

Publications (1)

Publication Number Publication Date
WO2021155538A1 true WO2021155538A1 (zh) 2021-08-12

Family

ID=77200711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074434 WO2021155538A1 (zh) 2020-02-06 2020-02-06 充电方法、电子装置以及存储介质

Country Status (2)

Country Link
CN (1) CN113348603A (zh)
WO (1) WO2021155538A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284586A (zh) * 2021-12-23 2022-04-05 湖北亿纬动力有限公司 一种电池快充方法和装置
CN115207502A (zh) * 2022-09-14 2022-10-18 武汉亿纬储能有限公司 一种锂电池的恒压化成工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245574A1 (zh) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 充电控制方法、充电控制装置、电子设备及存储介质
CN117642954A (zh) * 2022-06-23 2024-03-01 宁德时代新能源科技股份有限公司 用电装置及其电池的充电方法、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992052A (zh) * 2015-06-16 2015-10-21 北京亿利智慧能源科技有限公司 一种动力锂离子电池最大充电电流计算方法
CN105048014A (zh) * 2015-06-05 2015-11-11 哈尔滨理工大学 一种带温度补偿的锂离子动力电池快速充电方法
US20160336763A1 (en) * 2015-05-15 2016-11-17 Samsung Electronics Co., Ltd. System and method for fast charging of batteries based on dynamic cutoff voltage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785132A (zh) * 2016-11-30 2017-05-31 东莞新能源科技有限公司 充电方法及装置
KR102441505B1 (ko) * 2017-12-11 2022-09-07 현대자동차주식회사 전기 자동차의 배터리 충전 방법
KR20200133220A (ko) * 2018-04-16 2020-11-26 이씨 파워, 엘엘씨 가열을 통한 배터리 충전 시스템 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160336763A1 (en) * 2015-05-15 2016-11-17 Samsung Electronics Co., Ltd. System and method for fast charging of batteries based on dynamic cutoff voltage
CN105048014A (zh) * 2015-06-05 2015-11-11 哈尔滨理工大学 一种带温度补偿的锂离子动力电池快速充电方法
CN104992052A (zh) * 2015-06-16 2015-10-21 北京亿利智慧能源科技有限公司 一种动力锂离子电池最大充电电流计算方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284586A (zh) * 2021-12-23 2022-04-05 湖北亿纬动力有限公司 一种电池快充方法和装置
CN114284586B (zh) * 2021-12-23 2023-10-03 湖北亿纬动力有限公司 一种电池快充方法和装置
CN115207502A (zh) * 2022-09-14 2022-10-18 武汉亿纬储能有限公司 一种锂电池的恒压化成工艺
CN115207502B (zh) * 2022-09-14 2022-12-13 武汉亿纬储能有限公司 一种锂电池的恒压化成工艺

Also Published As

Publication number Publication date
CN113348603A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2021155538A1 (zh) 充电方法、电子装置以及存储介质
US20210119466A1 (en) Charging method for a battery, and an electronic device using the charging method
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
WO2021077273A1 (zh) 充电方法、电子装置以及存储介质
WO2021056687A1 (zh) 充电方法、电子装置及存储介质
WO2021155539A1 (zh) 充电方法、电子装置以及存储介质
CN113394840B (zh) 一种储能电池电量智能均衡控制方法及系统
CN112272908B (zh) 充电方法、电子装置以及存储介质
CN110797577B (zh) 一种锂离子电池充电方法、装置及计算机存储介质
US20210328450A1 (en) Charging method for electrochemical device, electronic device and readable storage medium
EP4270714A1 (en) Charging method, electronic device, and storage medium
US20230344260A1 (en) Battery charging method, electric device, and storage medium
CN114879053B (zh) 一种储能磷酸铁锂电池寿命预测方法
WO2021077274A1 (zh) 充电方法、电子装置以及存储介质
WO2022133975A1 (zh) 充电方法、电子装置以及存储介质
EP4270715A1 (en) Charging method, electronic device, and storage medium
WO2021189319A1 (zh) 充电方法、电子装置以及存储介质
TWI660538B (zh) 電池分段式充電方法及系統
WO2022126657A1 (zh) 充电方法、电子装置以及存储介质
CN110739743B (zh) 锂动力梯次电池模组均衡方法
EP4270713A1 (en) Charging method, electronic apparatus, and storage medium
CN115149127A (zh) 电池的充放电方法、电子装置以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917655

Country of ref document: EP

Kind code of ref document: A1