WO2021077273A1 - 充电方法、电子装置以及存储介质 - Google Patents

充电方法、电子装置以及存储介质 Download PDF

Info

Publication number
WO2021077273A1
WO2021077273A1 PCT/CN2019/112386 CN2019112386W WO2021077273A1 WO 2021077273 A1 WO2021077273 A1 WO 2021077273A1 CN 2019112386 W CN2019112386 W CN 2019112386W WO 2021077273 A1 WO2021077273 A1 WO 2021077273A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charge
voltage
charging
cut
Prior art date
Application number
PCT/CN2019/112386
Other languages
English (en)
French (fr)
Inventor
关婷
朱珊
吴飞
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2019/112386 priority Critical patent/WO2021077273A1/zh
Priority to CN201980058975.0A priority patent/CN112689934B/zh
Priority to US17/281,355 priority patent/US20210391742A1/en
Publication of WO2021077273A1 publication Critical patent/WO2021077273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery charging method, electronic device and storage medium.
  • the commonly used charging method for lithium batteries is to continuously charge the lithium-ion battery to a certain voltage (for example, the charging limit voltage) through a preset constant current, and then charge the lithium-ion battery at a constant voltage with this voltage to a certain voltage. Fully charged state.
  • the impedance of the battery increases, which will shorten the time of constant current charging of the battery and extend the time of constant voltage charging, resulting in the total charging time of the battery Getting longer and longer.
  • An embodiment of the present application provides a battery charging method, and the charging method includes:
  • the battery In the m-th charge and discharge cycle, the battery is charged with a constant current to the first cut-off voltage U m with a charging current; m is any two or more integers of 1, 2, 3,..., x, and U m is The values in at least two charge and discharge cycles are different.
  • U m U cl +b, 0 ⁇ b ⁇ 0.5
  • U cl is the second cut-off voltage
  • U cl is the battery or another battery that is the same as the battery at the nth time
  • the cut-off voltage at the end of the constant current charging stage in the charge-discharge cycle, or U cl is the charge limit voltage or preset value of the battery or the other battery
  • n is an integer greater than or equal to 0
  • b is charged at least twice The values in the discharge cycle are not the same.
  • the first cut-off voltage U m may also be obtained in the following manner:
  • the open circuit voltage OCV 1 and the second cut-off voltage U cl can be obtained through the following steps:
  • the open circuit voltage OCV 1 and the open circuit voltage of the battery at the end of the constant current charging stage in the nth charge and discharge cycle are obtained.
  • the second cut-off voltage U cl is obtained.
  • the impedance growth rate k is obtained through the following steps:
  • the charging method further includes:
  • the SOC 1 is the state of charge of the battery at the end of the constant current charging phase in the nth charge and discharge cycle
  • the SOC 2 is the state of charge of the battery before the mth charge and discharge cycle .
  • the charging method further includes:
  • the charging method further includes:
  • the charging method further includes:
  • the battery In the m-th charge-discharge cycle, when the second state of charge SOC 2 is less than the first state of charge SOC 1 , the battery is charged with a constant current with the charging current until the first cut-off The voltage U m , wherein the charging current is the charging current of the battery or another battery that is the same as the battery in the constant current charging stage in the nth charging and discharging cycle, or the charging current is a preset value;
  • An embodiment of the present application also provides an electronic device, including:
  • the processor is configured to execute the battery charging method described above to charge the battery.
  • An embodiment of the present application also provides a storage medium on which at least one computer instruction is stored, and the computer instruction is loaded by a processor and used to execute the battery charging method as described above.
  • the battery charging method, electronic device, and storage medium provided by the embodiments of the present application increase the first cut-off voltage of the constant current charging stage of the battery in each charge and discharge cycle to increase the constant current charging time of the battery and shorten the constant voltage of the battery
  • the charging time can shorten the full charging time (or total charging time) of the battery, and cut off the charging of the battery in the constant voltage stage through the capacity, which can ensure that the battery will not cause lithium evolution and overcharging.
  • Fig. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Fig. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • Fig. 3 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 4 is a flowchart of a battery charging method according to another embodiment of the present application.
  • Fig. 5 is a block diagram of a charging system according to an embodiment of the present application.
  • the charging system 10 runs in the electronic device 100.
  • the electronic device 100 includes, but is not limited to, at least one processor 11 and a battery 13.
  • the above-mentioned components may be connected via a bus or directly.
  • FIG. 1 is only an example of the electronic device 100.
  • the electronic device 100 may also include more or fewer elements, or have different element configurations.
  • the electronic device 100 may be an electric motorcycle, an electric bicycle, an electric car, a mobile phone, a tablet computer, a digital assistant, a personal computer, or any other suitable rechargeable equipment.
  • the battery 13 is a rechargeable battery for providing electrical energy to the electronic device 100.
  • the battery 13 may be a lead-acid battery, a nickel-cadmium battery, a nickel-hydrogen battery, a lithium ion battery, a lithium polymer battery, a lithium iron phosphate battery, and the like.
  • the battery 13 is logically connected to the processor 11 through the charging system 10, so that functions such as charging, discharging, and power consumption management are realized through the charging system 10.
  • the battery 13 includes a battery cell (not shown).
  • FIG. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • the battery charging method may include the following steps:
  • Step S21 In the m-th charge and discharge cycle, charge the battery with a constant current with a charge current to the first cut-off voltage U m .
  • the charging system 10 uses a charging current to charge the battery 13 with a constant current to the first cut-off voltage U m .
  • m is any two or more integers of 1, 2, 3,..., x, and the value of U m is different in at least two charge and discharge cycles, that is, during at least two charge and discharge cycles, the battery is in constant
  • the first cut-off voltage U m of the current charging stage is different.
  • Step S22 Use the first cut-off voltage U m to charge the battery at a constant voltage to a fully charged state.
  • the charging system 10 uses the charging current to charge the battery 13 with constant current to the first cut-off voltage U m , the charging system 10 will The battery 13 is charged at a constant voltage with the first cut-off voltage U m to a fully charged state to ensure that the battery 13 does not undergo lithium evolution and the battery does not experience an overcharge phenomenon.
  • the first cut-off voltage U m may satisfy the following formula:
  • U cl is the second cut-off voltage, that is, U cl is the battery 13 or another battery that is the same as the battery in the first The cut-off voltage at the end of the constant current charging stage in n charge and discharge cycles, or U cl is the charge limit voltage of the battery or the other battery (such as the charge limit voltage described in the background art, or the battery product information writes The charging limit voltage), or U cl is the preset value.
  • n is an integer greater than or equal to 0
  • m is greater than n
  • the value of b is different in at least two charge and discharge cycles, that is, during at least two charge and discharge cycles, the battery is in the first cut-off of the constant current charging stage
  • the voltage U m is not the same.
  • the b satisfies the following formula:
  • the charging system 10 may also determine the first cut-off voltage U m of the battery 13 during the m-th charge-discharge cycle through the following steps, which are specifically as follows:
  • Step S31 Obtain the open-circuit voltage OCV 1 and the second cut-off voltage U cl of the battery when the constant current charging phase in the n-th charge and discharge cycle is cut off.
  • the charging system 10 obtains the open circuit voltage OCV 1 and the second cut-off voltage U cl of the battery at the end of the constant current charging phase in the n-th charge and discharge cycle.
  • the charging system 10 will store or obtain the correspondence between the open circuit voltage of the battery 13 and the state of charge (SOC) and the correspondence between the battery voltage and the state of charge, where SOC refers to the battery The ratio of the remaining capacity of the battery to the full charge capacity of the battery.
  • SOC state of charge
  • the charging system 10 will also obtain the corresponding relationship between the open circuit voltage of the battery 13 and the state of charge, and the corresponding relationship between the battery voltage and the state of charge, to obtain that the battery 13 has been charged and discharged during n cycles of charging and discharging.
  • the charging system 10 obtains the open-circuit voltage OCV 1 and the second battery 13 in the n-th charge-discharge cycle and at the ambient temperature according to the above two correspondences and the ambient temperature before the battery is charged in the m-th charge-discharge cycle. Cut-off voltage U cl .
  • the corresponding relationship between the open circuit voltage of the battery 13 and the state of charge describes: before the battery 13 is charged, the open circuit voltage and the state of charge of the battery are collected, and the open circuit voltage of the battery and its charge state are established in advance.
  • the corresponding relationship between the battery voltage and the state of charge of the battery 13 describes: before the battery 13 is charged, the battery voltage and the state of charge are collected, and the relationship between the battery voltage and the state of charge is established in advance The mapping relationship.
  • the charging system 10 may also pre-store the open circuit voltage OCV 1 and the second cut-off voltage U cl of the battery 13 when the constant current charging stage is cut off at different temperatures.
  • Step S32 Obtain the impedance growth rate k of the battery 13.
  • the charging system 10 obtains the battery impedance of the battery 13 during the n-th charge and discharge cycle and at different temperatures, which is recorded as the first battery impedance R 1 .
  • the charging system 10 can obtain the battery impedance of the battery in different states of charge at different temperatures.
  • the charging system 10 will also obtain the battery impedance of the battery 13 in the m-1th charge and discharge cycle, which is recorded as the second battery impedance R 2 .
  • the charging system 10 can determine the impedance growth rate of the battery 13 according to the first battery impedance R 1 and the second battery impedance R 2 under the same state of charge.
  • the charging system 10 determines the impedance growth rate of the battery 13 by obtaining the first battery impedance R 1 and the second battery impedance R 2 under the same temperature and state of charge.
  • R 1 and R 2 can be the battery impedance under the same state of charge during the discharging process, or the battery impedance under the same state of charge during the charging process.
  • the impedance growth rate of the battery 13 is denoted as k, and k satisfies the following formula:
  • Step S33 Calculate the third cut-off voltage U according to the open circuit voltage OCV 1 , the second cut-off voltage U cl, and the impedance growth rate k.
  • the third cut-off voltage U satisfies the following formula:
  • OCV 1 is the open circuit voltage of the battery 13 at the end of the constant current charging phase in the nth charge and discharge cycle
  • k is the impedance growth rate of the battery 13.
  • Step S34 The first cut-off voltage U m is the larger of the second cut-off voltage U cl and the third cut-off voltage U.
  • the charging system 10 will compare the second cut-off voltage U cl and the third cut-off voltage U, and compare the second cut-off voltage U cl and the third cut-off voltage U cl to a larger value. As the first cut-off voltage Um.
  • the charging system 10 uses a charging current to charge the battery with a constant current to the first cut-off voltage Um, which can be specifically performed by the following steps:
  • Step S41 Obtain the actual capacity of the battery 13 in each charge and discharge cycle.
  • the actual capacity of the battery 13 in each charge-discharge cycle is the actual battery capacity of the battery 13 in the corresponding charge-discharge cycle, that is, the battery 13 is charged and discharged during each cycle.
  • the maximum capacity discharged from a fully charged state to a fully discharged state, and the discharge capacity can be measured by a fuel gauge.
  • the fully discharged state is that after the battery is discharged, the power in the battery is zero.
  • the fully discharged state may be that the battery is discharged to a preset power level, a preset voltage, or a preset current.
  • the charging system 10 obtains the actual capacity of the battery 13 in each charge and discharge cycle, records the temperature of the battery and the corresponding magnification, etc., according to the known corresponding relationship between the different temperatures and the capacity of the different magnifications, The actual capacity of the battery 13 is converted and calculated, and the actual charging temperature of the battery 13 and the maximum capacity at the charging rate are obtained.
  • the maximum capacity is the actual capacity mentioned above.
  • the actual capacity of the battery 13 will change with the increase in the use time of the battery 13 or the number of charge-discharge cycles, and the actual capacity of the battery has a direct relationship with the aging of the battery cell.
  • the actual capacity or discharge capacity of the battery in the previous charge-discharge cycle is used to stop the charging process in the next charge-discharge cycle, so that the battery will not be overcharged and its service life can be improved.
  • Step S42 Obtain the state of charge of the battery at the end of the constant current charging stage at different temperatures corresponding to the charging rate in the nth charge and discharge cycle, and record it as the first state of charge SOC 1 , and n is an integer greater than or equal to 0 .
  • the temperature in this text can refer to the ambient temperature.
  • the method of obtaining the state of charge of the battery at the end of the constant current charging phase at different temperatures corresponding to the charge rate may be: (1) According to the corresponding relationship between the battery voltage and the state of charge;
  • the first state of charge of the battery at the end of the constant current charging stage at different temperatures corresponding to the charging rate can be obtained.
  • the corresponding relationship between the battery voltage and the state of charge of the battery 13 describes: before the battery 13 is charged, the voltage and the state of charge of the battery 13 are collected, and the battery is established in advance.
  • the mapping relationship between the voltage of 13 and its state of charge describes: before the battery 13 is charged, the voltage and the state of charge of the battery 13 are collected, and the battery is established in advance.
  • the corresponding relationship between the current of the battery 13 and the state of charge describes:
  • the current and the state of charge of the battery 13 are collected, and the mapping relationship between the current of the battery 13 and the state of charge is established in advance.
  • the charging system 10 can obtain the first state of charge corresponding to the battery 13 at the end of the constant current charging phase at different temperatures corresponding to the charging rate. SOC 1 .
  • Step S43 Obtain the state of charge of the battery before the m-th charge-discharge cycle and the ambient temperature of the battery 13 before the m-th charge-discharge cycle.
  • the charging system 10 can obtain the second state of charge SOC 2 of the battery 13 before the m-th charge and discharge cycle and the ambient temperature of the battery 13 before the m-th charge and discharge cycle.
  • Step S44 Determine whether the second state of charge SOC 2 is less than the first state of charge SOC 1 .
  • step S46 If the second state of charge is less than the first state of charge, go to step S46, otherwise go to step S45.
  • the charging system 10 will compare the first state of charge SOC 1 and the second state of charge SOC 2 at the same temperature. .
  • Step S45 Perform constant voltage charging on the battery 13 according to the first cut-off voltage U m and the first charging capacity.
  • the charging system 10 obtains the fourth cut-off voltage of the battery 13 at the constant voltage charging stage in the m-1th charge-discharge cycle at the same temperature. In the m-th charge and discharge cycle, the charging system 10 can charge the battery 13 at a constant voltage according to the fourth cut-off voltage and the first charging capacity Q 1.
  • the first charging capacity is denoted as Q 1 , then Q 1 satisfies the following formula:
  • Q represents the current actual capacity of the battery 13.
  • the charging system 10 will use the fourth cut-off voltage to charge the battery 13 at a constant voltage. , That is, the charging capacity is the first charging capacity Q 1 to ensure that the battery 13 is not overcharged.
  • Step S46 Use the charging current to charge the battery with a constant current to the first cut-off voltage U m .
  • the charging current is the battery 13 Or the charging current of another battery that is the same as the battery 13 in the constant current charging phase in the nth charge and discharge cycle, or the charging current is a preset value.
  • the charging system 10 will obtain the charging current of the battery 13 in the constant current charging phase in the nth charge and discharge cycle.
  • the charging system 10 will use the charging current to charge the battery 13 with a constant current to the first cut-off voltage U m .
  • Step S47 Use the first cut-off voltage U m to charge the battery at a constant voltage to a fully charged state.
  • the charging system 10 uses the charging current to charge the battery 13 with constant current to the first cut-off voltage U m , the charging system 10 will The battery 13 is charged at a constant voltage with the first cut-off voltage U m to a fully charged state to ensure that the battery 13 does not undergo lithium evolution and the battery does not experience an overcharge phenomenon.
  • the battery system used in each comparative example and each embodiment of this application uses LiCoO 2 as the cathode, graphite as the anode, plus a diaphragm, electrolyte and packaging shell, through mixing, coating, assembling, forming and aging processes production.
  • Part of the battery cores add a reference electrode between the cathode and anode pole pieces during the winding process to make a three-electrode battery to test the cathode and anode potential difference during the comparative charging process.
  • the comparative examples and embodiments of this application can also use batteries of other chemical systems, that is, using other materials as cathode materials, such as lithium manganate, lithium iron phosphate, ternary materials, etc. This is limited.
  • the constant current charging cut-off voltage (charging limit voltage) of the batteries in each comparative example and each embodiment in this application is 4.45V as an example. It is explained here that the charging method of this application can be applied to batteries of various voltage systems, and is not limited to 4.45V system.
  • the battery cells used in the system are tested for cyclic performance using the charging method in the prior art and the charging method of the present application, and the charging time in the constant current phase, the charging time in the constant voltage phase and the total charging time are compared during the charging process.
  • the comparative example stated below is to charge the battery using the charging method in the prior art.
  • Comparative Example 1 discloses a specific implementation process of using fresh batteries to perform the charging method of the prior art (that is, the constant current charging stage in each charge and discharge cycle is cut off at the same fixed voltage).
  • Step 1 Use a constant current of 1.5C to charge the battery until the battery voltage reaches the cut-off voltage of 4.45V (which can be understood as the constant current charge cut-off voltage);
  • Step 2 Continue to use a constant voltage of 4.45V to charge the battery until the battery current reaches the cut-off current 0.05C;
  • Step 3 Leave the battery for 5 minutes
  • Step 4 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 5 Then let the battery stand for 5 minutes;
  • Step 6 Repeat the above 5 steps for 500 cycles.
  • the fresh battery refers to a battery that has not been used before leaving the factory, or a battery whose number of charge and discharge cycles after leaving the factory is less than a preset number (such as 10 times, or other times).
  • Step 1 Obtain the current actual capacity Q of the battery
  • Step 2 Use a constant current of 1.5C to charge the battery until the battery voltage reaches the cut-off voltage U m , and U m changes with the number of cycles m according to the preset formula;
  • Step 3 Continue to charge the battery with a constant voltage of U m until the total capacity of the battery is Q;
  • Step 4 Let the battery stand for 5 minutes
  • Step 5 Use a constant current of 1.0C to discharge the battery until the battery voltage is 3.0V;
  • Step 6 Obtain the discharge capacity in Step 5 to obtain the actual capacity Q of the battery
  • Step 7 Repeat the above steps 2 to 6 for 500 cycles (that is, m increases from 1 to 500).
  • Embodiment 2 It is the same as Embodiment 1, except that U m set in Embodiment 2 is used.
  • Examples 4 to 6 use fresh batteries to obtain the corresponding parameters
  • Example 7 uses a battery that has been cycled 100 times to obtain the corresponding parameters
  • the charging method is a specific implementation process of charging the battery that has been cycled for 100 times, and the ambient temperature during the charging process is the same as that of Comparative Example 2 and remains unchanged.
  • the difference is that the U m set in the embodiment 4 is used to charge the battery that has been cycled for 100 times, and m is increased from 101 to 500.
  • Embodiment 5 It is the same as Embodiment 1, except that the U m set in Embodiment 5 is used to charge a battery that has been cycled 100 times, and m is increased from 101 to 500.
  • Embodiment 6 discloses the use of fresh batteries to obtain the corresponding charging parameters.
  • Embodiment 6 It is the same as Embodiment 3, except that the U m set in Embodiment 6 is used to charge a battery that has been cycled 100 times, and m is increased from 101 to 500.
  • Embodiment 7 discloses that a battery that has been cycled 100 times is used to obtain the corresponding charging parameters.
  • Embodiment 7 It is the same as Embodiment 6, except that the U m set in Embodiment 7 is used to charge a battery that has been cycled 100 times, and m is increased from 101 to 500.
  • Table 1 The cut-off conditions of the constant current stage and the charging time of each stage of each comparative example and each embodiment
  • the full charge of the charging method of the application is The time is shorter than the time required by the prior art charging method.
  • the charging system 10 may be divided into one or more modules, and the one or more modules are stored in the processor 11 and executed by the processor 11 To complete this application.
  • the one or more modules may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the charging system 10 in the electronic device 100.
  • the charging system 10 may be divided into the acquiring module 101, the comparing module 102, the determining module 103, and the charging module 104 in FIG. 10.
  • the acquiring module 101 is configured to acquire the first state of charge of the battery when the constant current charging stage at different temperatures corresponding to the charging rate is cut off in the n-th charge and discharge cycle.
  • the acquiring module 101 is also used to acquire the first battery impedance of the battery in the nth charge and discharge cycle.
  • the acquiring module 101 is further configured to acquire the second battery impedance of the battery in the m-1th charge and discharge cycle and acquire the second state of charge of the battery before charging in the mth charge and discharge cycle.
  • the acquiring module 101 is also used to acquire the open circuit voltage and the second cut-off voltage of the battery when the constant current charging phase in the nth charge and discharge cycle is cut off.
  • the comparison module 102 is used to compare the magnitude of the first state of charge and the second state of charge at the same temperature.
  • the determining module 103 is configured to determine the impedance growth rate of the battery according to the first battery impedance and the second battery impedance.
  • the obtaining module 101 is further configured to obtain the third cut-off voltage of the constant current charging stage of the battery in the m-th charge-discharge cycle according to the open circuit voltage, the impedance growth rate, and the second cut-off voltage.
  • the determining module 103 is further configured to determine the charging mode of the battery 13 according to the comparison result.
  • the comparison module 102 is also used to compare the magnitude of the third cut-off voltage and the second cut-off voltage.
  • the charging module 104 is used to charge the battery 13 with constant current until the voltage of the battery 13 reaches the cut-off voltage or the cut-off capacity.
  • the charging module 104 is also used to charge the battery 13 at a constant voltage until the current of the battery 13 reaches the cut-off current or cut-off capacity.
  • the battery 13 can be charged and managed to improve the charging efficiency, service life, and reliability of the battery.
  • the battery charging method please refer to the embodiment of the above battery charging method, which will not be described in detail here.
  • the processor 11 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, or the processor 12 may also be any other conventional processor or the like.
  • modules in the charging system 10 are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer readable storage medium. Based on this understanding, this application implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the computer program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunications signal
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.
  • module division described above is a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in the same processing unit, or each module may exist alone physically, or two or more modules may be integrated in the same unit.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • the electronic device 100 may further include a memory (not shown), and the one or more modules may also be stored in the memory and executed by the processor 11.
  • the memory may be an internal memory of the electronic device 100, that is, a memory built in the electronic device 100. In other embodiments, the memory may also be an external memory of the electronic device 100, that is, a memory external to the electronic device 100.
  • the memory is used to store program codes and various data, for example, to store the program codes of the charging system 10 installed in the electronic device 100, and to achieve high-speed, high-speed, Automatically complete program or data access.
  • the memory may include random access memory, and may also include non-volatile memory, such as a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) card, Flash Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) card, Flash Card, at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池的充电方法,包括:在第m次充放电循环中,以一充电电流对所述电池进行恒流充电至第一截止电压U m;m为1、2、3、…、x的任意两个以上整数,U m在至少两次充放电循环中的数值不相同。该方法可以缩短电池的满充时间,并且还可确保电池不会发生析锂和过充电现象,可以提高电池的使用寿命。

Description

充电方法、电子装置以及存储介质 技术领域
本申请涉及电池技术领域,尤其涉及一种电池的充电方法、电子装置以及存储介质。
背景技术
目前,普遍应用在锂电池上的充电方法是通过预设的恒定电流对锂离子电池持续充电至某一电压(例如,可以是充电限制电压)后,再以此电压对锂离子电池恒压充电至满充状态。在此情况下,随着电池的充电循环次数以及使用时间的增加,电池的阻抗增大,将会使得电池的恒流充电的时间缩短及恒压充电的时间延长,从而导致电池的总充电时间越来越长。
发明内容
有鉴于此,有必要提供一种充电方法、电子装置以及存储介质,可以缩短电池的满充时间,并且还可确保电池不会发生析锂和过充电现象。
本申请一实施方式提供一种电池的充电方法,所述充电方法包括:
在第m次充放电循环中,以一充电电流对所述电池进行恒流充电至第一截止电压U m;m为1、2、3、…、x的任意两个以上整数,U m在至少两次充放电循环中的数值不相同。
根据本申请的一些实施方式,U m=U cl+b,0<b≤0.5,U cl为第二截止电压,U cl为所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电阶段截止时的截止电压,或者U cl为所述电池或所述另一电池的充电限制电压或预设值,n为大于等于0的整数,b在至 少两次充放电循环中的数值不相同。
根据本申请的一些实施方式,所述b满足以下公式:b=b 1×m+b 2,0≤b 1≤0.0005,0≤b 2≤0.1。
根据本申请的一些实施方式,所述第一截止电压U m还可通过以下方式获得:
所述第一截止电压U m为所述第二截止电压U cl与第三截止电压U的较大者;所述第三截止电压U=OCV 1+(U cl-OCV 1)×k,其中,OCV 1为所述电池或所述另一电池在第n次充放电循环中的恒流充电阶段截止时的开路电压,k为所述电池或所述另一电池的阻抗增长率。
根据本申请的一些实施方式,所述开路电压OCV 1及所述第二截止电压U cl可以通过以下步骤获取:
获取所述电池的开路电压与荷电状态的对应关系及电池电压与荷电状态的对应关系;以及
根据所述电池的开路电压与荷电状态的对应关系及电池电压与荷电状态的对应关系来获取所述电池在第n次充放电循环中的恒流充电阶段截止时的开路电压OCV 1及所述第二截止电压U cl
根据本申请的一些实施方式,所述阻抗增长率k通过以下步骤获取:
获取所述电池在所述第n次充放电循环中的第一电池阻抗R 1;及获取所述电池在所述第m-1次充放电循环中的第二电池阻抗R 2;其中k=R 2/R 1
根据本申请的一些实施方式,所述充电方法还包括:
比较第一荷电状态SOC 1与第二荷电状态SOC 2的大小;
其中,所述SOC 1为所述电池在第n次充放电循环中的恒流充电阶段截止时的荷电状态,所述SOC 2为所述电池在第m次充放电循环前的荷电状态。
根据本申请的一些实施方式,所述充电方法还包括:
在第m次充放电循环中,当所述第二荷电状态SOC 2大于或等于所述第一荷电状态SOC 1时,根据所述第一截止电压U m和第一充电容量Q 1对所述电池进行恒压充电,其中Q 1=(1-SOC 2)×Q,Q表示所述电池当前的实际容量。
根据本申请的一些实施方式,所述充电方法还包括:
在第m次充放电循环中,当所述第二荷电状态SOC 2大于或等于所述第一荷电状态SOC 1时,获取所述电池在第m-1次充放电循环中的恒压充电阶段时的第四截止电压;及根据所述第四截止电压和第一充电容量Q 1对所述电池进行恒压充电,其中Q 1=(1-SOC 2)×Q,Q表示所述电池当前的实际容量。
根据本申请的一些实施方式,所述充电方法还包括:
在第m次充放电循环中,当所述第二荷电状态SOC 2小于所述第一荷电状态SOC 1时,以所述充电电流对所述电池进行恒流充电至所述第一截止电压U m,其中所述充电电流为所述电池或者与所述电池相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流,或者所述充电电流为预设值;
以所述第一截止电压U m对所述电池进行恒压充电至满充状态;及
所述电池达到满充状态时的总充电容量为第二充电容量Q 2,Q 2=(1-SOC 2)×Q,Q为所述电池当前的实际容量。
本申请一实施方式还提供一种电子装置,包括:
电池;及
处理器,用于执行如上述所述的电池的充电方法来对所述电池进行充电。
本申请一实施方式还提供一种存储介质,其上存储有至少一条计算机指令,所述计算机指令由处理器加载并用于执行如上述所述的电池的充电方法。
本申请实施方式提供的电池的充电方法、电子装置以及存储介质, 通过提高电池在各个充放电循环中的恒流充电阶段的第一截止电压来提高电池的恒流充电时间,缩短电池的恒压充电时间,进而可以缩短电池的满充时间(或总充电时间),并且通过容量来截止电池在恒压阶段的充电,可确保电池不会发生析锂和过充电现象。
附图说明
图1是根据本申请一实施方式的电子装置的结构示意图。
图2是根据本申请一实施方式的电池的充电方法的流程图。
图3是根据本申请另一实施方式电池的充电方法的流程图。
图4是根据本申请另一实施方式电池的充电方法的流程图。
图5是根据本申请一实施方式的充电系统的模块图。
主要元件符号说明
电子装置                       100
充电系统                       10
处理器                         11
电池                           13
获取模块                       101
比较模块                       102
确定模块                       103
充电模块                       104
如下具体实施方式将结合上述附图进一步详细说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。
基于本申请中的实施方式,本领域普通技术人员在没有付出创造 性劳动前提下所获得的所有其他实施方式,都是属于本申请保护的范围。
请参阅图1,充电系统10运行于电子装置100中。所述电子装置100包括,但不仅限于,至少一个处理器11以及电池13,上述元件之间可以通过总线连接,也可以直接连接。
需要说明的是,图1仅为举例说明电子装置100。在其他实施方式中,电子装置100也可以包括更多或者更少的元件,或者具有不同的元件配置。
所述电子装置100可以为电动摩托、电动单车、电动汽车、手机、平板电脑、个数数字助理、个人电脑,或者任何其他适合的可充电式设备。
在一个实施方式中,所述电池13为可充电电池,用于给所述电子装置100提供电能。例如,所述电池13可以是铅酸电池、镍镉电池、镍氢电池、锂离子电池、锂聚合物电池及磷酸铁锂电池等。所述电池13通过充电系统10与所述处理器11逻辑相连,从而通过所述充电系统10实现充电、放电以及功耗管理等功能。所述电池13包括电芯(图未示)。
请参阅图2,图2为根据本申请一实施方式的电池的充电方法的流程图。
所述电池的充电方法可以包括以下步骤:
步骤S21:在第m次充放电循环中,以充电电流对所述电池进行恒流充电至第一截止电压U m
在一实施方式中,在第m次充放电循环中,所述充电系统10利用一充电电流对所述电池13进行恒流充电至第一截止电压U m。其中,m为1、2、3、…、x的任意两个以上整数,U m在至少两次充放电循环中的数值不相同,即在至少两次充放电循环中,所述电池在恒流充电阶段的第一截止电压U m不相同。
步骤S22:利用所述第一截止电压U m对所述电池进行恒压充电至满充状态。
具体来说,在第m次充放电循环中,当所述充电系统10以所述充电电流对所述电池13进行恒流充电至所述第一截止电压U m时,所述充电系统10将以所述第一截止电压U m对所述电池13进行恒压充电至满充状态,以保证所述电池13不发生析锂且电池不发生过充电现象。
在一实施方式中,第一截止电压U m可满足以下公式:
U m=U cl+b  (1)
其中,0<b≤0.5,b可随电池的充放电循环次数的变化而变化,U cl为第二截止电压,即U cl为所述电池13或与所述电池相同的另一电池在第n次充放电循环中恒流充电阶段截止时的截止电压,或者U cl为所述电池或所述另一电池的充电限制电压(如背景技术所述的充电限制电压,或者电池产品信息上写的充电限制电压),或U cl为预设值。
其中,n为大于等于0的整数,m大于n,b在至少两次充放电循环中的数值不相同,即在至少两次充放电循环中,所述电池在恒流充电阶段的第一截止电压U m不相同。
在一较佳实施方式中,所述b满足以下公式:
b=b 1×m+b 2  (2)
其中,0≤b 1≤0.0005,0≤b 2≤0.1。公式(2)说明b值可以随循环数m变化,即在不同的充放电循环中,b值可以相同,也可以不相同。
在另一实施方式中,请参阅图3,所述充电系统10还可以通过以下步骤来确定所述电池13在第m次充放电循环时的第一截止电压U m,具体如下:
步骤S31:获取所述电池在第n次充放电循环中的恒流充电阶段截止时的开路电压OCV 1及第二截止电压U cl
在一实施方式中,所述充电系统10将获取所述电池在第n次充放电循环中的恒流充电阶段截止时的开路电压OCV 1及所述第二截止电压U cl
具体来说,所述充电系统10将会存储或获取所述电池13的开路电压与荷电状态(State of Charge,SOC)的对应关系及电池电压与荷 电状态的对应关系,其中SOC指电池的剩余容量与该电池的满充容量的比值。
进一步地,所述充电系统10还将根据所述电池13的开路电压与荷电状态的对应关系以及电池电压与荷电状态的对应关系,来获取所述电池13在n次充放电循环中且在不同温度下的恒流充电阶段截止时的开路电压OCV 1以及不同温度下的恒流充电阶段截止时的第二截止电压U cl
即充电系统10根据上述两个对应关系和电池在第m次充放电循环中充电前的环境温度获取电池13在第n次充放电循环中且在该环境温度下的开路电压OCV 1和第二截止电压U cl
其中,所述电池13的开路电压与荷电状态的对应关系描述的是:在对所述电池13在进行充电之前,采集电池的开路电压以及荷电状态,并预先建立电池的开路电压与其荷电状态之间的映射关系。所述电池13的电池电压与荷电状态的对应关系描述的是:在对所述电池13在进行充电之前,采集电池的电压以及荷电状态,并预先建立电池的电压与其荷电状态之间的映射关系。
由此,可以获得电池在不同温度下恒流充电阶段截止时的开路电压OCV 1以及第二截止电压U cl。所述充电系统10也可以预先存储电池13在不同温度下恒流充电阶段截止时的开路电压OCV 1以及第二截止电压U cl。
步骤S32:获取所述电池13的阻抗增长率k。
具体来说,在本实施方式中,所述充电系统10将获取所述电池13在第n次充放电循环中且在不同温度下的电池阻抗,记为第一电池阻抗R 1
由此,所述充电系统10可以获得电池在不同温度下的不同荷电状态下的电池阻抗。
在本实施方式中,所述充电系统10还将会获取所述电池13在第m-1次充放电循环中的电池阻抗,记为第二电池阻抗R 2
所述充电系统10可根据相同荷电状态下的所述第一电池阻抗R 1 以及所述第二电池阻抗R 2确定所述电池13的阻抗增长率。
具体而言,所述充电系统10通过获取在相同温度和荷电状态下的所述第一电池阻抗R 1与所述第二电池阻抗R 2,来确定所述电池13的阻抗增长率。
R 1与R 2可为电池在放电过程中相同荷电状态下的电池阻抗,也可为电池在充电过程中相同荷电状态下的电池阻抗。
在本实施方式中,所述电池13的阻抗增长率记为k,则k满足以下公式:
k=R 2/R 1  (3)
步骤S33:根据所述开路电压OCV 1、所述第二截止电压U cl及所述阻抗增长率k来计算所述第三截止电压U。
具体来说,所述第三截止电压U满足以下公式:
U=OCV 1+(U cl-OCV 1)×k  (4)
其中,OCV 1为所述电池13在第n次充放电循环中的恒流充电阶段截止时的开路电压,k为所述电池13的阻抗增长率。
步骤S34:所述第一截止电压U m为所述第二截止电压U cl与第三截止电压U的较大者。
在一实施方式中,所述充电系统10将会比较所述第二截止电压U cl与第三截止电压U的大小,并将所述第二截止电压U cl与第三截止电压U的较大者作为所述第一截止电压Um。
在一实施方式中,请参考图4,所述充电系统10利用充电电流对所述电池进行恒流充电至第一截止电压Um,具体可以通过以下步骤进行:
步骤S41:获取所述电池13在各个充放电循环中的实际容量。
在本实施方式中,所述电池13在各个充放电循环中的实际容量为所述电池13在相应的充放电循环中的真实电池容量,即所述电池13在各个循环过程中,将电池13从满充状态放电至满放状态的最大容量,所述放电容量可通过电量计来测量。
在本实施方式中,所述满放状态为所述电池放电后,所述电池中 的电量为0。
在其他实施方式中,所述满放状态可以为所述电池放电至预设电量、预定电压或预设电流。
其中,所述充电系统10获取所述电池13在各个充放电循环中的实际容量,并记录电池的温度及相对应的倍率等,根据已知的不同温度以及不同倍率间容量的对应关系,对所述电池13的实际容量进行转换计算,进而获取所述电池13的实际充电温度以及充电倍率下的最大容量。所述最大容量即为上述的实际容量。
具体地,所述电池13的实际容量会随着所述电池13的使用时间或者充放电循环次数的增加而变化,电池的实际容量与电芯的老化衰退具有直接的关系。
因此,通过电池在上一个充放电循环中的实际容量或放电容量来截止下一个充放电循环中的充电过程,可使得电池不会发生过充,可提高其使用寿命。
步骤S42:获取电池在第n次充放电循环中且在不同温度对应充电倍率下的恒流充电阶段截止时的荷电状态,记为第一荷电状态SOC 1,n为大于等于0的整数。本文中的温度可以指环境温度。
在一实施方式中,获取所述电池在不同温度对应充电倍率下的恒流充电阶段截止时的荷电状态的方式可以为:(1)根据电池电压与荷电状态的对应关系;
(2)根据电池电流与荷电状态的对应关系;
(3)根据恒流阶段的充电容量与充电的总容量的比值,但不仅限于以上方式。
通过上述方法均可以获取到所述电池在不同温度对应充电倍率下的恒流充电阶段截止时的第一荷电状态。
在一实施方式中,所述电池13的电池电压与荷电状态的对应关系描述的是:在对所述电池13进行充电之前,采集所述电池13的电压以及荷电状态,并预先建立电池13的电压与其荷电状态之间的映射关系。
在一实施方式中,所述电池13的电流与荷电状态的对应关系描述的是:
在对所述电池13在进行充电之前,采集所述电池13的电流以及荷电状态,并预先建立所述电池13的电流与其荷电状态之间的映射关系。
在一较佳实施方式中,在所述电池13的充电过程中,所述充电系统10可获取所述电池13在不同温度对应充电倍率下的恒流充电阶段截止时对应的第一荷电状态SOC 1
步骤S43:获取所述电池在第m次充放电循环前的荷电状态和电池13在第m次充放电循环前的环境温度。
在一实施方式中,所述充电系统10可获取所述电池13在第m次充放电循环前的第二荷电状态SOC 2和电池13在第m次充放电循环前的环境温度。
步骤S44:判断所述第二荷电状态SOC 2是否小于所述第一荷电状态SOC 1
若所述第二荷电状态小于所述第一荷电状态,则进入步骤S46,否则进入步骤S45。
在本实施方式中,在所述电池13的充电过程中,所述充电系统10将会比较在相同温度下的所述第一荷电状态SOC 1与所述第二荷电状态SOC 2的大小。
步骤S45:根据所述第一截止电压U m以及第一充电容量对所述电池13进行恒压充电。
在一实施方式中,所述充电系统10可根据所述第一截止电压U m和第一充电容量Q 1对所述电池13进行恒压充电,即U m=U cl+b。
在另一实施方式中,所述充电系统10获取所述电池13在相同温度下的在第m-1次充放电循环中的恒压充电阶段时的第四截止电压。在第m次充放电循环中,所述充电系统10可根据所述第四截止电压和第一充电容量Q 1对所述电池13进行恒压充电。
具体来说,所述第一充电容量记为Q 1,则Q 1满足以下公式:
Q 1=(1-SOC 2)×Q  (3)
其中,Q表示所述电池13当前的实际容量。
由此可知,当所述第二荷电状态SOC 2大于或等于所述第一荷电状态SOC 1时,所述充电系统10将利用所述第四截止电压对所述电池13进行恒压充电,即充电容量为所述第一充电容量Q 1,以保证所述电池13不发生过充电。
步骤S46:利用所述充电电流对所述电池进行恒流充电至所述第一截止电压U m
具体来说,在本实施方式中,在第m次充放电循环中,当所述第二荷电状态SOC 2小于所述第一荷电状态SOC 1时,所述充电电流为所述电池13或者与所述电池13相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流,或者所述充电电流为预设值。所述充电系统10将获取所述电池13在第n次充放电循环中的恒流充电阶段时的充电电流。
在第m次充放电循环中,所述充电系统10将利用所述充电电流对所述电池13进行恒流充电至所述第一截止电压U m
步骤S47:利用所述第一截止电压U m对所述电池进行恒压充电至满充状态。
具体来说,在第m次充放电循环中,当所述充电系统10以所述充电电流对所述电池13进行恒流充电至所述第一截止电压U m时,所述充电系统10将以所述第一截止电压U m对所述电池13进行恒压充电至满充状态,以保证所述电池13不发生析锂且电池不发生过充电现象。
在步骤S46和步骤S47的充电过程中,所述电池13的总充电容量为第二充电容量Q 2,Q 2=(1-SOC 2)×Q,Q为所述电池13当前的实际容量。
为了使本申请的发明目的、技术方案和技术效果更加清晰,以下结合附图和实施例,对本申请进一步地详细说明。本申请的各对比例和各实施例采用的电池体系以LiCoO 2作为阴极,石墨作为阳极,再 加上隔膜、电解液及包装壳,通过混料、涂布、装配、化成和陈化等工艺制成。部分电芯在卷绕过程中在阴阳极极片间加入参比电极,制作成三电极电池,用以测试对比充电过程阴阳极电位差异。需要说明的是,本申请的各对比例和各实施例也可以采用其它化学体系的电池,即以其它物质作为阴极材料,如锰酸锂、磷酸铁锂、三元材料等,本申请不以此为限。本申请中各对比例和各实施例的电池的恒流充电截止电压(充电限制电压)以4.45V为例,在此说明本申请的充电方法可适用于各种电压体系电池,并不局限于4.45V体系。对该体系使用后的电芯采用现有技术中的充电方法和采用本申请的充电方法进行循环性能测试,对比其充电过程中的恒流阶段充电时间、恒压阶段充电时间以及总充电时间。
以下陈述的对比例为采用现有技术中的充电方法对电池进行充电。
对比例1
需要说明的是,对比例1公开的是采用新鲜电池来执行现有技术的充电方法(即每个充放电循环中的恒流充电阶段以相同的固定电压截止)的具体实施过程。
环境温度:25℃;
充电过程:
步骤一、使用1.5C的恒定电流对电池充电,直到电池的电压达到截止电压4.45V(可理解为恒流充电截止电压);
步骤二、继续使用4.45V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.05C;
步骤三、将电池静置5分钟;
步骤四、再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤五、接着再将电池静置5分钟;
步骤六、重复上述5个步骤500个循环。
需要说明的是,具体实施例1~3公开的是采用新鲜电池来获取相 应的参数,且根据本申请的充电方法对该新鲜电池进行充电的具体实施过程。在此过程中的环境温度保持不变且与对比例1相同。其中,在所述实施例1中,所述新鲜电池是指刚出厂未使用过的电池,或者是出厂后充放电循环次数小于预设次数(如10次,也可为其它次数)的电池。
实施例1
(1)参数U m设置
电池循环过程中的U m按照如下规律变化:
U m=U cl+b 1×m+b 2,其中U cl=4.45V,U cl为所述电池在第1次充放电循环中的恒流充电阶段截止时的截止电压,1≤m≤80,b 1=0,b 2=0;81≤m≤500,b 1=0.0002,b 2=0。
(2)充电过程
环境温度:25℃;
充电过程:
步骤一:获取电池当前的实际容量Q;
步骤二:使用1.5C的恒定电流对电池充电,直到电池的电压达到截止电压U m,U m按照预先设定的公式随循环次数m变化;
步骤三:继续使用U m的恒定电压对电池进行充电,直到电池的总容量为Q;
步骤四:将电池静置5分钟;
步骤五:再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤六:获取步骤五中的放电容量以得到电池的实际容量Q;
步骤七:重复上述步骤二至步骤六500个循环(即m从1开始递增至500)。
实施例2
(1)参数U m设置
电池循环过程中的U m按照如下规律变化:
U m=U cl+b 1×m+b 2,其中U cl=4.45V,1≤m≤80,b 1=0,b 2=0; 81≤m≤500,b 1=0.0001,b 2=0.01。
(2)充电过程
与实施例1相同,不同的是采用实施例2设置的U m
实施例3
(1)参数U m设置
电池循环过程中的U m按照如下规律变化:
在每个循环中,U m取U和U cl中数值大的一个,其中U=OCV 1+(U cl-OCV 1)×k,U cl=4.45V,OCV 1=4.10V,U cl和OCV 1分别为所述电池在第1次充放电循环中的恒流充电阶段截止时的截止电压和开路电压,k为电池的阻抗增长率,需要在电池循环过程中随时采集电池的实际阻抗并计算增长率,k=R 2/R 1,R 2为电池在第m-1次充电过程中SOC=50%时的电池阻抗,R 1为电池在第1次充电过程中SOC=50%时的电池阻抗,且数值为R 1=60mOhm;
(2)充电过程
与实施例1相同,不同的是采用实施例3设置的U m
对比例2
与对比例1相同,不同的是采用已循环过100次的电池来执行现有技术的充电方法的。
需要说明的是,实施例4~6是采用新鲜电池来获取相应的参数,实施例7是采用循环过100次的电池来获取相应的参数,且实施例4~7公开的是根据本申请的充电方法对该循环过100次的电池进行充电的具体实施过程,同时在充电过程中的环境温度与对比例2相同且保持不变。
实施例4
(1)参数U m设置
电池循环过程中的U m按照如下规律变化:
U m=U cl+b 1×m+b 2,其中U cl=4.45V,101≤m≤500,b 1=0.0002,b 2=0。
(2)充电过程
与实施例1相同,不同的是采用实施例4设置的U m对已循环过100次的电池进行充电,且m从101开始递增至500。
实施例5
(1)参数U m设置
电池循环过程中的U m按照如下规律变化:
U m=U cl+b 1×m+b 2,其中U cl=4.45V,101≤m≤500,b 1=0.0001,b 2=0.01。
(2)充电过程
与实施例1相同,不同的是采用实施例5设置的U m对已循环过100次的电池进行充电,且m从101开始递增至500。
实施例6
(1)参数U m设置
需要说明的是,实施例6公开的是使用新鲜电池来获得对应的充电参数。
电池循环过程中的Um按照如下规律变化:
U m取U和U cl中数值大的一个,其中U=OCV 1+(U cl-OCV 1)×k,U cl=4.45V,OCV 1=4.10V,OCV 1为所述电池在第1次充放电循环中的恒流充电阶段截止时的开路电压,k为电池的阻抗增长率,需要在电池循环过程中随时采集电池的实际阻抗并计算增长率,k=R 2/R 1,R 2为电池在第m-1次充电过程中SOC为50%时的电池阻抗,R 1为电池在第1次充电过程中SOC为50%时的电池阻抗,且数值为R 1=60mOhm。
(2)充电过程
与实施例3相同,不同的是采用实施例6设置的U m对已循环过100次的电池进行充电,且m从101开始递增至500。
实施例7
(1)参数U m设置
需要说明的是,实施例7公开的是使用循环过100次的电池来获得相应的充电参数。
电池循环过程中的U m按照如下规律变化:
U m取U和U cl中数值大的一个,其中U=OCV 1+(U cl-OCV 1)×k;U cl=4.45V,OCV 1=4.08V,OCV 1为所述电池在第100次充放电循环中的恒流充电阶段截止时的开路电压,k为电池的阻抗增长率,需要在电池循环过程中随时采集电池的实际阻抗并计算增长率,k=R 2/R 1,R 2为电池在第m-1次充电过程中SOC为50%时的电池阻抗,R 1为电池在第100次充电过程中SOC为50%时的电池阻抗,且数值为R 1=63mOhm;
(2)充电过程
与实施例6相同,不同的是采用实施例7设置的U m对已循环过100次的电池进行充电,且m从101开始递增至500。
在实验过程中,通过记录每个对比例和实施例的电池在不同阶段的参数值(如电压、荷电状态、电流以及充电时间等),并把相应的结果记录在下表1中。
表1各对比例和各实施例的恒流阶段截止条件和各阶段的充电时间
Figure PCTCN2019112386-appb-000001
Figure PCTCN2019112386-appb-000002
由上表可知,在对比例1、2的充电方法中,随着电池的循环使用,电池阻抗会逐渐增大,电池的恒流充电时间缩短,恒压充电时间延长,总充电时间延长。与对比例1、2相比,实施例1~3与实施例4~7中采用本申请的充电方法可以延长恒流充电时间,且大幅度地降低恒压充电时间,进而可以大幅度地降低电池的满充时间,其充电速度明显地快于对比例1、2中的充电速度。
使用本申请各实施例中的充电方法为电池进行充电时,因每个充放电循环中恒流充电阶段的截止电压大于现有技术中相对应的截止电压,故本申请的充电方法的满充时间均比现有技术的充电方法所需要的时间更短。
请参阅图5,在本实施方式中,所述充电系统10可以被分割成一个或多个模块,所述一个或多个模块存储在所述处理器11中,并由所述处理器11执行,以完成本申请。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,所述指令段用于描述所述充电系统10在所述电子装置100中的执行过程。例如,所述充电系统10可以被分割成图10中的获取模块101、比较模块102、确定模块103以及充电模块104。
所述获取模块101用于获取电池在第n次充放电循环中且在不同温度对应充电倍率下的恒流充电阶段截止时的第一荷电状态。
所述获取模块101还用于获取所述电池在第n次充放电循环中的第一电池阻抗。
所述获取模块101还用于在获取所述电池在第m-1次充放电循环中的第二电池阻抗和在第m次充放电循环中获取所述电池充电前的第二荷电状态。
所述获取模块101还用于获取所述电池在第n次充放电循环中的恒流充电阶段截止时的开路电压及第二截止电压。
所述比较模块102用于比较在相同温度下的所述第一荷电状态与所述第二荷电状态的大小。
所述确定模块103用于根据所述第一电池阻抗及所述第二电池阻抗确定所述电池的阻抗增长率。
所述获取模块101还用于根据所述开路电压、所述阻抗增长率以及所述第二截止电压获取所述电池在第m次充放电循环中的恒流充电阶段的第三截止电压。
所述确定模块103还用于根据比较结果确定所述电池13的充电方式。
所述比较模块102还用于比较所述第三截止电压与所述第二截止电压的大小。
所述充电模块104用于对电池13进行恒流充电,直到电池13的电压达到截止电压或截止容量。
所述充电模块104还用于对电池13进行恒压充电,直到电池13的电流达到截止电流或截止容量。
通过该充电系统10可以对所述电池13进行充电管理,以提高电池的充电效率、使用寿命以及可靠性。具体内容可以参见上述电池的充电方法的实施例,在此不再详述。
在一实施方式中,所述处理器11可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable  Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器12也可以是其它任何常规的处理器等。
所述充电系统10中的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
可以理解的是,以上所描述的模块划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在相同处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在相同单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
在另一实施方式中,所述电子装置100还可包括存储器(图未示),所述一个或多个模块还可存储在存储器中,并由所述处理器11执行。所述存储器可以是电子装置100的内部存储器,即内置于所述电子装置100的存储器。在其他实施例中,所述存储器也可以是电子装置100的外部存储器,即外接于所述电子装置100的存储器。
在一些实施例中,所述存储器用于存储程序代码和各种数据,例如,存储安装在所述电子装置100中的充电系统10的程序代码,并在电子装置100的运行过程中实现高速、自动地完成程序或数据的存取。
所述存储器可以包括随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将本申请上述的实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。

Claims (12)

  1. 一种电池的充电方法,其特征在于,包括:
    在第m次充放电循环中,以一充电电流对所述电池进行恒流充电至第一截止电压U m;m为1、2、3、…、x的任意两个以上整数,U m在至少两次充放电循环中的数值不相同。
  2. 如权利要求1所述的充电方法,其特征在于,U m=U cl+b,0<b≤0.5,U cl为第二截止电压,U cl为所述电池或与所述电池相同的另一电池在第n次充放电循环中恒流充电阶段截止时的截止电压,或者U cl为所述电池或所述另一电池的充电限制电压或预设值,n为大于等于0的整数,m为1、2、3、…、x的任意两个以上整数,m大于n,b在至少两次充放电循环中的数值不相同。
  3. 如权利要求2所述的充电方法,其特征在于,所述b满足以下公式:b=b 1×m+b 2,0≤b 1≤0.0005,0≤b 2≤0.1。
  4. 如权利要求1所述的充电方法,其特征在于,所述第一截止电压U m还可通过以下方式获得:
    所述第一截止电压U m为所述第二截止电压U cl与第三截止电压U的较大者;所述第三截止电压U=OCV 1+(U cl-OCV 1)×k,其中,OCV 1为所述电池或所述另一电池在第n次充放电循环中的恒流充电阶段截止时的开路电压,k为所述电池或所述另一电池的阻抗增长率。
  5. 如权利要求4所述的充电方法,其特征在于,所述开路电压OCV 1及所述第二截止电压U cl可以通过以下步骤获取:
    获取所述电池的开路电压与荷电状态的对应关系及电池电压与荷电状态的对应关系;以及
    根据所述电池的开路电压与荷电状态的对应关系及电池电压与荷电状态的对应关系来获取所述电池在第n次充放电循环中的恒流充电 阶段截止时的开路电压OCV 1及所述第二截止电压U cl
  6. 如权利要求4所述的充电方法,其特征在于,所述阻抗增长率k通过以下步骤获取:
    获取所述电池在所述第n次充放电循环中的第一电池阻抗R 1;及
    获取所述电池在所述第m-1次充放电循环中的第二电池阻抗R 2
    其中k=R 2/R 1
  7. 如权利要求1所述的充电方法,其特征在于,还包括:
    比较第一荷电状态SOC 1与第二荷电状态SOC 2的大小;
    其中,所述SOC 1为所述电池在第n次充放电循环中的恒流充电阶段截止时的荷电状态,所述SOC 2为所述电池在第m次充放电循环前的荷电状态。
  8. 如权利要求7所述的充电方法,其特征在于,还包括:
    在第m次充放电循环中,当所述第二荷电状态SOC 2大于或等于所述第一荷电状态SOC 1时,根据所述第一截止电压U m和第一充电容量Q 1对所述电池进行恒压充电,其中Q 1=(1-SOC 2)×Q,Q表示所述电池当前的实际容量。
  9. 如权利要求7所述的充电方法,其特征在于,还包括:
    在第m次充放电循环中,当所述第二荷电状态SOC 2大于或等于所述第一荷电状态SOC 1时,获取所述电池在第m-1次充放电循环中的恒压充电阶段时的第四截止电压;及
    根据所述第四截止电压和第一充电容量Q 1对所述电池进行恒压充电,其中Q 1=(1-SOC 2)×Q,Q表示所述电池当前的实际容量。
  10. 如权利要求7所述的充电方法,其特征在于,还包括:
    在第m次充放电循环中,当所述第二荷电状态SOC 2小于所述第一荷电状态SOC 1时,以所述充电电流对所述电池进行恒流充电至所述第一截止电压U m,其中所述充电电流为所述电池或者与所述电池相同的另一电池在第n次充放电循环中的恒流充电阶段的充电电流,或者所述充电电流为预设值;
    以所述第一截止电压U m对所述电池进行恒压充电至满充状态;及
    所述电池达到满充状态时的总充电容量为第二充电容量Q 2,Q 2=(1-SOC 2)×Q,Q为所述电池当前的实际容量。
  11. 一种电子装置,其特征在于,包括:
    电池;
    处理器,用于执行如权利要求1-10中任意一项所述的电池的充电方法来对所述电池进行充电。
  12. 一种存储介质,其上存储有至少一条计算机指令,其特征在于,所述计算机指令由处理器加载并用于执行如权利要求1-10中任意一项所述的电池的充电方法。
PCT/CN2019/112386 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质 WO2021077273A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/112386 WO2021077273A1 (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质
CN201980058975.0A CN112689934B (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质
US17/281,355 US20210391742A1 (en) 2019-10-21 2019-10-21 Charging method, electronic apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112386 WO2021077273A1 (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质

Publications (1)

Publication Number Publication Date
WO2021077273A1 true WO2021077273A1 (zh) 2021-04-29

Family

ID=75445560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112386 WO2021077273A1 (zh) 2019-10-21 2019-10-21 充电方法、电子装置以及存储介质

Country Status (3)

Country Link
US (1) US20210391742A1 (zh)
CN (1) CN112689934B (zh)
WO (1) WO2021077273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152474A4 (en) * 2021-07-28 2023-08-02 Contemporary Amperex Technology Co., Limited CHARGING METHOD AND DEVICE, VEHICLE AND COMPUTER READABLE STORAGE MEDIUM

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11750012B2 (en) * 2019-09-29 2023-09-05 Ningde Amperex Technology Limited Electronic device and method for charging a battery
WO2021077271A1 (zh) * 2019-10-21 2021-04-29 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
JP2022535308A (ja) * 2020-03-24 2022-08-08 東莞新能安科技有限公司 電気化学装置の充電方法、電子装置、及び読み取り可能な記憶媒体
CN116961149A (zh) * 2022-04-13 2023-10-27 Oppo广东移动通信有限公司 充电方法、装置、电子设备和计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169459A1 (en) * 2010-01-08 2011-07-14 Simplo Technology Co., Ltd. Battery charging method
CN103872398A (zh) * 2012-12-13 2014-06-18 财团法人工业技术研究院 充电电池的充电方法及其相关的充电结构
CN105098876A (zh) * 2014-05-20 2015-11-25 三星Sdi株式会社 电池充电方法以及用于该方法的电池管理系统
CN105870525A (zh) * 2016-06-20 2016-08-17 宁德新能源科技有限公司 电池充电的方法及装置
CN105958588A (zh) * 2016-06-07 2016-09-21 维沃移动通信有限公司 一种充电方法及移动终端
CN106451640A (zh) * 2016-10-31 2017-02-22 维沃移动通信有限公司 一种充电方法及移动终端
CN107134821A (zh) * 2017-04-18 2017-09-05 上海蔚来汽车有限公司 电动汽车及其低压蓄电池电量管理系统
CN110085934A (zh) * 2019-05-30 2019-08-02 维沃移动通信有限公司 一种终端电池的充电方法及移动终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765306B2 (en) * 2010-03-26 2014-07-01 Envia Systems, Inc. High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
US9465077B2 (en) * 2011-12-05 2016-10-11 The United States Of America, As Represented By The Secretary Of The Navy Battery health monitoring system and method
WO2017192425A1 (en) * 2016-05-05 2017-11-09 3M Innovative Properties Company Electrolyte solutions for rechargeable batteries
CN107808986A (zh) * 2016-09-08 2018-03-16 宁德新能源科技有限公司 二次电池充电方法
US11482876B2 (en) * 2017-01-19 2022-10-25 Contemporary Amperex Technology Co., Limited Method, apparatus and system for controlling charging of a battery module
US20190190060A1 (en) * 2017-12-19 2019-06-20 3M Innovative Properties Company Electrochemical cells
CN110176795A (zh) * 2019-05-30 2019-08-27 Oppo广东移动通信有限公司 充电方法及装置、充电系统、电子设备、存储介质
US11056728B2 (en) * 2019-10-31 2021-07-06 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
JP2023539873A (ja) * 2020-09-01 2023-09-20 シオン・パワー・コーポレーション 多重化バッテリ管理システム
CN112098851B (zh) * 2020-11-06 2021-03-12 北京理工大学 智能电池与其荷电状态在线估计方法及应用
EP4274052A4 (en) * 2020-12-29 2024-05-08 HBL Corporation APPARATUS AND METHOD FOR CHARGING AND DISCHARGE WITH SERIAL CIRCUIT WITHOUT CURRENT INTERRUPTION
WO2022169980A1 (en) * 2021-02-05 2022-08-11 Sion Power Corporation Charge/discharge management in electrochemical cells, including partial cycle control
JPWO2022185152A1 (zh) * 2021-03-05 2022-09-09
WO2023205276A1 (en) * 2022-04-19 2023-10-26 Tae Technologies, Inc. Pulsed charging for energy sources of connected modules

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169459A1 (en) * 2010-01-08 2011-07-14 Simplo Technology Co., Ltd. Battery charging method
CN103872398A (zh) * 2012-12-13 2014-06-18 财团法人工业技术研究院 充电电池的充电方法及其相关的充电结构
CN105098876A (zh) * 2014-05-20 2015-11-25 三星Sdi株式会社 电池充电方法以及用于该方法的电池管理系统
CN105958588A (zh) * 2016-06-07 2016-09-21 维沃移动通信有限公司 一种充电方法及移动终端
CN105870525A (zh) * 2016-06-20 2016-08-17 宁德新能源科技有限公司 电池充电的方法及装置
CN106451640A (zh) * 2016-10-31 2017-02-22 维沃移动通信有限公司 一种充电方法及移动终端
CN107134821A (zh) * 2017-04-18 2017-09-05 上海蔚来汽车有限公司 电动汽车及其低压蓄电池电量管理系统
CN110085934A (zh) * 2019-05-30 2019-08-02 维沃移动通信有限公司 一种终端电池的充电方法及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152474A4 (en) * 2021-07-28 2023-08-02 Contemporary Amperex Technology Co., Limited CHARGING METHOD AND DEVICE, VEHICLE AND COMPUTER READABLE STORAGE MEDIUM

Also Published As

Publication number Publication date
CN112689934A (zh) 2021-04-20
CN112689934B (zh) 2023-10-17
US20210391742A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2021077272A1 (zh) 充电方法、电子装置以及存储介质
WO2021077273A1 (zh) 充电方法、电子装置以及存储介质
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
WO2021155538A1 (zh) 充电方法、电子装置以及存储介质
CN112582696B (zh) 充电方法、电子装置及存储介质
US20210119461A1 (en) Electronic device and method for charging battery
WO2021155539A1 (zh) 充电方法、电子装置以及存储介质
CN110797577A (zh) 一种锂离子电池充电方法、装置及计算机存储介质
KR102441469B1 (ko) 배터리 충전 방법 및 배터리 충전 장치
US20230344260A1 (en) Battery charging method, electric device, and storage medium
WO2021077274A1 (zh) 充电方法、电子装置以及存储介质
CN114879053B (zh) 一种储能磷酸铁锂电池寿命预测方法
JP7152548B2 (ja) 放電方法、電子装置及び記憶媒体
WO2021189319A1 (zh) 充电方法、电子装置以及存储介质
EP3989387A1 (en) Battery charge and discharge control device and method
CN114552711A (zh) 一种电芯控制方法、装置和bms设备
EP4250514A1 (en) Charging method, electronic device and storage medium
CN114184969B (zh) 一种电芯可逆自放电容量损失测试方法及装置
CN116508224A (zh) 动力电池充电的方法和电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949675

Country of ref document: EP

Kind code of ref document: A1