WO2024120081A1 - 储能系统控制方法及相关装置 - Google Patents

储能系统控制方法及相关装置 Download PDF

Info

Publication number
WO2024120081A1
WO2024120081A1 PCT/CN2023/128888 CN2023128888W WO2024120081A1 WO 2024120081 A1 WO2024120081 A1 WO 2024120081A1 CN 2023128888 W CN2023128888 W CN 2023128888W WO 2024120081 A1 WO2024120081 A1 WO 2024120081A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
terminal voltage
terminal
voltage difference
Prior art date
Application number
PCT/CN2023/128888
Other languages
English (en)
French (fr)
Inventor
方艺忠
Original Assignee
厦门海辰储能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门海辰储能科技股份有限公司 filed Critical 厦门海辰储能科技股份有限公司
Publication of WO2024120081A1 publication Critical patent/WO2024120081A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present application relates to the field of data processing technology, and in particular to a method for controlling an energy storage system and related devices.
  • the battery energy storage sector which is related to the electronics industry, has also developed rapidly with the development of the electronics industry.
  • the energy storage system of battery energy storage can be a single energy storage system.
  • the existing technology connects a certain number of energy storage units in parallel to the system.
  • the voltage of each energy storage unit cannot be completely consistent.
  • the embodiments of the present application provide an energy storage system control method and related devices, which can perform energy storage control according to the terminal voltage difference of the battery cluster in the energy storage system and a preset voltage difference threshold, thereby reducing the situation where the terminal voltage difference is too large, thereby reducing the occurrence of large circulating currents between the battery clusters, and improving the stability of the energy storage system.
  • a first aspect of an embodiment of the present application provides an energy storage system control method, the method being applied to an energy storage system, the energy storage system comprising a plurality of battery clusters, the method comprising:
  • At least one of the battery clusters associated with one of the voltage differences in the target voltage difference set is controlled to be charged/discharged.
  • the terminal voltage of each battery cluster in the multiple battery clusters is obtained, and all voltage differences between the terminal voltages of the multiple battery clusters that are greater than or equal to a preset voltage difference threshold are determined as a target voltage difference set based on the terminal voltage of each battery cluster in the multiple battery clusters, wherein the preset voltage difference threshold is a voltage difference threshold when a circulating current is generated between any two of the multiple battery clusters, and charge/discharge control is performed on at least one of the battery clusters associated with one of the voltage differences in the target voltage difference set.
  • energy storage control can be performed based on the terminal voltage difference of the battery clusters in the energy storage system and the preset voltage difference threshold, thereby reducing the situation where the terminal voltage difference is too large, thereby reducing the occurrence of large circulating currents between the battery clusters, and improving the stability of the energy storage system.
  • a second aspect of an embodiment of the present application provides an energy storage system control device, the device is applied to an energy storage system, the energy storage system includes a plurality of battery clusters, the device includes:
  • an acquisition unit configured to acquire a terminal voltage of each battery cluster among the plurality of battery clusters
  • a determining unit configured to determine, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set, wherein the preset voltage difference threshold is a voltage difference threshold when a circulating current is generated between any two of the plurality of battery clusters;
  • a control unit is used to control the charge/discharge of at least one of the battery clusters associated with one of the voltage differences in the target voltage difference set.
  • a third aspect of an embodiment of the present application provides a terminal, comprising a processor, an input device, an output device and a memory, wherein the processor, input device, output device and memory are interconnected, wherein the memory is used to store a computer program, the computer program comprises program instructions, and the processor is configured to call the program instructions to execute the step instructions in the first aspect of the embodiment of the present application.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program enables a computer to execute part or all of the steps described in the first aspect of the embodiments of the present application.
  • a fifth aspect of the embodiments of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute some or all of the steps described in the first aspect of the embodiments of the present application.
  • the computer program product may be a software installation package.
  • FIG1 is a schematic diagram of an energy storage system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a flow chart of an energy storage system control method provided in an embodiment of the present application.
  • FIG3 is a flow chart of another energy storage system control method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a terminal provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of an energy storage system control device provided in an embodiment of the present application.
  • the energy storage system includes multiple battery clusters, which are connected in parallel.
  • the terminal voltage of the battery cluster can be obtained, and the terminal voltage voltage difference can be obtained based on the terminal voltage, and all voltage differences between the terminal voltages that are greater than or equal to the preset voltage difference threshold are used as the target voltage difference set, and at least one battery cluster related to a voltage difference in the target voltage difference set is charged/discharged and controlled, and the preset voltage difference threshold is set by empirical value or historical data.
  • FIG 2 is a flow chart of an energy storage system control method provided in an embodiment of the present application.
  • the energy storage system control method is applied to an energy storage system, the energy storage system includes multiple battery clusters, and the energy storage system control method includes:
  • the terminal voltage of the battery cluster can be obtained and stored through voltage detection sensors, etc.
  • the voltage detection sensor can be built-in to the energy storage system or an external voltage detection sensor, etc., which is not specifically limited here.
  • the preset voltage difference threshold is a voltage difference threshold when a circulating current is generated between any two of the multiple battery clusters.
  • the target voltage difference set When determining the target voltage difference set, it can be based on the voltage difference between every two battery clusters in the multiple battery clusters, and all voltage differences greater than the preset voltage difference threshold are used as the target voltage difference set. It can also be that the voltage difference between the battery clusters in the multiple battery clusters and the lowest terminal voltage therein is greater than the preset voltage difference threshold as the target voltage difference set, and it can also be that the voltage difference between the battery clusters in the multiple battery clusters and the maximum terminal voltage therein is greater than the preset voltage difference threshold as the target voltage difference set. In this case, the amount of calculation can be reduced, the calculation rate can be increased, and the rate of obtaining the target voltage difference set can be increased. At the same time, it can also simplify the subsequent process when performing charging and discharging processing, and further improve efficiency.
  • the preset voltage difference threshold is set by empirical value or historical data.
  • multiple voltage differences between the terminal voltage of each battery cluster and the terminal voltage of other battery clusters are obtained, and all voltage differences whose voltage differences are higher than a preset voltage difference threshold are taken as a target voltage difference set.
  • a target terminal voltage is obtained, which is the lowest or highest terminal voltage among multiple battery clusters; the difference between the terminal voltage of each battery cluster and the target terminal voltage is obtained to obtain multiple voltage differences, and all voltage differences whose absolute values are higher than a preset voltage difference threshold are taken as a target voltage difference set, etc.
  • the high-voltage battery cluster in the battery cluster related to the voltage difference can be discharged to reduce the voltage difference, and finally the voltage difference between the two battery clusters corresponding to the voltage difference is less than the preset voltage difference threshold, until all the voltage differences in the target voltage difference set are adjusted to below the preset voltage difference threshold, and then all the battery clusters are discharged, so as to reduce the situation where the voltage difference between the battery clusters is too large, reduce the occurrence of circulating current, and at the same time, because the terminal voltages between the battery clusters tend to be the same, the battery
  • the temperature difference between the cells in the cluster makes the performance and life of the cells within the system tend to be consistent, reducing the problems caused by cell inconsistency and further improving the performance of the energy storage system.
  • a possible method for determining, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set includes:
  • A1 acquiring a plurality of voltage differences between the terminal voltage of each battery cluster and the terminal voltages of other battery clusters in the plurality of battery clusters;
  • the multiple voltage differences between the terminal voltage of each battery cluster and the terminal voltages of other battery clusters in the multiple battery clusters can be understood as the voltage difference is obtained by performing a difference operation between the terminal voltage of each battery cluster and the terminal voltages of other battery clusters.
  • the preset voltage difference threshold is set by empirical value or historical data.
  • another possible method for determining, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set includes:
  • the preset voltage difference threshold is set by empirical value or historical data.
  • the target voltage difference set determined by the above method is calculated relative to each two terminal voltages, which can reduce the amount of calculation and improve the operation efficiency.
  • another possible method for determining, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set includes:
  • the voltage difference between the terminal voltage of each battery cluster and the second target terminal voltage can be determined as a plurality of voltage differences, thereby ensuring that the voltage difference is a positive number.
  • the target voltage difference set determined by the above method is calculated relative to the voltage difference of each two terminal voltages, which can reduce the amount of calculation and improve the operation efficiency.
  • another possible method for determining, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set includes:
  • D3 calculating the voltage difference between each terminal voltage in the terminal voltage sequence and the first target terminal voltage in order from large to small, until the voltage difference between one terminal voltage in the terminal voltage sequence and the first target terminal voltage is less than the preset voltage difference threshold, and the one terminal voltage is the first critical voltage;
  • the method of sorting the terminal voltage of each battery cluster in a plurality of battery clusters to obtain a terminal voltage sequence can be to sort the terminal voltage of each battery cluster in a plurality of battery clusters in ascending order to obtain a terminal voltage sequence, or can be to sort the terminal voltage of each battery cluster in a plurality of battery clusters in descending order to obtain a terminal voltage sequence.
  • the voltage differences between each terminal voltage in the terminal voltage sequence and the first target terminal voltage are calculated in sequence from large to small, and subsequent calculations are stopped after the first critical voltage is determined. This can reduce the number of voltage difference calculations and further improve the efficiency of acquiring the target voltage difference set.
  • another possible method for determining, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set includes:
  • E3. Calculate the voltage difference between each terminal voltage in the terminal voltage sequence and the second target terminal voltage in order from small to large, until the voltage difference between one terminal voltage in the terminal voltage sequence and the second target terminal voltage is less than the preset voltage difference threshold, and the one terminal voltage is the second critical voltage;
  • the method of sorting the terminal voltage of each battery cluster in a plurality of battery clusters to obtain a terminal voltage sequence can be to sort the terminal voltage of each battery cluster in a plurality of battery clusters in ascending order to obtain a terminal voltage sequence, or can be to sort the terminal voltage of each battery cluster in a plurality of battery clusters in descending order to obtain a terminal voltage sequence.
  • the voltage differences between each terminal voltage in the terminal voltage sequence and the second target terminal voltage are calculated in order from small to large, and subsequent calculations are stopped after the second critical voltage is determined. This can reduce the number of voltage difference calculations and further improve the efficiency of acquiring the target voltage difference set.
  • a possible method for controlling the charge/discharge of at least one of the battery clusters associated with one of the voltage differences in the target voltage difference set includes:
  • F1 Obtaining a first terminal voltage of a first battery cluster and a second terminal voltage of a second battery cluster corresponding to a first target voltage difference, and obtaining a current charge and discharge state of the energy storage system, wherein the multiple battery clusters include the first battery cluster and the second battery cluster, the first target voltage difference is any one of the target voltage difference set, and the first terminal voltage is greater than the second terminal voltage;
  • a possible method for adjusting the first battery cluster or the second battery cluster according to the current charge and discharge state to obtain an adjusted first terminal voltage or an adjusted second terminal voltage includes:
  • the second battery cluster is charged to obtain the adjusted second terminal voltage; or if the current charge and discharge state is a discharging state, the first battery cluster is discharged to obtain the adjusted first terminal voltage.
  • the second battery cluster is charged at low power to obtain the adjusted second terminal voltage; in the discharge state, the first battery cluster is discharged at low power, which can be understood as a power range lower than a preset power value, and the preset power value is set by experience or historical data.
  • charge/discharge processing may also be performed on multiple battery clusters, specifically as follows:
  • the plurality of battery clusters are charged/discharged according to the current charge/discharge state.
  • the current charge and discharge state is the charging state
  • multiple battery clusters are charged
  • the current charge and discharge state is the discharging state
  • multiple battery clusters are discharged, so that the terminal voltages of multiple battery clusters during charge/discharge are within a certain range, which can reduce the situation where the terminal voltage difference is too large, thereby reducing the occurrence of large circulation currents between battery clusters and improving the stability of the energy storage system.
  • the subsequent charge and discharge process can also be corrected to avoid the situation where the voltage difference is too large again, thereby avoiding the situation where the circulating current occurs again, so as to further improve the reliability of the energy storage system.
  • the method is specifically as follows:
  • G1. Determine a third battery cluster and a fourth battery cluster, wherein the third battery cluster is a battery cluster having the highest terminal voltage among the multiple battery clusters after charge/discharge processing, and the fourth battery cluster is a battery cluster having the lowest terminal voltage among the multiple battery clusters after charge/discharge processing;
  • the third battery cluster or the fourth battery cluster is charged/discharged according to the current charge/discharge state to obtain an adjusted third terminal voltage or an adjusted fourth terminal voltage, wherein the difference between the adjusted third terminal voltage and the fourth terminal voltage is less than the preset voltage difference threshold, or the difference between the third terminal voltage and the adjusted fourth terminal voltage is less than the preset voltage difference threshold.
  • a method for charging/discharging the third battery cluster or the fourth battery cluster according to the current charge/discharge state to obtain the adjusted third terminal voltage or the adjusted fourth terminal voltage may be: in the charging state, the fourth battery cluster is charged at a low power; in the discharging state, the third battery cluster is discharged at a low power, and the low power can be understood as a power range lower than a preset power value, and the preset power value is set by an experience value or historical data.
  • the third battery cluster and the fourth battery cluster can be obtained, the third battery cluster is the battery cluster with the highest terminal voltage among the multiple battery clusters after the charge and discharge processing, and the fourth battery cluster is the battery cluster with the lowest terminal voltage among the multiple battery clusters after the charge and discharge processing.
  • the voltage difference adjustment processing is performed, so that the subsequent charge and discharge process can be corrected to avoid the situation of excessive voltage difference again, thereby avoiding the recurrence of circulating current, so as to further improve the reliability of the energy storage system.
  • FIG 3 is a flow chart of an energy storage system control method provided in an embodiment of the present application.
  • the energy storage system control method is applied to an energy storage system, the energy storage system includes multiple battery clusters, and the energy storage system control method includes:
  • the 302. Determine, according to the terminal voltage of each battery cluster in the multiple battery clusters, all voltage differences between the terminal voltages of the multiple battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set, wherein the preset voltage difference threshold is a voltage difference threshold when a circulating current is generated between any two of the multiple battery clusters;
  • the third battery cluster or the fourth battery cluster is charged/discharged according to the current charge/discharge state to obtain an adjusted third terminal voltage or an adjusted fourth terminal voltage, wherein the difference between the adjusted third terminal voltage and the fourth terminal voltage is less than the preset voltage difference threshold, or the difference between the third terminal voltage and the adjusted fourth terminal voltage is less than the preset voltage difference threshold.
  • a third battery cluster and a fourth battery cluster can be obtained, the third battery cluster being the battery cluster with the highest terminal voltage among the multiple battery clusters after the charge and discharge processing, and the fourth battery cluster being the battery cluster with the lowest terminal voltage among the multiple battery clusters after the charge and discharge processing.
  • a voltage difference adjustment process is performed, so that the subsequent charge and discharge process can be corrected to avoid the situation of excessive voltage difference again, thereby avoiding the situation of circulating current again, so as to further improve the reliability of the energy storage system.
  • FIG. 4 is a schematic diagram of the structure of a terminal provided in an embodiment of the present application. As shown in the figure, it includes a processor, an input device, an output device and a memory, and the processor, the input device, the output device and the memory are interconnected, wherein the memory is used to store a computer program, the computer program includes program instructions, the processor is configured to call the program instructions, and the program includes instructions for executing the following steps;
  • At least one of the battery clusters associated with one of the voltage differences in the target voltage difference set is controlled to be charged/discharged.
  • the terminal includes a hardware structure and/or software module corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the embodiment of the present application can divide the terminal into functional units according to the above method example.
  • each functional unit can be divided according to each function, or two or more functions can be integrated into one processing unit.
  • the unit can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • FIG5 is a schematic diagram of the structure of an energy storage system control device provided in an embodiment of the present application.
  • the device is applied to an energy storage system, the energy storage system includes a plurality of battery clusters, and the device includes:
  • An acquisition unit 501 is used to acquire a terminal voltage of each battery cluster among the multiple battery clusters;
  • a determining unit 502 configured to determine, according to the terminal voltage of each battery cluster in the plurality of battery clusters, all voltage differences between the terminal voltages of the plurality of battery clusters that are greater than or equal to a preset voltage difference threshold as a target voltage difference set, wherein the preset voltage difference threshold is a voltage difference threshold when a circulating current is generated between any two of the plurality of battery clusters;
  • the control unit 503 is configured to control the charge/discharge of at least one of the battery clusters associated with one of the voltage differences in the target voltage difference set.
  • the determining unit 502 is configured to:
  • All voltage differences among the multiple voltage differences that are greater than or equal to the preset voltage difference threshold are taken as a target voltage difference set.
  • the determining unit 502 is configured to:
  • All voltage differences among the multiple voltage differences that are greater than or equal to the preset voltage difference threshold are taken as a target voltage difference set.
  • the determining unit 502 is configured to:
  • the first target terminal voltage is a highest terminal voltage among terminal voltages of the plurality of battery clusters
  • All voltage differences among the multiple voltage differences that are greater than or equal to the preset voltage difference threshold are taken as a target voltage difference set.
  • the determining unit 502 is configured to:
  • the determining unit 502 is configured to:
  • the second target terminal voltage is a highest terminal voltage among the terminal voltages of the plurality of battery clusters
  • control unit 503 is used to:
  • the first battery cluster or the second battery cluster is charged/discharged according to the current charge/discharge state to obtain an adjusted first terminal voltage or an adjusted second terminal voltage, wherein a voltage difference between the adjusted first terminal voltage and the second terminal voltage is less than a preset voltage difference threshold, or a voltage difference between the adjusted second terminal voltage and the first terminal voltage is less than the preset voltage difference threshold.
  • control unit 503 in the aspect of obtaining an adjusted first terminal voltage or an adjusted second terminal voltage by controlling the first battery cluster or the second battery cluster according to the current charge and discharge state, is configured to:
  • the current charge-discharge state is a charging state, charging the second battery cluster to obtain the adjusted second terminal voltage; or,
  • the first battery cluster is discharged to obtain the adjusted first terminal voltage.
  • the energy storage system control device after performing charge/discharge control on at least one of the battery clusters associated with one of the voltage differences in the target voltage difference set, is further configured to:
  • the plurality of battery clusters are charged/discharged according to the current charge/discharge state.
  • the energy storage system control device when the voltage difference between the plurality of battery clusters corresponding to all target voltage differences in the target voltage difference set is less than the preset voltage difference threshold, after charging/discharging the plurality of battery clusters according to the current charging/discharging state, the energy storage system control device is further used to:
  • the third battery cluster is a battery cluster having the highest terminal voltage among the multiple battery clusters after charge/discharge processing
  • the fourth battery cluster is a battery cluster having the lowest terminal voltage among the multiple battery clusters after charge/discharge processing
  • the third battery cluster or the fourth battery cluster is charged/discharged according to the current charge/discharge state to obtain an adjusted third terminal voltage or an adjusted fourth terminal voltage, wherein the difference between the adjusted third terminal voltage and the fourth terminal voltage is less than the preset voltage difference threshold, or the difference between the third terminal voltage and the adjusted fourth terminal voltage is less than the preset voltage difference threshold.
  • the multiple battery clusters are connected in parallel.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute part or all of the steps of any energy storage system control method recorded in the above method embodiments.
  • An embodiment of the present application also provides a computer program product, which includes a non-transitory computer-readable storage medium storing a computer program, and the computer program enables a computer to execute part or all of the steps of any energy storage system control method recorded in the above method embodiments.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only schematic, such as the division of the units, which is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, and the indirect coupling or communication connection of the device or unit can be electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional units in the various embodiments of the application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware or in the form of software program modules.
  • the integrated unit is implemented in the form of a software program module and sold or used as an independent product, it can be stored in a computer-readable memory.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, including a number of instructions to enable a computer device (which can be a personal computer, server or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned memory includes: U disk, read-only memory (ROM), random access memory (RAM), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • a person skilled in the art may understand that all or part of the steps in the various methods of the above embodiments may be completed by instructing the relevant hardware through a program, and the program may be stored in a computer-readable memory, which may include: a flash drive, a read-only memory, a random access memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种储能系统控制方法及相关装置,所述方法应用于储能系统,储能系统包括多个电池簇,该方法包括:获取多个电池簇中每个电池簇的端电压;根据多个电池簇中每个电池簇的端电压确定多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,预设电压差阈值为多个电池簇中任意两个电池簇间产生环流时的电压差阈值;以及对与目标电压差集合中的一个电压差相关的至少一个电池簇进行充/放电控制,能够根据储能系统中电池簇的端电压电压差和预设电压差阈值进行储能控制,从而能够减少端电压压差过大的情况,进而减少了电池簇之间的大环流的出现,提升了储能系统的稳定性。

Description

储能系统控制方法及相关装置
本申请要求于2022年12月09日提交中国专利局、申请号为202211582038.5、申请名称为“储能系统控制方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术领域,具体涉及一种储能系统控制方法及相关装置。
背景技术
随着电子行业的快速发展,作为与电子行业相关的电池储能板块也是随着电子行业的发展得到了较快的发展。在电池储能方面的储能系统中,储能系统可以是单一储能系统,同时为满足储能系统扩容需求,现有技术将一定数量的储能单元并联接入系统。但由于电池出厂容量、内阻、出厂时间等的不同,各储能单元的电压不可能完全一致,当储能单元间的压差过大时,各储能单元同时并入储能系统后会引发诸多问题(例如储能单元间会形成很大的环流),影响储能系统的正常运行,导致了储能系统的可靠性降低。
发明内容
本申请实施例提供一种储能系统控制方法及相关装置,能够根据储能系统中电池簇的端电压电压差和预设电压差阈值进行储能控制,从而能够减少端电压压差过大的情况,进而减少了电池簇之间的大环流的出现,提升了储能系统的稳定性。
本申请实施例的第一方面提供了一种储能系统控制方法,所述方法应用于储能系统,所述储能系统包括多个电池簇,所述方法包括:
获取所述多个电池簇中每个电池簇的端电压;
根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;以及
对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
本示例中,获取所述多个电池簇中每个电池簇的端电压,根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值,以及对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制,因此,能够根据储能系统中电池簇的端电压电压差和预设电压差阈值进行储能控制,从而能够减少端电压压差过大的情况,进而减少了电池簇之间的大环流的出现,提升了储能系统的稳定性。
本申请实施例的第二方面提供了一种储能系统控制装置,所述装置应用于储能系统,所述储能系统包括多个电池簇,所述装置包括:
获取单元,用于获取所述多个电池簇中每个电池簇的端电压;
确定单元,用于根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;
控制单元,用于对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
本申请实施例的第三方面提供一种终端,包括处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如本申请实施例第一方面中的步骤指令。
本申请实施例的第四方面提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
本申请实施例的第五方面提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供了一种储能系统的示意图;
图2为本申请实施例提供了一种储能系统控制方法的流程示意图;
图3为本申请实施例提供了另一种储能系统控制方法的流程示意图;
图4为本申请实施例提供的一种终端的结构示意图;
图5为本申请实施例提供了一种储能系统控制装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
为了更好的理解本申请实施例提供的储能系统控制方法,下面首先对储能系统进行简要介绍。如图1所示,储能系统中包括有多个电池簇,该多个电池簇并联连接,在对电池簇进行充放电时,可以获取电池簇的端电压,以及根据该端电压来获取到端电压电压差,并将端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,根据目标电压差集合中的一个电压差相关的至少一个电池簇进行充/放电控制,预设电压差阈值是通过经验值或历史数据设定的。从而能够减少端电压压差过大的情况,进而减少了电池簇之间的大环流的出现,提升了储能系统的稳定性。
请参阅图2,图2为本申请实施例提供了一种储能系统控制方法的流程示意图。如图2所示,储能系统控制方法应用于储能系统,储能系统包括多个电池簇,储能系统控制方法包括:
201、获取所述多个电池簇中每个电池簇的端电压。
储能系统在能量管理系统的调度下进行充放电时,为了降低电池簇之间压差过大,导致电池簇之间形成环流的情况,可以通过电压检测传感器等来获取到电池簇的端电压,并进行存储。电压检测传感器可以是内置于储能系统中,也可以是外部的电压检测传感器等,此处不做具体限定。
202、根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值。
在确定目标电压差集合时,可以是根据多个电池簇中每两个电池簇之间的电压差,并将大于预设电压差阈值的全部电压差作为目标电压差集合。也可以是多个电池簇中的电池簇与其中的最低端电压之间的电压差中大于预设电压差阈值的电压差作为目标电压差集合,还可以是多个电池簇中的电池簇与其中的最大端电压之间的电压差中大于预设电压差阈值的电压差作为目标电压差集合此时则可以降低运算量,提升运算速率,进而提升目标电压差集合获取的速率,同时也能简化后续在进行充放电处理时的流程,进一步的提升效率。其中,预设电压差阈值通过经验值或历史数据设定。
具体例如:获取所述多个电池簇中每个电池簇的端电压与其他电池簇的端电压之间的多个电压差,并将电压差高于预设电压差阈值的所有电压差作为目标电压差集合。或者,获取目标端电压,目标端电压为多个电池簇中端电压最低或最高的端电压;获取每个电池簇的端电压与所述目标端电压之间的差值以得到多个电压差,并将电压差的绝对值高于预设电压差阈值的所有电压差作为目标电压差集合等。
203、对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
具体例如,以放电处理为例进行说明,在储能系统整体处于放电状态时,则可以将电压差相关的电池簇中的高电压的电池簇进行放电处理,以降低该电压差,最终使得该电压差对应的两个电池簇之间的电压差小于预设电压差阈值,直至将目标电压差集合中所有的电压差均调整到预设电压差阈值以下,再对所有的电池簇进行放电处理,从而以降低电池簇之间电压差过大的情况,减少环流的出现,同时由于电池簇之间的端电压趋于相同则也能降低电池 簇中的电芯之间的温度差,从而使系统内部的电芯的性能,寿命趋于一致,降低电芯不一致性带来的问题,进一步提升储能系统的性能。
在一个可能的实现方式中,一种可能的根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合的方法,包括:
A1、获取所述多个电池簇中每个所述电池簇的端电压与其他所述电池簇的端电压之间的多个电压差;
A2、将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
其中,多个电池簇中每个电池簇的端电压与其他电池簇的端电压之间的多个电压差可以理解为,每个电池簇的端电压均与其他电池簇的端电压之间进行差值运算得到电压差。预设电压差阈值通过经验值或历史数据设定。
在一个可能的实现方式中,另一种可能的根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合的方法,包括:
B1、获取第一目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最低的端电压;
B2、获取每个所述电池簇的端电压与所述第一目标端电压之间的多个电压差;
B3、将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
预设电压差阈值通过经验值或历史数据设定,通过上述方法确定的目标电压差集合相对于每两个端电压均计算电压差的方式,能够减少计算量,提升运算效率。
在一个可能的实现方式中,另一种可能的根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合的方法,包括:
C1、获取第二目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最高的端电压;
C2、获取每个所述电池簇的端电压与所述第二目标端电压之间的多个电压差;
C3、将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
其中,由于第二目标端电压为最高端电压,则每个电池簇的端电压与第二目标端电压之间的电压差可以是将第二目标端电压与每个电池簇的端电压之差,确定为多个电压差,从而可以保证电压差为正数。
通过上述方法确定的目标电压差集合相对于每两个端电压均计算电压差的方式,能够减少计算量,提升运算效率。
在一个可能的实现方式中,另一种可能的根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合的方法,包括:
D1、获取第一目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最低的端电压;
D2、将所述多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列;
D3、按照从大到小的顺序,依次计算所述端电压序列中的各个端电压与所述第一目标端电压之间的电压差,直至所述端电压序列中的一个端电压与所述第一目标端电压之间的电压差小于所述预设电压差阈值,所述一个端电压为第一临界电压;
D4、将所述端电压序列中大于所述第一临界电压的端电压与所述第一目标端电压之间的所有电压差作为所述目标电压差集合。
其中,将多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列的方法可以是将多个电池簇中每个所述电池簇的端电压进行升序排序,以得到端电压序列,也可以是将多个电池簇中每个所述电池簇的端电压进行降序排序,以得到端电压序列。
本示例中,由于按照从大到小的顺序,依次计算端电压序列中的各个端电压与第一目标端电压之间的电压差,并在确定出第一临界电压后停止后续的计算,从而可以减少电压差的计算次数,进一步的提升了目标电压差集合获取时的效率。
在一个可能的实现方式中,另一种可能的根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合的方法,包括:
E1、获取第二目标端电压,所述第二目标端电压为所述多个电池簇的端电压中最高的端电压;
E2、将所述多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列;
E3、按照从小到大的顺序,依次计算所述端电压序列中的各个端电压与所述第二目标端电压之间的电压差,直至所述端电压序列中的一个端电压与所述第二目标端电压之间的电压差小于所述预设电压差阈值,所述一个端电压为第二临界电压;
E4、将所述端电压序列中小于所述第二临界电压的端电压与所述第二目标端电压之间的所有电压差作为所述目标电压差集合。
其中,将多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列的方法可以是将多个电池簇中每个所述电池簇的端电压进行升序排序,以得到端电压序列,也可以是将多个电池簇中每个所述电池簇的端电压进行降序排序,以得到端电压序列。
本示例中,由于按照从小到大的顺序,依次计算端电压序列中的各个端电压与第二目标端电压之间的电压差,并在确定出第二临界电压后停止后续的计算,从而可以减少电压差的计算次数,进一步的提升了目标电压差集合获取时的效率。
在一个可能的实现方式中,一种可能的对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制的方法,包括:
F1、获取第一目标电压差对应的第一电池簇的第一端电压和第二电池簇的第二端电压,以及获取所述储能系统的当前充放电状态,其中,所述多个电池簇包括所述第一电池簇和所述第二电池簇,所述第一目标电压差为所述目标电压差集合中的任一个目标电压差,所述第一端电压大于所述第二端电压;
F2、根据所述当前充放电状态对所述第一电池簇或所述第二电池簇进行充/放电处理,以得到调整后的第一端电压或调整后的第二端电压,其中,所述调整后的第一端电压与第二端电压之间的电压差小于所述预设电压差阈值,或,所述调整后的第二端电压与所述第一端电压之间的电压差小于所述预设电压差阈值。
一种可能的根据所述当前充放电状态对所述第一电池簇或所述第二电池簇,以得到调整后的第一端电压或调整后的第二端电压的方法包括:
若所述当前充放电状态为充电状态,则对所述第二电池簇进行充电处理,以得到所述调整后的第二端电压;或者,若所述当前充放电状态为放电状态,则对所述第一电池簇进行放电处理,以得到所述调整后的第一端电压。
对第二电池簇以小功率进行充电以得到所述调整后的第二端电压;放电状态时,则对第一电池簇以小功率进行放电,该小功率可以理解为低于预设功率值的功率范围,该预设功率值通过经验值或历史数据设定。
在对第一目标电压差对应的电池簇进行充/放电处理后,还需要对目标电压差集合中的其他电压差按照对第一目标电压差对应的电池簇进行充/放电处理的方法进行处理,以使得目标电压差集合中的所有电压差对应的电池簇,在行充/放电处理后的电压差均小于预设电压差阈值,从而完成对储能系统的充/放电控制。
在一个可能的实现方式中,在对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制之后,还可以对多个电池簇进行充放电处理,具体如下:
在所述目标电压差集合中的所有目标电压差对应的多个所述电池簇之间的电压差小于所述预设电压差阈值的情况下,根据所述当前充放电状态对所述多个电池簇进行充/放电处理。
具体例如,当前充放电状态为充电状态时,则对多个电池簇进行充电处理,当前充放电状态为放电状态时,则对多个电池簇进行放电处理,从而能够使得多个电池簇在进行充/放电时的端电压在一定范围内,能够减少端电压压差过大的情况,进而减少了电池簇之间的大环流的出现,提升了储能系统的稳定性。
在一个可能的实现方式中,在一个可能的实现方式中,在所述根据所述当前充放电状态对所述多个电池簇进行充放电处理后,还可以对后续的充放电过程进行校正,避免再次出现电压差过大的情况,从而避免再次出现环流的情况,以进一步提升储能系统的可靠性,该方法具体如下:
G1、确定第三电池簇和第四电池簇,所述第三电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最高的电池簇,所述第四电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最低的电池簇;
G2、若所述第三电池簇的第三端电压和所述第四电池簇的第四端电压之间的电压差大于或等于预设电压差阈值,则根据所述当前充放电状态对所述第三电池簇或所述第四电池簇进行充/放电处理,以得到调整后的第三端电压或调整后的第四端电压,其中,所述调整后的第三端电压与所述第四端电压之间的差值小于所述预设电压差阈值,或,所述第三端电压与调整后的第四端电压之间的差值小于所述预设电压差阈值。
根据所述当前充放电状态对所述第三电池簇或所述第四电池簇进行充/放电处理,以得到调整后的第三端电压或调整后的第四端电压的方法可以是:充电状态时,则对第四电池簇以小功率进行充电;放电状态时,则对第三电池簇以小功率进行放电,该小功率可以理解为低于预设功率值的功率范围,该预设功率值通过经验值或历史数据设定。
本示例中,则可以获取第三电池簇和第四电池簇,第三电池簇为获取多个电池簇在充放电处理后,多个电池簇中端电压最高的电池簇,第四电池簇为获取多个电池簇在充放电处理后,多个电池簇中端电压最低的电池簇,在第三电池簇和第四电池簇之间的电压差大于预设电压差阈值时进行压差调整处理,从而可以通过对后续的充放电过程进行校正,避免再次出现电压差过大的情况,从而避免再次出现环流的情况,以进一步提升储能系统的可靠性。
请参阅图3,图3为本申请实施例提供了一种储能系统控制方法的流程示意图。如图3所示,储能系统控制方法应用于储能系统,储能系统包括多个电池簇,储能系统控制方法包括:
301、获取所述多个电池簇中每个电池簇的端电压;
302、根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;
303、对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制;
304、确定第三电池簇和第四电池簇,所述第三电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最高的电池簇,所述第四电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最低的电池簇;
305、若所述第三电池簇的第三端电压和所述第四电池簇的第四端电压之间的电压差大于或等于预设电压差阈值,则根据所述当前充放电状态对所述第三电池簇或所述第四电池簇进行充/放电处理,以得到调整后的第三端电压或调整后的第四端电压,其中,所述调整后的第三端电压与所述第四端电压之间的差值小于所述预设电压差阈值,或,所述第三端电压与调整后的第四端电压之间的差值小于所述预设电压差阈值。
本示例中,则可以获取第三电池簇和第四电池簇,第三电池簇为获取多个电池簇在充放电处理后,多个电池簇中端电压最高的电池簇,第四电池簇为获取多个电池簇在充放电处理后,多个电池簇中端电压最低的电池簇,在第三电池簇和第四电池簇之间的电压差大于预设电压差阈值时进行压差调整处理,从而可以通过对后续的充放电过程进行校正,避免再次出现电压差过大的情况,从而避免再次出现环流的情况,以进一步提升储能系统的可靠性。
与上述实施例一致的,请参阅图4,图4为本申请实施例提供的一种终端的结构示意图,如图所示,包括处理器、输入设备、输出设备和存储器,处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,上述程序包括用于执行以下步骤的指令;
获取所述多个电池簇中每个电池簇的端电压;
根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;以及
对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成 的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
与上述一致的,请参阅图5,图5为本申请实施例提供了一种储能系统控制装置的结构示意图。如图5所示,所述装置应用于储能系统,所述储能系统包括多个电池簇,所述装置包括:
获取单元501,用于获取所述多个电池簇中每个电池簇的端电压;
确定单元502,用于根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;
控制单元503,用于对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
在一个可能的实现方式中,所述确定单元502用于:
获取所述多个电池簇中每个所述电池簇的端电压与其他所述电池簇的端电压之间的多个电压差;
将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
在一个可能的实现方式中,所述确定单元502用于:
获取第一目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最低的端电压;
获取每个所述电池簇的端电压与所述第一目标端电压之间的多个电压差,
将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
在一个可能的实现方式中,所述确定单元502用于:
获取第二目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最高的端电压;
获取每个所述电池簇的端电压与所述第二目标端电压之间的多个电压差;
将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
在一个可能的实现方式中,所述确定单元502用于:
获取第一目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最低的端电压;
将所述多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列;
按照从大到小的顺序,依次计算所述端电压序列中的各个端电压与所述第一目标端电压之间的电压差,直至所述端电压序列中的一个端电压与所述第一目标端电压之间的电压差小于所述预设电压差阈值,所述一个端电压为第一临界电压;
将所述端电压序列中大于所述第一临界电压的端电压与所述第一目标端电压之间的所有电压差作为所述目标电压差集合。
在一个可能的实现方式中,所述确定单元502用于:
获取第二目标端电压,所述第二目标端电压为所述多个电池簇的端电压中最高的端电压;
将所述多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列;
按照从小到大的顺序,依次计算所述端电压序列中的各个端电压与所述第二目标端电压之间的电压差,直至所述端电压序列中的一个端电压与所述第二目标端电压之间的电压差小于所述预设电压差阈值,所述一个端电压为第二临界电压;
将所述端电压序列中小于所述第二临界电压的端电压与所述第二目标端电压之间的所有电压差作为所述目标电压差集合。
在一个可能的实现方式中,所述控制单元503用于:
获取第一目标电压差对应的第一电池簇的第一端电压和第二电池簇的第二端电压,以及获取所述储能系统的当前充放电状态,其中,所述多个电池簇包括所述第一电池簇和所述第二电池簇,所述第一目标电压差为所述目标电压差集合中的任一个目标电压差,所述第一端电压大于所述第二端电压;
根据所述当前充放电状态对所述第一电池簇或所述第二电池簇进行充/放电处理,以得到调整后的第一端电压或调整后的第二端电压,其中,所述调整后的第一端电压与第二端电压之间的电压差小于所述预设电压差阈值,或,所述调整后的第二端电压与所述第一端电压之间的电压差小于所述预设电压差阈值。
在一个可能的实现方式中,在所述根据所述当前充放电状态对所述第一电池簇或所述第二电池簇,以得到调整后的第一端电压或调整后的第二端电压方面,所述控制单元503用于:
若所述当前充放电状态为充电状态,则对所述第二电池簇进行充电处理,以得到所述调整后的第二端电压;或者,
若所述当前充放电状态为放电状态,则对所述第一电池簇进行放电处理,以得到所述调整后的第一端电压。
在一个可能的实现方式中,对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制之后,所述储能系统控制装置还用于:
在所述目标电压差集合中的所有目标电压差对应的多个所述电池簇之间的电压差小于所述预设电压差阈值的情况下,根据所述当前充放电状态对所述多个电池簇进行充/放电处理。
在一个可能的实现方式中,在所述目标电压差集合中的所有目标电压差对应的多个所述电池簇之间的电压差小于所述预设电压差阈值的情况下,根据所述当前充放电状态对所述多个电池簇进行充/放电处理之后,所述储能系统控制装置还用于:
确定第三电池簇和第四电池簇,所述第三电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最高的电池簇,所述第四电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最低的电池簇;
若所述第三电池簇的第三端电压和所述第四电池簇的第四端电压之间的电压差大于或等于预设电压差阈值,则根据所述当前充放电状态对所述第三电池簇或所述第四电池簇进行充/放电处理,以得到调整后的第三端电压或调整后的第四端电压,其中,所述调整后的第三端电压与所述第四端电压之间的差值小于所述预设电压差阈值,或,所述第三端电压与调整后的第四端电压之间的差值小于所述预设电压差阈值。
在一个可能的实现方式中,所述多个电池簇并联。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种储能系统控制方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种储能系统控制方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据 本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在申请明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器、随机存取器、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (14)

  1. 一种储能系统控制方法,其特征在于,所述方法应用于储能系统,所述储能系统包括多个电池簇,所述方法包括:
    获取所述多个电池簇中每个电池簇的端电压;
    根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;以及
    对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,包括:
    获取所述多个电池簇中每个所述电池簇的端电压与其他所述电池簇的端电压之间的多个电压差;
    将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,包括:
    获取第一目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最低的端电压;
    获取每个所述电池簇的端电压与所述第一目标端电压之间的多个电压差;
    将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,包括:
    获取第二目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最高的端电压;
    获取每个所述电池簇的端电压与所述第二目标端电压之间的多个电压差;
    将所述多个电压差中大于或者等于所述预设电压差阈值的所有电压差作为目标电压差集合。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,包括:
    获取第一目标端电压,所述第一目标端电压为所述多个电池簇的端电压中最低的端电压;
    将所述多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列;
    按照从大到小的顺序,依次计算所述端电压序列中的各个端电压与所述第一目标端电压之间的电压差,直至所述端电压序列中的一个端电压与所述第一目标端电压之间的电压差小于所述预设电压差阈值,所述一个端电压为第一临界电压;
    将所述端电压序列中大于所述第一临界电压的端电压与所述第一目标端电压之间的所有电压差作为所述目标电压差集合。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述多个电池簇中每个电池簇的 端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,包括:
    获取第二目标端电压,所述第二目标端电压为所述多个电池簇的端电压中最高的端电压;
    将所述多个电池簇中每个所述电池簇的端电压进行排序,以得到端电压序列;
    按照从小到大的顺序,依次计算所述端电压序列中的各个端电压与所述第二目标端电压之间的电压差,直至所述端电压序列中的一个端电压与所述第二目标端电压之间的电压差小于所述预设电压差阈值,所述一个端电压为第二临界电压;
    将所述端电压序列中小于所述第二临界电压的端电压与所述第二目标端电压之间的所有电压差作为所述目标电压差集合。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制,包括:
    获取第一目标电压差对应的第一电池簇的第一端电压和第二电池簇的第二端电压,以及获取所述储能系统的当前充放电状态,其中,所述多个电池簇包括所述第一电池簇和所述第二电池簇,所述第一目标电压差为所述目标电压差集合中的任一个目标电压差,所述第一端电压大于所述第二端电压;
    根据所述当前充放电状态对所述第一电池簇或所述第二电池簇进行充/放电处理,以得到调整后的第一端电压或调整后的第二端电压,其中,所述调整后的第一端电压与第二端电压之间的电压差小于所述预设电压差阈值,或,所述调整后的第二端电压与所述第一端电压之间的电压差小于所述预设电压差阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述当前充放电状态对所述第一电池簇或所述第二电池簇,以得到调整后的第一端电压或调整后的第二端电压,包括:
    若所述当前充放电状态为充电状态,则对所述第二电池簇进行充电处理,以得到所述调整后的第二端电压;或者,
    若所述当前充放电状态为放电状态,则对所述第一电池簇进行放电处理,以得到所述调整后的第一端电压。
  9. 根据权利要求8所述的方法,其特征在于,对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制之后,所述方法还包括:
    在所述目标电压差集合中的所有目标电压差对应的多个所述电池簇之间的电压差小于所述预设电压差阈值的情况下,根据所述当前充放电状态对所述多个电池簇进行充/放电处理。
  10. 根据权利要求9所述的方法,其特征在于,在所述目标电压差集合中的所有目标电压差对应的多个所述电池簇之间的电压差小于所述预设电压差阈值的情况下,根据所述当前充放电状态对所述多个电池簇进行充/放电处理之后,所述方法还包括:
    确定第三电池簇和第四电池簇,所述第三电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最高的电池簇,所述第四电池簇为确定所述多个电池簇在充/放电处理后,所述多个电池簇中端电压最低的电池簇;
    若所述第三电池簇的第三端电压和所述第四电池簇的第四端电压之间的电压差大于或等于预设电压差阈值,则根据所述当前充放电状态对所述第三电池簇或所述第四电池簇进行充/放电处理,以得到调整后的第三端电压或调整后的第四端电压,其中,所述调整后的第三端电压与所述第四端电压之间的差值小于所述预设电压差阈值,或,所述第三端电压与调整后的第四端电压之间的差值小于所述预设电压差阈值。
  11. 根据权利要求1所述的方法,其特征在于,所述多个电池簇并联。
  12. 一种储能系统控制装置,其特征在于,所述装置应用于储能系统,所述储能系统包括多个电池簇,所述装置包括:
    获取单元,用于获取所述多个电池簇中每个电池簇的端电压;
    确定单元,用于根据所述多个电池簇中每个电池簇的端电压确定所述多个电池簇之间的端电压之间的大于或者等于预设电压差阈值的所有电压差作为目标电压差集合,其中,所述预设电压差阈值为所述多个电池簇中任意两个所述电池簇间产生环流时的电压差阈值;
    控制单元,用于对与所述目标电压差集合中的一个所述电压差相关的至少一个所述电池簇进行充/放电控制。
  13. 一种终端,其特征在于,包括处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1-11任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-11任一项所述的方法。
PCT/CN2023/128888 2022-12-09 2023-10-31 储能系统控制方法及相关装置 WO2024120081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211582038.5A CN115864581A (zh) 2022-12-09 2022-12-09 储能系统控制方法及相关装置
CN202211582038.5 2022-12-09

Publications (1)

Publication Number Publication Date
WO2024120081A1 true WO2024120081A1 (zh) 2024-06-13

Family

ID=85671711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128888 WO2024120081A1 (zh) 2022-12-09 2023-10-31 储能系统控制方法及相关装置

Country Status (2)

Country Link
CN (1) CN115864581A (zh)
WO (1) WO2024120081A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864581A (zh) * 2022-12-09 2023-03-28 厦门海辰储能科技股份有限公司 储能系统控制方法及相关装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336783A (zh) * 2018-02-05 2018-07-27 北京海博思创科技有限公司 储能系统及电池簇间电压差的控制方法
KR20210088124A (ko) * 2020-01-06 2021-07-14 주식회사 스마트컴퍼니 배터리셀의 전압 밸런싱 장치 및 방법
CN113437780A (zh) * 2021-07-30 2021-09-24 阳光电源股份有限公司 一种电池簇均衡储能系统及其控制方法
CN114204649A (zh) * 2022-01-12 2022-03-18 天津爱玛运动用品有限公司 电动车的双电池并联控制系统和方法
CN114243848A (zh) * 2021-12-23 2022-03-25 珠海格力电器股份有限公司 电池系统主动均衡的充电控制方法、放电控制方法和系统
CN114678909A (zh) * 2020-12-24 2022-06-28 比亚迪股份有限公司 储能系统、储能系统控制方法、介质及电池簇控制系统
CN115864581A (zh) * 2022-12-09 2023-03-28 厦门海辰储能科技股份有限公司 储能系统控制方法及相关装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336783A (zh) * 2018-02-05 2018-07-27 北京海博思创科技有限公司 储能系统及电池簇间电压差的控制方法
KR20210088124A (ko) * 2020-01-06 2021-07-14 주식회사 스마트컴퍼니 배터리셀의 전압 밸런싱 장치 및 방법
CN114678909A (zh) * 2020-12-24 2022-06-28 比亚迪股份有限公司 储能系统、储能系统控制方法、介质及电池簇控制系统
CN113437780A (zh) * 2021-07-30 2021-09-24 阳光电源股份有限公司 一种电池簇均衡储能系统及其控制方法
CN114243848A (zh) * 2021-12-23 2022-03-25 珠海格力电器股份有限公司 电池系统主动均衡的充电控制方法、放电控制方法和系统
CN114204649A (zh) * 2022-01-12 2022-03-18 天津爱玛运动用品有限公司 电动车的双电池并联控制系统和方法
CN115864581A (zh) * 2022-12-09 2023-03-28 厦门海辰储能科技股份有限公司 储能系统控制方法及相关装置

Also Published As

Publication number Publication date
CN115864581A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN106711530B (zh) 用于电池均衡的方法和设备及使用该方法和设备的电池组
JP6667502B2 (ja) 複数バッテリーデバイスにおける負荷スケジューリング
WO2024120081A1 (zh) 储能系统控制方法及相关装置
US20190123570A1 (en) Charging method and apparatus for rechargeable battery
CN111404228B (zh) 终端电池的充电方法及装置、设备、存储介质
CN106992326B (zh) 一种充电控制方法、装置及电子设备
JP7048855B2 (ja) Bms間の通信システム及び方法
US20180076634A1 (en) Charging method and electronic apparatus
CN112737056A (zh) 电池模组的电量均衡方法及装置
CN116317007A (zh) 一种电池簇的并联方法、电池管理系统、设备及存储介质
CN112615405A (zh) 一种电池组的被动均衡方法、设备及装置
CN109638906A (zh) 一种电池管理方法、系统及存储介质
CN117220366A (zh) 一种可快充储能电池的控制方法及储能电池控制设备
EP4187751A1 (en) Charging apparatus, charging method, and computer-readable storage medium
CN113507154B (zh) 充电方法、装置、充电机和电子设备
CN114094676B (zh) 一种笔记本电池充电管理方法、系统
CN115621620A (zh) 一种电池自加热方法、装置、电子设备及存储介质
CN115441539A (zh) Bms的均衡方法、终端
CN115800418A (zh) 电池控制方法、储能系统、装置、计算机设备和存储介质
CN114883696A (zh) 二次电池加热方法、装置及电池管理系统
CN110659290B (zh) 数据处理方法及装置以及相关产品
US10666065B2 (en) Regulating battery cells
CN116577687B (zh) 快充电池包的电芯筛选方法、系统、存储介质及计算机
US11424628B2 (en) Balance charging method and charging device for charging multiple battery cells
JP7524469B2 (ja) 電池管理装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899662

Country of ref document: EP

Kind code of ref document: A1