WO2024077886A1 - 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用 - Google Patents

改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用 Download PDF

Info

Publication number
WO2024077886A1
WO2024077886A1 PCT/CN2023/085348 CN2023085348W WO2024077886A1 WO 2024077886 A1 WO2024077886 A1 WO 2024077886A1 CN 2023085348 W CN2023085348 W CN 2023085348W WO 2024077886 A1 WO2024077886 A1 WO 2024077886A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
bismaleimide
modified
double
Prior art date
Application number
PCT/CN2023/085348
Other languages
English (en)
French (fr)
Inventor
谌香秀
焦锋
王辉
崔春梅
马建
Original Assignee
苏州生益科技有限公司
常熟生益科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211241831.9A external-priority patent/CN115449040A/zh
Priority claimed from CN202211241813.0A external-priority patent/CN115449039B/zh
Priority claimed from CN202211244008.3A external-priority patent/CN115433330A/zh
Application filed by 苏州生益科技有限公司, 常熟生益科技有限公司 filed Critical 苏州生益科技有限公司
Priority to KR1020237020829A priority Critical patent/KR20240052715A/ko
Publication of WO2024077886A1 publication Critical patent/WO2024077886A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the invention relates to the technical field of electronic materials, and in particular to a modified bismaleimide prepolymer, a resin composition and application of the resin composition.
  • thermosetting resin composition it is desirable to provide a thermosetting resin composition, and the printed circuit board material made using this thermosetting resin composition can show sufficiently low low dielectric constant and low dielectric loss tangent (i.e., dielectric constant and dielectric loss tangent are as low as possible) in the process of high-speed and high-frequency signal transmission, while requiring higher heat resistance, high modulus, low CTE, etc.
  • Bismaleimide resin cured product has excellent properties such as high temperature resistance, moisture and heat resistance, high modulus, low CTE, and high strength. It is suitable for use as a base resin for IC packaging substrates and similar substrates. However, it has the problem of poor dielectric properties, which limits its application in the field of high-frequency and high-speed packaging substrates.
  • polyphenylene ether resin In order to improve the poor dielectric properties of bismaleimide resin, the prior art introduces polyphenylene ether resin into bismaleimide resin to reduce the dielectric properties of bismaleimide resin cured product to a certain extent.
  • polyphenylene ether resin has the characteristics of thermoplastic resin and has poor compatibility with bismaleimide resin, making it difficult to obtain a very homogeneous glue solution.
  • the resin is introduced into the bismaleimide resin system to improve heat resistance and reduce the CTE value, but there is still room for improvement in dielectric properties.
  • the purpose of the present invention is to provide a modified bismaleimide prepolymer, a resin composition and an application of the resin composition.
  • one embodiment of the present invention provides a modified bismaleimide prepolymer, which is obtained by reacting a bismaleimide compound, a double-bond-containing silicone resin and a hydrocarbon resin, wherein the mass ratio of the bismaleimide compound: the mass of the double-bond-containing silicone resin: the mass ratio of the hydrocarbon resin is 100:(3-40):(5-50).
  • the ratio of the sum of the double bond equivalents of the double bond-containing silicone resin and the hydrocarbon resin to the double bond equivalent of the bismaleimide compound is 1:(5-0.8).
  • the hydrocarbon resin is added to the pre-reactant, and the reaction is carried out at 90 to 130° C. for 30 to 150 minutes to obtain the modified bismaleimide prepolymer.
  • At least one of aminophenol, carboxylic acid or carboxylic anhydride is added during the reaction of the bismaleimide compound with the double-bond-containing silicone resin and the hydrocarbon resin, with the content of 0.1 to 10 parts by weight.
  • the obtained modified bismaleimide prepolymer contains reactive double bonds.
  • One embodiment of the present invention further provides a resin composition, comprising the following components by weight:
  • the modified bismaleimide prepolymer is the aforementioned modified bismaleimide prepolymer.
  • it further includes 3 to 50 parts of an elastomer, wherein the elastomer is at least one of a styrene elastomer, a methacrylate elastomer, and a silicone elastomer.
  • the resin composition further includes a flame retardant, and the flame retardant contains 5 to 50 parts by weight.
  • the flame retardant is selected from bromide flame retardants, phosphorus flame retardants, nitrogen flame retardants, organosilicon flame retardants, and organometallic salt flame retardants;
  • the brominated flame retardant is selected from decabromodiphenyl ether, decabromodiphenyl ethane, brominated styrene or tetrabromophthalamide;
  • the phosphorus flame retardant is selected from inorganic phosphorus, phosphate ester, phosphoric acid, hypophosphorous acid, phosphorus oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-HQ), (m is an integer from 1 to 5), 10-phenyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, tris(2,6-dimethylphenyl)phosphine, phosphazene, modified phosphazene;
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • DOPO-HQ 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene
  • the nitrogen-based flame retardant is selected from triazine compounds, cyanuric acid compounds, isocyanic acid compounds, and phenothiazine;
  • the organosilicon flame retardant is selected from organosilicon oil, organosilicon rubber, and organosilicon resin;
  • the organic metal flame retardant is selected from ferrocene, acetylacetone metal complex, and organic metal carbonyl compound.
  • it further includes a silane coupling agent and a dispersant, and the weight ratio of the silane coupling agent to the dispersant is (2-10):1.
  • the silane coupling agent is an epoxy silane coupling agent
  • the dispersant is a phosphate dispersant and/or a modified polyurethane dispersant.
  • One embodiment of the present invention further provides a use of the above-mentioned resin composition in a prepreg, a laminate, an insulating film, an insulating board, a copper-clad board, a circuit substrate and an electronic device.
  • the present invention introduces silicon-oxygen bonds and carbon-hydrogen bonds into the bismaleimide compound by reacting the bismaleimide compound with a double-bond organic silicone resin and a hydrocarbon resin, thereby improving the prepolymerization processability and improving the toughness and dielectric properties of the bismaleimide compound curing system;
  • the present invention also controls the weight ratio between the bismaleimide compound, the double-bond-containing silicone resin and the hydrocarbon resin, controls the degree of modification of the bismaleimide compound, improves the dielectric properties and brittleness while maintaining its own high heat resistance and low CTE, and well meets the field of high-frequency and high-speed packaging substrates.
  • An embodiment of the present invention provides a modified bismaleimide prepolymer, which is prepared by reacting a bismaleimide compound, a double-bond-containing silicone resin and a hydrocarbon resin, wherein the mass ratio of the bismaleimide compound: the mass of the double-bond-containing silicone resin: the mass ratio of the hydrocarbon resin is 100:(3-40):(5-50).
  • the ratio of the sum of double bond equivalents of the double bond-containing silicone resin and the hydrocarbon resin to the double bond equivalent of the bismaleimide compound is 1:(5-0.8).
  • the modified bismaleimide prepolymer is prepared by the following reaction:
  • At least one of aminophenol, carboxylic acid or carboxylic anhydride is added in an amount of 0.1 to 10 parts by weight.
  • the phenolic hydroxyl group, carboxyl group and anhydride group in the aminophenol, carboxylic acid or carboxylic anhydride can react with the bismaleimide compound to improve the reactivity.
  • the modified bismaleimide prepolymer obtained by the above reaction contains reactive double bonds, which can improve the reactivity of the modified bismaleimide prepolymer during curing.
  • the double bonds on the bismaleimide compound react with the double bonds on the double-bond silicone resin to introduce silicon-oxygen bonds into the bismaleimide compound.
  • the silicon-oxygen bonds can improve the toughness of the bismaleimide compound.
  • the hydrocarbon resin is then used to increase the crosslinking density of the cured product, control the overall free radical reaction rate, effectively retain unreacted carbon-carbon double bonds, and improve the reactivity of the modified bismaleimide prepolymer.
  • an initiator can be added in an appropriate amount during the preparation of the modified bismaleimide prepolymer, and the initiator is 0.001-6 parts by weight based on 100 parts by weight of the resin composition; the initiator can be selected from an azo initiator, a peroxide initiator, or a redox initiator, preferably one or more of the following initiators: diisopropylbenzene peroxide, di-tert-butyl peroxide, tert-butyl perbenzoate, dicyclohexyl peroxydicarbonate, isopropylbenzene hydroperoxide, and azobisisobutyronitrile.
  • the double bond-containing silicone resin is represented by the following structural formula (1):
  • R and R' are C1-C5 alkyl groups or at least one of them is a reactive group
  • R" is a C1-C5 alkylene group
  • n is an integer of 1-30.
  • the side chains R and R' of the aforementioned double-bond-containing silicone resin contain at least one carbon-carbon double bond, and the group containing the carbon-carbon double bond is a vinyl group, an allyl group, a propenyl group, a styrene group or a methacrylate group.
  • the reactive group on the side chain of the double-bond-containing silicone resin improves the reactivity of the bismaleimide prepolymer during the polymerization process.
  • the hydrocarbon resin contains 1,2-vinyl groups, and the content of 1,2-vinyl groups is ⁇ 70%.
  • the content of 1,2-vinyl groups in the hydrocarbon resin is 80-98%.
  • the present invention also provides a resin composition, which comprises the following components by weight:
  • the modified bismaleimide prepolymer is the aforementioned modified bismaleimide prepolymer.
  • the bismaleimide compound in the maleimide resin or the modified bismaleimide prepolymer is selected from at least one of the following structures:
  • R2 is hydrogen, methyl or ethyl, R1 is methylene, ethylene or n is an integer from 1 to 10;
  • n is an integer from 1 to 10;
  • n is an integer from 1 to 10;
  • n is an integer from 1 to 10;
  • R is hydrogen, methyl or ethyl, and n is an integer of 1-10.
  • the resin composition further comprises 0.001-5 parts by weight of a catalyst, selected from at least one of 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2-heptadecylimidazole, 2-isopropylimidazole, 2-phenyl-4-methylimidazole, 2-dodecylimidazole, 1-cyanoethyl-2-methylimidazole or a modified imidazole shown in the following structure:
  • R3, R4, R5 and R6 are are the same or different, and are methyl, ethyl or tert-butyl, and B is methylene, ethylene, -S- or P200F50, manufactured by JER, can be used.
  • R3, R4, R5 and R6 are the same or different and are methyl, ethyl or tert-butyl respectively;
  • A is methylene, ethylene, -S-, Or aromatic hydrocarbon group, G8009L, first industrial production, can be used.
  • the resin composition further comprises 3 to 50 parts by weight of an elastomer, wherein the elastomer is at least one of a styrene elastomer, a methacrylate elastomer, and a silicone elastomer.
  • the styrene elastomer is selected from H1041, H1043, H1051, H1052, H1053, H1221, P1500, P2000, M1911 or M1913 of Asahi Chemical Industry Co., Ltd.; 8004, 8006, 8076, 8104, V9827, 2002, 2005, 2006, 2007, 2104, 7125, 4033, 4044, 4055, 4077 or 4099 of Kuraray.
  • the methacrylate is selected from M51, M52, M22 or D51N of Arkema; LA-2330 of Kuraray; SG-P3 series or SG-80 series of Nagase.
  • Silicone elastomers include X-40-2670, R-170S, X-40-2705, X-40-2701, KMP-600, KMP-605, X-52-7030 from Xinyue Chemical; AY-42-119, EP-2600, EP-2601, EP-2720, TMS-2670, EXL-2315, EXL-2655 from DOW, etc.
  • the resin composition also includes a silane coupling agent and a dispersant
  • the silane coupling agent is an epoxy silane coupling agent
  • the weight ratio of the silane coupling agent to the dispersant is (2-10): 1.
  • the dispersant is a phosphate dispersant and/or a modified polyurethane dispersant.
  • the resin composition also includes a flame retardant, containing 5 to 50 parts by weight, and the flame retardant is selected from Bromine flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, organic metal salt flame retardants, etc.
  • the brominated flame retardant is selected from decabromodiphenyl ether, decabromodiphenyl ethane, brominated styrene or tetrabromophthalamide.
  • the phosphorus flame retardant is selected from inorganic phosphorus, phosphate ester, phosphoric acid, hypophosphorous acid, phosphorus oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-HQ), (m is an integer from 1 to 5), Organic phosphorus-containing compounds such as 10-phenyl-9,10-dihydro-9-oxa-10-phosphatren-10-oxide, tri(2,6-dimethylphenyl)phosphine, phosphazene, modified phosphazene, etc.
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • DOPO-HQ 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phos
  • the nitrogen-based flame retardant is selected from triazine compounds, cyanuric acid compounds, isocyanic acid compounds, phenothiazine and the like.
  • the organic silicon flame retardant is selected from organic silicon oil, organic silicon rubber, organic silicon resin and the like.
  • the organic metal flame retardant is selected from ferrocene, acetylacetone metal complex, organic metal carbonyl compound and the like.
  • the flame retardant is selected from phosphazene with the brand name SPB-100 produced by Otsuka Chemical of Japan; modified phosphazenes with the brands BP-PZ, PP-PZ, SPCN-100, SPV-100 and SPB-100L.
  • the resin composition also includes a filler, and its content is 20 to 80 parts by weight based on 100 parts by weight of the resin composition.
  • the filler includes an inorganic filler, an organic filler, and a composite filler.
  • the inorganic filler is selected from at least one of fused silica, crystalline silica, spherical silica, hollow silica, aluminum hydroxide, aluminum oxide, talc, aluminum nitride, boron nitride, silicon carbide, barium sulfate, barium titanate, strontium titanate, calcium carbonate, calcium silicate, mica, and glass fiber powder.
  • the organic filler is selected from at least one of polytetrafluoroethylene powder, polyphenylene sulfide powder, and polyether sulfone powder.
  • the filler is surface treated with a silane coupling agent, and the silane coupling agent is selected from one or more of KBM-573 manufactured by Shin-Etsu Chemical, Z-6883 manufactured by Dow Corning, KBM-1003 manufactured by Shin-Etsu Chemical, and KBM-1403 manufactured by Shin-Etsu Chemical.
  • a dye such as a fluorescent dye or a black dye, may be added to the resin composition.
  • the present invention also provides the use of the resin composition in prepregs, laminates, insulating films, insulating boards, circuit substrates and electronic devices, which are specifically described as follows:
  • the present invention also provides a prepreg, comprising a reinforcing material and the above-mentioned resin composition.
  • the preparation method of the prepreg is: dissolving the resin composition with a solvent to prepare a glue solution, then immersing the reinforcing material in the above-mentioned glue solution, taking out the immersed reinforcing material and baking it at 100-180°C for 1-15 minutes; after drying, the prepreg is obtained.
  • the solvent is selected from at least one of acetone, butanone, toluene, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, ethylene glycol methyl ether, propylene glycol methyl ether, benzene, toluene, xylene and cyclohexane.
  • the reinforcing material is selected from at least one of natural fibers, organic synthetic fibers, organic fabrics, and inorganic fabrics.
  • the reinforcing material is glass fiber cloth; among the glass fiber cloth, open fiber cloth or flat cloth is preferably used; and the glass fiber cloth is preferably E glass fiber cloth, S glass fiber cloth, or Q glass fiber cloth.
  • the glass fiber cloth is chemically treated with a coupling agent to improve the interface bonding between the resin composition and the glass fiber cloth.
  • the coupling agent is preferably an epoxy silane coupling agent or an amino silane coupling agent to provide good water resistance and heat resistance.
  • An embodiment of the present invention also provides a laminate, comprising a piece of the aforementioned prepreg and a metal foil arranged on at least one side of the prepreg; or comprising a composite sheet formed by overlapping multiple pieces of the aforementioned prepreg and a metal foil arranged on at least one side of the composite sheet.
  • the laminate is prepared by the following method: a metal foil is coated on one or both sides of a prepreg, or at least two prepregs are stacked to form a composite sheet, a metal foil is coated on one or both sides of the composite sheet, and the metal foil laminate is obtained by hot pressing.
  • the hot pressing conditions are: pressing at 0.2-2MPa and 150-250°C for 2-4 hours.
  • the metal foil is selected from copper foil or aluminum foil.
  • the thickness of the metal foil is 5 micrometers, 8 micrometers, 12 micrometers, 18 micrometers, 35 micrometers or 70 micrometers.
  • An embodiment of the present invention further provides an insulating board, comprising at least one of the aforementioned prepreg sheets.
  • the embodiment of the present invention further provides an insulating film, comprising a carrier film and the above-mentioned resin composition coated thereon, and the thermal index of the insulating film is significantly improved.
  • the insulating film is prepared by the following method: the resin composition is dissolved in a solvent to prepare a glue solution, the glue solution is then coated on a carrier film, and the carrier film coated with the glue solution is heated and dried to obtain the insulating film.
  • the aforementioned solvent is selected from at least one of acetone, butanone, toluene, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, ethylene glycol methyl ether, propylene glycol methyl ether, benzene, toluene, xylene, and cyclohexane.
  • the carrier film is selected from at least one of PET film, PP film, PE film and PVC film.
  • An embodiment of the present invention further provides a circuit substrate, comprising one or more of the aforementioned prepreg, laminate, insulating plate, and insulating film.
  • An embodiment of the present invention further provides an electronic device, comprising the aforementioned circuit substrate; since the heat resistance of the circuit substrate is greatly improved, the safety of the electronic device is significantly improved.
  • Step 1 add 200g of bismaleimide resin (manufactured by Yamato Chemical, BMI-2300), 20g of double bond-containing silicone resin (manufactured by Shin-Etsu Chemical, X-22-164A) and an appropriate amount of organic solvent into a beaker, react at 80°C for 70min to obtain a pre-reactant;
  • Step 2 Raise the temperature to 110° C., add 30 g of hydrocarbon resin (Caoda B3000), and continue the reaction at 110° C. for 30 min to obtain modified bismaleimide prepolymer Y1.
  • Step 1 add 200g of bismaleimide resin (made by Nippon Kayaku, MIR-3000), 30g of double bond-containing silicone resin (made by Shin-Etsu Chemical, X-22-164A) and an appropriate amount of organic solvent into a beaker, react at 90°C for 60min to obtain a pre-reactant;
  • Step 2 Raise the temperature to 120°C, add 45 g of hydrocarbon resin (Caoda B2000), and continue the reaction at 120°C for 30 min to obtain modified bismaleimide prepolymer Y2.
  • Step 1 Add 200 g of bismaleimide resin (manufactured by Nippon Kayaku, MIR-3000) into a beaker. 40g of double bond-containing silicone resin (X-22-164A) was reacted at 90°C for 60min to obtain a pre-reacted product;
  • Step 2 Raise the temperature to 120°C, add 25 g of hydrocarbon resin (Caoda B3000), and continue the reaction at 120°C for 30 min to obtain modified bismaleimide prepolymer Y3.
  • Synthesis Example 5 Modified bismaleimide prepolymer Y5 (Comparison with Synthesis Example 1)
  • Step 1 Add 200 g of bismaleimide resin (BMI-2300 manufactured by Yamato Chemical Industry Co., Ltd.), 30 g of hydrocarbon resin (Soda B3000) and an appropriate amount of organic solvent into a beaker, and react at 80° C. for 70 min to obtain a pre-reactant;
  • BMI-2300 manufactured by Yamato Chemical Industry Co., Ltd.
  • hydrocarbon resin Soda B3000
  • Step 2 Raise the temperature to 110° C., add 20 g of a double-bond silicone resin (manufactured by Shin-Etsu Chemical, X-22-164A), and continue the reaction at 110° C. for 30 min to obtain a modified bismaleimide prepolymer Y5.
  • a double-bond silicone resin manufactured by Shin-Etsu Chemical, X-22-164A
  • the corresponding solid substances are weighed, and the glue solution is adjusted to a solid content of 60% by a solvent.
  • the glue solution is applied to E glass fiber cloth, taken out after infiltration, placed in a 160°C forced air drying oven, and baked for 3 to 6 minutes to form a semi-cured sheet.
  • the prepreg is cut into 300 ⁇ 300mm, and an electrolytic copper foil is placed on each side of the prepreg to form a certain stacking structure, and then sent to a vacuum press for pressing to obtain a metal foil laminate (or copper clad laminate).
  • the performance test is shown in Table 2.
  • PCT 2HR water absorption rate measurement Take 3 pieces of 10cm ⁇ 10cm, 0.40mm thick, remove both sides The metal foil sample is dried at 100°C for 2 hours, weighed, and recorded as W1. Then, it is treated in a pressure cooker tester at 121°C and 2 atmospheres for 2 hours, weighed, and recorded as W2. The water absorption is determined as (W2-W1)/W1 ⁇ 100%.
  • Examples 1 to 5 have excellent high Tg, low dielectric constant and dielectric loss, low water absorption and low CTE values.
  • Example 2 has a higher Tg value, low dielectric constant and dielectric loss than Comparative Example 1
  • Example 1 has not only a higher Tg value and low dielectric constant and dielectric loss, but also lower CTE and water absorption than Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明提供一种改性双马来酰亚胺预聚物,通过双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂反应制得,其中,所述双马来酰亚胺化合物的质量:所述含双键有机硅树脂的质量:所述碳氢树脂的质量比为100:(3~40):(5~50)。本发明通过将硅氧键和碳氢键引入双马来酰亚胺化合物中,控制双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂的质量比,提高预聚工艺性,同时提高双马来酰亚胺化合物固化体系的韧性和介电性能。

Description

改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
本申请要求了申请日为2022年10月11日,申请号为202211244008.3,发明名称为“改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子材料技术领域,尤其涉及一种改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用。
背景技术
随着技术的升级,汽车市场、智能手机等消费类电子市场对PCB提出了新的需求。2018年5G商用上市以后,对PCB基材在介电性能方面的要求更上一层台阶,而高频高速覆铜板是5G时代不可或缺的电子基材之一,这使得PCB基板材料需要具备较低的介电常数和介电损耗正切,以减少高速传输时信号的延迟、失真和损耗,以及信号之间的干扰。因此,期望提供一种热固性树脂组合物,使用这种热固性树脂组合物制作的印制电路板材料在高速化、高频化的信号传输过程中能表现出充分低的低介电常数和低介电损耗正切(即介电常数和介电损耗正切越低越好),同时要求较高耐热性、高模量、低CTE等。
双马来酰亚胺树脂固化物具有耐高温、耐湿热、高模量、低CTE、高强度等优异性能,适合用作IC封装载板和类载板的基体树脂,但是存在介电性能差的问题,限制了其在高频高速封装基板领域中的应用。
为了改善双马来酰亚胺树脂的介电性能较差的问题,现有技术在双马来酰亚胺树脂中引入聚苯醚树脂,一定程度上降低双马来酰亚胺树脂固化物的介电性能,但是聚苯醚树脂具有热塑性树脂的特性,与双马来酰亚胺树脂的相容性较差,难以获得非常均质的胶液配合物。现有技术还将反应性有机硅 树脂引入双马来酰亚胺树脂体系中,提高耐热性、并降低CTE值,但是介电性能方面还存在提升的空间。
发明内容
本发明的目的在于提供一种改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用,通过将硅氧键和碳氢键引入双马来酰亚胺化合物,控制双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂之间的重量比,提高了预聚的工艺性,同时改善了双马来酰亚胺固化体系的韧性和介电性能,解决了现有技术中双马来酰亚胺固化体系脆性大,介电性较差的问题。
为了实现上述发明目的之一,本发明一实施方式提供一种改性双马来酰亚胺预聚物,通过双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂反应制得,其中,所述双马来酰亚胺化合物的质量:所述含双键有机硅树脂的质量:所述碳氢树脂的质量比为100:(3~40):(5~50)。
作为本发明一实施方式的进一步改进,所述含双键有机硅树脂和所述碳氢树脂的双键当量之和与所述双马来酰亚胺化合物的双键当量的比为1:(5~0.8)。
作为本发明一实施方式的进一步改进,通过如下反应制得:
将所述双马来酰亚胺化合物和所述含双键有机硅树脂在50~90℃反应30~120min得到预反应物;
在所述预反应物中加入所述碳氢树脂,在90~130℃下反应30~150min,得到所述改性双马来酰亚胺预聚物。
作为本发明一实施方式的进一步改进,在所述双马来酰亚胺化合物与含双键有机硅树脂和碳氢树脂反应过程中添加氨基酚、羧酸或羧酸酐中至少一种,含量为0.1~10重量份。
作为本发明一实施方式的进一步改进,得到的所述改性双马来酰亚胺预聚物中含有反应性双键。
本发明一实施方式还提供一种树脂组合物,以重量计,包括如下组分:
(a)改性双马来酰亚胺预聚物:10~80份;
(b)马来酰亚胺化合物或其衍生物:10~80份;
其中,所述改性双马来酰亚胺预聚物为前述的改性双马来酰亚胺预聚物。
作为本发明一实施方式的进一步改进,还包括3~50份的弹性体,所述弹性体为苯乙烯类弹性体、甲基丙烯酸酯类弹性体、有机硅类弹性体中至少一种。
作为本发明一实施方式的进一步改进,所述树脂组合物中还包括阻燃剂,所述阻燃剂含5~50重量份。
作为本发明一实施方式的进一步改进,所述阻燃剂选自溴系阻燃剂、磷系阻燃剂、氮系阻燃剂、有机硅阻燃剂、有机金属盐阻燃剂;
所述溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷、溴化苯乙烯或者四溴邻苯二甲酰胺;
所述磷系阻燃剂选自无机磷、磷酸酯、磷酸、次磷酸、氧化磷、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO-HQ)、(m为1~5的整数)、10-苯基-9,10-二氢-9-氧杂-10-磷菲-10-氧化物、三(2,6-二甲基苯基)磷、磷腈、改性磷腈;
所述氮系阻燃剂选自三嗪化合物、氰尿酸化合物、异氰酸化合物、吩噻嗪;
所述有机硅阻燃剂选自有机硅油、有机硅橡胶、有机硅树脂;
所述有机金属阻燃剂选自二茂铁、乙酰丙酮金属络合物、有机金属羰基化合物。
作为本发明一实施方式的进一步改进,还包括硅烷偶联剂和分散剂,所述硅烷偶联剂和分散剂的重量之比为(2~10):1。
作为本发明一实施方式的进一步改进,所述硅烷偶联剂为环氧硅烷偶联剂,所述分散剂为磷酸酯类分散剂和/或改性聚氨酯类分散剂。
本发明一实施方式还提供一种如前所述的树脂组合物在半固化片、层压板、绝缘薄膜、绝缘板、覆铜板、电路基板和电子器件中的应用。
本发明提供的一个或多个技术方案,至少具有如下技术效果或优点:
(1)本发明通过使双马来酰亚胺化合物与含双键有机硅树脂和碳氢树脂反应,将硅氧键和碳氢键引入双马来酰亚胺化合物中,提高预聚工艺性,同时提高双马来酰亚胺化合物固化体系的韧性和介电性能;
(2)本发明还控制双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂之间的重量比,控制双马来酰亚胺化合的改性程度,改善介电性、脆性的同时保持本身高耐热性、低CTE,很好的满足高频高速用封装基板领域中。
具体实施方式
以下将结合具体实施方式对本发明进行详细的描述,但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做的反应条件、反应物或原料用量上的变换均包含在本发明的保护范围内。
本发明实施例提供了一种改性双马来酰亚胺预聚物,通过双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂反应制得,其中,双马来酰亚胺化合物的质量:含双键有机硅树脂的质量:碳氢树脂的质量比为100:(3~40):(5~50)。
进一步的,含双键有机硅树脂和碳氢树脂的双键当量之和与双马来酰亚胺化合物的双键当量的比为1:(5~0.8)。
改性双马来酰亚胺预聚物通过如下反应制得:
将双马来酰亚胺化合物和含双键有机硅树脂在50~90℃反应30~120min得到预反应物;
在预反应物中加入碳氢树脂,在90~130℃下反应30~150min,得到所述改性双马来酰亚胺预聚物。
在双马来酰亚胺化合物与含双键有机硅树脂和碳氢树脂反应过程中添加氨基酚、羧酸或羧酸酐中至少一种,含量为0.1~10重量份,氨基酚、羧酸或羧酸酐中的酚羟基、羧基和酸酐基均能与双马来酰亚胺化合物反应,以提升反应性。
进一步的,前述反应制得的改性双马来酰亚胺预聚物中含有反应性双键,能够提高改性双马来酰亚胺预聚物在固化时的反应性。
双马来酰亚胺化合物上的双键与含双键有机硅树脂上的双键反应,使硅氧键引入到双马来酰亚胺化合物,通过硅氧键能够改善双马来酰亚胺化合物的韧性,再通过碳氢树脂来提高固化物的交联密度,控制整体自由基反应速度,有效保留未反应的碳碳双键,提高改性双马来酰亚胺预聚物的反应性。
进一步的,在改性双马来酰亚胺预聚物制备过程中可适量添加引发剂,以树脂组合物按100重量份计,所述引发剂为0.001-6重量份;所述引发剂可选用偶氮类引发剂、过氧类引发剂、氧化还原类引发剂,优选如下引发剂中的一种或几种:过氧化二异丙苯、过氧化二叔丁基、过氧化苯甲酸叔丁酯、过氧化二碳酸二环己酯、异丙苯过氧化氢、偶氮二异丁腈。
进一步的,含双键有机硅树脂为如下结构式(1)所示:
其中,R和R’为C1~C5的烷基或至少一个为反应基团,R”为C1~C5的亚烷基,n为1~30的整数。
优选的,前述含双键有机硅树脂的侧链R和R’上至少含一个碳碳双键,含碳碳双键的基团为乙烯基、烯丙基、丙烯基、苯乙烯基或甲基丙烯酸酯基。含双键有机硅树脂的侧链上的反应基团在双马来酰亚胺预聚物在聚合过程中提升反应性。
进一步的,碳氢树脂中含有1,2-乙烯基,且1,2-乙烯基含量≥70%,优选的,碳氢树脂中1,2-乙烯基含量为80~98%。
本发明实施例还提供一种树脂组合物,以重量计,包括以下成分:
(a)改性双马来酰亚胺预聚物:10~80份;
(b)马来酰亚胺树脂或其衍生物:10~80份。
其中,改性双马来酰亚胺预聚物为前述的改性双马来酰亚胺预聚物。
进一步的,马来酰亚胺树脂或改性双马来酰亚胺预聚物中的双马来酰亚胺化合物,选自以下结构中的至少一种:
R2为氢、甲基或乙基,R1为亚甲基、亚乙基或n为1~10的整数;
n为1~10的整数;
n为1~10的整数;
n为1~10的整数;
R为氢、甲基或乙基,n为1~10的整数。
进一步的,树脂组合物还包括0.001-5重量份催化剂,选自2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-十一烷基咪唑、1-苄基-2-甲基咪唑、2-十七烷基咪唑、2-异丙基咪唑、2-苯基-4-甲基咪唑、2-十二烷基咪唑、1-氰乙基-2-甲基咪唑或以下结构所示的改性咪唑中的至少一种:
其中R3、R4、R5和R6相 同或不同,分别为甲基、乙基或叔丁基,B为亚甲基、亚乙基、-S-或可使用P200F50,JER制。
其中R3、R4、R5和R6相同或不同,分别为甲基、乙基或叔丁基,A为亚甲基、亚乙基、-S-、或芳香族碳氢基,可使用G8009L,第一工业制。
进一步的,树脂组合物还包括3~50重量份的弹性体,弹性体为苯乙烯类弹性体、甲基丙烯酸酯类弹性体、有机硅类弹性体中至少一种。
苯乙烯类弹性体选自日本旭化成的H1041、H1043、H1051、H1052、H1053、H1221、P1500、P2000、M1911或M1913;可乐丽的8004、8006、8076、8104、V9827、2002、2005、2006、2007、2104、7125、4033、4044、4055、4077或4099。
甲基丙烯酸酯类选自阿克玛的M51、M52、M22或D51N;可乐丽的LA-2330;长濑的SG-P3系列或SG-80系列。
有机硅类弹性体选自信越化学的X-40-2670、R-170S、X-40-2705、X-40-2701、KMP-600、KMP-605、X-52-7030;DOW的AY-42-119、EP-2600、EP-2601、EP-2720、TMS-2670、EXL-2315、EXL-2655等。
进一步的,树脂组合物中还包括硅烷偶联剂和分散剂,硅烷偶联剂为环氧硅烷偶联剂,且硅烷偶联剂和分散剂的重量比例为(2~10):1。其中,分散剂为磷酸酯类分散剂或/和改性聚氨酯类分散剂。
进一步的,树脂组合物中还包括阻燃剂,含5~50重量份,阻燃剂选自 溴系阻燃剂、磷系阻燃剂、氮系阻燃剂、有机硅阻燃剂、有机金属盐阻燃剂等。
具体的,溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷、溴化苯乙烯或者四溴邻苯二甲酰胺。
磷系阻燃剂选自无机磷、磷酸酯、磷酸、次磷酸、氧化磷、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO-HQ)、(m为1~5的整数)、10-苯基-9,10-二氢-9-氧杂-10-磷菲-10-氧化物、三(2,6-二甲基苯基)磷、磷腈、改性磷腈等有机含磷化合物。
氮系阻燃剂选自三嗪化合物、氰尿酸化合物、异氰酸化合物、吩噻嗪等。
有机硅阻燃剂选自有机硅油、有机硅橡胶、有机硅树脂等。
有机金属阻燃剂选自二茂铁、乙酰丙酮金属络合物、有机金属羰基化合物等。
阻燃剂选自日本大冢化学制的牌号为SPB-100的磷腈;牌号为BP-PZ、PP-PZ、SPCN-100、SPV-100和SPB-100L的改性磷腈。
进一步的,树脂组合物还包括填料,以树脂组合物100重量份计,其含量为20~80重量份。填料包括无机填料、有机填料、复合填料。其中无机填料选自熔融二氧化硅、结晶型二氧化硅、球型二氧化硅、空心二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、碳酸钙、硅酸钙、云母、玻璃纤维粉中的至少一种。有机填料选自聚四氟乙烯粉末、聚苯硫醚粉末、聚醚砜粉末中的至少一种。
填料用硅烷偶联剂进行表面处理,硅烷偶联剂选自牌号为信越化学制KBM-573、道康宁制Z-6883、牌号为信越化学制KBM-1003、牌号为信越化学制KBM-1403中的一种或多种。
进一步的,树脂组合物中还可添加染料,如荧光染料或黑色染料。
本发明还提供上述树脂组合物在半固化片、层压板、绝缘薄膜、绝缘板、电路基板和电子器件中的应用,具体说明如下:
本发明提供还一种半固化片,包括增强材料和前述树脂组合物,半固化片的制备方法为:将树脂组合物用溶剂溶解制成胶液,然后将增强材料浸渍在上述胶液中,将浸渍后的增强材料取出在100~180℃环境下烘烤1~15min;干燥后即可得到半固化片。
其中,溶剂选自丙酮、丁酮、甲苯、甲基异丁酮、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、乙二醇甲醚、丙二醇甲醚、苯、甲苯、二甲苯、环己烷中的至少一种。
增强材料选自天然纤维、有机合成纤维、有机织物、无机织物中的至少一种。优选地,增强材料采用玻璃纤维布;玻璃纤维布中优选使用开纤布或扁平布;玻璃纤维布优选为E玻璃纤维布、S玻璃纤维布或Q玻璃纤维布。
此外,当增强材料采用玻璃纤维布时,玻璃纤维布使用偶联剂进行化学处理,以改善树脂组合物与玻璃纤维布之间的界面结合。偶联剂优选用环氧硅烷偶联剂或者氨基硅烷偶联剂,以提供良好的耐水性和耐热性。
本发明实施例还提供一种层压板,包括一片前述半固化片以及设置在半固化片至少一侧表面的金属箔;或者包括由多片前述半固化片相互叠合而成的组成片以及设置在组合片至少一侧表面的金属箔。
层压板采用以下方法制备:在一片半固化片的一侧或双侧表面覆上金属箔,或者将至少两片半固化片叠合而成组成片,在组成片的一侧或双侧表面覆上金属箔,热压成形得到金属箔层压板。热压的压制条件为:在0.2~2MPa、150~250℃下压制2~4小时。
优选的,金属箔选自铜箔或铝箔。金属箔的厚度为5微米、8微米、12微米、18微米、35微米或70微米。
本发明实施例还提供了一种绝缘板,包括至少一片前述半固化片。
本发明实施例还提供了一种绝缘薄膜,包括载体膜以及涂覆在其上的前述树脂组合物,绝缘薄膜的热指数得到了明显提高。
绝缘薄膜采用以下方法制备:将前述树脂组合物用溶剂溶解制成胶液,然后在载体膜上涂覆该胶液,将涂覆胶液的载体膜加热干燥后,即可得到绝缘薄膜。
前述的溶剂选自丙酮、丁酮、甲苯、甲基异丁酮、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、乙二醇甲醚、丙二醇甲醚、苯、甲苯、二甲苯、环己烷中的至少一种。
载体膜选自PET膜、PP膜、PE膜、PVC膜中的至少一种。
本发明实施例还提供了一种电路基板,包括前述的半固化片、层压板、绝缘板、绝缘薄膜中的一种或多种。
本发明实施例还提供了一种电子器件,包括前述电路基板;由于电路基板的耐热性大大提高,故电子器件的安全性显著提高。
下面结合一些具体的合成例和对比例,对本申请的技术方案进行进一步说明。
合成例1:改性双马来酰亚胺预聚物Y1
步骤1、在烧杯中加入200g双马来酰亚胺树脂(大和化成制,BMI-2300)、20g含双键有机硅树脂(信越化学制,X-22-164A)和适量有机溶剂,在80℃下反应70min,得到预反应物;
步骤2、将温度升温至110℃,加入30g碳氢树脂(曹达B3000),在110℃下继续反应30min,出料制得改性双马来酰亚胺预聚物Y1。
合成例2:改性双马来酰亚胺预聚物Y2
步骤1、在烧杯中加入200g双马来酰亚胺树脂(日本化药制,MIR-3000)、30g含双键有机硅树脂(信越化学制,X-22-164A)和适量的有机溶剂,在90℃下反应60min,得到预反应物;
步骤2、将温度升温至120℃,加入45g碳氢树脂(曹达B2000),在120℃下继续反应30min,出料制得改性双马来酰亚胺预聚物Y2。
合成例3:改性双马来酰亚胺预聚物Y3
步骤1、在烧杯中加入200g双马来酰亚胺树脂(日本化药制,MIR-3000)、 40g含双键有机硅树脂(X-22-164A),在90℃下反应60min,得到预反应物;
步骤2、将温度升温至120℃,加入25g碳氢树脂(曹达B3000),在120℃下继续反应30min,出料制得改性双马来酰亚胺预聚物Y3。
合成例4:改性双马来酰亚胺预聚物Y4
在烧杯中加入200g双马来酰亚胺树脂(大和化成制,BMI-2300)、20g含双键有机硅树脂(信越化学制,X-22-164A)、30g碳氢树脂(曹达B3000)和适量有机溶剂,在100℃下反应100min,得到改性双马来酰亚胺预聚物Y4。
合成例5:改性双马来酰亚胺预聚物Y5(相比合成例1比较)
步骤1、在烧杯中加入200g双马来酰亚胺树脂(大和化成制,BMI-2300)、30g碳氢树脂(曹达B3000)和适量有机溶剂,在80℃下反应70min,得到预反应物;
步骤2、将温度升温至110℃,加入20g含双键有机硅树脂(信越化学制,X-22-164A),在110℃下继续反应30min,出料制得改性双马来酰亚胺预聚物Y5。
合成对比例1:改性双马来酰亚胺预聚物Y6
在烧杯中加入200g双马来酰亚胺树脂(大和化成制,BMI-2300)、20g含双键有机硅树脂(X-22-164A)和适量的有机溶剂,在110℃下反应120min,得到预反应物Y4。
合成对比例2:改性双马来酰亚胺预聚物Y7
在烧杯中加入200g双马来酰亚胺树脂(大和化成制,BMI-2300)、45g碳氢树脂(曹达B3000)和0.1g引发剂,在110℃下反应120min,得到预反应物Y5。
按照表1中的数据称取对应固体物质,将称取的各固体物质通过溶剂调节胶液至固含量60%,将胶液涂覆于E玻璃纤维布上,浸润后取出,放置于160℃鼓风干燥箱中,烘烤3~6min,制成半固化片。
将半固化片裁剪至300×300mm,在半固化片两侧各放置一张电解铜箔,叠配成一定叠构,送入真空压机中压合制得金属箔层压板(或者覆铜层压板),具 体性能检测如表2所示。
表1树脂组合物配方表
表2性能表
对上述所有实施例1~5和比较例1~3中制备的半固化片和覆铜层压板进行性能测试。
1)玻璃化转变温度采用DMA(热机械分析),升温速率为10℃/min;
2)PCT 2HR吸水率测定:取3块10cm×10cm、厚度为0.40mm、两面去除 金属箔的样品,在100℃干燥2小时,称重,记重量为W1,然后在高压锅蒸煮试验(Pressure Cooker test)机中,在121℃、2个大气压下处理2小时,称重,重量记为W2,测定吸水率为(W2-W1)/W1×100%;
3)X/Y热膨胀系数(CTE)测定:采用TMA(热机械分析),升温速率10℃/min,测试温度范围30~100℃;
4)Dk和Df:按照IPC-TM-650 2.5.5.9使用平板法,测定10GHz下。
由上述实验数据中可知,实施例1~5具有优异的高Tg、低介电常数和介质损耗,低吸水率和低CTE值。其中,实施例2相比对比例1,具有更高的Tg值、低介电常数和介质损耗,实施例1相比对比例2,不仅具有更高的Tg值和低的介电常数和介质损耗,CTE和吸水率也更低。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种改性双马来酰亚胺预聚物,其特征在于,通过双马来酰亚胺化合物、含双键有机硅树脂和碳氢树脂反应制得,其中,所述双马来酰亚胺化合物的质量:所述含双键有机硅树脂的质量:所述碳氢树脂的质量比为100:(3~40):(5~50)。
  2. 根据权利要求1所述的改性双马来酰亚胺预聚物,其特征在于,所述含双键有机硅树脂和所述碳氢树脂的双键当量之和与所述双马来酰亚胺化合物的双键当量的比为1:(5~0.8)。
  3. 根据权利要求1所述的改性双马来酰亚胺预聚物,其特征在于,通过如下反应制得:
    将所述双马来酰亚胺化合物和所述含双键有机硅树脂在50~90℃反应30~120min得到预反应物;
    在所述预反应物中加入所述碳氢树脂,在90~130℃下反应30~150min,得到所述改性双马来酰亚胺预聚物。
  4. 根据权利要求3所述的改性双马来酰亚胺预聚物,其特征在于,在所述双马来酰亚胺化合物与含双键有机硅树脂和碳氢树脂反应过程中添加氨基酚、羧酸或羧酸酐中至少一种,含量为0.1~10重量份。
  5. 根据权利要求3所述的改性双马来酰亚胺预聚物,其特征在于,得到的所述改性双马来酰亚胺预聚物中含有反应性双键。
  6. 一种树脂组合物,其特征在于,以重量计,包括如下组分:
    (a)改性双马来酰亚胺预聚物:10~80份;
    (b)马来酰亚胺化合物或其衍生物:10~80份;
    其中,所述改性双马来酰亚胺预聚物为权利要求1所述的改性双马来酰亚胺预聚物。
  7. 根据权利要求6所述的树脂组合物,其特征在于,还包括3~50份的弹性体,所述弹性体为苯乙烯类弹性体、甲基丙烯酸酯类弹性体、有机硅类弹性体中至少一种。
  8. 根据权利要求6所述的树脂组合物,其特征在于,所述树脂组合物中还包括阻燃剂,所述阻燃剂含5~50重量份。
  9. 根据权利要求8所述的树脂组合物,其特征在于,所述阻燃剂选自溴系阻燃剂、磷系阻燃剂、氮系阻燃剂、有机硅阻燃剂、有机金属盐阻燃剂;
    所述溴系阻燃剂选自十溴二苯醚、十溴二苯乙烷、溴化苯乙烯或者四溴邻苯二甲酰胺;
    所述磷系阻燃剂选自无机磷、磷酸酯、磷酸、次磷酸、氧化磷、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO-HQ)、(m为1~5的整数)、10-苯基-9,10-二氢-9-氧杂-10-磷菲-10-氧化物、三(2,6-二甲基苯基)磷、磷腈、改性磷腈;
    所述氮系阻燃剂选自三嗪化合物、氰尿酸化合物、异氰酸化合物、吩噻嗪;
    所述有机硅阻燃剂选自有机硅油、有机硅橡胶、有机硅树脂;
    所述有机金属阻燃剂选自二茂铁、乙酰丙酮金属络合物、有机金属羰基化合物。
  10. 根据权利要求6所述的树脂组合物,其特征在于,还包括硅烷偶联剂和分散剂,所述硅烷偶联剂和分散剂的重量之比为(2~10):1。
  11. 根据权利要求10所述的树脂组合物,其特征在于,所述硅烷偶联剂为环氧硅烷偶联剂,所述分散剂为磷酸酯类分散剂和/或改性聚氨酯类分散剂。
  12. 如权利要求6所述的树脂组合物在半固化片、层压板、绝缘薄膜、绝缘板、覆铜板、电路基板和电子器件中的应用。
PCT/CN2023/085348 2022-10-11 2023-03-31 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用 WO2024077886A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237020829A KR20240052715A (ko) 2022-10-11 2023-03-31 개질된 비스말레이미드 프리폴리머, 수지 조성물 및 수지 조성물의 용도

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211241831.9A CN115449040A (zh) 2022-10-11 2022-10-11 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN202211241813.0A CN115449039B (zh) 2022-10-11 2022-10-11 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN202211244008.3A CN115433330A (zh) 2022-10-11 2022-10-11 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN202211241813.0 2022-10-11
CN202211241831.9 2022-10-11
CN202211244008.3 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024077886A1 true WO2024077886A1 (zh) 2024-04-18

Family

ID=90668657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085348 WO2024077886A1 (zh) 2022-10-11 2023-03-31 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用

Country Status (2)

Country Link
KR (1) KR20240052715A (zh)
WO (1) WO2024077886A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517543A (ja) * 1991-07-10 1993-01-26 Hitachi Chem Co Ltd 難燃性熱硬化性樹脂組成物
CN113717487A (zh) * 2020-05-26 2021-11-30 台光电子材料股份有限公司 树脂组合物及其制品
CN114058181A (zh) * 2021-12-31 2022-02-18 广东盈骅新材料科技有限公司 树脂组合物及其制备方法和应用
CN115433330A (zh) * 2022-10-11 2022-12-06 苏州生益科技有限公司 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517543A (ja) * 1991-07-10 1993-01-26 Hitachi Chem Co Ltd 難燃性熱硬化性樹脂組成物
CN113717487A (zh) * 2020-05-26 2021-11-30 台光电子材料股份有限公司 树脂组合物及其制品
CN114058181A (zh) * 2021-12-31 2022-02-18 广东盈骅新材料科技有限公司 树脂组合物及其制备方法和应用
CN115433330A (zh) * 2022-10-11 2022-12-06 苏州生益科技有限公司 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用

Also Published As

Publication number Publication date
KR20240052715A (ko) 2024-04-23

Similar Documents

Publication Publication Date Title
KR101716990B1 (ko) 폴리페닐에테르 수지 조성물 및 이를 이용하여 제조되는 반경화 시트 및 동박 적층판
CN112080102A (zh) 树脂组合物及具有其的半固化片、绝缘薄膜、覆金属箔层压板、印制线路板
CN109810467B (zh) 一种热固性树脂组合物及应用其制备的半固化片和层压板
CN115433330A (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
KR20050023039A (ko) 수지조성물, 이를 이용한 라미네이트용 프리프렉 및 그프리프렉을 이용하여 제조한 금속-클래드 라미네이트
CN115850710B (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN110423342B (zh) 一种有机硅改性的聚苯醚树脂及其制备方法和用途
CN116239777A (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN109971175B (zh) 改性马来酰亚胺树脂组合物及其制备的半固化片和层压板
WO2017107588A1 (zh) 有机硅改性的酚醛树脂、制备方法及用途
CN116003687A (zh) 马来酰亚胺树脂预聚物及其制备方法、树脂组合物和应用
CN115819765B (zh) 环氧基化合物改性马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN114262437B (zh) 一种改性双马来酰亚胺预聚物及其树脂组合物、半固化片、层压板及金属箔层压板
CN114316264B (zh) 改性双马来酰亚胺预聚物及其树脂组合物、应用
WO2024077886A1 (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN116120560A (zh) 改性双马来酰亚胺预聚物的制备方法、树脂组合物及树脂组合物的应用
CN115449039B (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
WO2024077887A1 (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN115819766B (zh) 改性马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN114015046B (zh) 一种改性双马来酰亚胺预聚物及使用其制备的组合物、半固化片及其层压板
CN113214461B (zh) 一种活性酯树脂及其树脂组合物
CN115449040A (zh) 改性双马来酰亚胺预聚物、树脂组合物及树脂组合物的应用
CN116925546A (zh) 树脂组合物及其应用
CN117700992A (zh) 一种马来酰亚胺树脂组合物及其半固化片和层压板
CN117700993A (zh) 一种无卤树脂组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876098

Country of ref document: EP

Kind code of ref document: A1