WO2024075583A1 - 硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡 - Google Patents

硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡 Download PDF

Info

Publication number
WO2024075583A1
WO2024075583A1 PCT/JP2023/034841 JP2023034841W WO2024075583A1 WO 2024075583 A1 WO2024075583 A1 WO 2024075583A1 JP 2023034841 W JP2023034841 W JP 2023034841W WO 2024075583 A1 WO2024075583 A1 WO 2024075583A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
bismuth
compound
mass
Prior art date
Application number
PCT/JP2023/034841
Other languages
English (en)
French (fr)
Inventor
颯人 丸本
剛美 川崎
誉夫 野口
康智 清水
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2024075583A1 publication Critical patent/WO2024075583A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to a curable composition, a cured product, an optical article, a lens, and glasses.
  • Lead glass is known as an optical material for forming such optical articles. Lead glass has high X-ray blocking performance, but has a high specific gravity. Therefore, X-ray blocking goggles equipped with lenses containing lead glass are heavy and may be difficult to use regularly.
  • Another known optical material is acrylic lead. Although acrylic lead has lower X-ray blocking performance than lead glass, it is lightweight. Therefore, acrylic lead is used in optical articles for blocking stray X-rays.
  • lead is a substance that is harmful to the environment, and lead-free optical materials are desired.
  • bismuth has long been used as a gastrointestinal medicine and is harmless to the human body while providing high X-ray blocking properties, making it a suitable element to replace lead.
  • the cured product of the curable composition containing a bismuth compound in which a phosphate ester having a (meth)acryloyl group is bonded to the bismuth and a radical polymerizable monomer is highly transparent and lightweight, making it suitable as an optical material (see Patent Documents 1 and 2).
  • Patent Documents 1 and 2 In order to improve the mechanical properties of this cured product, it has been considered to blend a nitrile compound into the curable composition.
  • the present invention aims to provide a curable composition with reduced odor, a cured product with reduced odor, and optical articles, lenses, and glasses that include the cured product.
  • ⁇ 4> The curable composition according to any one of ⁇ 1> to ⁇ 3>, wherein the first polymerizable compound includes a monofunctional polymerizable compound having one of the polymerizable groups.
  • R 1 is a hydroxy group, a linear or branched alkyl group having from 1 to 10 carbon atoms, a linear or branched alkoxy group having from 1 to 10 carbon atoms, a cycloalkyl group having from 4 to 10 carbon atoms, a heterocycloalkyl group having from 3 to 10 carbon atoms and from 1 to 3 heteroatoms, an aryl group having from 4 to 10 carbon atoms, or a heteroaryl group having from 3 to 10 carbon atoms and from 1 to 3 heteroatoms;
  • R2 is a linear or branched alkylene group having from 1 to 10 carbon atoms, or an alkylene oxide group having from 1 to 10 carbon atoms;
  • R3 is a hydrogen atom or a methyl group; a is 0 or
  • ⁇ 7> The curable composition according to any one of ⁇ 4> to ⁇ 6>, wherein the monofunctional polymerizable compound contains at least one (meth)acrylate selected from the group consisting of methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, tetrahydrofurfuryl acrylate, and tetrahydrofurfuryl methacrylate.
  • the monofunctional polymerizable compound contains at least one (meth)acrylate selected from the group consisting of methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, tetrahydrofurfuryl acrylate, and tetrahydrofurfuryl methacrylate.
  • ⁇ 8> The curable composition according to any one of ⁇ 1> to ⁇ 7>, wherein the first polymerizable compound includes a polyfunctional polymerizable compound having two or more of the polymerizable groups.
  • the polyfunctional polymerizable compound includes a bifunctional (meth)acrylate selected from the group consisting of polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, polypropylene glycol dimethacrylate, polypropylene glycol diacrylate, polytetramethylene glycol dimethacrylate, and polytetramethylene glycol diacrylate.
  • a bifunctional (meth)acrylate selected from the group consisting of polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, polypropylene glycol dimethacrylate, polypropylene glycol diacrylate, polytetramethylene glycol dimethacrylate, and polytetramethylene glycol diacrylate.
  • ⁇ 12> A cured product of the curable composition described in any one of ⁇ 1> to ⁇ 11>.
  • a lens comprising the cured product described in ⁇ 12>.
  • the present invention provides a curable composition with reduced odor, a cured product with reduced odor, and optical articles, lenses, and eyeglasses that include the cured product.
  • (meth)acrylate means both “acrylate” and “methacrylate”
  • (meth)acryloyl means both “acryloyl” and “methacryloyl.”
  • (meth)acrylic resin and "(meth)acrylic acid.”
  • the curable composition according to the present embodiment includes a first bismuth compound and a first polymerizable compound.
  • the first bismuth compound includes bismuth and at least one of an acryloyl group and a methacryloyl group.
  • the first polymerizable compound has a polymerizable group and has a boiling point of 90° C. or higher under 1 atmosphere.
  • the polymerizable group includes at least one selected from the group consisting of an acryloyl group, a methacryloyl group, a vinyl group, and an allyl group.
  • the content of the nitrile compound having a nitrile group is less than 10% by mass.
  • the first bismuth compound is lightweight and highly transparent, making it suitable as an X-ray blocking optical material. Furthermore, this first bismuth compound has high compatibility with other polymerizable compounds such as (meth)acrylate monomers, or high dispersibility within other polymerizable compounds. Therefore, the first bismuth compound can be used in a mixture with other polymerizable compounds, similar to curable compositions such as general (meth)acrylic resins. When a nitrile compound such as acrylonitrile is used as the other polymerizable compound, a cured body with high strength can be obtained.
  • a nitrile compound such as acrylonitrile
  • the curable composition containing the first bismuth compound and the cured product thereof may have a peculiar odor.
  • the cause of this odor is unpolymerized nitrile compounds remaining in the cured product.
  • polymerizable compounds with a relatively low boiling point under normal pressure tend to volatilize from the cured product and can cause odor.
  • the curable composition according to this embodiment contains a limited amount of nitrile compounds and a first polymerizable compound with a relatively high boiling point. Therefore, the curable composition according to this embodiment can obtain a cured product with reduced odor.
  • the use of a curable composition with reduced odor reduces the discomfort of manufacturers and processors of the cured product, as well as users who wear optical articles containing the cured product, and can further improve production efficiency, etc.
  • the first bismuth compound contains bismuth, and therefore can be used as a radiation shielding material.
  • Radiation includes electromagnetic radiation and particle radiation.
  • Electromagnetic radiation includes X-rays and gamma rays.
  • Particle radiation includes alpha rays, beta rays, neutron rays, and proton rays.
  • bismuth compounds have excellent X-ray shielding properties, they are particularly suitable for use as X-ray shielding materials and as ⁇ -ray shielding materials that can generate X-rays.
  • the first bismuth compound has high solubility in radically polymerizable compounds having at least one radically polymerizable group selected from the group consisting of a nitrile group, an acryloyl group, a methacryloyl group, a vinyl group, and an allyl group. Therefore, by using the first bismuth compound, a hardenable composition containing a high concentration of bismuth and a hardened product thereof can be obtained.
  • the first bismuth compound has better solubility in radically polymerizable compounds than bismuth subsalicylate alone.
  • the first bismuth compound may be in any form as long as it has bismuth and a (meth)acryloyl group.
  • the bismuth and the (meth)acryloyl group may be directly bonded, or may be bonded via a bonding group.
  • the bonding group include oxygen, sulfur, nitrogen, and phosphoric acid.
  • the first bismuth compound is preferably bonded to a first phosphate ester having a (meth)acryloyl group. Such a first bismuth compound tends to have higher compatibility with various polymerizable compounds.
  • the bonding form between the bismuth and the first phosphate ester is not particularly limited, and may be any of an ionic bond, a coordinate bond, and a covalent bond.
  • the first bismuth compound may be a phosphate or complex salt with bismuth (Bi 3+ or Bi 5+ ) as the cation and the first phosphate ester as the anion, a phosphate compound, or a complex.
  • the first bismuth compound may be a mono(meth)acrylate having one (meth)acryloyl group, a di(meth)acrylate having two (meth)acryloyl groups, a tri(meth)acrylate having three (meth)acryloyl groups, or a multifunctional (meth)acrylate having four or more (meth)acryloyl groups.
  • the first phosphate ester is represented, for example, by the following formula (2).
  • Q1 is a hydrogen atom or a methyl group, and Q1 is preferably a methyl group.
  • Q2 is a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 4 to 16 carbon atoms, or a (meth)acryloyloxyalkylene group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 6.
  • the number of carbon atoms in the aryl group is preferably 5 to 8.
  • the aryl group is preferably a phenyl group.
  • the number of carbon atoms in the alkylene group contained in the (meth)acryloyloxyalkylene group is, for example, 1 to 10, preferably 1 to 3.
  • the (meth)acryloyloxyalkylene group is preferably a (meth)acryloyloxyethylene group.
  • a3 is 0 or 1.
  • the oxygen atom to which P and Q2 are bonded is O-- .
  • Q3 is a linear or branched alkylene group having from 1 to 10 carbon atoms, or a linear or branched alkyleneoxyalkylene group having from 1 to 10 carbon atoms.
  • the first bismuth compound may further be bonded to other compounds in addition to the first phosphate ester.
  • the bond between the bismuth and the other compounds may be any of ionic bonds, coordinate bonds, and covalent bonds. That is, the first bismuth compound may be a phosphate or complex salt having bismuth (Bi 3+ or Bi 5+ ) as the cation and the first phosphate ester and the other compounds as the anions, a phosphate compound, or a complex.
  • Specific examples of other compounds include at least one selected from the group consisting of salicylic acid and (meth)acrylic acid.
  • the ratio of the primary phosphate ester to the other compounds is preferably 0.1 to 10 moles, more preferably 0.1 to 5 moles, even more preferably 0.1 to 1 mole, and particularly preferably 0.1 to 0.5 moles, of the other compounds per mole of the primary phosphate ester. Note that when two or more types of primary phosphate esters are present, the above range is based on the total number of moles of the primary phosphate esters.
  • the fact that the first phosphate ester is bonded to bismuth can be confirmed by infrared spectroscopy (IR) analysis. That is, when a peak is confirmed, for example, at 1670 to 1700 cm ⁇ 1 in infrared spectroscopy analysis measurement of the first bismuth compound, it can be confirmed that the first phosphate ester is bonded to bismuth. This peak is considered to be a peak characteristic of the stretching vibration of Bi—O—P. This peak is not confirmed in the bismuth and the first phosphate ester before bonding.
  • IR infrared spectroscopy
  • the IR spectrum is measured, for example, using a PerkinElmer Spectrum One, using the single reflection ATR method and four-times accumulation.
  • the 1 H- and 31 P-NMR measurements are performed using a nuclear magnetic resonance apparatus (JNM-ECA400II, manufactured by JEOL Ltd.) with deuterated acetone as the solvent and a sample concentration of 1% by mass.
  • JNM-ECA400II manufactured by JEOL Ltd.
  • an X-ray photoelectron spectrometer (ULVAC-PHI, Inc., ESCA5701ci/MC) is used, and the X-ray source is monochromatic Al-K ⁇ (14 kV-330 W), with an aperture diameter of ⁇ 800 ⁇ m and a photoelectron take-off angle of 45 degrees.
  • the sample is crushed in an agate mortar, and the resulting powder is fixed to a substrate with carbon tape and introduced into the measurement chamber for measurement.
  • the first bismuth compound is, for example, a phosphate or complex salt represented by the following formula (1):
  • X is (meth)acrylic acid represented by the following formula (1a) or salicylic acid represented by the following formula (1b).
  • X is preferably salicylic acid represented by the following formula (1b).
  • a1 is a number between 0 and 1.
  • a2 is a number greater than or equal to 0.1 and less than or equal to 3.
  • a 1 +a 2 is a number between 2 and 3 inclusive.
  • the fact that the first bismuth compound has the structure represented by the above formula (1) can be confirmed, for example, by detection of a proton-added molecular ion or a sodium-added ion of the compound in MALDI-TOF-MS measurement.
  • the first bismuth compound may be a mixture in which multiple types of first phosphate esters and multiple types of other compounds are bonded to bismuth.
  • the first bismuth compound is preferably a mixture in which both a first phosphate ester having one (meth)acryloyl group and a first phosphate ester having two (meth)acryloyl groups are bonded to bismuth. Such a first bismuth compound tends to be highly compatible with polymerizable compounds.
  • the ratio of the first phosphate ester having two (meth)acryloyl groups to 1 mole of the first phosphate ester having one (meth)acryloyl group is preferably 0.05 to 3 moles, more preferably 0.10 to 2 moles, and even more preferably 0.15 to 1 mole.
  • Suitable first bismuth compounds include those represented by the following formulas (III) to (V).
  • each R is independently a hydrogen atom or a methyl group.
  • x represents the number of moles of 2-((meth)acryloyloxy)ethyl hydrogen phosphate residues.
  • y represents the number of moles of phenyl-2-((meth)acryloyloxy)ethyl phosphate residues.
  • z represents the number of moles of bis[2-((meth)acryloyloxy)ethyl]phosphate residues.
  • a represents the number of moles of (meth)acrylic acid residues.
  • u represents the number of moles of 2-((meth)acryloyloxy)ethyl hydrogen phosphate residues.
  • v represents the number of moles of phenyl-2-((meth)acryloyloxy)ethyl phosphate residues.
  • w represents the number of moles of bis[2-((meth)acryloyloxy)ethyl]phosphate residues.
  • b represents the number of moles of salicylic acid residues.
  • q represents the number of moles of 2-((meth)acryloyloxy)ethyl hydrogen phosphate residues.
  • r represents the number of moles of phenyl-2-((meth)acryloyloxy)ethyl phosphate residues.
  • s represents the number of moles of 2-((meth)acryloyloxy)ethyl phosphate residues.
  • t represents the number of moles of bis[2-((meth)acryloyloxy)ethyl]phosphate residues.
  • c represents the number of moles of salicylic acid residues.
  • first bismuth compounds represented by the above formulas (III) to (V) may not each be a single compound, but may be a mixture of multiple compounds.
  • the number of moles of each of the above-mentioned residues refers to the number of moles of the entire mixture.
  • the first bismuth compound is, for example, a phosphate or complex salt represented by the following formula (3):
  • a4 is a number greater than 0 and equal to or less than 3.
  • a5 is a number greater than 0 and equal to or less than 3.
  • a4 + a5 is 3.
  • the first bismuth compound may also be a composition containing a compound other than the first bismuth compound.
  • this composition is also referred to as the first bismuth composition.
  • the first bismuth composition may contain a phosphate compound that is a by-product during production, or unreacted raw materials.
  • Examples of by-product phosphoric acid compounds include dimers of phosphoric acid esters (phosphoric acid monoesters) having one (meth)acryloyl group, dimers of phosphoric acid esters (phosphoric acid diesters) having two (meth)acryloyl groups, and esters of bismuth salicylate or bismuth (meth)acrylate with phosphoric acid.
  • unreacted raw materials include phosphate esters having one (meth)acryloyl group (phosphate monoesters), phosphate esters having two (meth)acryloyl groups (phosphate diesters), bismuth salicylate, bismuth (meth)acrylate, etc.
  • the ratio of compounds other than the first bismuth compound is, for example, 30 mass% or less. There is no lower limit to this ratio, but in one example, it is 0 mass%, and in another example, it is 5 mass%. This ratio can be confirmed by quantifying the by-product phosphate compound and unreacted raw materials in the first bismuth composition by an internal standard method using 1H MNR.
  • the first bismuth composition may also contain a compound derived from bismuth oxide.
  • the compound derived from bismuth oxide is, for example, a compound in which bismuth oxide is bonded to a phosphate ester having a (meth)acryloyl group, (meth)acrylic acid, and/or salicylic acid.
  • a hydroxyl group formed on the surface of the bismuth oxide is bonded to a carboxyl group of the phosphate ester, (meth)acrylic acid, or salicylic acid. It is very difficult to separate this compound derived from bismuth oxide from the first bismuth compound.
  • a compound derived from bismuth oxide when a compound derived from bismuth oxide is by-produced, it is preferable to use the composition in a state in which the compound derived from bismuth oxide is included.
  • a compound derived from bismuth oxide when a compound derived from bismuth oxide is by-produced, it is desirable to adjust the production conditions, etc. so that the amount of the compound derived from bismuth oxide is within a range that does not reduce the solubility of the first bismuth composition.
  • the presence of a compound derived from bismuth oxide can be determined comprehensively by the production conditions or a method such as IR, NMR, or XPS.
  • the method for producing the first bismuth compound is not particularly limited, but it is preferable to produce the first bismuth compound by reacting the second bismuth compound with a first phosphate ester. Specifically, it is preferable to produce the first bismuth compound by reacting the second bismuth compound with a first phosphate ester in an aliphatic hydrocarbon solvent or an aromatic solvent, optionally adding a polymerization inhibitor, and then dehydrating the resulting mixture.
  • bismuth-containing compound refers to an organic compound containing bismuth.
  • the bismuth-containing compound includes bismuth (meth)acrylate or bismuth subsalicylate. There are no particular limitations on the bismuth (meth)acrylate or bismuth subsalicylate, and commercially available products can be used.
  • Bismuth subsalicylate is a compound in which salicylic acid is bonded to bismuth, and is represented by the following formula (VI).
  • the first phosphate ester commercially available products can be used.
  • the first phosphate ester may be a phosphate ester having one (meth)acryloyl group, a phosphate ester having two (meth)acryloyl groups, or a mixture of these.
  • phosphate esters having one (meth)acryloyl group examples include 2-(methacryloyloxy)ethyl dihydrogen phosphate and diphenyl-2-methacryloyloxyethyl phosphate.
  • phosphate esters having two (meth)acryloyl groups include bis[2-(methacryloyloxy)ethyl] hydrogen phosphate and phenyl[2-(methacryloyloxy)ethyl] hydrogen phosphate.
  • a phosphate triester such as diphenyl-2-methacryloyloxyethyl phosphate, phenyl bis[2-(methacryloyloxyethyl)]phosphate, or tris[2-(methacryloyloxyethyl)]phosphate as the first phosphate ester.
  • the amount of the phosphate triester used is preferably 0.1 to 20 moles, and more preferably 0.2 to 5 moles, per mole of the total of the phosphate ester having one (meth)acryloyl group and the phosphate ester having two (meth)acryloyl groups.
  • the amount of primary phosphate ester used may be determined so as to obtain the desired primary bismuth compound. Specifically, it is preferable to use an amount of primary phosphate ester in the range of 0.3 to 10 moles per mole of secondary bismuth compound.
  • Aliphatic hydrocarbon solvents or aromatic solvents include, for example, hexane, heptane, nonane, decane, undecane, dodecane, xylene, dimethoxybenzene, and their isomers; benzene, toluene, chlorobenzene, bromobenzene, anisole; petroleum ether, petroleum benzine, benzoin; and the like.
  • the amount of the aliphatic hydrocarbon solvent or aromatic solvent used is not particularly limited, so long as it is an amount that allows sufficient mixing of the bismuth dibasic compound and the first phosphate ester. Considering the productivity of the first bismuth compound, it is preferable to use 5 to 100 mL of the aliphatic hydrocarbon solvent or aromatic solvent per 1 g of the bismuth dibasic compound.
  • the method of introducing the second bismuth compound and the first phosphate ester into the reaction system is not particularly limited.
  • a method can be adopted in which the second bismuth compound diluted with an aliphatic hydrocarbon solvent or aromatic solvent as necessary and the first phosphate ester diluted with an aliphatic hydrocarbon solvent or aromatic solvent as necessary are added together into the reaction system and stirred and mixed.
  • a method can be adopted in which an aliphatic hydrocarbon solvent or aromatic solvent is introduced into the reaction system in advance, and the second bismuth compound diluted with an aliphatic hydrocarbon solvent or aromatic solvent as necessary and the first phosphate ester diluted with an aliphatic hydrocarbon solvent or aromatic solvent as necessary are added together thereto and stirred and mixed.
  • the second bismuth compound is dispersed in an aliphatic hydrocarbon solvent or aromatic solvent.
  • the second bismuth compound may not dissolve, but in that case, it is preferable to crush the lumps of the second bismuth compound by an ultrasonic device or the like so that no lumps or the like of the second bismuth compound are present.
  • the primary phosphate is added to the cloudy solution in which the bismuth compound is dispersed, and stirring and heating are commenced.
  • the temperature (reaction temperature) at which each component is stirred may be the reflux temperature of the aliphatic hydrocarbon solvent or aromatic solvent, but in order to minimize coloration of the resulting first bismuth compound, it is preferable to carry out the reaction at an oil bath temperature of 30 to 150°C, more preferably 40 to 140°C, and even more preferably 45 to 120°C.
  • the reaction temperature is 30 to 110°C
  • the dehydration can be carried out while mixing the secondary bismuth compound and the primary phosphate ester, or the two can be mixed and then dehydrated.
  • the reaction time is not particularly limited, but is usually from 1 hour to 6 hours.
  • the reaction may be carried out in an air atmosphere, an inert gas atmosphere, or a dry air atmosphere, and in consideration of operability, it is preferable to carry out the reaction in an air atmosphere.
  • the resulting bismuth compound is concentrated by distilling off the solvent, and if there are any insoluble turbid components, it is desirable to separate them by filtration or centrifugation. Furthermore, a solvent that is soluble in the reaction solvent used but does not dissolve the bismuth compound is added to the concentrated reaction solution obtained by this process to perform reprecipitation and purification. If any high-boiling point solvent remains, the above decantation operation is repeated to replace the solvent. The remaining solvent is then distilled off and vacuum dried to extract the bismuth compound.
  • the content of the first bismuth compound is, for example, 20% by mass or more and 90% by mass or less. If the content of the first bismuth compound is high, the X-ray shielding effect of the cured body tends to be enhanced.
  • the content of the first bismuth compound is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 65% by mass or more. On the other hand, if the content of the first bismuth compound is excessively high, there is a risk that the odor of the cured body will be strong.
  • the content of the first bismuth compound is preferably 80% by mass or less.
  • the first polymerizable compound has at least one polymerizable group selected from the group consisting of an acryloyl group, a methacryloyl group, a vinyl group, and an allyl group, and has a boiling point of 90° C. or higher at 1 atmosphere.
  • the boiling point of the first polymerizable compound is preferably 100°C or higher, and more preferably 140°C or higher. If the boiling point of the first polymerizable compound is high, the odor intensity of the cured product tends to decrease. There is no particular upper limit to the boiling point of the first polymerizable compound, but in one example it is 200°C or lower, and in another example it is 300°C or lower.
  • the boiling point of the first polymerizable compound can be measured, for example, by thermogravimetry (TG) analysis.
  • TG measurements For TG measurements, a simultaneous differential thermal and thermogravimetric analyzer (TG8120, manufactured by Rigaku Corporation) is used, and scanning is performed under air flow from room temperature to 500°C at a heating rate of 10°C/min.
  • the content of the first polymerizable compound in the curable composition is, for example, 10% by mass or more and 80% by mass or less. This content can be measured, for example, by 1 H NMR.
  • the NMR measurement conditions are the same as those described above.
  • the first polymerizable compound preferably contains a monofunctional radically polymerizable compound having one radically polymerizable site per molecule.
  • the compatibility of the first bismuth compound tends to increase.
  • the boiling point of the monofunctional radically polymerizable compound is preferably 150°C or higher, and more preferably 180°C or higher.
  • Examples of monofunctional radically polymerizable compounds having an acryloyl group include various commercially available polymerizable compounds such as acrylic acid, acrylamide, phenyl acrylate, benzyl acrylate, isobutyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, isocyanatoethyl acrylate, and acryloxymethyltrimethoxysilane.
  • Examples of monofunctional radically polymerizable compounds having a methacryloyl group include various commercially available polymerizable compounds such as methacrylic acid, methacrylamide, phenyl methacrylate, benzyl methacrylate, isobutyl methacrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, and methacryloxymethyltrimethoxysilane.
  • Examples of monofunctional radical polymerizable compounds having a vinyl group include various commercially available polymerizable compounds such as vinylpyridine, vinylpyrrolidone, styrene, and styrene derivatives.
  • Examples of styrene derivatives include methylstyrene and its structural isomers, methoxystyrene and its structural isomers, methylstyrene dimer, chlorostyrene, bromostyrene, and divinylbenzene.
  • Examples of monofunctional radically polymerizable compounds having an allyl group include various commercially available polymerizable compounds such as allyl methyl carbonate, allyl phenyl ether, 4-allyloxytoluene, allyloxytrimethylsilane, allyl benzoate, allyl methacrylate, and allyl glycidyl ether.
  • a suitable monofunctional radical polymerizable compound is (meth)acrylate represented by the following formula (I).
  • R 1 is a hydroxy group, a linear or branched alkyl group having from 1 to 10 carbon atoms, a linear or branched alkoxy group having from 1 to 10 carbon atoms, a cycloalkyl group having from 4 to 10 carbon atoms, a heterocycloalkyl group having from 3 to 10 carbon atoms and from 1 to 3 heteroatoms, an aryl group having from 4 to 10 carbon atoms, or a heteroaryl group having from 3 to 10 carbon atoms and from 1 to 3 heteroatoms.
  • R 1 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkoxy group having 1 to 10 carbon atoms, or a heterocycloalkyl group having 3 to 10 carbon atoms and 1 to 3 heteroatoms, more preferably a linear or branched alkoxy group having 1 to 10 carbon atoms or a heterocycloalkyl group having 3 to 10 carbon atoms and 1 to 3 heteroatoms, and even more preferably a methoxy group or a tetrahydrofuryl group.
  • R2 is a linear or branched alkylene group having from 1 to 10 carbon atoms, or an alkylene oxide group having from 1 to 10 carbon atoms.
  • R2 is preferably a linear or branched alkylene group having from 1 to 10 carbon atoms, and more preferably a methylene group or an ethylene group.
  • R3 is a hydrogen atom or a methyl group.
  • a is 0 or 1. a is preferably 1.
  • the (meth)acrylate represented by the above formula (I) include at least one selected from the group consisting of methoxyethyl acrylate (MEMA), ethoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, tetrahydrofurfuryl acrylate (THFAA), and tetrahydrofurfuryl methacrylate (THFMA).
  • MEMA methoxyethyl acrylate
  • ethoxyethyl acrylate methoxyethyl methacrylate
  • ethoxyethyl methacrylate ethoxyethyl methacrylate
  • THFMA tetrahydrofurfuryl methacrylate
  • the proportion of the monofunctional radically polymerizable compound is preferably 10% by mass or more and 80% by mass or less. If this proportion is high, the compatibility of the first bismuth compound tends to be increased. If this proportion is low, the odor level of the cured body tends to decrease and the impact resistance tends to increase. It is more preferable that this proportion is 10% by mass or more and 30% by mass or less. This proportion can be measured, for example, by NMR.
  • the curable composition according to this embodiment preferably contains multiple types of monofunctional radical polymers. When multiple types of monofunctional radical polymers are contained, the compatibility of the first bismuth compound tends to be increased.
  • the curable composition according to this embodiment may contain a monofunctional radical polymerizable compound having a (meth)acryloyl group and a monofunctional radical polymerizable compound having a vinyl group.
  • the ratio M4/M5 of the mass M4 of the monofunctional radical polymerizable compound having a (meth)acryloyl group to the mass M5 of the monofunctional radical polymerizable compound having a vinyl group is, for example, 0.1 or more and 10 or less, and preferably 1 or more and 5 or less.
  • the curable composition according to the present embodiment preferably contains two or more kinds of (meth)acrylates represented by the above formula (I), and more preferably contains at least one of (meth)acrylates in which R 1 in the above formula (I) is a furyl group and (meth)acrylates in which R 1 in the above formula (I) is a methoxy group.
  • the curable composition contains a (meth)acrylate in which R 1 is a furyl group, the compatibility of the first bismuth compound tends to increase.
  • the curable composition contains a (meth)acrylate in which R 1 is a methoxy group, the hardness of the cured body tends to increase.
  • the ratio M6/M7 of the mass M6 of the (meth)acrylate in which R 1 is a methoxy group to the mass M7 of the (meth)acrylate in which R 1 is a furyl group is preferably 0.1 or more and 10 or less.
  • the ratio M6/M7 is more preferably 0.3 or more and 5 or less, and further preferably 0.5 or more and 3 or less.
  • the ratio M1/M2 of the mass M1 of the first bismuth compound to the mass M2 of the monofunctional radical polymerizable compound is preferably 0.25 or more and 100 or less. If this ratio is high, the X-ray shielding performance of the cured body tends to be improved. If this ratio is low, the compatibility of the first bismuth compound tends to be increased. It is more preferable that this ratio is 1 or more and 6 or less.
  • the first polymerizable compound contains a polyfunctional radically polymerizable compound having multiple radically polymerizable sites in one molecule.
  • the mechanical properties, such as impact resistance, of the cured product of the curable composition can be further improved.
  • the polyfunctional radically polymerizable compound commercially available compounds can be used without restriction.
  • the boiling point of the polyfunctional radically polymerizable compound is preferably 100°C or higher, and more preferably 140°C or higher.
  • the polyfunctional radically polymerizable compound preferably has a number average molecular weight of 90 to 2000, and more preferably 250 to 1800, as determined by gel permeation chromatography analysis.
  • a di(meth)acrylate represented by the following formula (II) is preferably used.
  • R 4 is a linear or branched alkylene group having 1 to 10 carbon atoms, or a linear or branched alkylene oxide group having 1 to 10 carbon atoms.
  • R4 is preferably a linear or branched alkylene oxide group having from 1 to 10 carbon atoms, and more preferably an ethylene oxide group.
  • R5 and R6 each independently represent a hydrogen atom or a methyl group.
  • n is a number between 1 and 50. It is preferable that n is a number between 3 and 30.
  • di(meth)acrylate represented by the above formula (II) include bifunctional (meth)acrylates selected from the group consisting of polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, polypropylene glycol dimethacrylate, polypropylene glycol diacrylate, polytetramethylene glycol dimethacrylate, and polytetramethylene glycol diacrylate.
  • the proportion of the polyfunctional radically polymerizable compound is preferably 1% by mass or more and 50% by mass or less. If this proportion is high, the impact resistance of the cured body tends to be increased. If this proportion is low, the compatibility of the first bismuth compound tends to be increased. This proportion is more preferably 5% by mass or more and 20% by mass or less. This proportion can be measured, for example, by NMR. The NMR measurement conditions are the same as above.
  • the ratio M1/M3 of the mass M1 of the first bismuth compound to the mass M3 of the polyfunctional radical polymerizable compound is preferably 0.1 or more and 100 or less. If this ratio is high, the X-ray shielding performance of the cured body tends to be improved. If this ratio is low, the impact resistance of the cured body tends to be improved. It is more preferable that this ratio is 1 or more and 10 or less.
  • the curable composition according to this embodiment preferably contains both a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound.
  • the ratio M2/M3 of the mass M2 of the monofunctional radical polymerizable compound to the mass M3 of the polyfunctional radical polymerizable compound is preferably 0.1 or more and 300 or less. When this ratio is high, the compatibility of the first bismuth compound tends to be increased. When this ratio is low, the impact resistance of the cured body tends to be increased. It is more preferable that this ratio is 0.1 or more and 10 or less.
  • the curable composition according to the present embodiment preferably contains a (meth)acrylate in which R 1 in the above formula (I) is a furyl group, a (meth)acrylate in which R 1 in the above formula (I) is a methoxy group, and a di(meth)acrylate represented by the above formula (II).
  • the ratio M8/M9 of the total mass M8 of the mass M6 of the (meth)acrylate in which R 1 is a methoxy group and the mass M7 of the (meth)acrylate in which R 1 is a furyl group to the mass M9 of the di(meth)acrylate represented by the above formula (II) is preferably 0.1 or more and 10 or less, more preferably 0.3 or more and 5 or less, and even more preferably 0.5 or more and 3 or less.
  • the curable composition according to the present embodiment may contain 10% by mass or less of a nitrile compound.
  • the content of the nitrile compound in the curable composition is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less. If the content of the nitrile compound is low, the odor level of the cured product tends to decrease.
  • the lower limit of the content of the nitrile compound is 100 ppm by mass or more in one example, and 0% by mass in another example. This ratio can be measured, for example, by 1 H NMR. The measurement conditions of NMR are the same as above.
  • nitrile compounds include acrylonitrile, methacrylonitrile, crotononitrile, 2-chloroacrylonitrile, 2-cyanoethyl acrylate, allyl cyanide, allyl cyanoacetate, fumaronitrile, and 5-norbornene-2-carbonitrile.
  • the curable composition according to the present embodiment may contain a second polymerizable compound having a boiling point of less than 90° C. under 1 atmosphere.
  • the content of the second polymerizable compound in the curable composition is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less. If the content of the second polymerizable compound is low, the odor level of the cured body tends to decrease.
  • the lower limit of the content of the second polymerizable compound is 1% by mass or more, and in another example, it is 0% by mass. This ratio can be measured, for example, by 1H MNR.
  • Examples of the second polymerizable compound include methyl acrylate, allyl methyl ether, and allyl ethyl ether.
  • the blending ratio of the total amount of polymerizable compounds other than the first bismuth compound (hereinafter also referred to as the total amount of polymerizable compounds) to the first bismuth compound is preferably 1 to 500 parts by mass, more preferably 5 to 300 parts by mass, and even more preferably 10 to 200 parts by mass per 100 parts by mass of the first bismuth compound, taking into consideration the X-ray blocking effect, dispersibility, coloring reduction effect, etc.
  • the curable composition according to the present embodiment may contain, in addition to the first bismuth compound and the first polymerizable compound, known compounding agents that are generally compounded in radically polymerizable curable compositions.
  • known compounding agents include radical polymerization initiators, antioxidants, release agents for improving releasability from a mold, dyes for adjusting the color tone of the cured body, and chain transfer agents for controlling polymerizability.
  • each compounding agent may be within a range that does not impair the effects of the present invention.
  • each compounding agent is preferably mixed in an amount of 0 to 30 parts by mass, more preferably 0.01 to 20 parts by mass, and even more preferably 0.02 to 15 parts by mass, per 100 parts by mass of the first bismuth compound and the first polymerizable compound combined.
  • the curable composition according to this embodiment can be produced by mixing the first bismuth compound, the first polymerizable compound, and various compounding agents that are mixed as necessary.
  • the cured product according to the present embodiment is obtained by curing the curable composition according to the present embodiment.
  • a known method can be used as a method for producing the cured product. Specifically, photopolymerization, thermal polymerization, or both of these polymerization methods can be used.
  • a suitable polymerization method is determined by the radical polymerization initiator that is blended as necessary.
  • the cured body according to the present embodiment contains a high concentration of bismuth, which has a high X-ray blocking ability, yet has high transmittance and little coloring.
  • the cured body has a thickness of 2 mm, a transmittance at a wavelength of 560 nm of 80% or more, an X-ray blocking ability equivalent to or greater than 0.02 mm of lead foil, and a yellowness index of 40 or less.
  • the proportion of bismuth contained in the hardened body can be 5 to 40 mass % when the total mass of the hardened body is 100 mass %.
  • the IR spectrum of the cured product may have a peak at 1670 to 1700 cm ⁇ 1 . This peak may be due to a Bi—O—P bond.
  • the cured product according to the present embodiment is lightly colored and transparent, and therefore can be used as an optical article. Furthermore, since the cured product has radiation blocking properties despite being transparent to visible light, it can be used as a transparent radiation shielding material.
  • Optical articles obtained using the cured product according to this embodiment can be used as radiation-shielding window materials and radiation-shielding lenses.
  • lenses obtained using the cured product according to this embodiment can be used as radiation shielding glasses and radiation shielding goggles.
  • the resulting cloudy solution was transferred to a 1000 mL four-neck flask equipped with a Dean-Stark trap, and the reaction was carried out while heating and stirring at 130°C in an oil bath, and the water produced was removed from the system. The reaction was terminated when no more water was produced. A pale yellow scattered solution with a slight amount of pale yellow precipitate was obtained.
  • This solution was concentrated to 250 mL using a vacuum evaporator. 8 g of alumina powder was added and left to stand overnight, then suction filtered using 5B filter paper. 3 g of activated carbon (Norit, Darco G60) was added to the resulting light yellow scattered filtrate and centrifuged at 23,830 x g for 8 hours. The centrifugal supernatant was pressure filtered using a membrane filter with a pore size of 0.2 ⁇ m to obtain a light yellow transparent filtrate. The solvent was removed from this solution using a vacuum evaporator and redissolved in 250 mL of acetone.
  • Example 1 To 70 parts by mass of the first bismuth compound obtained in Production Example 1, 10 parts by mass of methoxyethyl methacrylate (hereinafter referred to as "MEMA”), 10.7 parts by mass of tetrahydrofurfuryl acrylate (hereinafter referred to as "THFAA”), and 8 parts by mass of styrene (hereinafter referred to as "ST”) were added as polymerizable compounds, and 1 part by mass of ⁇ -methylstyrene and 0.3 parts by mass of methylstyrene dimer were added as other compounding agents and dissolved uniformly to obtain a curable composition.
  • MEMA methoxyethyl methacrylate
  • TFAA tetrahydrofurfuryl acrylate
  • ST 8 parts by mass of styrene
  • Example 2 A pale yellow transparent cured body was obtained by the same procedure as in Example 1, except that the amount of MEMA was changed to 18 parts by mass and the addition of ST was omitted. The thickness of the obtained cured body was 2.35 mm.
  • Example 3 A mixture was obtained in the same manner as in the preparation of the curable composition of Example 1, except that 8 parts by mass of tetraethylene glycol dimethacrylate (hereinafter referred to as "4G") was added and the addition of ST was omitted. Acetone was added to this mixture to dissolve it uniformly, and then the acetone was distilled off under reduced pressure using an evaporator to obtain a curable composition. The same operations as in Example 1 were performed except that this curable composition was used, and a pale yellow transparent cured body was obtained. The thickness of the obtained cured body was 2.42 mm.
  • 4G tetraethylene glycol dimethacrylate
  • Example 4 A pale yellow transparent cured product was obtained by the same procedure as in Example 3, except that nonaethylene glycol dimethacrylate (hereinafter referred to as "9G") was used instead of 4G.
  • the thickness of the obtained cured product was 2.40 mm.
  • Example 5 The same procedure as in Example 4 was carried out, except that tetrahydrofurfuryl methacrylate (hereinafter referred to as "THFMA”) was used instead of THFAA. A pale yellow cured product having a thickness of 2.46 mm was obtained, but it was not completely transparent.
  • THFMA tetrahydrofurfuryl methacrylate
  • Example 6 The same procedure as in Example 4 was carried out except that the amount of THFAA was changed to 8.7 parts by mass and the amount of 9G was changed to 10 parts by mass, to obtain a pale yellow transparent cured body.
  • the thickness of the obtained cured body was 2.20 mm.
  • Example 7 The same procedure as in Example 4 was carried out except that the amount of MEMA was changed to 8 parts by mass and the amount of 9G was changed to 10 parts by mass, to obtain a pale yellow transparent cured body.
  • the thickness of the obtained cured body was 2.23 mm.
  • Example 8 A pale yellow transparent cured body was obtained by the same procedure as in Example 4, except that the amount of MEMA was changed to 7 parts by mass, the amount of THFAA was changed to 6.7 parts by mass, and the amount of 9G was changed to 15 parts by mass.
  • the thickness of the obtained cured body was 2.48 mm.
  • Example 9> A pale yellow transparent cured body was obtained by the same operation as in Example 4, except that the amount of the first bismuth compound was changed to 65 parts by mass, the amount of MEMA was changed to 13 parts by mass, the amount of THFAA was changed to 6.7 parts by mass, and the amount of 9G was changed to 14 parts by mass.
  • the thickness of the obtained cured body was 2.30 mm.
  • Example 10 The same procedure as in Example 4 was carried out except that THFMA was used instead of THFAA, the amount of 9G was changed to 5 parts by mass, and 3 parts by mass of methacrylonitrile (hereinafter referred to as "MN") was added, to obtain a pale yellow transparent cured body.
  • MN methacrylonitrile
  • Example 1 The same procedure as in Example 4 was carried out except that MN was used instead of MEMA and methyl acrylate (hereinafter, referred to as "MA") was used instead of THFAA, to obtain a pale yellow transparent cured body.
  • MA methyl acrylate
  • the thickness of the obtained cured body was 2.33 mm.
  • Comparative Example 4 The same procedure as in Comparative Example 3 was carried out except that 9G was used instead of ST, to obtain a pale yellow transparent cured product. The thickness of the obtained cured product was 2.38 mm.
  • the viscosity of the uniform curable composition obtained by mixing the first bismuth compound and the polymerizable compound was measured by measuring the kinetic viscosity at 25°C using a Cannon-Fenske viscometer and multiplying it by the density.
  • the viscosity was measured at 25°C using an E-type viscometer (Rheometer RST, manufactured by Brookfield). As a result, the viscosity was within the range of 50 to 100,000 mPa ⁇ s.
  • the X-ray blocking ability of the obtained cured body was evaluated by measuring the amount of transmitted X-rays and determining the lead equivalent in accordance with Japanese Industrial Standard JIS T 61331-1 "Protective equipment for diagnostic X-rays - Part 1: Method for determining the attenuation characteristics of materials".
  • JIS T 61331-1 Japanese Industrial Standard JIS T 61331-1 "Protective equipment for diagnostic X-rays - Part 1: Method for determining the attenuation characteristics of materials”.
  • an MG-45 model manufactured by YXLON International was used, with an X-ray tube voltage of 120 kV, a tube current of 12.5 mA, and a 2.5 mm Al additional filter plate.
  • the distance from the X-ray tube focus to the sample was 600 mm
  • the distance from the sample to the measuring device was 900 mm
  • an ionization chamber exposure dose rate meter (RAMTEC-Solo type A4 probe manufactured by Toyo Medic Co., Ltd.) was used as the measuring device.
  • the X-ray blocking ability was evaluated as the lead equivalent (mmPb), which is the thickness (mm) of the corresponding lead plate. As a result, the lead equivalent was 0.10 ⁇ 0.04 mmPb.
  • a ball drop test was carried out to evaluate the impact resistance of the obtained hardened body.
  • a support ring made of NBR was joined onto a tube with an inner diameter of 25 mm, an outer diameter of 32 mm, and a height of 25 mm.
  • the thickness of the support ring was 3 mm, and the inner diameter was 25 mm.
  • the hardened body was placed on the support ring.
  • a steel ball was dropped onto the hardened body from a height of 1.27 m using a drop device using an electromagnet.
  • the weights of the steel balls were 4.5 g, 6.9 g, 14 g, 16 g, 32 g, 50 g, 67 g, 80 g, 95 g, 112 g, 130 g, 151 g, 174 g, 198 g, 225 g, and 261 g.
  • the steel balls were dropped in order from lightest to lightest, and the weight of the steel ball just before the hardened body cracked or broke was taken as the maximum impact resistance. The results are shown in Table 1.

Abstract

ビスマスと、アクリロイル基及びメタクリロイル基の少なくとも一方とを有する第1ビスマス化合物と、アクリロイル基、メタクリロイル基、ビニル基、及びアリル基からなる群より選ばれる少なくとも1種の重合基を有し、1気圧下における沸点が90℃以上である第1重合性化合物とを含み、ニトリル基を有するニトリル化合物の含有率が10質量%未満である硬化性組成物を提供する。また、該硬化性組成物の硬化体、該硬化体を含む光学物品及びレンズ、並びに該レンズを含む眼鏡を提供する。

Description

硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡
 本発明は、硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡に関する。
 直接的に照射されるX線、及び反射又は拡散により間接的に照射される迷X線は、人体の眼球の水晶体に影響を与え、白内障を誘発し得る。この問題を解決するために、これらのX線を遮断可能であり、かつ、可視光を透過可能なレンズ等の光学物品が望まれている。この光学物品形成用の光学材料として、鉛ガラスが知られている。鉛ガラスは、X線遮断性能は高いものの、比重が高い。それゆえ、鉛ガラスを含むレンズを備えたX線遮断ゴーグルは、質量が大きく、常用が困難なことがある。その他の光学材料として、アクリル鉛も知られている。アクリル鉛は、鉛ガラスよりもX線遮断性能は低いものの、軽量である。したがって、アクリル鉛は、迷X線遮断用の光学物品に用いられている。
 しかし、鉛は環境に有害な物質であり、鉛不使用の光学材料が望まれている。鉛の代替元素として、例えば、ビスマス、バリウム、アンチモン、錫、タングステン等の多くの金属元素が候補に挙げられている。この中でもビスマスは、古くから胃腸薬として用いられるなど人体に無害でありながらX線遮断性能が高く、鉛代替に適した元素である。
 (メタ)アクリロイル基を有するリン酸エステルがビスマスに結合したビスマス化合物と、ラジカル重合性単量体とを含む硬化性組成物の硬化体は、透明性が高く軽量であり、光学材料として適している(特許文献1、2参照)。この硬化体の機械的特性を高めるために、硬化性組成物にニトリル化合物を配合することが検討されている。
国際公開第2022/014591号 国際公開第2019/177084号
 本発明は、臭気を低減させた硬化性組成物及び臭気を低減させた硬化体、並びに該硬化体を含む光学物品、レンズ、及び眼鏡を提供することを課題とする。
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> ビスマスと、アクリロイル基及びメタクリロイル基の少なくとも一方とを有する第1ビスマス化合物と、
 アクリロイル基、メタクリロイル基、ビニル基、及びアリル基からなる群より選ばれる少なくとも1種の重合基を有し、1気圧下における沸点が90℃以上である第1重合性化合物とを含み、
 ニトリル基を有するニトリル化合物の含有率が10質量%未満である硬化性組成物。
<2> 前記第1ビスマス化合物の含有率が20質量%以上90質量%以下である、<1>に記載の硬化性組成物。
<3> 前記第1重合性化合物の含有率が10質量%以上80質量%以下である、<1>又は<2>に記載の硬化性組成物。
<4> 前記第1重合性化合物が、前記重合基を1つ有する単官能重合性化合物を含む、<1>~<3>のいずれか1項に記載の硬化性組成物。
<5> 前記単官能重合性化合物の沸点が100℃以上300℃以下である、<4>に記載の硬化性組成物。
<6> 前記単官能重合性化合物が、下記式(I)で表される単官能(メタ)アクリレートを含む、<4>又は<5>に記載の硬化性組成物:
Figure JPOXMLDOC01-appb-C000003
 前記式(I)において、
 Rは、ヒドロキシ基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキル基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルコキシ基、炭素数4以上10以下のシクロアルキル基、炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロシクロアルキル基、炭素数4以上10以下のアリール基、又は炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロアリール基であり、
 Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下のアルキレンオキシド基であり、
 Rは、水素原子又はメチル基であり、
 aは、0又は1である。
<7> 前記単官能重合性化合物が、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレート、テトラヒドロフルフリルアクリレート、及びテトラヒドロフルフリルメタクリレートからなる群より選ばれる少なくとも1種の(メタ)アクリレートを含む、<4>~<6>のいずれか1項に記載の硬化性組成物。
<8> 前記第1重合性化合物が、前記重合基を2つ以上有する多官能重合性化合物を含む、<1>~<7>のいずれか1項に記載の硬化性組成物。
<9> 前記多官能重合性化合物のゲル浸透クロマトグラフィー分析による数平均分子量が90以上2000以下である、<8>に記載の硬化性組成物。
<10> 前記多官能重合性化合物が、下記式(II)で表される2官能(メタ)アクリレートを含む、<8>又は<9>に記載の硬化性組成物:
Figure JPOXMLDOC01-appb-C000004
 前記式(II)において、
 Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレンオキシド基であり、
 R及びRは、それぞれ独立に、水素原子又はメチル基であり、
 nは、1以上50以下の数である。
<11> 前記多官能重合性化合物が、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジメタクリレート、及びポリテトラメチレングリコールジアクリレートからなる群より選ばれる2官能(メタ)アクリレートを含む、<8>~<10>のいずれか1項に記載の硬化性組成物。
<12> <1>~<11>のいずれか1項に記載の硬化性組成物の硬化体。
<13> <12>に記載の硬化体を含む光学物品。
<14> <12>に記載の硬化体を含むレンズ。
<15> <14>に記載のレンズを含む眼鏡。
 本発明によれば、臭気を低減させた硬化性組成物及び臭気を低減させた硬化体、並びに該硬化体を含む光学物品、レンズ、及び眼鏡を提供することができる。
 以下、本発明を適用した具体的な実施形態について詳細に説明する。
 本明細書において、「(メタ)アクリレート」との用語は、「アクリレート」及び「メタクリレート」の両者を意味し、「(メタ)アクリロイル」との用語は、「アクリロイル」及び「メタクリロイル」の両者を意味する。「(メタ)アクリル樹脂」、「(メタ)アクリル酸」等の用語についても同様である。
≪硬化性組成物≫
 本実施形態に係る硬化性組成物は、第1ビスマス化合物と、第1重合性化合物とを含む。第1ビスマス化合物は、ビスマスと、アクリロイル基及びメタクリロイル基の少なくとも一方とを含む。第1重合性化合物は、重合基を有し、1気圧下における沸点が90℃以上である。重合基は、アクリロイル基、メタアクリロイル基、ビニル基、及びアリル基からなる群より選ばれる少なくとも1種を含む。本実施形態に係る硬化性組成物において、ニトリル基を有するニトリル化合物の含有率は、10質量%未満である。
 第1ビスマス化合物は、軽量かつ透明性が高く、X線遮断光学材料として好適である。さらに、この第1ビスマス化合物は、他の(メタ)アクリレートモノマー等の重合性化合物との相溶性、又は他の重合性化合物内での分散性が高い。したがって、第1ビスマス化合物は、一般的な(メタ)アクリル樹脂等の硬化性組成物と同様に、他の重合性化合物と混合して用い得る。他の重合性化合物としてアクリロニトリル等のニトリル化合物を用いると、高い強度を有する硬化体が得られる。
 しかし、第1ビスマス化合物を含む硬化性組成物及びその硬化体は、特有の臭気を有することがある。本発明者らが鋭意研究した結果、この臭気の原因は、硬化体中に残存する未重合のニトリル化合物に由来することが分かった。また、常圧下において沸点が比較的低い重合性化合物は、硬化体中から揮発し易く、臭気の原因となり得ることを見出した。本実施形態に係る硬化性組成物は、ニトリル化合物の量が制限され、かつ、比較的高沸点な第1重合性化合物を含む。したがって、本実施形態に係る硬化性組成物によると、臭気が低減された硬化体を得られる。臭気が低減された硬化性組成物を用いると、硬化体の製造者や加工者、また、硬化体を含む光学物品を装着したユーザの不快感が低減され、より生産効率等を高められる。
 以下、本実施形態に係る硬化性組成物で用いられる各成分について説明する。
<第1ビスマス化合物>
 第1ビスマス化合物は、ビスマスを含むため、放射線の遮蔽材料として使用し得る。放射線は、電磁放射線及び粒子放射線を含む。電磁放射線は、X線及びγ線を含む。粒子放射線は、α線、β線、中性子線、及び陽子線を含む。
 第1ビスマス化合物は、X線の遮蔽性能に優れるため、X線遮蔽材料、及びX線を発生し得るβ線遮蔽材料として特に好適に用いられる。
 第1ビスマス化合物は、ニトリル基、アクリロイル基、メタアクリロイル基、ビニル基、及びアリル基からなる群より選択される少なくとも1種のラジカル重合基を有するラジカル重合性化合物への溶解度が高い。したがって、第1ビスマス化合物を用いると、高濃度のビスマスを含む硬化性組成物及びその硬化体が得られる。第1ビスマス化合物は、次サリチル酸ビスマス単体よりも、ラジカル重合性化合物への溶解性に優れる。
 第1ビスマス化合物は、ビスマスと、(メタ)アクリロイル基とを有すれば、どのような形態にあってもよい。例えば、ビスマスと(メタ)アクリロイル基とが直接結合していてもよく、結合基を介して結合していてもよい。結合基としては、例えば、酸素、硫黄、窒素、リン酸等が挙げられる。第1ビスマス化合物は、ビスマスと、(メタ)アクリロイル基を有する第1リン酸エステルとが結合していることが好ましい。このような第1ビスマス化合物は、様々な重合性化合物との相溶性がより高い傾向にある。ビスマスと第1リン酸エステルとの結合形態は特に限定されず、イオン結合、配位結合、共有結合のいずれでもよい。すなわち、第1ビスマス化合物は、ビスマス(Bi3+又はBi5+)を陽イオンとし、第1リン酸エステルを陰イオンとするリン酸塩又は錯塩であってもよく、リン酸化合物であってもよく、錯体であってもよい。
 第1ビスマス化合物は、(メタ)アクリロイル基を1つ有するモノ(メタ)アクリレートであってもよく、(メタ)アクリロイル基を2つ有するジ(メタ)アクリレートであってもよく、(メタ)アクリロイル基を3つ有するトリ(メタ)アクリレートであってもよく、(メタ)アクリロイル基を4つ以上有する多官能(メタ)アクリレートであってもよい。
 第1ビスマス化合物において、第1リン酸エステルは、例えば、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000005
 上記式(2)において、Qは、水素原子又はメチル基である。Qは、メチル基であることが好ましい。
 Qは、水素原子、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキル基、炭素数4以上16以下のアリール基、又は(メタ)アクリロイルオキシアルキレン基である。アルキル基の炭素数は、1以上6以下であることが好ましい。アリール基の炭素数は、5以上8以下であることが好ましい。アリール基は、フェニル基であることが好ましい。(メタ)アクリロイルオキシアルキレン基に含まれるアルキレン基の炭素数は、例えば、1以上10以下であり、好ましくは、1以上3以下である。(メタ)アクリロイルオキシアルキレン基は、(メタ)アクリロイルオキシエチレン基であることが好ましい。
 aは、0又は1である。aが0であるとき、P及びQが結合する酸素原子は、Oである。
 Qは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレンオキシアルキレン基である。
 第1ビスマス化合物は、第1リン酸エステル以外に、その他の化合物がさらに結合していてもよい。ビスマスとその他の化合物との結合形態は、イオン結合、配位結合、共有結合のいずれでもよい。すなわち、第1ビスマス化合物は、ビスマス(Bi3+又はBi5+)を陽イオンとし、第1リン酸エステル及びその他の化合物を陰イオンとするリン酸塩又は錯塩であってもよく、リン酸化合物であってもよく、錯体であってもよい。
 その他の化合物の具体例としては、サリチル酸及び(メタ)アクリル酸からなる群より選ばれる少なくとも1種が挙げられる。
 ラジカル重合性化合物への溶解性を向上するためには、第1リン酸エステルとその他の化合物との割合は、第1リン酸エステル1モルに対して、その他の化合物が0.1~10モルとなることが好ましく、0.1~5モルとなることがより好ましく、0.1~1モルとなることがさらに好ましく、0.1~0.5モルとなることが特に好ましい。なお、2種類以上の第1リン酸エステルが存在する場合には、上記の範囲は、第1リン酸エステルの合計モル数が基準となる。
 第1リン酸エステルがビスマスに結合していることは、赤外分光(IR)分析により確認できる。すなわち、第1ビスマス化合物の赤外分光分析測定において、例えば、1670~1700cm-1にピークが確認されたとき、第1リン酸エステルがビスマスに結合していることが確認できる。このピークはBi-O-Pの伸縮振動として特徴的なピークであると考えられる。このピークは、結合前のビスマス及び第1リン酸エステルでは確認されない。
 IRスペクトルは、例えば、パーキンエルマー社製のSpectrum Oneを用いて、1回反射のATR法、4回の積算により測定する。
 また、NMR(核磁気共鳴分光法)、MALDI-TOF-MS(マトリクス支援レーザー脱離イオン化-飛行時間型質量分析法)、XPS(X線光電子分光法)、及びEDS(エネルギー分散型X線分光法)による元素分析等を組み合わせることにより、第1ビスマス化合物におけるサリチル酸又は(メタ)アクリル酸、及び各リン酸エステルの結合数を確認できる。
 H-、31P-NMR測定に際しては、核磁気共鳴装置(日本電子株式会社製、JNM-ECA400II)を用い、溶媒には重アセトンを用い、試料濃度:1質量%で測定する。
 XPS測定に際しては、X線光電子分光装置(アルバック・ファイ株式会社製、ESCA5701ci/MC)を用い、X線源としては単色化Al-Kα(14kV-330W)を用い、アパーチャー径:φ800μm、光電子取出し角度:45度で行う。試料をメノウ乳鉢で粉砕し、得られた粉をカーボンテープで基板に固定して測定チャンバーに導入し測定する。
 第1ビスマス化合物は、例えば、下記式(1)で表されるリン酸塩又は錯塩である。
Figure JPOXMLDOC01-appb-C000006
 上記式(1)において、Q、Q、Q、及びaは、上記式(2)と同様である。
 上記式(1)において、Xは、下記式(1a)で表される(メタ)アクリル酸、又は下記式(1b)で表されるサリチル酸である。Xは、下記式(1b)で表されるサリチル酸であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 aは、0以上1以下の数である。
 aは、0.1以上3以下の数である。
 a+aは、2以上3以下の数である。
 第1ビスマス化合物が上記式(1)で表される構造を有していることは、例えば、MALDI-TOF-MS測定における、当該化合物のプロトン付加分子イオン又はナトリウム付加イオンの検出により確認できる。例えば、aが1~2の数、Xがサリチル酸、aが1~3の数、Qがメチル基、Qがメタクリロイルオキシアルキル基、Qが炭素数2の直鎖状アルキル基である化合物を測定した場合、m/z=667であるプロトン付加イオンが検出される。
 MALDI-TOF-MS測定に際しては、Bruker社製のrapiflex TOF/TOF型を用い、マトリクスとしてCHCA(α-cyano-4-hydroxycinnamic acid)、DIT(Dithranol)、DHB(2,5-Dihydroxybenzoic acid)を用い、カチオン化剤として、トリフルオロ酢酸ナトリウムを用いる。Reflector/Positiveモードで測定し、質量範囲はm/z=20~4000とする。
 第1ビスマス化合物は、複数種類の第1リン酸エステル及び複数種類のその他の化合物がビスマスに結合した混合物であり得る。第1ビスマス化合物は、(メタ)アクリロイル基を1つ有する第1リン酸エステルと、(メタ)アクリロイル基を2つ有する第1リン酸エステルとの両方がビスマスと結合していることが好ましい。このような第1ビスマス化合物は、重合性化合物との相溶性が高い傾向にある。
 このような第1ビスマス化合物において、1モルの(メタ)アクリロイル基を1つ有する第1リン酸エステルに対する、(メタ)アクリロイル基を2つ有する第1リン酸エステルの割合は、0.05~3モルであることが好ましく、0.10~2モルであることがより好ましく、0.15~1モルであることがさらに好ましい。
 好適な第1ビスマス化合物としては、下記式(III)~(V)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 式中、Rは、それぞれ独立して、水素原子又はメチル基である。
 上記式(III)において、a+x+y+z=3である。xは、リン酸水素2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。yは、リン酸フェニル-2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。zは、リン酸ビス[2-((メタ)アクリロイルオキシ)エチル]残基のモル数を示す。aは、(メタ)アクリル酸残基のモル数を示す。
 上記式(IV)において、2b+u+v+w=3である。uは、リン酸水素2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。vは、リン酸フェニル-2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。wは、リン酸ビス[2-((メタ)アクリロイルオキシ)エチル]残基のモル数を示す。bは、サリチル酸残基のモル数を示す。
 上記式(V)において、2c+q+r+2s+t=3である。qは、リン酸水素2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。rは、リン酸フェニル-2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。sは、リン酸2-((メタ)アクリロイルオキシ)エチル残基のモル数を示す。tは、リン酸ビス[2-((メタ)アクリロイルオキシ)エチル]残基のモル数を示す。cは、サリチル酸残基のモル数を示す。
 なお、上記式(III)~(V)で表される第1ビスマス化合物は、それぞれ単一の化合物でなく、複数の化合物の混合物であり得る。その場合、上述した各残基のモル数は、混合物全体としてのモル数を示すものとする。
 上記式(III)において、低温で製造することができ、着色の少ない第1ビスマス化合物とすることを勘案すると、a=0の場合、x:y:z=1:0.05~3:0.5~30であることが好ましく、x:y:z=1:0.1~2:1~20であることがより好ましく、x:y:z=1:0.15~1:1.5~10であることがさらに好ましい。また、着色をより少なくするという点から、a=0、y=0とすることもできる。
 また、上記式(III)において、a=0以外の場合、a:(x+y+z)=0.1~10:1であることが好ましく、a:(x+y+z)=0.1~5:1であることがより好ましく、a:(x+y+z)=0.1~1:1であることがさらに好ましい。このとき、x:y:z=1:0.05~3:0.5~30であることが好ましく、x:y:z=1:0.1~2:1~20であることがより好ましく、x:y:z=1:0.15~1:1.5~10であることがさらに好ましい。
 上記式(IV)において、b=0の場合は、上記規定において、xをu、yをv、zをwに読み替えたものと同じである。
 また、上記式(IV)において、b=0以外の場合、b:(u+v+w)=1:0.1~30であることが好ましく、b:(u+v+w)=1:0.2~20であることがより好ましく、b:(u+v+w)=1:0.3~10であることがさらに好ましく、b:(u+v+w)=1:0.5~5であることが特に好ましい。このとき、u:v:w=1:0.05~20:0.1~40であることが好ましく、u:v:w=1:0.1~10:0.2~20であることがより好ましく、u:v:w=1:0.2~5:0.4~10であることがさらに好ましい。
 上記式(IV)において、c=0の場合、q:r:s:t=1:0.1~50:0.05~20:0.1~40であることが好ましく、q:r:s:t=1:0.3~30:0.1~10:0.2~20であることがより好ましく、q:r:s:t=1:0.5~20:0.2~5:0.4~10であることがさらに好ましい。
 また、上記式(V)において、c=0以外の場合、c:(q+r+s+t)=1:0.1~30であることが好ましく、c:(q+r+s+t)=1:0.2~20であることがより好ましく、c:(q+r+s+t)=1:0.3~10であることがさらに好ましく、c:(q+r+s+t)=1:0.5~5であることが特に好ましい。このとき、q:r:s:t=1:0.1~50:0.05~20:0.1~40であることが好ましく、q:r:s:t=1:0.3~30:0.1~10:0.2~20であることがより好ましく、q:r:s:t=1:0.5~20:0.2~5:0.4~10であることがさらに好ましい。
 第1ビスマス化合物は、例えば、下記式(3)で表されるリン酸塩又は錯塩である。
Figure JPOXMLDOC01-appb-C000012
 上記式(3)において、Q、Q、Q、及びaは、上記式(2)と同様である。
 aは、0より大きく3以下の数である。
 aは、0より大きく3以下の数である。
 a+aは、3である。
 また、第1ビスマス化合物は、第1ビスマス化合物以外の化合物を含む組成物であり得る。以下、この組成物を第1ビスマス組成物とも称する。第1ビスマス組成物は、製造時に副生するリン酸化合物、又は未反応原料を含んでいてもよい。
 これらの副生するリン酸化合物、又は未反応原料を第1ビスマス化合物から除去することは、工業的に多大な労力を要する。また、これらの副生するリン酸化合物、又は未反応原料は、ラジカル重合性単量体への溶解性向上に寄与し得る。
 副生するリン酸化合物としては、例えば、(メタ)アクリロイル基を1つ有するリン酸エステル(リン酸モノエステル)の2量体、(メタ)アクリロイル基を2つ有するリン酸エステル(リン酸ジエステル)の2量体、サリチル酸ビスマス又は(メタ)アクリル酸ビスマスとリン酸とのエステル等が挙げられる。
 未反応原料としては、例えば、(メタ)アクリロイル基を1つ有するリン酸エステル(リン酸モノエステル)、(メタ)アクリロイル基を2つ有するリン酸エステル(リン酸ジエステル)、サリチル酸ビスマス、(メタ)アクリル酸ビスマス等が挙げられる。
 第1ビスマス組成物において、第1ビスマス化合物以外の化合物が占める割合は、例えば、30質量%以下である。この割合に下限値はないが、一例によると、0質量%であり、他の例によると、5質量%である。この割合は、H MNRを用いた内部標準法による第1ビスマス組成物中の該副生成リン酸化合物および未反応原料の定量により確認できる。
 また、第1ビスマス組成物は、酸化ビスマス由来の化合物を含んでいてもよい。酸化ビスマス由来の化合物は、例えば、酸化ビスマスと、(メタ)アクリロイル基を有するリン酸エステル、(メタ)アクリル酸、及び/又はサリチル酸とが結合した化合物である。この酸化ビスマス由来の化合物は、その構造は明らかではないが、酸化ビスマスの表面に形成されるヒドロキシ基と、リン酸エステル、(メタ)アクリル酸、又はサリチル酸のカルボキシ基とが結合していると考えられる。なお、この酸化ビスマス由来の化合物は、第1ビスマス化合物との分離が非常に難しい。そのため、酸化ビスマス由来の化合物が副生した場合には、酸化ビスマス由来の化合物を含む状態で使用することが好ましい。酸化ビスマス由来の化合物が副生する場合には、製造条件等を調整して、その量を第1ビスマス組成物の溶解性を落とさない範囲にすることが望ましい。なお、酸化ビスマス由来の化合物を含むことは、その製造条件、又はIR、NMR、XPS等の方法により総合的に判断できる。
 [第1ビスマス化合物の製造方法]
 第1ビスマス化合物の製造方法は、特に限定されないが、第2ビスマス化合物と、第1リン酸エステルとを反応させて製造することが好ましい。具体的には、脂肪族炭化水素溶媒又は芳香族溶媒中、必要に応じて重合禁止剤を加えて、第2ビスマス化合物と、第1リン酸エステルとを反応させて脱水することに製造することが好ましい。
 第2ビスマス化合物とは、ビスマスを含む有機化合物を意味する。第2ビスマス化合物は、(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスを含む。(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスとしては、特に制限されず、市販のものを使用することができる。
 なお、次サリチル酸ビスマスは、ビスマスにサリチル酸が結合した化合物であり、下記式(VI)で表される。
Figure JPOXMLDOC01-appb-C000013
 次サリチル酸ビスマスは、特にその製造方法は制限されるものではなく、公知の方法で製造できる。
 第1リン酸エステルとしては、市販のものを使用することができる。第1リン酸エステルは、(メタ)アクリロイル基を1つ有するリン酸エステルであってもよく、(メタ)アクリロイル基を2つ有するリン酸エステルであってもよく、これらの混合物であってもよい。
 (メタ)アクリロイル基を1つ有するリン酸エステルとしては、例えば、リン酸二水素2-(メタクリロイルオキシ)エチル、ジフェニル-2-メタクリロイルオキシエチルホスフェート等が挙げられる。
 また、(メタ)アクリロイル基を2つ有するリン酸エステルとしては、例えば、リン酸水素ビス[2-(メタクリロイルオキシ)エチル]、フェニルリン酸水素[2-(メタクリロイルオキシ)エチル]等が挙げられる。
 また、第1リン酸エステルとして、相溶性を向上させるために、ジフェニル-2-メタクリロイルオキシエチルホスフェート、フェニルビス〔2-(メタクリロイルオキシエチル)〕ホスフェート、トリス〔2-(メタクリロイルオキシエチル)〕ホスフェート等のリン酸トリエステルを加えることが好ましい。フェニル基を有するリン酸トリエステルを用いると、上記式(III)~(V)における、(メタ)アクリロイル基を1つ有する1価のフェニルリン酸ジエステルを良好に導入することが可能となる。
 リン酸トリエステルの使用量は、(メタ)アクリロイル基を1つ有するリン酸エステル及び(メタ)アクリロイル基を2つ有するリン酸エステルの合計1モルに対して、0.1~20モルであることが好ましく、0.2~5モルであることがより好ましい。
 第1リン酸エステルの使用量は、所望とする第1ビスマス化合物が得られるように決定すればよい。具体的には、第2ビスマス化合物1モルに対して、第1リン酸エステルの使用量を0.3~10モルの範囲とすることが好ましい。
 (脂肪族炭化水素溶媒又は芳香族溶媒)
 本実施形態においては、第2ビスマス化合物と第1リン酸エステルとを、脂肪族炭化水素溶媒又は芳香族溶媒中で撹拌混合して反応させることが好ましい。その際、反応系内に水が生じるため、生じた水を脱水することが好ましい。生じた水を脱水し易くするために、高沸点、具体的には100℃以上の沸点を有する脂肪族炭化水素溶媒又は芳香族溶媒を使用することが好ましい。脂肪族炭化水素溶媒と芳香族溶媒とを混合して混合溶媒として使用することもできる。
 脂肪族炭化水素溶媒又は芳香族溶媒としては、例えば、ヘキサン、ヘプタン、ノナン、デカン、ウンデカン、ドデカン、キシレン、ジメトキシベンゼン、及びそれらの異性体;ベンゼン、トルエン、クロロベンゼン、ブロモベンゼン、アニソール;石油エーテル、石油ベンジン、ベンゾイン;などが挙げられる。
 脂肪族炭化水素溶媒又は芳香族溶媒の使用量は、第2ビスマス化合物及び第1リン酸エステルを十分に混合できる量であれば、特に制限されるものではない。第1ビスマス化合物の生産性を考慮すると、第2ビスマス化合物1g当たり、脂肪族炭化水素溶媒又は芳香族溶媒を5~100mLとなる割合で使用することが好ましい。
 (反応条件)
 第2ビスマス化合物及び第1リン酸エステルを反応系内に導入する方法は特に制限されるものではない。例えば、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈した第2ビスマス化合物と、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈した第1リン酸エステルとを反応系内に一緒に添加し、撹拌混合する方法を採用することができる。また、予め反応系内に脂肪族炭化水素溶媒又は芳香族溶媒を導入しておき、それに、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈した第2ビスマス化合物と、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈した第1リン酸エステルとを一緒に添加し、撹拌混合する方法を採用することもできる。また、予め一方の成分を反応系内に導入しておき、他方の成分を反応系内に導入して撹拌混合する手段を採用することもできる。中でも、得られる第1ビスマス化合物の着色を低減し、生産性を向上するためには、以下の方法を採用することが好ましい。まず、脂肪族炭化水素溶媒又は芳香族溶媒中に第2ビスマス化合物を分散させる。このとき、第2ビスマス化合物が溶解しないこともあるが、その場合には、第2ビスマス化合物の塊状物等が存在しないように、超音波装置等により該塊状物を粉砕することが好ましい。その後、第2ビスマス化合物が分散した白濁溶液に第1リン酸エステルを加えて撹拌及び加熱を開始する。
 各成分を撹拌する際の温度(反応温度)は、脂肪族炭化水素溶媒又は芳香族溶媒の還流温度であってもよいが、得られる第1ビスマス化合物の着色をより少なくするためには、好ましくは30~150℃の油浴温度、より好ましくは40~140℃の温度、さらに好ましくは45~120℃の温度で実施するのが望ましい。
 また、反応温度が30~110℃である場合、反応系内に生じた水を除去(脱水)するために、反応系内を減圧下とすることが好ましい。その際、第2ビスマス化合物と第1リン酸エステルとを混合しながら脱水することもできるし、両者を混合した後、脱水することもできる。ただし、反応の効率化を考えると、両者を混合した後、反応させながら脱水することが好ましい。
 反応時間は、特に制限されるものではなく、通常、1時間以上6時間以下でよい。
 反応を行う際の雰囲気は、操作性を考慮すると、空気雰囲気下、不活性ガス雰囲気下、乾燥空気雰囲気下のいずれであってもよく、操作性を考慮すると、空気雰囲気下で実施することが好ましい。
 以上のような条件で反応した後、得られた第1ビスマス化合物は、溶媒を留去して濃縮後、不溶の濁り成分がある場合は、これを濾過又は遠心分離により分離することが望ましい。さらに、この処理により得られた濃縮反応溶液に、用いた反応溶媒に可溶で、第1ビスマス化合物を溶解しない溶媒を加えて再沈殿を行い精製する。高沸点溶媒が残存する場合は、上記のデカンテーション操作を繰り返し、溶媒を置換する。その後、残存する溶媒を留去し、真空乾燥することで、第1ビスマス化合物を取り出すことができる。
 本実施形態に係る硬化性組成物において、第1ビスマス化合物の含有率は、例えば、20質量%以上90質量%以下である。第1ビスマス化合物の含有量が多いと、硬化体のX線遮蔽効果が高まる傾向にある。第1ビスマス化合物の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、65質量%以上であることがさらに好ましい。一方、第1ビスマス化合物の含有量が過剰に多いと、硬化体の臭気が強まる虞がある。第1ビスマス化合物の含有率は、80質量%以下であることが好ましい。
<第1重合性化合物>
 第1重合性化合物は、アクリロイル基、メタアクリロイル基、ビニル基、及び、アリル基からなる群より選ばれる少なくとも1種の重合基を有し、1気圧における沸点が90℃以上である。
 第1重合性化合物の沸点は、100℃以上であることが好ましく、140℃以上であることがより好ましい。第1重合性化合物の沸点が高いと、硬化体の臭気度が低下する傾向にある。第1重合性化合物の沸点に上限は特にないが、一例によると、200℃以下であり、他の例によると、300℃以下である。第1重合性化合物の沸点は、例えば、熱重量(TG)分析により測定できる。
 TG測定に際しては、示差熱熱重量同時測定装置(株式会社リガク製、TG8120)を用い、空気気流下、室温から500℃まで、昇温速度10℃/分で走査する。
 硬化性組成物における第1重合性化合物の含有率は、例えば、10質量%以上80質量%以下である。この含有率は、例えば、H MNRにより測定できる。NMRの測定条件は上記と同様である。
 第1重合性化合物は、1つの分子に1つのラジカル重合性部位を有する単官能ラジカル重合性化合物を含むことが好ましい。硬化性組成物が単官能ラジカル重合性化合物を含むと、第1ビスマス化合物の相溶性が高まる傾向にある。単官能ラジカル重合性化合物の沸点は、150℃以上であることが好ましく、180℃以上であることがより好ましい。
 アクリロイル基を有する単官能ラジカル重合性化合物としては、例えば、アクリル酸、アクリルアミド、フェニルアクリレート、ベンジルアクリレート、イソブチルアクリレート、メトキシエチルアクリレート、エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、イソシアナトエチルアクリレート、アクリロキシメチルトリメトキシシラン等の各種市販の重合性化合物を挙げることができる。
 メタクリロイル基を有する単官能ラジカル重合性化合物としては、例えば、メタクリル酸、メタクリルアミド、フェニルメタクリレート、ベンジルメタクリレート、イソブチルメタクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレート、メタクリロキシメチルトリメトキシシラン等の各種市販の重合性化合物を挙げることができる。
 ビニル基を有する単官能ラジカル重合性化合物としては、例えば、ビニルピリジン、ビニルピロリドン、スチレン、スチレン誘導体等の各種市販の重合性化合物を挙げることができる。スチレン誘導体としては、例えば、メチルスチレン及びその構造異性体、メトキシスチレン及びその構造異性体、メチルスチレンダイマー、クロロスチレン、ブロモスチレン、ジビニルベンゼン等が挙げられる。
 アリル基を有する単官能ラジカル重合性化合物としては、例えば、アリルメチルカーボネート、アリルフェニルエーテル、4-アリルオキシトルエン、アリルオキシトリメチルシラン、安息香酸アリル、アリルメタクリレート、アリルグリシジルエーテル等の各種市販の重合性化合物を挙げることができる。
 好適な単官能ラジカル重合性化合物としては、硬化後の光学特性や耐衝撃特性の観点から、下記式(I)で表される(メタ)アクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(I)において、Rは、ヒドロキシ基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキル基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルコキシ基、炭素数4以上10以下のシクロアルキル基、炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロシクロアルキル基、炭素数4以上10以下のアリール基、又は炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロアリール基である。
 Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキル基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロシクロアルキル基であることが好ましく、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルコキシ基又は炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロシクロアルキル基であることがより好ましく、メトキシ基又はテトラヒドロフリル基であることがさらに好ましい。
 Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下のアルキレンオキシド基である。
 Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基であることが好ましく、メチレン基又はエチレン基であることがより好ましい。
 Rは、水素原子又はメチル基である。
 aは、0又は1である。aは、1であることが好ましい。
 上記式(I)で表される(メタ)アクリレートの具体例としては、メトキシエチルアクリレート(MEMA)、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレート、テトラヒドロフルフリルアクリレート(THFAA)、及びテトラヒドロフルフリルメタクリレート(THFMA)からなる群より選ばれる少なくとも1種が挙げられる。
 本実施形態に係る硬化性組成物において、単官能ラジカル重合性化合物が占める割合は、10質量%以上80質量%以下であることが好ましい。この割合が高いと、第1ビスマス化合物の相溶性が高まる傾向にある。この割合が低いと、硬化体の臭気度が低下し、また、耐衝撃性が高まる傾向にある。この割合は、10質量%以上30質量%以下であることがより好ましい。この割合は、例えば、NMRにより測定できる。
 本実施形態に係る硬化性組成物は、複数種類の単官能ラジカル重合体を含むことが好ましい。複数種類の単官能ラジカル重合体を含むと、第1ビスマス化合物の相溶性が高まる傾向にある。本実施形態に係る硬化性組成物は、(メタ)アクリロイル基を有する単官能ラジカル重合性化合物と、ビニル基を有する単官能ラジカル重合性化合物とを含んでいてもよい。(メタ)アクリロイル基を有する単官能ラジカル重合性化合物の質量M4と、ビニル基を有する単官能ラジカル重合性化合物の質量M5との比M4/M5は、例えば、0.1以上10以下であり、好ましくは1以上5以下である。
 本実施形態に係る硬化性組成物は、上記式(I)で表される(メタ)アクリレートを2種類以上含むことが好ましく、上記式(I)中のRがフリル基である(メタ)アクリレート及び上記式(I)中のRがメトキシ基である(メタ)アクリレートの少なくとも一方を含むことがより好ましい。Rがフリル基である(メタ)アクリレートを含むと、第1ビスマス化合物の相溶性が高まる傾向にある。Rがメトキシ基である(メタ)アクリレートを含むと、硬化体の硬度が高まる傾向にある。特に、Rがメトキシ基である(メタ)アクリレートを含むことがより好ましい。Rがメトキシ基である(メタ)アクリレートの質量M6と、Rがフリル基である(メタ)アクリレートの質量M7との比M6/M7は、0.1以上10以下であることが好ましい。比M6/M7がこの範囲内にあると、硬化性組成物における第1ビスマス化合物の相溶性が高まり、かつ、硬化体の硬度を高められる。比M6/M7は、0.3以上5以下であることがより好ましく、0.5以上3以下であることがさらに好ましい。
 第1ビスマス化合物の質量M1と、単官能ラジカル重合性化合物の質量M2との比M1/M2は、0.25以上100以下であることが好ましい。この比が高いと、硬化体のX線遮蔽性能が高まる傾向にある。この比が低いと、第1ビスマス化合物の相溶性が高まる傾向にある。この比は、1以上6以下であることがより好ましい。
 第1重合性化合物は、1つの分子に複数のラジカル重合性部位を有する多官能ラジカル重合性化合物を含むこともまた好ましい。多官能ラジカル重合性化合物を含むと、硬化性組成物の硬化体の機械的特性、例えば耐衝撃性をさらに向上させ得る。多官能ラジカル重合性化合物としては、市販のものを制限なく用いることができる。多官能ラジカル重合性化合物の沸点は、100℃以上であることが好ましく、140℃以上であることがより好ましい。また、多官能ラジカル重合性化合物は、ゲル浸透クロマトグラフィー分析による数平均分子量が90以上2000以下であることが好ましく、250以上1800以下であることがより好ましい。
 多官能ラジカル重合性化合物としては、溶解性や組成物としての粘度、さらに硬化体の耐衝撃特性を考慮すると、下記式(II)で表されるジ(メタ)アクリレートが好適に使用される。
Figure JPOXMLDOC01-appb-C000015
 上記式(II)において、Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレンオキシド基である。
 Rは、炭素数1以上10以下の直鎖状又は分岐鎖状のアルキレンオキシド基であることが好ましく、エチレンオキシド基であることがより好ましい。
 R及びRは、それぞれ独立に、水素原子又はメチル基である。
 nは、1以上50以下の数である。nは、3以上30以下の数であることが好ましい。
 上記式(II)で表されるジ(メタ)アクリレートの具体例としては、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジメタクリレート、及びポリテトラメチレングリコールジアクリレートからなる群より選ばれる2官能(メタ)アクリレートが挙げられる。
 本実施形態に係る硬化性組成物において、多官能ラジカル重合性化合物が占める割合は、1質量%以上50質量%以下であることが好ましい。この割合が高いと、硬化体の耐衝撃性が高まる傾向にある。この割合が低いと、第1ビスマス化合物の相溶性が高まる傾向にある。この割合は、5質量%以上20質量%以下であることがより好ましい。この割合は、例えば、NMRにより測定できる。NMRの測定条件は上記と同様である。
 第1ビスマス化合物の質量M1と、多官能ラジカル重合性化合物の質量M3との比M1/M3は、0.1以上100以下であることが好ましい。この比が高いと、硬化体のX線遮蔽性能が高まる傾向にある。この比が低いと、硬化体の耐衝撃性が高まる傾向にある。この比は、1以上10以下であることがより好ましい。
 本実施形態に係る硬化性組成物は、単官能ラジカル重合性化合物と、多官能ラジカル重合性化合物との両方を含むことが好ましい。単官能ラジカル重合性化合物の質量M2と、多官能ラジカル重合性化合物の質量M3との比M2/M3は、0.1以上300以下であることが好ましい。この比が高いと、第1ビスマス化合物の相溶性が高まる傾向にある。この比が低いと、硬化体の耐衝撃性が高まる傾向にある。この比は、0.1以上10以下であることがより好ましい。
 本実施形態に係る硬化性組成物は、上記式(I)中のRがフリル基である(メタ)アクリレートと、上記式(I)中のRがメトキシ基である(メタ)アクリレートと、上記式(II)で表されるジ(メタ)アクリレートとを含むことが好ましい。これら3種類の重合性化合物を含むことにより、臭気が低減され、かつ、耐衝撃性により優れた硬化体が得られる。Rがメトキシ基である(メタ)アクリレートの質量M6及びRがフリル基である(メタ)アクリレートの質量M7の合計質量M8と、上記式(II)で表されるジ(メタ)アクリレートの質量M9との比M8/M9は、0.1以上10以下であることが好ましく、0.3以上5以下であることがより好ましく、0.5以上3以下であることがさらに好ましい。
 本実施形態に係る硬化性組成物は、10質量%以下のニトリル化合物を含んでいてもよい。硬化性組成物におけるニトリル化合物の含有率は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。ニトリル化合物の含有量が少ないと、硬化体の臭気度が低下する傾向にある。ニトリル化合物の含有率の下限値は、一例によると、100質量ppm以上であり、他の例によると、0質量%である。この割合は、例えば、H MNRにより測定できる。NMRの測定条件は上記と同様である。
 ニトリル化合物としては、例えば、アクリロニトリル、メタクリロニトリル、クロトノニトリル、2-クロロアクリロニトリル、アクリル酸-2-シアノエチル、アリルシアニド、シアノ酢酸アリル、フマノニトリル、5-ノルボルネン-2-カルボニトリル等が挙げられる。
 本実施形態に係る硬化性組成物は、1気圧下における沸点が90℃未満の第2重合性化合物を含んでいてもよい。硬化性組成物における第2重合性化合物の含有率は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。第2重合性化合物の含有量が少ないと、硬化体の臭気度が低下する傾向にある。第2重合性化合物の含有率の下限値は、一例によると、1質量%以上であり、他の例によると、0質量%である。この割合は、例えば、H MNRにより測定できる。
 第2重合性化合物としては、例えば、メチルアクリレート、アリルメチルエーテル、アリルエチルエーテル等が挙げられる。
 本実施形態に係る硬化性組成物における、第1ビスマス化合物以外の重合性化合物の総量(以下、重合性化合物総量ともいう)と、第1ビスマス化合物との配合割合は、X線遮断効果、分散性、着色低減効果等を考慮すると、第1ビスマス化合物100質量部当たり、重合性化合物総量を1~500質量部とすることが好ましく、5~300質量部とすることが好ましく、10~200質量部とすることがさらに好ましい。
<その他の配合剤>
 本実施形態に係る硬化性組成物は、該第1ビスマス化合物及び第1重合性化合物の他に、一般にラジカル重合性の硬化性組成物に配合される公知の配合剤を含有していてもよい。このような配合剤としては、ラジカル重合開始剤、酸化防止剤、モールドからの離型性を上げるための離型剤、硬化体の色調を整えるための色素、重合性を制御するための連鎖移動剤等が挙げられる。
 各配合剤の含有量は、本発明の効果を阻害しない範囲であればよい。具体的には、第1ビスマス化合物及び第1重合性化合物の合計100質量部当たり、各配合剤を0~30質量部配合することが好ましく、0.01~20質量部配合することがより好ましく、0.02~15質量部配合することがさらに好ましい。
 本実施形態に係る硬化性組成物は、第1ビスマス化合物、第1重合性化合物、及び必要に応じて配合される各種配合剤を混合することにより製造できる。
≪硬化体≫
 本実施形態に係る硬化体は、本実施形態に係る硬化性組成物を硬化してなるものである。硬化体の製造方法としては、公知の方法を採用できる。具体的には、光重合、熱重合、あるいはそれらの両方の重合方法を採用できる。好適な重合方法は、必要に応じて配合されるラジカル重合開始剤により決定する。
<硬化体の物性>
 本実施形態に係る硬化体は、X線遮断能力の高いビスマスを高濃度に含みながら、透過性が高く、しかも着色が少ない。硬化体は、例えば、2mmの厚みで、波長560nmにおける透過率が80%以上、X線遮断能力が鉛箔0.02mm相当以上、黄色度が40以下である。
 また、硬化体中に含まれるビスマスの割合は、硬化体の全質量を100質量%としたとき、5~40質量%とすることができる。
 硬化体のIRスペクトルは、1670~1700cm-1にピークを有し得る。このピークは、Bi-O-P結合に由来し得る。
<硬化体の用途>
 本実施形態に係る硬化体は、着色の薄い透明であるために光学物品として使用できる。さらに、可視光透過性であるにもかかわらず放射線遮断を有するため、透明な放射線シールド材に使用できる。
 本実施形態に係る硬化体を用いて得られる光学物品は、放射線遮蔽窓材、放射線遮蔽レンズとして使用できる。
 また、本実施形態に係る硬化体を用いて得られるレンズは、放射線遮蔽眼鏡、放射線遮蔽ゴーグルとして使用できる。
 以下、本発明を実施例、比較例を用いて詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
<製造例1:第1ビスマス化合物の製造>
 次サリチル酸ビスマス(III)94.27g(Sigma-Aldrich社製、ビスマス換算260.35mmol)、リン酸ジエステルであるビス[(2-メタクリロイルオキシエチル)]ホスフェートとリン酸モノエステルである(2-メタクリロイルオキシエチル)ホスフェートとの混合物33.06g(大八化学工業株式会社製、MR-200、リン酸価として162.04mmol)、リン酸トリエステルであるジフェニル-2-メタクリロイルオキシエチルフォスフェート33.09g(大八化学工業株式会社製、MR-260、91.33mmol)、重合禁止剤としてのジブチルヒドロキシトルエン(BHT、富士フイルム和光純薬株式会社製、特級試薬)6.17gを1000mLナス型フラスコに入れてトルエン750mLを加えた。これをバス型ソニケーターにより超音波分散させて白濁溶液とした。
 得られた白濁溶液をDean-Starkトラップを装着した1000mL四ツ口フラスコに移し、油浴を用いて130℃で加熱撹拌しながら反応を行い、生成した水を系外に除いた。水の生成がなくなった時点を反応終点とした。淡黄色沈殿がわずかに生じた、淡黄散乱溶液を得た。
 この溶液を真空エバポレーターにより250mLに濃縮した。アルミナ粉末8gを加えて一晩静置したのち、5B濾紙で吸引濾過を行った。得られた淡黄散乱濾液に活性炭(Norit社製、DarcoG60)3gを加えて、23830×gで8時間遠心分離機にかけた。遠心上清を孔径0.2μmのメンブレンフィルターにより加圧濾過し、淡黄色透明濾液を得た。この溶液から真空エバポレーターにより溶媒を留去し、アセトン250mLに再溶解した。得られた淡黄溶液に活性炭(Norit社製、Norit SX-Plus)3gを加えて、23830×gで12時間遠心分離機にかけた。遠心上清を孔径0.2μmのメンブレンフィルターにより加圧濾過し、淡黄色透明濾液を得た。得られた濾液を真空エバポレーターにより100mLにまで濃縮した。このアセトン溶液を撹拌下、1000mLのコニカルビーカーに入れた800mLのヘキサンに投入した。生じた白色沈殿を5B濾紙を用いた吸引濾過により濾取し、得られた固体を真空乾燥した。第1ビスマス化合物を白色粉末として64.40g取得した。合成の確認は、上記測定法によって行った。
<実施例1>
 製造例1で得られた第1ビスマス化合物70質量部に、重合性化合物としてメトキシエチルメタクリレート(以下、「MEMA」と表記)10質量部、テトラヒドロフルフリルアクリレート(以下、「THFAA」と記載)10.7質量部、及びスチレン(以下、「ST」と記載)8質量部を加え、その他配合剤としてα-メチルスチレン1質量部及びメチルスチレンダイマー0.3質量部を加えて均一に溶解し、硬化性組成物を得た。この硬化性組成物にさらに2,2’-アゾビス(イソ酪酸)ジメチル(V-601)0.45質量部及び1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(V-40)0.15質量部を加え、完全に溶解させた。この硬化性組成物を真空ポンプにより減圧下に置き、溶存酸素を除いた。その後、この硬化性組成物を2mm厚のガラスモールド中に注入し、最高温度100℃、5時間で重合を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.32mmであった。
<実施例2>
 MEMAの量を18質量部に変更したこと、及びSTの添加を省略したこと以外は、実施例1と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.35mmであった。
<実施例3>
 テトラエチレングリコールジメタクリレート(以下、「4G」と表記)8質量部を加えたこと、及びSTの添加を省略したこと以外は、実施例1の硬化性組成物の調製方法と同様の方法で混合物を得た。この混合物にアセトンを加えて均一に溶解させた後、エバポレーターでアセトンを減圧留去して、硬化性組成物を得た。この硬化性組成物を用いたこと以外は、実施例1と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.42mmであった。
<実施例4>
 4Gの代わりにノナエチレングリコールジメタクリレート(以下、「9G」と表記)を用いたこと以外は、実施例3と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.40mmであった。
<実施例5>
 THFAAの代わりにテトラヒドロフルフリルメタクリレート(以下、「THFMA」と表記)を用いたこと以外は、実施例4と同じ操作を行った。厚み2.46mmの淡黄色硬化体が得られたが、完全な透明ではなかった。
<実施例6>
 THFAAの量を8.7質量部に変更したこと、及び9Gの量を10質量部に変更したこと以外は、実施例4と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.20mmであった。
<実施例7>
 MEMAの量を8質量部に変更したこと、及び9Gの量を10質量部に変更したこと以外は、実施例4と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.23mmであった。
<実施例8>
 MEMAの量を7質量部に変更したこと、THFAAの量を6.7質量部に変更したこと、及び9Gの量を15質量部に変更したこと以外は、実施例4と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.48mmであった。
<実施例9>
 第1ビスマス化合物の量を65質量部に変更したこと、MEMAの量を13質量部に変更したこと、THFAAの量を6.7質量部に変更したこと、及び9Gの量を14質量部に変更したこと以外は、実施例4と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.30mmであった。
<実施例10>
 THFAAの代わりにTHFMAを用いたこと、9Gの量を5質量部に変更したこと、及びメタクリロニトリル(以下「MN」と表記)3質量部を加えたこと以外は、実施例4と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.44mmであった。
<比較例1>
 MEMAの代わりにMNを用いたこと、THFAAの代わりにメチルアクリレート(以下、「MA」と表記)を用いたこと以外は、実施例4と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.33mmであった。
<比較例2>
 MAの代わりにSTを用いたこと以外は、比較例1と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.32mmであった。
<比較例3>
 MNの量を15.7質量部に変更したこと、STの量を13質量部に変更したこと、及び9Gの添加を省略したこと以外は、比較例2と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.18mmであった。
<比較例4>
 STの代わりに9Gを用いたこと以外は、比較例3と同じ操作を行い、淡黄色透明硬化体を得た。得られた硬化体の厚みは2.38mmであった。
<評価試験>
[硬化性組成物の粘度測定]
 実施例及び比較例において、第1ビスマス化合物及び重合性化合物を混合して得られた均一な硬化性組成物の粘度測定は、キャノン・フェンスケ粘度計により25℃における動粘度を測定し、密度を乗じることで行った。あるいは、E型粘度計(Brookfield社製、Rheometer RST)を用いて25℃で測定した。その結果、粘度は50~100000mPa・sの範囲内であった。
[鉛当量測定]
 得られた硬化体のX線遮断能は、日本工業規格JIS T 61331-1「診断用X線に対する防護用具-第1部:材料の減弱特性の決定方法」に準じて、透過X線量を測定して鉛当量を求めることにより評価した。X線装置としては、エクスロン・インターナショナル社製のMG-45型を用い、X線管電圧は120kV、管電流は12.5mAとし、付加濾過板として2.5mm Alを用いた。X線管焦点から試料までの距離は600mm、試料から測定機までの距離は900mmとし、測定器としては、電離箱照射線量率計(東洋メディック株式会社製、RAMTEC-Solo型A4プローブ)を用いた。X線遮断能は、相当する鉛板とした場合の厚み(mm)である鉛当量(mmPb)として評価した。その結果、鉛当量は0.10±0.04mmPbであった。
[臭気度測定]
 得られた硬化体の臭気を評価するために、新コスモス電機株式会社製のポータブル型ニオイセンサXP-329mを用いて臭気度を測定した。まず、上横口コック付デシケーター(柴田科学株式会社製、017440-150)とニオイセンサとをナイロンチューブで接続し、ニオイセンサのバックグラウンドをゼロに設定した。硬化体をデシケーター内に静置させ、5分間吸引後のニオイセンサの値を硬化体の臭気度とした。結果を表1に示す。
[耐衝撃性測定]
 得られた硬化体の耐衝撃性を評価するために落球試験を行った。まず、内径25mm、外径32mm、高さ25mmのチューブ上に、NBR製の支持リングを接合した。支持リングの厚みは3mmであり、内径は25mmであった。この支持リングの上に硬化体を静置させた。この硬化体に、鋼球を1.27mの高さから、電磁石を用いた落下装置を用いて落下させた。鋼球の重さは、4.5g、6.9g、14g、16g、32g、50g、67g、80g、95g、112g、130g、151g、174g、198g、225g、261gであった。鋼球を軽いものから順に落下させ、硬化体にヒビや破断が生じた1つ前の鋼球の重さを、耐衝撃最大値とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
 上記の結果から、1気圧における沸点が90℃以上である重合性化合物を使用し、かつニトリル基を有するニトリル化合物をほとんど使用しないことで、硬化体の臭気が低減されることが分かった。
 さらに、高沸点の重合性化合物を2種類用いた場合に比べ、3種類の重合性化合物を用いた場合の方が高い耐衝撃性を有することが分かった。MEMA、THFAA、9Gの組み合わせが最も高い耐衝撃性を与えた。
 この3種類の重合性化合物の組成比を調整することで、臭気度が100程度、耐衝撃最大値が30g以上と、高い衝撃性でありながら臭気が低い硬化体を得ることができた。この硬化体は、保護眼鏡として好適に使用可能である。

Claims (15)

  1.  ビスマスと、アクリロイル基及びメタクリロイル基の少なくとも一方とを有する第1ビスマス化合物と、
     アクリロイル基、メタクリロイル基、ビニル基、及びアリル基からなる群より選ばれる少なくとも1種の重合基を有し、1気圧下における沸点が90℃以上である第1重合性化合物とを含み、
     ニトリル基を有するニトリル化合物の含有率が10質量%未満である硬化性組成物。
  2.  前記第1ビスマス化合物の含有率が20質量%以上90質量%以下である、請求項1に記載の硬化性組成物。
  3.  前記第1重合性化合物の含有率が10質量%以上80質量%以下である、請求項1又は2に記載の硬化性組成物。
  4.  前記第1重合性化合物が、前記重合基を1つ有する単官能重合性化合物を含む、請求項1又は2に記載の硬化性組成物。
  5.  前記単官能重合性化合物の沸点が100℃以上300℃以下である、請求項4に記載の硬化性組成物。
  6.  前記単官能重合性化合物が、下記式(I)で表される単官能(メタ)アクリレートを含む、請求項4に記載の硬化性組成物:
    Figure JPOXMLDOC01-appb-C000001
     前記式(I)において、
     Rは、ヒドロキシ基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキル基、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルコキシ基、炭素数4以上10以下のシクロアルキル基、炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロシクロアルキル基、炭素数4以上10以下のアリール基、又は炭素数3以上10以下かつヘテロ原子数1以上3以下のヘテロアリール基であり、
     Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下のアルキレンオキシド基であり、
     Rは、水素原子又はメチル基であり、
     aは、0又は1である。
  7.  前記単官能重合性化合物が、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレート、テトラヒドロフルフリルアクリレート、及びテトラヒドロフルフリルメタクリレートからなる群より選ばれる少なくとも1種の(メタ)アクリレートを含む、請求項4に記載の硬化性組成物。
  8.  前記第1重合性化合物が、前記重合基を2つ以上有する多官能重合性化合物を含む、請求項1又は2に記載の硬化性組成物。
  9.  前記多官能重合性化合物のゲル浸透クロマトグラフィー分析による数平均分子量が90以上2000以下である、請求項8に記載の硬化性組成物。
  10.  前記多官能重合性化合物が、下記式(II)で表される2官能(メタ)アクリレートを含む、請求項8に記載の硬化性組成物:
    Figure JPOXMLDOC01-appb-C000002
     前記式(II)において、
     Rは、炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレン基、又は炭素数1以上10以下の直鎖状若しくは分岐鎖状のアルキレンオキシド基であり、
     R及びRは、それぞれ独立に、水素原子又はメチル基であり、
     nは、1以上50以下の数である。
  11.  前記多官能重合性化合物が、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジメタクリレート、及びポリテトラメチレングリコールジアクリレートからなる群より選ばれる2官能(メタ)アクリレートを含む、請求項8に記載の硬化性組成物。
  12.  請求項1又は2に記載の硬化性組成物の硬化体。
  13.  請求項12に記載の硬化体を含む光学物品。
  14.  請求項12に記載の硬化体を含むレンズ。
  15.  請求項14に記載のレンズを含む眼鏡。
PCT/JP2023/034841 2022-10-05 2023-09-26 硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡 WO2024075583A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161021 2022-10-05
JP2022-161021 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024075583A1 true WO2024075583A1 (ja) 2024-04-11

Family

ID=90608248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034841 WO2024075583A1 (ja) 2022-10-05 2023-09-26 硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡

Country Status (1)

Country Link
WO (1) WO2024075583A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557200A (en) * 1978-10-20 1980-04-26 Kyowa Gas Chem Ind Co Ltd Bismuthhcontaining transparent filter for xxray
JPS6356510A (ja) * 1986-08-26 1988-03-11 Nippon Paint Co Ltd 防汚塗料用球形崩壊型ビニル樹脂粒子
WO2019177084A1 (ja) * 2018-03-16 2019-09-19 株式会社トクヤマ ビスマス化合物、硬化性組成物、および硬化体
JP2021038354A (ja) * 2019-09-05 2021-03-11 三菱瓦斯化学株式会社 光学材料用樹脂組成物
WO2022014591A1 (ja) * 2020-07-17 2022-01-20 株式会社トクヤマ 硬化性組成物及びその硬化体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557200A (en) * 1978-10-20 1980-04-26 Kyowa Gas Chem Ind Co Ltd Bismuthhcontaining transparent filter for xxray
JPS6356510A (ja) * 1986-08-26 1988-03-11 Nippon Paint Co Ltd 防汚塗料用球形崩壊型ビニル樹脂粒子
WO2019177084A1 (ja) * 2018-03-16 2019-09-19 株式会社トクヤマ ビスマス化合物、硬化性組成物、および硬化体
JP2021038354A (ja) * 2019-09-05 2021-03-11 三菱瓦斯化学株式会社 光学材料用樹脂組成物
WO2022014591A1 (ja) * 2020-07-17 2022-01-20 株式会社トクヤマ 硬化性組成物及びその硬化体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Photochromic organic glasses based on copolymers of (fluoro)alkylmethacrylates containing bismuth salts. ", ZHURNAL NAUCHNOI I PRIKLADNOI FOTOGRAFFI I KINEMATOGRAFFI., GORDON AND BREACH SCIENCE PUBLISHERS., US, vol. 41, no. 4, 1 January 1996 (1996-01-01), US , pages 52 - 54, XP009553694, ISSN: 0869-6144 *

Similar Documents

Publication Publication Date Title
JP3682117B2 (ja) チオ(メタ)アクリレートモノマーを基礎とする重合可能な組成物、該組成物から得られる黄色度の小さいポリマー、及び、該組成物、ポリマーを用いた目に着用するレンズ
US9499466B2 (en) Diene-based carboxylate anion and salt thereof, and polymerizable or curable composition thereof
KR101779531B1 (ko) 경화성 수지 조성물, 그 경화물 및 광학 재료
JP7271504B2 (ja) ビスマス化合物、硬化性組成物、および硬化体
TW200846380A (en) (Meth)acrylate copolymer for syrup and resin composition thereof
CN105793304A (zh) 具有环状卤胺结构的新型共聚物
Uemura et al. Controlled cyclopolymerization of difunctional vinyl monomers in coordination nanochannels
KR20160130263A (ko) 시아닌계 착색조성물
WO2014157131A1 (ja) 硬化性樹脂組成物、硬化物および光学物品
DE102004011497A1 (de) Dentalwerkstoffe mit verbesserter Verträglichkeit
WO2024075583A1 (ja) 硬化性組成物、硬化体、光学物品、レンズ、及び眼鏡
CN115702176B (zh) 固化性组合物及其固化体
DE69815404T2 (de) Bromierte materialien
RU2791556C2 (ru) Соединение висмута, отверждаемая композиция и отвержденный продукт
JP2003215325A (ja) 光学材料
KR20220131537A (ko) N-치환 말레이미드계 중합체, 및 그 제조 방법
EP3973941B1 (en) Dental composition
JP3138886B2 (ja) 透明な鉛含有高分子の製造方法
JPH06345877A (ja) 合成樹脂製光学フィルター
JPS61192731A (ja) 新規な反応性オリゴマ−
JP2629149B2 (ja) 新規な交互共重合体
US9310678B2 (en) Vinyl ether group-containing copolymer, preparation process and use thereof
JP2001049234A (ja) 近赤外線吸収剤、それを含有する組成物及び樹脂板
JPH06122732A (ja) 鉛含有高分子
JPH06122733A (ja) 鉛含有高分子