WO2024071191A1 - プレコート鋼板 - Google Patents

プレコート鋼板 Download PDF

Info

Publication number
WO2024071191A1
WO2024071191A1 PCT/JP2023/035134 JP2023035134W WO2024071191A1 WO 2024071191 A1 WO2024071191 A1 WO 2024071191A1 JP 2023035134 W JP2023035134 W JP 2023035134W WO 2024071191 A1 WO2024071191 A1 WO 2024071191A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
steel sheet
coating
resin particles
zirconium
Prior art date
Application number
PCT/JP2023/035134
Other languages
English (en)
French (fr)
Inventor
隆志 藤井
保明 河村
亜希子 平井
邦彦 東新
耕平 藤田
郁弥 黒川
順 中川
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024071191A1 publication Critical patent/WO2024071191A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to pre-coated steel sheets.
  • organic resin-coated plated steel sheets (also called pre-coated steel sheets), in which an organic resin film is coated on the surface of a zinc-based plated steel sheet, have come to be used in place of post-painted products that were conventionally painted after forming.
  • These pre-coated steel sheets are made by coating a colored organic film on steel sheets or plated steel sheets that have been subjected to rust prevention treatment, and have the characteristics of being beautiful, easy to work with, and having good corrosion resistance.
  • These organic resin-coated plated steel sheets are often used as materials for home appliances, building materials, automobiles, etc., without being further painted after being pressed. Therefore, such organic resin-coated plated steel sheets are required to have excellent scratch resistance so that they do not lose their beauty during processing. Therefore, various technologies have been proposed in the past to improve the scratch resistance and other properties of pre-coated steel sheets.
  • Patent Document 1 discloses a precoated metal sheet for electronic and electrical equipment that is excellent not only in scratch resistance but also in corrosion resistance and conductivity.
  • This precoated metal sheet has a chemical conversion coating applied to the surface of a metal sheet with a specified surface roughness, and then on one side, a resin coating with a thickness of 0.4 to 2.0 ⁇ m that contains urethane beads and fluororesin beads with an average particle size of 1 to 10 ⁇ m, and on the other side, a resin coating with a thickness of 0.2 to 2.0 ⁇ m that contains urethane beads and fluororesin beads with an average particle size of 0.1 to 6.0 ⁇ m.
  • various precoated metal sheets including the precoated metal sheet disclosed in the above Patent Document 1, are generally manufactured by providing a desired coating film on a base metal sheet (for example, steel sheet including various plated steel sheets, aluminum sheet, aluminum alloy sheet, etc.) using a continuous coating line.
  • the metal sheet with the desired coating film is wound into a coil at the end of the continuous coating line and transported to the customer.
  • the thickness of the coating film formed is often relatively thin, at no more than about 2 ⁇ m, so the color tone of the base metal sheet (for example, the color tone of the plated steel sheet used as the base material) often shows through. Therefore, when providing a pre-coated metal sheet to a customer, the color tone is sometimes designed taking into account the color tone of the base material that shows through.
  • the color tone of the base metal sheet it may be preferable for the color tone of the base metal sheet not to show through. It is presumed that in order to prevent the color tone of the base metal sheet from showing through, it is necessary to increase the thickness of the coating film provided on the base material. However, if the coating film is made too thick, there is a high possibility that the scratch resistance and coating film adhesion of the precoated metal sheet will decrease.
  • the present invention was made in consideration of the above problems, and the object of the present invention is to provide a pre-coated steel sheet that can achieve better scratch resistance and paint film adhesion even when the paint film is thick.
  • the present inventors have conducted intensive research and have come up with a technical idea that, when a zinc (Zn)-plated steel sheet is used as a base material, the distribution state of the bonding component at the interface between the Zn-containing plating layer and the coating film is made appropriate to improve the coating film adhesion, and the coating film is made to contain resin particles, thereby ensuring the scratch resistance of the coating film.
  • the present inventors have conducted further research based on this idea and have come up with the present invention as described below.
  • the gist of the present invention which has been completed based on the above findings, is as follows.
  • the crosslinking agent is at least one of a melamine resin and an isocyanate resin.
  • the resin particles are made of the same type of resin as the binder resin.
  • the resin particles are acrylic resin particles.
  • FIG. 1 is an explanatory diagram showing a schematic structure of a precoated steel sheet according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the precoated steel sheet according to the embodiment.
  • FIG. 2 is an explanatory diagram for explaining a coating layer of the precoated steel sheet according to the embodiment.
  • FIG. 2 is an explanatory diagram for explaining a coating layer of the precoated steel sheet according to the embodiment.
  • FIGS. 1A and 1B are explanatory diagrams that typically show the structure of a pre-coated steel sheet according to this embodiment.
  • the precoated steel sheet 1 has a zinc-based plated steel sheet 10 serving as a base material, a chemical conversion coating layer 20 located on one surface of the zinc-based plated steel sheet 10, and a coating layer 30 located on the chemical conversion coating layer 20.
  • the base material zinc-based plated steel sheet 10
  • such chemical conversion coating layer 20 and coating layer 30 may be provided on both sides of the zinc-based plated steel sheet 10, as shown diagrammatically in FIG. 1B.
  • the zinc-based plated steel sheet 10 which is the base material of the precoated steel sheet 1 according to this embodiment has the base steel sheet 11 and the Zn-containing plating layer 13 .
  • Base steel plate 11 various steel plates can be used, such as Al-killed steel, ultra-low carbon steel containing Ti, Nb, etc., and high-strength steel in which ultra-low carbon steel further contains strengthening elements such as P, Si, Mn, etc.
  • the thickness of the base steel sheet 11 can be set appropriately depending on the mechanical strength required for the precoated steel sheet 1, and can be, for example, about 0.2 mm to 10.0 mm.
  • a Zn-containing plating layer 13 is positioned on the surface of the base steel sheet 11 as described above.
  • the Zn-containing plating layer 13 is composed of various zinc-based platings. Examples of such zinc-based platings include hot-dip galvanizing, electrolytic galvanizing, zinc-nickel alloy plating, alloyed hot-dip galvanizing, aluminum-zinc alloy plating, zinc-aluminum-magnesium alloy plating, zinc-vanadium composite plating, and zinc-zirconium composite plating.
  • zinc-based platings it is particularly preferable to use zinc-aluminum-magnesium alloy plating as the Zn-containing plating layer 13, and it is even more preferable to use zinc-aluminum-magnesium-silicon alloy plating containing 4-22 mass% Al, 1-10 mass% Mg, 0.0001-2.0000 mass% Si, with the remainder being Zn and impurities.
  • Al 4 to 22% by mass
  • the Al content is more preferably 5 mass% or more.
  • the Al content is more preferably 16 mass% or less.
  • Mg: 1 to 10% by mass By setting the Mg content to 1 mass% or more, it is possible to further improve the corrosion resistance of the steel sheet.
  • the Mg content is more preferably 2 mass% or more.
  • by adjusting the Mg concentration in the plating bath used for forming the plating layer so that the Mg content in the Zn-containing plating layer 13 after production is 10 mass% or less it is possible to stabilize the generation of dross in the plating bath and stably produce the plated steel sheet. It is more preferable to adjust the Mg concentration in the plating bath used for forming the Zn-containing plating layer 13 so that the Mg content in the Zn-containing plating layer 13 after production is 5 mass% or less.
  • Si: 0.0001 to 2.0000 mass% By setting the Si content to 0.0001 mass% or more, it is possible to further improve the adhesion of the Zn-containing plating layer 13 (more specifically, the adhesion between the base steel sheet 11 and the Zn-containing plating layer 13). On the other hand, by setting the Si content to 2.0000 mass% or less, it is possible to further improve the adhesion of the Zn-containing plating layer 13 while suppressing saturation of the adhesion improvement effect of the Zn-containing plating layer 13.
  • the Si content is more preferably 1.6000 mass% or less.
  • the Zn-containing plating layer 13 may contain elements such as Fe, Sb, and Pb, either alone or in combination, in an amount of 1 mass% or less, in place of a portion of the remaining Zn.
  • a zinc-based plated steel sheet 10 having a Zn-containing plating layer 13 with the above-mentioned chemical composition is a hot-dip zinc-aluminum-magnesium-silicon alloy plated steel sheet (e.g., "Super Dima (registered trademark)" manufactured by Nippon Steel Corporation), such as a plated steel sheet having a Zn-11%Al-3%Mg-0.2%Si alloy plating layer.
  • Super Dima registered trademark
  • the Zn-containing plating layer 13 as described above can be manufactured, for example, as follows. First, the surface of the prepared base steel sheet 11 is pretreated, such as by cleaning and degreasing, as necessary. The base steel sheet 11, which has been pretreated as necessary, is then immersed in a hot-dip plating bath containing the desired chemical composition, and the steel sheet is removed from the plating bath. During this plating operation, plating may be performed by either a continuous coil plating method or a single cut sheet plating method.
  • the temperature of the hot-dip plating bath varies depending on the composition, but is preferably in the range of 400 to 500°C, for example.
  • the coating weight of the Zn-containing plating layer 13 can be controlled by the lifting speed of the steel sheet, the flow rate of the wiping gas ejected from the wiping nozzle provided above the plating bath, flow rate adjustment, etc.
  • the coating weight is preferably 30 g/m 2 or more in total on both sides of the steel sheet (i.e., 15 g/m 2 or more per side). By setting the coating weight to 30 g/m 2 or more, it is possible to reliably ensure the corrosion resistance of the zinc-based plated steel sheet 10.
  • the coating weight is more preferably 40 g/m 2 or more in total on both sides of the steel sheet.
  • the coating weight is preferably 600 g/m 2 or less in total on both sides of the steel sheet (i.e., 300 g/m 2 or less per side).
  • the coating weight is more preferably 550 g/m 2 or less in total on both sides of the steel sheet.
  • the steel sheet After adjusting the amount of coating of the hot-dip coating, the steel sheet is cooled. There is no need to limit the cooling conditions.
  • the chemical conversion coating layer 20 is a coating layer located between the zinc-based plated steel sheet 10 and the coating layer 30, and is a layer formed by so-called chemical conversion treatment.
  • the chemical conversion coating layer 20 according to this embodiment contains at least a zirconium compound, and may further contain, as necessary, one or more selected from the group consisting of, for example, resin, silane coupling agent, silica, phosphoric acid and its salts, fluoride, vanadium compound, and tannin or tannic acid.
  • the chemical conversion coating layer 20 according to this embodiment can be said to be a coating layer that contains at least zirconium.
  • the chemical conversion coating layer 20 contains a zirconium compound (and more preferably, a silane coupling agent), a cross-linked structure is formed within the chemical conversion coating layer 20, which also strengthens the bond with the plating surface, improving the adhesion and barrier properties of the coating.
  • a zirconium compound and more preferably, a silane coupling agent
  • the chemical conversion coating layer 20 further contains one or more of silica, phosphoric acid and its salts, fluorides, or vanadium compounds, these substances function as inhibitors and form a precipitate film or a passivation film on the plating or steel surface, making it possible to further improve corrosion resistance.
  • zirconium compounds examples include zirconium normal propylate, zirconium normal butylate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, zirconium acetate, zirconium monostearate, zirconium carbonate, zirconium ammonium carbonate, zirconium potassium carbonate, and zirconium sodium carbonate.
  • the amount of the zirconium compound added to the chemical conversion coating agent for forming the chemical conversion coating layer 20 can be, for example, 2 to 80 g/L. If the amount of the zirconium compound added is less than 2 g/L, the adhesion to the plating surface may be insufficient, and the processing adhesion of the coating may be reduced. If the amount of the zirconium compound added is more than 80 g/L, the cohesive force of the chemical conversion coating layer 20 may be insufficient, and the processing adhesion of the coating may be reduced. Such zirconium compounds may be used alone or in combination of two or more kinds.
  • the resin is not particularly limited, and known organic resins such as polyester resin, polyurethane resin, epoxy resin, phenol resin, acrylic resin, polyolefin resin, etc. can be used.
  • organic resins such as polyester resin, polyurethane resin, epoxy resin, phenol resin, acrylic resin, polyolefin resin, etc.
  • the resin may be used alone or in combination of two or more kinds.
  • the resin content in the chemical conversion coating layer 20 is, for example, preferably 0 mass% or more, and more preferably 1 mass% or more, relative to the coating solids. Also, the resin content in the chemical conversion coating layer 20 is, for example, preferably 85 mass% or less, more preferably 60 mass% or less, and even more preferably 40 mass% or less, relative to the coating solids. If the resin content exceeds 85 mass%, the proportion of other coating constituent components decreases, and the performance required of the coating other than corrosion resistance may decrease.
  • silane coupling agent examples include ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ -aminopropyl
  • the amount of the silane coupling agent added to the chemical conversion treatment agent for forming the chemical conversion treatment film layer 20 can be, for example, 2 to 80 g/L. If the amount of the silane coupling agent added is less than 2 g/L, the adhesion to the plating surface may be insufficient, and the processing adhesion of the film may be reduced. Furthermore, if the amount of the silane coupling agent added exceeds 80 g/L, the cohesive strength of the chemical conversion coating layer 20 may be insufficient, and the processing adhesion of the coating may decrease.
  • the silane coupling agents exemplified above may be used alone or in combination of two or more.
  • silica for example, commercially available silica gel such as "Snowtex N”, “Snowtex C”, “Snowtex UP”, and “Snowtex PS” manufactured by Nissan Chemical Co., Ltd., "Adelite AT-20Q” manufactured by ADEKA Corporation, powdered silica such as Aerosil #300 manufactured by Nippon Aerosil Co., Ltd., or equivalent to these commercially available silicas can be used.
  • the silica can be appropriately selected according to the required performance of the precoated plated steel sheet.
  • the amount of silica added in the chemical conversion treatment agent for forming the chemical conversion treatment film layer 20 is preferably, for example, 1 to 40 g/L.
  • the amount of silica added is less than 1 g/L, the processing adhesion of the film may decrease, and if the amount of silica added is more than 40 g/L, the effects of processing adhesion and corrosion resistance are likely to be saturated, which is uneconomical.
  • phosphoric acid and its salts examples include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and their salts, ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate, phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid), and their salts, and organic phosphoric acids such as phytic acid and their salts.
  • phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and their salts
  • ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate
  • phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1
  • Examples of phosphoric acid salts other than ammonium salts include metal salts with Na, Mg, Al, K, Ca, Mn, Ni, Zn, Fe, and the like. Phosphoric acid and its salts may be used alone or in combination of two or more.
  • the content of phosphoric acid and its salts is, for example, preferably 0 mass% or more, and more preferably 1 mass% or more, based on the solid content of the coating.
  • the content of phosphoric acid and its salts is, for example, preferably 20 mass% or less, and more preferably 10 mass% or less, based on the solid content of the coating. If the content of phosphoric acid and its salts exceeds 20 mass%, the coating becomes brittle and the processing followability of the coating may decrease when the pre-coated steel sheet is formed.
  • fluoride examples include ammonium zirconate fluoride, ammonium silicofluoride, ammonium titanium fluoride, sodium fluoride, potassium fluoride, calcium fluoride, lithium fluoride, titanium hydrofluoric acid, zirconate hydrofluoric acid, etc. Such fluorides may be used alone or in combination of two or more.
  • the fluoride content is preferably 0% by mass or more, and more preferably 1% by mass or more, based on the solid content of the coating.
  • the fluoride content is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the solid content of the coating. If the fluoride content exceeds 20% by mass, the coating becomes brittle and the processing followability of the coating may decrease when the pre-coated steel sheet is formed.
  • vanadium compounds examples include vanadium compounds obtained by reducing pentavalent vanadium compounds such as vanadium pentoxide, metavanadic acid, ammonium metavanadate, sodium metavanadate, and vanadium oxytrichloride to divalent to tetravalent vanadium compounds with a reducing agent, vanadium trioxide, vanadium dioxide, vanadium oxysulfate, vanadium oxyoxalate, vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphovanadomolybdic acid, vanadium sulfate, vanadium dichloride, and vanadium oxide, and other vanadium compounds having an oxidation number of 4 to 2.
  • Such vanadium compounds may be used alone or in combination of two or more.
  • the content of the vanadium compound is, for example, preferably 0 mass% or more, and more preferably 1 mass% or more, relative to the solid content of the coating.
  • the content of the vanadium compound is, for example, preferably 20 mass% or less, and more preferably 10 mass% or less, relative to the solid content of the coating. If the content of the vanadium compound exceeds 20 mass%, the coating becomes brittle and the processing followability of the coating when forming the pre-coated steel sheet may decrease.
  • the tannin or tannic acid may be either hydrolyzable tannin or condensed tannin.
  • examples of tannin and tannic acid include hamaneta tannin, chinese gall tannin, gall tannin, myrobalan tannin, dividivi tannin, algarovila tannin, valonia tannin, and catechin.
  • the amount of tannin or tannic acid added to the chemical conversion coating layer 20 may be 2 to 80 g/L. If the amount of tannin or tannic acid added is less than 2 g/L, the adhesion to the plating surface may be insufficient, and the processing adhesion of the coating may be reduced. If the amount of tannin or tannic acid added is more than 80 g/L, the cohesive force of the chemical conversion coating may be insufficient, and the processing adhesion of the coating may be reduced.
  • acids, alkalis, etc. may be added to the chemical conversion coating agent used to form the chemical conversion coating layer 20 to adjust the pH, as long as the performance is not impaired.
  • the chemical conversion coating agent containing the various components as described above is applied to one or both sides of the zinc-based plated steel sheet 10, and then dried to form the chemical conversion coating layer 20.
  • the adhesion amount of the chemical conversion coating layer 20 is more preferably 20 mg/m 2 or more, and even more preferably 50 mg/m 2 or more.
  • the adhesion amount of the chemical conversion coating layer 20 is more preferably 800 mg/m 2 or less, and even more preferably 600 mg/m 2 or less.
  • the film thickness of the chemical conversion coating layer 20 corresponding to such adhesion amount is generally about 0.01 to 1 ⁇ m, although it depends on the components contained in the chemical conversion coating agent.
  • the film thickness of the chemical conversion coating layer 20 can be measured by direct observation of the cross section.
  • the chemical conversion coating agent as described above can be applied by a commonly known application method, such as roll coating, curtain flow coating, air spray, airless spray, immersion, bar coating, brush coating, etc.
  • the applied chemical conversion coating agent can be cured by a commonly known curing method (for example, a hot air baking device, an induction heating (IH) device, a near-infrared heating device, etc.). These curing methods may also be used in combination.
  • a commonly known curing method for example, a hot air baking device, an induction heating (IH) device, a near-infrared heating device, etc.
  • a chemical conversion coating agent When forming a chemical conversion coating, it is common to apply a chemical conversion coating agent to a substrate (zinc-based plated steel sheet 10 in this embodiment) and then heat it to harden it. However, in order to form a zirconium-enriched state, as described in detail below, near the interface of the coating layer 30 on the Zn-containing plating layer 13 side, as in this embodiment, when applying the chemical conversion coating agent, it is necessary to preheat the zinc-based plated steel sheet 10 to a temperature above room temperature, for example by heating it from a room temperature state.
  • the preheating temperature of the zinc-based plated steel sheet 10 when applying the chemical conversion treatment agent is higher than room temperature, and it is preferable to determine the preheating temperature according to the temperature of the chemical conversion treatment agent to be applied. For example, it is preferable to preheat the zinc-based plated steel sheet 10 to a temperature that is +5°C or more higher than the temperature of the chemical conversion treatment agent to be applied, and it is even more preferable to preheat the zinc-based plated steel sheet 10 to a temperature that is +10°C or more higher than the temperature of the chemical conversion treatment agent to be applied.
  • the preheating temperature of the zinc-based plated steel sheet 10 is preferably set to a temperature of +60°C or less, and more preferably +50°C or less, higher than the temperature of the chemical conversion coating to be applied.
  • heating after application of the chemical conversion treatment agent i.e., heating to harden the chemical conversion treatment agent
  • the chemical conversion treatment agent is also necessary to retain the applied chemical conversion treatment agent on the zinc-based plated steel sheet as a chemical conversion coating.
  • the sheet temperature of the zinc-based plated steel sheet 10 becomes too high, the hardening of the chemical conversion treatment agent is accelerated too much, which may result in insufficient cohesive force of the chemical conversion coating and reduced processing adhesion of the coating.
  • the chemical conversion treatment agent hardens too much, the thermal diffusion of zirconium into the coating layer 30 that is subsequently formed is hindered, making it impossible to achieve the concentrated zirconium state described in detail below.
  • the sheet temperature (achieved sheet temperature) of the zinc-based plated steel sheet 10 after application of the chemical conversion treatment agent is determined according to the temperature of the applied chemical conversion treatment agent. More specifically, the sheet temperature (achieved sheet temperature) of the zinc-based plated steel sheet 10 after application of the chemical conversion treatment agent is preferably +20°C or more, more preferably +25°C or more, higher than the temperature of the applied chemical conversion treatment agent (the temperature indicated by the chemical conversion treatment agent when application starts).
  • the sheet temperature (achieved sheet temperature) of the zinc-based plated steel sheet 10 after application of the chemical conversion treatment agent is preferably +80°C or less, more preferably +70°C or less, higher than the temperature of the applied chemical conversion treatment agent (the temperature indicated by the chemical conversion treatment agent when application starts).
  • the heating time is not particularly specified as long as the plate temperature is within the above range, and it is sufficient to ensure that the time is long enough for the solvent contained in the chemical conversion coating agent to evaporate properly.
  • the coating layer 30 has an average thickness (thickness d c in FIGS. 1A and 1B ) of 3 ⁇ m or more. If the average thickness of the coating layer 30 is less than 3 ⁇ m, the color tone of the zinc-based plated steel sheet 10 (more specifically, the color tone of the Zn-containing plating layer 13) which is the base material may be seen through.
  • the average thickness of the coating layer 30 is preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the average thickness of the coating layer 30 is 10 ⁇ m or less. If the average thickness of the coating layer 30 exceeds 10 ⁇ m, not only will it be costly, but coating defects such as popping may occur, making it difficult to obtain a consistent appearance. Also, if the average thickness of the coating layer 30 exceeds 10 ⁇ m, the coating layer 30 will be too thick, reducing the adhesion of the coating layer.
  • the average thickness of the coating layer 30 is preferably 9 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the average thickness of the coating layer 30 can be measured by direct observation of the cross section. Specifically, the precoated steel sheet is embedded in a room temperature drying epoxy resin so that the cross section can be observed, and the embedded surface is mechanically polished and further finished to a mirror state, and then observed with a SEM (Scanning Electron Microscope).
  • the width of the field of view in the SEM observation may be, for example, a width that allows observation of a range of 60 ⁇ m in length in a direction perpendicular to the thickness direction.
  • the thickness is measured at any number of positions (for example, 10 positions), and the average value of the obtained thicknesses may be taken as the thickness of the coating layer 30.
  • the film thickness can be converted into the thickness of the film layer per unit sputtering time by measuring the depth profile from the surface side of the film layer of the pre-coated steel sheet to the steel sheet side using glow discharge optical emission spectrometry (GD-OES) and comparing the sputtering time corresponding to the profile of the film layer 30 with the thickness of the film layer measured by SEM observation of the cross section described above.
  • GD-OES glow discharge optical emission spectrometry
  • the approximate position of the interface of the coating layer 30 on the Zn-containing plating layer 13 side can be determined as follows. That is, the position in the depth profile where the intensity of a specific element (e.g., Zn) contained in the Zn-containing plating layer 13 decreases from the peak value in the Zn-containing plating layer 13 and is reduced by half can be determined as the position of the interface of the coating layer 30 on the Zn-containing plating layer 13 side.
  • a specific element e.g., Zn
  • depth profiles are obtained at multiple positions (e.g., 10 positions) of the Zn-containing plating layer 13 of interest, and the position of the interface of the coating layer 30 on the Zn-containing plating layer 13 side can be determined based on the average value of the measurement results obtained at the multiple positions.
  • the binder resin 301 as a film-forming component in the coating layer 30 according to the present embodiment can be any material that functions as a binder for the resin particles 303.
  • binder resins 301 include acrylic resins, polyester resins, urethane resins, and fluorine resins.
  • the binder resin 301 according to this embodiment is preferably an organic resin having a glass transition temperature Tg of 30° C. or higher.
  • Tg glass transition temperature
  • the coating layer 30 has a more appropriate hardness, and the scratch resistance (particularly, scratch resistance) of the precoated steel sheet 1 can be further improved.
  • the glass transition point Tg of the binder resin 301 is preferably 35°C or higher, and more preferably 40°C or higher. On the other hand, there is no particular upper limit for the glass transition point Tg. However, if the glass transition point Tg of the binder resin 301 exceeds 70°C, there is a possibility that the processability will decrease. Therefore, it is preferable that the glass transition point Tg of the binder resin 301 is 70°C or lower.
  • the glass transition point Tg can be determined, for example, by a method using TMA (Thermomechanical Analysis) in which a needle is inserted into the surface of the film to be measured in the direction of the film thickness, a constant temperature change is applied, and the change in thermal expansion of the object to be measured is measured, or by a method using DMA (Dynamic Mechanical Analysis) in which a constant temperature change is applied while applying periodic deformation to the film to be measured that has been peeled off from the substrate, and the viscoelasticity is analyzed.
  • TMA Thermomechanical Analysis
  • DMA Dynamic Mechanical Analysis
  • the resin particles 303 in the coating layer 30 according to this embodiment are resin particles made of organic resin.
  • the toughness and ductility of the resin particles 303 make it possible to mitigate the impact applied to the coating layer 30, and the scratch resistance of the precoated steel sheet 1 can be further improved.
  • resin particles include acrylic resin particles, polyester resin particles, urethane resin particles, fluorine resin particles, silicon resin particles, polyolefin resin particles, and the like.
  • acrylic resin particles it is more preferable to use acrylic resin particles as the resin particles 303.
  • the coating layer 30 may further contain a coloring pigment as described below, but the coloring pigment itself may function as the resin particles 303 as described above.
  • inorganic particles made of inorganic compounds such as silica or ceramics.
  • inorganic particles are brittle particles, the effects of using the resin particles 303 as described above cannot be obtained.
  • the content of the resin particles 303 is preferably 5% by mass or more relative to the total content of the binder resin 301 and the resin particles 303. This makes it possible to further improve the scratch resistance.
  • the content of the resin particles 303 in the coating layer 30 is more preferably 10% by mass or more, and even more preferably 11% by mass or more.
  • the content of the resin particles 303 is 50% by mass or less relative to the total content of the binder resin 301 and the resin particles 303. This makes it possible to further improve the scratch resistance. If the content of the resin particles 303 is more than 50% by mass, the ratio of the binder resin in the coating layer 30 is low, the barrier property of the coating is reduced, and it becomes difficult to achieve the desired corrosion resistance.
  • the content of the resin particles 303 in the coating layer 30 is more preferably 45% by mass or less, and even more preferably 15% by mass or less.
  • the average particle diameter of the resin particles 303 is preferably within the range of 1.5 to 15.0 ⁇ m.
  • the average particle diameter of the resin particles 303 is more preferably 3.0 ⁇ m or more, and even more preferably 5.0 ⁇ m or more.
  • the average particle diameter of the resin particles 303 is more preferably 10.0 ⁇ m or less, and even more preferably 8.0 ⁇ m or less.
  • the average particle diameter of the resin particles 303 can be measured by direct observation of the cross section. Specifically, the precoated steel sheet is embedded in a room temperature drying epoxy resin so that the cross section can be observed, and the embedded surface is mechanically polished and then observed with a SEM (scanning electron microscope). In this case, the particle diameters of the resin particles 303 observed at any number of positions (for example, 10 positions) are measured, and the average value of the obtained particle diameters is taken as the average particle diameter of the resin particles 303.
  • Fig. 2 is an explanatory diagram for explaining the coating layer 30 in the pre-coated steel sheet 1 according to this embodiment, and is a schematic diagram showing a cross section of the coating layer 30 according to this embodiment cut in the thickness direction.
  • the coating layer 30 In the coating layer 30 according to this embodiment, attention will be focused on a cross section obtained by cutting the coating layer 30 in the thickness direction as shown in Fig. 2 and observing the cross section by SEM. In this case, within a region having a length of 60 ⁇ m in a direction perpendicular to the thickness direction as shown in Fig. 2 (more specifically, within a region having an area of d c ⁇ 60 ⁇ m as shown in Fig. 2), the average area ratio of the resin particles 303 within this region is 5% or more and 30% or less.
  • the average area ratio of the resin particles 303 is less than 5%, the proportion of the resin particles 303 in the coating layer 30 will be too low, and the desired scratch resistance and corrosion resistance as described above will not be achieved.
  • the average area ratio of the resin particles 303 is preferably 8% or more, and more preferably 11% or more.
  • the average area ratio of the resin particles 303 exceeds 30%, the proportion of the resin particles 303 in the coating layer 30 becomes too high, and as a result, while the desired scratch resistance can be achieved, it is not possible to achieve both scratch resistance and corrosion resistance at the same time.
  • the average area ratio of the resin particles 303 is preferably 25% or less, and more preferably 20% or less.
  • the average particle diameter of the resin particles 303 is within the range of 3.0 to 10.0 ⁇ m
  • the content of the resin particles 30 in the coating layer 30 is 5 to 15 mass % with respect to the total content of the binder resin 301 and the resin particles 303
  • the average thickness of the coating layer 30 is within the range of 4 to 8 ⁇ m.
  • the average area ratio of the resin particles 303 can be measured by direct observation of the cross section.
  • the precoated steel sheet 1 is embedded in a room temperature drying type epoxy resin so that the cross section can be observed, and the embedded surface is mechanically polished and further finished to a mirror state, and then observed with a SEM (scanning electron microscope).
  • SEM scanning electron microscope
  • the area ratio of the resin particles 303 at the observation position can be calculated by dividing the obtained total area of the resin particles 303 by the area of the coating layer 30. Such measurements are performed at any number of positions (for example, 10 positions), and the average value of the obtained multiple area ratios is calculated for the number of measurement positions. The average value obtained in this way is the average area ratio of the resin particles 303.
  • a paint for forming the coating layer 30 is applied to the surface of the zinc-based plated steel sheet 10 on which the chemical conversion coating layer 20 is formed, and then the paint is cured and dried to form the coating layer 30.
  • the paint is baked at a predetermined temperature. Due to the heat applied in the curing and drying process, the components contained in the Zn-containing plating layer 13, the components contained in the chemical conversion coating layer 20, and the components contained in the paint that will become the coating layer 30 are thermally diffused to each other, and the zirconium element derived from the chemical conversion coating layer 20 is present in the coating layer 30.
  • FIG. 3 is an explanatory diagram for explaining the coating layer of the pre-coated steel sheet according to this embodiment, and shows a schematic cross section of the coating layer 30 according to this embodiment when cut in the thickness direction. Note that, for convenience, FIG. 3 omits the distinction between the binder resin 301 and the resin particles 303 in the coating layer 30.
  • GD-OES glow discharge optical emission spectroscopy
  • the sample is cut to the required measurement size (for example, 50 mm). Then, the obtained measurement sample is measured under the following measurement conditions, focusing on the zirconium element.
  • the measurement can be performed using a glow discharge optical emission surface analyzer (for example, a Marcus-type high-frequency glow discharge optical emission surface analyzer GD-Profiler2 manufactured by Horiba Jobin Yvon Co., Ltd.) under conditions of a gas replacement time of 30 seconds, a pre-sputtering time of 30 seconds, a pressure of 600 Pa, and an output of 35 W, until the spectrum of iron derived from the underlying steel is detected as an intensity.
  • a glow discharge optical emission surface analyzer for example, a Marcus-type high-frequency glow discharge optical emission surface analyzer GD-Profiler2 manufactured by Horiba Jobin Yvon Co., Ltd.
  • the horizontal axis represents the depth position (or sputtering time) of the coating layer 30, and the vertical axis represents the emission intensity calculated based on the obtained measurement results, making it possible to visualize the depth profile related to zirconium in GD-OES.
  • the position where the emission intensity is maximum in the depth profile for zirconium obtained as described above is defined as the interface of the coating layer 30 on the Zn-containing plating layer 13 side (e.g., corresponding to position A in FIG. 3).
  • the emission intensity at this position is then taken to be the intensity of zirconium at the interface of the coating layer 30 on the Zn-containing plating layer 13 side (position A in FIG. 3).
  • the emission intensity value may fluctuate. Therefore, in this embodiment, the maximum value of the emission intensity calculated based on the depth profile is treated as the intensity of zirconium.
  • the average value of the emission intensity (hereinafter referred to as "average intensity") in the corresponding range is calculated in the range of 1 ⁇ m or more and 2 ⁇ m or less in the thickness direction of the coating layer 30 from the surface of the coating layer 30 (the range from position B to position C in FIG. 3).
  • the obtained average intensity is then used as a criterion for considering the "strength of zirconium at the interface of the coating layer 30 on the Zn-containing plating layer 13 side" as described above. Note that in the measurement by GD-OES as described above, measurements are performed at multiple locations (e.g., 10 locations) of the coating layer 30 of interest, and the average value of the measurement results obtained at the multiple locations can be used as the average intensity as described above.
  • the strength of zirconium at the interface of the coating layer 30 on the Zn-containing plating layer 13 side obtained as described above is 1.05 to 3.00 times the average strength of zirconium in the range of 1 ⁇ m to 2 ⁇ m from the surface of the coating layer 30 toward the thickness direction of the coating layer 30.
  • the above strength ratio of 1.05 to 3.00 suggests that in the coating layer 30 according to this embodiment, zirconium is concentrated at the interface portion of the coating layer 30 on the Zn-containing plating layer 13 side. In the pre-coated steel sheet 1 according to this embodiment, the zirconium is in such a concentrated state, which contributes to improving the adhesion of the coating layer 30. As a result, even when the coating layer 30 has a large average thickness of 3 ⁇ m to 10 ⁇ m, further improvement in paint adhesion can be achieved.
  • the strength ratio is preferably 1.07 or more, and more preferably 1.10 or more.
  • the strength ratio is more than 3.00, the cohesive strength of the chemical conversion coating layer is insufficient, and the processing adhesion of the coating layer 30 may decrease, which is not preferable.
  • the strength ratio is preferably 2.50 or less, and more preferably 2.00 or less.
  • the coating layer 30 may further contain at least one of a crosslinking agent or a coloring pigment, in addition to the components described above.
  • a crosslinking agent in the coating layer 30 By further containing a crosslinking agent in the coating layer 30 according to this embodiment, it is possible to further improve the barrier properties of the coating layer 30 itself, and to further improve the scratch resistance and corrosion resistance of the precoated steel sheet 1.
  • a crosslinking agent in the coating layer 30, it is possible to further improve the scratch resistance and corrosion resistance of the precoated steel sheet 1.
  • the content of such a crosslinking agent is preferably, for example, about 5 to 40 mass%.
  • the coating layer 30 by further including a color pigment in the coating layer 30 according to this embodiment, it is possible to give the coating layer 30 a desired color tone, thereby further improving the design of the precoated steel sheet 1.
  • the color pigment contained in the coating layer 30 is not particularly limited, and various known pigments can be used appropriately depending on the color tone desired for the coating layer 30.
  • Examples of such color pigments include aluminum pigments, carbon black, and TiO2 .
  • the content of the pigments can also be set appropriately, for example, to about 3 to 60 mass%.
  • the coating layer 30 according to this embodiment may further contain additives such as rust-preventive pigments, surface-modified metal powders or glass powders, dispersants, leveling agents, waxes, aggregates, diluting solvents, etc., as necessary, within the scope that does not impair the above-mentioned effects.
  • additives such as rust-preventive pigments, surface-modified metal powders or glass powders, dispersants, leveling agents, waxes, aggregates, diluting solvents, etc.
  • the content is preferably, for example, 1 to 15 mass %.
  • the anti-rust pigment used may be any of the various known anti-rust pigments.
  • the coating layer 30 can be formed by applying a paint composition containing the components constituting the coating layer 30 as described above to the surface of the zinc-based plated steel sheet 10 having the chemical conversion coating layer 20, baking the coating at a temperature of 150°C or more and less than 300°C, and hardening and drying. If the baking temperature is less than 150°C, the bake hardening may be insufficient, which may reduce the corrosion resistance and scratch resistance of the coating layer, and it may be difficult to sufficiently diffuse the zirconium, making it impossible to achieve the specific zirconium distribution state described above. On the other hand, if the baking temperature is 300°C or more, thermal degradation of the resin component may occur, which may reduce workability, and the zirconium may diffuse too much, making it impossible to achieve the specific zirconium distribution state described above.
  • the heating time is not particularly specified as long as the heating temperature is within the above range, and it is sufficient to ensure that the time is long enough for the solvent contained in the coating composition to evaporate properly.
  • the coating composition as described above can be applied by a commonly known application method, such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, brush coating, etc.
  • the coating layer 30 preferably has a Vickers hardness of 10 to 70 Hv measured at a depth of 3/4 of the thickness of the coating from the surface (the test load is set according to the hardness of the coating layer 30 so as to realize a desired depth of indentation).
  • the Vickers hardness is measured using a universal hardness tester (manufactured by Fisher Instruments). The hardness is measured from the surface of the coating at any 10 points under the indentation depth conditions described above, regardless of whether the resin particles 303 are present or not, and the average of the 10 measured values is calculated.
  • the coating layer 30 having the above Vickers hardness can further improve the scratch resistance.
  • the Vickers hardness of the coating layer 30 is more preferably 15 to 65 Hv.
  • the present invention as described above may also be applied to various metal sheets other than steel sheets, such as aluminum sheets, zinc sheets, stainless steel sheets, titanium sheets, etc.
  • the chemical conversion coating layer 20 and coating layer 30 as described above may be provided on the surface of various metal sheets other than steel sheets.
  • precoated steel sheet according to the present invention will be specifically described with reference to examples and comparative examples. Note that the examples shown below are merely examples of the precoated steel sheet according to the present invention, and the precoated steel sheet according to the present invention is not limited to the examples below.
  • Zinc-based plated steel sheets Six types of zinc-based plated steel sheets, A1 to A6, shown in Table 1 below (all commercially available) were used as the base sheets for the pre-coated steel sheets. The coating weights in the table are the coating weights per one side. The Zn-containing coating layers of the following zinc-based plated steel sheets were sprayed with a commercially available sodium orthosilicate alkaline cleaning solution for 5 seconds, rinsed with water, and dried.
  • Chemical conversion coating layer A chromate-free chemical conversion coating agent containing zirconium (chemical conversion coating agent consisting of ammonium zirconium carbonate, a silane coupling agent, a phosphate compound, a vanadium compound, an epoxy resin, etc.) or a chromate-free chemical conversion coating agent not containing zirconium (chemical conversion coating agent consisting of tannic acid, a silane coupling agent, silica fine particles, a polyester resin, etc.) was prepared.
  • the zinc-based plated steel sheet was preheated to a temperature above room temperature under the preheating conditions shown in Tables 7-1 and 7-2 below, and then the chemical conversion coating agent was applied to the zinc-based plated steel sheet so that the amount of coating per side was 100 mg/m 2.
  • the chemical conversion coating agent was then dried and cured at the heating temperatures shown in Tables 7-1 and 7-2 below to form a chemical conversion coating layer.
  • a coating composition for forming a coating layer was prepared.
  • a binder resin functioning as a film-forming component a resin equivalent to the resin shown in Table 2 below was prepared.
  • a crosslinking agent for each resin solution a crosslinking agent equivalent to the crosslinking agent shown in Table 3 below was prepared.
  • a resin particle a resin equivalent to the resin particle shown in Table 4 below was prepared.
  • a coloring pigment a titanium oxide and a carbon black (CB) equivalent to those shown in Table 5 below were prepared.
  • an anti-rust pigment a rust-preventive pigment equivalent to those shown in Table 6 below was prepared.
  • These coating compositions were mixed to have the contents shown in Tables 7-1 and 7-2 below. The remainder of the contents shown in Tables 7-1 and 7-2 is the content of the binder resin.
  • the coating composition for forming the coating layer prepared as described above was applied to the surface of the zinc-based plated steel sheet provided with the chemical conversion coating layer so that the average thickness after drying was the value shown in Tables 7-1 and 7-2, and then the coating was cured and dried by heating at a temperature of 150°C or higher and lower than 300°C.
  • ⁇ Ethanol rubbing resistance> The ethanol rubbing resistance of each precoated steel sheet was evaluated based on the following criteria. The surface of the precoated steel sheet was rubbed 20 times with ethanol-soaked gauze under a load of 1 kgf (1 kgf is approximately 9.8 N). The appearance of the coating after rubbing was visually evaluated, and the exposed area ratio of the plating was calculated and evaluated according to the following evaluation criteria. A score of 3 or more was considered to be a pass.
  • ⁇ Scratch resistance> The scratch resistance of each precoated steel sheet was evaluated by a coin scratch test based on the following criteria. A coin was brought into contact with the precoated steel sheet at an angle of 45 degrees and scratched with a load of 500 g. Visual evaluation was performed based on the following criteria. A score of 3 was considered to be acceptable. [Evaluation criteria] Rating 3: No peeling of the coating was observed. 2: Partial peeling of the coating film was observed. 1: The coating film is completely peeled off.
  • the obtained precoated steel sheets were evaluated for adhesion after processing based on the following criteria.
  • Each precoated steel sheet was bent at 90° with an inner radius of 1 mm in an atmosphere of 20° C., and then a tape peeling test was carried out on the outer side of the bent part.
  • the appearance of the tape peeled part was evaluated based on the following criteria. A score of 3 was considered to be acceptable. [Evaluation criteria] Rating 3: No peeling of the coating was observed. 2: Partial peeling of the coating film was observed. 1: Peeling of the coating is observed overall.
  • Each precoated steel sheet obtained was scratched by a coin scratch test based on the following criteria.
  • a coin was inclined at an angle of 45 degrees and brought into contact with the obtained precoated steel sheet, and scratched with a load of 1000 g.
  • a salt spray test in accordance with JIS Z 2371:2015 was performed for 72 hours.
  • the test specimen was washed and dried, and the maximum white rust width from the scratched portion was measured. Of the white rust generated on both sides of the scratched portion, the maximum white rust width on one side was measured.
  • a 10x magnifying glass was used for observation.
  • the corrosion resistance was evaluated based on the following evaluation criteria. The pass level was set to 2 or higher.
  • the pre-coated steel sheets corresponding to the examples of the present invention have both excellent scratch resistance and paint adhesion, while the pre-coated steel sheets corresponding to the comparative examples of the present invention have insufficient scratch resistance or paint adhesion.
  • the crosslinking agent is at least one of a melamine resin and an isocyanate resin.
  • the resin particles are made of the same type of resin as the binder resin.
  • the average particle size of the resin particles is within a range of 3.0 to 10.0 ⁇ m,
  • the content of the resin particles in the coating layer is 5 to 15% by mass with respect to the total content of the binder resin and the resin particles, and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

塗膜の膜厚が厚い場合であっても、より優れた耐疵付き性及び塗膜密着性を実現することを課題とする、本発明に係るプレコート鋼板は、Zn含有めっき層と、ジルコニウムを少なくとも含有する化成処理皮膜層と、皮膜層と、を有し、皮膜層は、バインダー樹脂と、樹脂粒子と、を少なくとも含有し、皮膜層の平均厚みは、3μm以上10μm以下であり、グロー放電発光分光法による皮膜層のジルコニウム分布に関する深さプロファイルに基づき算出される、皮膜層のZn含有めっき層側の界面におけるジルコニウムの強度は、皮膜層の表面から1μm以上2μm以下の範囲におけるジルコニウムの平均強度に対して、1.05倍以上3.00倍以下であり、皮膜層を厚み方向に切断した断面を観察した際に、厚み方向に対して直交する方向に長さ60μmの領域内において、当該領域内に占める樹脂粒子の平均面積率が、5%以上30%以下である。

Description

プレコート鋼板
 本発明は、プレコート鋼板に関する。
 家電用、建材用、自動車用などに、従来の成形加工後に塗装されていたポスト塗装製品に代わって、亜鉛系めっき鋼板の表層に有機樹脂被膜を被覆した有機樹脂被覆めっき鋼板(プレコート鋼板とも呼ばれる。)が使用されるようになってきた。このプレコート鋼板は、防錆処理を施した鋼板やめっき鋼板に対し、着色した有機皮膜を被覆したものであり、美麗さを有しながら、加工性を有し、耐食性が良好であるという特性を有している。この有機樹脂被覆めっき鋼板は、プレス加工された後、更なる塗装などが施されずに、家電、建材、自動車等の材料として用いられる場合が多い。そのため、このような有機樹脂被覆めっき鋼板は、加工時に美麗さを失わないように、耐疵付き性に優れることが求められる。そのため、プレコート鋼板の耐疵付き性をはじめとする諸特性を向上させるために、従来様々な技術が提案されている。
 例えば以下の特許文献1には、耐疵付き性だけでなく、耐食性及び導電性に優れる電子電気機器用プレコート金属板が開示されている。かかるプレコート金属板は、所定の表面粗さを有する金属板の表面に化成皮膜を設けた上で、片面には、平均粒径1~10μmのウレタンビーズ、フッ素樹脂ビーズが配合された、膜厚0.4~2.0μmの樹脂皮膜を設け、もう一方の面には、平均粒径0.1~6.0μmのウレタンビーズ、フッ素樹脂ビーズが配合された、膜厚0.2~2.0μmの樹脂皮膜を設けたものである。
特開2010-5545号公報
 ここで、上記特許文献1に開示されているようなプレコート金属板を含む、各種のプレコート金属板は、母材となる金属板(例えば、各種のめっき鋼板を含む鋼板や、アルミニウム板、アルミニウム合金板等)に対し、連続塗装ラインにより所望の塗膜を設けることで製造されるのが一般的である。所望の塗膜が設けられた金属板は、連続塗装ラインの末端でコイル状に巻き取られた上で、顧客のもとに搬送される。
 この際、形成される塗膜の膜厚は、上記特許文献1にも開示されているように、高々2μm程度と比較的薄いものが多いことから、母材である金属板の色調(例えば、母材として用いられためっき鋼板の色調)が透けて見えることが多い。そこで、プレコート金属板を顧客に提供する際には、透けて見える母材の色調をも考慮した調色設計がなされることがある。
 一方、提供するプレコート金属板の色調の安定性という観点では、母材である金属板の色調が透けて見えることのない状況が好ましいこともある。母材である金属板の色調の透けを防止するためには、母材上に設ける塗膜の膜厚を厚くすればよいと推察される。しかしながら、塗膜の膜厚を厚くしてしまうと、プレコート金属板としての耐疵付き性及び塗膜密着性が低下してしまう可能性が高い。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、塗膜の膜厚が厚い場合であっても、より優れた耐疵付き性及び塗膜密着性を実現することが可能な、プレコート鋼板を提供することにある。
 上記課題を解決するために、本発明者らが鋭意検討した結果、母材として亜鉛(Zn)めっき鋼板を用いた場合に、Zn含有めっき層と塗膜との界面における結合成分の分布状態を適切なものとして、塗膜密着性を向上させるとともに、塗膜中に樹脂粒子を含有させることで、塗膜の耐疵付き性を担保する、という技術的思想に着想した。本発明者らは、かかる着想に基づき更なる検討を行った結果、以下で説明するような本発明に想到した。
 上記のような知見に基づき完成された本発明の要旨は、以下の通りである。
(1)母材鋼板の表面上に位置するZn含有めっき層と、前記Zn含有めっき層上に位置する、ジルコニウムを少なくとも含有する化成処理皮膜層と、前記化成処理皮膜層上に位置する皮膜層と、を有し、前記皮膜層は、バインダー樹脂と、樹脂粒子と、を少なくとも含有し、前記皮膜層の平均厚みは、3μm以上10μm以下であり、グロー放電発光分光法による前記皮膜層のジルコニウム分布に関する深さプロファイルに基づき算出される、前記皮膜層の前記Zn含有めっき層側の界面におけるジルコニウムの強度は、前記深さプロファイルに基づき算出される、前記皮膜層の表面から前記皮膜層の厚み方向に向かって1μm以上2μm以下の範囲におけるジルコニウムの平均強度に対して、1.05倍以上3.00倍以下であり、前記皮膜層を厚み方向に切断した断面を観察した際に、前記厚み方向に対して直交する方向に長さ60μmの領域内において、当該領域内に占める前記樹脂粒子の平均面積率が、5%以上30%以下である、プレコート鋼板。
(2)前記皮膜層は、架橋剤、又は、着色顔料の少なくとも何れかを更に含有する、(1)に記載のプレコート鋼板。
(3)前記架橋剤は、メラミン樹脂、又は、イソシアネート樹脂の少なくとも何れかである、(2)に記載のプレコート鋼板。
(4)前記樹脂粒子は、前記バインダー樹脂と同種の樹脂を素材とするものである、(1)又は(2)に記載のプレコート鋼板。
(5)前記樹脂粒子の平均粒子径は、1.5~15.0μmの範囲内である、(1)又は(2)に記載のプレコート鋼板。
(6)前記樹脂粒子の平均粒子径は、3.0~10.0μmの範囲内であり、前記皮膜層における前記樹脂粒子の含有量は、前記バインダー樹脂と前記樹脂粒子との合計含有量に対して、5~15質量%であり、かつ、前記皮膜層の平均厚みは、4~8μmの範囲内である、(1)又は(2)に記載のプレコート鋼板。
(7)前記樹脂粒子は、アクリル系樹脂粒子である、(1)又は(2)に記載のプレコート鋼板。
 以上説明したように本発明によれば、塗膜の膜厚が厚い場合であっても、より優れた耐疵付き性及び塗膜密着性を実現することが可能である。
本発明の実施形態に係るプレコート鋼板の構造を模式的に示した説明図である。 同実施形態に係るプレコート鋼板の構造を模式的に示した説明図である。 同実施形態に係るプレコート鋼板の皮膜層について説明するための説明図である。 同実施形態に係るプレコート鋼板の皮膜層について説明するための説明図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(プレコート鋼板について)
 以下では、図1A及び図1Bを参照しながら、本発明の実施形態に係るプレコート鋼板について、詳細に説明する。図1A及び図1Bは、本実施形態に係るプレコート鋼板の構造を模式的に示した説明図である。
<プレコート鋼板の全体的な構成について>
 図1Aに模式的に示したように、本実施形態に係るプレコート鋼板1は、母材となる亜鉛系めっき鋼板10と、亜鉛系めっき鋼板10の片方の面上に位置する化成処理皮膜層20と、化成処理皮膜層20上に位置する皮膜層30と、を有している。
 また、図1Aに示したように、母材である亜鉛系めっき鋼板10は、母材鋼板11と、母材鋼板11の表面に設けられたZn含有めっき層13と、を有している。
 なお、かかる化成処理皮膜層20及び皮膜層30は、図1Bに模式的に示したように、亜鉛系めっき鋼板10の両面に設けられていても良い。
<亜鉛系めっき鋼板10について>
 上記のように、本実施形態に係るプレコート鋼板1の母材である亜鉛系めっき鋼板10は、母材鋼板11と、Zn含有めっき層13と、を有している。
≪母材鋼板11≫
 ここで、母材鋼板11としては、例えば、Alキルド鋼、Ti、Nb等を含有させた極低炭素鋼、極低炭素鋼にP、Si、Mn等の強化元素を更に含有させた高強度鋼等のような、種々の鋼板を用いることが可能である。
 また、母材鋼板11の厚みは、プレコート鋼板1に求められる機械的強度等に応じて適宜設定すればよく、例えば0.2mm~10.0mm程度とすることができる。
≪Zn含有めっき層13≫
 上記のような母材鋼板11の表面には、Zn含有めっき層13が位置している。かかるZn含有めっき層13は、各種の亜鉛系めっきで構成されている。かかる亜鉛系めっきとしては、例えば、溶融亜鉛めっき、電気亜鉛めっき、亜鉛-ニッケル合金めっき、合金化溶融亜鉛めっき、アルミニウム-亜鉛合金めっき、亜鉛-アルミニウム-マグネシウム合金めっき、亜鉛-バナジウム複合めっき、亜鉛-ジルコニウム複合めっき等が挙げられる。
 このような亜鉛系めっきの中でも、特に、Zn含有めっき層13として、亜鉛-アルミニウム-マグネシウム合金めっきを用いることが好ましく、Al:4~22質量%、Mg:1~10質量%、Si:0.0001~2.0000質量%を含有し、残部がZn及び不純物である、亜鉛-アルミニウム-マグネシウム-ケイ素合金めっきを用いることが、より好ましい。
[Al:4~22質量%]
 Alの含有量を4質量%以上とすることで、鋼板の耐食性をより向上させることが可能となる。Alの含有量は、より好ましくは5質量%以上である。一方、Alの含有量を22質量%以下とすることで、上記のような耐食性向上効果の飽和を抑制しながら、鋼板の耐食性をより向上させることが可能となる。Alの含有量は、より好ましくは16質量%以下である。
[Mg:1~10質量%]
 Mgの含有量を1質量%以上とすることで、鋼板の耐食性をより向上させることが可能となる。Mgの含有量は、より好ましくは2質量%以上である。一方、めっき層の形成に用いるめっき浴において、製造後のZn含有めっき層13におけるMgの含有量が10質量%以下となるようなMg濃度に調整を行うことで、めっき浴でのドロス発生を安定化させて、めっき鋼板を安定的に製造することが可能となる。Zn含有めっき層13の形成に用いるめっき浴において、製造後のZn含有めっき層13におけるMgの含有量が5質量%以下となるようなMg濃度に調整を行うことが、より好ましい。
[Si:0.0001~2.0000質量%]
 Siの含有量を0.0001質量%以上とすることで、Zn含有めっき層13の密着性(より詳細には、母材鋼板11とZn含有めっき層13との密着性)をより向上させることが可能となる。一方、Siの含有量を2.0000質量%以下とすることで、Zn含有めっき層13の密着性向上効果の飽和を抑制しつつ、Zn含有めっき層13の密着性をより向上させることが可能となる。Siの含有量は、より好ましくは1.6000質量%以下である。
 更に、本実施形態に係るZn含有めっき層13では、残部のZnの一部に換えて、Fe、Sb、Pb等の元素を単独又は複合で1質量%以下含有してもよい。
 上記のような化学成分を有するZn含有めっき層13が設けられた亜鉛系めっき鋼板10として、例えば、Zn-11%Al-3%Mg-0.2%Si合金めっき層を有するめっき鋼板のような、溶融亜鉛-アルミニウム-マグネシウム-ケイ素合金めっき鋼板(例えば、日本製鉄株式会社製「スーパーダイマ(登録商標)」)等を挙げることができる。
 以上説明したようなZn含有めっき層13は、例えば以下のようにして製造することができる。まず、準備した母材鋼板11の表面に対して、洗浄、脱脂等の前処理を必要に応じて実施する。その後、必要に応じて前処理を実施した母材鋼板11を、所望の化学成分を有する溶融めっき浴に浸漬させ、かかるめっき浴から鋼板を引き上げる。かかるめっき操作に際して、コイルの連続めっき法、あるいは、切板単体のめっき法のいずれによってめっきを行ってもよい。
 溶融めっき浴の温度は、組成によって異なるが、例えば、400~500℃の範囲が好ましい。
 また、上記のようなZn含有めっき層13のめっき付着量は、鋼板の引き上げ速度や、めっき浴の上方に設けられたワイピングノズルより噴出するワイピングガスの流量や、流速調整などにより制御することが可能である。めっき付着量は、鋼板の両面での合計で、30g/m以上である(すなわち、片面あたり、15g/m以上である)ことが好ましい。付着量を30g/m以上とすることで、亜鉛系めっき鋼板10の耐食性を確実に担保することが可能となる。めっき付着量は、より好ましくは、鋼板の両面での合計で、40g/m以上である。一方、めっきの付着量は、鋼板の両面での合計で、600g/m以下である(すなわち、片面あたり、300g/m以下である)ことが好ましい。付着量を600g/m以下とすることで、Zn含有めっき層13の表面の平滑性を担保しつつ、耐食性の更なる向上を図ることが可能となる。めっき付着量は、より好ましくは、鋼板の両面での合計で、550g/m以下である。
 溶融めっきの付着量を調整した後、鋼板を冷却する。この際、冷却条件は、特に限定する必要はない。
 以上、本実施形態に係る亜鉛系めっき鋼板10について説明した。
<化成処理皮膜層20について>
 本実施形態に係る化成処理皮膜層20は、亜鉛系めっき鋼板10と、皮膜層30との間に位置する皮膜層であり、いわゆる化成処理により形成される層である。
 本実施形態に係る化成処理皮膜層20は、ジルコニウム化合物を少なくとも含有し、更に必要に応じて、例えば、樹脂、シランカップリング剤、シリカ、リン酸及びその塩、フッ化物、バナジウム化合物、並びに、タンニン又はタンニン酸からなる群より選択される何れか一つ以上を含有してもよい。すなわち、本実施形態に係る化成処理皮膜層20は、ジルコニウムを少なくとも含有する皮膜層であると言える。これら物質を含有することで、化成処理液塗布後の成膜性、水分や腐食性イオン等の腐食因子に対する皮膜のバリア性(緻密性)、及び、めっき面への皮膜密着性などが向上し、皮膜の耐食性の底上げに寄与することができる。
 特に、化成処理皮膜層20がジルコニウム化合物を含有する(より好ましくは、更にシランカップリング剤を含有する)ことで、化成処理皮膜層20内に架橋構造を形成し、めっき表面との結合についても強化するため、皮膜の密着性やバリア性を向上させることができる。
 また、化成処理皮膜層20が、更に、シリカ、リン酸及びその塩、フッ化物、又は、バナジウム化合物の何れか一つ以上を含有すると、これら物質がインヒビターとして機能し、めっきや鋼表面に沈殿皮膜や不動態皮膜を形成することで、耐食性を更に向上させることが可能となる。
 以下では、上記のような化成処理皮膜層20が含みうる各構成成分の詳細について、例を挙げながら説明する。
[ジルコニウム化合物]
 ジルコニウム化合物としては、例えば、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレート、炭酸ジルコニウム、炭酸ジルコニウムアンモ二ウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム等を挙げることができる。化成処理皮膜層20を形成するための化成処理剤中のジルコニウム化合物の添加量は、例えば、2~80g/Lとすることができる。ジルコニウム化合物の添加量が2g/L未満である場合にはめっき表面との密着性が不足し、皮膜の加工密着性が低下する可能性がある。また、ジルコニウム化合物の添加量が80g/Lを超える場合には、化成処理皮膜層20の凝集力が不足し、皮膜の加工密着性が低下する可能性がある。かかるジルコニウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
[樹脂]
 樹脂は、特に限定されるものではなく、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリオレフィン樹脂等といった、公知の有機樹脂を使用することができる。プレコート鋼板用めっき鋼板との密着性を更に高めるためには、分子鎖中に強制部位や極性官能基をもつ樹脂(ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂等)の少なくとも一つを使用することが好ましい。樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 化成処理皮膜層20における樹脂の含有量は、例えば、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、化成処理皮膜層20における樹脂の含有量は、例えば、皮膜固形分に対して、85質量%以下であることが好ましく、60質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。樹脂の含有量が、85質量%を超える場合には、その他の皮膜構成成分の割合が低下して、耐食性以外の皮膜として求められる性能が低下する場合がある。
[シランカップリング剤]
 シランカップリング剤としては、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-アニリノプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(メチルジメトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(トリエトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(メチルジエトキシシリル)プロピル]アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等を挙げることができる。化成処理皮膜層20を形成するための化成処理剤中のシランカップリング剤の添加量は、例えば、2~80g/Lとすることができる。シランカップリング剤の添加量が2g/L未満である場合にはめっき表面との密着性が不足し、皮膜の加工密着性が低下する可能性がある。また、シランカップリング剤の添加量が80g/Lを超える場合には、化成処理皮膜層20の凝集力が不足し、皮膜の加工密着性が低下する可能性がある。上記に例示したようなシランカップリング剤は、1種で使用してもよく、2種以上を併用してもよい。
[シリカ]
 シリカとしては、例えば、日産化学株式会社製の「スノーテックスN」、「スノーテックスC」、「スノーテックスUP」、「スノーテックスPS」、株式会社ADEKA製の「アデライトAT-20Q」等の市販のシリカゲル、もしくは、日本アエロジル株式会社製のアエロジル#300等の粉末シリカ、又は、これら市販のシリカと同等のものを用いることができる。シリカは、必要とされるプレコートめっき鋼板の性能に応じて、適宜選択することができる。化成処理皮膜層20を形成するための化成処理剤中のシリカの添加量は、例えば、1~40g/Lとすることが好ましい。シリカの添加量が1g/L未満である場合には、皮膜の加工密着性が低下する可能性があり、シリカの添加量が40g/Lを超える場合には、加工密着性及び耐食性の効果が飽和する可能性が高いことから、不経済である。
[リン酸及びその塩]
 リン酸及びその塩としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類及びそれらの塩、リン酸三アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びそれらの塩、フィチン酸等の有機リン酸類及びそれらの塩等が挙げられる。なお、リン酸の塩として、アンモニウム塩以外の塩としては、Na、Mg、Al、K、Ca、Mn、Ni、Zn、Fe等との金属塩が挙げられる。リン酸及びその塩は、単独で用いてもよく、2種以上を併用してもよい。
 なお、リン酸及びその塩の含有量は、例えば、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、リン酸及びその塩の含有量は、例えば、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。リン酸及びその塩の含有量が20質量%を超える場合には、皮膜が脆くなり、プレコート鋼板を成形加工する際の皮膜の加工追従性が低下する場合がある。
[フッ化物]
 フッ化物としては、例えば、ジルコンフッ化アンモニウム、ケイフッ化アンモニウム、チタンフッ化アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化カルシウム、フッ化リチウム、チタンフッ化水素酸、ジルコンフッ化水素酸等を挙げることができる。かかるフッ化物は、単独で用いてもよく、2種以上を併用してもよい。
 なお、フッ化物の含有量は、例えば、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、フッ化物の含有量は、例えば、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。フッ化物の含有量が20質量%を超える場合には、皮膜が脆くなり、プレコート鋼板を成形加工する際の皮膜の加工追従性が低下する場合がある。
[バナジウム化合物]
 バナジウム化合物としては、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム等の5価のバナジウム化合物を還元剤で2~4価に還元したバナジウム化合物、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、オキシ蓚酸バナジウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート、三塩化バナジウム、リンバナドモリブデン酸、硫酸バナジウム、二塩化バナジウム、酸化バナジウム等の酸化数4~2価のバナジウム化合物等を挙げることができる。かかるバナジウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
 なお、バナジウム化合物の含有量は、例えば、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、バナジウム化合物の含有量は、例えば、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。バナジウム化合物の含有量が20質量%を超える場合には、皮膜が脆くなり、プレコート鋼板を成形加工する際の皮膜の加工追従性が低下する場合がある。
[タンニン又はタンニン酸]
 タンニン又はタンニン酸は、加水分解できるタンニン、縮合タンニンのいずれも用いることができる。タンニン及びタンニン酸の例としては、ハマメタタンニン、五倍子タンニン、没食子タンニン、ミロバランのタンニン、ジビジビのタンニン、アルガロビラのタンニン、バロニアのタンニン、カテキン等を挙げることができる。化成処理皮膜層20を形成するための化成処理剤中のタンニン又はタンニン酸の添加量は、2~80g/Lとすることができる。タンニン又はタンニン酸の添加量が2g/L未満である場合にはめっき表面との密着性が不足し、皮膜の加工密着性が低下する可能性がある。また、タンニン又はタンニン酸の添加量の添加量が80g/Lを超える場合には、化成処理皮膜の凝集力が不足し、皮膜の加工密着性が低下する可能性がある。
 また、化成処理皮膜層20を形成するための化成処理剤中には、性能が損なわれない範囲内で、pH調整のために酸、アルカリ等を添加してもよい。
 上記のような各種の成分を含有する化成処理剤は、亜鉛系めっき鋼板10の片面又は両面上に塗布されたのち、乾燥されて化成処理皮膜層20を形成する。本実施形態に係るプレコート鋼板では、片面あたり10mg/m以上の化成処理皮膜層20をZn含有めっき層13上に形成することが好ましい。化成処理皮膜層20の付着量は、より好ましくは20mg/m以上であり、更に好ましくは50mg/m以上である。また、本実施形態に係るプレコート鋼板では、片面あたり1000mg/m以下の化成処理皮膜層20をZn含有めっき層13上に形成することが好ましい。化成処理皮膜層20の付着量は、より好ましくは800mg/m以下であり、更に好ましくは600mg/m以下である。なお、かかる付着量に対応する化成処理皮膜層20の膜厚は、化成処理剤に含まれる成分にもよるが、概ね0.01~1μm程度となる。なお、かかる化成処理皮膜層20の膜厚は、断面の直接観察により測定することが可能である。
 なお、上記のような化成処理剤の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどで行うことができる。
 また、塗布した化成処理剤の硬化は、一般に公知の硬化方法(例えば、熱風焼付装置、誘導加熱(IH)装置、近赤外加熱装置等)で行うことができる。また、これらの硬化方法を併用しても良い。
 ここで、化成処理皮膜を形成する場合には、基材(本実施形態の場合、亜鉛系めっき鋼板10)上に化成処理剤を塗布し、その後加熱することで硬化させることが一般的である。しかしながら、本実施形態のように、皮膜層30のZn含有めっき層13側の界面近傍に、以下で詳述するようなジルコニウムの濃化状態を形成するためには、化成処理剤を塗布する際に、亜鉛系めっき鋼板10を例えば室温の状態から加熱することによって、室温を超える温度に予熱しておく必要がある。これにより、化成処理剤中のジルコニウム含有成分とZn含有めっき層13との反応性を高めることが可能となり、化成処理剤の塗布後、Zn含有めっき層13との間に、反応性に富んだジルコニウム濃化層が形成されるようになる。
 化成処理剤を塗布する際の亜鉛系めっき鋼板10の予熱の温度は、室温よりも高い温度とすることが重要であり、更には、塗布する化成処理剤の温度に応じて決定することが好ましい。例えば、塗布する化成処理剤の温度に対し、+5℃以上の温度に亜鉛系めっき鋼板10を予熱しておくことが好ましく、+10℃以上の温度に亜鉛系めっき鋼板10を予熱しておくことがより好ましい。
 一方、亜鉛系めっき鋼板10の予熱温度が高すぎると、化成処理剤の硬化が促進されすぎて化成処理皮膜の凝集力が不足し、皮膜の加工密着性が低下する可能性がある。そのため、亜鉛系めっき鋼板10の予熱温度は、塗布する化成処理剤の温度に対し、+60℃以下とすることが好ましく、+50℃以下とすることがより好ましい。
 また、化成処理剤の塗布後の加熱(すなわち、化成処理剤を硬化させるための加熱)も、塗布した化成処理剤を化成処理皮膜として亜鉛系めっき鋼板上に保持するために必要である。ここで、亜鉛系めっき鋼板10の板温が高くなりすぎると、化成処理剤の硬化が促進されすぎて化成処理皮膜の凝集力が不足し、皮膜の加工密着性が低下する可能性がある。加えて、化成処理剤が硬化しすぎると、続いて形成する皮膜層30へのジルコニウムの熱拡散が阻害され、以下で詳述するようなジルコニウムの濃化状態を実現することができない。
 以上のような観点から、化成処理剤塗布後の亜鉛系めっき鋼板10の板温(到達板温)は、塗布する化成処理剤の温度に応じて決定することが好ましい。より詳細には、化成処理剤塗布後の亜鉛系めっき鋼板10の板温(到達板温)は、塗布する化成処理剤の温度(塗布を開始する際に、化成処理剤が示す温度)に対し、+20℃以上とすることが好ましく、+25℃以上とすることがより好ましい。また、化成処理剤塗布後の亜鉛系めっき鋼板10の板温(到達板温)は、塗布する化成処理剤の温度(塗布を開始する際に、化成処理剤が示す温度)に対し、+80℃以下とすることが好ましく、+70℃以下とすることがより好ましい。
 なお、加熱時間については、板温が上記の範囲内であれば特に規定するものではなく、化成処理剤に含まれる溶媒が適切に気化するまでの時間を、適宜確保すればよい。
 以上、本実施形態に係る化成処理皮膜層20について説明した。
<皮膜層30について>
 皮膜層30は、化成処理皮膜層20上に位置する層であり、以下で詳述するように、平均厚みが3μm以上という、高膜厚の皮膜である。かかる皮膜層30は、図1A及び図1Bに模式的に示したように、造膜成分であるバインダー樹脂301と、樹脂粒子303と、を含有している。皮膜層30が樹脂粒子303を含有することで、樹脂粒子303が有する靭性、展延性により、皮膜層30に加えられた衝撃を緩和することができ、皮膜層30の耐疵付き性(特に、引っ掻き疵への耐性)を向上させることができる。また、仮に皮膜層30に疵が付いたとしても、疵がZn含有めっき層13に到達することを防止することができ、プレコート鋼板1の耐食性を保持することが可能となる。
 本実施形態に係るプレコート鋼板1において、かかる皮膜層30の平均厚み(図1A及び図1Bにおける厚みd)は、3μm以上である。皮膜層30の平均厚みが3μm未満である場合には、母材である亜鉛系めっき鋼板10の色調(より詳細には、Zn含有めっき層13の色調)が透けて見える場合が生じてしまう。皮膜層30の平均厚みは、好ましくは4μm以上であり、より好ましくは5μm以上である。
 一方、皮膜層30の平均厚みは、10μm以下である。皮膜層30の平均厚みが10μmを超える場合には、コストがかかる上に、ワキ等の塗膜欠陥が発生することがあり、安定した外観を得ることが難しくなる可能性がある。また、皮膜層30の平均厚みが10μmを超える場合には、皮膜層30が厚くなりすぎて、皮膜層の密着性が低下する。皮膜層30の平均厚みは、好ましくは9μm以下であり、より好ましくは8μm以下である。
 なお、皮膜層30の平均厚みは、断面からの直接観察により測定することが可能である。具体的には、プレコート鋼板を、常温乾燥型エポキシ樹脂中に、その断面が観察可能なように埋め込み、その埋め込み面を機械研磨し、更に鏡面状態に仕上げた後に、SEM(Scanning Electron Microscope:走査型電子顕微鏡)で観察する。この際、SEM観察における視野の広さは、例えば、厚み方向に対して直交する方向に長さ60μmの範囲を観察可能な広さとすればよい。任意の複数の位置(例えば、10箇所)で厚みを測定し、得られた複数の厚みの平均値を、皮膜層30の厚みとすればよい。
 また、膜厚は、グロー放電発光分光法(Glow Discharge Optical Emission Spectrometry:GD-OES)により、プレコート鋼板の皮膜層表面側から鋼板側への深さプロファイルを測定し、皮膜層30の部分のプロファイルに相当するスパッタリング時間と、前述の断面からのSEM観察による皮膜層の厚みとを照合することで、単位スパッタリング時間あたりの皮膜層の厚みへと換算することができる。
 なお、グロー放電発光分光法により得られる深さプロファイルにおいて、皮膜層30のZn含有めっき層13側の界面のおおよその位置は、以下のようにして把握することができる。すなわち、深さプロファイルにおいて、Zn含有めっき層13に含まれる特定の元素(例えば、Zn)の強度が、Zn含有めっき層13中でのピークの値から低下して、半減した位置を、皮膜層30のZn含有めっき層13側の界面の位置と把握することができる。ここで、上記のような深さプロファイルにおける位置の特定においては、着目するZn含有めっき層13の複数の位置(例えば、10箇所)で深さプロファイルを取得し、得られた複数の位置での測定結果の平均値に基づき、皮膜層30のZn含有めっき層13側の界面の位置とすればよい。
≪バインダー樹脂301≫
 本実施形態に係る皮膜層30における造膜成分としてのバインダー樹脂301は、樹脂粒子303のバインダーとして機能するものであれば、任意の素材を用いることが可能である。ただし、製造の簡便性及びコスト性の観点からは、各種の有機樹脂を用いることが好ましい。このようなバインダー樹脂301として、例えば、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂、フッ素系樹脂等を挙げることができる。また、本実施形態に係る皮膜層30において、バインダー樹脂301として、樹脂粒子303と同種の樹脂を選択することが好ましい。これにより、バインダー樹脂301と樹脂粒子303との親和性が向上し、皮膜層30の密着性をより向上させることが可能である。
 また、本実施形態に係るバインダー樹脂301は、ガラス転移点Tgが30℃以上である有機樹脂であることが好ましい。上記のようなガラス転移点Tgを有する樹脂をバインダー樹脂301として用いることで、皮膜層30はより適切な硬度を有するようになり、プレコート鋼板1の耐疵つき性(特に、引っ掻き疵への耐性)を更に向上させることができる。
 バインダー樹脂301のガラス転移点Tgは、好ましくは35℃以上であり、より好ましくは40℃以上である。一方、ガラス転移点Tgの上限値は、特に規定するものではない。ただし、バインダー樹脂301のガラス転移点Tgが70℃を超える場合には、加工性が低下する可能性がある。そのため、バインダー樹脂301のガラス転移点Tgは、70℃以下であることが好ましい。
 なお、かかるガラス転移点Tgは、例えば、TMA(Thermomechanical Analysis:熱機械分析)により、測定対象である皮膜の表面から皮膜厚み方向に針を刺し、一定の温度変化をさせて、測定対象物の熱膨張変化を測定する方法や、DMA(Dynamic Mechanical Analysis:動的粘弾性測定)により、基材から剥離した測定対象である皮膜に対して、周期的な変形を与えながら一定の温度変化をさせて、粘弾性を分析する方法等により特定することが可能である。
≪樹脂粒子303≫
 本実施形態に係る皮膜層30における樹脂粒子303は、有機樹脂を素材とする樹脂粒子である。先だって言及したように、樹脂粒子303が有する靭性、展延性によって、皮膜層30に加わる衝撃を緩和させることが可能となり、プレコート鋼板1の耐疵付き性をより向上させることが可能となる。かかる樹脂粒子としては、アクリル系樹脂粒子、ポリエステル系樹脂粒子、ウレタン系樹脂粒子、フッ素系樹脂粒子、シリコン樹脂粒子、ポリオレフィン系樹脂粒子等を挙げることができる。これら樹脂の中でも、樹脂粒子303として、アクリル系樹脂粒子を用いることがより好ましい。また、皮膜層30は、以下で説明するように、着色顔料を更に含有していてもよいが、かかる着色顔料自体が、上記のような樹脂粒子303として機能してもよい。
 なお、樹脂粒子303の代わりに、シリカやセラミックスに代表されるような無機化合物からなる無機粒子を用いることも考えうる。しかしながら、無機粒子は脆い粒子であるため、上記のような樹脂粒子303を用いることによる効果を、得ることができない。
 本実施形態に係る皮膜層30において、かかる樹脂粒子303の含有量は、バインダー樹脂301と樹脂粒子303との合計含有量に対して、5質量%以上であることが好ましい。これにより、耐疵付き性をより一層向上させることが可能となる。皮膜層30における樹脂粒子303の含有量は、より好ましくは10質量%以上であり、更に好ましくは11質量%以上である。一方で、樹脂粒子303の含有量は、バインダー樹脂301と樹脂粒子303との合計含有量に対して、50質量%以下である。これにより、耐疵付き性をより一層向上させることが可能となる。樹脂粒子303の含有量が50%質量%超であると、皮膜層30に占めるバインダー樹脂の比率が低くなり、皮膜としてのバリア性が低下して、所望の耐食性を発現させることが困難となる。皮膜層30における樹脂粒子303の含有量は、より好ましくは45質量%以下であり、更に好ましくは15質量%以下である。
 本実施形態に係る皮膜層30において、樹脂粒子303の平均粒子径は、1.5~15.0μmの範囲内であることが好ましい。樹脂粒子303が上記のような平均粒子径を有することで、プレコート鋼板の耐疵付き性をより一層向上させることが可能となる。樹脂粒子303の平均粒子径は、より好ましくは3.0μm以上であり、更に好ましくは5.0μm以上である。また、樹脂粒子303の平均粒子径は、より好ましくは10.0μm以下であり、更に好ましくは8.0μm以下である。
 ここで、樹脂粒子303の平均粒子径は、断面からの直接観察により測定することが可能である。具体的には、プレコート鋼板を、常温乾燥型エポキシ樹脂中に、その断面が観察可能なように埋め込み、その埋め込み面を機械研磨した後に、SEM(走査型電子顕微鏡)で観察する。その際、任意の複数の位置(例えば、10箇所)で観察される樹脂粒子303の粒径を測定し、得られた複数の粒径の平均値を、樹脂粒子303の平均粒子径とすればよい。
◇皮膜層30の断面における樹脂粒子303の平均面積率
 続いて、図2を参照しながら、本実施形態に係る皮膜層30の断面における、樹脂粒子303の平均面積率について説明する。図2は、本実施形態に係るプレコート鋼板1における皮膜層30について説明するための説明図であり、本実施形態に係る皮膜層30を厚み方向に切断した際の断面を模式的に示したものである。
 本実施形態に係る皮膜層30において、図2に例示したような皮膜層30を厚み方向に切断した断面を、SEMにより断面観察した場合について着目する。この場合に、図2に示したような、厚み方向に対して直交する方向に長さ60μmの領域内(より詳細には、図2に示したような、面積がd×60μmである領域内)において、かかる領域内に占める樹脂粒子303の平均面積率は、5%以上30%以下となっている。
 樹脂粒子303の平均面積率が5%未満である場合には、皮膜層30における樹脂粒子303の存在割合が低くなりすぎ、先だって説明したような、所望の耐疵付き性及び耐食性を実現することができない。樹脂粒子303の平均面積率を5%以上とすることで、所望の耐疵付き性及び耐食性を実現することができる。樹脂粒子303の平均面積率は、好ましくは8%以上であり、より好ましくは11%以上である。
 一方、樹脂粒子303の平均面積率が30%超である場合には、皮膜層30における樹脂粒子303の存在割合が高くなりすぎる結果、所望の耐疵付き性は実現できるものの、耐食性との両立を図ることができない。樹脂粒子303の平均面積率を30%以下とすることで、所望の耐疵付き性及び耐食性を実現することができる。樹脂粒子303の平均面積率は、好ましくは25%以下であり、より好ましくは20%以下である。
 また、本実施形態に係る皮膜層30において、樹脂粒子303の平均粒子径は、3.0~10.0μmの範囲内であり、皮膜層30における樹脂粒子30の含有量が、バインダー樹脂301と樹脂粒子303との合計含有量に対して、5~15質量%であり、かつ、皮膜層30の平均厚みが、4~8μmの範囲内であることが、より好ましい。本実施形態に係る皮膜層30において、上記の諸条件が満たされることで、より好ましい樹脂粒子303の分散状態が実現され、より好ましい樹脂粒子303の平均面積率を実現することが可能となる。
 ここで、上記の樹脂粒子303の平均面積率は、断面からの直接観察により測定することが可能である。具体的には、プレコート鋼板1を、常温乾燥型エポキシ樹脂中に、その断面が観察可能なように埋め込み、その埋め込み面を機械研磨し、更に鏡面状態に仕上げた後に、SEM(走査型電子顕微鏡)で観察する。皮膜層を、任意の位置で厚み方向に切断した断面を観察した際に、厚み方向に対して直交する方向に長さ60μmの領域を特定し、その領域内における皮膜層30の面積と、樹脂粒子303の総面積を測定する。得られた樹脂粒子303の総面積を、皮膜層30の面積で除することで、かかる観察位置での樹脂粒子303の面積率を算出することができる。このような測定を、任意の複数の箇所(例えば、10箇所)で実施し、得られた複数の面積率について、測定箇所数での平均値を算出する。このようにして得られた平均値を、樹脂粒子303の平均面積率とする。
◇皮膜層30におけるジルコニウムの分布状態
 本実施形態に係るプレコート鋼板1では、以下で説明するように、皮膜層30を形成するための塗料を、化成処理皮膜層20の形成された亜鉛系めっき鋼板10の表面に塗布した上で、かかる塗料を硬化・乾燥させることで、皮膜層30が形成される。かかる硬化・乾燥の工程では、所定の温度で塗料を焼き付けることが行われる。かかる硬化・乾燥の工程で印加される熱により、Zn含有めっき層13に含まれる成分、化成処理皮膜層20に含まれる成分、皮膜層30となる塗料に含まれる成分は、相互に熱拡散して、皮膜層30中には、化成処理皮膜層20に由来するジルコニウム元素が存在するようになる。特に、先だって説明したように、化成処理皮膜層20を形成する際に、特定の条件にて予熱及び加熱が行われることで、反応性に富むジルコニウム濃化層が形成されている。その結果、かかる硬化・乾燥の工程を経ることで、プレコート鋼板1において、特定のジルコニウムの分布状態が実現されるようになる。
 本実施形態では、上記のような皮膜層30におけるジルコニウムの分布状態について、着目する。以下では、本実施形態に係る皮膜層30における、ジルコニウムの分布状態について、図3を参照しながら説明する。図3は、本実施形態に係るプレコート鋼板の皮膜層について説明するための説明図であり、本実施形態に係る皮膜層30を厚み方向に切断した際の断面を模式的に示したものである。なお、図3では、便宜的に、皮膜層30におけるバインダー樹脂301と樹脂粒子303との区別を省略して、図示を行っている。
 本実施形態において、皮膜層30におけるジルコニウムの分布状態を把握するにあたっては、グロー放電発光分光法(GD-OES)を用いた、深さプロファイルの測定が行われる。
 ここで、深さプロファイルの測定においては、まず、サンプルを必要な測定サイズ(例えば50mm)に切断する。その後、得られた測定用サンプルについて、ジルコニウム元素に着目して、以下の測定条件により、測定が行われる。測定は、グロー放電発光表面分析装置(例えば、ホリバ・ジョバンイボン株式会社製マーカス型高周波グロー放電発光表面分析装置GD-Profiler2)を用いて、ガス置換時間30秒、予備スパッタ時間30秒、圧力600Pa、出力35Wの条件で、下地の鋼由来の鉄のスペクトルが強度として検出されるまで行えばよい。
 上記のようにして測定を行うことで、皮膜層30の厚み方向に沿った、ジルコニウム元素の分布状態を把握することが可能となる。得られた深さプロファイルの測定結果に基づき、横軸には、皮膜層30の深さ位置(又は、スパッタ時間)を取り、縦軸には、得られた測定結果に基づき算出された発光強度を取ることで、GD-OESにおけるジルコニウムに関する深さプロファイルを、可視化することができる。
 本実施形態では、以上のようにして得られたジルコニウムに関する深さプロファイルにおいて、発光強度が極大となる位置(深さプロファイルをマクロ的に見たときのピーク位置)を、皮膜層30のZn含有めっき層13側の界面(例えば、図3における位置Aに対応)と定義する。その上で、かかる位置における発光強度を、皮膜層30のZn含有めっき層13側の界面(図3における位置A)での、ジルコニウムの強度とする。なお、GD-OESでは、測定方法の特性上、発光強度の値が振れるような挙動を示すことがある。そのため、本実施形態では、深さプロファイルに基づき算出される発光強度の最大値を、ジルコニウムの強度として取り扱う。
 また、本実施形態では、以上のようにして得られたジルコニウムに関する深さプロファイルにおいて、皮膜層30の表面から皮膜層30の厚み方向に向かって1μm以上2μm以下の範囲(図3における、位置Bから位置Cまでの範囲)において、対応する範囲における発光強度の平均値(以下、「平均強度」と称する。)を算出する。その上で、得られた平均強度を、上記のような「皮膜層30のZn含有めっき層13側の界面でのジルコニウムの強度」を検討するうえでの基準として用いる。なお、上記のようなGD-OESによる測定においては、着目する皮膜層30の複数の箇所(例えば、10箇所)で測定を実施し、得られた複数の箇所での測定結果の平均値を、上記のような平均強度とすればよい。
 本実施形態に係る皮膜層30において、上記のようにして得られる、皮膜層30のZn含有めっき層13側の界面でのジルコニウムの強度は、皮膜層30の表面から皮膜層30の厚み方向に向かって1μm以上2μm以下の範囲におけるジルコニウムの平均強度に対して、1.05倍以上3.00倍以下となっている。
 上記のような強度比が1.05倍以上3.00倍以下であるということは、本実施形態に係る皮膜層30において、ジルコニウムが皮膜層30のZn含有めっき層13側の界面部分に濃化している、ということを示唆している。本実施形態に係るプレコート鋼板1では、ジルコニウムがこのような濃化状態となることで、皮膜層30の密着性の向上に寄与している。これにより、皮膜層30の平均厚みが3μm以上10μm以下という、膜厚が厚い場合であっても、塗膜密着性の更なる向上を実現することができる。
 上記のような強度比が1.05倍未満である場合には、皮膜層30におけるジルコニウムの濃化状態が不十分であり、上記のような塗膜密着性の向上効果を得ることができない。上記のような強度比は、好ましくは1.07倍以上であり、より好ましくは1.10倍以上である。
 一方、上記のような強度比が3.00倍超である場合には、化成処理皮膜層の凝集力が不足し、皮膜層30の加工密着性が低下する可能性があるため、好ましくない。上記のような強度比は、好ましくは2.50倍以下であり、より好ましくは2.00倍以下である。
◇皮膜層30におけるその他の成分について
 本実施形態に係る皮膜層30は、上記のような成分に加えて、更に、架橋剤、又は、着色顔料の少なくとも何れかを含有してもよい。
 本実施形態に係る皮膜層30が更に架橋剤を含有することで、皮膜層30自体のバリア性をより向上させることが可能となり、プレコート鋼板1としての耐疵付き性及び耐食性をより向上させることが可能となる。特に、皮膜層30が、架橋剤として、メラミン樹脂、又は、イソシアネート樹脂の少なくとも何れかを含有することで、プレコート鋼板1としての耐疵付き性及び耐食性をより向上させることが可能となる。かかる架橋剤の含有量は、例えば、5~40質量%程度とすることが好ましい。
 また、本実施形態に係る皮膜層30が更に着色顔料を含有することで、皮膜層30を所望の色調とすることが可能となり、プレコート鋼板1の意匠性をより向上させることが可能となる。
 なお、皮膜層30が含有する着色顔料については、特に限定されるものではなく、皮膜層30に求める色調に応じて、公知の各種の顔料を適宜用いることが可能である。このような着色顔料として、例えば、アルミ顔料、カーボンブラック、TiO等を挙げることができる。また、その含有量についても、適宜設定すればよく、例えば、3~60質量%程度とすればよい。
 また、本実施形態に係る皮膜層30は、上記の効果を損なわない範囲内で、必要に応じて、防錆顔料、表面修飾した金属粉やガラス粉、分散剤、レベリング剤、ワックス、骨材等の添加剤や、希釈溶剤等を、更に含むことができる。
 ここで、防錆顔料を含有させる場合、その含有量は、例えば、1~15質量%とすることが好ましい。また、用いる防錆顔料には、公知の各種の防錆顔料を用いることが可能である。
 かかる皮膜層30は、上記のような皮膜層30を構成する成分を含む塗料組成物を、化成処理皮膜層20を有した亜鉛系めっき鋼板10の表面上に塗布したあと、150℃以上300℃未満の温度で焼き付け、硬化乾燥させることで、形成することが可能である。焼き付け温度が150℃未満である場合には、焼付硬化が不十分で、皮膜層の耐食性や耐疵付き性が低下する可能性がある他、ジルコニウムを十分に拡散させることが困難となり、上記のような特定のジルコニウムの分布状態を実現することができない。一方、焼き付け温度が300℃以上である場合には、樹脂成分の熱劣化が起こり、加工性が低下する可能性がある他、ジルコニウムが拡散しすぎる結果、上記のような特定のジルコニウムの分布状態を実現することができない。
 加熱時間については、加熱温度が上記の範囲内であれば特に規定するものではなく、塗料組成物に含まれる溶媒が適切に気化するまでの時間を、適宜確保すればよい。
 なお、上記のような塗料組成物の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどで行うことができる。
◇皮膜層30の硬度について
 かかる皮膜層30は、表層から皮膜の厚みの4分の3の押し込み深さで測定したビッカース硬度(試験荷重は、所望の押し込み深さを実現可能な大きさを、皮膜層30の硬さに応じて設定する。)が、10~70Hvとなることが好ましい。かかるビッカース硬度は、ユニバーサル硬度計(株式会社フィッシャー・インストルメンツ製)を用いて測定される。樹脂粒子303が存在している位置、存在していない位置を問わずに、任意の10箇所で、上記のような押し込み深さ条件で皮膜表面から硬度を測定し、得られた10個の測定値の平均を算出する。皮膜層30が上記のようなビッカース硬度を有することで、耐疵付き性をより一層向上させることが可能となる。皮膜層30が示す上記のビッカース硬度は、より好ましくは15~65Hvである。
 以上、図1A~図3を参照しながら、本実施形態に係るプレコート鋼板について、詳細に説明した。
 なお、上記の実施形態では、プレコート鋼板の母材として、亜鉛系めっき鋼板を用いる場合に着目したが、以上説明したような本発明を、アルミニウム板、亜鉛板、ステンレス板、チタン板等といった、鋼板以外の各種の金属板に対して適用してもよい。すなわち、鋼板以外の各種の金属板の表面に、上記のような化成処理皮膜層20及び皮膜層30を設けてもよい。
 以下、実施例及び比較例を示しながら、本発明に係るプレコート鋼板について、具体的に説明する。なお、以下に示す実施例は、本発明に係るプレコート鋼板の一例にすぎず、本発明に係るプレコート鋼板が下記の例に限定されるものではない。
(1)亜鉛系めっき鋼板
 プレコート鋼板の原板として、以下の表1に示したA1~A6の6種類の亜鉛系めっき鋼板(いずれも市販されているもの)を用いた。表中のめっき付着量は、片面あたりのめっき付着量である。以下の亜鉛系めっき鋼板のZn含有めっき層を、市販のオルトケイ酸ソーダ系アルカリ洗浄液を用いて5秒間スプレー処理し、水洗、乾燥した。
Figure JPOXMLDOC01-appb-T000001
(2)化成処理皮膜層
 ジルコニウムを含有するクロメートフリー系化成処理剤(炭酸ジルコニウムアンモニウム、シランカップリング剤、りん酸化合物、バナジウム化合物、エポキシ樹脂等からなる化成処理剤)、又は、ジルコニウムを含有しないクロメートフリー系化成処理剤(タンニン酸、シランカップリング剤、シリカ微粒子、ポリエステル樹脂等からなる化成処理剤)を準備した。以下の表7-1、表7-2に示すような予熱条件で、上記の亜鉛系めっき鋼板を室温超の温度まで予熱した上で、亜鉛系めっき鋼板に対して、これら化成処理剤を、片面当たりの付着量が100mg/mとなるように塗布した。その後、以下の表7-1、表7-2に示すような加熱温度で、化成処理剤を乾燥・硬化させて、化成処理皮膜層とした。
 なお、以下の表7-1、表7-2では、亜鉛系めっき鋼板の予熱温度及び塗布後の到達板温を、それぞれ、化成処理剤の温度を基準とした相対的な温度で示しており、符合「+」の記載は省略している。なお、No.42の例については、室温超の温度への予熱を実施しなかったため、予熱温度及び到達板温の欄は「-」と記載している。
(3)皮膜層形成用塗料組成物の調製
 皮膜層の形成に用いる塗料組成物を調製した。造膜成分として機能するバインダー樹脂として、以下の表2に示す樹脂と同等のものを用意した。各樹脂溶液に対し、架橋剤として、以下の表3に示す架橋剤と同等のものを用意した。更に、樹脂粒子として以下の表4に示す樹脂粒子と同等のものを準備した。また、着色顔料として、以下の表5に示した酸化チタン、及び、カーボンブラック(CB)と同等のものを準備した。また、防錆顔料として、以下の表6に示す防錆顔料と同等のものを用意した。これらの塗料組成物を、以下の表7-1、表7-2に示した含有量となるように配合した。なお、表7-1、表7-2に記載した含有量の残部は、バインダー樹脂の含有量である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記のようにして調整した皮膜層形成用の塗料組成物を、化成処理皮膜層の設けられた亜鉛系めっき鋼板の表面に、乾燥後の平均厚みが表7-1、表7-2に記載した値となるように塗布した後、150℃以上300℃未満の温度で加熱することで、硬化・乾燥させた。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 得られた各プレコート鋼板について、先だって説明した方法に即して、GD-OESによる深さプロファイルの測定と、ピーク強度比の算出と、を実施するとともに、樹脂粒子の平均面積率を測定した。得られた結果は、上記表7-1、表7-2にあわせて示した。
 また、使用した各塗料組成物と、得られた各プレコート鋼板と、を用いて、色調透け性の評価を行うとともに、得られた各プレコート鋼板について、耐エタノールラビング性、耐引っ掻き疵性、及び、加工密着性の評価を行った。各評価について、評価方法及び評価基準は、以下の通りである。得られた結果を、以下の表8にまとめて示した。
<色調透け性>
 測色計(コニカミノルタ株式会社製CR-400)を用い、以下の基準に基づいて、色調透け性を評価した。準備した各プレコート鋼板について、着色層の厚みが異なるもの(より詳細には、調整した塗料組成物を十分に厚い膜厚で塗装したもの)を別途準備しておき、色調(L*、a*、b*)を測定して、基準とした。また、上記表7-1、表7-2に示した各プレコート鋼板についても同様に、色調(L*、a*、b*)を測定して、色差ΔEを算出した。得られた色差ΔEについて、以下の評価基準に即して評価を行い、評点2以上を合格とした。
[評価基準]
 評点3:ΔEが3以下
   2:ΔEが3超5以下
   1:ΔEが5超
<耐エタノールラビング性>
 得られた各プレコート鋼板について、以下の基準に基づき、耐エタノールラビング性を評価した。エタノールを染みこませたガーゼで、加重1kgf(1kgfは、約9.8Nである。)のもと、得られたプレコート鋼板の表面を20往復ラビングした。ラビング後の塗膜外観を目視評価するとともに、めっきの露出面積率を算出し、以下の評価基準に即して評価を行った。評点3以上を合格とした。
[評価基準]
 評点5:外観変化なし
   4:痕残りは認められるが、下地のめっきの露出は認められない
   3:痕残りが認められ、塗膜が一部剥離し、めっきが1%以上10%未満露出
   2:痕残りが認められ、塗膜が一部剥離し、めっきが10%以上50%未満露出
   1:痕残りが認められ、塗膜が一部剥離し、めっきが50%以上露出
<耐引っ掻き疵性>
 得られた各プレコート鋼板について、以下の基準に基づき、コインスクラッチ試験により、耐引っ掻き疵性を評価した。得られたプレコート鋼板に対し、硬貨を45度の角度で傾けた状態で接触させ、荷重500gでスクラッチした。以下の基準で目視評価した。評点3を合格とした。
[評価基準]
 評点3:塗膜剥離は認められない。
   2:部分的に塗膜剥離が認められる。
   1:塗膜が完全に剥離している。
<加工密着性>
 得られた各プレコート鋼板について、以下の基準に基づき、加工密着性を評価した。得られた各プレコート鋼板に対して、20℃雰囲気中で内R1mmの条件で90°折り曲げ加工を施した後、折り曲げ加工部外側のテープ剥離試験を実施した。テープ剥離部の外観を、以下の評価基準で評価した。評点3を合格とした。
[評価基準]
 評点3:塗膜剥離は認められない。
   2:部分的に塗膜剥離が認められる。
   1:全体的に塗膜剥離が認められる。
<引っかき後耐食性>
 得られた各プレコート鋼板について、以下の基準に基づき、コインスクラッチ試験による引っ掻き疵付与を行った。得られたプレコート鋼板に対し、硬貨を45度の角度で傾けた状態で接触させ、荷重1000gでスクラッチした。その後、JIS Z 2371:2015に準拠した塩水噴霧試験(SST)を72時間行った。試験後の供試材を洗浄、乾燥し、引っ掻き部からの最大白錆幅を測定した。引っ掻き部の両側に発生した白錆のうち、片側の最大白錆幅を測定した。観察には、10倍ルーペを用いた。以下の評価基準で、耐食性を評価した。合格レベルは2以上とした。
[評価基準]
 評点4:引っ掻き部から発生する最大白錆幅が片側0.5mm以下である。
   3:引っ掻き部から発生する最大白錆幅が片側0.5mm超1.0mm以下である。
   2:引っ掻き部から発生する最大白錆幅が片側1.0mm超2.0mm以下である。
   1:引っ掻き部から発生する最大白錆幅が片側2.0mm超である。
Figure JPOXMLDOC01-appb-T000009
 上記表8から明らかなように、本発明の実施例に対応するプレコート鋼板は、優れた耐疵付き性及び塗膜密着性を兼ね備える一方で、本発明の比較例に対応するプレコート鋼板は、耐疵付き性又は塗膜密着性の何れかが十分ではないことが明らかとなった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 今回開示された実施形態は、全ての点で例示であって制限的なものではない。上記の実施形態は、添付の特許請求の範囲、後述するような本発明の技術的範囲に属する構成及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。例えば、上記実施形態の構成要件は、その効果を損なわない範囲内で、任意に組み合わせることが可能である。また、当該任意の組み合せからは、組み合わせにかかるそれぞれの構成要件についての作用及び効果が当然に得られるとともに、本明細書の記載から当業者には明らかな他の作用及び他の効果が得られる。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって、限定的ではない。つまり、本発明に係る技術は、上記の効果とともに、又は、上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も、本発明の技術的範囲に属する。
(1)
 母材鋼板の表面上に位置するZn含有めっき層と、
 前記Zn含有めっき層上に位置する、ジルコニウムを少なくとも含有する化成処理皮膜層と、
 前記化成処理皮膜層上に位置する皮膜層と、
を有し、
 前記皮膜層は、バインダー樹脂と、樹脂粒子と、を少なくとも含有し、
 前記皮膜層の平均厚みは、3μm以上10μm以下であり、
 グロー放電発光分光法による前記皮膜層のジルコニウム分布に関する深さプロファイルに基づき算出される、前記皮膜層の前記Zn含有めっき層側の界面におけるジルコニウムの強度は、前記深さプロファイルに基づき算出される、前記皮膜層の表面から前記皮膜層の厚み方向に向かって1μm以上2μm以下の範囲におけるジルコニウムの平均強度に対して、1.05倍以上3.00倍以下であり、
 前記皮膜層を厚み方向に切断した断面を観察した際に、前記厚み方向に対して直交する方向に長さ60μmの領域内において、当該領域内に占める前記樹脂粒子の平均面積率が、5%以上30%以下である、プレコート鋼板。
(2)
 前記皮膜層は、架橋剤、又は、着色顔料の少なくとも何れかを更に含有する、(1)に記載のプレコート鋼板。
(3)
 前記架橋剤は、メラミン樹脂、又は、イソシアネート樹脂の少なくとも何れかである、(2)に記載のプレコート鋼板。
(4)
 前記樹脂粒子は、前記バインダー樹脂と同種の樹脂を素材とするものである、(1)~(3)の何れか1つに記載のプレコート鋼板。
(5)
 前記樹脂粒子の平均粒子径は、1.5~15.0μmの範囲内である、(1)~(4)の何れか1つに記載のプレコート鋼板。
(6)
 前記樹脂粒子の平均粒子径は、3.0~10.0μmの範囲内であり、
 前記皮膜層における前記樹脂粒子の含有量は、前記バインダー樹脂と前記樹脂粒子との合計含有量に対して、5~15質量%であり、かつ、
 前記皮膜層の平均厚みは、4~8μmの範囲内である、(1)~(5)の何れか1つに記載のプレコート鋼板。
(7)
 前記樹脂粒子は、アクリル系樹脂粒子である、(1)~(6)の何れか1つに記載のプレコート鋼板。
   1  プレコート鋼板
  10  亜鉛系めっき鋼板
  11  母材鋼板
  13  Zn含有めっき層
  20  化成処理皮膜層
  30  皮膜層
 301  バインダー樹脂
 303  樹脂粒子
 
 

Claims (7)

  1.  母材鋼板の表面上に位置するZn含有めっき層と、
     前記Zn含有めっき層上に位置する、ジルコニウムを少なくとも含有する化成処理皮膜層と、
     前記化成処理皮膜層上に位置する皮膜層と、
    を有し、
     前記皮膜層は、バインダー樹脂と、樹脂粒子と、を少なくとも含有し、
     前記皮膜層の平均厚みは、3μm以上10μm以下であり、
     グロー放電発光分光法による前記皮膜層のジルコニウム分布に関する深さプロファイルに基づき算出される、前記皮膜層の前記Zn含有めっき層側の界面におけるジルコニウムの強度は、前記深さプロファイルに基づき算出される、前記皮膜層の表面から前記皮膜層の厚み方向に向かって1μm以上2μm以下の範囲におけるジルコニウムの平均強度に対して、1.05倍以上3.00倍以下であり、
     前記皮膜層を厚み方向に切断した断面を観察した際に、前記厚み方向に対して直交する方向に長さ60μmの領域内において、当該領域内に占める前記樹脂粒子の平均面積率が、5%以上30%以下である、プレコート鋼板。
  2.  前記皮膜層は、架橋剤、又は、着色顔料の少なくとも何れかを更に含有する、請求項1に記載のプレコート鋼板。
  3.  前記架橋剤は、メラミン樹脂、又は、イソシアネート樹脂の少なくとも何れかである、請求項2に記載のプレコート鋼板。
  4.  前記樹脂粒子は、前記バインダー樹脂と同種の樹脂を素材とするものである、請求項1又は2に記載のプレコート鋼板。
  5.  前記樹脂粒子の平均粒子径は、1.5~15.0μmの範囲内である、請求項1又は2に記載のプレコート鋼板。
  6.  前記樹脂粒子の平均粒子径は、3.0~10.0μmの範囲内であり、
     前記皮膜層における前記樹脂粒子の含有量は、前記バインダー樹脂と前記樹脂粒子との合計含有量に対して、5~15質量%であり、かつ、
     前記皮膜層の平均厚みは、4~8μmの範囲内である、請求項1又は2に記載のプレコート鋼板。
  7.  前記樹脂粒子は、アクリル系樹脂粒子である、請求項1又は2に記載のプレコート鋼板。
     
PCT/JP2023/035134 2022-09-27 2023-09-27 プレコート鋼板 WO2024071191A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154113 2022-09-27
JP2022154113 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071191A1 true WO2024071191A1 (ja) 2024-04-04

Family

ID=90477812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035134 WO2024071191A1 (ja) 2022-09-27 2023-09-27 プレコート鋼板

Country Status (1)

Country Link
WO (1) WO2024071191A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062565A (ja) * 2010-09-20 2012-03-29 Jfe Steel Corp 亜鉛系めっき鋼板用水系表面処理液および表面処理亜鉛系めっき鋼板
WO2017155028A1 (ja) * 2016-03-09 2017-09-14 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法
WO2022149596A1 (ja) * 2021-01-06 2022-07-14 日本製鉄株式会社 表面処理鋼板
JP2022149319A (ja) * 2021-03-25 2022-10-06 日本製鉄株式会社 プレコートめっき鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062565A (ja) * 2010-09-20 2012-03-29 Jfe Steel Corp 亜鉛系めっき鋼板用水系表面処理液および表面処理亜鉛系めっき鋼板
WO2017155028A1 (ja) * 2016-03-09 2017-09-14 新日鐵住金株式会社 表面処理鋼板および表面処理鋼板の製造方法
WO2022149596A1 (ja) * 2021-01-06 2022-07-14 日本製鉄株式会社 表面処理鋼板
JP2022149319A (ja) * 2021-03-25 2022-10-06 日本製鉄株式会社 プレコートめっき鋼板

Similar Documents

Publication Publication Date Title
JP5075321B2 (ja) 金属表面の水系処理薬剤
JPH0374908B2 (ja)
KR20190076099A (ko) 우수한 내식성 및 내흑변성을 부여하는 삼원계 용융아연합금 도금강판용 표면처리 용액 조성물, 이를 이용하여 표면처리된 삼원계 용융아연합금 도금강판 및 그 제조 방법
JP6796101B2 (ja) 被覆めっき鋼板及び被覆めっき鋼板の製造方法
KR101166212B1 (ko) 표면 처리 금속판
JPH0238583A (ja) 複層被膜鋼板
JP6959466B2 (ja) 塗装鋼板
WO2024071191A1 (ja) プレコート鋼板
JP2022149319A (ja) プレコートめっき鋼板
JP2007260541A (ja) プレコート金属板及びその製造方法
JP6680412B1 (ja) 表面処理鋼板
WO2024071189A1 (ja) 表面処理鋼板
KR102407717B1 (ko) 삼원계 용융아연합금 도금강판용 표면처리 조성물, 이를 이용하여 표면처리된 삼원계 용융아연합금도금 강판 및 이의 제조방법
WO2022203063A1 (ja) プレコート金属板
JP2024048206A (ja) 塗装鋼板
JP3124266B2 (ja) 塗膜密着性と加工部の耐食性に優れ環境負荷の小さい塗装鋼板
JP3414348B2 (ja) 耐黒変性に優れたクロムフリー処理亜鉛系めっき鋼板
JP2017087501A (ja) 表面処理鋼板
JP4125950B2 (ja) 非クロム型処理亜鉛系めっき鋼板の製造方法
JP3405260B2 (ja) 有機複合被覆鋼板
JP4460441B2 (ja) 塗装金属板
WO2023090458A1 (ja) 表面処理鋼材
KR102385548B1 (ko) 삼원계 용융아연합금 도금강판용 표면처리 조성물, 이를 이용하여 표면처리된 삼원계 용융아연합금도금 강판 및 이의 제조방법
JP7001209B1 (ja) 塗装めっき鋼板又は塗装めっき鋼帯
WO2023166858A1 (ja) 溶融Al-Zn系めっき鋼板、その製造方法、表面処理鋼板及び塗装鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872413

Country of ref document: EP

Kind code of ref document: A1