WO2024071103A1 - 樹脂管 - Google Patents

樹脂管 Download PDF

Info

Publication number
WO2024071103A1
WO2024071103A1 PCT/JP2023/034900 JP2023034900W WO2024071103A1 WO 2024071103 A1 WO2024071103 A1 WO 2024071103A1 JP 2023034900 W JP2023034900 W JP 2023034900W WO 2024071103 A1 WO2024071103 A1 WO 2024071103A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
resin pipe
less
measurement
Prior art date
Application number
PCT/JP2023/034900
Other languages
English (en)
French (fr)
Inventor
和也 竹内
玲 塩▲崎▼
将彦 江畠
成裕 乾
友貴 西山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2024071103A1 publication Critical patent/WO2024071103A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/06Hoses, i.e. flexible pipes made of rubber or flexible plastics with homogeneous wall
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention relates to a resin pipe.
  • the piping that makes up the ultrapure water transport line is required to have extremely low metal elution and a high degree of inner surface smoothness to prevent the growth of bacteria, etc.
  • Fluororesin is used as a material for ultrapure water piping because it is chemically inactive, has gas barrier properties, is very unlikely to dissolve in ultrapure water, and has a high degree of smoothness on the inner surface.
  • Patent Document 1 discloses a double-walled fluororesin tube made of two layers of fluororesin, as piping used in semiconductor manufacturing equipment, liquid crystal manufacturing equipment, etc.
  • the inner layer tube is made of a fluororesin that has excellent corrosion resistance and chemical resistance (e.g., tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), or tetrafluoroethylene-ethylene copolymer (ETFE)), and the outer layer tube is made of a fluororesin that can suppress gas permeation (e.g., polyvinylidene fluoride (PVDF)).
  • PVDF polyvinylidene fluoride
  • Patent Document 2 discloses a multi-layer pipe for piping ultrapure water, characterized in that it has a first resin layer made of fluororesin that comes into contact with the ultrapure water, and a second resin layer made of gas-impermeable resin that is provided on the outer periphery of the first resin layer, and further discloses that a third resin layer that protects the second resin layer is provided on the outer periphery of the second resin layer, and that polyethylene is used for the third resin layer.
  • PVDF polyvinylidene fluoride
  • polyethylene pipes which have excellent properties such as earthquake resistance, flexibility, corrosion resistance, and light weight, are now being used as general tap water piping.
  • High-density polyethylene in particular has been improved to improve its performance while taking advantage of its inherent rigidity, and some high-density polyethylene pipes have been developed with excellent surface smoothness in order to reduce friction with the internal fluid and prevent the adhesion of limescale, etc.
  • Non-Patent Document 1 the high-density polyethylene pipe with the best surface smoothness has a surface roughness Ra of 0.4 ⁇ m, and this excellent surface smoothness has been achieved by improving the polymerization catalyst and process technology to improve the gel or non-uniformity of the kneaded mixture present in the resin.
  • Fluororesin piping such as PVDF has some disadvantages in terms of ease of construction and cost compared to other common piping.
  • fluororesin piping is the only option that meets the required water quality, and its outstanding performance, which more than compensates for the disadvantages of ease of construction and cost, is strongly supported.
  • polyolefin resins lack the surface smoothness required for use as ultrapure water piping materials.
  • the limit for surface smoothness of high-density polyethylene resin pipes is approximately 0.4 ⁇ m, which is far from the level of 0.25 ⁇ m or less (outer diameter O.D. less than 250 mm) set by SEMI F57-0314.
  • an object of the present invention is to provide a polyolefin-based resin pipe having excellent surface smoothness with a surface roughness Ra of 0.25 ⁇ m or less.
  • the plastic pipe of the first embodiment is a plastic pipe having a first layer containing a polyolefin-based resin, the first layer forming the inner surface of the pipe, and the average coefficient of variation (CV) of molecular distortion of the inner surface measured by evaluation method A is 0.12 or less.
  • Evaluation Method A Step 1. Use a microtome to cut out the first layer of the inner surface of the resin tube and create a test specimen to fit the size of the test measurement cell. The dimensions of the test specimen are 10 ⁇ m to 100 ⁇ m in thickness, and four test specimens are created for one resin tube.
  • IR measurement of the test piece is carried out using FT-IR.
  • FT-IR measurement conditions (1) Equipment used: Fourier transform infrared spectrometer (2) Spectrum One (PerkinElmer) (3) Measurement method: Polarization measurement/transmission method (4) Type of light source: MIR (mid-infrared tungsten lamp) (5) Resolution: 4 cm -1 (6) Measurement range: 4000 to 400 cm (7) Number of times of accumulation: 10 times (8) Polarizer used: Wire grid infrared polarizer (manufactured by S.T.
  • Step 4 Step 3 is carried out for a total of four test pieces for measurement prepared from the same tube in Step 1, and the calculated coefficients of variation for each are averaged to obtain the average coefficient of variation (CV).
  • the second embodiment of the resin pipe is the first embodiment of the resin pipe, in which the polyolefin resin is high-density polyethylene.
  • the third embodiment of the resin pipe is the second embodiment of the resin pipe, in which the molecular weight distribution of the high-density polyethylene is 20 to 80.
  • the fourth embodiment of the resin pipe is the first embodiment of the resin pipe, and the first layer contains a fluorine-based lubricant.
  • the fifth embodiment of the resin pipe is the first embodiment of the resin pipe, in which the content of the fluorine-based lubricant in the first layer is 0.01 to 0.75% by weight.
  • the sixth embodiment of the plastic pipe is the first embodiment of the plastic pipe, further comprising a second layer laminated on the outside of the first layer.
  • a core layer is provided as the second layer, the rigidity of the entire plastic pipe can be ensured. Also, if a gas barrier layer is provided as the second layer, oxygen from the outer surface of the plastic pipe can be prevented from penetrating into the inner layers, so the strength of the plastic pipe itself can be well maintained.
  • the seventh embodiment of the plastic pipe is the sixth embodiment of the plastic pipe, in which the thickness of the first layer is 0.3 mm or more.
  • the resin pipe of an eighth aspect is the resin pipe of any one of the first to seventh aspects, in which the total amount of elution of aluminum, barium, boron, calcium, chromium, copper, iron, lead, lithium, magnesium, manganese, nickel, potassium, sodium, strontium, and zinc, measured based on SEMI F57-0314, is 14 ⁇ g/ m2 or less.
  • a resin pipe of a ninth aspect is a resin pipe of any one of the first to seventh aspects, in which the amount of calcium elution measured based on SEMI F57-0314 is 7 ⁇ g/ m2 or less, the amount of copper elution is 0.5 ⁇ g/ m2 or less, the amount of sodium elution is 1.5 ⁇ g/ m2 or less, and the amount of zinc elution is 0.5 ⁇ g/ m2 or less.
  • a resin pipe according to a tenth aspect is the resin pipe according to any one of the first to seventh aspects, in which the amount of fluoride ions eluted as measured based on SEMI F57-0314 is 600 ⁇ g/ m2 or less.
  • the resin pipe of an eleventh aspect is the resin pipe of any one of the first to seventh aspects, in which the amount of elution of all organic components measured based on SEMI F57-0314 is 10,000 ⁇ g/ m2 or less.
  • the present invention provides a resin pipe that uses a polyolefin resin and has excellent surface smoothness with a surface roughness of Ra 0.25 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a resin pipe according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing another example of a resin pipe according to the present disclosure.
  • FIG. 11 is a schematic cross-sectional view showing still another example of a resin pipe according to the present disclosure.
  • FIG. 1 is a perspective view showing an example of a resin pipe according to the present disclosure.
  • FIG. 2 is a diagram for explaining a method of obtaining a measurement specimen for evaluating the distortion of the first layer of the present disclosure.
  • 1A and 1B are diagrams for explaining the measurement direction of a test piece according to the present disclosure.
  • FIG. 1 is a graph plotting the average coefficient of variation (CV) versus the inner surface smoothness (Ra) for Examples 1 to 8 and Comparative Examples 1 and 2.
  • the resin pipe of this embodiment has a first layer containing a polyolefin resin, and the inner surface of the first layer constitutes the inner surface of the resin pipe, and the surface roughness of the inner surface is 0.25 ⁇ m or less.
  • the resin pipe of this embodiment is used, for example, for transporting ultrapure water. Details of the resin pipe of this embodiment will be described below. Note that in this specification, the numerical ranges indicated by “-" are For example, the expression "0.5 to 3.0 mm” means that the range is from 0.5 mm to 3.0 mm.
  • the resin pipe of this embodiment has a first layer containing a polyolefin resin.
  • the resin pipe 100 shown in Figure 1 is made of a single layer of a first layer 210 containing a polyolefin resin.
  • the resin pipes 100a and 100b shown in Figures 2 and 3 are examples of a multi-layer structure in which another layer (an example of a second layer) is laminated on the outer surface of the first layer 210. In either case, the inner surface s of the first layer 210 constitutes the inner surface of the ultrapure water pipe material 100, 100a, and 100b.
  • the resin pipe 100a shown in FIG. 2 specifically includes a first layer 210 containing a polyolefin resin, and a core layer 220 (an example of a second layer) laminated on the outer peripheral surface side of the first layer 210.
  • the resin pipe 100b shown in FIG. 3 specifically includes a first layer 210 containing a polyolefin resin, a core layer 220 (an example of a second layer) laminated on the outer peripheral surface side of the first layer 210, and a gas barrier layer 230 laminated on the outer peripheral surface side of the core layer 220.
  • one or more layers other than the core layer 220 may be laminated on the outer periphery of the first layer 210, and in the resin pipes 100a and 100b shown in FIGS. 2 and 3, one or more layers (e.g., an adhesive layer, etc.) may be laminated between the first layer 210 and the core layer 220, between the core layer 220 and the gas barrier layer 230, and/or on the outer periphery of the gas barrier layer 230.
  • the outer diameter of the plastic pipes 100, 100a, 100b of this embodiment is not particularly limited, but preferably, the outer diameter (O.D.) required for an inner surface roughness of 0.25 ⁇ m or less according to SEMI F57-0314 is less than 250 mm. More specifically, the outer diameter of the plastic pipes 100, 100a, 100b of this embodiment is preferably 20 to 180 mm, more preferably 25 to 100 mm, even more preferably 28 to 50 mm, even more preferably 30 to 40 mm, and particularly preferably 30 to 35 mm.
  • the total thickness of the resin pipes 100, 100a, and 100b in this embodiment is not particularly limited, but may be, for example, 2 to 5 mm, preferably 2.5 to 4 mm, and more preferably 3 to 3.5 mm.
  • the first layer 210 is an extrusion layer of a resin composition containing a polyolefin resin and a fluorine-based lubricant.
  • a polyolefin resin examples include high-density polyethylene and polypropylene.
  • High density polyethylene refers to polyethylene having a density (JIS 6760) of 0.940 g/cm 3 or more. There is no particular upper limit to the density of the HDPE used in the first layer 210, but examples of the density include 0.970 g/cm 3 or less, preferably 0.965 g/cm 3 or less, more preferably 0.960 g/cm 3 or less, even more preferably 0.955 g/cm 3 or less, even more preferably 0.950 g/cm 3 or less, and particularly preferably 0.945 g/cm 3 or less.
  • HDPE used in the first layer 210 include HDPE synthesized by polymerization with a chlorine-based catalyst such as the commonly used Ziegler-Natta catalyst, HDPE synthesized with a chromium-based catalyst or metallocene catalyst, etc.
  • the molecular weight of the HDPE resin used in the first layer 210 is not particularly limited, and examples of the weight average molecular weight Mw include 1 ⁇ 10 5 to 10 ⁇ 10 5. From the viewpoint of suppressing the elution of organic components into pure water and/or further improving the surface smoothness, the weight average molecular weight Mw is preferably 3 ⁇ 10 5 to 10 ⁇ 10 5 , more preferably 4 ⁇ 10 5 to 9 ⁇ 10 5 , even more preferably 6 ⁇ 10 5 to 8.5 ⁇ 10 5 , still more preferably 7 ⁇ 10 5 to 8 ⁇ 10 5 , and particularly preferably 7.5 ⁇ 10 5 to 8 ⁇ 10 5.
  • the weight average molecular weight Mw is a value measured in polystyrene equivalent terms by gel permeation chromatography.
  • the molecular weight distribution (Mw/Mn) of the HDPE used in the first layer 210 is, for example, 20 to 80, preferably 40 to 80, more preferably 50 to 78, even more preferably 60 to 76, even more preferably 65 to 74, and particularly preferably 69 to 72.
  • the molecular weight distribution (Mw/Mn) is the value (Mw/Mn) obtained by dividing the weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatography measurement.
  • the molecular weight distribution (Mw/Mn) can be controlled by adjusting the amount of chlorine-based catalyst and/or the polymerization process (single-stage polymerization or multi-stage polymerization of two or more stages). For example, by increasing the amount of chlorine-based catalyst, the molecular weight distribution (Mw/Mn) tends to be large, and by decreasing the amount of chlorine-based catalyst, the molecular weight distribution (Mw/Mn) tends to be small. In addition, by using two or more stages of polymerization, the molecular weight distribution (Mw/Mn) can be increased, and by using one stage of polymerization, the molecular weight distribution (Mw/Mn) can be decreased.
  • the calcium concentration in the first layer 210 is, for example, less than 15 ppb. From the viewpoint of further suppressing the amount of calcium elution into pure water, the calcium concentration in HDPE is preferably less than 12 ppb, more preferably less than 10 ppb. The lower the calcium concentration, the less calcium elutes into pure water, so from this viewpoint, 0 ppm is the most preferable.
  • the resin pipe of this embodiment has excellent smoothness on the inner circumferential surface, even if a chlorine-based catalyst such as a Ziegler-Natta catalyst (a catalyst for olefin polymerization prepared by mixing titanium tetrachloride or titanium trichloride with an organoaluminum compound [e.g., triethylaluminum or methylaluminoxane]) is used in the synthesis of the HDPE used in the first layer 210 and a small amount of neutralizing agent is required, the calcium elution into pure water can be effectively suppressed.
  • the calcium concentration in the first layer 210 is directly controlled by adjusting the amount of neutralizing agent added after HDPE polymerization.
  • the amount of neutralizing agent is affected by the amount of chlorine-based catalyst, calcium concentration can also be controlled indirectly by adjusting the amount of chlorine-based catalyst.
  • the melt flow rate (MFR) of the HDPE used in the first layer 210 is not particularly limited, and may be, for example, 5 to 20 g/10 min. From the viewpoint of further improving the effect of suppressing the elution of impurities, the MFR of the HDPE used in the first layer 210 is preferably 9 to 15 g/10 min, and more preferably 11 to 13 g/10 min. In the present invention, the MFR is a value measured under the conditions of a temperature of 190°C and a load of 21.6 kg as specified in JIS K-6922-2.
  • the fluorine-based lubricant used in this embodiment is a fluorine-containing polymer.
  • a fluorine-containing polymer is generally a homopolymer or copolymer of a fluoroolefin having a ratio of fluorine atoms to carbon atoms (F:C) of at least 1:2.
  • the homopolymer include a homopolymer of vinylidene fluoride and a homopolymer of vinyl fluoride.
  • copolymer examples include a copolymer of vinylidene fluoride and a fluorinated olefin having at least one type of terminal double bond and containing at least one fluorine atom on a double-bonded carbon atom.
  • fluorinated olefin comonomer from which the copolymer is derived include tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and pentafluoropropylene.
  • the fluorine-containing polymer used in the fluorine-based lubricant may be one of the above fluorine-containing polymers, or a combination of two or more of them may be used.
  • copolymers are preferred, and vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymers are more preferred.
  • the fluorine-based lubricant used in this embodiment is permitted to further contain inorganic fillers such as calcium carbonate, barium sulfate, talc, and/or silica in addition to the above-mentioned fluorine-containing polymer, to the extent that the surface smoothness targeted by the present invention is not affected.
  • inorganic fillers such as calcium carbonate, barium sulfate, talc, and/or silica
  • the fluorine-based lubricants may be used alone or in combination of two or more types.
  • the fluorine-based lubricants preferably include those that do not contain inorganic fillers other than the above fluorine-containing polymers (i.e., fluorine-based lubricants that are 100% fluorine-containing polymers), and particularly preferably include those made of vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymers.
  • the content of the fluorine-based lubricant contained in the first layer 210 is not particularly limited as long as it does not impair the effects of the present invention.
  • the content may be 0.01 to 0.75% by weight, and from the viewpoint of further improving the surface smoothness, the content is preferably 0.05 to 0.75% by weight, more preferably 0.1 to 0.75% by weight, even more preferably 0.2 to 0.75% by weight, and even more preferably 0.25 to 0.75% by weight.
  • the content is preferably 0.01 to 0.7% by weight, more preferably 0.01 to 0.65% by weight, even more preferably 0.01 to 0.6% by weight, and even more preferably 0.01 to 0.55% by weight.
  • the surface roughness of the inner peripheral surface s of the first layer 210 i.e., the inner peripheral surface s of the resin pipes 100, 100a, and 100b of this embodiment, is 0.25 ⁇ m or less.
  • the surface roughness of the inner peripheral surface s is preferably 0.23 ⁇ m or less, more preferably 0.2 ⁇ m or less, even more preferably 0.18 ⁇ m or less, and even more preferably 0.16 ⁇ m or less.
  • the surface roughness means the arithmetic mean roughness Ra measured based on JIS B 0601:2001.
  • the surface roughness of the inner circumferential surface s can be controlled by controlling the distortion of the polyolefin resin that forms the first layer 210.
  • one method for improving the surface roughness of the inner circumferential surface s is to increase the amount of fluorine-based lubricant.
  • the preferred amount of fluorine-based lubricant is as described above in "2-2. Fluorine-based lubricant.”
  • the resin pipes 100, 100a, and 100b of the present embodiment are allowed to further contain other components in addition to those described above in the first layer 210.
  • the other components include resin components other than the polyolefin-based resin and additives other than the fluorine-based lubricant.
  • the other resin components are not particularly limited, and may be, for example, one or more selected from polyolefin resins other than polyethylene (such as polypropylene), polyether methyl ketone, acetal resin, polyvinyl chloride, etc.
  • the proportion of the other resin components per 100 parts by weight of the total amount of polyethylene and other resin components is, for example, 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight or less, even more preferably 5 parts by weight or less, even more preferably 1 part by weight or less, even more preferably 0.1 parts by weight or less, and most preferably 0 parts by weight.
  • antioxidants include antioxidants (e.g., phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, aromatic amine-based antioxidants, lactone-based antioxidants, etc.). Since the resin pipes 100, 100a, 100b of this embodiment have excellent smoothness of the inner circumferential surface s, it is acceptable to further include an antioxidant in the first layer 210, but from the viewpoint of further suppressing the elution of organic components into pure water, it is preferable that the first layer 210 does not include other additives such as antioxidants.
  • antioxidants e.g., phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, aromatic amine-based antioxidants, lactone-based antioxidants, etc.
  • the thickness of the first layer 210 is the same as the total thickness described above in "1-1. Layer structure.”
  • the thickness of the first layer 210 is, for example, 0.1 to 5 mm, 0.1 to 1 mm, preferably 0.2 to 0.8 mm, and more preferably 0.4 to 0.6 mm.
  • the thickness of the first layer 210 is made thinner than that of the plastic pipe 100 of Fig. 1, while a core layer 220 is further laminated to ensure the rigidity of the entire pipe material.
  • the core layer 220 is an extrusion layer of any resin composition. From the viewpoint of adhesion to the first layer 210, etc., a preferred example of a resin used for the core layer 220 is a polyolefin-based resin.
  • a polyolefin-based resin There are no particular limitations on the polyolefin-based resin, and it may be a polymer containing a monomer unit derived from an olefin.
  • Examples of polyolefin-based resins include polyethylene-based resins, ethylene-alkenyl carboxylate ester copolymer resins, ethylene- ⁇ -olefin copolymer resins, polypropylene-based resins, polybutene-based resins, poly(4-methyl-1-pentene)-based resins, etc.
  • polyethylene-based resins and polypropylene-based resins are preferred from the viewpoint of improving the strength of the entire resin pipe.
  • polyethylene-based resins and polypropylene-based resins are more preferred from the viewpoint of suppressing the content of low molecular weight components and suppressing the elution of organic components into pure water.
  • Polyethylene resins are not particularly limited, but examples include low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), medium-density polyethylene (MDPE), and high-density polyethylene (HDPE).
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • HDPE high-density polyethylene
  • Examples of the carboxylic acid alkenyl ester in the ethylene-carboxylic acid alkenyl ester copolymer resin include vinyl acetate, vinyl propionate, vinyl butyrate, isopropenyl acetate, allyl acetate, etc., with vinyl acetate being preferred.
  • ethylene- ⁇ -olefin copolymers examples include copolymers in which ethylene is copolymerized with an ⁇ -olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, or 1-octene at a ratio of about several mol % as a copolymerization component.
  • ⁇ -olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, or 1-octene at a ratio of about several mol % as a copolymerization component.
  • the molecular weight of the polyolefin resin used in the core layer 220 is not particularly limited, but is preferably the same as that of the polyethylene used in the first layer 210, which is the inner layer. Specifically, the molecular weight of the polyolefin resin used in the core layer 220 can be selected from the weight average molecular weights described above in "1-2-1. High density polyethylene.”
  • the weight average molecular weight of the polyolefin resin used in the core layer 220 is 0.8 to 1.2 times, preferably 0.85 to 1 times, and more preferably 0.9 to 0.95 times, of the weight average molecular weight of the HDPE used in the first layer 210, which is the inner layer.
  • the molecular weight distribution (Mw/Mn) of the polyolefin resin used in the core layer 220 is not particularly limited, but may be, for example, 25 to 60, more preferably 30 to 55, even more preferably 35 to 48, and particularly preferably 40 to 43.
  • the MFR of the resin used in the core layer 220 is not particularly limited, but is preferably the same as the MFR of the HDPE used in the first layer 210, which is the inner layer.
  • the MFR of the resin used in the core layer 220 can be selected from the MFRs described above in "1-2-1. High-density polyethylene.”
  • the weight-average molecular weight of the polyolefin resin used in the core layer 220 is 0.8 to 1.2 times, preferably 0.9 to 1.1 times, the weight-average molecular weight of the HDPE used in the first layer 210, which is the inner layer.
  • the calcium concentration in the core layer 220 is not particularly limited, and a calcium concentration equivalent to that contained in general-purpose grade resin is acceptable.
  • the core layer 220 preferably contains an antioxidant.
  • antioxidants include phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, aromatic amine-based antioxidants, and lactone-based antioxidants.
  • the content of the antioxidant in the core layer 220 is, for example, 0.01% by weight or more, preferably 0.1% by weight or more, and the upper limit of the content of the antioxidant is, for example, 5% by weight or less, preferably 1% by weight or less, and more preferably 0.5% by weight or less.
  • the thickness of the core layer 220 is, for example, 1.5 mm or more, preferably 2 mm or more, and more preferably 2.3 mm or more, from the viewpoint of ensuring the rigidity of the resin pipe itself.
  • the upper limit of the thickness of the core layer 220 is, for example, 3.5 mm or less, preferably 3 mm or less, and more preferably 2.7 mm or less.
  • the gas barrier layer 230 exemplified in the ultrapure water pipe material 100b in FIG. 3 is provided on the outside of the core layer 220.
  • the gas barrier layer may be provided on the outside of the first layer 210 constituting the ultrapure water pipe material 100 in FIG. 1.
  • the gas barrier layer provided on the outside of the first layer 210 in FIG. 1 corresponds to an example of the first layer.
  • the gas barrier layer prevents oxygen from the outer surface of the pipe material from penetrating into the inner layer, so that the strength of the pipe material itself can be well maintained.
  • providing a gas barrier layer is also preferable in that it can well suppress the dissolution of gas into pure water.
  • the gas barrier layer is preferably provided for the purpose of blocking oxygen.
  • the gas barrier layer is an extrusion layer of a gas barrier resin composition.
  • gas barrier materials include polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), polyvinylidene chloride resin (PVDC), and polyacrylonitrile (PAN), and preferably polyvinyl alcohol (PVA) and ethylene vinyl alcohol copolymer (EVOH).
  • the thickness of the gas barrier layer 230 is, for example, 50 to 150 ⁇ m, and preferably 80 to 120 ⁇ m.
  • Resin composition The polyethylene and fluorine-based lubricant contained in the first layer resin composition used for the first layer 210 containing a polyolefin resin, as well as the composition of the polyethylene resin composition (the content or concentration of the components contained in the first layer resin composition) are as described above in "1-2. First layer" as the content or concentration of each component and the components contained in the first layer.
  • the high-density polyethylene used in the resin composition for the first layer may be synthesized, for example, by polymerization using a chlorine-based catalyst such as a commonly used Ziegler-Natta catalyst, or may be synthesized using a chromium-based catalyst or metallocene catalyst.
  • a chlorine-based catalyst is used for single-stage polymerization, and then a neutralizing agent (e.g., calcium stearate, hydrocalcite, etc.) can be added in an amount that results in a calcium concentration of less than 15 ppb.
  • a neutralizing agent e.g., calcium stearate, hydrocalcite, etc.
  • a neutralizing agent can be added in this way, one type of neutralizing agent can be used alone, or multiple types can be used in combination.
  • a chromium-based catalyst or metallocene catalyst can be used for single-stage polymerization, eliminating the addition of a neutralizing agent.
  • the resin composition for the first layer can be prepared by using the high-density polyethylene synthesized as described above or a commercially available product thereof, and further adding a fluorine-based lubricant.
  • the resin pipe to be manufactured has a multi-layer structure including a core layer 220
  • a polyolefin-based resin is used for the core layer 220
  • a specific method for synthesizing the polyolefin-based resin is to carry out multi-stage polymerization (preferably two-stage polymerization) using a chlorine-based catalyst, and then add a neutralizing agent (e.g., calcium stearate, hydrocalcite, etc.) in an amount equivalent to a calcium concentration of 15 to 25 ppb.
  • a neutralizing agent e.g., calcium stearate, hydrocalcite, etc.
  • the resin composition for the core layer can be prepared by using the polyolefin resin synthesized as described above or a commercially available product thereof, preferably by further blending an antioxidant.
  • the resin pipes 100, 100a, and 100b of this embodiment have a highly smooth inner peripheral surface, and therefore have excellent performance in suppressing the elution of impurities into pure water.
  • the metal elution suppression performance is, for example, 14 ⁇ g/m2 or less, preferably 12 ⁇ g/m2 or less, more preferably 10 ⁇ g/m2 or less, even more preferably 9 ⁇ g/m2 or less , and even more preferably 8.5 ⁇ g/m2 or less, as the total amount of elution of 16 major metals (aluminum, barium, boron , calcium, chromium, copper, iron, lead, lithium, magnesium, manganese, nickel , potassium, sodium, strontium, and zinc) measured based on SEMI F57-0314 (which refers to SEMI F40 standard ) .
  • 16 major metals aluminum, barium, boron , calcium, chromium, copper, iron, lead, lithium, magnesium, manganese, nickel , potassium, sodium, strontium, and zinc
  • the metal elution suppression performance include, as the amount of calcium elution measured based on SEMI F57-0314, for example, 7 ⁇ g/m 2 or less, preferably 6 ⁇ g/m 2 or less, more preferably 5.5 ⁇ g/m 2 or less; as the amount of copper elution, for example, 0.5 ⁇ g/m 2 or less, preferably 0.45 ⁇ g/m 2 or less, more preferably 0.4 ⁇ g/m 2 or less; as the amount of sodium elution, for example, 1.5 ⁇ g/m 2 or less, preferably 1.1 ⁇ g/m 2 or less, more preferably 0.7 ⁇ g/m 2 or less; and as the amount of zinc elution, for example, 0.5 ⁇ g/m 2 or less, preferably 0.3 ⁇ g/m 2 or less, more preferably 0.2 ⁇ g/m 2 or less.
  • the amount of bromide ions eluted is, for example, less than 10 ⁇ g/ m2 ;
  • the amount of fluoride ions eluted is, for example, less than 1000 ⁇ g/ m2 , preferably less than 800 ⁇ g/ m2 , more preferably less than 700 ⁇ g/ m2 , and even more preferably less than 600 ⁇ g/ m2 ;
  • the amount of nitrite ions eluted is, for example, less than 10 ⁇ g/ m2 ;
  • the amount of sulfate ions eluted is, for example, less than 10 ⁇ g/ m2 .
  • the organic component elution suppression performance is, for example, 10,000 ⁇ g/ m2 or less, preferably 9,000 ⁇ g/ m2 or less, more preferably 8,500 ⁇ g/ m2 or less, and even more preferably 8,000 ⁇ g/ m2 or less, as the elution amount of total organic components (TOC) measured based on SEMI F57-0314.
  • TOC total organic components
  • the resin pipe of this embodiment is used for transporting ultrapure water. Specifically, the resin pipe of this embodiment is used for piping in an ultrapure water production apparatus, and for transporting ultrapure water from the ultrapure water production apparatus to a use point.
  • the pipes can be used as pipes for transporting water, and as pipes for returning ultrapure water from use points.
  • the resin pipe of this embodiment is preferably used as water piping for nuclear power generation, where the required quality of ultrapure water is particularly strict, or as ultrapure water transport piping used in pharmaceutical manufacturing processes, or in wet processing processes such as cleaning in the manufacturing process of semiconductor elements or liquid crystals, and more preferably semiconductor elements.
  • the semiconductor elements in question are preferably those with a higher degree of integration, and more specifically, are more preferably used in the manufacturing process of semiconductor elements with a minimum line width of 65 nm or less.
  • An example of a standard for the quality of ultrapure water used in semiconductor manufacturing is SEMI F57-0314.
  • the resin pipe of this embodiment has excellent workability, so fusion construction such as butt fusion joining and EF (electrical fusion) joining can be easily performed at relatively low temperatures.
  • the resin pipe of the present embodiment described above can be manufactured by extrusion molding the first layer resin composition used to form the first layer 210 .
  • Evaluation method A is a method for quantifying molecular distortion, that is, the amount of distortion that the resin has received during the manufacturing process.
  • Evaluation method A is a method devised based on reference literature, and uses FT-IR to evaluate the molecular orientation of the crystalline and amorphous parts of the polyolefin resin, making it possible to quantify the amount of molecular distortion.
  • step 1 the first layer 210 including the inner surface s of the resin pipes 100, 100a, and 100b is cut out using a microtome to prepare a test piece for measurement.
  • Figure 4 is a perspective view of the plastic pipe 100. As shown in Figure 4, the direction along the central axis of the plastic pipe 100 is the axial direction A, the direction perpendicular to the central axis and moving toward or away from the central axis is the radial direction B, and the direction rotating around the central axis A is the circumferential direction C.
  • FIG. 5 is a diagram for explaining a method of obtaining a test piece for measurement.
  • a resin pipe 100 is shown as an example.
  • four test pieces for measurement 301, 302, 303, and 304 are prepared for one resin pipe.
  • the four test pieces for measurement 301, 302, 303, and 304 are cut out from a portion of the first layer 210 including the inner circumferential surface s at 0 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock directions when viewed from the extrusion direction of the resin pipe 100.
  • Each of the four test pieces for measurement 301, 302, 303, and 304 has a roughly rectangular parallelepiped shape.
  • the extrusion direction of the resin pipe 100 is a direction parallel to the axial direction A.
  • the test piece for measurement 301 is a portion in the 0 o'clock direction when viewed from the extrusion direction of the resin pipe 100.
  • the test piece for measurement 302 is a portion in the 3 o'clock direction when viewed from the extrusion direction of the resin pipe 100.
  • the test piece 303 is a portion in the 6 o'clock direction as viewed from the extrusion direction of the resin pipe 100.
  • the test piece 304 is a portion in the 9 o'clock direction as viewed from the extrusion direction of the resin pipe 100.
  • the four test pieces 301, 302, 303, and 304 are the same size.
  • FIG. 5 shows an enlarged view of the test piece 303.
  • the thickness T is the length along the radial direction B of the test piece 303.
  • the width W is the length along the circumferential direction C of the test piece 303.
  • the length L is the length along the axial direction A of the test piece 303. Specifically, the thickness T is 100 ⁇ m, the width W is 5 mm, and the length L is 40 mm.
  • the dimensions of the test piece may be appropriately changed according to the measurement cell of the device used, but the thickness T is preferably about 10 to 100 ⁇ m from the viewpoint of detecting peak intensity.
  • step 2 IR measurements are performed on the measurement specimens 301, 302, 303, and 304 using FT-IR.
  • FIG. 6(a) is an enlarged view of the measurement test piece 303 shown in FIG. 5.
  • FIG. 6(b) is a plan view of the measurement test piece 303.
  • FIG. 6(a) and FIG. 6(b) are views for explaining the measurement direction by FT-IR. Measurement is performed on the inner peripheral surface s of the measurement test piece 303.
  • the measurement direction 0° (180°) is a direction parallel to the axial direction A and is indicated by the measurement direction D1.
  • the measurement direction ⁇ 90° is a direction parallel to the axial direction A and is indicated by the measurement direction D2.
  • the measurement direction D2 is a direction rotated 90° clockwise (90° counterclockwise) from the measurement direction D1 (see arrow E1).
  • the measurement direction D2 corresponds to the circumferential direction C.
  • the measurement direction D2 is parallel to the circumferential direction C in the plan view of FIG. 6(b).
  • Clockwise rotation is indicated by a plus sign, and counterclockwise rotation is indicated by a minus sign.
  • the measurement direction +45° ( ⁇ 135°) is indicated by the measurement direction D3.
  • the measurement direction D3 is a direction rotated 45° clockwise (135° counterclockwise) from the measurement direction D1 (see arrow E2).
  • the measurement direction ⁇ 45° (+135°) is indicated by the measurement direction D4, which is a direction rotated ⁇ 45° clockwise (135° counterclockwise) from the measurement direction D1 (see arrow E3).
  • step 3 the peak intensity indicating infrared dichroism is read from the FT-IR measurement results, and the measurement results in the four directions measured in (9) are normalized by the maximum value to calculate the coefficient of variation. If the measurements in the four directions are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, with the maximum value being ⁇ 1, normalization is performed by calculating, for example, ⁇ 1/ ⁇ 1, ⁇ 2/ ⁇ 1, ⁇ 3/ ⁇ 1, and ⁇ 4/ ⁇ 1. The standard deviation and average of these four values are calculated, and the coefficient of variation is found by dividing the standard deviation by the average value.
  • step 4 is performed on the other test pieces 301, 302, and 304 made from the same resin pipe 100 in step 1, and the coefficient of variation is calculated for each of them to obtain four coefficients of variation.
  • the average coefficient of variation (CV) can be obtained by averaging these four coefficients of variation.
  • the wave number (cm ⁇ 1 ) of the peak read in the procedure of evaluation method A is 2019 cm ⁇ 1 when the first layer 201 is made of polyethylene.
  • a peak near 809 cm ⁇ 1 or 1257 cm ⁇ 1 is preferable.
  • Example 1 In Example 1, a multi-layered resin pipe 100a having the configuration shown in Fig. 2 was produced.
  • the resin forming the first layer 210 contained 99.7 wt% HDPF and 0.3% lubricant.
  • the lubricant was a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer.
  • the resin extrusion rate during molding was set to 7.5 kg/h, and the resin take-up speed was set to 0.49 m/min, to produce a resin pipe 100a having a diameter of 25A after molding and a surface roughness Ra of the inner peripheral surface s of 0.15 ⁇ m.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.03.
  • Example 2 has molding conditions different from Example 1.
  • the resin extrusion rate during molding was set to 50 kg/h
  • the resin take-up speed was set to 0.38 m/min
  • a resin pipe 100a having a diameter of 75A after molding and a surface roughness Ra of the inner peripheral surface s of 0.15 ⁇ m was produced.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.11.
  • Example 3 has molding conditions different from those of Example 1.
  • the resin extrusion rate during molding was set to 30 kg/h
  • the resin take-up speed was set to 0.3 m/min
  • a resin pipe 100a having a molded bore of 75A and a surface roughness Ra of the inner peripheral surface s of 0.16 ⁇ m was produced.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.09.
  • Example 4 a single-layer resin pipe 100 having the configuration shown in Fig. 1 was produced.
  • the resin forming the first layer 210 contained 99.7 wt% HDPF and 0.3% lubricant.
  • the lubricant was a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer.
  • the resin extrusion rate during molding was set to 24 kg/h, and the resin take-up speed was set to 0.33 m/min, to produce a resin pipe 100 having a diameter of 75A after molding and a surface roughness Ra of the inner peripheral surface s of 0.17 ⁇ m.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.04.
  • Example 5 has molding conditions different from those of Example 4.
  • the resin extrusion rate during molding was set to 50 kg/h
  • the resin take-up speed was set to 0.64 m/min
  • a resin pipe 100 was produced having a molded bore of 75A and a surface roughness Ra of the inner peripheral surface s of 0.20 ⁇ m.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.10.
  • Example 6 has molding conditions different from those of Example 4.
  • the resin extrusion rate during molding was set to 70 kg/h
  • the resin take-up speed was set to 0.5 m/min
  • a resin pipe 100 was produced having a molded bore of 75A and a surface roughness Ra of the inner peripheral surface s of 0.22 ⁇ m.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.04.
  • Example 7 has molding conditions different from those of Example 4.
  • the resin extrusion rate during molding was 80 kg/h
  • the resin take-up speed was 0.28 m/min
  • a resin pipe 100 was produced having a molded bore of 150 A and a surface roughness Ra of the inner peripheral surface s of 0.23 ⁇ m.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.05.
  • Example 8 In Example 8, a molded polypropylene product was used. The surface roughness Ra was 0.15 ⁇ m. The molded product thus produced was evaluated by reading the peaks at 1257 cm ⁇ 1 and 809 cm ⁇ 1 using Evaluation Method A, and the average coefficient of variation (CV) was calculated to be 0.07.
  • Example 9 In Example 9, a molded polypropylene article was used. The surface roughness Ra was 0.14 ⁇ m. The molded article thus produced was evaluated by reading the peaks at 1257 cm ⁇ 1 and 809 cm ⁇ 1 using Evaluation Method A, and the average coefficient of variation (CV) was calculated to be 0.05.
  • Comparative Example 1 The molding conditions of Comparative Example 1 are different from those of Example 4.
  • the resin extrusion rate during molding was 50 kg/h
  • the resin take-up speed was 0.41 m/min
  • a resin pipe having a diameter of 75A after molding and a surface roughness Ra of the inner peripheral surface s of 0.44 ⁇ m was produced.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.15.
  • Comparative Example 2 In Comparative Example 2, a resin pipe having the structure shown in Fig. 2 was produced.
  • the resin forming the first layer contained 100% HDPE and no lubricant.
  • the resin extrusion rate during molding was 2.9 kg/h
  • the resin take-up speed was 0.16 m/min
  • a resin pipe having a diameter of 25A after molding and a surface roughness Ra of the inner peripheral surface s of 0.59 ⁇ m was produced.
  • the peak at 2019 cm ⁇ 1 was read using the above-mentioned evaluation method A, and the average coefficient of variation (CV) was calculated to be 0.19.
  • Comparative Example 3 In Comparative Example 3, a molded product of polypropylene was used. The surface roughness Ra was 0.43 ⁇ m. The molded product thus produced was evaluated by reading the peaks at 1257 cm ⁇ 1 and 809 cm ⁇ 1 using Evaluation Method A, and the average coefficient of variation (CV) was calculated to be 0.17.
  • Fig. 7 is a graph plotting the average coefficient of variation (CV) versus the inner surface smoothness (Ra) for the above-mentioned Examples 1 to 9 and Comparative Examples 1 to 4.
  • Examples 1 to 7 and Comparative Examples 1 and 2 relating to polyethylene are plotted with ⁇
  • Examples 8 and 9 and Comparative Examples 3 and 4 relating to polypropylene are plotted with ⁇ .
  • the horizontal axis represents the inner surface smoothness (Ra) ( ⁇ m)
  • the vertical axis represents the average coefficient of variation (CV).
  • Example 1 the total amount of 16 metals leached, the amount of TOC (Total Organic Carbon) leached, and the amount of anions leached fully met the SEMI F57-0314 standard. Since the same material was used to form the first layer 210 in Examples 1 to 8, it can be said that Examples 2 to 8, like Example 1, also fully met the SEMI F57-0314 standard.
  • 100, 100a, 100b resin tube 210: first layer 220: core layer 230: gas barrier layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

樹脂管(100)は、ポリオレフィン系樹脂を含む第1層(210)を有する樹脂管であって、第1層(210)が樹脂管(100)の内周面(s)を構成し、評価手法Aによって測定された内周面(s)の分子歪みの平均変動係数(CV)が0.12以下である。

Description

樹脂管
 本発明は、樹脂管に関する。
背景技術
 従来、半導体装置又は液晶表示装置等の精密デバイスの製造において、洗浄等の湿式工程で極めて高純度に精製された超純水が用いられている。
 超純水の輸送ラインを構成する配管には、金属の溶出が極度に少ないこと、及び制菌の繁殖を防ぐ等の目的で内面平滑度が高いことが求められる。
 超純水用配管の材料に用いられる材料としては、化学的に不活性であり、ガスバリア性を有し、超純水への溶出性が極めて少なく、且つ内面平滑度が高いフッ素樹脂が用いられている。例えば、特許文献1には、半導体製造装置、液晶製造装置等に使用される配管として、フッ素樹脂を2層に積層したフッ素樹脂2重チューブが開示されている。特許文献1に示す配管では、内側層チューブが、耐食性、耐薬品性に優れたフッ素樹脂(例えば、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、または、テトラフルオロエチレン-エチレン共重合体(ETFE))によって構成され、外側層チューブが、ガスの透過を抑制できるフッ素樹脂(例えば、ポリフッ化ビニリデン(PVDF))によって構成される。また、特許文献2には、超純水の配管用の多層管であって、フッ素樹脂からなり、超純水に接触する第1の樹脂層と、ガス不透過性樹脂からなり、第1の樹脂層の外周面に設けられた第2の樹脂層とを備えることを特徴とする多層管が開示され、さらに、第2の樹脂層の外周面に、第2の樹脂層を保護する第3の樹脂層が設けられ、当該第3の樹脂層としてポリエチレンが用いられることが開示されている。
 超純水用配管の材料に用いられる材料の中でも、ポリフッ化ビニリデン(PVDF)は、半導体分野において、超純水製造装置内の配管や、超純水製造装置からユースポイントへの超純水の輸送用配管として実用化されているものの全てに用いられており、超純水用配管における技術的標準となっている。
 最近では、半導体チップの集積度向上に伴い回路パターンがますます微細化されてきており、超純水用配管に対する要求特性は厳格化の一途をたどっている。例えば、半導体製造に使用される超純水用配管の品質等に関する規格がSEMI F75として公表されており、2年ごとに更新されている。
 一方で、一般的な水道水の配管として、従来の既存の鋳鉄管又は塩化ビニル管に加えて、耐震性、可撓性、耐腐食性、軽量性等の特性に優れるポリエチレン管が用いられるようになっている。特に、高密度ポリエチレンについては、持ち前の剛性を活かしつつ高性能化する改良が図られており、高密度ポリエチレン管の中には、内部流体との摩擦低減及び水あか等の付着防止を目的として表面平滑性に優れたものも開発されている。現在、表面平滑性に最も優れた高密度ポリエチレン管は、表面粗さRaが0.4μmのものであり、この優れた表面平滑性は、重合触媒及びプロセス技術を改善することで樹脂中に存在するゲル又は混練の不均一性を向上させることにより達成されている(非特許文献1)。
特開2004-299808号公報 特開2010-234576号公報
TOSOH Research &Technology Review Vol.44(2000),p.63-67
 PVDF等のフッ素樹脂製配管は、他の一般的な配管に比べ、施工性及びコスト性において不利な点もある。しかしながら、超純水用配管に対する品質の厳格化の背景において、フッ素樹脂製配管は要求水質を満たす配管として唯一の選択肢となっており、施工性及びコスト性の点を補って余りある突出した性能が強く支持されている。
 このような背景に反し、本発明者は敢えて、超純水配管の材料をポリオレフィン樹脂に代替することに着目して検討した。しかしながら、超純水用管材の材料とするには、ポリオレフィン系樹脂は表面平滑性に乏しい。現状、高密度ポリエチレン樹脂管の表面平滑性の限界値は0.4μm程度であり、SEMI F57-0314で定められるレベル0.25μm以下(外径O.D.が250mm未満)には遠く及ばない。
 本発明は、以上の点に鑑み、ポリオレフィン系の樹脂管でありながら、表面粗さRaが0.25μm以下の優れた表面平滑性を有する樹脂管を提供することを目的とする。
(課題を解決するための手段)
 本発明者は鋭意検討の結果、ポリオレフィン系樹脂が管成形時に受ける分子の歪み量を小さくすることで、表面粗さRaが0.25μm以下の優れた表面平滑性を有する樹脂管となることを見出した。本開示は、これらの知見に基づき、さらに検討を重ねることにより完成された。すなわち、本開示は、下記に掲げる態様の発明を提供する。
 第1の態様の樹脂管は、ポリオレフィン系樹脂を含む第1層を有する樹脂管であって、第1層が管の内周面を構成し、評価手法Aによって測定された内周面の分子歪みの平均変動係数(CV)が0.12以下である。
[評価手法A]
手順1.ミクロトームを用いて樹脂管の内表面の第1層を切り取り、試験測定用セルのサイズに合わせて測定用試験片を作成する。測定用試験片の寸法は厚み10μm~100μm、樹脂管一つに対して測定用試験片は4個作成される。4個の測定用試験片は、樹脂管の押出方向からみて、0時・3時・6時・9時の方向の部分から切り出される。
手順2.FT-IRを用いて測定用試験片のIR測定を行う。
○FT-IR測定条件
(1)使用装置:フーリエ変換赤外分光分析装置
(2)Spectrum One(パーキンエルマー社製)
(3)測定方法:偏光測定/透過法
(4)光源の種類:MIR(中赤外用タングステンランプ)
(5)分解能:4cm―1
(6)測定範囲:4000~400cm―1
(7)積算回数:10回
(8)使用偏光子:ワイヤーグリット赤外偏光子(S.T.JAPAN製)
(9)測定方向:測定用試験片を作成した樹脂管の押出方向を0°とした場合、0°(180°)・+45°(-135°)・-45°(+135°)・±90°から測定
手順3.FT-IR測定の結果から、赤外二色性を示すピーク強度を読み取り、(9)で測定した4方向の測定結果の最大値で規格化し、変動係数を計算する。
手順4.手順1で同じ管から作成した合計4個の測定用試験片について手順3を行い、それぞれ算出した変動係数を平均し平均変動係数(CV)とする。
 このように、分子歪みの指標として平均変動係数(CV)が0.12以下である樹脂管を製造することによって0.25μm以下の優れた表面平滑性を有する樹脂管を提供することができる。
 第2の態様の樹脂管は、第1の態様の樹脂管であって、ポリオレフィン系樹脂が、高密度ポリエチレンである。
 これにより、純水への有機成分の溶出を抑制することができる。
 第3の態様の樹脂管は、第2の態様の樹脂管であって、高密度ポリエチレンの分子量分布が20~80である。
 第4の態様の樹脂管は、第1の態様の樹脂管であって、第1層は、フッ素系滑剤を含む。
 これにより、良好な内面平滑性を得ることができる。
 第5の態様の樹脂管は、第1の態様の樹脂管であって、第1層のフッ素系滑剤の含有量が、0.01~0.75重量%である。
 第6の態様の樹脂管は、第1の態様の樹脂管であって、第1層の外側に積層された第2層を更に備える。
 例えば、第2層として芯材層を設けた場合には、樹脂管全体として剛性を確保することができる。また、第2層としてガスバリア層を設けた場合には、樹脂管の外表面からの酸素がより内側の層の内部へ浸透することを防止できるため、樹脂管自体の強度を良好に維持することができる。
 第7の態様の樹脂管は、第6の態様の樹脂管であって、第1層の層厚が0.3mm以上である。
 第8の態様の樹脂管は、第1~7のいずれかの態様の樹脂管であって、SEMI F57-0314に基づいて測定される、アルミニウム、バリウム、ホウ素、カルシウム、クロム、銅、鉄、鉛、リチウム、マグネシウム、マンガン、ニッケル、カリウム、ナトリウム、ストロンチウム、及び亜鉛の溶出量の総量が、14μg/m以下である。
 これにより、純水への金属成分の溶出を抑制することができる。
 第9の態様の樹脂管は、第1~7のいずれかの態様の樹脂管であって、SEMI F57-0314に基づいて測定されるカルシウムの溶出量が7μg/m以下、銅の溶出量が0.5μg/m以下、ナトリウムの溶出量が1.5μg/m以下、および亜鉛の溶出量が0.5μg/m以下である。
 これにより、純水へのカルシウム、銅、ナトリウム、および亜鉛の溶出を抑制することができる。
 第10の態様の樹脂管は、第1~7のいずれかの態様の樹脂管であって、SEMI F57-0314に基づいて測定されるフッ化物イオンの溶出量が600μg/m以下である。
 これにより、純水へのフッ化物イオンの溶出を抑制することができる。
 第11の態様の樹脂管は、第1~7のいずれかの態様の樹脂管であって、SEMI F57-0314に基づいて測定される全有機成分の溶出量が10000μg/m以下である。
 これにより、純水への有機成分の溶出を抑制することができる。
(発明の効果)
 本発明によれば、ポリオレフィン系樹脂を用いた樹脂管でありながら、表面粗さRa0.25μm以下の優れた表面平滑性を有する樹脂管を提供できる。
本開示の樹脂管の一例を示す模式的断面図である。 本開示の樹脂管の他の例を示す模式的断面図である。 本開示の樹脂管の更に他の例を示す模式的断面図である。 本開示の樹脂管の一例を示す斜視図である。 本開示の第1層の歪みを評価する測定用試験片の取得法を説明するための図である。 (a)、(b)本開示の試験片の測定方向を説明するための図である。 実施例1~8および比較例1、2について内面平滑性(Ra)に対する平均変動係数(CV)をプロットしたグラフを示す図である。
 以下、本開示にかかる実施形態の樹脂管について図面を参照しながら説明する。
 [1.樹脂管]
 本実施形態の樹脂管は、ポリオレフィン系樹脂含む第1層を有し、第1層の内周面が樹脂管の内周面を構成し、内周面の表面粗さが0.25μm以下である。本実施形態の樹脂管は、例えば、超純水の輸送に用いられる。以下、本実施形態の樹脂管の詳細について説明する。なお、本明細書において、「~」で示される数値範囲は、その両端の値を含む。例えば、0.5~3.0mmとの表記は、0.5mm以上3.0mm以下であることを意味する。
 [1-1.層構成]
 本実施形態の樹脂管は、ポリオレフィン系樹脂を含む第1層を有する。図1~図3に、本実施形態の樹脂管の例を挙げる。
 図1に示す樹脂管100は、ポリオレフィン系樹脂を含む第1層210の単層からなる。図2及び図3に示す樹脂管100a,100bは、第1層210の外側表面に他の層(第2層の一例)が積層された複層構造を有するものの例である。いずれの場合においても、第1層210の内周面sは、超純水用管材100,100a,100bの内周面を構成している。
 図2に示す樹脂管100aは、具体的には、ポリオレフィン系樹脂を含む第1層210と、第1層210の外周面側に積層された芯材層220(第2層の一例)とを含む。図3に示す樹脂管100bは、具体的には、ポリオレフィン系樹脂を含む第1層210と、第1層210の外周面側に積層された芯材層220(第2層の一例)と、芯材層220の外周面側に積層されたガスバリア層230とを含む。
 なお、図1に示す樹脂管100において、第1層210の外周側に、さらに芯材層220以外の1又は複数の層(例えばガスバリア層等)が積層されていてもよく、また、図2及び図3に示す樹脂管100a,100bにおいて、第1層210と芯材層220との間、芯材層220とガスバリア層230との間、及び/又はガスバリア層230の外周面に、さらに1又は複数の層(例えば接着剤層等)が積層されていてもよい。
 本実施形態の樹脂管100、100a、100bの外径としては特に限定されないが、好ましくは、SEMI F57-0314で内周面の表面粗さ0.25μm以下が求められる外径(O.D.)として、250mm未満が挙げられる。より具体的には、本実施形態の樹脂管100、100a、100bの外径としては、好ましくは20~180mm、より好ましくは25~100mm、さらに好ましくは28~50mm、一層好ましくは30~40mm、特に好ましくは30~35mmが挙げられる。
 本実施形態の樹脂管100、100a、100bの総厚としては特に限定されないが、例えば、2~5mm、好ましくは2.5~4mm、より好ましくは3~3.5mmが挙げられる。
 [1-2.第1層]
 第1層210は、ポリオレフィン系樹脂とフッ素系滑剤を含む樹脂組成物の押出成形層である。ポリオレフィン系樹脂としては、例えば、高密度ポリエチレン、ポリプロピレンを挙げることができる。
 [1-2-1.高密度ポリエチレン]
 高密度ポリエチレン(HDPE)は、密度(JIS 6760)が0.940g/cm以上のポリエチレンをいう。第1層210に用いられるHDPEの密度の上限については特に限定されないが、例えば0.970g/cm以下、好ましくは0.965g/cm以下、より好ましくは0.960g/cm以下、さらに好ましくは0.955g/cm以下、一層好ましくは0.950g/cm以下、特に好ましくは0.945g/cm以下が挙げられる。
 第1層210に用いられるHDPEの具体例としては、例えば、汎用されているチーグラー・ナッタ触媒等の塩素系触媒による重合により合成されたHDPE、クロム系触媒又はメタロセン触媒により合成したHDPE等が挙げられる。
 第1層210に用いられるHDPE樹脂の分子量としては特に限定されず、例えば重量平均分子量Mwとして1×10~10×10が挙げられる。純水への有機成分の溶出を抑制する観点、及び/又は、表面平滑性をより一層向上させる観点から、重量平均分子量Mwとして、好ましくは3×10~10×10、より好ましくは4×10~9×10、さらに好ましくは6×105~8.5×10、一層好ましくは7×10~8×10、特に好ましくは7.5×10~8×10が挙げられる。本発明において、重量平均分子量Mwは、ゲル・パーミエイション・クロマトグラフ測定によりポリスチレン換算で測定される値である。
 第1層210に用いられるHDPEの分子量分布(Mw/Mn)としては、例えば20~80、好ましくは40~80、より好ましくは50~78、さらに好ましくは60~76、一層好ましくは65~74、特に好ましくは69~72が挙げられる。本実施形態において、分子量分布(Mw/Mn)は、ゲル・パーミエイション・クロマトグラフ測定によってポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)とを求め、MwをMnで除した値(Mw/Mn)である。なお、分子量分布(Mw/Mn)の制御は、塩素系触媒の量及び/又は重合プロセス(一段重合又は二段重合以上の多段重合)の調整によって行うことができる。例えば塩素系触媒量を多くすることで、分子量分布(Mw/Mn)が大きく、塩素系触媒量を少なくすることで、分子量分布(Mw/Mn)が小さくなる傾向がある。また、二段重合以上の多段重合とすることで、分子量分布(Mw/Mn)を大きくすることができ、一段重合とすることで分子量分布(Mw/Mn)を小さくすることができる。
 また、第1層210中のカルシウム濃度としては、例えば15ppb未満が挙げられる。純水へのカルシウム溶出量をより抑制する観点から、HDPE中のカルシウム濃度としては、好ましくは12ppb未満、より好ましくは10ppb未満が挙げられる。当該カルシウム濃度は、低いほど純水中へのカルシウム溶出量が少なくなるため、この観点からは最も好ましくは0ppmである。一方で、本実施形態の樹脂管は内周面の平滑性に優れているため、第1層210に用いられるHDPEの合成にチーグラー・ナッタ触媒(四塩化チタン又は三塩化チタンを、有機アルミニウム化合物[例えば、トリエチルアルミニウム又はメチルアルミノキサン等]と混合し調製される、オレフィン重合用触媒)等の塩素系触媒を用いた場合であってわずかな中和剤の使用を要する場合等、微量のカルシウムの混入を免れない場合であっても、純水へのカルシウム溶出を効果的に抑制することができる。なお、第1層210中のカルシウム濃度の制御は、直接的には、HDPE重合後に添加する中和剤の量の調整によって行う。また、中和剤の量は塩素系触媒の量に影響されるため、カルシウム濃度の制御は、間接的には、塩素系触媒の量の調整によって行うこともできる。
 第1層210に用いられるHDPEのメルトフローレート(MFR)としては、特に限定されず、例えば5~20g/10分が挙げられる。不純物溶出抑制効果をより一層向上させる観点から、第1層210に用いられるHDPEのMFRとしては、好ましくは9~15g/10分、より好ましくは11~13g/10分が挙げられる。なお、本発明において、МFRは、JIS K-6922-2に規定される温度190°C、荷重21.6kgの条件で測定される値である。
 [1-2-2.フッ素系滑剤]
 本実施形態で使用するフッ素系滑剤は、フッ素含有ポリマーである。このようなフッ素含有ポリマーは、一般的には、フッ素原子対炭素原子の比率(F:C)が少なくとも1:2であるフルオロオレフィンの単独重合体及び共重合体である。当該単独重合体としては、例えば、フッ化ビニリデンの単独重合体、フッ化ビニルの単独重合体等が挙げられる。
 当該共重合体としては、例えば、フッ化ビニリデンと、少なくとも1種類の末端二重結合を持ち二重結合炭素原子上に少なくとも1個のフッ素原子を含むフッ化オレフィンとの共重合体が挙げられる。当該共重合体を誘導するコモノマーであるフッ化オレフィンの具体例としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、およびペンタフルオロプロピレン等が挙げられる。
 本実施形態においては、フッ素系滑剤に用いられるフッ素含有ポリマーとして、上記のフッ素含有ポリマーから1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。本実施形態においては、フッ素系滑剤に用いられる上記のフッ素含有ポリマーの中でも、好ましくは共重合体が挙げられ、より好ましくは、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体が挙げられる。
 また、本実施形態において用いられるフッ素系滑剤には、上記のフッ素含有ポリマーに、さらに、炭酸カルシウム、硫酸バリウム、タルク、及び/又はシリカ等の無機フィラーを本発明の目的の表面平滑性に影響を及ぼさない範囲で添加することも許容する。
 上記のフッ素系滑剤は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。上記のフッ素系滑剤の中でも、本実施形態においては、フッ素系滑剤として、好ましくは上記のフッ素含有ポリマー以外の無機フィラーを含まないもの(つまり、フッ素含有ポリマー100%のフッ素系滑剤)が挙げられ、特に好ましくは、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体からなるものが挙げられる。
 本実施形態において、第1層210に含まれるフッ素系滑剤の含有量については、本発明の効果を損なわない限りにおいて特に限定されない。例えば、0.01~0.75重量%が挙げられ、表面平滑性をより一層向上させる観点から、好ましくは0.05~0.75重量%、より好ましくは0.1~0.75重量%、さらに好ましくは0.2~0.75重量%、一層好ましくは0.25~0.75重量%が挙げられる。また、押出成形時の作業性を向上させる観点から、好ましくは0.01~0.7重量%、より好ましくは0.01~0.65重量%、さらに好ましくは0.01~0.6重量%、一層好ましくは0.01~0.55重量%が挙げられる。
 [1-2-3.内周面sの表面粗さ]
 第1層210の内周面sつまり本実施形態の樹脂管100,100a、100bの内周面sの表面粗さは、0.25μm以下である。主要16金属(具体的には、アルミニウム、バリウム、ホウ素、カルシウム、クロム、銅、鉄、鉛、リチウム、マグネシウム、マンガン、ニッケル、カリウム、ナトリウム、ストロンチウム、及び亜鉛を指す。以下において、単に「金属」とも記載する。)の溶出量の総量及び有機成分の溶出量をより一層低減する観点から、内周面sの表面粗さとしては、好ましくは0.23μm以下、より好ましくは0.2μm以下、さらに好ましくは0.18μm以下、一層好ましくは0.16μm以下が挙げられる。なお、本実施形態において表面粗さとは、JIS B 0601:2001に基づいて計測される算術平均粗さRaを意味する。
 内周面sの表面粗さの制御は、第1層210を形成するポリオレフィン系樹脂の歪みを制御することによって行うことができる。具体的には、内周面sの表面粗さを向上させるための方法として、フッ素系滑剤の配合量を増やすことが挙げられる。フッ素系滑剤の好ましい配合量については、上記「2-2.フッ素系滑剤」に述べた通りである。
 [1-2-4.他の成分]
 本実施形態の樹脂管100、100a、100bは、第1層210に、さらに上記以外の他の成分を含むことを許容する。他の成分としては、ポリオレフィン系樹脂以外の他の樹脂成分、及びフッ素系滑剤以外の他の添加剤が挙げられる。
 他の樹脂成分としては特に限定されず、例えば、ポリエチレン以外のポリオレフィン樹脂(ポリプロピレン等)、ポリエーテルメチルケトン、アセタール樹脂、ポリ塩化ビニル等から選択される1種又は複数種が挙げられる。本実施形態で用いられる第1層210において、ポリエチレン及び他の樹脂成分の総量100重量部当たり、他の樹脂成分が占める割合としては、例えば30重量部以下、好ましくは20重量部以下、より好ましくは10重量部以下、さらに好ましくは5重量部以下、一層好ましくは1重量部以下、より一層好ましくは0.1重量部以下、最も好ましくは0重量部が挙げられる。
 他の添加剤としては、酸化防止剤(例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、芳香族アミン系酸化防止剤及びラクトン系酸化防止剤等)が挙げられる。本実施形態の樹脂管100,100a、100bは、内周面sの平滑性に優れているため、第1層210中に酸化防止剤をさらに含むことを許容するが、純水中への有機成分の溶出を一層抑制する観点から、好ましくは第1層210中に酸化防止剤等の他の添加剤を含まない。
 [1-2-5.厚み]
 図1に示すポリエチレン単層の樹脂管100の場合、第1層210の厚み(つまり樹脂管100の厚み)としては、上記「1-1.層構成」において述べた総厚と同じである。
 また、図2及び図3に示す複層構造の樹脂管100a,100bの場合、第1層210の厚みとしては、例えば0.1~5mm、0.1~1mm、好ましくは0.2~0.8mm、より好ましくは0.4~0.6mmが挙げられる。
 [1-3.芯材層]
 図2,3の樹脂管100a,100bにおいては、図1の樹脂管100に比べて第1層210の厚みを薄くする一方で、管材全体の剛性を確保するため、芯材層220がさらに積層されている。
 芯材層220は、任意の樹脂組成物の押出成形層である。第1層210との接着性等の観点から、芯材層220に用いられる樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。ポリオレフィン系樹脂としては特に限定されず、オレフィンに由来するモノマー単位を含有する重合体であればよい。ポリオレフィン系樹脂の例としては、ポリエチレン系樹脂、エチレン-カルボン酸アルケニルエステル共重合体樹脂、エチレン-α-オレフィン共重合体樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリ(4-メチル-1-ペンテン)系樹脂等が挙げられる。これらのポリオレフィン系樹脂は、1種が単独で用いられてもよく、2種以上が併用されてもよい。これらのポリオレフィン系樹脂の中でも、樹脂管全体の強度等を向上させる観点から、ポリエチレン系樹脂及びポリプロピレン系樹脂が好ましい。また、ポリエチレン系樹脂及びポリプロピレン系樹脂の中でも、低分子量成分の含有量を抑制して純水への有機成分の溶出を抑制する等の観点から、ポリエチレン系樹脂がより好ましい。
 ポリエチレン系樹脂としては特に限定されないが、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)及び高密度ポリエチレン(HDPE)等が挙げられる。これらの中でも、純水への有機成分の溶出を抑制する観点からは高密度ポリエチレン(HDPE)が好ましい。
 エチレン-カルボン酸アルケニルエステル共重合体樹脂におけるカルボン酸アルケニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、酢酸イソプロペニル、酢酸アリル等が挙げられ、好ましくは酢酸ビニルが挙げられる。
 エチレン-α-オレフィン共重合体としては、エチレンに対して、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン又は1-オクテン等のα-オレフィンを共重合成分として数モル%程度の割合で共重合させた共重合体が挙げられる。
 芯材層220に用いられるポリオレフィン系樹脂の分子量としては特に限定されないが、内層である第1層210に用いられるポリエチレンと同等であることが好ましい。具体的には、芯材層220に用いられるポリオレフィン系樹脂の分子量は、上記「1-2-1.高密度ポリエチレン」で述べた重量平均分子量から選択することができる。また、芯材層220に用いられるポリオレフィン系樹脂の重量平均分子量は、内層である第1層210に用いられるHDPEの重量平均分子量の0.8~1.2倍、好ましくは0.85~1倍、より好ましくは0.9~0.95倍が挙げられる。
 芯材層220に用いられるに含まれるポリオレフィン系樹脂の分子量分布(Mw/Mn)は特に限定されないが、例えば25~60、さらに好ましくは30~55、一層好ましくは35~48、特に好ましくは40~43が挙げられる。
 芯材層220に用いられる樹脂のMFRとしては特に限定されないが、内層である第1層210に用いられるHDPEのMFRと同等であることが好ましい。具体的には、芯材層220に用いられる樹脂のMFRは、上記「1-2-1.高密度ポリエチレン」で述べたMFRから選択することができる。また、芯材層220に用いられるポリオレフィン系樹脂の重量平均分子量は、内層である第1層210に用いられるHDPEの重量平均分子量の0.8~1.2倍、好ましくは0.9~1.1倍が挙げられる。
 芯材層220中のカルシウム濃度としては特に限定されず、汎用グレード樹脂に含まれる程度のカルシウム濃度を許容する。
 芯材層220は、酸化防止剤を含んでいることが好ましい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、芳香族アミン系酸化防止剤及びラクトン系酸化防止剤等が挙げられる。芯材層220中の酸化防止剤の含有量としては、酸素の影響を抑制し好ましい強度を確保する観点から、例えば0.01重量%以上、好ましくは0.1重量%以上が挙げられ、酸化防止剤の含有量の上限としては、例えば5重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下が挙げられる。
 芯材層220の厚みとしては、例えば樹脂管自体の剛性を確保する観点から、例えば1.5mm以上、好ましくは2mm以上、より好ましくは2.3mm以上が挙げられる。芯材層220の厚みの上限としては、例えば3.5m以下、好ましくは3mm以下、より好ましくは2.7mm以下が挙げられる。
 [1-4.ガスバリア層]
 図3の超純水用管材100bにおいて例示されるガスバリア層230は、芯材層220の外側に設けられる。他にも、ガスバリア層は、図1の超純水用管材100を構成する第1層210の外側に設けられてもよい。このように図1の第1層210の外側に設けられたガスバリア層は、第1層の一例に対応する。ガスバリア層は、管材の外表面からの酸素がより内側の層の内部へ浸透することを防止するため、管材自体の強度を良好に維持することができる。また、ガスバリア層を設けることは、純水中へのガス溶解も良好に抑止することができる点でも好ましい。ガスバリア層は、酸素をバリアする目的で設けられるものであることが好ましい。
 ガスバリア層は、ガスバリア性樹脂組成物の押出成形層である、ガスバリアの材料としては、例えば、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン樹脂(PVDC)、及びポリアクリロニトリル(PAN)等が挙げられ、好ましくは、ポリビニルアルコール(PVA)及びエチレンビニルアルコール共重合体(EVOH)が挙げられる。
 ガスバリア層230の厚みとしては、例えば50~150μm、好ましくは80~120μmが挙げられる。
 [1-5.樹脂組成物]
 ポリオレフィン系樹脂を含む第1層210に用いられる第1層用樹脂組成物に含まれるポリエチレン及びフッ素系滑剤、並びにポリエチレン用樹脂組成物の組成(第1層用樹脂組成物に含まれる成分の含有量又は濃度)については、上記「1-2.第1層」において各成分及び第1層中に含まれる成分の含有量又は濃度として述べた通りである。
 第1層用樹脂組成物に用いる高密度ポリエチレンは、例えば、汎用されているチーグラー・ナッタ触媒等の塩素系触媒による重合により合成してもよいし、クロム系触媒又はメタロセン触媒により合成してもよい。
 第1層用樹脂組成物に用いる高密度ポリエチレンの具体的な合成法では、塩素系触媒を用いて一段重合し、その後、カルシウム濃度換算で15ppb未満となる量の中和剤(例えば、ステアリン酸カルシウム、ハイドロカルサイト等)を加えることができる。このように中和剤を加える場合、中和剤は、1種を単独で、または複数種を組み合わせて用いることができる。若しくは、第1層用樹脂組成物に用いる高密度ポリエチレンの具体的な別の合成法では、クロム系触媒又はメタロセン触媒を用いて一段重合し、中和剤の添加を排除してもよい。
 第1層用樹脂組成物は、上記のように合成した高密度ポリエチレン又はその市販品を用い、さらにフッ素系滑剤を配合することで調製することができる。
 また、製造すべき樹脂管が芯材層220を含む複層構造の場合であって、芯材層220にポリオレフィン系樹脂を用いる場合、当該ポリオレフィン系樹脂の具体的な合成法では、塩素系触媒を用いて、多段重合(好ましくは二段重合)し、その後、カルシウム濃度換算で15~25ppbとなる量の中和剤(例えば、ステアリン酸カルシウム、ハイドロカルサイト等)を加えることができる。
 芯材層用樹脂組成物は、上記のように合成したポリオレフィン系樹脂又はその市販品を用い、好ましくはさらに酸化防止剤を配合することで調製することができる。
 [1-6.純水への不純物溶出抑制性能]
 本実施形態の樹脂管100、100a、100bは、平滑性の高い内周面を有しているため、純水への不純物溶出抑制性能に優れている。
 本実施形態の樹脂管の不純物溶出抑制性能のうち、金属溶出抑制性能については、SEMI F57-0314(当該規格では、SEMI F40規格を参照している)に基づいて測定される、主要16金属(アルミニウム、バリウム、ホウ素、カルシウム、クロム、銅、鉄、鉛、リチウム、マグネシウム、マンガン、ニッケル、カリウム、ナトリウム、ストロンチウム、及び亜鉛を指す。)の溶出量の総量として、例えば14μg/m以下、好ましくは12μg/m以下、より好ましくは10μg/m以下、さらに好ましくは9μg/m以下、一層好ましくは8.5μg/m以下が挙げられる。
 金属溶出抑制性能のより具体的な例としては、SEMI F57-0314に基づいて測定される、カルシウムの溶出量として、例えば7μg/m以下、好ましくは6μg/m以下、より好ましくは5.5μg/m以下が挙げられ;銅の溶出量といて、例えば0.5μg/m以下、好ましくは0.45μg/m以下、より好ましくは0.4μg/m以下が挙げられ;ナトリウムの溶出量として、例えば1.5μg/m以下、好ましくは1.1μg/m以下、より好ましくは0.7μg/m以下が挙げられ;亜鉛の溶出量として、例えば0.5μg/m以下、好ましくは0.3μg/m以下、より好ましくは0.2μg/m以下が挙げられる。
 本実施形態の樹脂管の不純物溶出抑制性能のうち、アニオン溶出量については、臭化物イオンの溶出量として、例えば10μg/m未満が挙げられ;フッ化物イオンの溶出量として、例えば1000μg/m未満、好ましくは800μg/m未満、より好ましくは700μg/m未満、さらに好ましくは600μg/m未満が挙げられ;亜硝酸イオンとして、例えば10μg/m未満が挙げられ;硫酸イオンとして、例えば10μg/m未満が挙げられる。
 本実施形態の樹脂管の不純物溶出抑制性能のうち、有機成分溶出抑制性能については、SEMI F57-0314に基づいて測定される全有機成分(TOC)の溶出量として、例えば10000μg/m以下、好ましくは9000μg/m以下、より好ましくは8500μg/m以下、さらに好ましくは8000μg/m以下が挙げられる。
 [1-7.用途]
 本実施形態の樹脂管は、超純水の輸送に用いられる。具体的には、本実施形態の樹脂管は、超純水製造装置内の配管、超純水製造装置からユースポイントに超純水を輸送する配管、及びユースポイントからの超純水返送用配管等として用いることができる。
 本実施形態の樹脂管は、超純水に対する要求水質が特に厳格な、原子力発電用水配管、若しくは、医薬品の製造工程、半導体素子又は液晶、より好ましくは半導体素子の製造工程における洗浄などの湿式処理工程で用いられる超純水の輸送配管であることが好ましい。当該半導体素子としても、より高い集積度を有するものが好ましく、具体的には、最小線幅65nm以下の半導体素子の製造工程で用いられることがより好ましい。半導体製造に使用される超純水の品質等に関する規格としては、例えばSEMI F57-0314が挙げられる。
 また、本実施形態の樹脂管は施工性に優れるため、たとえば、比較的低温で、バット(突合せ)融着接合やEF(電気融着)接合といった融着施工を容易に行うことができる。
 [2.樹脂管の製造方法]
 上述の本実施形態の樹脂管は、第1層210の形成に用いられる第1層用樹脂組成物を押出成形することに製造することができる。
 (製造時のポイント)
 樹脂は成形時に、押出機、金型内、固化過程で様々な力を受け歪が発生するが、この歪によって内面平滑性が悪化する。
SEMI F57-0314で定められる表面粗さRa0.25μm以下を達成するためには、あらゆる場所で樹脂が受ける歪を小さくすることが重要である。
具体的にはフッ素系滑剤の添加によって金型内で受ける樹脂の歪を小さくすることが挙げられる。また、滑剤の量、引取速度、引落等を適宜調整することによって、樹脂の歪を小さくすることができる。
 (樹脂の歪みの評価手法)
 本実施形態では、以下の評価手法Aを用いて樹脂管の樹脂の歪みを評価する。評価手法Aは分子の歪み、すなわち製造工程の中で樹脂が受けた歪みの量を定量化する手法である。
 評価手法Aは参考文献を元に考案した手法でありFT-IRを使用し、ポリオレフィン樹脂の結晶・非晶部の分子配向を評価することで、分子の歪量を定量化することが可能である。
 参考文献:論文名:Infrared dichroism and visible-ultraviolet dichroism studies on roller-drawn polypropylene and polyethylene sheets、著者名:A. Kaito,K. Nakayama &H. Kanetsuna、Pages 281-306 | Received 15 Sep 1986, Accepted 25 Oct 1986, Published online: 14 Dec 2006
 参考文献は、ポリマーの分子配向を評価する手法について書かれた論文である。
ポリオレフィン分子中のC―H結合は多彩な振動モードを有し、それぞれの振動がIR測定にて特定の波数(単位:cm―1)において、吸光ピークを持つことが知られている。それを測定することによって、分子配向状態を評価することができ、分子配向が小さいほど樹脂が受けた歪が小さいと言える。
 (評価方法A)
 手順1として、ミクロトームを用いて樹脂管100、100a、100bの内表面sを含む第1層210を切り取り、測定用試験片を作成する。
 図4は、樹脂管100の斜視図である。図4に示すように、樹脂管100の中心軸に沿った方向を軸方向Aとし、中心軸に対して垂直であって中心軸に近づくまたは中心軸から遠ざかる方向を径方向Bとし、中心軸Aを中心にして回転する方向を周方向Cとする。
 図5は、測定用試験片の取得方法を説明するための図である。図5では、一例として樹脂管100を示す。図5に示すように、樹脂管一つに対して4個の測定用試験片301、302、303、304が作成される。4個の測定用試験片301、302、303、304は、樹脂管100の押出方向から視て、0時・3時・6時・9時の方向の内周面sを含む第1層210の部分から切り出される。4個の測定用試験片301、302、303,304の各々は、概ね直方体形状である。樹脂管100の押出方向は、軸方向Aと平行な方向である。測定用試験片301が、樹脂管100の押出方向から視た0時方向の部分である。測定用試験片302が、樹脂管100の押出方向から視た3時方向の部分である。
 測定用試験片303が、樹脂管100の押出方向から視た6時方向の部分である。測定用試験片304が、樹脂管100の押出方向から視た9時方向の部分である。4個の測定用試験片301、302、303、304は同じ大きさである。図5には、測定用試験片303の拡大図が示されている。厚みTは、測定用試験片303の径方向Bに沿った長さである。幅Wは、測定用試験片303の周方向Cに沿った長さである。長さLは、測定用試験片303の軸方向Aに沿った長さである。具体的には、厚みTは100μm、幅Wは5mm、長さLは40mmである。なお、測定用試験片の寸法については、使用装置の測定用セルに合わせて適宜変更してもよいが、ピーク強度の検出の観点から厚みTは10~100μm程度が好ましい。
 次に、手順2として、FT-IRを用いて測定用試験片301、302、303、304のIR測定を行う。
○FT-IR測定条件
(1)使用装置:フーリエ変換赤外分光分析装置
(2)Spectrum One(パーキンエルマー社製)
(3)測定方法:偏光測定/透過法
(4)光源の種類:MIR(中赤外用タングステンランプ)
(5)分解能:4cm―1
(6)測定範囲:4000~400cm―1
(7)積算回数:10回
(8)使用偏光子:ワイヤーグリット赤外偏光子(S.T.JAPAN製)
(9)測定方向:前記測定用試験片を作成した前記樹脂管の押出方向を0°とした場合、0°(180°)・+45°(-135°)・-45°(+135°)・±90°から測定図6(a)は、図5に示した測定用試験片303の拡大図である。図6(b)は、測定用試験片303の平面図である。図6(a)および図6(b)は、FT-IRによる測定方向を説明するための図である。測定用試験片303の内周面sに対して測定が行われる。測定方向0°(180°)は、軸線方向Aと平行な方向であり、測定方向D1で示されている。測定方向±90°は、軸線方向Aと平行な方向であり、測定方向D2で示されている。測定方向D2は、測定方向D1から時計方向に90°(反時計方向に90°)回転した方向である(矢印E1参照)。測定方向D2は、周方向Cに対応している。測定方向D2は、図6(b)の平面視では周方向Cと平行となる。時計回りの回転がプラスで示され、反時計回りの回転がマイナスで示されている。測定方向+45°(-135°)は、測定方向D3で示されている。測定方向D3は、測定方向D1から時計方向に45°(反時計方向に135°)回転した方向である(矢印E2参照)。測定方向-45°(+135°)は、測定方向D4で示されており、測定方向D1から時計方向に-45°(反時計方向に135°)回転した方向である(矢印E3参照)。
 次に、手順3として、FT-IR測定の結果から、赤外二色性を示すピーク強度を読み取り、(9)で測定した4方向の測定結果を最大値で規格化し、変動係数を計算する。4方向の測定値をα1、α2、α3、α4とし、最大値をα1とした場合、例えば、α1/α1、α2/α1、α3/α1、α4/α1を演算することによって規格化を行う。これら4つの値の標準偏差と平均値を求め、標準偏差を平均値で割ることによって変動係数が求められる。
 次に、手順4として、手順3を手順1で同じ樹脂管100から作成した他の測定用試験片301、302、304に対して行い、それぞれについて変動係数を算出することによって4つの変動係数が得られる。これら4つの変動係数を平均することによって平均変動係数(CV)を得ることができる。なお、評価手法Aの手順で読み取るピークの波数(cm―1)は、第1層201をポリエチレンで形成している場合は、2019cm―1である。また、第1層201をポリプロピレンで形成している場合は809cm―1や1257cm―1付近のピークが望ましい。
 本実施形態では、平均変動係数(CV)を0.12以下に設定することによって、表面粗さが0.25μm以下の表面平滑性を有する樹脂管を得ることができる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例1~8および比較例1、2では、下記表1に示すように樹脂条件、層条件、成形条件を変えて作製した樹脂管に対して上述した評価方法Aを用いて平均変動係数(CV)を求めた。
 (実施例1)
 実施例1では、図2で示した構成の多層の樹脂管100aを作成した。第1層210を形成する樹脂には、HDPFが99.7wt%含有され、滑剤が0.3%含有される。滑剤は、フッ化ビニリデン・テトラフロオロエチレン・ヘキサフルオロプロピレン共重合体を用いた。成形の際の樹脂の押出量を7.5kg/hとし、樹脂の引取速度を0.49m/minとして、成形後の口径が25Aであり、内周面sの表面粗さRaが0.15μmである樹脂管100aを作成した。
 このように作成した樹脂管100aに対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.03となった。
 (実施例2)
 実施例2は、実施例1と成形条件が異なっている。実施例2では、成形の際の樹脂の押出量を50kg/hとし、樹脂の引取速度を0.38m/minとして、成形後の口径が75Aであり、内周面sの表面粗さRaが0.15μmである樹脂管100aを作成した。
 このように作成した樹脂管100aに対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.11となった。
 (実施例3)
 実施例3は、実施例1と成形条件が異なっている。実施例3では、成形の際の樹脂の押出量を30kg/hとし、樹脂の引取速度を0.3m/minとして、成形後の口径が75Aであり、内周面sの表面粗さRaが0.16μmである樹脂管100aを作成した。
 このように作成した樹脂管100aに対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.09となった。
 (実施例4)
 実施例4では、図1で示した構成の単層の樹脂管100を作成した。第1層210を形成する樹脂には、HDPFが99.7wt%含有され、滑剤が0.3%含有される。滑剤は、フッ化ビニリデン・テトラフロオロエチレン・ヘキサフルオロプロピレン共重合体を用いた。成形の際の樹脂の押出量を24kg/hとし、樹脂の引取速度を0.33m/minとして、成形後の口径が75Aであり、内周面sの表面粗さRaが0.17μmである樹脂管100を作成した。
 このように作成した樹脂管100に対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.04となった。
 (実施例5)
 実施例5は、実施例4と成形条件が異なっている。実施例5では、成形の際の樹脂の押出量を50kg/hとし、樹脂の引取速度を0.64m/minとして、成形後の口径が75Aであり、内周面sの表面粗さRaが0.20μmである樹脂管100を作成した。
 このように作成した樹脂管100に対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.10となった。
 (実施例6)
 実施例6は、実施例4と成形条件が異なっている。実施例6では、成形の際の樹脂の押出量を70kg/hとし、樹脂の引取速度を0.5m/minとして、成形後の口径が75Aであり、内周面sの表面粗さRaが0.22μmである樹脂管100を作成した。
 このように作成した樹脂管100に対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.04となった。
 (実施例7)
 実施例7は、実施例4と成形条件が異なっている。実施例7では、成形の際の樹脂の押出量を80kg/hとし、樹脂の引取速度を0.28m/minとして、成形後の口径が150Aであり、内周面sの表面粗さRaが0.23μmである樹脂管100を作成した。
このように作成した樹脂管100に対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.05となった。
 (実施例8)
 実施例8ではポリプロピレンの成形品を用いた。表面粗さRaが0.15μmであった。このように作成した成形品に対し、評価方法Aを用いて1257cm―1および809cm―1におけるピークを読み取り、評価を行ったところ、平均変動係数(CV)を求めると、0.07となった。
 (実施例9)
 実施例9ではポリプロピレンの成形品を用いた。表面粗さRaが0.14μmであった。このように作成した成形品に対し、評価方法Aを用いて1257cm―1および809cm―1におけるピークを読み取り、評価を行ったところ、平均変動係数(CV)を求めると、0.05となった。
 (比較例1)
 比較例1は、実施例4と成形条件が異なっている。比較例1では、成形の際の樹脂の押出量を50kg/hとし、樹脂の引取速度を0.41m/minとして、成形後の口径が75Aであり、内周面sの表面粗さRaが0.44μmである樹脂管を作成した。
 このように作成した樹脂管に対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.15となった。
 (比較例2)
 比較例2では、図2で示した構成の樹脂管を作成した。第1層を形成する樹脂には、HDPEが100%含有され、滑剤が含有されていない。成形の際の樹脂の押出量を2.9kg/hとし、樹脂の引取速度を0.16m/minとして、成形後の口径が25Aであり、内周面sの表面粗さRaが0.59μmである樹脂管を作成した。
 このように作成した樹脂管に対して上述した評価方法Aを用いて2019cm―1におけるピークを読み取り、平均変動係数(CV)を求めると、0.19となった。
 (比較例3)
 比較例3ではポリプロピレンの成形品を用いた。表面粗さRaが0.43μmであった。このように作成した成形品に対し、評価方法Aを用いて1257cm―1および809cm―1におけるピークを読み取り、評価を行ったところ、平均変動係数(CV)を求めると、0.17となった。
 (比較例4)
 比較例4ではポリプロピレンの成形品を用いた。表面粗さRaが0.29μmであった。このように作成した成形品に対し、評価方法Aを用いて1257cm―1および809cm―1におけるピークを読み取り、評価を行ったところ、平均変動係数(CV)を求めると、0.49となった。
[表1]
Figure JPOXMLDOC01-appb-I000001
 図7は、上記実施例1~9および比較例1~4について、内面平滑性(Ra)に対する平均変動係数(CV)をプロットしたグラフを示す図である。ポリエチレンに関する実施例1~7および比較例1、2は、〇でプロットし、ポリプロピレンに関する実施例8、9および比較例3、4は、△でプロットした。図7において、横軸は、内面平滑性(Ra)(μm)を示し、縦軸は、平均変動係数(CV)を示す。
 このグラフが示すように、平均変動係数(CV)が、0.12以下の場合、内面平滑性(Ra)が0.25μm以下となり、良好な内面平滑性を得られることがわかる。図7には、CV=0.12の直線とRa=0.25μmの直線が点線で示されている。
 また、16金属総溶出量、TOC(Total Organic Carbon)溶出量、およびアニオン溶出量について、実施例1に示すように、SEMI F57-0314規格を十分に満たすものであった。第1層210を形成する材料は実施例1~8で同様の材料を用いているため、実施例2~8においても実施例1と同様にSEMI F57-0314規格を十分に満たすといえる。
100、100a、100b:樹脂管
210:第1層
220:芯材層
230:ガスバリア層
 

Claims (11)

  1.  ポリオレフィン系樹脂を含む第1層を有する樹脂管であって、
     前記第1層が前記樹脂管の内周面を構成し、評価手法Aによって測定された前記内周面の分子歪みの平均変動係数(CV)が0.12以下である、樹脂管。
    [評価手法A]
    手順1.ミクロトームを用いて前記樹脂管の内表面の前記第1層を切り取り、試験測定用セルのサイズに合わせて測定用試験片を作成する。前記測定用試験片の寸法は厚み10μm~100μm、前記樹脂管一つに対して前記測定用試験片は4個作成される。4個の前記測定用試験片は、前記樹脂管の押出方向からみて、0時・3時・6時・9時の方向の部分から切り出される。
    手順2.FT-IRを用いて前記測定用試験片のIR測定を行う。
    ○FT-IR測定条件
    (1)使用装置:フーリエ変換赤外分光分析装置
    (2)Spectrum One(パーキンエルマー社製)
    (3)測定方法:偏光測定/透過法
    (4)光源の種類:MIR(中赤外用タングステンランプ)
    (5)分解能:4cm―1
    (6)測定範囲:4000~400cm―1
    (7)積算回数:10回
    (8)使用偏光子:ワイヤーグリット赤外偏光子(S.T.JAPAN製)
    (9)測定方向:前記測定用試験片を作成した前記樹脂管の押出方向を0°とした場合、0°(180°)・+45°(-135°)・-45°(+135°)・±90°から測定手順3.FT-IR測定の結果から、赤外二色性を示すピーク強度を読み取り、(9)で測定した4方向の測定結果の最大値で規格化し、変動係数を計算する。
    手順4.手順1で同じ前記樹脂管から作成した合計4個の前記測定用試験片について手順3を行い、それぞれ算出した変動係数を平均し平均変動係数(CV)とする。
  2.  前記ポリオレフィン系樹脂が、高密度ポリエチレンである、請求項1に記載の樹脂管。
  3.  前記高密度ポリエチレンの分子量分布が20~80である、請求項2に記載の樹脂管。
  4.  前記第1層は、フッ素系滑剤を含む、請求項1に記載の樹脂管。
  5.  前記第1層の前記フッ素系滑剤の含有量が、0.01~0.75重量%である、請求項4に記載の樹脂管。
  6.  前記第1層の外側に積層された第2層を更に備えた、請求項1に記載の樹脂管。
  7.  前記第1層の層厚が0.3mm以上である、請求項6に記載の樹脂管。
  8.  SEMI F57-0314に基づいて測定される、アルミニウム、バリウム、ホウ素、カルシウム、クロム、銅、鉄、鉛、リチウム、マグネシウム、マンガン、ニッケル、カリウム、ナトリウム、ストロンチウム、及び亜鉛の溶出量の総量が、14μg/m以下である、
    請求項1~7のいずれか1項に記載の樹脂管。
  9.  SEMI F57-0314に基づいて測定されるカルシウムの溶出量が7μg/m以下、銅の溶出量が0.5μg/m以下、ナトリウムの溶出量が1.5μg/m以下、および亜鉛の溶出量が0.5μg/m以下である、請求項1~7のいずれか1項に記載の樹脂管。
  10.  SEMI F57-0314に基づいて測定されるフッ化物イオンの溶出量が600μg/m以下である、請求項1~7のいずれか1項に記載の樹脂管。
  11.  SEMI F57-0314に基づいて測定される全有機成分の溶出量が10000μg/m以下である、請求項1~7のいずれか1項に記載の樹脂管。
     
PCT/JP2023/034900 2022-09-27 2023-09-26 樹脂管 WO2024071103A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154071 2022-09-27
JP2022-154071 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071103A1 true WO2024071103A1 (ja) 2024-04-04

Family

ID=90478002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034900 WO2024071103A1 (ja) 2022-09-27 2023-09-26 樹脂管

Country Status (1)

Country Link
WO (1) WO2024071103A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239521A (ja) * 1995-03-07 1996-09-17 Showa Denko Kk ポリエチレン樹脂組成物
JP2001172440A (ja) * 1999-12-17 2001-06-26 Mitsui Chemicals Inc ポリエチレン樹脂組成物およびその用途
JP2004249606A (ja) * 2003-02-20 2004-09-09 Sekisui Chem Co Ltd 熱可塑性樹脂パイプ、光ファイバー用クラッドパイプ及びその製造方法
JP2021055764A (ja) * 2019-09-30 2021-04-08 積水化学工業株式会社 複層管
WO2021193027A1 (ja) * 2020-03-23 2021-09-30 積水化学工業株式会社 超純水用配管材、及び超純水用配管材用ポリエチレン系樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239521A (ja) * 1995-03-07 1996-09-17 Showa Denko Kk ポリエチレン樹脂組成物
JP2001172440A (ja) * 1999-12-17 2001-06-26 Mitsui Chemicals Inc ポリエチレン樹脂組成物およびその用途
JP2004249606A (ja) * 2003-02-20 2004-09-09 Sekisui Chem Co Ltd 熱可塑性樹脂パイプ、光ファイバー用クラッドパイプ及びその製造方法
JP2021055764A (ja) * 2019-09-30 2021-04-08 積水化学工業株式会社 複層管
WO2021193027A1 (ja) * 2020-03-23 2021-09-30 積水化学工業株式会社 超純水用配管材、及び超純水用配管材用ポリエチレン系樹脂組成物

Similar Documents

Publication Publication Date Title
JP6596017B2 (ja) 配向ポリエチレンフィルム及びそれを作製するための方法
JP2022166046A (ja) 多峰性ポリエチレン組成物及びそれを含むフィルム
KR102259572B1 (ko) 파이프용 산소 차단 필름
JP2022159129A (ja) 超純水用管材
JP7474198B2 (ja) 超純水用配管及び複層管
EP2170603A1 (en) Multilayer barrier film
KR20170094270A (ko) 종방향 연신된 다층 필름
JP2024096737A (ja) 複層管
JP5049078B2 (ja) 多層チューブ
WO2024071103A1 (ja) 樹脂管
TW202428427A (zh) 樹脂管
WO2015071075A1 (en) Direct feeding of carbon black in the production of black compounds for pipe and wire and cable applications / polymer composition with improved properties for pressure pipe applications
JP2022157376A (ja) 超純水用配管
US11673380B2 (en) Multilayer tube
TW201819514A (zh) 供用於多層結構中之聚合物摻合物及包含所述聚合物摻合物之多層結構
EP3581611A1 (en) Polyethylene resin film
JP2022152718A (ja) 超純水用多層管、超純水用多層管用ポリエチレン系樹脂、及び超純水用多層管用ポリエチレン系樹脂セット
US20230151223A1 (en) Pipeline member for ultrapure water and polyethylene-based resin composition for pipeline member for ultrapure water
IL305519A (en) High barrier blown polyolefin layer solutions for barrier coating
WO2021122262A1 (en) Multilayer films for packaging rubber bales
JP2021050775A (ja) 配管
JPS5931929B2 (ja) エチレン系重合体製導水管
JP4302554B2 (ja) 1−ブテン系重合体組成物からなる水配管設備
JPH06169974A (ja) ポリオレフィン系医療容器用基材
CN114311777A (zh) 一种耐腐蚀改性pe排水管制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872326

Country of ref document: EP

Kind code of ref document: A1