WO2024070726A1 - Composite fiber, multifilament, woven article, and textile product - Google Patents

Composite fiber, multifilament, woven article, and textile product Download PDF

Info

Publication number
WO2024070726A1
WO2024070726A1 PCT/JP2023/033522 JP2023033522W WO2024070726A1 WO 2024070726 A1 WO2024070726 A1 WO 2024070726A1 JP 2023033522 W JP2023033522 W JP 2023033522W WO 2024070726 A1 WO2024070726 A1 WO 2024070726A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
multifilament
filament
polymer
water
Prior art date
Application number
PCT/JP2023/033522
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 松浦
正人 増田
健太郎 小河
慎也 川原
康二郎 稲田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024070726A1 publication Critical patent/WO2024070726A1/en

Links

Images

Definitions

  • the present invention relates to composite fibers, multifilaments, woven and knitted fabrics, and textile products.
  • Synthetic fibers made from polyester, polyamide, etc. have excellent mechanical properties and dimensional stability, so they are widely used in a variety of applications, from clothing to non-clothing.
  • the method of adding a smoothing agent in post-processing aims to reduce the friction of the fiber surface with the smoothing agent, thereby suppressing deformation and wear of the fibers and preventing the occurrence of a shiny phenomenon caused by flattening the textile surface.
  • this method can lead to hardening of the texture due to the smoothing agent adhering to the fabric, and can also result in poor durability due to the smoothing agent falling off during washing, etc.
  • Patent Document 1 proposes a composite fiber in which a low-melting-point polymer with a melting point lower than that of polyester is disposed inside polyester fibers.
  • this composite fiber frictional heat generated by rubbing against the floor, etc., is absorbed by the heat absorption action caused by melting of the low-melting-point polymer in the core before the polyester melts, suppressing fiber deformation caused by melting of the polyester and suppressing the shine phenomenon in textiles.
  • Patent Document 2 proposes a false twist textured yarn obtained from an air entangled yarn in which a multifilament made of self-extensible polyester fiber is used as the sheath yarn, and a multifilament made of polyester fiber having a higher boiling water shrinkage rate than the sheath yarn is used as the core yarn.
  • the sheath yarn is looped around the core yarn by air entanglement to form a gap between the core yarn and the sheath yarn, resulting in a soft texture, while false twisting further imparts slight crimping, reducing the collapse of the gap between the core yarn and the sheath yarn due to pressure, and suppressing the shine phenomenon when ironing.
  • Patent Document 1 the technical idea behind Patent Document 1 is to suppress the shine caused by frictional heat that is generated momentarily when the textile rubs against the floor, etc., and when the textile made of the composite fiber of Patent Document 1 is worn for a long period of time, the textile surface may gradually become flattened due to wear against other materials and crushing due to pressure, resulting in the shine phenomenon. Furthermore, from the perspective of interfacial peeling between polyester and low-melting point polymer, the fiber diameter and fiber form are limited to ensure abrasion resistance, which may result in inferior feel and flexibility.
  • Patent Document 2 by looping the sheath yarn around the core yarn through air entanglement to form a gap between the core yarn and the sheath yarn, and then imparting a slight crimp through false twisting, it is possible to reduce the collapse of the gap between the core yarn and the sheath yarn due to pressure, and to suppress the shine phenomenon caused by momentary pressure when ironing, etc.
  • the present invention aims to solve the problems of the conventional technology described above, and to provide composite fibers, multifilaments, woven and knitted fabrics and textile products suitable for clothing textiles that have a smooth feel and a soft texture with a sense of resilience, while suppressing the deterioration of surface quality caused by friction and abrasion with other materials, and that exhibit high water repellency when subjected to a water repellent treatment.
  • the object of the present invention is achieved by the following means: (1) A composite fiber having two types of segments A and B in the fiber cross section, where segment B has a smaller cross-sectional area than segment A and is formed of two types of polymers that are composited in a side-by-side or eccentric core-sheath configuration; (2) The composite fiber according to (1) above, in which three or more segments B are arranged on the outer periphery of a segment A in a fiber cross section. (3) The composite fiber according to (1) or (2) above, in which the cross-sectional area S B of each segment B in the fiber cross section is 1 ⁇ m 2 ⁇ S B ⁇ 65 ⁇ m 2 .
  • a water-repellent woven or knitted fabric comprising a multifilament consisting of two types of filaments A and B, in which one or more filaments B are present between any two filaments A in the multifilament, the filament B having a smaller fiber diameter than the filament A and formed of two types of polymers composited in a side-by-side or eccentric core-sheath type, and having a water drop sliding angle of 1 to 20 degrees.
  • the composite fibers, multifilaments, woven/knitted fabrics, and textile products of the present invention have a special fiber morphology in which the cross-sectional arrangement within the composite fibers and the fiber arrangement within the multifilaments are precisely controlled, so that they have a smooth feel and a soft texture with a bouncy feel, while suppressing the deterioration of surface quality caused by friction and abrasion with other materials, and furthermore, due to their fine and complex surface irregularities, it is possible to obtain textiles that exhibit high water-repellent performance when water-repellent processing is applied.
  • FIG. 1A, 1B, 1C, and 1D are schematic diagrams showing an example of a cross-sectional structure of the conjugate fiber of the present embodiment.
  • 2(a), (b), and (c) are schematic diagrams showing an example of a cross-sectional structure of the conjugate fiber of the present embodiment.
  • 3(a) and (b) are schematic diagrams showing an example of a cross-sectional structure of a conventional composite fiber.
  • FIG. 4 is a diagram for understanding that one or more filaments B exist between any two filaments A in the multifilament of this embodiment, and the dashed lines of the outer frame represent the top, bottom, left and right sides of the photographed image.
  • FIG. 5(a) and (b) are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where (a) of Fig. 5 is a schematic diagram of the cross-sectional structure of filament A, and (b) of Fig. 5 is a schematic diagram of the cross-sectional structure of filament B.
  • 6A, 6B, and 6C are schematic diagrams showing an example of a cross-sectional structure of a filament constituting the multifilament of this embodiment, in which 6A is a schematic diagram of the cross-sectional structure of a filament A, and 6B and 6C are schematic diagrams of the cross-sectional structure of a filament B.
  • FIGS. 7A and 7B are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where (a) of Fig. 7 is a schematic diagram of the cross-sectional structure of filament A, and (b) of Fig. 7 is a schematic diagram of the cross-sectional structure of filament B.
  • 8A and 8B are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where FIG. 8A is a schematic diagram of the cross-sectional structure of filament A, and FIG. 8B is a schematic diagram of the cross-sectional structure of filament B.
  • FIGS. 9(a) and 9(b) are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where (a) of Fig. 9 is a schematic diagram of the cross-sectional structure of filament A, and (b) of Fig. 9 is a schematic diagram of the cross-sectional structure of filament B. 10(a) and (b) are schematic diagrams showing an example of a cross-sectional structure of a filament constituting a conventional multifilament.
  • FIG. 11 is a schematic diagram showing an example of a cross-sectional structure of a filament constituting a conventional multifilament.
  • FIG. 12 is a cross-sectional view of a spinneret for explaining the method for producing the composite fiber and multifilament of this embodiment.
  • the ultrafine fibers arranged on the surface of the fiber bundle are crimped, and the steric hindrance caused by this crimp creates minute gaps between the fibers, allowing the friction surface to move flexibly without being fixed. This makes the material more resistant to friction than fiber bundles with normal ultrafine fibers arranged on the surface, and significantly reduces the shine phenomenon that was an issue with conventional materials.
  • the requirements of the present invention are that two types of segments A and B are present in the cross section of the composite fiber, that segment B has a smaller cross-sectional area than segment A, and that the composite fiber is formed from two types of polymers that are combined in a side-by-side or eccentric core-sheath configuration.
  • a segment refers to a portion of the composite fiber that can be separated from the composite fiber by solvent treatment, heat treatment, pressure treatment, etc., in the cross section of the composite fiber. If any two segments are made of the same polymer and the difference in cross-sectional area is within 10%, they will be considered to be part of the same segment group.
  • segments A and B can be separated from the composite fiber after it has been made into a textile, and ultrafine fibers consisting of segment B, which has a smaller cross-sectional area than segment A, can be uniformly mixed in the multifilament. Therefore, in a textile using the composite fiber of this embodiment, the area of flat parts that occur due to friction, wear, etc. can be reduced, and further, since the ultrafine fibers have low bending rigidity, flexibility can be improved, while the normal fibers have high bending recovery, so a resilient feel can be maintained.
  • the multifilament obtained after division has a structure in which the normal fiber made of segment A is surrounded by ultrafine fibers made of segment B, and the ultrafine fibers made of segment B are preferentially worn during wear with other materials, thereby making it possible to further reduce the area of flat parts that are generated.
  • the more segments B arranged on the periphery of segment A the more preferable, more preferably 5 or more, and particularly preferably 7 or more.
  • the more preferable the number of segments B arranged on the periphery of segment A is 50 or less, more preferably 35 or less, and particularly preferably 20 or less.
  • the cross-sectional area S B of each segment B satisfies 1 ⁇ m 2 ⁇ S B ⁇ 65 ⁇ m 2 .
  • the ultrafine fibers having a small cross-sectional area made of the segment B provide a shine suppression effect by reducing the area of flat parts generated by friction, wear, etc., and a flexibility improvement effect by having low bending rigidity.
  • S B the more prominent the shine suppression effect and the flexibility improvement effect can be achieved, so more preferably, S B is less than 50 ⁇ m2 , and even more preferably, S B is less than 40 ⁇ m2.
  • the cross-sectional area S B of each segment B is preferably 1 ⁇ m2 or more, more preferably 3 ⁇ m2 or more, and even more preferably 7 ⁇ m2 or more.
  • the cross-sectional area S A of each segment A satisfies 65 ⁇ m 2 ⁇ S A ⁇ 700 ⁇ m 2 .
  • each segment A When the cross-sectional area S A of each segment A is 65 ⁇ m2 or more, in a multifilament obtained by dividing the composite fiber into segments A and B, the normal fiber having a large cross-sectional area composed of segment A maintains the bending recovery required to express the resilience preferred in clothing textiles, while the ultrafine fiber having a small cross-sectional area composed of segment B provides flexibility and shine suppression effects.
  • S A is more preferably 80 ⁇ m2 or more, and even more preferably 95 ⁇ m2 or more.
  • S A is preferably less than 700 ⁇ m2 , more preferably less than 500 ⁇ m2, and even more preferably less than 350 ⁇ m2.
  • the cross-sectional area of a segment is determined by embedding the composite fiber in an embedding agent such as epoxy resin, and taking an image of the fiber cross section perpendicular to the fiber axis with a scanning electron microscope (SEM) at a magnification that allows the composite fiber to be observed.
  • SEM scanning electron microscope
  • the captured image is analyzed using image analysis software to calculate the cross-sectional area of one segment present in the fiber cross section of the composite fiber, and the value rounded off to the first decimal place is used as the cross-sectional area of the segment.
  • the simple number average of the cross-sectional areas determined for all segments of the same type is calculated, and the value rounded off to the first decimal place is used.
  • segment B is formed of two types of polymers in a side-by-side or eccentric core-sheath type composite in the cross section of the fiber.
  • the two types of polymers that make up segment B are combined in a side-by-side or eccentric core-sheath type with different centers of gravity as shown in Figure 1(a).
  • the ultrafine fibers made up of segment B will bend significantly toward the polymer side with high shrinkage, and this continuous process will produce a coiled crimped form.
  • the composite structure of segment B may be either a side-by-side type or an eccentric core-sheath type.
  • a side-by-side type maximizes the distance between the centers of gravity of the polymers, improving the expression of crimp, while an eccentric core-sheath type coats a high-shrinkage polymer with poor abrasion resistance with a low-shrinkage polymer with excellent abrasion resistance, further improving the abrasion resistance of the ultrafine fiber made of segment B.
  • the two types of polymers forming segment B are not particularly limited as long as they are a combination that produces a shrinkage difference upon heat treatment.
  • Combinations of polymers with different viscosities or different melting points are possible, but from the perspective of making it easier to control the occurrence of shrinkage, it is preferable to use a combination of polymers with different melting points.
  • the polymer with the lower melting point shrinks first when heat treatment is performed, making it easy to produce a shrinkage difference between the polymers.
  • the polymer forming segment A is the polymer with the lowest melting point of the polymers forming segments A and B. If this relationship is established, the normal fiber made of segment A obtained by splitting the composite fiber will have high shrinkage, creating a difference in thread length between it and the ultrafine fiber made of segment B, which increases the gap between the fibers and further enhances the suppression of the shine phenomenon, which is the object of the present invention.
  • the textile surface has more complex irregularities that combine the fine irregularities caused by the crimping of the ultrafine fibers made up of segment B with the coarse irregularities caused by the normal fibers made up of segment A, which gives the textile a smooth feel and enhances its water-repellent properties when a water-repellent finish is applied.
  • segment A is made up of two types of polymers
  • segment A is made up of two types of polymers that are combined in a side-by-side or eccentric core-sheath type, and that one of the two types of polymers is the polymer with the lowest melting point among the polymers that make up segments A and B, from the viewpoint that the fibers made up of segments A and B both have crimps, thereby enabling the textile to exhibit stretch performance.
  • the area ratio of the low melting point polymer to the high melting point polymer is in the range of 70/30 to 30/70 (low melting point polymer/high melting point polymer). If the area ratio is in this range, the low melting point polymer is not affected by texture hardening due to clogging when it shrinks highly during heat treatment, and the crimp morphology due to shrinkage difference can be fully expressed, and larger interfiber voids can be obtained.
  • the cross-sectional shape of segment B present in the fiber cross section of the composite fiber of this embodiment is not limited, but from the viewpoint of forming a fiber form having minute gaps between the fibers by expressing crimps in the ultrafine fibers made of segment B after dividing segment B, it is preferable that the cross-sectional shape of segment B is flat as shown in Figure 1(a).
  • flat refers to a long and narrow shape in a plan view, and more specifically, to a segment with a “flatness” of 1.1 or more, as described below.
  • the length of the long axis becomes the rate limiting factor and steric hindrance is generated, so that the void effect due to the expression of shrinkage can be maximized, and the smooth feel due to the fine unevenness of the textile surface and the water-repellent performance when water-repellent processing is applied can be more prominent.
  • the flatness is if the flatness is too large, the area of the flat part when worn may increase, so the flatness is preferably 6.0 or less, more preferably 5.0 or less, and even more preferably 4.0 or less.
  • the flatness of the segments is determined by the following method.
  • the composite fiber is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) at a magnification that allows the composite fiber to be observed.
  • SEM scanning electron microscope
  • the captured image is analyzed using image analysis software to determine the flatness, as shown in Figure 1 (a), by dividing the length of the major axis by the length of the minor axis, with the line connecting the two most distant points (a1, a2) among any points on the periphery of the segment as shown in Figure 1 (a) as the major axis, and the line connecting the intersection point (b1, b2) of the periphery of the fiber with the line passing through the midpoint of the major axis and perpendicular to the major axis as the minor axis, and rounding the value to one decimal place to obtain the flatness.
  • the simple number average of the flatnesses determined for all segments of the same type is calculated, and
  • the cross-sectional shape of the segment A present in the fiber cross section of the composite fiber of this embodiment is not limited, but from the viewpoint of being able to reduce flat areas even when the fibers consisting of the segment A are worn when a textile obtained by dividing the segment A from the composite fiber is worn, it is preferable that the cross-sectional shape of the segment A is a multi-lobe cross section having three or more convex parts on the periphery as shown in Figure 1 (a).
  • the number of convex parts is more preferably 5 or more, and even more preferably 7 or more.
  • the number of convex parts becomes too large, the effect gradually decreases, so the number of convex parts is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
  • the cross-sectional form of the composite fiber is preferably a sea-island composite fiber in which segments A and B are island components as shown in FIG. 1(a), or a core-sheath composite fiber in which segment A is the core and segment B is the sheath as shown in FIG. 1(c).
  • segments A and B can be divided by removing the sea component z
  • the polymer constituting segment A and the polymer constituting segment B are formed from incompatible polymers with different bonds in the main chain, and the interface between segments A and B can be peeled off and divided by heat treatment, physical impact, etc.
  • the sea-island composite fiber it is more preferable for the sea-island composite fiber to have segments A and B as island components, and for the sea component to be formed from a polymer that has the fastest dissolution rate in a solvent among the polymers that make up the sea-island composite fiber.
  • the dissolution rate of the polymer forming the sea component is preferably 100 or more, and more preferably 1000 or more, when the polymer forming the island components has the fastest dissolution rate as the standard (sea component/island component). If the dissolution rate ratio is 1000 or more, the dissolution process can be completed in a short time, and in addition to increasing the process speed, a higher quality fabric can be obtained without unnecessarily deteriorating the island component polymer. From this perspective, the higher the dissolution rate ratio, the better, but the practical upper limit is 10,000 or less due to the stability of the polymer forming the sea component.
  • the polymer that forms the sea component is preferably selected from polymers that are melt-moldable and more easily soluble than other components, such as polyesters and their copolymers, polylactic acid, polyamides, polystyrene and their copolymers, polyethylene, and polyvinyl alcohol.
  • the polymer forming the sea component is preferably a copolymerized polyester, polylactic acid, polyvinyl alcohol, etc., which is easily soluble in aqueous solvents or hot water.
  • polyesters copolymerized with 5 mol % to 15 mol % of 5-sodium sulfoisophthalic acid and polyesters copolymerized with the above-mentioned 5-sodium sulfoisophthalic acid and polyethylene glycol having a weight average molecular weight of 500 to 3000 in the range of 5 mass % to 15 mass % are preferred.
  • the composite fiber of this embodiment is first subjected to advanced processing such as weaving and knitting, and then divided into segments A and B. It is then subjected to heat treatment to obtain a multifilament in which normal fibers consisting of segment A and ultrafine fibers having crimp consisting of segment B are uniformly mixed. Due to the special fiber form of this multifilament, it is possible to obtain a clothing textile that has a smooth feel and a soft texture with a bouncy feel that is not found in conventional materials, while suppressing the deterioration of surface quality caused by friction and abrasion with other materials, and when further subjected to water-repellent processing, exhibits high water-repellent performance.
  • the multifilament of this embodiment in order to reduce the area of flat parts caused by friction, wear, etc., and to achieve a soft texture with a sense of resilience, the multifilament must be made up of two types of filaments A and B, with one or more filaments B present between any two filaments A in the multifilament, and the filaments B having a smaller fiber diameter than the filaments A.
  • any two filaments in a multifilament are made of the same polymer and the difference in fiber diameter is within 10%, they are considered to be the same filament.
  • the presence of one or more filaments B between any two filaments A in the multifilament in the present invention means that filaments A and B are uniformly mixed.
  • an image of the cross section of the textile perpendicular to the length direction of the textile and perpendicular to the fiber axis direction of the multifilament is taken with a scanning electron microscope (SEM) at a magnification at which 15 or more filaments including two or more filaments A can be observed, and the circumscribing circles R1 and R2 of any two filaments A are drawn on the taken image using image analysis software as shown in Figure 4, and one or more filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing lines (R1 and R2) of the two circumscribing lines drawn.
  • filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing lines (R1 and R2), and it can be said that one or more filaments B are present between any two filaments A in the multifilament.
  • filament B which has a smaller fiber diameter than filament A, between any two filaments A in the multifilament results in a fiber form in which filament A, which is a normal fiber, and filament B, which is an ultrafine fiber, are evenly mixed in the multifilament, reducing the area of flat areas that occur due to friction, wear, etc. Furthermore, since filament B, which is an ultrafine fiber, has low bending rigidity, flexibility is improved, while filament A, which is a normal fiber, has high bending recovery, allowing the resilience to be maintained.
  • the fiber diameter D B of the filament B satisfies 1 ⁇ m ⁇ D B ⁇ 9 ⁇ m.
  • the filament B By making the filament B an ultrafine fiber with a fiber diameter D B of less than 9 ⁇ m, it is possible to obtain a shine-suppressing effect by reducing the area of flat parts generated by friction, wear, etc., and a flexibility-improving effect by having low bending rigidity. From this viewpoint, the smaller D B is, the more prominent the shine-suppressing effect and the flexibility-improving effect can be obtained, so D B is more preferably less than 8 ⁇ m, and even more preferably less than 7 ⁇ m.
  • the fiber diameter D B of the filament B is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the fiber diameter D A of the filament A satisfies 9 ⁇ m ⁇ D A ⁇ 30 ⁇ m.
  • the fiber diameter D A of the filament A 9 ⁇ m or more it is possible to maintain the bending recovery required to produce the resilience preferred in clothing textiles, while simultaneously achieving the flexibility and shine-reducing effect provided by the ultrafine fibers with a small cross-sectional area made up of the segment B.
  • the larger the DA the higher the bending recovery and thus the higher the resilience, so that the DA is more preferably 10 ⁇ m or more, and even more preferably 11 ⁇ m or more.
  • the DA is too large, the filament A, which is a normal fiber, is easily scraped off due to friction, wear, etc., and the area of the generated flat portion increases, which may inhibit the shine suppressing effect of the filament B, which is an ultrafine fiber, so that the DA is preferably less than 30 ⁇ m, more preferably less than 25 ⁇ m , and even more preferably less than 20 ⁇ m.
  • the filament B is formed of two types of polymers that are combined in a side-by-side or eccentric core-sheath type in the cross section of the fiber.
  • filament B The two types of polymers that form filament B are combined in a side-by-side or eccentric core-sheath type with different centers of gravity as shown in Figure 5(b), so that when heat-treated, filament B bends significantly toward the polymer side that shrinks more, and this continues to create a coiled crimped form. Furthermore, by controlling the distance between the polymer centers of gravity, it is possible to create any crimped form, which is the object of the present invention to further suppress the shine phenomenon by forming fine gaps between the fibers, and to achieve a smooth feel by forming fine and complex irregularities on the textile surface.
  • the presence of minute and complex irregularities on the textile surface makes it possible to achieve high water-repellent performance when a water-repellent treatment is applied, as the contact area with water is reduced.
  • the composite structure of filament B may be either a side-by-side type or an eccentric core-sheath type. If it is a side-by-side type, the distance between the centers of gravity of the polymers is maximized, which improves the expression of crimp. If it is an eccentric core-sheath type, the wear resistance of the ultrafine fiber made of filament B can be further improved by coating a high-shrinkage polymer with poor wear resistance with a low-shrinkage polymer with excellent wear resistance.
  • the two types of polymers forming filament B are not particularly limited as long as they are a combination that produces a shrinkage difference upon heat treatment, but from the viewpoint of making it easier to control the occurrence of crimp, it is preferable to use a combination of polymers with different melting points.
  • the polymer with the lower melting point shrinks first when heat treatment is performed, making it easy to produce a shrinkage difference between the polymers.
  • the polymer forming filament A is the polymer with the lowest melting point of the polymers forming filaments A and B.
  • filament A which is a normal fiber
  • filament B which is an ultrafine fiber
  • increasing the gap between the fibers not only can this further enhance the suppression of the shine phenomenon, which is the object of the present invention, but it also forms more complex irregularities on the textile surface, combining fine irregularities caused by the crimping of filament B, which is an ultrafine fiber, with coarse irregularities caused by filament A, which is a normal fiber, and this can further accentuate the smooth texture and water-repellent performance when water-repellent processing is applied.
  • filament A is made up of two types of polymers
  • filament A is made up of two types of polymers combined in a side-by-side or eccentric core-sheath type as shown in Figure 6(a) in order to provide stretch performance to the textile when both filaments A and B have crimps, and that one of the two types of polymers is the polymer with the lowest melting point among the polymers that make up filaments A and B.
  • the area ratio of low melting point polymer to high melting point polymer is in the range of 70/30 to 30/70 (low melting point polymer/high melting point polymer). If the area ratio is in this range, the low melting point polymer is not affected by texture hardening due to clogging when it shrinks highly during heat treatment, and the crimp morphology due to shrinkage difference can be fully expressed, and larger interfiber voids can be obtained.
  • the cross-sectional shape of filament B is not limited, but from the viewpoint of forming a fiber form having minute gaps between the fibers by inducing crimping in filament B, which is an ultrafine fiber, after splitting filament B, it is preferable that the cross-sectional shape of filament B be flat, as shown in Figure 5(b).
  • flat refers to a long and narrow shape when viewed from above, and more specifically, to filaments with a “flatness” of 1.1 or more, as described below.
  • the cross-sectional shape of filament B is flattened, which increases the bulk in the long axis direction, thereby maximizing the void effect caused by the expression of crimp, and the smooth feel due to the fine and complex unevenness of the textile surface and the water-repellent performance when water-repellent processing is applied can be more prominent.
  • the flatness is preferably 6.0 or less, more preferably 5.0 or less, and even more preferably 4.0 or less.
  • the flatness of the segments is determined by the following method.
  • the multifilament extracted from the textile is embedded in an embedding agent such as epoxy resin, and an image is taken of the fiber cross section perpendicular to the fiber axis with a scanning electron microscope (SEM) at a magnification that allows the multifilament to be observed.
  • an embedding agent such as epoxy resin
  • the captured image is analyzed using image analysis software, and the long axis is taken as the straight line connecting the two most distant points (a1, a2) among any points on the outer periphery of the filament, as shown in Figure 5 (b), and the short axis is taken as the straight line connecting the intersection point (b1, b2) of the outer periphery of the fiber with the straight line passing through the midpoint of the long axis and perpendicular to the long axis, and the value obtained by dividing the length of the long axis by the length of the short axis is calculated and rounded to one decimal place to obtain the flatness. Note that if there are multiple filaments of the same type in the multifilament, the simple number average of the flatnesses obtained for all filaments of the same type is calculated and the value rounded to one decimal place is used.
  • the cross-sectional shape of filament A is not limited, but from the viewpoint of being able to reduce flat areas when the textile is worn, even when filament A, which is a normal fiber, is worn, it is preferable that the cross-sectional shape of filament A is a multi-lobe cross section having three or more protrusions on the periphery as shown in Figure 5 (a).
  • the number of protrusions is more preferably five or more, and even more preferably seven or more.
  • the number of protrusions is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
  • the polymer used in this embodiment is preferably a thermoplastic polymer because of its excellent processability.
  • a thermoplastic polymer for example, a polymer group such as polyester, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polymethyl methacrylate, polyphenylene sulfide, and copolymers thereof are preferable.
  • all of the thermoplastic polymers used in this embodiment are the same polymer group and copolymers thereof.
  • thermoplastic polymer used for the composite fiber and multifilament is a polyester or polyamide polymer group and copolymers thereof, and among them, polyethylene terephthalate and copolymers thereof are even more preferable because they provide a moderate resilience due to their high bending recovery.
  • the use of plant-derived biopolymers and recycled polymers in this embodiment is also suitable from the perspective of reducing the environmental impact. Therefore, the polymers used in this embodiment described above can be recycled polymers that have been recycled using any of the methods of chemical recycling, material recycling, and thermal recycling.
  • polyester-based or polyamide-based polymers and their copolymers are preferred from the viewpoint of obtaining good color development when dyed, and among these, recycled polyethylene terephthalate and its copolymers are even more suitable because they provide a moderate bounce due to their high bending recovery.
  • the polymer may also contain various additives such as inorganic compounds such as titanium oxide, silica, and barium oxide, colorants such as carbon black, dyes, and pigments, flame retardants, fluorescent brighteners, antioxidants, and ultraviolet absorbers.
  • inorganic compounds such as titanium oxide, silica, and barium oxide
  • colorants such as carbon black, dyes, and pigments, flame retardants, fluorescent brighteners, antioxidants, and ultraviolet absorbers.
  • titanium oxide into the polymer.
  • the titanium oxide in the fiber diffusely reflect light, thereby improving the quality of appearance by suppressing uneven appearance (glare) caused by increases and decreases in reflection depending on the angle of incidence of light, but the titanium oxide inside the fiber also provides functionality such as anti-transparency and UV protection.
  • the content of titanium oxide in the composite fiber is preferably 0.5 mass% or more, more preferably 1.0 mass% or more, and even more preferably 3.0 mass% or more.
  • the content of titanium oxide in the fiber is preferably 10.0 mass% or less.
  • a combination of polymers with different melting points refers to a combination of polymers whose melting points differ by 10°C or more from a group of melt-moldable thermoplastic polymers such as polyesters, polyethylenes, polypropylenes, polystyrenes, polyamides, polycarbonates, polymethyl methacrylates, and polyphenylene sulfide, and their copolymers, and a combination of polymers whose melting points differ by 5°C or more from a group of the same polymers with the same bonds in the main chain, such as polyesters with ester bonds and polyamides with amide bonds.
  • a group of melt-moldable thermoplastic polymers such as polyesters, polyethylenes, polypropylenes, polystyrenes, polyamides, polycarbonates, polymethyl methacrylates, and polyphenylene sulfide, and their copolymers
  • polymer combinations from the same polymer group in which the bonds present in the main chain are the same, such as polyesters with ester bonds and polyamides with amide bonds.
  • Combinations of low-melting point polymers and high-melting point polymers in the same polymer group include, for example, polyester-based combinations such as copolymerized polyethylene terephthalate/polyethylene terephthalate, polypropylene terephthalate/polyethylene terephthalate, polybutylene terephthalate/polyethylene terephthalate, thermoplastic polyurethane/polyethylene terephthalate, polyester-based elastomer/polyethylene terephthalate, polyester-based elastomer/polybutylene terephthalate, polyamide-based combinations such as nylon 6 or 66/nylon 610, nylon 6-nylon 66 copolymer/nylon 6 or 610, PEG copolymerized nylon 6/nylon 6 or 610, thermoplastic polyurethane/nylon 6 or 610, and polyolefin-based combinations such as ethylene-propylene rubber finely dispersed polypropylene/polypropylene, and propylene
  • the polymers having different melting points are a combination of polyesters or polyamides, and among these, a combination of copolymerized polyethylene terephthalate/polyethylene terephthalate as the polyester is a particularly preferable combination because it provides a moderate resilience due to its high bending recovery.
  • examples of the copolymerized components in the copolymerized polyethylene terephthalate include succinic acid, adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, maleic acid, phthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid.
  • succinic acid adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, maleic acid, phthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid.
  • the multifilament of this embodiment has a fiber form in which normal fibers and ultrafine fibers are uniformly mixed, which reduces the area of flat parts that occur due to friction, wear, etc. Furthermore, the ultrafine fibers have low bending rigidity, which improves flexibility, while the normal fibers have high bending recovery, which maintains a resilient feel, resulting in a textile that combines friction resistance and texture not found in conventional materials.
  • the ultrafine fibers have shrinkage, the steric hindrance caused by this shrinkage creates tiny gaps between the fibers, allowing the friction surface to move flexibly without being fixed, further increasing resistance to friction and significantly improving shine resistance.
  • the ultrafine fibers with shrinkage are arranged on the surface, fine and complex irregularities are formed on the surface of the textile, giving it a smooth feel and, when a water-repellent finish is applied, providing high water-repellent performance.
  • the multifilament of this embodiment can be used in various textiles such as nonwoven fabrics and woven and knitted fabrics, but from the viewpoint of suitability for the above-mentioned clothing applications, it is preferable that the multifilament of this embodiment be used as a part of a woven or knitted fabric.
  • the weave of the woven or knitted fabric of the present invention is not particularly limited, and examples of the weave in the case of a woven fabric include plain weave, twill weave, satin weave, variation plain weave, variation twill weave, variation satin weave, variegated weave, patterned weave, one-sided overlap weave, double weave, multiple weave, warp pile weave, weft pile weave, and twill weave.
  • Examples of the knitted fabric include circular knit, weft knit, warp knit (including tricot knit and raschel knit), pile knit, plain knit, jersey knit, rib knit, smooth knit (double-sided knit), rubber knit, pearl knit, Denbigh weave, cord weave, atlas weave, chain weave, and insertion weave.
  • Any weave is acceptable for both woven and knitted fabrics, but a weave that is more likely to produce unevenness, such as a twill weave, is preferable compared to a plain weave, because the multifilament of this embodiment is more likely to shrink and fine and complex unevenness is more likely to be formed on the surface of the fabric.
  • a weave in which the multifilament of this embodiment appears more on the surface is preferable.
  • the total cover factor (CF) of the warp and weft directions is preferably 1000 to 3500.
  • a CF of 1000 or more reduces voids at the weave points, making it possible to obtain a highly durable fabric that is less susceptible to pilling and abrasion. From this perspective, a CF of 1500 or more is more preferable.
  • the CF is 3500 or less, the fine and complex irregularities of the multifilament described above will not be lost due to excessive binding force from the weaving points, and the shine caused by friction with other materials when worn can be suppressed, a soft yet smooth feel can be obtained, and high water repellency can be achieved when a water repellent finish is applied. From this perspective, a CF of 2800 or less is more preferable.
  • the total cover factor (CF) referred to here is a value obtained by measuring the warp density and weft density of a woven fabric in a 2.54 cm section in accordance with JIS L1096:2010 8.6.1 and calculating the value from the formula: warp weave density [pieces/2.54 cm] ⁇ (total warp fineness [dtex]) 1/2 + weft weave density [pieces/2.54 cm] ⁇ total weft fineness [dtex]) 1/2 .
  • the woven or knitted fabric of this embodiment contains a multifilament consisting of two types of filaments A and B, with one or more filaments B present between any two filaments A in the multifilament, with filament B having a smaller fiber diameter than filament A, being formed from two types of polymers combined in a side-by-side or eccentric core-sheath type, and being subjected to a water-repellent treatment.
  • the presence of one or more filaments B between any two filaments A means that filaments A and B are uniformly mixed.
  • a cross section perpendicular to the length direction and perpendicular to the fiber axis direction of the filaments is photographed with a scanning electron microscope (SEM) at a magnification at which 15 or more filaments including two or more filaments A can be observed.
  • SEM scanning electron microscope
  • the photographed image is analyzed using image analysis software to draw circumscribing circles R1 and R2 for any two filaments A as shown in Figure 4, and one or more filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing circles (R1 and R2) of the two circumscribing circles.
  • one or more filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing circles (R1 and R2) of the two circumscribing circles.
  • filament B which has a smaller fiber diameter than filament A, between any two filaments A in the multifilament results in a fiber form in which filament A, which is a normal fiber, and filament B, which is an ultrafine fiber, are uniformly mixed in the multifilament.
  • the two types of polymers that form filament B are combined in a side-by-side type or eccentric core-sheath type with different centers of gravity as shown in Figure 5(b), so that when heat treatment is applied, filament B is greatly curved toward the polymer side that shrinks highly, and this continues to create a coil-like crimped form.
  • the crimped ultrafine fibers and normal fibers are mixed and arranged on the surface layer, and fine and complex irregularities are formed on the surface of the textile, and when water-repellent processing is applied, the contact area with water is reduced, resulting in high water-repellent performance.
  • the water-repellent woven or knitted fabric is a woven or knitted fabric that has substantial water-repellent properties, and examples thereof include a woven or knitted fabric in which the water droplets slide off the surface of the woven or knitted fabric at an angle of less than 90 degrees.
  • the woven or knitted fabric of the present invention is made of polyolefin, it has sufficient water-repellent properties without the addition of a water-repellent agent, and is a water-repellent woven or knitted fabric as is.
  • the woven or knitted fabric is made of polyester or polyamide, which are preferably used for clothing applications, it is preferable to add a water-repellent agent to the surface of the woven or knitted fabric, since sufficient water-repellent properties cannot be obtained as is.
  • the water-repellent treatment is performed so that at least one side of the woven or knitted fabric has water-repellent properties. It is possible to select appropriately as needed whether to perform the water-repellent treatment on only one side that requires water repellency, or on both sides so that they have water-repellent properties.
  • the water repellent When a water repellent is applied to a woven or knitted fabric to perform a water repellent treatment, the water repellent may be fluorine-based or non-fluorine-based (e.g., silicone-based, hydrocarbon-based, or any other water repellent).
  • fluorine-based water repellents made of fluorine compounds having perfluoroalkyl groups in which two or more hydrogen atoms of the alkyl group are replaced with fluorine atoms, and non-fluorine-based water repellents that do not contain fluorine elements can be used.
  • C6 fluorine-based water repellents in which the perfluoroalkyl group has six or fewer carbon atoms, or non-fluorine-based water repellents, and from the viewpoint of recyclability, it is more preferable to use non-fluorine-based water repellents so that the woven or knitted fabric does not substantially contain fluorine elements.
  • substantially free of elemental fluorine means that the fluorine content is below the detection limit of 25 ng/g or less as measured by combustion ion chromatography.
  • non-fluorine-based water repellents include silicone-based water repellents that are primarily made up of silicone compounds, and hydrocarbon-based water repellents such as paraffin-based water repellents that are primarily made up of paraffin compounds.
  • the amount of water repellent applied is 0.1 to 1 mass %. If the amount of water repellent applied is increased, not only will the fibers be fixed together by the water repellent, hardening the texture, but the water repellent will also fill in the gaps between the irregularities, making the texture smoother. On the other hand, if the amount of water repellent applied is small, the water repellency will not be fully expressed, and from these perspectives, the amount of water repellent applied is more preferably 0.2 to 0.8 mass %, and particularly preferably 0.3 to 0.5 mass %.
  • a mixture of ultrafine fibers with crimp and normal fibers is arranged on the surface, forming fine and complex irregularities on the textile surface, which allows the fabric to exhibit excellent water-repellent properties similar to the lotus leaf effect when water droplets are dropped onto the woven or knitted fabric surface.
  • the water-repellent properties are preferably such that the water droplet sliding angle, which indicates the ability to remove water droplets, is 1 to 20 degrees.
  • the water droplet sliding angle referred to here is the angle at which the water droplet begins to slide down when a water droplet is gently dropped onto the surface of a woven or knitted fabric attached flat on a horizontal plate and the plate is gently tilted at a uniform speed; the smaller the water droplet sliding angle, the better the water droplet removal ability.
  • the water droplet sliding angle refers to the tilt angle (°) at which the droplet slides down when 20 ⁇ L of 20°C water is placed on the surface of the woven or knitted fabric using a solid-liquid interface analyzer (DropMaster 700, manufactured by Kyowa Interface Science Co., Ltd.) and the device is gently tilted from 0 degrees at a uniform speed (approximately 1 degree/second) in 1 degree increments.
  • the water droplet sliding angle is 1 to 20 degrees, when used in clothing, for example, water droplets are less likely to remain on the woven or knitted fabric when worn, and excellent water droplet removal properties can be obtained without causing discomfort due to wetness, etc. From this perspective, the smaller the water droplet sliding angle, the more unlikely it is that water droplets will remain on the woven or knitted fabric when worn, and extremely high water droplet removal properties can be obtained, so a water droplet sliding angle of 1 to 15 degrees is more preferable, and a water droplet sliding angle of 1 to 10 degrees is particularly preferred as it provides super-water repellency that exceeds that of lotus leaves in nature.
  • the difference in the water droplet sliding angle before and after 20 washing and drying cycles is 0 to 20 degrees for at least the water-repellent woven or knitted fabric of the present invention.
  • the difference in the water droplet sliding angle before and after 20 cycles of washing and drying means the absolute value of the water droplet sliding angle after 20 cycles of washing according to JIS L1930-2014-C4M method and drying according to method A (line drying) for a woven or knitted fabric that has been at least water-repellent treated according to the present invention, minus the water droplet sliding angle before washing and drying.
  • the difference in water droplet sliding angle before and after 20 repeated washing and drying cycles is 0 to 20 degrees, excellent water droplet removal properties can be obtained for the long term without discomfort due to wetness, etc., and the material can be used suitably as casual clothing. Furthermore, if the difference is 0 to 10 degrees, it can be used suitably as sports clothing and uniform clothing, which require excellent durable water repellency for use in harsh environments, and is therefore considered to be in the more preferable range.
  • various methods can be used, such as a method of separating normal fibers and ultrafine fibers from composite fibers, a method of mixing normal fibers and ultrafine fibers that have been spun separately using an air nozzle, or a spinning blending method in which normal fibers and ultrafine fibers are discharged from the same spinneret and wound up simultaneously.
  • the melt viscosity ratio of the polymers used is set to less than 5.0 and the difference in solubility parameter values to less than 2.0, since this allows a stable formation of a composite polymer flow and allows the production of fibers with a good composite cross section.
  • composite spinneret used in producing the composite fiber of this embodiment made of two or more types of polymers for example, the composite spinneret described in JP 2011-208313 A is preferably used.
  • the composite spinneret of the present invention shown in Figure 12 is assembled into a spinning pack with three main components stacked from the top: a metering plate 1, a distribution plate 2, and a discharge plate 3, and is used for spinning.
  • Figure 12 shows an example in which three types of polymers, A polymer, B polymer, and C polymer, are used.
  • a polymer, B polymer, and C polymer are used.
  • the metering plate 1 measures and introduces the amount of polymer per each discharge hole and each distribution hole
  • the distribution plate 2 controls the composite cross section and its cross-sectional shape in the cross section of the single fiber
  • the discharge plate 3 compresses the composite polymer flow formed by the distribution plate 2 and discharges it.
  • the polymer flow thus formed by the distribution plate 2 is contracted by the discharge plate 3 and discharged.
  • the composite fiber and multifilament of this embodiment can be spun by melt spinning, which is intended to produce long fibers, wet and dry-wet solution spinning, or melt-blowing and spunbonding, which are suitable for obtaining sheet-like fiber structures. From the viewpoint of increasing productivity, however, melt spinning is preferred.
  • melt spinning is preferred.
  • the spinning temperature in this case is preferably set to a temperature at which the polymers used, mainly those with high melting points or high viscosity, exhibit fluidity. The temperature at which this fluidity is exhibited varies depending on the molecular weight, but stable production is possible when it is set between the melting point of the polymer and melting point + 60°C.
  • a discharge rate per hole in the spinneret of 0.1 g to 10 g/min/hole allows for stable production.
  • the take-up speed of the roller during spinning is preferably about 500 to 6000 m/min, and can be changed depending on the physical properties of the polymer and the purpose of use of the fiber.
  • the take-up speed it is preferable to set the take-up speed to 500 to 4000 m/min and then draw the fibers, since this not only promotes uniaxial orientation of the fibers, but also allows the occurrence of shrinkage to be controlled by the thermal contraction difference resulting from the stress difference during drawing between the composite polymers and the orientation difference during drawing.
  • the fiber When stretching, for example, in a stretching machine consisting of one or more pairs of rollers, if the fiber is made of a polymer that exhibits thermoplasticity and can be melt-spun, it is stretched smoothly in the fiber axis direction by the peripheral speed ratio between the first roller set to the preheating temperature and the second roller set to the crystallization temperature, and then heat-set by the second roller and wound up.
  • the upper limit of the preheating temperature is preferably a temperature at which the fiber does not spontaneously elongate during the preheating process, causing yarn path disturbance.
  • this preheating temperature is usually set to about 80 to 95°C.
  • the dynamic viscoelasticity measurement (tan ⁇ ) of the composite fiber is performed, and a temperature equal to or higher than the peak temperature on the high-temperature side of the obtained tan ⁇ can be selected as the preheating temperature.
  • the spun composite fiber and multifilament may be stretched after being wound up, or may be stretched immediately after spinning without being wound up, but it is more preferable to carry out yarn processing that involves stretching.
  • yarn processing By carrying out yarn processing, the unevenness of the textile surface becomes more complex, which improves the resistance to friction, texture, and water repellency that are the features of the present invention.
  • Highly oriented undrawn yarn has a structure with oriented amorphous and moderate crystal nuclei, has a fast crystallization rate, and is suitable for yarn processing because it can prevent yarn breakage by preventing fusion in the heater and can suppress fuzz due to a decrease in drawing tension.
  • Methods for producing such highly oriented undrawn yarn vary slightly depending on the fiber diameter, polymer type, and viscosity, but in the studies of the present inventors, a composite fiber with good yarn processability can be obtained by selecting a winding speed during spinning from the range of 2000 to 4000 m/min.
  • the yarn processing is not particularly limited as long as it is a normal yarn processing technique such as false twist processing or non-uniform stretch processing, but from the viewpoint of changing the crimp form into a non-uniform form and making the resulting feel and texture more complex, false twist processing and non-uniform stretch processing are more preferable.
  • the method of false twisting is not particularly limited as long as it is a commonly used method, but considering productivity, it is preferable to use a friction false twist machine using a disk or belt. False twisting creates a multiple crimp form that combines shrinkage difference shrinkage and mechanical crimp imparted by false twisting, making the unevenness of the textile surface more complex and improving the resistance to friction, texture, and water repellency that are the features of this invention.
  • the false twist number T (unit: turns/m), which is the number of twists of the yarn bundle in the twisting region, is determined according to the total fineness Df (unit: dtex) of the yarn bundle after false twist processing. It is preferable to set the false twist conditions, such as the rotation speed and processing speed of the twisting mechanism, so as to satisfy the following condition. 20000/ Df0.5 ⁇ T ⁇ 40000/ Df0.5
  • the false twist number T here is measured by the following method. That is, a yarn bundle running in the twisting area of the false twist process is sampled at a length of 50 cm or more so as not to untwist just before the twister. The sampled yarn sample is then attached to a twist detector, and the twist number is measured by the method described in JIS L1013 (2010) 8.13, which is the false twist number T. When the false twist number satisfies the above conditions, a multiple crimp form is achieved in which the crimp due to shrinkage difference and the mechanical crimp imparted by the false twist process are combined.
  • the draw ratio here is calculated as Vd/V0, using the peripheral speed V0 of the roller that supplies the yarn to the twisting region and the peripheral speed Vd of the roller installed immediately after the twisting mechanism.
  • Vd/V0 can be set to 0.9 to 1.4 times
  • Vd/V0 can be set to 1.2 to 2.0 times, and drawing can be performed simultaneously with the false twisting process.
  • the false twisting temperature in the range of Tg + 50 to Tg + 150°C, based on the Tg of the polymer with the higher Tg in the composite polymers.
  • the false twisting temperature here means the temperature of the heater installed in the twisting region.
  • non-uniform stretching it is also preferable to use non-uniform stretching to obtain thick and thin fibers with stretched and unstretched parts randomly arranged in the fiber axis direction, by performing stretching at a stretch ratio that does not exceed the natural stretch ratio of the composite fiber.
  • non-uniform stretching in addition to the difference in dyeability between the single yarns, differences in dyeability also occur between the stretched and unstretched parts, so that the color shading is emphasized, and the crimp form differs between the stretched and unstretched parts, making it possible to express a heathered look and texture like natural materials when made into a fabric.
  • false twisting is performed consecutively after non-uniform stretching, a material that combines heathered look and texture due to multiple crimp forms can be obtained, so this is considered to be a more preferable range.
  • fibers may be mixed with the composite fiber and multifilament of one embodiment of the present invention before or after yarn processing.
  • the method of mixing is not particularly limited, and general mixing methods such as interlace mixing and taslan mixing can be used.
  • the sea component may be composed of a known polymer that is soluble in a solvent or hot water, and the composite fiber may be immersed in a solvent in which the sea component polymer is soluble to remove the sea component polymer.
  • the sea component polymer is a copolymerized polyethylene terephthalate or polylactic acid in which 5-sodium sulfoisophthalic acid or polyethylene glycol is copolymerized
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution may be used.
  • a method for treating the composite fiber of this embodiment with an alkaline aqueous solution for example, a woven or knitted fabric or a fiber structure made of the composite fiber may be immersed in the alkaline aqueous solution. At this time, it is preferable to heat the alkaline aqueous solution to 50°C or higher, since this can hasten the progress of hydrolysis. Furthermore, if a fluid dyeing machine or the like is used, it is preferable from an industrial point of view, since a large amount can be treated at once.
  • the multifilament of this embodiment When the multifilament of this embodiment is used as a textile product, after the composite fiber and multifilament of this embodiment are made into a textile, water repellency, antistatic, flame retardant, moisture absorption, antibacterial, softening, and other known post-processing can be used in combination as necessary.
  • water repellency, antistatic, flame retardant, moisture absorption, antibacterial, softening, and other known post-processing can be used in combination as necessary.
  • the presence of fine and complex irregularities on the textile surface reduces the contact area with water when water repellent processing is applied, and therefore water repellent processing is particularly preferred as a post-processing step.
  • the presence of fine and complex irregularities on the textile surface can also improve the washing durability of functional processing agents such as water repellency, antistatic, flame retardant, moisture absorption, antibacterial, and softening.
  • fluorine-based or non-fluorine-based water-repellent agents e.g., silicone-based, hydrocarbon-based, or any other water-repellent agent
  • the water-repellent treatment process is not particularly limited to padding, spraying, coating, etc., but the padding method is preferred in order to allow the water-repellent agent to penetrate deep into the woven or knitted fabric.
  • a crosslinking agent in combination with the water repellent.
  • the crosslinking agent at least one of melamine-based resins, blocked isocyanate-based compounds (polymerization), glyoxal-based resins, and imine-based resins can be used, and there is no particular limitation on the crosslinking agent.
  • the method of weaving or knitting the woven or knitted fabric of which the multifilament of this embodiment is a part is not particularly limited, and the fabric can be woven or knitted by a normal method.
  • the woven or knitted fabric is a woven fabric
  • examples of the method include a water jet loom, an air jet loom, a rapier loom, and a jacquard loom.
  • examples of the method include a circular knitting machine and a warp knitting machine.
  • A. Melt Viscosity of Polymer The chip-shaped polymer was dried to a moisture content of 200 ppm or less using a vacuum dryer, and the melt viscosity was measured using a Capillograph manufactured by Toyo Seiki Co., Ltd. The measurement temperature was the same as the spinning temperature, and the time from the sample being put into the heating furnace in a nitrogen atmosphere to the start of the measurement was 5 minutes. The value at a shear rate of 1216 s -1 was evaluated as the melt viscosity of the polymer.
  • the short axis is taken as a straight line connecting the intersection point (b1, b2) of the periphery of the fiber with a straight line that passes through the midpoint of the long axis and intersects the long axis at right angles.
  • the value obtained by dividing the length of the long axis by the length of the short axis is calculated, and the value is rounded to one decimal place.
  • the simple number average of the flatnesses obtained for all the segments of the same type is calculated, and the value rounded to one decimal place is adopted.
  • Filament flatness A multifilament consisting of 10 or more filaments extracted from a textile is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) manufactured by Hitachi at a magnification at which the multifilament can be observed. The image taken is analyzed using computer software WinROOF manufactured by Mitani Shoji, and as shown in FIG.
  • SEM scanning electron microscope
  • a straight line connecting the two most distant points (a1, a2) among any points on the outer periphery of the filament is taken as the long axis
  • a straight line connecting the intersection point (b1, b2) of the outer periphery of the fiber with a straight line passing through the midpoint of the long axis and perpendicular to the long axis is taken as the short axis
  • the value obtained by dividing the length of the long axis by the length of the short axis is calculated, and the value rounded off to the first decimal place is taken as the flatness.
  • a simple number average of the flatnesses obtained for all filaments of the same type is calculated, and the value rounded off to the first decimal place is adopted.
  • Filament fiber diameter (D A , D B ) A multifilament consisting of 10 or more filaments extracted from a textile is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) manufactured by Hitachi at a magnification at which the multifilament can be observed. The image is analyzed using computer software WinROOF manufactured by Mitani Shoji to measure the cross-sectional area of one filament present in the fiber cross section of the multifilament, and the diameter calculated as a perfect circle is measured in ⁇ m units to one decimal place, and the value rounded off to the nearest decimal place is taken as the fiber diameter ( ⁇ m).
  • the simple number average of the fiber diameters calculated for all filaments of the same type is calculated, and the value rounded off to the nearest decimal place is adopted.
  • ⁇ Combustion and absorption conditions Electric furnace temperature: Inlet 900°C, Outlet 1000°C Gas: Ar/O 2 200 mL/min, O 2 400 mL/min Absorption solution: H 2 O 290 ⁇ g/mL, internal standard Br 2 ⁇ g/mL Absorption volume: 10 mL ⁇ Ion chromatography/anion analysis conditions> Mobile phase: 2.7 mmol/L Na2CO3 / 0.3 mmol/L NaHCO3 Flow rate: 1.50 mL/min Detector: Electrical conductivity detector Injection volume: 100 ⁇ L
  • the fabric obtained was subjected to scouring, alkali treatment, moist heat treatment, heat setting, dyeing, and water repellency in this order, and then evaluated for three textures, namely softness, resilience, and smoothness, using the following methods.
  • the average value of the difference between the bending moment (gf cm/cm) per unit width of the curvatures of 0.5 cm -1 and 1.5 cm -1 divided by the curvature difference of 1 cm -1 and the difference between the bending moment (gf cm/cm) per unit width of the curvatures of -0.5 cm -1 and -1.5 cm -1 divided by the curvature difference of 1 cm -1 was calculated. This operation was performed three times per location, and a simple number average of the results of performing this for a total of 10 locations was calculated, and the value rounded off to the fourth decimal place and multiplied by 100 was taken as the bending hardness B x 10 -2 (gf cm 2 /cm).
  • the resilience was judged into four stages based on the following criteria from the obtained bending recovery 2HB x 10 -2 (gf cm/cm). S: Excellent resilience (bending recovery 2HB ⁇ 10 ⁇ 2 ⁇ 0.5) A: Good resilience (0.5 ⁇ bending recovery 2HB ⁇ 10 ⁇ 2 ⁇ 1.0) B: Resilient (1.0 ⁇ bending recovery 2HB ⁇ 10 ⁇ 2 ⁇ 1.5) C: Poor resilience (1.5 ⁇ bending recovery 2HB ⁇ 10 ⁇ 2 ).
  • the fabric obtained was subjected to scouring, alkali treatment, wet heat treatment, heat setting, dyeing, and water-repellent treatment in this order, and then the two functions of water repellency and stretchability were evaluated using the following methods.
  • the stretchability was evaluated based on the obtained elongation rate in three stages according to the following criteria. S: Excellent stretchability (elongation rate 30 or less) A: Good stretchability (20 ⁇ elongation rate ⁇ 30) B: Stretchable (10 ⁇ elongation rate ⁇ 20) C: Poor stretchability (elongation rate ⁇ 10).
  • Water repellency (water drop sliding angle) Water repellency was measured by placing 20 ⁇ L of water at 20° C. on a 20 cm ⁇ 20 cm fabric surface on a horizontal platform using a solid-liquid interface analyzer (DropMaster 700, manufactured by Kyowa Interface Science Co., Ltd.), gently tilting the fabric from 0 degrees at a constant speed (approximately 1 degree/sec) at 1 degree increments, and determining the inclination angle (°) at which the droplet slid down. This operation was performed at any five points on the fabric, and the simple number average of the results was calculated, and the value rounded off to the nearest whole number was used as the water droplet sliding angle (°).
  • a solid-liquid interface analyzer DropMaster 700, manufactured by Kyowa Interface Science Co., Ltd.
  • Water repellency was evaluated based on the obtained water droplet sliding angle in three stages according to the following criteria. S: Excellent water repellency (water drop sliding angle ⁇ 10) A: Good water repellency (10 ⁇ water drop sliding angle ⁇ 15) B: Water repellent (15 ⁇ water drop sliding angle ⁇ 20) C: Poor water repellency (water drop sliding angle ⁇ 20).
  • CFA warp weave density [pieces/2.54 cm] ⁇ (total warp fineness [dtex]) 1/2
  • CFB weft weave density [pieces/2.54 cm] ⁇ (total weft fineness [dtex]) 1/2 .
  • the obtained woven fabric was subjected to scouring, alkali treatment, moist heat treatment, heat setting, dyeing treatment, and water repellent treatment in this order, and then the two surface qualities of shine resistance and abrasion resistance were evaluated using the following methods.
  • the evaluation sample was rubbed, and the glossiness of the sample after rubbing was visually compared with the sample under a D65 light source, and a grade rating of 1 to 5 was performed in increments of 1 grade. In addition, if it was less glossy than grade 3 and more glossy than grade 5, it was determined as grade 4, and if it was less glossy than grade 1 and more glossy than grade 3, it was determined as grade 2. From the results of the obtained grade ratings, the shine resistance was rated in four stages based on the following criteria. S: Excellent shine resistance (Grade: Grade 5) A: Good shine resistance (grade: grade 4) B: Resistant to shine (Grade: Grade 2, Grade 3) C: Poor shine resistance (grade: Grade 1).
  • Abrasion resistance was measured by using an appearance retention tester (manufactured by Daiei Scientific Instruments Co., Ltd.) to wet a woven fabric cut into a circle with a diameter of 6 cm with distilled water and attach it to a disk. A further woven fabric cut into a circle with a diameter of 11 cm was fixed on a horizontal plate while still dry.
  • the disk with the woven fabric wetted with distilled water attached was horizontally brought into contact with the woven fabric fixed on the horizontal plate, and the disk was moved circularly for 10 minutes at a load of 420 g and a speed of 85 rpm so that the center of the disk drew a circle with a diameter of 38 mm, causing friction between the two pieces of woven fabric.
  • the degree of discoloration of the woven fabric attached to the disk was graded from 1 to 5 in 0.5 grade increments using a gray scale for discoloration. From the results of the grades obtained, the abrasion resistance was graded in four stages based on the following criteria.
  • Example 1 As polymer 1, polyethylene terephthalate copolymerized with 8 mol% of 5-sodium sulfoisophthalic acid and 9 mass% of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233°C), as polymer 2, polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point: 232°C), and as polymer 3, polyethylene terephthalate (PET, melt viscosity: 30 Pa s, melting point: 254°C) were prepared.
  • SSIA-PEG copolymerized PET melt viscosity: 100 Pa s, melting point: 233°C
  • polymer 2 polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point:
  • polymer 1/polymer 2/polymer 3 were weighed out to a mass ratio of 20/40/40 and fed into a spin pack equipped with a composite spinneret as shown in Figure 12.
  • the fed polymers were discharged from the discharge holes to produce a sea-island composite fiber as shown in Figure 1(b), with polymer 1 located at z, polymer 2 located at x1 and y1, and polymer 3 located at x2 and y2.
  • the obtained composite fiber had, in the fiber cross section, eight flattened segments B (flatness 3.0) having a side-by-side composite structure consisting of y1 and y2 in Fig. 1(b) arranged around an eight-lobed segment A having a side-by-side composite structure consisting of x1 and x2 in Fig. 1(b).
  • the cross-sectional area S A per segment A was 167 ⁇ m 2 and the cross-sectional area S B per segment B was 13 ⁇ m 2 , and the segment B had a smaller cross-sectional area than the segment A, confirming that the composite fiber was the present invention.
  • a 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft.
  • the resulting fabric was scoured for 10 minutes in 80°C warm water containing a surfactant, and heated to 90°C using a 1% by mass aqueous solution of sodium hydroxide in a jet dyeing machine to remove over 99% of the easily soluble polymer, Polymer 1.
  • the fabric was then subjected to a wet heat treatment at 130°C for 30 minutes in the jet dyeing machine, and then heat set at 180°C for 1 minute with a tentering ratio of 5%.
  • the fabric was immersed in an aqueous solution containing a disperse dye (black) and dyeing assistants, and dyed at 130°C for 60 minutes, followed by rinsing with water.
  • the fabric was immersed in an aqueous solution containing a reducing cleaner, and reduced and cleaned at 80°C for 20 minutes, followed by rinsing with water and air drying.
  • the fabric was immersed in a treatment solution containing 4% by mass of "Neoseed” (registered trademark) NR-158 (Nicca Chemical Co., Ltd., non-fluorine (paraffin-based) water repellent, solid content 30%), 0.2% by mass of "Beckamin” (registered trademark) M-3 (DIC Corporation), 0.15% by mass of Catalyst ACX (DIC Corporation), 1% by mass of isopropyl alcohol, and 94.65% by mass of water, and squeezed out at a wringing rate of 60% with a mangle, then dried at 130°C for 2 minutes with a pin tenter, and cured at 170°C for 1 minute.
  • the obtained woven fabric was composed of a multifilament in which eight-lobed filament A having a side-by-side composite structure consisting of X1 and X2 in FIG. 6(a) and flat filament B having a side-by-side composite structure consisting of Y1 and Y2 in FIG. 6(b) were uniformly mixed.
  • the fiber diameter of filament A was 15 ⁇ m
  • the fiber diameter of filament B was 4 ⁇ m
  • filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
  • the woven fabric composed of the multifilament had a good resilience (bending recovery 2HB: 0.8 ⁇ 10 -2 gf ⁇ cm/cm (7.8 ⁇ 10 -2 mN ⁇ cm/cm)) and good flexibility (bending hardness B: 0.8 ⁇ 10 -2 gf ⁇ cm 2 /cm (7.8 ⁇ 10 -2 mN ⁇ cm 2 /cm)) because filament A, which is a normal fiber, and filament B , which is an ultrafine fiber, were uniformly mixed in the multifilament.
  • the ultrafine fiber filament B has a side-by-side composite structure and is therefore crimped, fine gaps are formed between the fibers due to steric hindrance caused by this crimping, and the friction surface is not fixed but can move flexibly, resulting in high resistance to friction and good shine resistance (shine resistance: grade 4) and abrasion resistance (discoloration: grade 3.5).
  • the ultrafine fibers having crimping are arranged on the surface layer, fine irregularities are formed on the surface of the fabric, giving it a good smooth feel (friction fluctuation: 1.7 x 10-2 ), and this was a woven fabric that combined resistance to friction and texture not found in conventional materials.
  • filament A also has a side-by-side composite structure, all filaments in the multifilament are crimped, resulting in good stretchability (elongation rate: 25%).
  • fine and complex irregularities are formed that combine the fine irregularities caused by the crimping of filament B, which is an ultrafine fiber, with the coarse irregularities caused by filament A, which is a normal fiber.
  • the fluorine content in the fabric measured by combustion ion chromatography is below 25 ng/g, which is below the detection limit, and yet the fabric contains a non-fluorine-based water repellent agent, and yet the fabric has good water repellency (water droplet sliding angle: 11°). The results are shown in the table.
  • Example 2 The procedure of Example 1 was followed except for changing the extrusion rate so that the cross-sectional area S A of the composite fiber segment A was 66 ⁇ m 2 , the cross-sectional area S B of the composite fiber segment B was 5 ⁇ m 2 (Example 2), and the cross-sectional area S A of the composite fiber segment A was 670 ⁇ m 2 , and the cross-sectional area S B of the composite fiber segment B was 50 ⁇ m 2 (Example 3).
  • Example 2 the cross-sectional area of the composite fiber segments A and B is reduced, and the fiber diameter of the filaments A and B of the multifilament that constitutes the resulting woven fabric is also reduced, improving the flexibility and shine resistance of the woven fabric.
  • the crimp loops that appear are also finer, so the unevenness formed on the woven fabric surface is also finer, and the contact area with water droplets is reduced, improving water repellency.
  • Example 3 the cross-sectional area of the composite fiber segments A and B increased, and the fiber diameter of the filaments A and B of the multifilament that constitutes the resulting woven fabric also increased, improving the resilience of the woven fabric.
  • the fiber diameter increased, the resulting crimp loops also became coarser, and the irregularities formed on the woven fabric surface also became coarser, improving the smooth feel.
  • the results are shown in the table.
  • Example 4 The same procedures as in Example 1 were carried out except that the cross-sectional shape of segment B was changed to a trilobal shape (flatness: 1.4) as shown in FIG. 2(a).
  • Example 4 irregularities were formed in filament B in the resulting woven fabric, amplifying the diffuse reflection of light and suppressing uneven gloss (glare) in the woven fabric. The results are shown in the table.
  • Example 5 The same operations as in Example 1 were carried out except that the cross-sectional shape of segment A was changed to a four-lobe shape as shown in FIG. 2(b) (Example 5) or a round shape as shown in FIG. 2(c) (Example 6).
  • Example 5 the resilience improved as the degree of irregularity of filament A in the resulting fabric increased.
  • the fiber diameter of filament B increased, the crimp loops that appeared also became coarser, and the unevenness formed on the fabric surface also became coarser, improving the smooth feel.
  • Example 6 the filament A in the resulting woven fabric was round, which not only reduced bending stiffness and improved flexibility, but also increased the distance between the centers of gravity of the polymers that make up filament A, improving crimp expression and improving stretchability. The results are shown in the table.
  • Example 7 The same procedures as in Example 1 were repeated except that polymer 2 was changed to high viscosity polyethylene terephthalate (high viscosity PET, melt viscosity: 300 Pa ⁇ s, melting point: 254°C) (Example 7) or polypropylene terephthalate (PPT, melt viscosity: 130 Pa ⁇ s, melting point: 231°C) (Example 8).
  • high viscosity PET melt viscosity: 300 Pa ⁇ s, melting point: 254°C
  • PPT polypropylene terephthalate
  • Example 7 the multifilaments constituting the resulting woven fabric were made only of PET without any copolymerization components, providing an excellent resilience.
  • Example 8 the rubber elasticity of PPT is also combined to give the resulting woven fabric a more flexible feel, and the crimp expression of filaments A and B is improved, so not only is the stretch function significantly improved, but the unevenness that appears on the fiber surface becomes more complex, improving the smooth feel and water repellency.
  • the results are shown in the table.
  • Example 9 The same procedure as in Example 8 was repeated except that the cross-sectional shape of segment B was changed to have an eccentric core-sheath type composite structure as shown in FIG. 1(c).
  • Example 9 the surface of filament B in the resulting woven fabric was coated with PET, suppressing wear of the PPT and providing good wear resistance. The results are shown in the table.
  • SSIA-PEG copolymerized PET melt viscosity: 100 Pa s, melting point: 233°C
  • polymer 2 polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point: 232°C)
  • the weight ratio of polymer 1/polymer 2/polymer 3 was measured to be 30/35/35, and the mixture was poured into a spin pack equipped with a known composite spinneret.
  • the polymers were discharged from the discharge hole to produce a composite structure such as the sea-island composite fiber shown in Figure 3(b), where polymer 1 is located at z, polymer 2 is located at y1, and polymer 3 is located at y2 in Figure 3(b).
  • the obtained composite fiber had 12 segments of one type arranged in the fiber cross section, each having a side-by-side composite structure consisting of y1 and y2 in Figure 3(b).
  • the cross-sectional area of each segment was 20 ⁇ m2.
  • a 2/1 twill fabric was obtained using the obtained composite fibers as warp and weft.
  • the obtained fabric was subjected to refining, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in that order under the same conditions as in Example 1, to obtain a fabric composed of one type of filament having a side-by-side composite structure consisting of Y1 and Y2 in Figure 11.
  • the fiber diameter of the filament was 5 ⁇ m.
  • Comparative Example 1 the fabric was made only of ultrafine filaments, which not only lacked a sense of resilience, but also flattened the fine irregularities formed on the fabric surface, impairing the smooth feel. The results are shown in the table.
  • the polymer 1/polymer 2 were weighed out to a mass ratio of 50/50 and poured into a spinning pack equipped with a known composite spinneret.
  • the incoming polymers were discharged from the discharge hole to produce a composite fiber as shown in Figure 11, with polymer 1 located at X1 and polymer 2 located at X2 in Figure 11.
  • a 2/1 twill fabric was obtained using the obtained composite fibers as warp and weft.
  • the obtained fabric was subjected to scouring, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in that order under the same conditions as in Example 1, to obtain a fabric composed of one type of filament having a side-by-side composite structure consisting of X1 and X2 in Figure 11.
  • the fiber diameter of the filament was 15 ⁇ m.
  • Comparative Example 2 the material consisted only of filaments, which are normal fibers, and thus not only did it lack flexibility, but it also had poor shine resistance due to the large area of flat areas caused by friction and wear of the fibers. The results are shown in the table.
  • the polymer 1/polymer 2 were weighed out to a mass ratio of 50/50 and poured into a spinning pack equipped with a known composite spinneret.
  • the incoming polymers were discharged from the discharge hole to produce a composite fiber as shown in Figure 11, with polymer 1 located at X1 and polymer 2 located at X2 in Figure 11.
  • a 55 dtex-72 filament composite fiber was produced using the same method as above, except for changing the number of nozzles in the composite spinneret.
  • the two types of composite fibers obtained were mixed using a known air nozzle, and then a 2/1 twill fabric was obtained as the warp and weft.
  • the resulting fabric was subjected to refining, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in that order under the same conditions as in Example 1, to obtain a fabric composed of multifilaments in which filament A having a side-by-side composite structure consisting of X1 and X2 in Figure 11 and filament B having a side-by-side composite structure consisting of Y1 and Y2 in Figure 11 were mixed.
  • the fiber diameter of filament A was 15 ⁇ m
  • the fiber diameter of filament B was 8 ⁇ m.
  • SSIA-PEG copolymerized PET melt viscosity: 100 Pa s, melting point: 233°C
  • polymer 2 polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point: 232°C)
  • the weight ratio of polymer 1/polymer 2/polymer 3 was measured to be 20/15/65, and the mixture was poured into a spin pack equipped with a composite spinneret as shown in Figure 12.
  • the polymers were discharged from the discharge hole to produce a composite structure such as the sea-island composite fiber shown in Figure 1(a) where polymer 1 is located at z, polymer 2 is located at y1, and polymer 3 is located at x1 and y2.
  • a 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft.
  • the resulting fabric was scoured for 10 minutes in 80°C warm water containing a surfactant, and heated to 90°C using a 1% by mass aqueous solution of sodium hydroxide in a jet dyeing machine to remove more than 99% of the easily soluble polymer, Polymer 1.
  • the fabric was then subjected to a wet heat treatment at 130°C for 30 minutes in the jet dyeing machine, followed by a heat set at 180°C for 1 minute with a tentering ratio of 5%.
  • the fabric was immersed in an aqueous solution containing a disperse dye (black) and dyeing assistants, and dyed at 130°C for 60 minutes, after which it was rinsed with water.
  • the fabric was immersed in an aqueous solution containing a reducing detergent, and reduced-cleaned at 80°C for 20 minutes, after which it was rinsed with water and air-dried.
  • the fabric was immersed in a treatment solution containing 4% by weight of "Neoseed” (registered trademark) NR-158 (Nicca Chemical Co., Ltd., non-fluorinated (paraffin-based) water repellent, solids content 30%), 0.2% by weight of "Beckamin” (registered trademark) M-3 (DIC Corporation), 0.15% by weight of Catalyst ACX (DIC Corporation), 1% by weight of isopropyl alcohol, and 94.65% by weight of water, and squeezed out with a mangle to a squeezing rate of 60%, then dried with a pin tenter at 130°C for 2 minutes and cured at 170°C for 1 minute.
  • the obtained woven fabric was composed of a multifilament in which eight-lobed filament A consisting of X1 in Fig. 5(a) and flat filament B consisting of Y1 and Y2 in Fig. 5(b) with a side-by-side composite structure (flatness of 3.0) were uniformly mixed.
  • the fiber diameter of filament A was 15 ⁇ m
  • the fiber diameter of filament B was 4 ⁇ m
  • filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
  • the woven fabric composed of the multifilament had a good resilience (bending recovery 2HB: 0.6 ⁇ 10 -2 gf ⁇ cm/cm (5.9 ⁇ 10 -2 mN ⁇ cm/cm)) and good flexibility (bending hardness B: 1.0 ⁇ 10 -2 gf ⁇ cm 2 /cm (9.8 ⁇ 10 -2 mN ⁇ cm 2 /cm)) because filament A, which is a normal fiber, and filament B , which is an ultrafine fiber, were uniformly mixed in the multifilament.
  • the ultrafine fiber filament B has a side-by-side composite structure and is therefore crimped, fine gaps are formed between the fibers due to steric hindrance caused by this crimping, and the friction surface is not fixed but can move flexibly, resulting in high resistance to friction and providing shine resistance (shine level: 6%) and abrasion resistance (discoloration: grade 4).
  • the ultrafine fibers having crimping are arranged on the surface layer, fine irregularities are formed on the surface of the woven fabric, giving it a smooth feel (friction fluctuation: 1.3 x 10-2 ), and this woven fabric combines friction resistance and texture, something not found in conventional materials.
  • Example 11 The procedures of Example 9 were repeated except that polymer 1/polymer 2/polymer 3 were weighed out to give a mass ratio of 20/65/15 and flowed into a spin pack equipped with the composite spinneret shown in FIG. 12 , and the flowed-in polymers were discharged from the discharge hole to obtain a sea-island composite fiber as shown in FIG. 1(a), in which polymer 1 was located at z, polymer 2 was located at x1 and y1, and polymer 3 was located at y2.
  • segment A of the composite fiber is formed only from low-melting point IPA copolymerized PET, and filament A of the multifilament constituting the resulting woven fabric shrinks highly during heat treatment, resulting in a difference in thread length between filament A and filament B, which results in coarse irregularities formed on the woven fabric surface and a good smooth feel.
  • the difference in thread length increases the gaps between the fibers, which reduces the area of flat parts caused by friction, wear, etc., and provides excellent shine resistance. The results are shown in the table.
  • nylon 6 (N6, melt viscosity: 190 Pa ⁇ s, melting point: 223°C) was prepared.
  • polymer 2 polyethylene terephthalate copolymerized with 7 mol% isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa ⁇ s, melting point: 232°C) was prepared.
  • polymer 3 polyethylene terephthalate (PET, melt viscosity: 30 Pa ⁇ s, melting point: 254°C) was prepared.
  • polymer 1/polymer 2/polymer 3 were weighed out to a mass ratio of 20/40/40 and fed into a spinning pack incorporating the composite spinneret shown in Figure 12.
  • the fed polymers were discharged from the discharge hole to produce a core-sheath composite fiber as shown in Figure 1(c), with polymer 1 located at x1, polymer 2 located at y1, and polymer 3 located at y2 in Figure 1(c).
  • a 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft.
  • the resulting fabric was scoured for 10 minutes in 80°C warm water containing a surfactant, then subjected to a wet heat treatment at 130°C for 30 minutes in a jet dyeing machine to separate segments A and B, after which it was heat set at 180°C for 1 minute with a tentering ratio of 5%.
  • the fabric was immersed in an aqueous solution containing a disperse dye (black) and dyeing assistants, and dyed at 130°C for 60 minutes, after which it was rinsed with water.
  • the fabric was immersed in an aqueous solution containing a reducing detergent, and reduced-cleaned at 80°C for 20 minutes, after which it was rinsed with water and air-dried.
  • the fabric was immersed in a treatment solution containing 4% by mass of "Neoseed” (registered trademark) NR-158 (Nicca Chemical Co., Ltd., non-fluorinated (paraffin-based) water repellent, solids content 30%), 0.2% by mass of "Beckamin” (registered trademark) M-3 (DIC Corporation), 0.15% by mass of Catalyst ACX (DIC Corporation), 1% by mass of isopropyl alcohol, and 94.65% by mass of water, and after squeezing the liquid out at a squeezing rate of 60% using a mangle, it was dried at 130°C for 2 minutes using a pin tenter and cured at 170°C for 1 minute.
  • the obtained fabric was composed of a multifilament in which eight-lobed filament A consisting of X1 in Figure 5(a) and flat filament B (flatness 3.0) having a side-by-side composite structure consisting of Y1 and Y2 in Figure 5(b) were uniformly mixed.
  • the fiber diameter of filament A was 16 ⁇ m and the fiber diameter of filament B was 4 ⁇ m, and filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
  • the fabric composed of this multifilament has excellent flexibility because filament A is made of nylon 6, which has low elasticity and a low melting point.
  • filament A shrinks highly when heat treated, a difference in thread length is created between filament A and filament B, which results in large irregularities on the surface of the fabric, giving the fabric a smooth feel.
  • the difference in thread length increases the gaps between the fibers, which reduces the area of flat areas caused by friction, wear, etc., giving the fabric excellent shine resistance. The results are shown in the table.
  • Example 13 The same operations as in Example 1 were carried out except that the 110 dtex-24 filament composite fiber obtained in Example 1 was false twisted at a twist ratio of 1.05 to form a 105 dtex-24 filament false twist textured yarn.
  • Example 13 the false twist processing improves the crimping property, which not only significantly improves the stretch function, but also improves the smooth feel and water repellency by making the unevenness on the fiber surface more complex. The results are shown in the table.
  • Example 14 As polymer 1, polyethylene terephthalate copolymerized with 8 mol % of 5-sodium sulfoisophthalic acid and 9 mass % of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233° C.) was prepared. As polymer 2, nylon 66 (N66, melt viscosity: 200 Pa s, melting point: 255° C.) was prepared. As polymer 3, nylon 610 (N610, melt viscosity: 80 Pa s, melting point: 225° C.) was prepared.
  • polymer 1/polymer 2/polymer 3 were weighed out to a mass ratio of 20/40/40 and fed into a spin pack equipped with a composite spinneret as shown in Figure 12.
  • the fed polymers were discharged from the discharge holes to produce a sea-island composite fiber as shown in Figure 1(b), with polymer 1 located at z, polymer 2 located at x1 and y1, and polymer 3 located at x2 and y2.
  • the obtained woven fabric was composed of a multifilament in which eight-lobed filament A having a side-by-side composite structure consisting of X1 and X2 in FIG. 6(a) and flat filament B having a side-by-side composite structure consisting of Y1 and Y2 in FIG. 6(b) were uniformly mixed.
  • the fiber diameter of filament A was 15 ⁇ m
  • the fiber diameter of filament B was 4 ⁇ m
  • filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
  • a 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft.
  • the resulting fabric was scoured in 80°C warm water containing a surfactant, and more than 99% of the easily soluble polymer, Polymer 1, was removed using a jet dyeing machine in warm water containing an aqueous sodium hydroxide solution.
  • the fabric was then subjected to a wet heat treatment at 110°C using a jet dyeing machine, and heat set at 180°C.
  • the fabric was immersed in an aqueous solution containing an acid dye (black) and dyeing assistants, and dyed at 100°C for 60 minutes, after which it was rinsed with water.
  • the fabric was immersed in an aqueous solution containing a fixing agent, and fixed at 80°C for 20 minutes, after which it was rinsed with water and air-dried.
  • the fabric was immersed in an aqueous solution containing 4% by weight of "Neoseed” (registered trademark) NR-158 (a non-fluorinated water-repellent agent manufactured by Nicca Chemical Co., Ltd.), a cross-linking agent, and a penetrating agent, and the fabric was squeezed out at a wringing rate of 60% using a mangle, after which it was dried at 130°C using a pin tenter and cured at 170°C.
  • "Neoseed” registered trademark
  • NR-158 a non-fluorinated water-repellent agent manufactured by Nicca Chemical Co., Ltd.
  • the obtained woven fabric was composed of a multifilament in which eight-lobed filament A consisting of X1 in Fig. 5(a) and flat filament B consisting of Y1 and Y2 in Fig. 5(b) with a side-by-side composite structure (flatness of 3.0) were uniformly mixed.
  • the fiber diameter of filament A was 16 ⁇ m
  • the fiber diameter of filament B was 4 ⁇ m
  • filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
  • the fabric made of this multifilament is made of low-elasticity nylon, so it has excellent flexibility, and because nylon is less likely to wear away when worn, it also has excellent shine resistance and abrasion resistance. The results are shown in the table.
  • the polymer 1/polymer 2 was weighed out to a mass ratio of 20/80 and poured into a spinning pack equipped with a known composite spinneret. The polymers were discharged from the discharge hole to produce a composite fiber as shown in Figure 3(a), with polymer 1 positioned at z and polymer 2 positioned at x1 and y1.
  • the obtained fabric was subjected to refining, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in this order under the same conditions as in Example 1, to obtain a fabric composed of a multifilament in which eight-lobed filaments A consisting of X1 in FIG. 10(a) and flattened filaments B consisting of Y1 in FIG. 10(b) were uniformly mixed.
  • the fiber diameter of the filaments A was 15 ⁇ m
  • the fiber diameter of the filaments B was 4 ⁇ m.
  • the composite fibers, multifilaments, and woven/knitted fabrics of the present invention have a special fiber morphology in which the cross-sectional arrangement within the composite fibers and the fiber arrangement within the multifilaments are precisely controlled, resulting in textiles that have a smooth feel and a soft, bouncy texture while suppressing the deterioration of surface quality that occurs due to friction and abrasion with other materials, and that exhibit high water-repellent performance when treated with a water-repellent finish.
  • x1, x2 polymers forming segment A; y1, y2: polymer z forming segment B; polymers forming the sea component; a1, a2: two most distant points; b1, b2: intersection points R1, R2 of a straight line passing through the midpoint of a line connecting the two most distant points (a1 and a2) and intersecting at right angles with the outer periphery of the fiber; circumscribing circles J1, J2: common circumscribing lines X1, X2: polymers Y1, Y2 forming filament A; polymer 1 forming filament B; metering plate 2: distribution plate 3: discharge plate

Abstract

The problem to be solved by the invention is to provide: a composite fiber that is suited for clothing textile, inhibits a lowering of surface quality caused by friction/wear etc., with another material, while having a flexible texture with a soft feel or resilient feel, and exhibits high water repellency when having been subjected to water repellent processing; a multifilament; a woven article; and a textile product. This composite fiber has two types of segments A and B present in a cross-section of the fiber, wherein the segment B has a smaller cross-sectional area than the segment A and is formed of two types of polymers composited into a side-by-side type or eccentric core-sheath type.

Description

複合繊維、マルチフィラメント、織編物および繊維製品Composite fibers, multifilaments, woven fabrics and textile products
  本発明は複合繊維、マルチフィラメント、織編物および繊維製品に関するものである。 The present invention relates to composite fibers, multifilaments, woven and knitted fabrics, and textile products.
 ポリエステルやポリアミドなどからなる合成繊維は優れた力学特性や寸法安定性を有しているため、衣料用途から非衣料用途まで幅広く利用されている。 Synthetic fibers made from polyester, polyamide, etc. have excellent mechanical properties and dimensional stability, so they are widely used in a variety of applications, from clothing to non-clothing.
 作業服や学生服等は毎日着用することが多いが、これ等を着用する工場労働者や学生の活動は非常に活発であり、ピリングや摩耗等が起こり易く、比較的耐久性の高い織物が採用される。したがって、これ等に利用される織物においては、耐久性を高めることを目的に、剛性の高い太繊度の繊維が採用されると共に、経糸と緯糸が緻密に交差して互いに強く拘束する組織にて仕立てたものが多い。このため、一般衣料等で利用されるテキスタイルと比較して、触感や柔軟性に劣る場合があり、着用時の着心地や快適性を阻害することがある。 Work clothes, school uniforms, etc. are often worn every day, but the factory workers and students who wear them are very active and prone to pilling and wear, so relatively durable fabrics are used. Therefore, in order to increase durability, the fabrics used for these products often use thick, highly rigid fibers and are made with a structure in which the warp and weft threads are tightly crossed and strongly bound to each other. For this reason, they can be inferior in feel and flexibility compared to textiles used in general clothing, which can hinder comfort and ease of wear.
 また、これ等の織物は、経緯の伸縮性が低いので構成する繊維が拘束され、床との擦過やアイロン掛け、長期間の着用などの他素材との摩擦・摩耗等により、経時で摩耗される部分で光沢が増す、いわゆるテカリ現象が発生し、テキスタイルの表面品位が低下する場合があった。このようなテカリ現象は、繊維の変形や摩耗によりテキスタイル表面の凹凸構造が平坦化し、光の反射が増加することで発生するものであり、該現象を抑制する手法として、後加工においてシリコーンやポリエチレンワックス等の平滑剤を添加する方法が提案されている。 Furthermore, because these textiles have low warp and weft elasticity, the constituent fibers are constrained, and as a result of friction and abrasion with other materials, such as rubbing against the floor or ironing, or wearing for long periods of time, the glossiness of the parts that wear over time increases, resulting in a so-called shine phenomenon, which can reduce the surface quality of the textile. This shine phenomenon occurs when the uneven structure of the textile surface becomes flattened due to deformation and wear of the fibers, increasing light reflection, and a method of adding smoothing agents such as silicone or polyethylene wax in post-processing has been proposed as a method of suppressing this phenomenon.
 この後加工で平滑剤を添加する方法は、平滑剤で繊維表面の摩擦を低減することで、繊維の変形や摩耗を抑制し、テキスタイル表面の平坦化によるテカリ現象の発生を防ぐことを狙ったものである。しかし、該手法では平滑剤の付着により風合いの硬化を招く場合や、洗濯等で平滑剤が脱落することで耐久性に劣る場合があった。 The method of adding a smoothing agent in post-processing aims to reduce the friction of the fiber surface with the smoothing agent, thereby suppressing deformation and wear of the fibers and preventing the occurrence of a shiny phenomenon caused by flattening the textile surface. However, this method can lead to hardening of the texture due to the smoothing agent adhering to the fabric, and can also result in poor durability due to the smoothing agent falling off during washing, etc.
 そのため、後加工ではなく、繊維の断面や形態に工夫を施すことで、風合いや耐久性を損なうことなく、テキスタイルにおけるテカリ現象を抑制する繊維技術が種々提案されている。 As a result, various textile technologies have been proposed that, rather than relying on post-processing, can reduce the shine phenomenon in textiles without compromising texture or durability by modifying the cross-section and shape of the fibers.
 特許文献1では、ポリエステル繊維の内部にポリエステルよりも融点の低い低融点ポリマーを配した複合繊維が提案されている。該複合繊維では、床との擦過などにより発生した摩擦熱を、ポリエステルが溶融する前に芯部の低融点ポリマーの融解による吸熱作用により吸収することで、ポリエステルの溶融による繊維変形が抑制でき、テキスタイルにおけるテカリ現象が抑制できるとしている。 Patent Document 1 proposes a composite fiber in which a low-melting-point polymer with a melting point lower than that of polyester is disposed inside polyester fibers. In this composite fiber, frictional heat generated by rubbing against the floor, etc., is absorbed by the heat absorption action caused by melting of the low-melting-point polymer in the core before the polyester melts, suppressing fiber deformation caused by melting of the polyester and suppressing the shine phenomenon in textiles.
 さらに特許文献2では、自己伸長性のポリエステル繊維からなるマルチフィラメントを鞘糸とし、鞘糸よりも高い沸水収縮率を有するポリエステル繊維からなるマルチフィラメントを芯糸として配した空気交絡糸から得られた仮撚加工糸が提案されている。該加工糸を用いたテキスタイルでは、空気交絡で芯糸に鞘糸をループさせて芯糸と鞘糸間に空隙を形成することで柔らかな風合いを発現しつつ、さらに仮撚加工で軽度の捲縮を付与することで、押圧による芯糸と鞘糸間の空隙の潰れが低減でき、アイロン掛けでのテカリ現象が抑制できるとしている。 Furthermore, Patent Document 2 proposes a false twist textured yarn obtained from an air entangled yarn in which a multifilament made of self-extensible polyester fiber is used as the sheath yarn, and a multifilament made of polyester fiber having a higher boiling water shrinkage rate than the sheath yarn is used as the core yarn. In textiles using this textured yarn, the sheath yarn is looped around the core yarn by air entanglement to form a gap between the core yarn and the sheath yarn, resulting in a soft texture, while false twisting further imparts slight crimping, reducing the collapse of the gap between the core yarn and the sheath yarn due to pressure, and suppressing the shine phenomenon when ironing.
特開2017-186680号公報(特許請求の範囲)JP 2017-186680 A (Claims) 特開2000-314038号公報(特許請求の範囲)JP 2000-314038 A (Claims)
 特許文献1のように、低融点ポリマーを配して摩擦熱を吸熱できれば、ポリマーの溶融による繊維変形を抑制できる可能性がある。 If frictional heat can be absorbed by using a low-melting point polymer, as in Patent Document 1, it may be possible to suppress fiber deformation caused by melting of the polymer.
 しかしながら、特許文献1は床との擦過等で瞬間的に発生する摩擦熱によるテカリ現象を抑制することを技術思想としており、特許文献1の複合繊維からなるテキスタイルを長期間着用した際には、他素材との摩耗や押圧による潰れによってテキスタイル表面が徐々に平坦化し、テカリ現象が発生する場合があった。さらに、ポリエステルと低融点ポリマーの界面剥離の観点から、耐摩耗性を担保するために繊維径や繊維形態が制限されるため、触感や柔軟性に劣る場合があった。 However, the technical idea behind Patent Document 1 is to suppress the shine caused by frictional heat that is generated momentarily when the textile rubs against the floor, etc., and when the textile made of the composite fiber of Patent Document 1 is worn for a long period of time, the textile surface may gradually become flattened due to wear against other materials and crushing due to pressure, resulting in the shine phenomenon. Furthermore, from the perspective of interfacial peeling between polyester and low-melting point polymer, the fiber diameter and fiber form are limited to ensure abrasion resistance, which may result in inferior feel and flexibility.
 また、特許文献2のように、空気交絡で芯糸に鞘糸をループさせて芯糸と鞘糸間に空隙を形成させ、さらに仮撚加工で軽度の捲縮を付与することで、押圧による芯糸と鞘糸間の空隙の潰れが低減でき、アイロン掛け等での瞬間的な押圧によるテカリ現象が抑制できる可能性がある。 In addition, as in Patent Document 2, by looping the sheath yarn around the core yarn through air entanglement to form a gap between the core yarn and the sheath yarn, and then imparting a slight crimp through false twisting, it is possible to reduce the collapse of the gap between the core yarn and the sheath yarn due to pressure, and to suppress the shine phenomenon caused by momentary pressure when ironing, etc.
 しかし、特許文献2の加工糸からなるテキスタイルを長期間着用した際には、押圧により鞘糸が潰れた状態で摩擦が加わるため、芯糸と鞘糸が共に摩耗されて加工糸表層が徐々に平坦化することでテカリ現象が発生する場合があり、さらに摩擦により鞘糸が引き出されて毛羽につながるなど、耐久性に劣る場合もあった。 However, when a textile made of the processed yarn of Patent Document 2 is worn for a long period of time, friction is applied to the sheath yarn when it is crushed by pressure, which can cause the core yarn and sheath yarn to wear together and gradually flatten the surface of the processed yarn, resulting in a shiny phenomenon. Furthermore, friction can cause the sheath yarn to be pulled out, leading to fuzzing, and thus poor durability.
 以上のように、瞬間的な摩擦熱や押圧によるテカリ現象を抑制する繊維技術は存在するものの、長期間着用時の他素材との摩耗によるテカリ現象を抑制する繊維技術は存在しておらず、ましてや衣料用テキスタイルで重要となる触感や風合い、さらには機能性も同時に達成することは困難であった。 As mentioned above, although there is fiber technology that can suppress the shine caused by momentary frictional heat or pressure, there is no fiber technology that can suppress the shine caused by wear against other materials when worn for long periods of time, making it difficult to simultaneously achieve the feel, texture, and functionality that are important for clothing textiles.
 そこで本発明は上記した従来技術の問題点を解消し、さらっとした触感や反発感のある柔軟な風合いを有しつつも、他素材との摩擦・摩耗等によって発生する表面品位の低下が抑制され、さらに撥水加工を施した場合には高い撥水性能が発現する、衣料用テキスタイルに適した複合繊維、マルチフィラメント、織編物や繊維製品を提供することを課題とする。 The present invention aims to solve the problems of the conventional technology described above, and to provide composite fibers, multifilaments, woven and knitted fabrics and textile products suitable for clothing textiles that have a smooth feel and a soft texture with a sense of resilience, while suppressing the deterioration of surface quality caused by friction and abrasion with other materials, and that exhibit high water repellency when subjected to a water repellent treatment.
 本発明の課題は、以下の手段によって解決される。すなわち、
(1)繊維横断面において、2種類のセグメントAおよびBが存在する複合繊維であって、セグメントBはセグメントAよりも小さい断面積を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されている、複合繊維、
(2)繊維横断面において、セグメントAの外周に3個以上のセグメントBが配置されている、前記(1)に記載の複合繊維、
(3)繊維横断面において、セグメントBの1個当たりの断面積Sが1μm≦S<65μmである、前記(1)または(2)に記載の複合繊維、
(4)セグメントAおよびBを島成分とする海島複合繊維であって、海島複合繊維を構成するポリマーのうち溶剤に対する溶解速度が最も速いポリマーで海成分が形成されている、前記(1)~(3)のいずれかに記載の複合繊維、
(5)前記(1)~(4)のいずれかに記載の複合繊維からセグメントA、Bを分割して得られる、マルチフィラメント、
(6)前記(5)に記載のマルチフィラメントが少なくとも一部に含まれる繊維製品、
(7)2種類のフィラメントAおよびBからなるマルチフィラメントであって、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在しており、フィラメントBはフィラメントAよりも小さい繊維径を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されている、マルチフィラメント、
(8)フィラメントBの繊維径Dが1μm≦D<9μmである、前記(7)に記載のマルチフィラメント、
(9)前記(7)または(8)に記載のマルチフィラメントが少なくとも一部に含まれる織編物、
(10)撥水加工が施された、前記(9)に記載の織編物、
(11)2種類のフィラメントAおよびBからなるマルチフィラメントを含み、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在しており、フィラメントBはフィラメントAよりも小さい繊維径を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、水滴滑落角度が1~20度である、撥水加工が施された、織編物、
(12)JIS L1930-2014-C4M法での洗濯とA法(吊り干し乾燥)での乾燥を20回繰り返した前後での水滴滑落角度の差が0~20度である、前記(11)に記載の織編物、
(13)燃焼イオンクロマトグラフィー測定におけるフッ素含有量が25ng/g以下である、前記(11)または(12)に記載の織編物、
である。
The object of the present invention is achieved by the following means:
(1) A composite fiber having two types of segments A and B in the fiber cross section, where segment B has a smaller cross-sectional area than segment A and is formed of two types of polymers that are composited in a side-by-side or eccentric core-sheath configuration;
(2) The composite fiber according to (1) above, in which three or more segments B are arranged on the outer periphery of a segment A in a fiber cross section.
(3) The composite fiber according to (1) or (2) above, in which the cross-sectional area S B of each segment B in the fiber cross section is 1 μm 2 ≦ S B < 65 μm 2 .
(4) A sea-island composite fiber according to any one of (1) to (3) above, in which the segments A and B are island components, and the sea component is formed of a polymer that has the highest dissolution rate in a solvent among the polymers constituting the sea-island composite fiber.
(5) A multifilament obtained by dividing segments A and B from the conjugate fiber according to any one of (1) to (4) above.
(6) A textile product at least partially containing the multifilament according to (5).
(7) A multifilament consisting of two types of filaments A and B, in which one or more filaments B are present between any two filaments A in the multifilament, and the filament B has a smaller fiber diameter than the filament A, and is formed of two types of polymers composited in a side-by-side type or eccentric core-sheath type.
(8) The multifilament according to (7) above, wherein the fiber diameter D B of the filament B is 1 μm≦D B <9 μm.
(9) A woven or knitted fabric at least partially containing the multifilament according to (7) or (8).
(10) The woven or knitted fabric according to (9) above, which has been subjected to a water-repellent treatment.
(11) A water-repellent woven or knitted fabric comprising a multifilament consisting of two types of filaments A and B, in which one or more filaments B are present between any two filaments A in the multifilament, the filament B having a smaller fiber diameter than the filament A and formed of two types of polymers composited in a side-by-side or eccentric core-sheath type, and having a water drop sliding angle of 1 to 20 degrees.
(12) The woven or knitted fabric according to (11), wherein the difference in water droplet sliding angle before and after 20 cycles of washing according to JIS L1930-2014-C4M method and drying according to A method (hang-dry) is 0 to 20 degrees;
(13) The woven or knitted fabric according to (11) or (12), which has a fluorine content of 25 ng/g or less as measured by combustion ion chromatography.
It is.
 本発明の複合繊維、マルチフィラメント、織編物および繊維製品は、複合繊維内の断面配置およびマルチフィラメント中の繊維配置が精密に制御された特殊な繊維形態を有していることで、さらっとした触感や反発感のある柔軟な風合いを有しつつも、他素材との摩擦・摩耗等によって発生する表面品位の低下が抑制され、さらにその微細かつ複雑な表面凹凸により、撥水加工を施した場合には高い撥水性能が発現するテキスタイルを得ることができる。 The composite fibers, multifilaments, woven/knitted fabrics, and textile products of the present invention have a special fiber morphology in which the cross-sectional arrangement within the composite fibers and the fiber arrangement within the multifilaments are precisely controlled, so that they have a smooth feel and a soft texture with a bouncy feel, while suppressing the deterioration of surface quality caused by friction and abrasion with other materials, and furthermore, due to their fine and complex surface irregularities, it is possible to obtain textiles that exhibit high water-repellent performance when water-repellent processing is applied.
図1の(a)、(b)、(c)および(d)は、本実施形態の複合繊維における横断面構造の一例を示す概略図である。1A, 1B, 1C, and 1D are schematic diagrams showing an example of a cross-sectional structure of the conjugate fiber of the present embodiment. 図2の(a)、(b)および(c)は、本実施形態の複合繊維における横断面構造の一例を示す概略図である。2(a), (b), and (c) are schematic diagrams showing an example of a cross-sectional structure of the conjugate fiber of the present embodiment. 図3の(a)および(b)は、従来の複合繊維における横断面構造の一例を示す概略図である。3(a) and (b) are schematic diagrams showing an example of a cross-sectional structure of a conventional composite fiber. 図4は、本実施形態のマルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在することを理解するための図であり、外枠の破線は撮影画像の上下左右の辺を意味する。FIG. 4 is a diagram for understanding that one or more filaments B exist between any two filaments A in the multifilament of this embodiment, and the dashed lines of the outer frame represent the top, bottom, left and right sides of the photographed image. 図5の(a)および(b)は、本実施形態のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。図5の(a)は、フィラメントAの横断面構造の概略図であり、図5の(b)は、フィラメントBの横断面構造の概略図である。5(a) and (b) are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where (a) of Fig. 5 is a schematic diagram of the cross-sectional structure of filament A, and (b) of Fig. 5 is a schematic diagram of the cross-sectional structure of filament B. 図6の(a)、(b)および(c)は、本実施形態のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。図6の(a)は、フィラメントAの横断面構造の概略図であり、図6の(b)および(c)は、フィラメントBの横断面構造の概略図である。6A, 6B, and 6C are schematic diagrams showing an example of a cross-sectional structure of a filament constituting the multifilament of this embodiment, in which 6A is a schematic diagram of the cross-sectional structure of a filament A, and 6B and 6C are schematic diagrams of the cross-sectional structure of a filament B. 図7の(a)および(b)は、本実施形態のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。図7の(a)は、フィラメントAの横断面構造の概略図であり、図7の(b)は、フィラメントBの横断面構造の概略図である。7A and 7B are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where (a) of Fig. 7 is a schematic diagram of the cross-sectional structure of filament A, and (b) of Fig. 7 is a schematic diagram of the cross-sectional structure of filament B. 図8の(a)および(b)は、本実施形態のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。図8の(a)は、フィラメントAの横断面構造の概略図であり、図8の(b)は、フィラメントBの横断面構造の概略図である。8A and 8B are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where FIG. 8A is a schematic diagram of the cross-sectional structure of filament A, and FIG. 8B is a schematic diagram of the cross-sectional structure of filament B. 図9の(a)および(b)は、本実施形態のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。図9の(a)は、フィラメントAの横断面構造の概略図であり、図9の(b)は、フィラメントBの横断面構造の概略図である。9(a) and 9(b) are schematic diagrams showing an example of the cross-sectional structure of the filaments constituting the multifilament of this embodiment, where (a) of Fig. 9 is a schematic diagram of the cross-sectional structure of filament A, and (b) of Fig. 9 is a schematic diagram of the cross-sectional structure of filament B. 図10の(a)および(b)は、従来のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。10(a) and (b) are schematic diagrams showing an example of a cross-sectional structure of a filament constituting a conventional multifilament. 図11は、従来のマルチフィラメントを構成するフィラメントの横断面構造の一例を示す概略図である。FIG. 11 is a schematic diagram showing an example of a cross-sectional structure of a filament constituting a conventional multifilament. 図12は、本実施形態の複合繊維およびマルチフィラメントの製造方法を説明するための口金の横断面図である。FIG. 12 is a cross-sectional view of a spinneret for explaining the method for producing the composite fiber and multifilament of this embodiment.
 以下、本発明について望ましい実施形態と共に詳述する。 The present invention will be described in detail below along with preferred embodiments.
 従来素材において、他素材との摩耗によって発生するテカリ現象を詳細に分析すると、繊維の摩耗で単繊維の一部が削れ、平坦となった箇所で必ずしも光沢が増すわけではなく、複数本の繊維の平坦部が横並びとなった箇所にて光沢が増すことを発見した。これは、繊維径が数十μm程度の単繊維に形成された平坦部が強く光を反射したとしても、人の目に届く光はわずかであるが、複数本の繊維からなる繊維束が面で摩耗されて、数百μm程度の大きな平坦部を形成することで、布帛の一部が強い光反射を起こし、人が光を認識することになったためであると推定される。 A detailed analysis of the shine phenomenon that occurs when conventional materials are worn against other materials revealed that the shine does not necessarily increase in areas where a single fiber is worn away and flattened due to fiber wear, but rather where the flat parts of multiple fibers are lined up side by side. This is presumably because, even if the flat part formed on a single fiber with a fiber diameter of about tens of μm strongly reflects light, only a small amount of light reaches the human eye. However, when a fiber bundle made of multiple fibers is worn across its surface to form a large flat part of about several hundred μm, part of the fabric strongly reflects light, allowing humans to perceive the light.
 すなわち、従来素材の課題であった経時で発生するテカリ現象を抑制するには、繊維の摩擦・摩耗等により発生する平坦部の面積を抑えるような繊維形態を形成することが重要であり、この実現のために本発明者等が鋭意検討し、ある特定の範囲に繊維径が縮小された極細繊維と通常繊維が混在したマルチフィラメントにすることで、テキスタイルとして十分な耐久性を有しつつ、他素材と繰り返し摩耗された場合でも、繊維束に平坦部が形成されないことを見出し、さらには、極細繊維の効果によって、テキスタイルの柔軟性が向上しつつ、通常繊維が混在していることで反発感も維持できる、従来素材にはない、摩擦に対する耐性と風合いを両立した衣料用テキスタイルになることを発見したのである。なお、ここでいう通常繊維、極細繊維とは、繊維径の異なる単繊維が混在する系において、相対的に繊維径の大きい繊維を通常繊維、繊維径の小さい繊維を極細繊維という。 In other words, in order to suppress the shine phenomenon that occurs over time, which was an issue with conventional materials, it is important to form a fiber morphology that suppresses the area of flat parts that occur due to friction and wear of the fibers. To achieve this, the inventors conducted extensive research and discovered that by making a multifilament that is a mixture of ultrafine fibers with fiber diameters reduced to a certain range and normal fibers, it is possible to obtain a textile that has sufficient durability and does not form flat parts in the fiber bundle even when repeatedly worn with other materials. Furthermore, they discovered that the effect of the ultrafine fibers improves the flexibility of the textile, while the mixture of normal fibers maintains a resilient feel, resulting in a clothing textile that combines friction resistance and texture not found in conventional materials. Note that the terms normal fibers and ultrafine fibers refer to fibers with relatively large fiber diameters in a system in which single fibers with different fiber diameters are mixed, and fibers with small fiber diameters are called ultrafine fibers.
 また、本発明においては、繊維束の表層に配置される極細繊維は捲縮を有しており、この捲縮による立体障害によって繊維間に微細な空隙が形成され、摩擦面が固定されることなく、柔軟に移動することができるため、通常の極細繊維が表層に配置された繊維束に対して、さらに摩擦に対する耐性が高くなり、従来素材の課題であったテカリ現象を大幅に抑制することができるのである。 In addition, in the present invention, the ultrafine fibers arranged on the surface of the fiber bundle are crimped, and the steric hindrance caused by this crimp creates minute gaps between the fibers, allowing the friction surface to move flexibly without being fixed. This makes the material more resistant to friction than fiber bundles with normal ultrafine fibers arranged on the surface, and significantly reduces the shine phenomenon that was an issue with conventional materials.
 また、捲縮を有した極細繊維と通常繊維が混在して表層に配置されていることにより、テキスタイル表面に微細かつ複雑な凹凸が形成され、衣料用テキスタイルで重要となる、柔軟でありながら、さらっとした触感が得られることに加え、撥水加工を施した場合に高い撥水性能が発現することを見出し、本発明に至った。 Furthermore, by arranging a mixture of ultrafine fibers with crimping and normal fibers on the surface, fine and complex irregularities are formed on the textile surface, which not only provides a soft yet smooth feel, which is important for clothing textiles, but also reveals high water-repellent performance when a water-repellent finish is applied, which led to the present invention.
 具体的には、複合繊維の繊維横断面において、2種類のセグメントAおよびBが存在しており、セグメントBがセグメントAよりも小さい断面積を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されていることが本発明の要件となる。 Specifically, the requirements of the present invention are that two types of segments A and B are present in the cross section of the composite fiber, that segment B has a smaller cross-sectional area than segment A, and that the composite fiber is formed from two types of polymers that are combined in a side-by-side or eccentric core-sheath configuration.
 なお、本発明におけるセグメントとは、複合繊維の繊維横断面において、溶剤処理や熱処理、圧力処理などで複合繊維から分割できる部分を意味しており、任意のセグメント同士が同じポリマーで形成されており、かつ断面積の差が10%以内であれば、同じセグメント群とみなすこととする。 In the present invention, a segment refers to a portion of the composite fiber that can be separated from the composite fiber by solvent treatment, heat treatment, pressure treatment, etc., in the cross section of the composite fiber. If any two segments are made of the same polymer and the difference in cross-sectional area is within 10%, they will be considered to be part of the same segment group.
 本実施形態の複合繊維をテキスタイルに用いた際に、織編み等の組織に左右されることなく、極細繊維が混在したマルチフィラメントを安定的に形成するためには、繊維横断面において、2種類のセグメントAおよびBが存在しており、セグメントBがセグメントAよりも小さい断面積を有していることが必要となる。 When the composite fiber of this embodiment is used in a textile, in order to stably form a multifilament containing a mixture of ultrafine fibers, regardless of the structure of the weaving or knitting, it is necessary that there are two types of segments A and B in the cross section of the fiber, with segment B having a smaller cross-sectional area than segment A.
 複合繊維の繊維横断面に2種類のセグメントAおよびBが存在すれば、テキスタイルとした後に複合繊維からセグメントAおよびBを分割することで、セグメントAよりも小さい断面積を有するセグメントBからなる極細繊維をマルチフィラメント中に均一に混在することができる。そのため、本実施形態の複合繊維を用いたテキスタイルでは、摩擦・摩耗等で発生する平坦部の面積を減少でき、さらには、極細繊維が低曲げ剛性であるため、柔軟性を向上しつつ、通常繊維が高曲げ回復であるため、反発感を維持することもできるのである。 If two types of segments A and B are present in the cross section of a composite fiber, segments A and B can be separated from the composite fiber after it has been made into a textile, and ultrafine fibers consisting of segment B, which has a smaller cross-sectional area than segment A, can be uniformly mixed in the multifilament. Therefore, in a textile using the composite fiber of this embodiment, the area of flat parts that occur due to friction, wear, etc. can be reduced, and further, since the ultrafine fibers have low bending rigidity, flexibility can be improved, while the normal fibers have high bending recovery, so a resilient feel can be maintained.
 また、セグメントBからなる極細繊維が存在することで、摩擦・摩耗等で発生する平坦部の面積を減少できるという観点からすると、セグメントAの外周に3個以上のセグメントBが配置されていることが好ましい。セグメントAの外周にセグメントBが配置されていることで、分割後に得られるマルチフィラメントはセグメントAからなる通常繊維がセグメントBからなる極細繊維で囲まれた構造となり、他素材との摩耗時にセグメントBからなる極細繊維が優先的に摩耗されることで、発生する平坦部の面積をより小さくできるのである。この観点からすると、セグメントAの外周に配置されるセグメントBの数は多いほど好ましく、より好ましくは5個以上、特に好ましくは7個以上である。一方で、セグメントAからなる通常繊維から得られる反発感を維持するという観点からすると、セグメントAの外周に配置されるセグメントBは50個以下が好ましく、より好ましくは35個以下、特に好ましくは20個以下である。 In addition, from the viewpoint that the presence of ultrafine fibers made of segment B can reduce the area of flat parts generated by friction, wear, etc., it is preferable that three or more segments B are arranged on the periphery of segment A. By arranging segment B on the periphery of segment A, the multifilament obtained after division has a structure in which the normal fiber made of segment A is surrounded by ultrafine fibers made of segment B, and the ultrafine fibers made of segment B are preferentially worn during wear with other materials, thereby making it possible to further reduce the area of flat parts that are generated. From this viewpoint, the more segments B arranged on the periphery of segment A, the more preferable, more preferably 5 or more, and particularly preferably 7 or more. On the other hand, from the viewpoint of maintaining the repulsive feeling obtained from normal fibers made of segment A, the more preferable the number of segments B arranged on the periphery of segment A is 50 or less, more preferably 35 or less, and particularly preferably 20 or less.
 本実施形態の複合繊維の繊維横断面において、セグメントBの1個当たりの断面積Sが1μm≦S<65μmであることが好ましい。 In the fiber cross section of the composite fiber of this embodiment, it is preferable that the cross-sectional area S B of each segment B satisfies 1 μm 2 ≦S B <65 μm 2 .
 セグメントBの1個当たりの断面積Sが65μm未満であることで、複合繊維からセグメントBを分割して得られるマルチフィラメントにおいては、セグメントBからなる断面積の小さい極細繊維により、摩擦・摩耗等で発生する平坦部の面積を減少させるテカリ抑制効果と、低曲げ剛性であることでの柔軟性向上効果が得られるのである。この観点からするとSが小さいほど、テカリ抑制効果と柔軟性向上効果を際立たせることができるため、より好ましくはSが50μm未満、さらに好ましくはSが40μm未満である。 When the cross-sectional area S B of each segment B is less than 65 μm2 , in the multifilament obtained by dividing the segment B from the composite fiber, the ultrafine fibers having a small cross-sectional area made of the segment B provide a shine suppression effect by reducing the area of flat parts generated by friction, wear, etc., and a flexibility improvement effect by having low bending rigidity. From this viewpoint, the smaller the S B , the more prominent the shine suppression effect and the flexibility improvement effect can be achieved, so more preferably, S B is less than 50 μm2 , and even more preferably, S B is less than 40 μm2.
 一方、セグメントBの1個当たりの断面積Sが小さすぎると、染料で染色した際の発色性の低下や摩耗した際に毛羽になりやすい等の耐久性の低下を引き起こす場合があることから、セグメントBの1個当たりの断面積Sは1μm以上であることが好ましく、より好ましくはSが3μm以上、さらに好ましくはSが7μm以上である。 On the other hand, if the cross-sectional area S B of each segment B is too small, it may cause a decrease in color development when dyed with a dye, or a decrease in durability such as a tendency to fluff when worn, so the cross-sectional area S B of each segment B is preferably 1 μm2 or more, more preferably 3 μm2 or more, and even more preferably 7 μm2 or more.
 本実施形態の複合繊維の繊維横断面において、セグメントAの1個当たりの断面積Sが65μm≦S<700μmであることが好ましい。 In the fiber cross section of the composite fiber of this embodiment, it is preferable that the cross-sectional area S A of each segment A satisfies 65 μm 2 ≦S A <700 μm 2 .
 セグメントAの1個当たりの断面積Sが65μm以上であることで、複合繊維をセグメントAおよびBに分割して得られるマルチフィラメントにおいては、セグメントAからなる断面積の大きい通常繊維により衣料用テキスタイルで好まれる反発感を発現するための曲げ回復性を維持しつつ、セグメントBからなる断面積の小さい極細繊維による柔軟性やテカリ抑制効果を両立できるのである。 When the cross-sectional area S A of each segment A is 65 μm2 or more, in a multifilament obtained by dividing the composite fiber into segments A and B, the normal fiber having a large cross-sectional area composed of segment A maintains the bending recovery required to express the resilience preferred in clothing textiles, while the ultrafine fiber having a small cross-sectional area composed of segment B provides flexibility and shine suppression effects.
 この観点からするとSが大きいほど、高い曲げ回復性により反発感を高めることができるため、より好ましくはSが80μm以上、さらに好ましくはSが95μm以上である。一方、Sが大きすぎると、摩擦・摩耗等でセグメントAからなる通常繊維が削れやすくなり、発生する平坦部の面積が大きくなって、セグメントBからなる極細繊維によるテカリ抑制効果を阻害する場合があることから、Sが700μm未満であることが好ましく、より好ましくはSが500μm未満、さらに好ましくはSが350μm未満である。 From this viewpoint, the larger the S A is, the higher the bending recovery and thus the higher the resilience, so S A is more preferably 80 μm2 or more, and even more preferably 95 μm2 or more. On the other hand, if S A is too large, the normal fibers made of segment A are easily scraped off by friction, wear, etc., and the area of the resulting flat parts increases, which may inhibit the shine suppression effect of the ultrafine fibers made of segment B, so S A is preferably less than 700 μm2 , more preferably less than 500 μm2, and even more preferably less than 350 μm2.
 なお、本発明でいうセグメントの断面積とは、複合繊維をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面を走査型電子顕微鏡(SEM)で複合繊維が観察できる倍率として画像を撮影して求める。撮影された画像について画像解析ソフトを用いて解析することで、複合繊維の繊維横断面に存在する1つのセグメントの断面積を算出し、小数点第1位で四捨五入した値をセグメントの断面積とする。なお、同じ種類のセグメントが複数個存在する場合は、同じ種類のセグメント全てについて求めた断面積の単純な数平均を求め、小数点第1位を四捨五入した値を採用することとする。 In this invention, the cross-sectional area of a segment is determined by embedding the composite fiber in an embedding agent such as epoxy resin, and taking an image of the fiber cross section perpendicular to the fiber axis with a scanning electron microscope (SEM) at a magnification that allows the composite fiber to be observed. The captured image is analyzed using image analysis software to calculate the cross-sectional area of one segment present in the fiber cross section of the composite fiber, and the value rounded off to the first decimal place is used as the cross-sectional area of the segment.In addition, when there are multiple segments of the same type, the simple number average of the cross-sectional areas determined for all segments of the same type is calculated, and the value rounded off to the first decimal place is used.
 本実施形態の複合繊維をテキスタイルに用いた際に、複合繊維からセグメントBを分割して得られる極細繊維へ捲縮を発現させ、繊維間に微細な空隙を形成することによるテカリ現象のさらなる抑制や、テキスタイル表面に微細かつ複雑な凹凸を形成することによるさらっとした触感や、撥水加工を施した場合に高い撥水性能を得るためには、繊維横断面において、セグメントBがサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されていることが必要となる。 When the composite fiber of this embodiment is used in a textile, in order to induce crimping in the ultrafine fibers obtained by dividing segment B from the composite fiber, and to form minute gaps between the fibers to further suppress the shine phenomenon, to form minute and complex irregularities on the textile surface to give it a smooth feel, and to obtain high water-repellent performance when a water-repellent treatment is applied, it is necessary that segment B is formed of two types of polymers in a side-by-side or eccentric core-sheath type composite in the cross section of the fiber.
 セグメントBを形成する2種類のポリマーが、それぞれの重心が異なる図1(a)のようなサイドバイサイド型または偏心芯鞘型に複合されていることで、セグメントBを分割した後に熱処理を施すことで、セグメントBからなる極細繊維が高収縮となるポリマー側に大きく湾曲し、これが連続することでコイル状の捲縮形態を発現させることができる。さらにポリマー重心間距離を制御することで任意の捲縮形態を発現することが可能であり、これにより、本発明の目的である繊維間に微細な空隙を形成することによるテカリ現象のさらなる抑制や、テキスタイル表面に微細かつ複雑な凹凸を形成することによるさらっとした触感を達成できるのである。 The two types of polymers that make up segment B are combined in a side-by-side or eccentric core-sheath type with different centers of gravity as shown in Figure 1(a). By dividing segment B and then subjecting it to heat treatment, the ultrafine fibers made up of segment B will bend significantly toward the polymer side with high shrinkage, and this continuous process will produce a coiled crimped form. Furthermore, by controlling the distance between the polymer centers of gravity, it is possible to produce any crimped form, which is the object of the present invention to further suppress the shine phenomenon by forming fine gaps between the fibers, and to achieve a smooth feel by forming fine and complex irregularities on the textile surface.
 また、テキスタイル表面に微細かつ複雑な凹凸が存在することで、撥水加工を施した際には、水との接触面積が小さくなることによる高い撥水性能を発現することも可能となる。なお、セグメントBの複合構造としては、サイドバイサイド型または偏心芯鞘型のどちらでもよく、サイドバイサイドとすればポリマーの重心間距離が最大となるため、捲縮発現を向上することができ、偏心芯鞘型とすれば、耐摩耗性に劣る高収縮ポリマーを耐摩耗性に優れる低収縮ポリマーで被膜することで、セグメントBからなる極細繊維の耐摩耗性をさらに向上することができる。 In addition, the presence of fine and complex irregularities on the textile surface makes it possible to achieve high water repellency when a water repellent treatment is applied by reducing the contact area with water. The composite structure of segment B may be either a side-by-side type or an eccentric core-sheath type. A side-by-side type maximizes the distance between the centers of gravity of the polymers, improving the expression of crimp, while an eccentric core-sheath type coats a high-shrinkage polymer with poor abrasion resistance with a low-shrinkage polymer with excellent abrasion resistance, further improving the abrasion resistance of the ultrafine fiber made of segment B.
 本実施形態の複合繊維において、セグメントBを形成する2種類のポリマーは、熱処理で収縮差を生じる組合せであれば特に限定されず、粘度の異なるポリマーや融点の異なるポリマーの組合せが考えられるが、捲縮発現を制御しやすいという観点からすると、融点の異なるポリマーの組合せとすることが好ましい。融点の異なる組合せとすることで、熱処理を施した際には、低融点側のポリマーが先に収縮することから、容易にポリマー間の収縮差を発現することができるのである。 In the composite fiber of this embodiment, the two types of polymers forming segment B are not particularly limited as long as they are a combination that produces a shrinkage difference upon heat treatment. Combinations of polymers with different viscosities or different melting points are possible, but from the perspective of making it easier to control the occurrence of shrinkage, it is preferable to use a combination of polymers with different melting points. By using a combination of polymers with different melting points, the polymer with the lower melting point shrinks first when heat treatment is performed, making it easy to produce a shrinkage difference between the polymers.
 本実施形態の複合繊維においては、セグメントAを形成するポリマーが、セグメントAおよびBを形成するポリマーのうち最も低融点のポリマーであることが好ましい。かかる関係とすれば、複合繊維から分割して得られるセグメントAからなる通常繊維が高収縮となり、セグメントBからなる極細繊維との間に糸長差が生まれ、繊維間の空隙を増加することができ、本発明の目的であるテカリ現象の抑制をより高めることができる。 In the composite fiber of this embodiment, it is preferable that the polymer forming segment A is the polymer with the lowest melting point of the polymers forming segments A and B. If this relationship is established, the normal fiber made of segment A obtained by splitting the composite fiber will have high shrinkage, creating a difference in thread length between it and the ultrafine fiber made of segment B, which increases the gap between the fibers and further enhances the suppression of the shine phenomenon, which is the object of the present invention.
 さらに、テキスタイル表面に、セグメントBからなる極細繊維の捲縮による微細凹凸と、セグメントAからなる通常繊維による粗大な凹凸が混ざった、より複雑な凹凸が形成されることで、さらっとした触感や撥水加工を施した際の撥水性能をより際立たせることができる。 Furthermore, the textile surface has more complex irregularities that combine the fine irregularities caused by the crimping of the ultrafine fibers made up of segment B with the coarse irregularities caused by the normal fibers made up of segment A, which gives the textile a smooth feel and enhances its water-repellent properties when a water-repellent finish is applied.
 また、セグメントAを形成するポリマーが2種類の場合、セグメントA、Bからなる繊維が共に捲縮を有することで、テキスタイルにストレッチ性能を発現することができるという観点からすると、図1(b)や図2のようなセグメントAがサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、2種類のポリマーのどちらか一方がセグメントAおよびBを構成するポリマーのうち最も低融点のポリマーであることが好ましい。 In addition, when segment A is made up of two types of polymers, it is preferable that segment A, as shown in Figure 1(b) or Figure 2, is made up of two types of polymers that are combined in a side-by-side or eccentric core-sheath type, and that one of the two types of polymers is the polymer with the lowest melting point among the polymers that make up segments A and B, from the viewpoint that the fibers made up of segments A and B both have crimps, thereby enabling the textile to exhibit stretch performance.
 本実施形態の複合繊維において、セグメントBがサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、2種類のポリマーが融点の異なるポリマーの組合せである場合、低融点ポリマーと高融点ポリマーの面積比率としては、低融点ポリマー/高融点ポリマーが70/30~30/70の範囲であることが好ましい。かかる範囲であれば、低融点側のポリマーが熱処理で高収縮する際の目付詰まりによる風合い硬化の影響を受けることなく、収縮差による捲縮形態を十分に発現でき、より粗大な繊維間空隙を得ることができる。 In the composite fiber of this embodiment, when segment B is formed of two types of polymers combined in a side-by-side or eccentric core-sheath type, and the two types of polymers are a combination of polymers with different melting points, it is preferable that the area ratio of the low melting point polymer to the high melting point polymer is in the range of 70/30 to 30/70 (low melting point polymer/high melting point polymer). If the area ratio is in this range, the low melting point polymer is not affected by texture hardening due to clogging when it shrinks highly during heat treatment, and the crimp morphology due to shrinkage difference can be fully expressed, and larger interfiber voids can be obtained.
 本実施形態の複合繊維の繊維横断面に存在するセグメントBにおいて、その断面形状は限定されるものでないが、セグメントBを分割した後に、セグメントBからなる極細繊維へ捲縮を発現させ、繊維間に微細な空隙を有した繊維形態を形成するという観点からすると、セグメントBの断面形状は図1(a)のような扁平状であることが好ましい。 The cross-sectional shape of segment B present in the fiber cross section of the composite fiber of this embodiment is not limited, but from the viewpoint of forming a fiber form having minute gaps between the fibers by expressing crimps in the ultrafine fibers made of segment B after dividing segment B, it is preferable that the cross-sectional shape of segment B is flat as shown in Figure 1(a).
 ここで、「扁平状」とは、平面視で細長い形状のことであり、具体的には、後述するセグメントにおける「扁平度」が1.1以上のものをいう。 Here, "flat" refers to a long and narrow shape in a plan view, and more specifically, to a segment with a "flatness" of 1.1 or more, as described below.
 本実施形態の複合繊維の繊維横断面に存在するセグメントBの断面形状を扁平状とすることで長軸の長さが律速となって立体障害が生まれるため、捲縮発現による空隙効果を最大限発揮することができ、テキスタイル表面の微細凹凸によるさらっとした触感や撥水加工を施した際の撥水性能をより際立たせることができる。この観点からすると、短軸の長さに対して長軸の長さが長いほどよく、扁平度が1.2以上であることが好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。一方、扁平度が大きくなりすぎてしまうと、摩耗した際の平坦部の面積が増加する場合があることから、扁平度は6.0以下であることが好ましく、5.0以下であることがより好ましく、4.0以下がさらに好ましい。 By making the cross-sectional shape of segment B present in the fiber cross section of the composite fiber of this embodiment flat, the length of the long axis becomes the rate limiting factor and steric hindrance is generated, so that the void effect due to the expression of shrinkage can be maximized, and the smooth feel due to the fine unevenness of the textile surface and the water-repellent performance when water-repellent processing is applied can be more prominent. From this viewpoint, the longer the length of the long axis is compared to the length of the short axis, the better, and the flatness is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 2.0 or more. On the other hand, if the flatness is too large, the area of the flat part when worn may increase, so the flatness is preferably 6.0 or less, more preferably 5.0 or less, and even more preferably 4.0 or less.
 本実施形態におけるセグメントの扁平度は、以下の方法によって求められる。 In this embodiment, the flatness of the segments is determined by the following method.
 まず、複合繊維をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面を走査型電子顕微鏡(SEM)で複合繊維が観察できる倍率として画像を撮影して求める。撮影された画像について画像解析ソフトを用いて解析することで、図1の(a)に示すようにセグメントの外周上の任意の点のうち最も距離が離れた2点(a1、a2)を結んだ直線を長軸とし、長軸の中点を通って長軸と直交する直線と繊維外周の交点(b1、b2)を結んだ直線を短軸として、長軸の長さを短軸の長さで割り返した値を算出し、小数点第2位で四捨五入した値を扁平度とする。なお、同じ種類のセグメントが複数個存在する場合は、同じ種類のセグメント全てについて求めた扁平度の単純な数平均を求め、小数点第2位を四捨五入した値を採用することとする。 First, the composite fiber is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) at a magnification that allows the composite fiber to be observed. The captured image is analyzed using image analysis software to determine the flatness, as shown in Figure 1 (a), by dividing the length of the major axis by the length of the minor axis, with the line connecting the two most distant points (a1, a2) among any points on the periphery of the segment as shown in Figure 1 (a) as the major axis, and the line connecting the intersection point (b1, b2) of the periphery of the fiber with the line passing through the midpoint of the major axis and perpendicular to the major axis as the minor axis, and rounding the value to one decimal place to obtain the flatness. Note that if there are multiple segments of the same type, the simple number average of the flatnesses determined for all segments of the same type is calculated, and the value rounded to one decimal place is used.
 本実施形態の複合繊維の繊維横断面に存在するセグメントAにおいて、その断面形状は限定されるものでないが、複合繊維からセグメントAを分割して得られたテキスタイルが摩耗した際に、セグメントAからなる繊維が摩耗した場合でも平坦部を少なくできるという観点からすると、セグメントAの断面形状は図1(a)のような外周に凸部を3個以上有した多葉断面であることが好ましい。外周に凸部を有していることで、摩耗時の他素材との接触面積を小さくでき、摩耗で平坦化する面積を減少することができる。この観点からすると、凸部の数は5個以上がより好ましく、7個以上がさらに好ましい。一方、凸部の数が多くなりすぎるとその効果は徐々に小さくなることから、凸部の数は20個以下であることが好ましく、15個以下がより好ましく、10個以下がさらに好ましい。 The cross-sectional shape of the segment A present in the fiber cross section of the composite fiber of this embodiment is not limited, but from the viewpoint of being able to reduce flat areas even when the fibers consisting of the segment A are worn when a textile obtained by dividing the segment A from the composite fiber is worn, it is preferable that the cross-sectional shape of the segment A is a multi-lobe cross section having three or more convex parts on the periphery as shown in Figure 1 (a). By having convex parts on the periphery, the contact area with other materials during wear can be reduced, and the area that becomes flattened due to wear can be reduced. From this viewpoint, the number of convex parts is more preferably 5 or more, and even more preferably 7 or more. On the other hand, if the number of convex parts becomes too large, the effect gradually decreases, so the number of convex parts is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
 本実施形態の複合繊維においては、テキスタイルとした後に複合繊維のセグメントAおよびBを分割することで、セグメントBからなる極細繊維をマルチフィラメント中に均一に混在させることが目的であることから、複合繊維の断面形態としては、図1(a)のようなセグメントAおよびBを島成分とする海島複合繊維、または図1(c)のようなセグメントAを芯、セグメントBを鞘とする芯鞘複合繊維であることが好ましい。図1(a)のような海島複合繊維であれば海成分zを除去することでセグメントAおよびBを分割することができ、図1(c)のような芯鞘複合繊維であればセグメントAを構成するポリマーとセグメントBを構成するポリマーをそれぞれ主鎖中に存在する結合が異なる非相溶のポリマーで形成することで、熱処理や物理衝撃等でセグメントAとBとの界面を剥離して分割することができる。 In the composite fiber of this embodiment, since the purpose is to divide the composite fiber segments A and B after making it into a textile, and to uniformly mix ultrafine fibers consisting of segment B in the multifilament, the cross-sectional form of the composite fiber is preferably a sea-island composite fiber in which segments A and B are island components as shown in FIG. 1(a), or a core-sheath composite fiber in which segment A is the core and segment B is the sheath as shown in FIG. 1(c). In the case of a sea-island composite fiber as shown in FIG. 1(a), segments A and B can be divided by removing the sea component z, and in the case of a core-sheath composite fiber as shown in FIG. 1(c), the polymer constituting segment A and the polymer constituting segment B are formed from incompatible polymers with different bonds in the main chain, and the interface between segments A and B can be peeled off and divided by heat treatment, physical impact, etc.
 また、セグメントAおよびBを形成するポリマーによらず、安定的にセグメントAおよびBを分割することができるという観点からすると、セグメントAおよびBを島成分とする海島複合繊維であって、海島複合繊維を構成するポリマーのうち溶剤に対する溶解速度が最も速いポリマーで海成分が形成されていることがより好ましい。 In addition, from the viewpoint of being able to stably separate segments A and B regardless of the polymers that form segments A and B, it is more preferable for the sea-island composite fiber to have segments A and B as island components, and for the sea component to be formed from a polymer that has the fastest dissolution rate in a solvent among the polymers that make up the sea-island composite fiber.
 海成分を形成するポリマーの溶解速度としては、高次加工における溶解処理の簡略化や時間短縮を考慮すると、島成分を形成するポリマーのうち最も溶解速度が速いポリマーを基準とした際に、溶解速度比(海成分/島成分)が100以上であることが好ましく、1000以上であることがさらに好ましい。溶解速度比を1000以上とすれば、溶解処理を短時間で終了することができるため、工程速度を高めることに加えて、島成分のポリマーを不要に劣化させることなく、より品位の高い布帛を得ることができる。この観点からすると溶解速度比は大きいほど好ましいが、海成分を形成するポリマーの安定性から実質的な上限は10000以下となる。 In consideration of simplifying the dissolution process and shortening the time in advanced processing, the dissolution rate of the polymer forming the sea component is preferably 100 or more, and more preferably 1000 or more, when the polymer forming the island components has the fastest dissolution rate as the standard (sea component/island component). If the dissolution rate ratio is 1000 or more, the dissolution process can be completed in a short time, and in addition to increasing the process speed, a higher quality fabric can be obtained without unnecessarily deteriorating the island component polymer. From this perspective, the higher the dissolution rate ratio, the better, but the practical upper limit is 10,000 or less due to the stability of the polymer forming the sea component.
 海成分を形成するポリマーとしては、例えば、ポリエステルおよびその共重合体、ポリ乳酸、ポリアミド、ポリスチレンおよびその共重合体、ポリエチレン、ポリビニールアルコールなどの溶融成形可能で、他の成分よりも易溶出性を示すポリマーから選択することが好適である。 The polymer that forms the sea component is preferably selected from polymers that are melt-moldable and more easily soluble than other components, such as polyesters and their copolymers, polylactic acid, polyamides, polystyrene and their copolymers, polyethylene, and polyvinyl alcohol.
 また、海成分の溶出工程を簡易化するという観点では、海成分を形成するポリマーは、水系溶剤あるいは熱水などに易溶出性を示す共重合ポリエステル、ポリ乳酸、ポリビニールアルコールなどが好ましい。特に、結晶性を維持しながらもアルカリ水溶液などの水系溶剤に対して易溶出性を示すため、加熱下で擦過が付与される仮撚加工等においても、複合繊維間の融着等が起こらないという高次加工通過性の観点から、5-ナトリウムスルホイソフタル酸が5mol%から15mol%が共重合されたポリエステルおよび前述した5-ナトリウムスルホイソフタル酸に加えて重量平均分子量500から3000のポリエチレングリコールが5質量%から15質量%の範囲で共重合されたポリエステルが好ましい。 From the viewpoint of simplifying the dissolution process of the sea component, the polymer forming the sea component is preferably a copolymerized polyester, polylactic acid, polyvinyl alcohol, etc., which is easily soluble in aqueous solvents or hot water. In particular, since it is easily soluble in aqueous solvents such as an alkaline aqueous solution while maintaining crystallinity, from the viewpoint of high-level processing passability, in which fusion between composite fibers does not occur even in false twist processing in which rubbing is applied under heat, polyesters copolymerized with 5 mol % to 15 mol % of 5-sodium sulfoisophthalic acid and polyesters copolymerized with the above-mentioned 5-sodium sulfoisophthalic acid and polyethylene glycol having a weight average molecular weight of 500 to 3000 in the range of 5 mass % to 15 mass % are preferred.
 本実施形態の複合繊維は、一旦、織編み等の高次加工を施した後に複合繊維をセグメントAおよびBに分割し、その後熱処理を施すことで、セグメントAからなる通常繊維とセグメントBからなる捲縮を有した極細繊維が均一に混在したマルチフィラメントを得るものである。該マルチフィラメントでは、その特殊な繊維形態から、従来素材にはない、さらっとした触感や反発感のある柔軟な風合いを有しつつも、他素材との摩擦・摩耗等によって発生する表面品位の低下が抑制され、さらに撥水加工を施した場合には高い撥水性能が発現する、衣料用テキスタイルを得ることが可能となる。 The composite fiber of this embodiment is first subjected to advanced processing such as weaving and knitting, and then divided into segments A and B. It is then subjected to heat treatment to obtain a multifilament in which normal fibers consisting of segment A and ultrafine fibers having crimp consisting of segment B are uniformly mixed. Due to the special fiber form of this multifilament, it is possible to obtain a clothing textile that has a smooth feel and a soft texture with a bouncy feel that is not found in conventional materials, while suppressing the deterioration of surface quality caused by friction and abrasion with other materials, and when further subjected to water-repellent processing, exhibits high water-repellent performance.
 本実施形態のマルチフィラメントにおいて、摩擦・摩耗等で発生する平坦部の面積が減少でき、さらには、反発感のある柔軟な風合いを発現するためには、2種類のフィラメントAおよびBからなるマルチフィラメントであって、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在しており、フィラメントBはフィラメントAよりも小さい繊維径を有していることが必要となる。 In the multifilament of this embodiment, in order to reduce the area of flat parts caused by friction, wear, etc., and to achieve a soft texture with a sense of resilience, the multifilament must be made up of two types of filaments A and B, with one or more filaments B present between any two filaments A in the multifilament, and the filaments B having a smaller fiber diameter than the filaments A.
 なお、本発明において、マルチフィラメント中の任意の2本のフィラメントが同じポリマーで形成されており、かつ繊維径の差が10%以内であれば、同じフィラメントとみなすこととする。 In the present invention, if any two filaments in a multifilament are made of the same polymer and the difference in fiber diameter is within 10%, they are considered to be the same filament.
 また、本発明でいうマルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在するとは、フィラメントAとフィラメントBが均一に混在していることを意味する。具体的には、本実施形態のマルチフィラメントからなるテキスタイルにおいて、テキスタイルの長さ方向に垂直かつマルチフィラメントの繊維軸方向に垂直なテキスタイル断面を、走査型電子顕微鏡(SEM)で2本以上のフィラメントAを含んだ15本以上のフィラメントが観察できる倍率として画像を撮影し、撮影された画像について画像解析ソフトを用いて、図4のように任意の2本のフィラメントAにおける外接円R1およびR2をそれぞれ描き、描いた2つの外接円の2本の共通外接線(J1とJ2)と2つの外接円(R1とR2)で囲まれた範囲内にフィラメントBが1本以上存在することを意味する。例えば図4では2本の共通外接線(J1とJ2)と2つの外接円(R1とR2)で囲まれた範囲内にフィラメントBが4本存在しており、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在すると言える。 In addition, the presence of one or more filaments B between any two filaments A in the multifilament in the present invention means that filaments A and B are uniformly mixed. Specifically, in the textile made of the multifilament in this embodiment, an image of the cross section of the textile perpendicular to the length direction of the textile and perpendicular to the fiber axis direction of the multifilament is taken with a scanning electron microscope (SEM) at a magnification at which 15 or more filaments including two or more filaments A can be observed, and the circumscribing circles R1 and R2 of any two filaments A are drawn on the taken image using image analysis software as shown in Figure 4, and one or more filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing lines (R1 and R2) of the two circumscribing lines drawn. For example, in Figure 4, four filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing lines (R1 and R2), and it can be said that one or more filaments B are present between any two filaments A in the multifilament.
 マルチフィラメント中の任意の2本のフィラメントAの間に、フィラメントAよりも小さい繊維径を有したフィラメントBが存在することで、マルチフィラメント中で通常繊維であるフィラメントAと極細繊維であるフィラメントBが均一に混在した繊維形態となり、摩擦・摩耗等で発生する平坦部の面積を減少でき、さらには、極細繊維であるフィラメントBが低曲げ剛性であるため、柔軟性を向上しつつ、通常繊維であるフィラメントAが高曲げ回復であるため、反発感を維持することもできるのである。 The presence of filament B, which has a smaller fiber diameter than filament A, between any two filaments A in the multifilament results in a fiber form in which filament A, which is a normal fiber, and filament B, which is an ultrafine fiber, are evenly mixed in the multifilament, reducing the area of flat areas that occur due to friction, wear, etc. Furthermore, since filament B, which is an ultrafine fiber, has low bending rigidity, flexibility is improved, while filament A, which is a normal fiber, has high bending recovery, allowing the resilience to be maintained.
 本実施形態のマルチフィラメントにおいて、フィラメントBの繊維径Dが1μm≦D<9μmであることが好ましい。 In the multifilament of the present embodiment, it is preferable that the fiber diameter D B of the filament B satisfies 1 μm≦D B <9 μm.
 フィラメントBの繊維径Dが9μm未満の極細繊維であることで、摩擦・摩耗等で発生する平坦部の面積を減少させるテカリ抑制効果と、低曲げ剛性であることでの柔軟性向上効果が得られるのである。この観点からするとDが小さいほど、テカリ抑制効果と柔軟性向上効果を際立たせることができるため、より好ましくはDが8μm未満、さらに好ましくはDが7μm未満である。 By making the filament B an ultrafine fiber with a fiber diameter D B of less than 9 μm, it is possible to obtain a shine-suppressing effect by reducing the area of flat parts generated by friction, wear, etc., and a flexibility-improving effect by having low bending rigidity. From this viewpoint, the smaller D B is, the more prominent the shine-suppressing effect and the flexibility-improving effect can be obtained, so D B is more preferably less than 8 μm, and even more preferably less than 7 μm.
 一方、フィラメントBの繊維径Dが小さすぎると、染料で染色した際の発色性の低下や摩耗した際に毛羽になりやすい等の耐久性の低下を引き起こす場合があることから、フィラメントBの繊維径Dは1μm以上であることが好ましく、より好ましくはDが2μm以上、さらに好ましくはDが3μm以上である。 On the other hand, if the fiber diameter D B of the filament B is too small, this may result in a decrease in color development when dyed with a dye, or a decrease in durability such as a tendency to fluff when worn, and therefore the fiber diameter D B of the filament B is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 3 μm or more.
 本実施形態のマルチフィラメントにおいて、フィラメントAの繊維径Dが9μm≦D<30μmであることが好ましい。 In the multifilament of the present embodiment, it is preferable that the fiber diameter D A of the filament A satisfies 9 μm≦D A <30 μm.
 フィラメントAの繊維径Dが9μm以上であることで、衣料用テキスタイルで好まれる反発感を発現するための曲げ回復性を維持しつつ、セグメントBからなる断面積の小さい極細繊維による柔軟性やテカリ抑制効果を両立できるのである。 By making the fiber diameter D A of the filament A 9 μm or more, it is possible to maintain the bending recovery required to produce the resilience preferred in clothing textiles, while simultaneously achieving the flexibility and shine-reducing effect provided by the ultrafine fibers with a small cross-sectional area made up of the segment B.
 この観点からするとDが大きいほど、高い曲げ回復性により反発感を高めることができるため、より好ましくはDが10μm以上、さらに好ましくはDが11μm以上である。一方、Dが大きすぎると、摩擦・摩耗等で通常繊維であるフィラメントAが削れやすくなり、発生する平坦部の面積が大きくなって、極細繊維であるフィラメントBによるテカリ抑制効果を阻害する場合があることから、Dが30μm未満であることが好ましく、より好ましくはDが25μm未満、さらに好ましくはDが20μm未満である。 From this viewpoint, the larger the DA , the higher the bending recovery and thus the higher the resilience, so that the DA is more preferably 10 μm or more, and even more preferably 11 μm or more. On the other hand, if the DA is too large, the filament A, which is a normal fiber, is easily scraped off due to friction, wear, etc., and the area of the generated flat portion increases, which may inhibit the shine suppressing effect of the filament B, which is an ultrafine fiber, so that the DA is preferably less than 30 μm, more preferably less than 25 μm , and even more preferably less than 20 μm.
 本実施形態のマルチフィラメントにおいて、極細繊維であるフィラメントBへ捲縮を発現させ、繊維間に微細な空隙を形成することによるテカリ現象のさらなる抑制や、テキスタイル表面に微細かつ複雑な凹凸を形成することによるさらっとした触感、撥水加工を施した場合の高い撥水性能を得るためには、繊維横断面において、フィラメントBがサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されていることが必要となる。 In the multifilament of this embodiment, in order to induce crimping in the ultrafine filament B, which forms minute gaps between the fibers to further suppress the shine phenomenon, to form minute and complex irregularities on the textile surface to give it a smooth feel, and to obtain high water-repellent performance when a water-repellent treatment is applied, it is necessary that the filament B is formed of two types of polymers that are combined in a side-by-side or eccentric core-sheath type in the cross section of the fiber.
 フィラメントBを形成する2種類のポリマーが、それぞれの重心が異なる図5(b)のようなサイドバイサイド型または偏心芯鞘型に複合されていることで、熱処理を施すとフィラメントBが高収縮となるポリマー側に大きく湾曲し、これが連続することでコイル状の捲縮形態を発現させることができる。さらにポリマー重心間距離を制御することで任意の捲縮形態を発現することが可能であり、これにより、本発明の目的である繊維間に微細な空隙を形成することによるテカリ現象のさらなる抑制や、テキスタイル表面に微細かつ複雑な凹凸を形成することによるさらっとした触感を達成できるのである。 The two types of polymers that form filament B are combined in a side-by-side or eccentric core-sheath type with different centers of gravity as shown in Figure 5(b), so that when heat-treated, filament B bends significantly toward the polymer side that shrinks more, and this continues to create a coiled crimped form. Furthermore, by controlling the distance between the polymer centers of gravity, it is possible to create any crimped form, which is the object of the present invention to further suppress the shine phenomenon by forming fine gaps between the fibers, and to achieve a smooth feel by forming fine and complex irregularities on the textile surface.
 また、テキスタイル表面に微細かつ複雑な凹凸が存在することで、撥水加工を施した際には、水との接触面積が小さくなることによる高い撥水性能を発現することも可能となる。 In addition, the presence of minute and complex irregularities on the textile surface makes it possible to achieve high water-repellent performance when a water-repellent treatment is applied, as the contact area with water is reduced.
 なお、フィラメントBの複合構造としては、サイドバイサイド型または偏心芯鞘型のどちらでもよく、サイドバイサイドとすればポリマーの重心間距離が最大となるため、捲縮発現を向上することができ、偏心芯鞘型とすれば、耐摩耗性に劣る高収縮ポリマーを耐摩耗性に優れる低収縮ポリマーで被膜することで、フィラメントBからなる極細繊維の耐摩耗性をさらに向上することができる。 The composite structure of filament B may be either a side-by-side type or an eccentric core-sheath type. If it is a side-by-side type, the distance between the centers of gravity of the polymers is maximized, which improves the expression of crimp. If it is an eccentric core-sheath type, the wear resistance of the ultrafine fiber made of filament B can be further improved by coating a high-shrinkage polymer with poor wear resistance with a low-shrinkage polymer with excellent wear resistance.
 本実施形態のマルチフィラメントにおいて、フィラメントBを形成する2種類のポリマーは、熱処理で収縮差を生じる組合せであれば特に限定されないが、捲縮発現を制御しやすいという観点からすると、融点の異なるポリマーの組合せとすることが好ましい。融点の異なる組合せとすることで、熱処理を施した際には、低融点側のポリマーが先に収縮することから、容易にポリマー間の収縮差を発現することができるのである。 In the multifilament of this embodiment, the two types of polymers forming filament B are not particularly limited as long as they are a combination that produces a shrinkage difference upon heat treatment, but from the viewpoint of making it easier to control the occurrence of crimp, it is preferable to use a combination of polymers with different melting points. By using a combination of polymers with different melting points, the polymer with the lower melting point shrinks first when heat treatment is performed, making it easy to produce a shrinkage difference between the polymers.
 本実施形態のマルチフィラメントにおいては、フィラメントAを形成するポリマーが、フィラメントAおよびBを形成するポリマーのうち最も低融点のポリマーであることが好ましい。掛かる範囲とすれば、通常繊維であるフィラメントAが高収縮となり、極細繊維であるフィラメントBとの間に糸長差が生まれ、繊維間の空隙を増加することができ、本発明の目的であるテカリ現象の抑制をより高めることができるだけでなく、テキスタイル表面に、極細繊維であるフィラメントBの捲縮による微細凹凸と、通常繊維であるフィラメントAによる粗大な凹凸が混ざった、より複雑な凹凸が形成されることで、さらっとした触感や撥水加工を施した際の撥水性能をより際立たせることができる。 In the multifilament of this embodiment, it is preferable that the polymer forming filament A is the polymer with the lowest melting point of the polymers forming filaments A and B. Within this range, filament A, which is a normal fiber, will shrink highly, creating a difference in thread length between it and filament B, which is an ultrafine fiber, and increasing the gap between the fibers. Not only can this further enhance the suppression of the shine phenomenon, which is the object of the present invention, but it also forms more complex irregularities on the textile surface, combining fine irregularities caused by the crimping of filament B, which is an ultrafine fiber, with coarse irregularities caused by filament A, which is a normal fiber, and this can further accentuate the smooth texture and water-repellent performance when water-repellent processing is applied.
 また、フィラメントAを形成するポリマーが2種類の場合、フィラメントAおよびBが共に捲縮を有することで、テキスタイルにストレッチ性能を発現することができるという観点からすると、フィラメントAが図6(a)のようなサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、2種類のポリマーのどちらか一方がフィラメントAおよびBを構成するポリマーのうち最も低融点のポリマーであることが好ましい。 In addition, when filament A is made up of two types of polymers, it is preferable that filament A is made up of two types of polymers combined in a side-by-side or eccentric core-sheath type as shown in Figure 6(a) in order to provide stretch performance to the textile when both filaments A and B have crimps, and that one of the two types of polymers is the polymer with the lowest melting point among the polymers that make up filaments A and B.
 本実施形態のマルチフィラメントにおいて、フィラメントBがサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、2種類のポリマーが融点の異なるポリマーの組合せである場合、低融点ポリマーと高融点ポリマーの面積比率としては、低融点ポリマー/高融点ポリマーが70/30~30/70の範囲であることが好ましい。かかる範囲であれば、低融点側のポリマーが熱処理で高収縮する際の目付詰まりによる風合い硬化の影響を受けることなく、収縮差による捲縮形態を十分に発現でき、より粗大な繊維間空隙を得ることができる。 In the multifilament of this embodiment, when filament B is formed of two types of polymers combined in a side-by-side or eccentric core-sheath type, and the two types of polymers are a combination of polymers with different melting points, it is preferable that the area ratio of low melting point polymer to high melting point polymer is in the range of 70/30 to 30/70 (low melting point polymer/high melting point polymer). If the area ratio is in this range, the low melting point polymer is not affected by texture hardening due to clogging when it shrinks highly during heat treatment, and the crimp morphology due to shrinkage difference can be fully expressed, and larger interfiber voids can be obtained.
 本実施形態のマルチフィラメントにおいて、フィラメントBの断面形状は限定されるものでないが、フィラメントBを分割した後に、極細繊維であるフィラメントBへ捲縮を発現させ、繊維間に微細な空隙を有した繊維形態を形成するという観点からすると、フィラメントBの断面形状は図5(b)のような扁平状であることが好ましい。 In the multifilament of this embodiment, the cross-sectional shape of filament B is not limited, but from the viewpoint of forming a fiber form having minute gaps between the fibers by inducing crimping in filament B, which is an ultrafine fiber, after splitting filament B, it is preferable that the cross-sectional shape of filament B be flat, as shown in Figure 5(b).
 ここで、「扁平状」とは、平面視で細長い形状のことであり、具体的には、後述するフィラメントにおける「扁平度」が1.1以上のものをいう。 Here, "flat" refers to a long and narrow shape when viewed from above, and more specifically, to filaments with a "flatness" of 1.1 or more, as described below.
 本実施形態のマルチフィラメントにおいて、フィラメントBの断面形状を扁平状とすることで長軸方向に嵩高くなることから、捲縮発現による空隙効果を最大限発揮することができ、テキスタイル表面の微細かつ複雑な凹凸によるさらっとした触感や、撥水加工を施した際の撥水性能をより際立たせることができる。この観点からすると、短軸の長さに対して長軸の長さが長いほどよく、扁平度が1.2以上であることが好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。一方、扁平度が大きくなりすぎてしまうと、摩耗した際の平坦部の面積が増加する場合があることから、扁平度は6.0以下であることが好ましく、5.0以下であることがより好ましく、4.0以下がさらに好ましい。 In the multifilament of this embodiment, the cross-sectional shape of filament B is flattened, which increases the bulk in the long axis direction, thereby maximizing the void effect caused by the expression of crimp, and the smooth feel due to the fine and complex unevenness of the textile surface and the water-repellent performance when water-repellent processing is applied can be more prominent. From this perspective, the longer the length of the long axis is compared to the length of the short axis, the better, and the flatness is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 2.0 or more. On the other hand, if the flatness is too large, the area of the flat part when worn may increase, so the flatness is preferably 6.0 or less, more preferably 5.0 or less, and even more preferably 4.0 or less.
 本実施形態におけるセグメントの扁平度は、以下の方法によって求められる。 In this embodiment, the flatness of the segments is determined by the following method.
 まず、テキスタイルから抜き出したマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面を走査型電子顕微鏡(SEM)でマルチフィラメントが観察できる倍率として画像を撮影する。撮影した画像について画像解析ソフトを用いて解析することで、図5の(b)に示すようにフィラメントの外周上の任意の点のうち最も距離が離れた2点(a1、a2)を結んだ直線を長軸とし、長軸の中点を通って長軸と直交する直線と繊維外周の交点(b1、b2)を結んだ直線を短軸として、長軸の長さを短軸の長さで割り返した値を算出し、小数点第2位で四捨五入した値を扁平度とする。なお、マルチフィラメント中に同じ種類のフィラメントが複数個存在する場合は、同じ種類のフィラメント全てについて求めた扁平度の単純な数平均を求め、小数点第2位を四捨五入した値を採用することとする。 First, the multifilament extracted from the textile is embedded in an embedding agent such as epoxy resin, and an image is taken of the fiber cross section perpendicular to the fiber axis with a scanning electron microscope (SEM) at a magnification that allows the multifilament to be observed. The captured image is analyzed using image analysis software, and the long axis is taken as the straight line connecting the two most distant points (a1, a2) among any points on the outer periphery of the filament, as shown in Figure 5 (b), and the short axis is taken as the straight line connecting the intersection point (b1, b2) of the outer periphery of the fiber with the straight line passing through the midpoint of the long axis and perpendicular to the long axis, and the value obtained by dividing the length of the long axis by the length of the short axis is calculated and rounded to one decimal place to obtain the flatness. Note that if there are multiple filaments of the same type in the multifilament, the simple number average of the flatnesses obtained for all filaments of the same type is calculated and the value rounded to one decimal place is used.
 本実施形態のマルチフィラメントにおいて、フィラメントAの断面形状は限定されるものでないが、テキスタイルが摩耗した際に、通常繊維であるフィラメントAが摩耗した場合でも平坦部を少なくできるという観点からすると、フィラメントAの断面形状は図5(a)のような外周に凸部を3個以上有した多葉断面であることが好ましい。外周に凸部を有していることで、摩耗時の他素材との接触面積を小さくでき、摩耗で平坦化する面積を減少することができる。この観点からすると、凸部の数は5個以上がより好ましく、7個以上がさらに好ましい。一方、凸部の数が多くなりすぎるとその効果は徐々に小さくなることから、凸部の数は20個以下であることが好ましく、15個以下がより好ましく、10個以下がさらに好ましい。 In the multifilament of this embodiment, the cross-sectional shape of filament A is not limited, but from the viewpoint of being able to reduce flat areas when the textile is worn, even when filament A, which is a normal fiber, is worn, it is preferable that the cross-sectional shape of filament A is a multi-lobe cross section having three or more protrusions on the periphery as shown in Figure 5 (a). By having protrusions on the periphery, the contact area with other materials during wear can be reduced, and the area that becomes flattened due to wear can be reduced. From this viewpoint, the number of protrusions is more preferably five or more, and even more preferably seven or more. On the other hand, if the number of protrusions becomes too large, the effect gradually decreases, so the number of protrusions is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
 本実施形態に用いるポリマーとしては、加工性に優れることから熱可塑性ポリマーであることが好ましい。熱可塑性ポリマーとしては、例えばポリエステル系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアミド系、ポリカーボネート系、ポリメタクリル酸メチル系、ポリフェニレンサルファイド系などのポリマー群およびその共重合体が好ましい。特に高い界面親和性を付与することができ、複合断面に異常のない繊維が得られるという観点から、本実施形態に用いる熱可塑性ポリマーは全て同ポリマー群およびその共重合体であることが好ましい。これらの中でも、本実施形態の複合繊維およびマルチフィラメントをテキスタイルに仕立てた際に、染色した際に良好な発色性が得られるという観点から、複合繊維およびマルチフィラメントに用いる熱可塑性ポリマーはポリエステル系またはポリアミド系のポリマー群およびその共重合体であることがより好ましく、その中でもポリエチレンテレフタレートおよびその共重合体であると、高い曲げ回復性から適度な反発感が得られるため、さらに好ましい。 The polymer used in this embodiment is preferably a thermoplastic polymer because of its excellent processability. As the thermoplastic polymer, for example, a polymer group such as polyester, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polymethyl methacrylate, polyphenylene sulfide, and copolymers thereof are preferable. In particular, from the viewpoint of being able to impart high interfacial affinity and obtaining fibers without abnormalities in the composite cross section, it is preferable that all of the thermoplastic polymers used in this embodiment are the same polymer group and copolymers thereof. Among these, from the viewpoint of obtaining good color development when dyeing the composite fiber and multifilament of this embodiment when it is made into a textile, it is more preferable that the thermoplastic polymer used for the composite fiber and multifilament is a polyester or polyamide polymer group and copolymers thereof, and among them, polyethylene terephthalate and copolymers thereof are even more preferable because they provide a moderate resilience due to their high bending recovery.
 また環境問題に注目が集まる中、本実施形態においても植物由来のバイオポリマーやリサイクルポリマーを用いることは環境負荷低減の観点からも好適である。したがって、上記した本実施形態に用いるポリマーとして、ケミカルリサイクル、マテリアルリサイクルおよびサーマルリサイクルのいずれの手法で再資源化されたリサイクルポリマーを用いることができる。 Furthermore, as environmental issues are gaining attention, the use of plant-derived biopolymers and recycled polymers in this embodiment is also suitable from the perspective of reducing the environmental impact. Therefore, the polymers used in this embodiment described above can be recycled polymers that have been recycled using any of the methods of chemical recycling, material recycling, and thermal recycling.
 バイオポリマーやリサイクルポリマーを用いる場合であっても、上記した通り、染色した際に良好な発色性が得られるという観点から、ポリエステル系またはポリアミド系のポリマー群およびその共重合体であることが好ましく、その中でもリサイクルポリエチレンテレフタレートおよびその共重合体とすると高い曲げ回復性から適度な反発感が得られるため、さらに好適に用いることができる。 Even if biopolymers or recycled polymers are used, as mentioned above, polyester-based or polyamide-based polymers and their copolymers are preferred from the viewpoint of obtaining good color development when dyed, and among these, recycled polyethylene terephthalate and its copolymers are even more suitable because they provide a moderate bounce due to their high bending recovery.
 また、酸化チタン、シリカ、酸化バリウムなどの無機化合物、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。 The polymer may also contain various additives such as inorganic compounds such as titanium oxide, silica, and barium oxide, colorants such as carbon black, dyes, and pigments, flame retardants, fluorescent brighteners, antioxidants, and ultraviolet absorbers.
 これらの中でも、酸化チタンをポリマーに含有させることが好ましい。酸化チタンをポリマーに含有させることにより、繊維内の酸化チタンが光を乱反射することで、光の入射角による反射の増減に起因する外観ムラ(ギラツキ)を抑制できるといった外観品位の良化のみならず、繊維内部の酸化チタンにより防透けや紫外線遮蔽といった機能性も得られる。上記の効果を十分に得るためには、複合繊維中の酸化チタンの含有量は0.5質量%以上が好ましく、より好ましくは1.0質量%以上、さらに好ましくは3.0質量%以上である。また、酸化チタンの光の乱反射が増加すると発色性の低下を引き起こす場合があることから、繊維中の酸化チタンの含有量は10.0質量%以下が好ましい。 Among these, it is preferable to incorporate titanium oxide into the polymer. By incorporating titanium oxide into the polymer, not only can the titanium oxide in the fiber diffusely reflect light, thereby improving the quality of appearance by suppressing uneven appearance (glare) caused by increases and decreases in reflection depending on the angle of incidence of light, but the titanium oxide inside the fiber also provides functionality such as anti-transparency and UV protection. To fully obtain the above effects, the content of titanium oxide in the composite fiber is preferably 0.5 mass% or more, more preferably 1.0 mass% or more, and even more preferably 3.0 mass% or more. Furthermore, since increased diffuse reflection of light by titanium oxide can cause a decrease in color development, the content of titanium oxide in the fiber is preferably 10.0 mass% or less.
 本実施形態における融点の異なるポリマーの組合せとは、ポリエステル系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアミド系、ポリカーボネート系、ポリメタクリル酸メチル系、ポリフェニレンサルファイド系などの溶融成形可能な熱可塑性ポリマー群およびその共重合体の中からであれば融点が10℃以上異なるポリマーの組合せを、エステル結合のポリエステル系、アミド結合のポリアミド系といった主鎖中に存在する結合が同一である同じポリマー群の中からであれば融点が5℃以上異なるポリマーの組合せをいう。 In this embodiment, a combination of polymers with different melting points refers to a combination of polymers whose melting points differ by 10°C or more from a group of melt-moldable thermoplastic polymers such as polyesters, polyethylenes, polypropylenes, polystyrenes, polyamides, polycarbonates, polymethyl methacrylates, and polyphenylene sulfide, and their copolymers, and a combination of polymers whose melting points differ by 5°C or more from a group of the same polymers with the same bonds in the main chain, such as polyesters with ester bonds and polyamides with amide bonds.
 特に、剥離を抑制して高次加工の安定性やテキスタイルに使用耐久性を付与するという観点からすると、ポリマーの組合せとしては、エステル結合のポリエステル系、アミド結合のポリアミド系といった主鎖中に存在する結合が同一である同じポリマー群の中から選択することがより好ましい。 In particular, from the viewpoint of preventing peeling and imparting stability to advanced processing and durability to textiles, it is more preferable to select polymer combinations from the same polymer group in which the bonds present in the main chain are the same, such as polyesters with ester bonds and polyamides with amide bonds.
 同じポリマー群での低融点ポリマーと高融点ポリマーの組合せとしては、例えば、ポリエステル系として、共重合ポリエチレンテレフタレート/ポリエチレンテレフタレート、ポリプロピレンテレフタレート/ポリエチレンテレフタレート、ポリブチレンテレフタレート/ポリエチレンテレフタレート、熱可塑性ポリウレタン/ポリエチレンテレフタレート、ポリエステル系エラストマー/ポリエチレンテレフタレート、ポリエステル系エラストマー/ポリブチレンテレフタレート、ポリアミド系としてナイロン6または66/ナイロン610、ナイロン6-ナイロン66共重合体/ナイロン6または610、PEG共重合ナイロン6/ナイロン6または610、熱可塑性ポリウレタン/ナイロン6または610、ポリオレフィン系としてエチレン-プロピレンゴム微分散ポリプロピレン/ポリプロピレン、プロピレン-αオレフィン共重合体/ポリプロピレンなどの種々の組み合わせが挙げられる。 Combinations of low-melting point polymers and high-melting point polymers in the same polymer group include, for example, polyester-based combinations such as copolymerized polyethylene terephthalate/polyethylene terephthalate, polypropylene terephthalate/polyethylene terephthalate, polybutylene terephthalate/polyethylene terephthalate, thermoplastic polyurethane/polyethylene terephthalate, polyester-based elastomer/polyethylene terephthalate, polyester-based elastomer/polybutylene terephthalate, polyamide-based combinations such as nylon 6 or 66/nylon 610, nylon 6-nylon 66 copolymer/nylon 6 or 610, PEG copolymerized nylon 6/nylon 6 or 610, thermoplastic polyurethane/nylon 6 or 610, and polyolefin-based combinations such as ethylene-propylene rubber finely dispersed polypropylene/polypropylene, and propylene-α-olefin copolymer/polypropylene.
 これらの中でも、本実施形態の複合繊維およびマルチフィラメントをテキスタイルに仕立てた際に、染色による良好な発色性が得られるという観点から、融点の異なるポリマーはポリエステル系またはポリアミド系の組合せであることがより好ましく、中でもポリエステル系として共重合ポリエチレンテレフタレート/ポリエチレンテレフタレートの組合せとすれば、高い曲げ回復性から適度な反発感も得られることから特に好ましい組合せとして挙げられる。 Among these, from the viewpoint of obtaining good color development by dyeing when the composite fiber and multifilament of this embodiment are made into textiles, it is more preferable that the polymers having different melting points are a combination of polyesters or polyamides, and among these, a combination of copolymerized polyethylene terephthalate/polyethylene terephthalate as the polyester is a particularly preferable combination because it provides a moderate resilience due to its high bending recovery.
 また上記共重合ポリエチレンテレフタレートにおける共重合成分としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸、マレイン酸、フタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などが挙げられるが、これらの中でも、ポリエチレンテレフタレートとの収縮差を最大化できるという観点からすると、イソフタル酸を5~15mol%共重合されたポリエチレンテレフタレートとすることが好ましい。 Furthermore, examples of the copolymerized components in the copolymerized polyethylene terephthalate include succinic acid, adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, maleic acid, phthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid. Among these, from the viewpoint of maximizing the difference in shrinkage with polyethylene terephthalate, it is preferable to use polyethylene terephthalate copolymerized with 5 to 15 mol% isophthalic acid.
 本実施形態のマルチフィラメントがその一部を構成するテキスタイルにおいては、マルチフィラメントが通常繊維と極細繊維が均一に混在した繊維形態を有することから、摩擦・摩耗等で発生する平坦部の面積を減少でき、さらには、極細繊維が低曲げ剛性であるため、柔軟性を向上しつつ、通常繊維が高曲げ回復であるため、反発感を維持する、従来素材にはない、摩擦に対する耐性と風合いを両立したテキスタイルになる。 In the textile of which the multifilament of this embodiment is a part, the multifilament has a fiber form in which normal fibers and ultrafine fibers are uniformly mixed, which reduces the area of flat parts that occur due to friction, wear, etc. Furthermore, the ultrafine fibers have low bending rigidity, which improves flexibility, while the normal fibers have high bending recovery, which maintains a resilient feel, resulting in a textile that combines friction resistance and texture not found in conventional materials.
 また、極細繊維が捲縮を有していることから、この捲縮による立体障害によって繊維間に微細な空隙が形成され、摩擦面が固定されることなく、柔軟に移動することができるため、さらに摩擦に対する耐性が高くなり、耐テカリ性が大幅に向上できることに加えて、捲縮を有した極細繊維が表層に配置されていることにより、テキスタイルの表面に微細かつ複雑な凹凸が形成され、さらっとした触感や、撥水加工を施した場合には高い撥水性能も得られる。 In addition, because the ultrafine fibers have shrinkage, the steric hindrance caused by this shrinkage creates tiny gaps between the fibers, allowing the friction surface to move flexibly without being fixed, further increasing resistance to friction and significantly improving shine resistance. In addition, because the ultrafine fibers with shrinkage are arranged on the surface, fine and complex irregularities are formed on the surface of the textile, giving it a smooth feel and, when a water-repellent finish is applied, providing high water-repellent performance.
 そのため、ジャケット、スカート、パンツ、下着などの一般衣料から、スポーツ衣料、衣料資材に加え、その特性を生かしてカーペット、ソファーなどのインテリア製品、カーシートなどの車輌内装品、化粧品、マスク、健康用品などの生活用途など多岐に渡る繊維製品に好適に用いることができるが、着用時の他素材との摩耗によるテカリ現象が抑制できることや、柔軟でありながら、さらっとした触感が得られること、撥水加工を施した場合に高い撥水性能を発現することができるという観点からすると、衣料用途に用いることが特に好ましい。  Therefore, it can be used suitably for a wide range of textile products, from general clothing such as jackets, skirts, pants, and underwear, to sports clothing and clothing materials, and by taking advantage of its properties, it can be used for a wide range of textile products, including interior products such as carpets and sofas, vehicle interior products such as car seats, cosmetics, masks, health products, and other daily uses. However, from the viewpoints that it can suppress the shine phenomenon caused by friction with other materials when worn, that it is flexible yet has a smooth feel, and that it can exhibit high water-repellent performance when water-repellent processing is applied, its use in clothing applications is particularly preferable.
 また、本実施形態のマルチフィラメントにおいては、不織布や織編物など様々なテキスタイルに用いることができるが、上記の衣料用途に適しているという観点からすると、本実施形態のマルチフィラメントが一部を構成する織編物とすることが好ましい。 The multifilament of this embodiment can be used in various textiles such as nonwoven fabrics and woven and knitted fabrics, but from the viewpoint of suitability for the above-mentioned clothing applications, it is preferable that the multifilament of this embodiment be used as a part of a woven or knitted fabric.
 本発明の織編物における組織は特に限定されず、織物である場合の織組織としては、例えば、平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、絡み織などが挙げられる。また、編物である場合の編組織としては、例えば、丸編、緯編、経編(トリコット編、ラッセル編を含む)、パイル編、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、挿入組織などが挙げられる。織物、編物いずれもどのような組織でもよいが、平織よりも綾織りのような凹凸が出やすい組織とする方が、本実施形態のマルチフィラメントが収縮しやすく、布帛表面に微細かつ複雑な凹凸が形成されやすくなるため、好ましい。また、他の繊維と混用する場合は、本実施形態のマルチフィラメントが表面に多く現れる組織が望ましい。 The weave of the woven or knitted fabric of the present invention is not particularly limited, and examples of the weave in the case of a woven fabric include plain weave, twill weave, satin weave, variation plain weave, variation twill weave, variation satin weave, variegated weave, patterned weave, one-sided overlap weave, double weave, multiple weave, warp pile weave, weft pile weave, and twill weave. Examples of the knitted fabric include circular knit, weft knit, warp knit (including tricot knit and raschel knit), pile knit, plain knit, jersey knit, rib knit, smooth knit (double-sided knit), rubber knit, pearl knit, Denbigh weave, cord weave, atlas weave, chain weave, and insertion weave. Any weave is acceptable for both woven and knitted fabrics, but a weave that is more likely to produce unevenness, such as a twill weave, is preferable compared to a plain weave, because the multifilament of this embodiment is more likely to shrink and fine and complex unevenness is more likely to be formed on the surface of the fabric. When mixed with other fibers, a weave in which the multifilament of this embodiment appears more on the surface is preferable.
 本発明の織編物が織物である場合、経緯の総カバーファクター(CF)が1000~3500が好ましい。CFが1000以上であることにより、組織点にできる空隙が少なくなり、ピリングや摩耗等が起こりにくい、耐久性の高い織物を得ることができる。この観点からすると、より好ましくはCFが1500以上である。 When the woven or knitted fabric of the present invention is a woven fabric, the total cover factor (CF) of the warp and weft directions is preferably 1000 to 3500. A CF of 1000 or more reduces voids at the weave points, making it possible to obtain a highly durable fabric that is less susceptible to pilling and abrasion. From this perspective, a CF of 1500 or more is more preferable.
 一方、CFが3500以下であれば、組織点による過度な拘束力で前述したマルチフィラメントによる微細かつ複雑な凹凸が失われることなく、着用時の他素材との摩耗によるテカリ現象が抑制できることや、柔軟でありながらさらっとした触感を得ること、撥水加工を施した場合に高い撥水性能を発現することができる。この観点からすると、より好ましくはCFが2800以下である。 On the other hand, if the CF is 3500 or less, the fine and complex irregularities of the multifilament described above will not be lost due to excessive binding force from the weaving points, and the shine caused by friction with other materials when worn can be suppressed, a soft yet smooth feel can be obtained, and high water repellency can be achieved when a water repellent finish is applied. From this perspective, a CF of 2800 or less is more preferable.
 ここで言う総カバーファクター(CF)とは、織物の経密度および緯密度をJIS L1096:2010 8.6.1に準じて2.54cmの区間にて測定し、経糸織密度[本/2.54cm]×(経糸総繊度[dtex])1/2+緯糸織密度[本/2.54cm]×緯糸総繊度[dtex])1/2の式より求めた値である。 The total cover factor (CF) referred to here is a value obtained by measuring the warp density and weft density of a woven fabric in a 2.54 cm section in accordance with JIS L1096:2010 8.6.1 and calculating the value from the formula: warp weave density [pieces/2.54 cm] × (total warp fineness [dtex]) 1/2 + weft weave density [pieces/2.54 cm] × total weft fineness [dtex]) 1/2 .
 本実施形態の織編物において、高い撥水性能を発現するためには、織編物が2種類のフィラメントAおよびBからなるマルチフィラメントを含んでおり、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在しており、フィラメントBはフィラメントAよりも小さい繊維径を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、撥水加工が施されたものであることが好ましい。 In order for the woven or knitted fabric of this embodiment to exhibit high water-repellent performance, it is preferable that the woven or knitted fabric contains a multifilament consisting of two types of filaments A and B, with one or more filaments B present between any two filaments A in the multifilament, with filament B having a smaller fiber diameter than filament A, being formed from two types of polymers combined in a side-by-side or eccentric core-sheath type, and being subjected to a water-repellent treatment.
 なお、本発明でいう任意の2本のフィラメントAの間に1本以上のフィラメントBが存在するとは、フィラメントAとフィラメントBが均一に混在していることを意味しており、具体的には、本実施形態の織編物において、長さ方向に垂直かつフィラメントの繊維軸方向に垂直な断面を、走査型電子顕微鏡(SEM)で2本以上のフィラメントAを含んだ15本以上のフィラメントが観察できる倍率として画像を撮影し、撮影された画像について画像解析ソフトを用いて、図4のように任意の2本のフィラメントAにおける外接円R1およびR2をそれぞれ描き、描いた2つの外接円の2本の共通外接線(J1とJ2)と2つの外接円(R1とR2)で囲まれた範囲内にフィラメントBが1本以上存在することを意味する。例えば図4では2本の共通外接線(J1とJ2)と2つの外接円(R1とR2)で囲まれた範囲内にフィラメントBが4本存在しており、任意の2本のフィラメントAの間に1本以上のフィラメントBが存在すると言える。 In the present invention, the presence of one or more filaments B between any two filaments A means that filaments A and B are uniformly mixed. Specifically, in the woven or knitted fabric of this embodiment, a cross section perpendicular to the length direction and perpendicular to the fiber axis direction of the filaments is photographed with a scanning electron microscope (SEM) at a magnification at which 15 or more filaments including two or more filaments A can be observed. The photographed image is analyzed using image analysis software to draw circumscribing circles R1 and R2 for any two filaments A as shown in Figure 4, and one or more filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing circles (R1 and R2) of the two circumscribing circles. For example, in Figure 4, four filaments B are present within the range surrounded by the two common circumscribing lines (J1 and J2) and the two circumscribing circles (R1 and R2), and it can be said that one or more filaments B are present between any two filaments A.
 マルチフィラメント中の任意の2本のフィラメントAの間に、フィラメントAよりも小さい繊維径を有したフィラメントBが存在することで、マルチフィラメント中で通常繊維であるフィラメントAと極細繊維であるフィラメントBが均一に混在した繊維形態となり、さらにフィラメントBを形成する2種類のポリマーが、それぞれの重心が異なる図5(b)のようなサイドバイサイド型または偏心芯鞘型に複合されていることで、熱処理を施すとフィラメントBが高収縮となるポリマー側に大きく湾曲し、これが連続することでコイル状の捲縮形態が発現する。これにより、捲縮を有した極細繊維と通常繊維が混在して表層に配置されていることにより、テキスタイル表面に微細かつ複雑な凹凸が形成され、撥水加工を施した場合には、水との接触面積が小さくなることで高い撥水性能を発現することができるのである。 The presence of filament B, which has a smaller fiber diameter than filament A, between any two filaments A in the multifilament results in a fiber form in which filament A, which is a normal fiber, and filament B, which is an ultrafine fiber, are uniformly mixed in the multifilament. Furthermore, the two types of polymers that form filament B are combined in a side-by-side type or eccentric core-sheath type with different centers of gravity as shown in Figure 5(b), so that when heat treatment is applied, filament B is greatly curved toward the polymer side that shrinks highly, and this continues to create a coil-like crimped form. As a result, the crimped ultrafine fibers and normal fibers are mixed and arranged on the surface layer, and fine and complex irregularities are formed on the surface of the textile, and when water-repellent processing is applied, the contact area with water is reduced, resulting in high water-repellent performance.
 なお、本発明における撥水加工を施した織編物とは、織編物が実質的に撥水性能を有していればよく、織編物の表面の水滴滑落角度が、90度よりも小さいことなどが例示される。本発明の織編物がポリオレフィンからなる場合は、撥水剤を付与せずとも十分な撥水性能を有するため、そのままでも撥水加工を施した織編物であるが、衣料用途として好適に用いられてるポリエステルやポリアミドからなる場合はそのままでは十分な撥水性能が得られないことから、織編物の表面に撥水剤を付与することが好ましい。撥水加工は、織編物の少なくとも一方の面が撥水性能を有するように施される。撥水性が必要な片面のみ、あるいは両面ともが撥水性能を有するように撥水加工を施すかは必要に応じて適宜選択される。 In the present invention, the water-repellent woven or knitted fabric is a woven or knitted fabric that has substantial water-repellent properties, and examples thereof include a woven or knitted fabric in which the water droplets slide off the surface of the woven or knitted fabric at an angle of less than 90 degrees. When the woven or knitted fabric of the present invention is made of polyolefin, it has sufficient water-repellent properties without the addition of a water-repellent agent, and is a water-repellent woven or knitted fabric as is. However, when the woven or knitted fabric is made of polyester or polyamide, which are preferably used for clothing applications, it is preferable to add a water-repellent agent to the surface of the woven or knitted fabric, since sufficient water-repellent properties cannot be obtained as is. The water-repellent treatment is performed so that at least one side of the woven or knitted fabric has water-repellent properties. It is possible to select appropriately as needed whether to perform the water-repellent treatment on only one side that requires water repellency, or on both sides so that they have water-repellent properties.
 織編物に撥水剤を付与して撥水加工を施す場合、撥水剤としてはフッ素系、非フッ素系(例えばシリコーン系、炭化水素系等その他任意の撥水剤)を用いることができる。撥水剤の種類は特に限定されないが、アルキル基の水素原子の2個以上がフッ素原子に置換されたパーフルオロアルキル基を有するフッ素系化合物からなるフッ素系撥水剤や、フッ素元素を含まない非フッ素系撥水剤などを用いることができるが、環境配慮の観点からすると、パーフルオロアルキル基の炭素数が6個以下であるC6フッ素系撥水剤や非フッ素系撥水剤を用いることが好ましく、リサイクル性の観点からは、非フッ素系撥水剤を用いて、織編物が実質的にフッ素元素を含まないことがより好ましい。 When a water repellent is applied to a woven or knitted fabric to perform a water repellent treatment, the water repellent may be fluorine-based or non-fluorine-based (e.g., silicone-based, hydrocarbon-based, or any other water repellent). There is no particular limit to the type of water repellent, and fluorine-based water repellents made of fluorine compounds having perfluoroalkyl groups in which two or more hydrogen atoms of the alkyl group are replaced with fluorine atoms, and non-fluorine-based water repellents that do not contain fluorine elements can be used. From the viewpoint of environmental consideration, it is preferable to use C6 fluorine-based water repellents in which the perfluoroalkyl group has six or fewer carbon atoms, or non-fluorine-based water repellents, and from the viewpoint of recyclability, it is more preferable to use non-fluorine-based water repellents so that the woven or knitted fabric does not substantially contain fluorine elements.
 なお、ここでいう実質的にフッ素元素を含まないとは、燃焼イオンクロマトグラフィー測定におけるフッ素含有量が検出限界以下である25ng/g以下であることを意味する。また、非フッ素系撥水剤としては、シリコーン系化合物が主体であるシリコーン系撥水剤、パラフィン系化合物が主体であるパラフィン系撥水剤等の炭化水素系撥水剤などが挙げられる。 In this context, "substantially free of elemental fluorine" means that the fluorine content is below the detection limit of 25 ng/g or less as measured by combustion ion chromatography. Examples of non-fluorine-based water repellents include silicone-based water repellents that are primarily made up of silicone compounds, and hydrocarbon-based water repellents such as paraffin-based water repellents that are primarily made up of paraffin compounds.
 本発明の特長である、柔軟でありながらさらっとした触感と、高い撥水性能を兼ね合わせた織編物を得るには、撥水剤の付着量が0.1~1質量%であることが好ましい。撥水剤の付着量が増えると繊維同士が撥水剤で固着することで風合いが硬化するだけでなく、撥水剤が凹凸間を埋めることで触感も平坦なものになる。一方、撥水剤の付着量が少ないと撥水性能が十分に発現できず、これらの観点からすると、撥水剤の付着量として、より好ましくは0.2~0.8質量%、特に好ましくは0.3~0.5質量%である。 In order to obtain a woven or knitted fabric that is soft yet has a smooth feel and high water repellency, which is a feature of the present invention, it is preferable that the amount of water repellent applied is 0.1 to 1 mass %. If the amount of water repellent applied is increased, not only will the fibers be fixed together by the water repellent, hardening the texture, but the water repellent will also fill in the gaps between the irregularities, making the texture smoother. On the other hand, if the amount of water repellent applied is small, the water repellency will not be fully expressed, and from these perspectives, the amount of water repellent applied is more preferably 0.2 to 0.8 mass %, and particularly preferably 0.3 to 0.5 mass %.
 本発明の少なくとも撥水加工を施した織編物において、捲縮を有した極細繊維と通常繊維が混在して表層に配置されていることにより、テキスタイル表面に微細かつ複雑な凹凸が形成されることで、水滴を織編物表面に滴下した際にハスの葉効果のような優れた撥水性能を発現することができるが、その撥水性能としては、水滴除去性を表す水滴滑落角度が1~20度であることが好ましい。 In the water-repellent woven or knitted fabric of the present invention, a mixture of ultrafine fibers with crimp and normal fibers is arranged on the surface, forming fine and complex irregularities on the textile surface, which allows the fabric to exhibit excellent water-repellent properties similar to the lotus leaf effect when water droplets are dropped onto the woven or knitted fabric surface. The water-repellent properties are preferably such that the water droplet sliding angle, which indicates the ability to remove water droplets, is 1 to 20 degrees.
 ここでいう水滴滑落角度とは、水平板上に平面状に取り付けた織編物の表面に水滴を静かに滴下し、この平板を等速度で静かに傾斜させて、滴下した水滴が滑落しはじめるときの角度のことであり、水滴滑落角度が小さいほど水滴除去性に優れることの指標となる。水滴滑落角度は、固液界面解析装置(協和界面科学(株)製“DropMaster”700)を用いて、織編物表面上に20℃の水を20μL乗せ、等速度(目安1度/秒)で0度から静かに1度ごと傾斜させて、液滴が滑落した時点の傾斜角(°)を意味する。 The water droplet sliding angle referred to here is the angle at which the water droplet begins to slide down when a water droplet is gently dropped onto the surface of a woven or knitted fabric attached flat on a horizontal plate and the plate is gently tilted at a uniform speed; the smaller the water droplet sliding angle, the better the water droplet removal ability. The water droplet sliding angle refers to the tilt angle (°) at which the droplet slides down when 20 μL of 20°C water is placed on the surface of the woven or knitted fabric using a solid-liquid interface analyzer (DropMaster 700, manufactured by Kyowa Interface Science Co., Ltd.) and the device is gently tilted from 0 degrees at a uniform speed (approximately 1 degree/second) in 1 degree increments.
 水滴滑落角度が1~20度であれば、例えば衣料に用いた場合、着用時の織編物上に水滴が残存しにくくなり、濡れ感等による不快感のない優れた水滴除去性を得ることができる。この観点からすれば、水滴滑落角度が小さいほど、着用時の織編物上に水滴がほとんど残存しない、極めて高い水滴除去性を得ることができることから、より好ましくは水滴滑落角度が1~15度であり、さらに1~10度とすれば自然界のハスの葉をも超える超撥水性能が得られることから、特に好ましい範囲として挙げられる。 If the water droplet sliding angle is 1 to 20 degrees, when used in clothing, for example, water droplets are less likely to remain on the woven or knitted fabric when worn, and excellent water droplet removal properties can be obtained without causing discomfort due to wetness, etc. From this perspective, the smaller the water droplet sliding angle, the more unlikely it is that water droplets will remain on the woven or knitted fabric when worn, and extremely high water droplet removal properties can be obtained, so a water droplet sliding angle of 1 to 15 degrees is more preferable, and a water droplet sliding angle of 1 to 10 degrees is particularly preferred as it provides super-water repellency that exceeds that of lotus leaves in nature.
 撥水機能を有するテキスタイルを衣料用途で用いる場合には、初期の撥水性能だけでなく、日常シーンで繰り返し着用した際に撥水性能の低下が少ないという実用耐久性も求められる。この観点からすると、本発明の少なくとも撥水加工を施した織編物においては、洗濯と乾燥を20回繰り返した前後での水滴滑落角度の差が0~20度であることが好ましい。 When a textile with water-repellent properties is used for clothing applications, not only is initial water-repellent performance required, but practical durability is also required, in which the water-repellent performance does not decrease much when worn repeatedly in everyday situations. From this perspective, it is preferable that the difference in the water droplet sliding angle before and after 20 washing and drying cycles is 0 to 20 degrees for at least the water-repellent woven or knitted fabric of the present invention.
 ここでいう洗濯と乾燥を20回繰り返した前後での水滴滑落角度の差とは、本発明の少なくとも撥水加工を施した織編物に対して、JIS L1930-2014-C4M法での洗濯とA法(吊り干し乾燥)での乾燥を20回繰り返した後の水滴滑落角度から、洗濯と乾燥を施す前の水滴滑落角度を引いた値の絶対値を意味する。 The difference in the water droplet sliding angle before and after 20 cycles of washing and drying means the absolute value of the water droplet sliding angle after 20 cycles of washing according to JIS L1930-2014-C4M method and drying according to method A (line drying) for a woven or knitted fabric that has been at least water-repellent treated according to the present invention, minus the water droplet sliding angle before washing and drying.
 洗濯と乾燥を20回繰り返した前後での水滴滑落角度の差が0~20度であれば、濡れ感等による不快感のない優れた水滴除去性を長期的に得ることができ、カジュアル衣料として好適に用いることができる。さらに0~10度であると、過酷な環境下での使用を想定した優れた耐久撥水性が求められるスポーツ衣料やユニフォーム衣料にも好適に用いることができることから、より好ましい範囲としてあげられる。 If the difference in water droplet sliding angle before and after 20 repeated washing and drying cycles is 0 to 20 degrees, excellent water droplet removal properties can be obtained for the long term without discomfort due to wetness, etc., and the material can be used suitably as casual clothing. Furthermore, if the difference is 0 to 10 degrees, it can be used suitably as sports clothing and uniform clothing, which require excellent durable water repellency for use in harsh environments, and is therefore considered to be in the more preferable range.
 以下に本実施形態の複合繊維およびマルチフィラメントの製造方法の一例を詳述する。 An example of a method for producing the composite fiber and multifilament of this embodiment is described in detail below.
 本発明の目的である極細繊維が混在したマルチフィラメントを得るには、複合繊維から通常繊維と極細繊維を分割する方法や、別々に製糸した通常繊維と極細繊維をエアーノズル等により混繊する方法、通常繊維と極細繊維を同一の紡糸口金から吐出し、同時に巻取りを行う紡糸混繊法など、種々の方法を採用することが可能であるが、テキスタイルに用いた際に、織編み等の組織に左右されることなく、極細繊維が混在したマルチフィラメントを安定的に形成するためには、繊維横断面において、2種類のセグメントAおよびBが存在しており、セグメントBがセグメントAよりも小さい断面積を有した複合繊維として、複合繊維から通常繊維と極細繊維を分割する方法を用いることが好ましい。 In order to obtain the multifilament containing ultrafine fibers, which is the object of the present invention, various methods can be used, such as a method of separating normal fibers and ultrafine fibers from composite fibers, a method of mixing normal fibers and ultrafine fibers that have been spun separately using an air nozzle, or a spinning blending method in which normal fibers and ultrafine fibers are discharged from the same spinneret and wound up simultaneously. However, in order to stably form a multifilament containing ultrafine fibers when used in textiles, regardless of the structure of the weaving or knitting, it is preferable to use a method of separating normal fibers and ultrafine fibers from composite fibers, which has two types of segments A and B in the fiber cross section and has a smaller cross-sectional area than segment A.
 2種類以上のポリマーからなる本実施形態の複合繊維において、使用するポリマーの溶融粘度比を5.0未満、溶解度パラメータ値の差を2.0未満とすることで、安定的に複合ポリマー流を形成でき、良好な複合断面の繊維を得ることができるため好ましい。 In the composite fiber of this embodiment, which is made of two or more types of polymers, it is preferable to set the melt viscosity ratio of the polymers used to less than 5.0 and the difference in solubility parameter values to less than 2.0, since this allows a stable formation of a composite polymer flow and allows the production of fibers with a good composite cross section.
 2種類以上のポリマーからなる本実施形態の複合繊維を製造する際に用いる複合口金としては、例えば特開2011-208313号公報に記載される複合口金が好適に用いられる。 As a composite spinneret used in producing the composite fiber of this embodiment made of two or more types of polymers, for example, the composite spinneret described in JP 2011-208313 A is preferably used.
 本発明の図12に示した複合口金は、上から計量プレート1、分配プレート2および吐出プレート3の大きく3種類の部材が積層された状態で紡糸パック内に組み込まれ、紡糸に供される。ちなみに図12は、Aポリマー、Bポリマー、Cポリマーといった3種類のポリマーを用いた例である。従来複合口金では、3種類以上のポリマーを複合化することは困難であり、やはり図12に例示したような微細流路を利用した複合口金を用いることが好ましい。 The composite spinneret of the present invention shown in Figure 12 is assembled into a spinning pack with three main components stacked from the top: a metering plate 1, a distribution plate 2, and a discharge plate 3, and is used for spinning. Incidentally, Figure 12 shows an example in which three types of polymers, A polymer, B polymer, and C polymer, are used. With conventional composite spinnerets, it is difficult to composite three or more types of polymers, so it is preferable to use a composite spinneret that utilizes fine flow paths as shown in Figure 12.
 図12に例示した口金部材では、計量プレート1が各吐出孔および各分配孔当たりのポリマー量を計量して流入し、分配プレート2によって、単繊維の断面における複合断面およびその断面形状を制御、吐出プレート3によって、分配プレート2で形成された複合ポリマー流を圧縮して、吐出するという役割を担っている。 In the nozzle member shown in Figure 12, the metering plate 1 measures and introduces the amount of polymer per each discharge hole and each distribution hole, the distribution plate 2 controls the composite cross section and its cross-sectional shape in the cross section of the single fiber, and the discharge plate 3 compresses the composite polymer flow formed by the distribution plate 2 and discharges it.
 複合口金の説明が錯綜するのを避けるために、図示されていないが、計量プレート1より上に積層する部材に関しては、紡糸機および紡糸パックに合わせて、流路を形成した部材を用いれば良い。計量プレート1を、既存の流路部材に合わせて設計することで、既存の紡糸パックおよびその部材がそのまま活用することができる。このため、特に該口金のために紡糸機を専有化する必要はない。また、実際には流路-計量プレート間あるいは計量プレート1-分配プレート2間に複数枚の流路プレートを積層すると良い。これは、口金断面方向および単繊維の断面方向に効率よく、ポリマーが移送される流路を設け、分配プレート2に導入される構成とすることが目的である。 To avoid confusing the explanation of the composite spinneret, it is not shown in the figure, but for the components stacked above the metering plate 1, components with flow paths formed to match the spinning machine and spinning pack can be used. By designing the metering plate 1 to match the existing flow path components, the existing spinning pack and its components can be used as is. For this reason, there is no need to dedicate a spinning machine specifically for this spinneret. In practice, it is also a good idea to stack multiple flow path plates between the flow path and metering plate or between the metering plate 1 and distribution plate 2. The purpose of this is to provide a flow path that efficiently transports the polymer in the cross-sectional direction of the spinneret and the cross-sectional direction of the single fiber, and to configure it so that it is introduced into the distribution plate 2.
 このようにして分配プレート2により断面形成されたポリマー流は、吐出プレート3で縮流され、吐出される。このとき、吐出孔は、複合ポリマー流の流量、すなわち吐出量を再度計量する点と紡糸線上のドラフト(=引取速度/吐出線速度)を制御する目的がある。孔径および孔長は、ポリマーの粘度および吐出量を考慮して決定するのが好適である。 The polymer flow thus formed by the distribution plate 2 is contracted by the discharge plate 3 and discharged. At this time, the purpose of the discharge hole is to re-measure the flow rate of the composite polymer flow, i.e., the discharge amount, and to control the draft (= take-up speed/discharge linear speed) on the spinning line. It is preferable to determine the hole diameter and length taking into consideration the viscosity of the polymer and the discharge amount.
 本実施形態の複合繊維およびマルチフィラメントを製糸する方法としては長繊維の製造を目的とした溶融紡糸法、湿式および乾湿式などの溶液紡糸法、シート状の繊維構造体を得るのに適したメルトブロー法およびスパンボンド法などによって製造することも可能であるが、生産性を高めるという観点から、溶融紡糸法が好適である。また、溶融紡糸法においては、後述する複合口金を用いることにより製造可能であり、その際の紡糸温度については、用いるポリマー種のうち、主に高融点や高粘度ポリマーが流動性を示す温度とすることが好ましい。この流動性を示す温度としては、分子量によっても異なるが、そのポリマーの融点から融点+60℃の間で設定すると安定して製造することができる。 The composite fiber and multifilament of this embodiment can be spun by melt spinning, which is intended to produce long fibers, wet and dry-wet solution spinning, or melt-blowing and spunbonding, which are suitable for obtaining sheet-like fiber structures. From the viewpoint of increasing productivity, however, melt spinning is preferred. In addition, in the melt spinning method, production is possible by using a composite spinneret, which will be described later, and the spinning temperature in this case is preferably set to a temperature at which the polymers used, mainly those with high melting points or high viscosity, exhibit fluidity. The temperature at which this fluidity is exhibited varies depending on the molecular weight, but stable production is possible when it is set between the melting point of the polymer and melting point + 60°C.
 本実施形態の複合繊維およびマルチフィラメントにおける口金での単孔当たりにおける吐出量としては、0.1g~10g/分・孔にすると安定して製造することが可能となる。この際、吐出量は、巻き取り条件や延伸倍率等を考慮し、所望とする繊維径に応じて、決定することが好ましい。 In the composite fiber and multifilament of this embodiment, a discharge rate per hole in the spinneret of 0.1 g to 10 g/min/hole allows for stable production. In this case, it is preferable to determine the discharge rate according to the desired fiber diameter, taking into account the winding conditions and the draw ratio, etc.
 吐出孔されたポリマー流は、冷却固化後、油剤を付与され、規定の周速になったローラーで引き取られる。ここで、この引取速度は、吐出量および目的とする繊維径から決定するものである。本発明では、複合繊維およびマルチフィラメントを安定に製造するという観点から、紡糸におけるローラーの引取速度については、500~6000m/分程度にするとよく、ポリマーの物性や繊維の使用目的によって変更可能である。特に、高配向とし力学特性を向上させるという観点からすると、500~4000m/分とし、その後延伸することで、繊維の一軸配向を促進できるだけでなく、複合したポリマー間での延伸時の応力差と延伸時の配向差から生じる熱収縮差により捲縮発現を制御できることから、好ましい。 After the polymer flow from the discharge hole is cooled and solidified, an oil agent is applied and the flow is taken up by a roller set to a specified peripheral speed. Here, this take-up speed is determined from the discharge amount and the target fiber diameter. In the present invention, from the viewpoint of stable production of composite fibers and multifilaments, the take-up speed of the roller during spinning is preferably about 500 to 6000 m/min, and can be changed depending on the physical properties of the polymer and the purpose of use of the fiber. In particular, from the viewpoint of high orientation and improved mechanical properties, it is preferable to set the take-up speed to 500 to 4000 m/min and then draw the fibers, since this not only promotes uniaxial orientation of the fibers, but also allows the occurrence of shrinkage to be controlled by the thermal contraction difference resulting from the stress difference during drawing between the composite polymers and the orientation difference during drawing.
 延伸に際しては、例えば、一対以上のローラーからなる延伸機において、一般に溶融紡糸可能な熱可塑性を示すポリマーからなる繊維であれば、予熱温度を設定した第1ローラーと結晶化温度相当とした第2ローラーの周速比によって、繊維軸方向に無理なく引き伸ばされ、且つ第2ローラーで熱セットされて巻き取られる。ここで、予熱温度としては、ポリマーのガラス転移温度など、軟化できる温度を目安として、予熱温度を適切に設定することが好ましい。予熱温度の上限としては、予熱過程で繊維の自発伸長により糸道乱れが発生しない温度とすることが好ましい。例えば、ガラス転移温度が70℃付近に存在するPETの場合には、通常この予熱温度は80~95℃程度で設定される。また、ガラス転移を示さないポリマーの場合には、複合繊維の動的粘弾性測定(tanδ)を行い、得られるtanδの高温側のピーク温度以上の温度を予熱温度として、選択すればよい。 When stretching, for example, in a stretching machine consisting of one or more pairs of rollers, if the fiber is made of a polymer that exhibits thermoplasticity and can be melt-spun, it is stretched smoothly in the fiber axis direction by the peripheral speed ratio between the first roller set to the preheating temperature and the second roller set to the crystallization temperature, and then heat-set by the second roller and wound up. Here, it is preferable to set the preheating temperature appropriately based on the temperature at which the polymer can be softened, such as the glass transition temperature. The upper limit of the preheating temperature is preferably a temperature at which the fiber does not spontaneously elongate during the preheating process, causing yarn path disturbance. For example, in the case of PET, which has a glass transition temperature of around 70°C, this preheating temperature is usually set to about 80 to 95°C. In addition, in the case of a polymer that does not exhibit a glass transition, the dynamic viscoelasticity measurement (tan δ) of the composite fiber is performed, and a temperature equal to or higher than the peak temperature on the high-temperature side of the obtained tan δ can be selected as the preheating temperature.
 また、延伸については、紡糸した複合繊維およびマルチフィラメントを一旦巻き取った後で延伸を施すこともよいし、一旦、巻き取ることなく、紡糸に引き続いて延伸を行うこともよいが、延伸を伴う糸加工を施すことがより好ましい。糸加工を施すことで、テキスタイル表面の凹凸がより複雑になり、本発明の特長である摩擦に対する耐性や風合い、撥水機能を高めることができる。 As for the stretching, the spun composite fiber and multifilament may be stretched after being wound up, or may be stretched immediately after spinning without being wound up, but it is more preferable to carry out yarn processing that involves stretching. By carrying out yarn processing, the unevenness of the textile surface becomes more complex, which improves the resistance to friction, texture, and water repellency that are the features of the present invention.
 ここで、延伸を伴う糸加工を施す場合には、高速紡糸から得られる高配向未延伸糸を用いることが好ましい。高配向未延伸糸は、配向非晶と適度な結晶核を有した構造となり、結晶化速度が速く、ヒーター内での融着防止による糸切れの抑制や延伸張力低下による毛羽の抑制ができることから糸加工に適しているのである。このような高配向未延伸糸を製造する方法としては、繊維径やポリマー品種、粘度によって多少の差異はあるが、本発明者等の検討においては、紡糸時の巻取速度を2000~4000m/分の範囲から選択することで、良好な糸加工性を有した複合繊維を得ることができる。 Here, when performing yarn processing involving drawing, it is preferable to use highly oriented undrawn yarn obtained from high-speed spinning. Highly oriented undrawn yarn has a structure with oriented amorphous and moderate crystal nuclei, has a fast crystallization rate, and is suitable for yarn processing because it can prevent yarn breakage by preventing fusion in the heater and can suppress fuzz due to a decrease in drawing tension. Methods for producing such highly oriented undrawn yarn vary slightly depending on the fiber diameter, polymer type, and viscosity, but in the studies of the present inventors, a composite fiber with good yarn processability can be obtained by selecting a winding speed during spinning from the range of 2000 to 4000 m/min.
 糸加工としては仮撚加工や不均一延伸加工など、通常の糸加工技術であれば特に限定されないが、捲縮形態を不均一な形態に変化させ、得られる触感や風合いを複雑にできるという観点からすると、仮撚加工や不均一延伸加工を施すことがより好ましい。 The yarn processing is not particularly limited as long as it is a normal yarn processing technique such as false twist processing or non-uniform stretch processing, but from the viewpoint of changing the crimp form into a non-uniform form and making the resulting feel and texture more complex, false twist processing and non-uniform stretch processing are more preferable.
 仮撚加工を施す方法としては、汎用的に用いられている方法であれば特に限定するものではないが、生産性を考慮するとディスクやベルトを用いた摩擦仮撚機を用いて加工することが好ましい。仮撚加工を施すことで、収縮差による捲縮と仮撚加工により付与された機械捲縮が相まった多重捲縮形態となり、テキスタイル表面の凹凸がより複雑になり、本発明の特長である摩擦に対する耐性や風合い、撥水機能を高めることができるのである。 The method of false twisting is not particularly limited as long as it is a commonly used method, but considering productivity, it is preferable to use a friction false twist machine using a disk or belt. False twisting creates a multiple crimp form that combines shrinkage difference shrinkage and mechanical crimp imparted by false twisting, making the unevenness of the textile surface more complex and improving the resistance to friction, texture, and water repellency that are the features of this invention.
 仮撚加工によって本発明を用いた捲縮糸を安定的に製造するには、加撚領域での糸束の実撚数により捲縮形態をコントロールすることが好適である。 To stably produce crimped yarn using the present invention through false twist processing, it is preferable to control the crimp form by the actual number of twists of the yarn bundle in the twisting region.
 すなわち、加撚領域での糸束の撚数である仮撚数T(単位は回/m)が、仮撚加工後の糸束の総繊度Df(単位はdtex)に応じて決定される、以下の条件を満たすように、加撚機構の回転数や加工速度等の仮撚条件を設定することが好ましい。
20000/Df0.5≦T≦40000/Df0.5
In other words, the false twist number T (unit: turns/m), which is the number of twists of the yarn bundle in the twisting region, is determined according to the total fineness Df (unit: dtex) of the yarn bundle after false twist processing. It is preferable to set the false twist conditions, such as the rotation speed and processing speed of the twisting mechanism, so as to satisfy the following condition.
20000/ Df0.5 ≦T≦40000/ Df0.5
 ここで仮撚数Tは、次の方法で測定したものである。すなわち、仮撚工程の加撚領域で走行している糸束を、ツイスター直前で撚りをほどかないよう、50cm以上の長さで採取する。そして、採取した糸サンプルについて検撚機に取り付け、JIS L1013(2010)8.13に記載の方法にて撚数を測定したものが仮撚数Tである。仮撚数が上述の条件を満たすことで、収縮差による捲縮と仮撚加工により付与された機械捲縮が相まった多重捲縮形態となる。 The false twist number T here is measured by the following method. That is, a yarn bundle running in the twisting area of the false twist process is sampled at a length of 50 cm or more so as not to untwist just before the twister. The sampled yarn sample is then attached to a twist detector, and the twist number is measured by the method described in JIS L1013 (2010) 8.13, which is the false twist number T. When the false twist number satisfies the above conditions, a multiple crimp form is achieved in which the crimp due to shrinkage difference and the mechanical crimp imparted by the false twist process are combined.
 また、上記の仮撚条件において、加撚領域での延伸倍率を調整するとよい。ここで言う延伸倍率とは加撚領域に糸を供給するローラーの周速V0と加撚機構の直後に設置されたローラーの周速Vdを用い、Vd/V0として算出されるものであり、供給糸に延伸糸を使用する場合には、Vd/V0を0.9~1.4倍とすれば良く、供給糸に高配向未延伸糸を使用する場合には、Vd/V0を1.2~2.0倍として、仮撚加工と同時に延伸を行うこともよい。延伸倍率をかかる範囲とすることで、加撚領域での過張力や糸束のたるみが発生することなく、マルチフィラメント中の複合繊維全体に捲縮を付与できる。 Furthermore, under the above false twist conditions, it is advisable to adjust the draw ratio in the twisting region. The draw ratio here is calculated as Vd/V0, using the peripheral speed V0 of the roller that supplies the yarn to the twisting region and the peripheral speed Vd of the roller installed immediately after the twisting mechanism. When a drawn yarn is used for the supply yarn, Vd/V0 can be set to 0.9 to 1.4 times, and when a highly oriented undrawn yarn is used for the supply yarn, Vd/V0 can be set to 1.2 to 2.0 times, and drawing can be performed simultaneously with the false twisting process. By setting the draw ratio in this range, it is possible to impart crimp to the entire composite fiber in the multifilament without causing excessive tension or slack in the yarn bundle in the twisting region.
 さらに、仮撚工程で得られる捲縮を強固に固定する観点から仮撚温度は複合したポリマーにおける高Tg側のポリマーのTgを基準として、Tg+50~Tg+150℃の範囲から決定することが好ましい。ここで言う仮撚温度とは、加撚領域に設置されたヒーターの温度を意味する。仮撚温度を係る範囲とすることで、複合繊維断面内で大きく捻り変形したポリマーを十分に構造固定できるため、仮撚工程で得られる捲縮の寸法安定性を良好にすることができる。 Furthermore, from the viewpoint of firmly fixing the crimp obtained in the false twisting process, it is preferable to determine the false twisting temperature in the range of Tg + 50 to Tg + 150°C, based on the Tg of the polymer with the higher Tg in the composite polymers. The false twisting temperature here means the temperature of the heater installed in the twisting region. By setting the false twisting temperature in this range, the polymer that has been significantly twisted and deformed in the cross section of the composite fiber can be sufficiently structurally fixed, thereby improving the dimensional stability of the crimp obtained in the false twisting process.
 また、不均一延伸加工により、複合繊維の自然延伸倍率を越えない範囲の延伸倍率で延伸加工することで、延伸部と未延伸部が繊維軸方向にランダムに出現した太細(シックアンドシン)を得るのも好ましい。不均一延伸加工を行うことで、単糸間の染色性の差に加え、延伸部と未延伸部でも染色性の差異が生じるために、色の濃淡がより強調され、さらに延伸部と未延伸部で捲縮形態も異なることで、布帛とした時に天然素材のような杢調や風合いを表現することができる。また不均一延伸加工後に連続して仮撚加工を行うと、杢調と多重捲縮形態による風合いが相まった素材を得ることができるため、より好ましい範囲として挙げられる。 It is also preferable to use non-uniform stretching to obtain thick and thin fibers with stretched and unstretched parts randomly arranged in the fiber axis direction, by performing stretching at a stretch ratio that does not exceed the natural stretch ratio of the composite fiber. By performing non-uniform stretching, in addition to the difference in dyeability between the single yarns, differences in dyeability also occur between the stretched and unstretched parts, so that the color shading is emphasized, and the crimp form differs between the stretched and unstretched parts, making it possible to express a heathered look and texture like natural materials when made into a fabric. Furthermore, if false twisting is performed consecutively after non-uniform stretching, a material that combines heathered look and texture due to multiple crimp forms can be obtained, so this is considered to be a more preferable range.
 また、本発明の一実施形態の複合繊維およびマルチフィラメントに対して、糸加工前もしくは糸加工後に、他の繊維を混繊してもよい。混繊方法は特に限定されず、インターレース混繊、タスラン混繊等の一般的な混繊方法を用いることができる。 Furthermore, other fibers may be mixed with the composite fiber and multifilament of one embodiment of the present invention before or after yarn processing. The method of mixing is not particularly limited, and general mixing methods such as interlace mixing and taslan mixing can be used.
 本実施形態の複合繊維が海島複合繊維であって、海成分を除去することでセグメントAおよびBを分割する場合には、海成分を溶剤や熱水に溶解可能な公知のポリマーで構成し、海成分のポリマーが溶解可能な溶剤などに該複合繊維を浸漬して海成分のポリマーを除去すればよい。例えば、海成分のポリマーが、5-ナトリウムスルホイソフタル酸やポリエチレングリコールなどが共重合された共重合ポリエチレンテレフタレートやポリ乳酸等の場合には、水酸化ナトリウム水溶液などのアルカリ水溶液を用いることができる。本実施形態の複合繊維をアルカリ水溶液にて処理する方法としては、例えば、該複合繊維からなる織編物や繊維構造体とした後で、アルカリ水溶液に浸漬させればよい。この時、アルカリ水溶液は50℃以上に加熱すると、加水分解の進行を早めることができるため、好ましい。また、流体染色機などを利用すれば、一度に大量に処理をすることができるため、工業的な観点から好ましい。 When the composite fiber of this embodiment is a sea-island composite fiber and segments A and B are separated by removing the sea component, the sea component may be composed of a known polymer that is soluble in a solvent or hot water, and the composite fiber may be immersed in a solvent in which the sea component polymer is soluble to remove the sea component polymer. For example, when the sea component polymer is a copolymerized polyethylene terephthalate or polylactic acid in which 5-sodium sulfoisophthalic acid or polyethylene glycol is copolymerized, an alkaline aqueous solution such as a sodium hydroxide aqueous solution may be used. As a method for treating the composite fiber of this embodiment with an alkaline aqueous solution, for example, a woven or knitted fabric or a fiber structure made of the composite fiber may be immersed in the alkaline aqueous solution. At this time, it is preferable to heat the alkaline aqueous solution to 50°C or higher, since this can hasten the progress of hydrolysis. Furthermore, if a fluid dyeing machine or the like is used, it is preferable from an industrial point of view, since a large amount can be treated at once.
 本実施形態のマルチフィラメントを繊維製品として使用する場合、本実施形態の複合繊維およびマルチフィラメントをテキスタイルとした後、必要に応じて、撥水、制電、難燃、吸湿、抗菌、柔軟仕上げ、その他公知の後加工を併用することができるが、本実施形態のマルチフィラメントが一部に含まれる繊維製品、特に織編物においては、テキスタイル表面に微細かつ複雑な凹凸が存在することで、撥水加工を施した際には、水との接触面積が小さくなることで高い撥水性能を発現できることから、後加工としては撥水加工を施すことが特に好ましい。また、テキスタイル表面に微細かつ複雑な凹凸が存在することで、これら撥水、制電、難燃、吸湿、抗菌、柔軟仕上げなどの機能加工剤の洗濯耐久性を向上させることも出来る。 When the multifilament of this embodiment is used as a textile product, after the composite fiber and multifilament of this embodiment are made into a textile, water repellency, antistatic, flame retardant, moisture absorption, antibacterial, softening, and other known post-processing can be used in combination as necessary. However, in textile products, particularly woven and knitted fabrics, which contain the multifilament of this embodiment in part, the presence of fine and complex irregularities on the textile surface reduces the contact area with water when water repellent processing is applied, and therefore water repellent processing is particularly preferred as a post-processing step. In addition, the presence of fine and complex irregularities on the textile surface can also improve the washing durability of functional processing agents such as water repellency, antistatic, flame retardant, moisture absorption, antibacterial, and softening.
 撥水加工を施す場合、撥水剤としてはフッ素系、非フッ素系(例えばシリコーン系、炭化水素系等その他任意の撥水剤)を用いることができる。撥水加工工程は、パディング法、スプレー法、コーティング法など特に限定されるものではないが、撥水剤を織編物内部まで浸透させる上でパディング法が好ましい。 When applying water-repellent treatment, fluorine-based or non-fluorine-based water-repellent agents (e.g., silicone-based, hydrocarbon-based, or any other water-repellent agent) can be used. The water-repellent treatment process is not particularly limited to padding, spraying, coating, etc., but the padding method is preferred in order to allow the water-repellent agent to penetrate deep into the woven or knitted fabric.
 また、撥水性能の耐久性を向上させるために、撥水剤に架橋剤を併用することが好ましい。架橋剤としては、メラミン系樹脂、ブロックイソシアネート系化合物(重合)、グリオキザール系樹脂およびイミン系樹脂などの少なくとも1種使用することができ、その架橋剤は特に限定されるものではない。 In order to improve the durability of the water repellency, it is preferable to use a crosslinking agent in combination with the water repellent. As the crosslinking agent, at least one of melamine-based resins, blocked isocyanate-based compounds (polymerization), glyoxal-based resins, and imine-based resins can be used, and there is no particular limitation on the crosslinking agent.
 本実施形態のマルチフィラメントが一部を構成する織編物の製織編方法は特に限定されず、通常の方法で製織、製編できる。織編物が織物である場合、例えば、ウォータージェットルーム、エアージェットルーム、レピアルーム、ジャガードルームなどが挙げられる。また、織編物が編物である場合、例えば、丸編機、経編機などが挙げられる。 The method of weaving or knitting the woven or knitted fabric of which the multifilament of this embodiment is a part is not particularly limited, and the fabric can be woven or knitted by a normal method. When the woven or knitted fabric is a woven fabric, examples of the method include a water jet loom, an air jet loom, a rapier loom, and a jacquard loom. When the woven or knitted fabric is a knitted fabric, examples of the method include a circular knitting machine and a warp knitting machine.
 以下実施例を挙げて、本発明の複合繊維およびマルチフィラメントについて具体的に説明する。 The following examples are provided to specifically explain the composite fiber and multifilament of the present invention.
 実施例および比較例については下記の評価を行った。 The following evaluations were carried out for the examples and comparative examples.
 A.ポリマーの溶融粘度
 チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフによって、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、窒素雰囲気下で加熱炉にサンプルを投入してから測定開始までを5分とし、せん断速度1216s-1の値をポリマーの溶融粘度として評価した。
A. Melt Viscosity of Polymer The chip-shaped polymer was dried to a moisture content of 200 ppm or less using a vacuum dryer, and the melt viscosity was measured using a Capillograph manufactured by Toyo Seiki Co., Ltd. The measurement temperature was the same as the spinning temperature, and the time from the sample being put into the heating furnace in a nitrogen atmosphere to the start of the measurement was 5 minutes. The value at a shear rate of 1216 s -1 was evaluated as the melt viscosity of the polymer.
 B.ポリマーの融点
 チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、約5mgを秤量し、TAインスツルメント製示差走査熱量計(DSC)Q2000型を用いて、0℃から300℃まで昇温速度16℃/分で昇温後、300℃で5分間保持してDSC測定を行った。昇温過程中に観測された融解ピークより融点を算出した。測定は1試料につき3回行い、その平均値を融点とした。なお、融解ピークが複数観測された場合には、最も高温側の融解ピークトップを融点とした。
B. Melting point of polymer The chip-shaped polymer was dried in a vacuum dryer to a moisture content of 200 ppm or less, and about 5 mg was weighed out. Using a TA Instruments differential scanning calorimeter (DSC) Q2000 model, the temperature was raised from 0°C to 300°C at a heating rate of 16°C/min, and then the temperature was held at 300°C for 5 minutes to perform DSC measurement. The melting point was calculated from the melting peak observed during the heating process. The measurement was performed three times for each sample, and the average value was taken as the melting point. When multiple melting peaks were observed, the melting peak top on the highest temperature side was taken as the melting point.
 C.繊度
 100mの繊維の質量を測定し、その値を100倍した値を算出した。この動作を10回繰り返し、その平均値の小数点以下を四捨五入した値を繊度(dtex)とした。
C. Fineness The mass of 100 m of fiber was measured, and the mass was multiplied by 100. This operation was repeated 10 times, and the average value was rounded off to the nearest whole number to obtain the fineness (dtex).
 D.複合繊維におけるセグメントの扁平度
 複合繊維をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面をHITACHI製走査型電子顕微鏡(SEM)で1本の複合繊維が観察できる倍率として画像を撮影して求める。撮影された画像についてコンピューターソフトウェアの三谷商事製WinROOFを用いて解析することで、図1の(a)に示すようにセグメントの外周上の任意の点のうち最も距離が離れた2点(a1、a2)を結んだ直線を長軸とし、長軸の中点を通って長軸と直交する直線と繊維外周の交点(b1、b2)を結んだ直線を短軸として、長軸の長さを短軸の長さで割り返した値を算出し、小数点第2位で四捨五入した値を扁平度とする。なお、同じ種類のセグメントが複数個存在する場合は、同じ種類のセグメント全てについて求めた扁平度の単純な数平均を求め、小数点第2位を四捨五入した値を採用することとする。
D. Flatness of a segment in a composite fiber The composite fiber is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) manufactured by Hitachi at a magnification that allows observation of a single composite fiber. The captured image is analyzed using computer software WinROOF manufactured by Mitani Shoji, and the long axis is taken as a straight line connecting the two points (a1, a2) that are the farthest apart among any points on the periphery of the segment as shown in FIG. 1 (a), and the short axis is taken as a straight line connecting the intersection point (b1, b2) of the periphery of the fiber with a straight line that passes through the midpoint of the long axis and intersects the long axis at right angles. The value obtained by dividing the length of the long axis by the length of the short axis is calculated, and the value is rounded to one decimal place. In addition, when there are multiple segments of the same type, the simple number average of the flatnesses obtained for all the segments of the same type is calculated, and the value rounded to one decimal place is adopted.
 E.複合繊維におけるセグメントの断面積(S、S
 複合繊維をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面をHITACHI製走査型電子顕微鏡(SEM)で1本の複合繊維が観察できる倍率として画像を撮影して求める。撮影された画像についてコンピューターソフトウェアの三谷商事製WinROOFを用いて解析することで、複合繊維の繊維横断面に存在する1つのセグメントの断面積(μm)を算出し、小数点第1位で四捨五入した値をセグメントの断面積とする。なお、同じ種類のセグメントが複数個存在する場合は、同じ種類のセグメント全てについて求めた断面積(μm)の単純な数平均を求め、小数点第1位を四捨五入した値を採用することとする。
E. Cross-sectional areas of segments in composite fibers ( SA , SB )
The composite fiber is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) manufactured by Hitachi at a magnification at which a single composite fiber can be observed. The captured image is analyzed using computer software WinROOF manufactured by Mitani Shoji to calculate the cross-sectional area ( μm2 ) of one segment present in the fiber cross section of the composite fiber, and the value rounded off to the first decimal place is used as the cross-sectional area of the segment. Note that when there are multiple segments of the same type, the simple number average of the cross-sectional areas ( μm2 ) of all the segments of the same type is calculated, and the value rounded off to the first decimal place is used.
 F.フィラメントの扁平度
 テキスタイルから抜き出した10本以上のフィラメントからなるマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面をHITACHI製走査型電子顕微鏡(SEM)でマルチフィラメントが観察できる倍率として画像を撮影して求める。撮影された画像についてコンピューターソフトウェアの三谷商事製WinROOFを用いて解析することで、図5の(b)に示すようにフィラメントの外周上の任意の点のうち最も距離が離れた2点(a1、a2)を結んだ直線を長軸とし、長軸の中点を通って長軸と直交する直線と繊維外周の交点(b1、b2)を結んだ直線を短軸として、長軸の長さを短軸の長さで割り返した値を算出し、小数点第2位で四捨五入した値を扁平度とする。なお、マルチフィラメント中に同じ種類のフィラメントが複数個存在する場合は、同じ種類のフィラメント全てについて求めた扁平度の単純な数平均を求め、小数点第2位を四捨五入した値を採用することとする。
F. Filament flatness A multifilament consisting of 10 or more filaments extracted from a textile is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) manufactured by Hitachi at a magnification at which the multifilament can be observed. The image taken is analyzed using computer software WinROOF manufactured by Mitani Shoji, and as shown in FIG. 5(b), a straight line connecting the two most distant points (a1, a2) among any points on the outer periphery of the filament is taken as the long axis, and a straight line connecting the intersection point (b1, b2) of the outer periphery of the fiber with a straight line passing through the midpoint of the long axis and perpendicular to the long axis is taken as the short axis, and the value obtained by dividing the length of the long axis by the length of the short axis is calculated, and the value rounded off to the first decimal place is taken as the flatness. In addition, when there are multiple filaments of the same type in the multifilament, a simple number average of the flatnesses obtained for all filaments of the same type is calculated, and the value rounded off to the first decimal place is adopted.
 G.フィラメントの繊維径(D、D
 テキスタイルから抜き出した10本以上のフィラメントからなるマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面をHITACHI製走査型電子顕微鏡(SEM)でマルチフィラメントが観察できる倍率として画像を撮影して求める。撮影された画像についてコンピューターソフトウェアの三谷商事製WinROOFを用いて解析することで、マルチフィラメントの繊維横断面に存在する1本のフィラメントの断面積を測定し、真円換算で求められる直径をμm単位で小数点1桁目まで測定し、小数点第1位を四捨五入した値を繊維径(μm)とする。なお、同じ種類のフィラメントが複数個存在する場合は、同じ種類のフィラメント全てについて求めた繊維径の単純な数平均を求め、小数点第1位を四捨五入した値を採用することとする。
G. Filament fiber diameter (D A , D B )
A multifilament consisting of 10 or more filaments extracted from a textile is embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis is taken with a scanning electron microscope (SEM) manufactured by Hitachi at a magnification at which the multifilament can be observed. The image is analyzed using computer software WinROOF manufactured by Mitani Shoji to measure the cross-sectional area of one filament present in the fiber cross section of the multifilament, and the diameter calculated as a perfect circle is measured in μm units to one decimal place, and the value rounded off to the nearest decimal place is taken as the fiber diameter (μm). In addition, when there are multiple filaments of the same type, the simple number average of the fiber diameters calculated for all filaments of the same type is calculated, and the value rounded off to the nearest decimal place is adopted.
 H.フッ素含有量
 フッ素含有量は、以下の燃焼イオンクロマトグラフィー測定方法により算出した。
(1)試料の準備:試験用基布を細かく裁断した後、凍結粉砕を行った試料を減圧乾燥(常温で2時間)する。
(2)標準溶液の調整:フッ素イオン標準液(1005μg/mL、和光純薬工業製、Lot.KPP6061)を、臭素内部標準液で順次希釈し、標準溶液を調整する。これらのうち、試料中の濃度の分析に適切な標準溶液の分析データを用いて、検量線を作成する。
(3)試料の燃焼イオンクロマトグラフィー:試料を秤量し、下記条件で燃焼装置(“AQF-100”(株)三菱ケミカルアナリテック製)の燃焼管内で燃焼させ、吸収ユニット(“GA-100”(株)三菱ケミカルアナリテック製)で発生したガスを溶液に吸収後、吸収液の一部をイオンクロマトグラフィー(“ICS1500”DIONEX製)により分析した。試料は秤量からn=2で測定し、測定値の平均値(ng/g)を求めた。なお、測定値が25ng/g以下の場合は「検出限界以下」とした。
 <燃焼・吸収条件>
 ・電気炉温度:Inlet900℃、Outlet1000℃
 ・ガス:Ar/O200mL/分、O400mL/分
 ・吸収液:HO290μg/mL、内標 Br2μg/mL
 ・吸収液量:10mL
 <イオンクロマトグラフィー・アニオン分析条件>
 ・移動相 :2.7mmol/L NaCO / 0.3mmol/L NaHCO
 ・流速  :1.50mL/分
 ・検出器 :電気伝導度検出器
 ・注入量 :100μL
H. Fluorine Content The fluorine content was calculated by the following combustion ion chromatography measurement method.
(1) Preparation of sample: After cutting the test fabric into small pieces, the samples were freeze-pulverized and dried under reduced pressure (at room temperature for 2 hours).
(2) Preparation of standard solution: A fluorine ion standard solution (1005 μg/mL, Wako Pure Chemical Industries, Lot. KPP6061) is successively diluted with the bromine internal standard solution to prepare standard solutions. A calibration curve is prepared using the analytical data of the standard solution that is appropriate for the analysis of the concentration in the sample.
(3) Combustion ion chromatography of sample: A sample was weighed and burned in a combustion tube of a combustion apparatus ("AQF-100", manufactured by Mitsubishi Chemical Analytech Co., Ltd.) under the following conditions. The gas generated in an absorption unit ("GA-100", manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was absorbed into a solution, and a part of the absorbed solution was analyzed by ion chromatography ("ICS1500", manufactured by DIONEX). The sample was measured with n=2 from the weight, and the average value of the measured values (ng/g) was calculated. Note that a measured value of 25 ng/g or less was regarded as "below the detection limit."
<Combustion and absorption conditions>
Electric furnace temperature: Inlet 900°C, Outlet 1000°C
Gas: Ar/O 2 200 mL/min, O 2 400 mL/min Absorption solution: H 2 O 290 μg/mL, internal standard Br 2 μg/mL
Absorption volume: 10 mL
<Ion chromatography/anion analysis conditions>
Mobile phase: 2.7 mmol/L Na2CO3 / 0.3 mmol/L NaHCO3
Flow rate: 1.50 mL/min Detector: Electrical conductivity detector Injection volume: 100 μL
 I.テキスタイル風合い評価(柔軟性、反発感、さらっと感)
 経糸方向のカバーファクター(CFA)が800、緯糸方向のカバーファクター(CFB)が1200となるように複合繊維の本数を調整し、2/1ツイル織物を作成する。
I. Textile texture evaluation (flexibility, resilience, smoothness)
The number of composite fibers is adjusted so that the cover factor in the warp direction (CFA) is 800 and the cover factor in the weft direction (CFB) is 1200, to prepare a 2/1 twill fabric.
 ただし、ここで言うCFAおよびCFBとは、織物の経密度および緯密度をJIS L1096:2010 8.6.1に準じて2.54cmの区間にて測定し、CFA=経糸織密度[本/2.54cm]×(経糸総繊度[dtex])1/2、CFB=緯糸織密度[本/2.54cm]×(緯糸総繊度[dtex])1/2の式より求めた値である。得られた織物について、精練、アルカリ処理、湿熱処理、熱セット、染色加工、撥水加工をこの順で行った後、以下の手法を用いて柔軟性、反発感、さらっと感の3つの風合いを評価した。 Here, the CFA and CFB are values obtained by measuring the warp density and weft density of the fabric in a 2.54 cm section in accordance with JIS L1096:2010 8.6.1 and calculating from the formulas: CFA = warp weave density [pieces/2.54 cm] × (total warp fineness [dtex]) 1/2 , and CFB = weft weave density [pieces/2.54 cm] × (total weft fineness [dtex]) 1/2 . The fabric obtained was subjected to scouring, alkali treatment, moist heat treatment, heat setting, dyeing, and water repellency in this order, and then evaluated for three textures, namely softness, resilience, and smoothness, using the following methods.
 I-1.柔軟性
 カトーテック製純曲げ試験機(KES-FB2)を用いて以下の方法で評価した。すなわち、20cm×20cmの織物を有効試料長20cm×1cmで把持し、緯糸方向に最大曲率±2.5cm-1の条件下で曲げた。そのときの、曲率0.5cm-1と1.5cm-1の単位幅当たりの曲げモーメント(gf・cm/cm)の差を曲率差1cm-1で除した値と曲率-0.5cm-1と-1.5cm-1の単位幅当たりの曲げモーメント(gf・cm/cm)の差を曲率差1cm-1で除した値の平均値を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点第4位を四捨五入した後に100を掛けた値を曲げ硬さB×10-2(gf・cm/cm)とした。なお、1gf・cm/cm=9.8mN・cm/cmである。得られた曲げ硬さB×10-2(gf・cm/cm)から柔軟性を次の基準に基づき4段階判定した。
S:優れた柔軟性(曲げ硬さB×10-2≦0.5)
A:良好な柔軟性(0.5<曲げ硬さB×10-2≦1.0)
B:柔軟性がある(1.0<曲げ硬さB×10-2≦1.5)
C:柔軟性に劣る(1.5<曲げ硬さB×10-2)。
I-1. Flexibility: The flexibility was evaluated using a pure bending tester (KES-FB2) manufactured by Kato Tech Co., Ltd., in the following manner. That is, a 20 cm x 20 cm woven fabric was held with an effective sample length of 20 cm x 1 cm , and bent in the weft direction under the condition of a maximum curvature of ±2.5 cm -1 . The average value of the difference between the bending moment (gf cm/cm) per unit width of the curvatures of 0.5 cm -1 and 1.5 cm -1 divided by the curvature difference of 1 cm -1 and the difference between the bending moment (gf cm/cm) per unit width of the curvatures of -0.5 cm -1 and -1.5 cm -1 divided by the curvature difference of 1 cm -1 was calculated. This operation was performed three times per location, and a simple number average of the results of performing this for a total of 10 locations was calculated, and the value rounded off to the fourth decimal place and multiplied by 100 was taken as the bending hardness B x 10 -2 (gf cm 2 /cm). Here, 1 gf·cm 2 /cm=9.8 mN·cm 2 /cm. From the obtained bending hardness B×10 −2 (gf·cm 2 /cm), flexibility was judged into four stages based on the following criteria.
S: Excellent flexibility (bending hardness B×10 −2 ≦0.5)
A: Good flexibility (0.5<bending hardness B×10 −2 ≦1.0)
B: Flexible (1.0<bending hardness B×10 −2 ≦1.5)
C: Poor flexibility (1.5<bending hardness B×10 −2 ).
 I-2.反発感
 カトーテック製純曲げ試験機(KES-FB2)を用いて、20cm×20cmの織物を有効試料長20cm×1cmで把持し、緯糸方向に曲げたときの、曲率±1.0cm-1におけるヒステリシスの幅(gf・cm/cm)を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点第4位を四捨五入した後に100を掛けた値を曲げ回復2HB×10-2(gf・cm/cm)とした。なお、1gf・cm/cm=9.8mN・cm/cmである。得られた曲げ回復2HB×10-2(gf・cm/cm)から反発感を次の基準に基づき4段階判定した。
S:優れた反発感(曲げ回復2HB×10-2≦0.5)
A:良好な反発感(0.5<曲げ回復2HB×10-2≦1.0)
B:反発感がある(1.0<曲げ回復2HB×10-2≦1.5)
C:反発感に劣る(1.5<曲げ回復2HB×10-2)。
I-2. Resilience Using a pure bending tester (KES-FB2) manufactured by Kato Tech, a 20 cm x 20 cm woven fabric was held with an effective sample length of 20 cm x 1 cm and bent in the weft direction to calculate the hysteresis width (gf cm/cm) at a curvature of ±1.0 cm -1 . This operation was performed three times per location, and a simple number average of the results of performing this for a total of 10 locations was calculated, rounded off to the fourth decimal place, and multiplied by 100 to obtain the bending recovery 2HB x 10 -2 (gf cm/cm). Note that 1 gf cm/cm = 9.8 mN cm/cm. The resilience was judged into four stages based on the following criteria from the obtained bending recovery 2HB x 10 -2 (gf cm/cm).
S: Excellent resilience (bending recovery 2HB×10 −2 ≦0.5)
A: Good resilience (0.5<bending recovery 2HB×10 −2 ≦1.0)
B: Resilient (1.0<bending recovery 2HB×10 −2 ≦1.5)
C: Poor resilience (1.5<bending recovery 2HB×10 −2 ).
 I-3.さらっと感
 カトーテック製自動化表面試験機(KES-FB4)を用いて、20cm×20cmの織物の10cm×10cmの範囲をピアノ線で巻かれた1cm×1cmの端子に50gの荷重をかけて、1.0mm/秒の速さで滑らすことで平均摩擦係数の変動MMDを求めた。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果について単純な数平均を求め、小数点第4位を四捨五入した後に100を掛けた値を摩擦変動(×10-2)とした。得られた摩擦変動からさらっと感を次の基準に基づき4段階判定した。
S:優れたさらっと感(2.0≦摩擦変動)
A:良好なさらっと感(1.5≦摩擦変動<2.0)
B:さらっと感がある(1.0≦摩擦変動<1.5)
C:さらっと感に劣る(摩擦変動<1.0)。
I-3. Smooth feeling Using an automated surface tester (KES-FB4) manufactured by Kato Tech, a load of 50 g was applied to a 1 cm x 1 cm terminal wound with piano wire in a 10 cm x 10 cm area of a 20 cm x 20 cm woven fabric, and the terminal was slid at a speed of 1.0 mm/sec to obtain the variation MMD of the average friction coefficient. This operation was performed three times per location, and a simple number average was obtained from the results of performing this for a total of 10 locations, and the value obtained by rounding off to the fourth decimal place and multiplying by 100 was taken as the friction variation (x 10 -2 ). The smooth feeling was judged from the obtained friction variation into four stages based on the following criteria.
S: Excellent smooth feeling (friction fluctuation 2.0 or less)
A: Good smooth feeling (1.5≦friction fluctuation<2.0)
B: Smooth feeling (1.0≦friction variation<1.5)
C: Poor smooth feeling (friction variation < 1.0).
 J.テキスタイル機能評価(ストレッチ性、撥水性)
 経糸方向のカバーファクター(CFA)が800、緯糸方向のカバーファクター(CFB)が1200となるように複合繊維の本数を調整し、2/1ツイル織物を作成する。
J. Textile function evaluation (stretchability, water repellency)
The number of composite fibers is adjusted so that the cover factor in the warp direction (CFA) is 800 and the cover factor in the weft direction (CFB) is 1200, to prepare a 2/1 twill fabric.
 ただし、ここで言うCFAおよびCFBとは、織物の経密度および緯密度をJIS L1096:2010 8.6.1に準じて2.54cmの区間にて測定し、CFA=経糸織密度[本/2.54cm]×(経糸総繊度[dtex])1/2、CFB=緯糸織密度[本/2.54cm]×(緯糸総繊度[dtex])1/2の式より求めた値である。得られた織物について、精練、アルカリ処理、湿熱処理、熱セット、染色加工、撥水加工をこの順で行った後、以下の手法を用いて撥水性、ストレッチ性の2つの機能を評価した。 Here, the CFA and CFB are values obtained by measuring the warp density and weft density of the fabric in a 2.54 cm section in accordance with JIS L1096:2010 8.6.1 and calculating from the formulas: CFA = warp weave density [pieces/2.54 cm] × (total warp fineness [dtex]) 1/2 , and CFB = weft weave density [pieces/2.54 cm] × (total weft fineness [dtex]) 1/2 . The fabric obtained was subjected to scouring, alkali treatment, wet heat treatment, heat setting, dyeing, and water-repellent treatment in this order, and then the two functions of water repellency and stretchability were evaluated using the following methods.
 J-1.ストレッチ性
 ストレッチ性は、JIS L1096:2010の第8.16.1項に記載の伸び率A法(定速伸長法)に準じて行った。なお、ストリップ法の17.6N(1.8kg)荷重時を採用し、試験条件は、サンプル幅5cm×長さ20cm、クランプ間隔10cm、引張速度20cm/分とした。また、初荷重は、JIS L1096:2010の方法に準じて、試料幅1m相当の重さを使用した。織物のヨコ方向に試験を3回行った結果の単純な数平均を求め、小数点以下を四捨五入した値を伸長率(%)とした。得られた伸長率からストレッチ性をそれぞれ次の基準に基づき3段階判定した。
S:優れたストレッチ性(30≦伸長率)
A:良好なストレッチ性(20≦伸長率<30)
B:ストレッチ性がある(10≦伸長率<20)
C:ストレッチ性に劣る(伸長率<10)。
J-1. Stretchability Stretchability was measured according to the elongation A method (constant speed elongation method) described in Section 8.16.1 of JIS L1096:2010. The strip method was used with a load of 17.6 N (1.8 kg), and the test conditions were a sample width of 5 cm x length of 20 cm, clamp interval of 10 cm, and tensile speed of 20 cm/min. The initial load was a weight equivalent to a sample width of 1 m according to the method of JIS L1096:2010. The simple number average of the results of the test performed three times in the weft direction of the woven fabric was calculated, and the value rounded off to the nearest whole number was used as the elongation rate (%). The stretchability was evaluated based on the obtained elongation rate in three stages according to the following criteria.
S: Excellent stretchability (elongation rate 30 or less)
A: Good stretchability (20≦elongation rate<30)
B: Stretchable (10≦elongation rate<20)
C: Poor stretchability (elongation rate < 10).
 J-2.撥水性(水滴滑落角)
 撥水性は、固液界面解析装置(協和界面科学(株)製“DropMaster”700)を用いて、水平の台上に20cm×20cmの織物表面上に20℃の水を20μL乗せ、等速度(目安1度/秒)で0度から静かに1度ごと傾斜させて、液滴が滑落した時点の傾斜角(°)を求めた。この動作を織物上の任意の5箇所について行った結果の単純な数平均を求め、小数点以下を四捨五入した値を水滴滑落角(°)とした。得られた水滴滑落角から撥水性をそれぞれ次の基準に基づき3段階判定した。
S:優れた撥水性(水滴滑落角≦10)
A:良好な撥水性(10<水滴滑落角≦15)
B:撥水性がある(15<水滴滑落角≦20)
C:撥水性に劣る(20<水滴滑落角)。
J-2. Water repellency (water drop sliding angle)
Water repellency was measured by placing 20 μL of water at 20° C. on a 20 cm×20 cm fabric surface on a horizontal platform using a solid-liquid interface analyzer (DropMaster 700, manufactured by Kyowa Interface Science Co., Ltd.), gently tilting the fabric from 0 degrees at a constant speed (approximately 1 degree/sec) at 1 degree increments, and determining the inclination angle (°) at which the droplet slid down. This operation was performed at any five points on the fabric, and the simple number average of the results was calculated, and the value rounded off to the nearest whole number was used as the water droplet sliding angle (°). Water repellency was evaluated based on the obtained water droplet sliding angle in three stages according to the following criteria.
S: Excellent water repellency (water drop sliding angle ≦10)
A: Good water repellency (10<water drop sliding angle≦15)
B: Water repellent (15<water drop sliding angle≦20)
C: Poor water repellency (water drop sliding angle < 20).
 K.テキスタイル表面品位評価(耐テカリ性、耐摩耗性)
 経糸方向のカバーファクター(CFA)が800、緯糸方向のカバーファクター(CFB)が1200となるように複合繊維の本数を調整し、2/1ツイル織物を作成する。
K. Textile surface quality evaluation (gloss resistance, abrasion resistance)
The number of composite fibers is adjusted so that the cover factor in the warp direction (CFA) is 800 and the cover factor in the weft direction (CFB) is 1200, to prepare a 2/1 twill fabric.
 ただし、ここで言うCFA=経糸織密度[本/2.54cm]×(経糸総繊度[dtex])1/2、CFB=緯糸織密度[本/2.54cm]×(緯糸総繊度[dtex])1/2の式より求めた値である。得られた織物について、精練、アルカリ処理、湿熱処理、熱セット、染色処理、撥水加工をこの順で行った後、以下の手法を用いて耐テカリ性、耐摩耗性の2つの表面品位を評価した。 Here, the values are calculated from the formulas: CFA = warp weave density [pieces/2.54 cm] × (total warp fineness [dtex]) 1/2 , and CFB = weft weave density [pieces/2.54 cm] × (total weft fineness [dtex]) 1/2 . The obtained woven fabric was subjected to scouring, alkali treatment, moist heat treatment, heat setting, dyeing treatment, and water repellent treatment in this order, and then the two surface qualities of shine resistance and abrasion resistance were evaluated using the following methods.
 K-1.耐テカリ性
 フロースティングテスターを用い、装置上部中心にある試料ホルダーに織物を取り付け、装置下部の摩擦面と一定時間擦り合せた。実着用にてテカリが発生した織物を見本サンプルとして、上記の実著着用サンプルと同等のテカリ様の光沢がでるまで摩擦したときの回数を規定回数とし、そのときの摩擦後サンプルを1級の見本とした。また規定回数の半分の回数で見本サンプルを摩擦したときの摩擦後サンプルを3級、摩擦前サンプルを5級の見本とした。評価サンプルを摩擦し、摩擦後サンプルの光沢度合をD65光源下にて目視にて見本と比較し、1級刻みで1~5級の級判定を実施した。なお、3級より光沢がなく5級より光沢がある場合は4級、1級より光沢がなく3級より光沢がある場合は2級とした。得られた級判定の結果から耐テカリ性を次の基準に基づき4段階判定した。
S:優れた耐テカリ性(級判定:5級)
A:良好な耐テカリ性(級判定:4級)
B:耐テカリ性がある(級判定:2級、3級)
C:耐テカリ性に劣る(級判定:1級)。
K-1. Shine Resistance Using a frosting tester, a woven fabric was attached to a sample holder at the center of the upper part of the device and rubbed against the friction surface at the bottom of the device for a certain period of time. The woven fabric that was actually worn and had a shine was used as a sample, and the number of times that it was rubbed until it had a shine-like luster equivalent to that of the above-mentioned actually worn sample was determined as the specified number of times, and the sample after rubbing at that time was determined as a sample of grade 1. In addition, the sample after rubbing when the sample sample was rubbed half the specified number of times was determined as a sample of grade 3, and the sample before rubbing was determined as a sample of grade 5. The evaluation sample was rubbed, and the glossiness of the sample after rubbing was visually compared with the sample under a D65 light source, and a grade rating of 1 to 5 was performed in increments of 1 grade. In addition, if it was less glossy than grade 3 and more glossy than grade 5, it was determined as grade 4, and if it was less glossy than grade 1 and more glossy than grade 3, it was determined as grade 2. From the results of the obtained grade ratings, the shine resistance was rated in four stages based on the following criteria.
S: Excellent shine resistance (Grade: Grade 5)
A: Good shine resistance (grade: grade 4)
B: Resistant to shine (Grade: Grade 2, Grade 3)
C: Poor shine resistance (grade: Grade 1).
 K-2.耐摩耗性
 耐摩耗性は、アピアランス・リテンションテスター((株)大栄科学精器製作所製)を用いて、直径6cmの円形に切り出した織物を、蒸留水で湿潤させて円盤に取り付けた。更に11cmの円形に切り出した織物を乾いたまま水平の板の上に固定した。蒸留水で湿潤させた織物が取り付けられた円盤を水平な板の上に固定された織物に対して水平に接触させ、円盤の中心が直径38mmの円を描くように、荷重420g、速度85rpmで10分間円盤を円運動させ、2枚の織物を摩擦させた。摩擦終了後、円盤に取り付けた織物の変退色の程度を、変退色用グレースケールを用い、0.5級刻みで1~5級の級判定を実施した。得られた級判定の結果から耐摩耗性を次の基準に基づき4段階判定した。
S:優れた耐摩耗性(級判定:4.5級以上)
A:良好な耐摩耗性(級判定:3.5級、4級)
B:良好な耐摩耗性(級判定:2.5級、3級)
C:耐摩耗性に劣る(級判定:2級以下)。
K-2. Abrasion resistance Abrasion resistance was measured by using an appearance retention tester (manufactured by Daiei Scientific Instruments Co., Ltd.) to wet a woven fabric cut into a circle with a diameter of 6 cm with distilled water and attach it to a disk. A further woven fabric cut into a circle with a diameter of 11 cm was fixed on a horizontal plate while still dry. The disk with the woven fabric wetted with distilled water attached was horizontally brought into contact with the woven fabric fixed on the horizontal plate, and the disk was moved circularly for 10 minutes at a load of 420 g and a speed of 85 rpm so that the center of the disk drew a circle with a diameter of 38 mm, causing friction between the two pieces of woven fabric. After the friction was completed, the degree of discoloration of the woven fabric attached to the disk was graded from 1 to 5 in 0.5 grade increments using a gray scale for discoloration. From the results of the grades obtained, the abrasion resistance was graded in four stages based on the following criteria.
S: Excellent abrasion resistance (grade: 4.5 or higher)
A: Good abrasion resistance (grade: 3.5 grade, 4 grade)
B: Good abrasion resistance (grade: 2.5 grade, 3 grade)
C: Poor abrasion resistance (grade: grade 2 or lower).
 [実施例1]
 ポリマー1として5-ナトリウムスルホイソフタル酸を8mol%、ポリエチレングリコールを9質量%共重合したポリエチレンテレフタレート(SSIA-PEG共重合PET、溶融粘度:100Pa・s、融点:233℃)、ポリマー2としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー3としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Example 1]
As polymer 1, polyethylene terephthalate copolymerized with 8 mol% of 5-sodium sulfoisophthalic acid and 9 mass% of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233°C), as polymer 2, polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point: 232°C), and as polymer 3, polyethylene terephthalate (PET, melt viscosity: 30 Pa s, melting point: 254°C) were prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2/ポリマー3を質量比で20/40/40となるように計量して、図12に示した複合口金が組み込まれた紡糸パックに流入させ、図1(b)に示すような海島複合繊維であって、図1(b)のzにポリマー1が配置され、x1およびy1にポリマー2が配置され、x2およびy2にポリマー3が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, polymer 1/polymer 2/polymer 3 were weighed out to a mass ratio of 20/40/40 and fed into a spin pack equipped with a composite spinneret as shown in Figure 12. The fed polymers were discharged from the discharge holes to produce a sea-island composite fiber as shown in Figure 1(b), with polymer 1 located at z, polymer 2 located at x1 and y1, and polymer 3 located at x2 and y2.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、110dtex-24フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 110 dtex-24 filaments.
 得られた複合繊維は、繊維横断面において、図1(b)のx1およびx2からなるサイドバイサイド型複合構造を有した八葉形状のセグメントAの外周に、図1(b)のy1およびy2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のセグメントBが8個配置されていた。また、セグメントAの1個当たりの断面積Sは167μm、セグメントBの1個当たりの断面積Sは13μmであり、セグメントBはセグメントAよりも小さい断面積を有しており、本発明の複合繊維であることが確認できた。 The obtained composite fiber had, in the fiber cross section, eight flattened segments B (flatness 3.0) having a side-by-side composite structure consisting of y1 and y2 in Fig. 1(b) arranged around an eight-lobed segment A having a side-by-side composite structure consisting of x1 and x2 in Fig. 1(b). The cross-sectional area S A per segment A was 167 µm 2 and the cross-sectional area S B per segment B was 13 µm 2 , and the segment B had a smaller cross-sectional area than the segment A, confirming that the composite fiber was the present invention.
 得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を、界面活性剤を含む80℃の温水中で10分間精練し、液流染色機で1質量%の水酸化ナトリウム水溶液を用いて90℃に加熱して、易溶出性ポリマーであるポリマー1を99%以上除去した。ついで、液流染色機で130℃、30分C間の湿熱処理を施した後、180℃、1分間、幅出し率5%の条件の熱セットを施した。 A 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft. The resulting fabric was scoured for 10 minutes in 80°C warm water containing a surfactant, and heated to 90°C using a 1% by mass aqueous solution of sodium hydroxide in a jet dyeing machine to remove over 99% of the easily soluble polymer, Polymer 1. The fabric was then subjected to a wet heat treatment at 130°C for 30 minutes in the jet dyeing machine, and then heat set at 180°C for 1 minute with a tentering ratio of 5%.
 次に、染色加工として、染料として分散染料(黒色)と染色助剤を含む水溶液に織物を浸漬し、温度130℃、60分間浸漬させて染色を行った後、水洗した。次いで、還元洗浄剤を含む水溶液に織物を浸漬し、温度80℃、20分間浸漬させて還元洗浄を行った後、水洗、風乾を行った。その後、撥水加工として“ネオシード”(登録商標)NR-158(日華化学社製、非フッ素系(パラフィン系)撥水剤、固形分30%)を4質量%、“ベッカミン”(登録商標)M-3(DIC社製)を0.2質量%、キャタリストACX(DIC社製)を0.15質量%、イソプロプルアルコール1質量%、水94.65質量%で混合した処理液に浸漬し、マングルにて絞り率60%で絞液後、ピンテンターにより130℃、2分間で乾燥、170℃、1分間でキュアリングを施した。 Next, as a dyeing process, the fabric was immersed in an aqueous solution containing a disperse dye (black) and dyeing assistants, and dyed at 130°C for 60 minutes, followed by rinsing with water. Next, the fabric was immersed in an aqueous solution containing a reducing cleaner, and reduced and cleaned at 80°C for 20 minutes, followed by rinsing with water and air drying. After that, as a water-repellent process, the fabric was immersed in a treatment solution containing 4% by mass of "Neoseed" (registered trademark) NR-158 (Nicca Chemical Co., Ltd., non-fluorine (paraffin-based) water repellent, solid content 30%), 0.2% by mass of "Beckamin" (registered trademark) M-3 (DIC Corporation), 0.15% by mass of Catalyst ACX (DIC Corporation), 1% by mass of isopropyl alcohol, and 94.65% by mass of water, and squeezed out at a wringing rate of 60% with a mangle, then dried at 130°C for 2 minutes with a pin tenter, and cured at 170°C for 1 minute.
 得られた織物は、図6(a)のX1およびX2からなるサイドバイサイド型複合構造を有した八葉形状のフィラメントAと図6(b)のY1およびY2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のフィラメントBが均一に混在したマルチフィラメントで構成されていた。また、フィラメントAの繊維径は15μm、フィラメントBの繊維径は4μmであり、フィラメントBはフィラメントAよりも小さい繊維径を有しており、本発明のマルチフィラメントであることが確認できた。 The obtained woven fabric was composed of a multifilament in which eight-lobed filament A having a side-by-side composite structure consisting of X1 and X2 in FIG. 6(a) and flat filament B having a side-by-side composite structure consisting of Y1 and Y2 in FIG. 6(b) were uniformly mixed. The fiber diameter of filament A was 15 μm, and the fiber diameter of filament B was 4 μm, and filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
 該マルチフィラメントで構成される織物は、マルチフィラメント中で通常繊維であるフィラメントAと極細繊維であるフィラメントBが均一に混在していることから、良好な反発感(曲げ回復2HB:0.8×10-2gf・cm/cm(7.8×10-2mN・cm/cm))と良好な柔軟性(曲げ硬さB:0.8×10-2gf・cm/cm(7.8×10-2mN・cm/cm))を有していた。また、極細繊維であるフィラメントBがサイドバイサイド型複合構造であることにより捲縮を有していることから、この捲縮による立体障害によって繊維間に微細な空隙が形成され、摩擦面が固定されることなく、柔軟に移動することができるため、摩擦に対する耐性が高くなり、良好な耐テカリ性(耐テカリ:4級)と耐摩耗性(変退色:3.5級)を有するのみならず、捲縮を有した極細繊維が表層に配置されていることにより、織物の表面に微細凹凸が形成されて良好なさらっと感(摩擦変動:1.7×10-2)も有しており、従来素材にはない、摩擦に対する耐性と風合いを両立した織物であった。 The woven fabric composed of the multifilament had a good resilience (bending recovery 2HB: 0.8×10 -2 gf·cm/cm (7.8×10 -2 mN·cm/cm)) and good flexibility (bending hardness B: 0.8×10 -2 gf·cm 2 /cm (7.8×10 -2 mN·cm 2 /cm)) because filament A, which is a normal fiber, and filament B , which is an ultrafine fiber, were uniformly mixed in the multifilament. In addition, since the ultrafine fiber filament B has a side-by-side composite structure and is therefore crimped, fine gaps are formed between the fibers due to steric hindrance caused by this crimping, and the friction surface is not fixed but can move flexibly, resulting in high resistance to friction and good shine resistance (shine resistance: grade 4) and abrasion resistance (discoloration: grade 3.5). In addition, since the ultrafine fibers having crimping are arranged on the surface layer, fine irregularities are formed on the surface of the fabric, giving it a good smooth feel (friction fluctuation: 1.7 x 10-2 ), and this was a woven fabric that combined resistance to friction and texture not found in conventional materials.
 さらに、フィラメントAもサイドバイサイド型複合構造であることによりマルチフィラメント内の全てのフィラメントが捲縮を有していることから、良好なストレッチ性(伸長率:25%)が得られることに加え、極細繊維であるフィラメントBの捲縮による微細凹凸と、通常繊維であるフィラメントAによる粗大な凹凸が混ざった微細かつ複雑な凹凸が形成されることで、燃焼イオンクロマトグラフィー測定におけるフッ素含有量が、検出限界以下である25ng/g以下の非フッ素系撥水剤を有する織物でありながら、良好な撥水性(水滴滑落角:11°)も得られるものであった。結果を表に示す。 Furthermore, since filament A also has a side-by-side composite structure, all filaments in the multifilament are crimped, resulting in good stretchability (elongation rate: 25%). In addition, fine and complex irregularities are formed that combine the fine irregularities caused by the crimping of filament B, which is an ultrafine fiber, with the coarse irregularities caused by filament A, which is a normal fiber. As a result, the fluorine content in the fabric measured by combustion ion chromatography is below 25 ng/g, which is below the detection limit, and yet the fabric contains a non-fluorine-based water repellent agent, and yet the fabric has good water repellency (water droplet sliding angle: 11°). The results are shown in the table.
 [実施例2、3]
 複合繊維のセグメントAの断面積Sを66μm、セグメントBの断面積Sを5μm(実施例2)、セグメントAの断面積Sを670μm、セグメントBの断面積Sを50μm(実施例3)となるように吐出量を変更する以外は全て実施例1に従い実施した。
[Examples 2 and 3]
The procedure of Example 1 was followed except for changing the extrusion rate so that the cross-sectional area S A of the composite fiber segment A was 66 μm 2 , the cross-sectional area S B of the composite fiber segment B was 5 μm 2 (Example 2), and the cross-sectional area S A of the composite fiber segment A was 670 μm 2 , and the cross-sectional area S B of the composite fiber segment B was 50 μm 2 (Example 3).
 実施例2においては、複合繊維のセグメントAおよびBの断面積が小さくなることで、得られる織物を構成するマルチフィラメントのフィラメントAおよびBの繊維径も小さくなり、織物の柔軟性や耐テカリ性が向上することに加えて、繊維径が小さくなるのに伴い、発現する捲縮のループも細かくなることから、織物表面に形成される凹凸もより微細となり、水滴との接触面積が減ることで撥水性が向上するものであった。 In Example 2, the cross-sectional area of the composite fiber segments A and B is reduced, and the fiber diameter of the filaments A and B of the multifilament that constitutes the resulting woven fabric is also reduced, improving the flexibility and shine resistance of the woven fabric. As the fiber diameter is reduced, the crimp loops that appear are also finer, so the unevenness formed on the woven fabric surface is also finer, and the contact area with water droplets is reduced, improving water repellency.
 実施例3においては、複合繊維のセグメントAおよびBの断面積が大きくなることで、得られる織物を構成するマルチフィラメントのフィラメントAおよびBの繊維径も大きくなり、織物の反発性が向上することに加えて、繊維径が大きくなるのに伴い、発現する捲縮のループも粗大になることから、織物表面に形成される凹凸も粗大となり、さらっと感が向上するものであった。結果を表に示す。 In Example 3, the cross-sectional area of the composite fiber segments A and B increased, and the fiber diameter of the filaments A and B of the multifilament that constitutes the resulting woven fabric also increased, improving the resilience of the woven fabric. As the fiber diameter increased, the resulting crimp loops also became coarser, and the irregularities formed on the woven fabric surface also became coarser, improving the smooth feel. The results are shown in the table.
 [実施例4]
 断面形状を図2(a)のようなセグメントBが三葉状(扁平度:1.4)となるよう変更する以外は全て実施例1に従い実施した。
[Example 4]
The same procedures as in Example 1 were carried out except that the cross-sectional shape of segment B was changed to a trilobal shape (flatness: 1.4) as shown in FIG. 2(a).
 実施例4においては、得られる織物におけるフィラメントBに凹凸が形成されることで、光の乱反射が増幅され、織物の光沢ムラ(ギラツキ)が抑制されるものであった。結果を表に示す。 In Example 4, irregularities were formed in filament B in the resulting woven fabric, amplifying the diffuse reflection of light and suppressing uneven gloss (glare) in the woven fabric. The results are shown in the table.
 [実施例5、6]
 断面形状を図2(b)のようなセグメントAが四葉状(実施例5)、図2(c)のような丸状(実施例6)に変更する以外は全て実施例1に従い実施した。
[Examples 5 and 6]
The same operations as in Example 1 were carried out except that the cross-sectional shape of segment A was changed to a four-lobe shape as shown in FIG. 2(b) (Example 5) or a round shape as shown in FIG. 2(c) (Example 6).
 実施例5においては、得られる織物におけるフィラメントAの異型度が大きくなるに伴って反発感が向上するものであった。また、フィラメントBの繊維径が大きくなるのに伴い、発現する捲縮のループも粗大になることから、織物表面に形成される凹凸も粗大となり、さらっと感が向上するものであった。 In Example 5, the resilience improved as the degree of irregularity of filament A in the resulting fabric increased. In addition, as the fiber diameter of filament B increased, the crimp loops that appeared also became coarser, and the unevenness formed on the fabric surface also became coarser, improving the smooth feel.
 実施例6においては、得られる織物におけるフィラメントAが丸状であることで、曲げ硬さが小さくなり、柔軟性が向上するのみならず、フィラメントAを構成するポリマー間の重心間距離が長くなることで、捲縮発現性が向上し、ストレッチ性も向上するものであった。結果を表に示す。 In Example 6, the filament A in the resulting woven fabric was round, which not only reduced bending stiffness and improved flexibility, but also increased the distance between the centers of gravity of the polymers that make up filament A, improving crimp expression and improving stretchability. The results are shown in the table.
 [実施例7、8]
 ポリマー2を高粘度ポリエチレンテレフタレート(高粘度PET、溶融粘度:300Pa・s、融点:254℃)(実施例7)、ポリプロピレンテレフタレート(PPT、溶融粘度:130Pa・s、融点:231℃)(実施例8)に変更する以外は全て実施例1に従い実施した。
[Examples 7 and 8]
The same procedures as in Example 1 were repeated except that polymer 2 was changed to high viscosity polyethylene terephthalate (high viscosity PET, melt viscosity: 300 Pa·s, melting point: 254°C) (Example 7) or polypropylene terephthalate (PPT, melt viscosity: 130 Pa·s, melting point: 231°C) (Example 8).
 実施例7においては、得られる織物を構成するマルチフィラメントが共重合成分のないPETのみで形成されることで、優れた反発感を有するものであった。 In Example 7, the multifilaments constituting the resulting woven fabric were made only of PET without any copolymerization components, providing an excellent resilience.
 実施例8においては、PPTが有するゴム弾性の特性が相まって、得られる織物がより柔軟性に優れた風合いを発現するのみならず、フィラメントAおよびBの捲縮発現性が向上することから、ストレッチ機能が大幅に向上するのみならず、繊維表面に発現する凹凸がより複雑になることで、さらっと感や撥水性も向上するものであった。結果を表に示す。 In Example 8, the rubber elasticity of PPT is also combined to give the resulting woven fabric a more flexible feel, and the crimp expression of filaments A and B is improved, so not only is the stretch function significantly improved, but the unevenness that appears on the fiber surface becomes more complex, improving the smooth feel and water repellency. The results are shown in the table.
 [実施例9]
 断面形状を図1(c)のようなセグメントBが偏心芯鞘型の複合構造となるよう変更する以外は全て実施例8に従い実施した。
[Example 9]
The same procedure as in Example 8 was repeated except that the cross-sectional shape of segment B was changed to have an eccentric core-sheath type composite structure as shown in FIG. 1(c).
 実施例9においては、得られる織物におけるフィラメントBの表面がPETで被膜されていることで、PPTの摩耗が抑制され、良好な耐摩耗性が得られるものであった。結果を表に示す。 In Example 9, the surface of filament B in the resulting woven fabric was coated with PET, suppressing wear of the PPT and providing good wear resistance. The results are shown in the table.
 [比較例1]
 ポリマー1として5-ナトリウムスルホイソフタル酸を8mol%、ポリエチレングリコールを9質量%共重合したポリエチレンテレフタレート(SSIA-PEG共重合PET、溶融粘度:100Pa・s、融点:233℃)、ポリマー2としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー3としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Comparative Example 1]
As polymer 1, polyethylene terephthalate copolymerized with 8 mol% of 5-sodium sulfoisophthalic acid and 9 mass% of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233°C), as polymer 2, polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point: 232°C), and as polymer 3, polyethylene terephthalate (PET, melt viscosity: 30 Pa s, melting point: 254°C) were prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2/ポリマー3を質量比で30/35/35となるように計量して、公知の複合口金が組み込まれた紡糸パックに流入させ、図3(b)に示すような海島複合繊維であって、図3(b)のzにポリマー1が配置され、y1にポリマー2が配置され、y2にポリマー3が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, the weight ratio of polymer 1/polymer 2/polymer 3 was measured to be 30/35/35, and the mixture was poured into a spin pack equipped with a known composite spinneret. The polymers were discharged from the discharge hole to produce a composite structure such as the sea-island composite fiber shown in Figure 3(b), where polymer 1 is located at z, polymer 2 is located at y1, and polymer 3 is located at y2 in Figure 3(b).
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、110dtex-24フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 110 dtex-24 filaments.
 得られた複合繊維は、繊維横断面において、図3(b)のy1およびy2からなるサイドバイサイド型複合構造を有した1種類のセグメントが12個配置されていた。また、セグメントの1個当たりの断面積は20μmであった。 The obtained composite fiber had 12 segments of one type arranged in the fiber cross section, each having a side-by-side composite structure consisting of y1 and y2 in Figure 3(b). The cross-sectional area of each segment was 20 μm2.
 得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を実施例1と同様の条件で、精練、アルカリ処理、湿熱処理、熱セット、染色加工、撥水加工をこの順で行い、図11のY1およびY2からなるサイドバイサイド型複合構造を有した1種類のフィラメントで構成される織物を得た。また、フィラメントの繊維径は5μmであった。 A 2/1 twill fabric was obtained using the obtained composite fibers as warp and weft. The obtained fabric was subjected to refining, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in that order under the same conditions as in Example 1, to obtain a fabric composed of one type of filament having a side-by-side composite structure consisting of Y1 and Y2 in Figure 11. The fiber diameter of the filament was 5 μm.
 比較例1においては、極細繊維であるフィラメントのみからなることで、反発感に欠けるのみならず、織物表面に形成される微細凹凸も平坦となり、さらっと感も損なわれるものであった。結果を表に示す。 In Comparative Example 1, the fabric was made only of ultrafine filaments, which not only lacked a sense of resilience, but also flattened the fine irregularities formed on the fabric surface, impairing the smooth feel. The results are shown in the table.
 [比較例2]
 ポリマー1としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー2としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Comparative Example 2]
As polymer 1, polyethylene terephthalate copolymerized with 7 mol % isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa·s, melting point: 232° C.) was prepared, and as polymer 2, polyethylene terephthalate (PET, melt viscosity: 30 Pa·s, melting point: 254° C.) was prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2を質量比で50/50となるように計量して、公知の複合口金が組み込まれた紡糸パックに流入させ、図11に示すような複合繊維であって、図11のX1にポリマー1が配置され、X2にポリマー2が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, the polymer 1/polymer 2 were weighed out to a mass ratio of 50/50 and poured into a spinning pack equipped with a known composite spinneret. The incoming polymers were discharged from the discharge hole to produce a composite fiber as shown in Figure 11, with polymer 1 located at X1 and polymer 2 located at X2 in Figure 11.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、110dtex-48フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 110 dtex-48 filaments.
 得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を実施例1と同様の条件で、精練、アルカリ処理、湿熱処理、熱セット、染色加工、撥水加工をこの順で行い、図11のX1およびX2からなるサイドバイサイド型複合構造を有した1種類のフィラメントで構成される織物を得た。なお、フィラメントの繊維径は15μmであった。 A 2/1 twill fabric was obtained using the obtained composite fibers as warp and weft. The obtained fabric was subjected to scouring, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in that order under the same conditions as in Example 1, to obtain a fabric composed of one type of filament having a side-by-side composite structure consisting of X1 and X2 in Figure 11. The fiber diameter of the filament was 15 μm.
 比較例2においては、通常繊維であるフィラメントのみからなることで、柔軟性に欠けるのみならず、繊維の摩擦・摩耗等により発生する平坦部の面積が大きいことで、耐テカリ性にも劣るものであった。結果を表に示す。 In Comparative Example 2, the material consisted only of filaments, which are normal fibers, and thus not only did it lack flexibility, but it also had poor shine resistance due to the large area of flat areas caused by friction and wear of the fibers. The results are shown in the table.
 [比較例3]
 ポリマー1としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー2としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Comparative Example 3]
As polymer 1, polyethylene terephthalate copolymerized with 7 mol % isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa·s, melting point: 232° C.) was prepared, and as polymer 2, polyethylene terephthalate (PET, melt viscosity: 30 Pa·s, melting point: 254° C.) was prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2を質量比で50/50となるように計量して、公知の複合口金が組み込まれた紡糸パックに流入させ、図11に示すような複合繊維であって、図11のX1にポリマー1が配置され、X2にポリマー2が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, the polymer 1/polymer 2 were weighed out to a mass ratio of 50/50 and poured into a spinning pack equipped with a known composite spinneret. The incoming polymers were discharged from the discharge hole to produce a composite fiber as shown in Figure 11, with polymer 1 located at X1 and polymer 2 located at X2 in Figure 11.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、55dtex-24フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 55 dtex-24 filaments.
 また複合口金の吐出孔数を変更する以外は上記と同様の方法で、55dtex-72フィラメントの複合繊維を製造した。 Furthermore, a 55 dtex-72 filament composite fiber was produced using the same method as above, except for changing the number of nozzles in the composite spinneret.
 得られた2種類の複合繊維を公知のエアーノズルを用いて混繊した後、経糸および緯糸として2/1ツイル織物を得た。得られた織物を実施例1と同様の条件で、精練、アルカリ処理、湿熱処理、熱セット、染色加工、撥水加工をこの順で行い、図11のX1およびX2からなるサイドバイサイド型複合構造を有したフィラメントAと図11のY1およびY2からなるサイドバイサイド型複合構造を有したフィラメントBが混在したマルチフィラメントで構成される織物を得た。なお、フィラメントAの繊維径は15μm、フィラメントBの繊維径は8μmであった。 The two types of composite fibers obtained were mixed using a known air nozzle, and then a 2/1 twill fabric was obtained as the warp and weft. The resulting fabric was subjected to refining, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in that order under the same conditions as in Example 1, to obtain a fabric composed of multifilaments in which filament A having a side-by-side composite structure consisting of X1 and X2 in Figure 11 and filament B having a side-by-side composite structure consisting of Y1 and Y2 in Figure 11 were mixed. The fiber diameter of filament A was 15 μm, and the fiber diameter of filament B was 8 μm.
 比較例2においては、通常繊維であるフィラメントAと極細繊維であるフィラメントBが均一に混在していないことから、フィラメントAが偏って存在する箇所では、摩擦・摩耗等により発生する平坦部の面積が大きく、耐テカリ性に劣るものであった。結果を表に示す。 In Comparative Example 2, the filament A, which is a normal fiber, and the filament B, which is a superfine fiber, were not mixed evenly, so in the areas where the filament A was unevenly present, the area of flat areas caused by friction, wear, etc. was large, and the shine resistance was poor. The results are shown in the table.
 [実施例10]
 ポリマー1として5-ナトリウムスルホイソフタル酸を8mol%、ポリエチレングリコールを9質量%共重合したポリエチレンテレフタレート(SSIA-PEG共重合PET、溶融粘度:100Pa・s、融点:233℃)、ポリマー2としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー3としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Example 10]
As polymer 1, polyethylene terephthalate copolymerized with 8 mol% of 5-sodium sulfoisophthalic acid and 9 mass% of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233°C), as polymer 2, polyethylene terephthalate copolymerized with 7 mol% of isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa s, melting point: 232°C), and as polymer 3, polyethylene terephthalate (PET, melt viscosity: 30 Pa s, melting point: 254°C) were prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2/ポリマー3を質量比で20/15/65となるように計量して、図12に示した複合口金が組み込まれた紡糸パックに流入させ、図1(a)に示すような海島複合繊維であって、図1(a)のzにポリマー1が配置され、y1にポリマー2が配置され、x1およびy2にポリマー3が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, the weight ratio of polymer 1/polymer 2/polymer 3 was measured to be 20/15/65, and the mixture was poured into a spin pack equipped with a composite spinneret as shown in Figure 12. The polymers were discharged from the discharge hole to produce a composite structure such as the sea-island composite fiber shown in Figure 1(a) where polymer 1 is located at z, polymer 2 is located at y1, and polymer 3 is located at x1 and y2.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、110dtex-24フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 110 dtex-24 filaments.
 得られた複合繊維は、繊維横断面において、図1(a)のx1からなる八葉形状のセグメントAの外周に、図1(a)のy1およびy2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のセグメントBが8個配置されていた。また、セグメントAの1個当たりの断面積Sは167μm、セグメントBの1個当たりの断面積Sは13μmであり、セグメントBはセグメントAよりも小さい断面積を有しており、本発明の複合繊維であることが確認できた。 In the cross section of the obtained composite fiber, eight flattened segments B having a side-by-side composite structure consisting of y1 and y2 in Fig. 1(a) (flatness of 3.0) were arranged around an eight-lobed segment A consisting of x1 in Fig. 1(a). The cross-sectional area S A per segment A was 167 µm2 , and the cross-sectional area S B per segment B was 13 µm2 . The cross-sectional area of the segment B was smaller than that of the segment A, and it was confirmed that the composite fiber was the present invention.
 得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を、界面活性剤を含む80℃の温水中で10分間精練し、液流染色機で1質量%の水酸化ナトリウム水溶液を用いて90℃に加熱して、易溶出性ポリマーであるポリマー1を99%以上除去した。ついで、液流染色機で130℃、30分間の湿熱処理を施した後、180℃、1分間、幅出し率5%の条件の熱セットを施した。 A 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft. The resulting fabric was scoured for 10 minutes in 80°C warm water containing a surfactant, and heated to 90°C using a 1% by mass aqueous solution of sodium hydroxide in a jet dyeing machine to remove more than 99% of the easily soluble polymer, Polymer 1. The fabric was then subjected to a wet heat treatment at 130°C for 30 minutes in the jet dyeing machine, followed by a heat set at 180°C for 1 minute with a tentering ratio of 5%.
 次に、染色加工として、染料として分散染料(黒色)と染色助剤を含む水溶液に織物を浸漬し、温度130℃、60分間浸漬させて染色を行った後、水洗した。次いで、還元洗浄剤を含む水溶液に織物を浸漬し、温度80℃、20分間浸漬させて還元洗浄を行った後、水洗、風乾を行った。 Next, for the dyeing process, the fabric was immersed in an aqueous solution containing a disperse dye (black) and dyeing assistants, and dyed at 130°C for 60 minutes, after which it was rinsed with water. Next, the fabric was immersed in an aqueous solution containing a reducing detergent, and reduced-cleaned at 80°C for 20 minutes, after which it was rinsed with water and air-dried.
 その後、撥水加工として“ネオシード”(登録商標)NR-158(日華化学社製、非フッ素系(パラフィン系)撥水剤、固形分30%)を4質量%、“ベッカミン”(登録商標)M-3(DIC社製)を0.2質量%、キャタリストACX(DIC社製)を0.15質量%、イソプロプルアルコール1質量%、水94.65質量%で混合した処理液に浸漬し、マングルにて絞り率60%で絞液後、ピンテンターにより130℃、2分間で乾燥、170℃、1分間でキュアリングを施した。 Then, for water repellency, the fabric was immersed in a treatment solution containing 4% by weight of "Neoseed" (registered trademark) NR-158 (Nicca Chemical Co., Ltd., non-fluorinated (paraffin-based) water repellent, solids content 30%), 0.2% by weight of "Beckamin" (registered trademark) M-3 (DIC Corporation), 0.15% by weight of Catalyst ACX (DIC Corporation), 1% by weight of isopropyl alcohol, and 94.65% by weight of water, and squeezed out with a mangle to a squeezing rate of 60%, then dried with a pin tenter at 130°C for 2 minutes and cured at 170°C for 1 minute.
 得られた織物は、図5(a)のX1からなる八葉形状のフィラメントAと図5(b)のY1およびY2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のフィラメントBが均一に混在したマルチフィラメントで構成されていた。また、フィラメントAの繊維径は15μm、フィラメントBの繊維径は4μmであり、フィラメントBはフィラメントAよりも小さい繊維径を有しており、本発明のマルチフィラメントであることが確認できた。 The obtained woven fabric was composed of a multifilament in which eight-lobed filament A consisting of X1 in Fig. 5(a) and flat filament B consisting of Y1 and Y2 in Fig. 5(b) with a side-by-side composite structure (flatness of 3.0) were uniformly mixed. In addition, the fiber diameter of filament A was 15 μm, and the fiber diameter of filament B was 4 μm, and filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
 該マルチフィラメントで構成される織物は、マルチフィラメント中で通常繊維であるフィラメントAと極細繊維であるフィラメントBが均一に混在していることから、良好な反発感(曲げ回復2HB:0.6×10-2gf・cm/cm(5.9×10-2mN・cm/cm))と良好な柔軟性(曲げ硬さB:1.0×10-2gf・cm/cm(9.8×10-2mN・cm/cm))を有していた。また、極細繊維であるフィラメントBがサイドバイサイド型複合構造であることにより捲縮を有していることから、この捲縮による立体障害によって繊維間に微細な空隙が形成され、摩擦面が固定されることなく、柔軟に移動することができるため、摩擦に対する耐性が高くなり、耐テカリ性(テカリ度:6%)と耐摩耗性(変退色:4級)を有するのみならず、捲縮を有した極細繊維が表層に配置されていることにより、織物の表面に微細凹凸が形成されてさらっと感(摩擦変動:1.3×10-2)も有しており、従来素材にはない、摩擦に対する耐性と風合いを両立した織物であった。 The woven fabric composed of the multifilament had a good resilience (bending recovery 2HB: 0.6×10 -2 gf·cm/cm (5.9×10 -2 mN·cm/cm)) and good flexibility (bending hardness B: 1.0×10 -2 gf·cm 2 /cm (9.8×10 -2 mN·cm 2 /cm)) because filament A, which is a normal fiber, and filament B , which is an ultrafine fiber, were uniformly mixed in the multifilament. In addition, since the ultrafine fiber filament B has a side-by-side composite structure and is therefore crimped, fine gaps are formed between the fibers due to steric hindrance caused by this crimping, and the friction surface is not fixed but can move flexibly, resulting in high resistance to friction and providing shine resistance (shine level: 6%) and abrasion resistance (discoloration: grade 4). In addition, since the ultrafine fibers having crimping are arranged on the surface layer, fine irregularities are formed on the surface of the woven fabric, giving it a smooth feel (friction fluctuation: 1.3 x 10-2 ), and this woven fabric combines friction resistance and texture, something not found in conventional materials.
 さらに、捲縮を有した極細繊維と通常繊維が混在して表層に配置されていることにより、テキスタイル表面に微細かつ複雑な凹凸が形成され、燃焼イオンクロマトグラフィー測定におけるフッ素含有量が、検出限界以下である25ng/g以下の非フッ素系撥水剤を有する織物でありながら、撥水性(水滴滑落角:18°)も得られるものであった。結果を表に示す。 Furthermore, by arranging a mixture of crimped ultrafine fibers and normal fibers on the surface, fine and complex irregularities are formed on the textile surface, and the fluorine content in combustion ion chromatography is below the detection limit of 25 ng/g, and the fabric contains a non-fluorinated water repellent agent, yet is water repellent (water droplet sliding angle: 18°). The results are shown in the table.
 [実施例11]
 ポリマー1/ポリマー2/ポリマー3を質量比で20/65/15となるように計量して、図12に示した複合口金が組み込まれた紡糸パックに流入させ、図1(a)に示すような海島複合繊維であって、図1(a)のzにポリマー1が配置され、x1およびy1にポリマー2が配置され、y2にポリマー3が配置された複合構造となるように、吐出孔から流入ポリマーを吐出する以外は、全て実施例9に従い実施した。
[Example 11]
The procedures of Example 9 were repeated except that polymer 1/polymer 2/polymer 3 were weighed out to give a mass ratio of 20/65/15 and flowed into a spin pack equipped with the composite spinneret shown in FIG. 12 , and the flowed-in polymers were discharged from the discharge hole to obtain a sea-island composite fiber as shown in FIG. 1(a), in which polymer 1 was located at z, polymer 2 was located at x1 and y1, and polymer 3 was located at y2.
 実施例11においては、複合繊維のセグメントAが低融点のIPA共重合PETのみで形成されていることで、得られる織物を構成するマルチフィラメントのフィラメントAが熱処理の際に高収縮となることから、フィラメントAとフィラメントBに糸長差が生まれて、織物表面に形成される凹凸が粗大となり、良好なさらっと感が得られることに加えて、糸長差で繊維間空隙が大きくなることで、摩擦・摩耗等により発生する平坦部の面積が小さくなり、優れた耐テカリ性を有するものであった。結果を表に示す。 In Example 11, segment A of the composite fiber is formed only from low-melting point IPA copolymerized PET, and filament A of the multifilament constituting the resulting woven fabric shrinks highly during heat treatment, resulting in a difference in thread length between filament A and filament B, which results in coarse irregularities formed on the woven fabric surface and a good smooth feel. In addition, the difference in thread length increases the gaps between the fibers, which reduces the area of flat parts caused by friction, wear, etc., and provides excellent shine resistance. The results are shown in the table.
 [実施例12]
 ポリマー1としてナイロン6(N6、溶融粘度:190Pa・s、融点:223℃)、ポリマー2としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー3としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Example 12]
As polymer 1, nylon 6 (N6, melt viscosity: 190 Pa·s, melting point: 223°C) was prepared. As polymer 2, polyethylene terephthalate copolymerized with 7 mol% isophthalic acid (IPA copolymerized PET, melt viscosity: 140 Pa·s, melting point: 232°C) was prepared. As polymer 3, polyethylene terephthalate (PET, melt viscosity: 30 Pa·s, melting point: 254°C) was prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2/ポリマー3を質量比で20/40/40となるように計量して、図12に示した複合口金が組み込まれた紡糸パックに流入させ、図1(c)に示すような芯鞘複合繊維であって、図1(c)のx1にポリマー1が配置され、y1にポリマー2が配置され、y2にポリマー3が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, polymer 1/polymer 2/polymer 3 were weighed out to a mass ratio of 20/40/40 and fed into a spinning pack incorporating the composite spinneret shown in Figure 12. The fed polymers were discharged from the discharge hole to produce a core-sheath composite fiber as shown in Figure 1(c), with polymer 1 located at x1, polymer 2 located at y1, and polymer 3 located at y2 in Figure 1(c).
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、110dtex-24フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 110 dtex-24 filaments.
 得られた複合繊維は、繊維横断面において、図1(c)のx1からなる八葉形状のセグメントAの外周に、図1(a)のy1およびy2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のセグメントBが8個配置されていた。また、セグメントAの1個当たりの断面積Sは209μm、セグメントBの1個当たりの断面積Sは15μmであり、セグメントBはセグメントAよりも小さい断面積を有しており、本発明の複合繊維であることが確認できた。 In the cross section of the obtained composite fiber, eight flattened segments B having a side-by-side composite structure consisting of y1 and y2 in Fig. 1(a) (flatness of 3.0) were arranged around an eight-lobed segment A consisting of x1 in Fig. 1(c) in the outer periphery. The cross-sectional area S A per segment A was 209 µm2 , and the cross-sectional area S B per segment B was 15 µm2 , and the segment B had a smaller cross-sectional area than the segment A, confirming that the composite fiber was the present invention.
 得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を、界面活性剤を含む80℃の温水中で10分間精練し、ついで、液流染色機で130℃、30分間の湿熱処理を施すことで、セグメントAとセグメントBを剥離させた後、180℃、1分間、幅出し率5%の条件の熱セットを施した。 A 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft. The resulting fabric was scoured for 10 minutes in 80°C warm water containing a surfactant, then subjected to a wet heat treatment at 130°C for 30 minutes in a jet dyeing machine to separate segments A and B, after which it was heat set at 180°C for 1 minute with a tentering ratio of 5%.
 次に、染色加工として、染料として分散染料(黒色)と染色助剤を含む水溶液に織物を浸漬し、温度130℃、60分間浸漬させて染色を行った後、水洗した。次いで、還元洗浄剤を含む水溶液に織物を浸漬し、温度80℃、20分間浸漬させて還元洗浄を行った後、水洗、風乾を行った。 Next, for the dyeing process, the fabric was immersed in an aqueous solution containing a disperse dye (black) and dyeing assistants, and dyed at 130°C for 60 minutes, after which it was rinsed with water. Next, the fabric was immersed in an aqueous solution containing a reducing detergent, and reduced-cleaned at 80°C for 20 minutes, after which it was rinsed with water and air-dried.
 その後、撥水加工として“ネオシード”(登録商標)NR-158(日華化学社製、非フッ素系(パラフィン系)撥水剤、固形分30%)を4質量%、“ベッカミン”(登録商標)M-3(DIC社製)を0.2質量%、キャタリストACX(DIC社製)を0.15質量%、イソプロプルアルコール1質量%、水94.65質量%で混合した処理液に浸漬し、マングルにて絞り率60%で絞液後、ピンテンターにより130℃、2分間で乾燥、170℃、1分間でキュアリングを施した。 得られた織物は、図5(a)のX1からなる八葉形状のフィラメントAと図5(b)のY1およびY2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のフィラメントBが均一に混在したマルチフィラメントで構成されていた。また、フィラメントAの繊維径は16μm、フィラメントBの繊維径は4μmであり、フィラメントBはフィラメントAよりも小さい繊維径を有しており、本発明のマルチフィラメントであることが確認できた。 Then, for water repellency, the fabric was immersed in a treatment solution containing 4% by mass of "Neoseed" (registered trademark) NR-158 (Nicca Chemical Co., Ltd., non-fluorinated (paraffin-based) water repellent, solids content 30%), 0.2% by mass of "Beckamin" (registered trademark) M-3 (DIC Corporation), 0.15% by mass of Catalyst ACX (DIC Corporation), 1% by mass of isopropyl alcohol, and 94.65% by mass of water, and after squeezing the liquid out at a squeezing rate of 60% using a mangle, it was dried at 130°C for 2 minutes using a pin tenter and cured at 170°C for 1 minute. The obtained fabric was composed of a multifilament in which eight-lobed filament A consisting of X1 in Figure 5(a) and flat filament B (flatness 3.0) having a side-by-side composite structure consisting of Y1 and Y2 in Figure 5(b) were uniformly mixed. In addition, the fiber diameter of filament A was 16 μm and the fiber diameter of filament B was 4 μm, and filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
 該マルチフィラメントで構成される織物は、フィラメントAが低弾性かつ低融点のナイロン6で形成されていることから、優れた柔軟性を有することに加え、フィラメントAが熱処理の際に高収縮となることから、フィラメントAとフィラメントBに糸長差が生まれて、織物表面に形成される凹凸が粗大となり、良好なさらっと感が得られることに加えて、糸長差で繊維間空隙が大きくなることで、摩擦・摩耗等により発生する平坦部の面積が小さくなり、優れた耐テカリ性を有するものであった。結果を表に示す。 The fabric composed of this multifilament has excellent flexibility because filament A is made of nylon 6, which has low elasticity and a low melting point. In addition, because filament A shrinks highly when heat treated, a difference in thread length is created between filament A and filament B, which results in large irregularities on the surface of the fabric, giving the fabric a smooth feel. In addition, the difference in thread length increases the gaps between the fibers, which reduces the area of flat areas caused by friction, wear, etc., giving the fabric excellent shine resistance. The results are shown in the table.
 [実施例13]
 実施例1で得られる110dtex-24フィラメントの複合繊維を倍率1.05倍で仮撚加工を施して105dtex-24フィラメントの仮撚加工糸としたこと以外は全て実施例1に従い実施した。
[Example 13]
The same operations as in Example 1 were carried out except that the 110 dtex-24 filament composite fiber obtained in Example 1 was false twisted at a twist ratio of 1.05 to form a 105 dtex-24 filament false twist textured yarn.
 実施例13においては、仮撚加工により捲縮発現性が向上することから、ストレッチ機能が大幅に向上するのみならず、繊維表面に発現する凹凸がより複雑になることで、さらっと感や撥水性も向上するものであった。結果を表に示す。 In Example 13, the false twist processing improves the crimping property, which not only significantly improves the stretch function, but also improves the smooth feel and water repellency by making the unevenness on the fiber surface more complex. The results are shown in the table.
 [実施例14]
 ポリマー1として5-ナトリウムスルホイソフタル酸を8mol%、ポリエチレングリコールを9質量%共重合したポリエチレンテレフタレート(SSIA-PEG共重合PET、溶融粘度:100Pa・s、融点:233℃)、ポリマー2としてナイロン66(N66、溶融粘度:200Pa・s、融点:255℃)、ポリマー3としてナイロン610(N610、溶融粘度:80Pa・s、融点:225℃)を準備した。
[Example 14]
As polymer 1, polyethylene terephthalate copolymerized with 8 mol % of 5-sodium sulfoisophthalic acid and 9 mass % of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233° C.) was prepared. As polymer 2, nylon 66 (N66, melt viscosity: 200 Pa s, melting point: 255° C.) was prepared. As polymer 3, nylon 610 (N610, melt viscosity: 80 Pa s, melting point: 225° C.) was prepared.
 これらのポリマーを280℃で別々に溶融後、ポリマー1/ポリマー2/ポリマー3を質量比で20/40/40となるように計量して、図12に示した複合口金が組み込まれた紡糸パックに流入させ、図1(b)に示すような海島複合繊維であって、図1(b)のzにポリマー1が配置され、x1およびy1にポリマー2が配置され、x2およびy2にポリマー3が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 280°C, polymer 1/polymer 2/polymer 3 were weighed out to a mass ratio of 20/40/40 and fed into a spin pack equipped with a composite spinneret as shown in Figure 12. The fed polymers were discharged from the discharge holes to produce a sea-island composite fiber as shown in Figure 1(b), with polymer 1 located at z, polymer 2 located at x1 and y1, and polymer 3 located at x2 and y2.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、40℃と130℃に加熱したローラー間で延伸を行うことで、90dtex-24フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 40°C and 130°C to produce a composite fiber of 90 dtex-24 filaments.
 得られた織物は、図6(a)のX1およびX2からなるサイドバイサイド型複合構造を有した八葉形状のフィラメントAと図6(b)のY1およびY2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のフィラメントBが均一に混在したマルチフィラメントで構成されていた。また、フィラメントAの繊維径は15μm、フィラメントBの繊維径は4μmであり、フィラメントBはフィラメントAよりも小さい繊維径を有しており、本発明のマルチフィラメントであることが確認できた。 The obtained woven fabric was composed of a multifilament in which eight-lobed filament A having a side-by-side composite structure consisting of X1 and X2 in FIG. 6(a) and flat filament B having a side-by-side composite structure consisting of Y1 and Y2 in FIG. 6(b) were uniformly mixed. The fiber diameter of filament A was 15 μm, and the fiber diameter of filament B was 4 μm, and filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
 得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を、界面活性剤を含む80℃の温水中で精練し、液流染色機で水酸化ナトリウム水溶液を含む温水中で、易溶出性ポリマーであるポリマー1を99%以上除去した。ついで、液流染色機で110℃での湿熱処理を施し、180℃で熱セットを施した。 A 2/1 twill fabric was obtained using the resulting composite fibers as warp and weft. The resulting fabric was scoured in 80°C warm water containing a surfactant, and more than 99% of the easily soluble polymer, Polymer 1, was removed using a jet dyeing machine in warm water containing an aqueous sodium hydroxide solution. The fabric was then subjected to a wet heat treatment at 110°C using a jet dyeing machine, and heat set at 180°C.
 次に、染色加工として、染料として酸性染料(黒色)と染色助剤を含む水溶液に織物を浸漬し、温度100℃、60分間浸漬させて染色を行った後、水洗した。次いで、フィックス剤を含む水溶液に織物を浸漬し、温度80℃、20分間浸漬させてフィックス処理を行った後、水洗、風乾を行った。 Next, for the dyeing process, the fabric was immersed in an aqueous solution containing an acid dye (black) and dyeing assistants, and dyed at 100°C for 60 minutes, after which it was rinsed with water. Next, the fabric was immersed in an aqueous solution containing a fixing agent, and fixed at 80°C for 20 minutes, after which it was rinsed with water and air-dried.
 その後、撥水加工として“ネオシード”(登録商標)NR-158(日華化学社製、非フッ素系撥水剤)を4質量%、架橋剤、浸透剤を含む水溶液に織物を浸漬し、マングルにて絞り率60%で絞液後、ピンテンターにより130℃で乾燥、170℃でキュアリングを施した。 Then, as a water-repellent treatment, the fabric was immersed in an aqueous solution containing 4% by weight of "Neoseed" (registered trademark) NR-158 (a non-fluorinated water-repellent agent manufactured by Nicca Chemical Co., Ltd.), a cross-linking agent, and a penetrating agent, and the fabric was squeezed out at a wringing rate of 60% using a mangle, after which it was dried at 130°C using a pin tenter and cured at 170°C.
 得られた織物は、図5(a)のX1からなる八葉形状のフィラメントAと図5(b)のY1およびY2からなるサイドバイサイド型複合構造を有した扁平形状(扁平度3.0)のフィラメントBが均一に混在したマルチフィラメントで構成されていた。また、フィラメントAの繊維径は16μm、フィラメントBの繊維径は4μmであり、フィラメントBはフィラメントAよりも小さい繊維径を有しており、本発明のマルチフィラメントであることが確認できた。 The obtained woven fabric was composed of a multifilament in which eight-lobed filament A consisting of X1 in Fig. 5(a) and flat filament B consisting of Y1 and Y2 in Fig. 5(b) with a side-by-side composite structure (flatness of 3.0) were uniformly mixed. In addition, the fiber diameter of filament A was 16 μm, and the fiber diameter of filament B was 4 μm, and filament B had a smaller fiber diameter than filament A, confirming that it was a multifilament of the present invention.
 該マルチフィラメントで構成される織物は、低弾性のナイロンで形成されていることから、優れた柔軟性を有することに加え、ナイロンが摩耗時に削れにくいことで、耐テカリ性や耐摩耗性にも優れるものであった。結果を表に示す。 The fabric made of this multifilament is made of low-elasticity nylon, so it has excellent flexibility, and because nylon is less likely to wear away when worn, it also has excellent shine resistance and abrasion resistance. The results are shown in the table.
 [比較例4]
 ポリマー1として5-ナトリウムスルホイソフタル酸を8mol%、ポリエチレングリコールを9質量%共重合したポリエチレンテレフタレート(SSIA-PEG共重合PET、溶融粘度:100Pa・s、融点:233℃)、ポリマー2としてポリエチレンテレフタレート(PET、溶融粘度:30Pa・s、融点:254℃)を準備した。
[Comparative Example 4]
As polymer 1, polyethylene terephthalate copolymerized with 8 mol % of 5-sodium sulfoisophthalic acid and 9 mass % of polyethylene glycol (SSIA-PEG copolymerized PET, melt viscosity: 100 Pa s, melting point: 233° C.) was prepared, and as polymer 2, polyethylene terephthalate (PET, melt viscosity: 30 Pa s, melting point: 254° C.) was prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2を質量比で20/80となるように計量して、公知の複合口金が組み込まれた紡糸パックに流入させ、図3(a)に示すような複合繊維であって、図3(a)のzにポリマー1が配置され、x1、y1にポリマー2が配置された複合構造となるように、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, the polymer 1/polymer 2 was weighed out to a mass ratio of 20/80 and poured into a spinning pack equipped with a known composite spinneret. The polymers were discharged from the discharge hole to produce a composite fiber as shown in Figure 3(a), with polymer 1 positioned at z and polymer 2 positioned at x1 and y1.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/分で巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、110dtex-48フィラメントの複合繊維を製造した。 After the extruded composite polymer stream was cooled and solidified, an oil agent was added, the stream was wound up at a spinning speed of 1,500 m/min, and stretched between rollers heated to 90°C and 130°C to produce a composite fiber of 110 dtex-48 filaments.
 得られた複合繊維は、繊維横断面において、図3(a)のx1からなる八葉形状のセグメントAの外周に、図3(a)のy1からなる扁平形状(扁平度3.0)のセグメントBが8個配置されていた。また、セグメントAの1個当たりの断面積Sは167μm、セグメントBの1個当たりの断面積Sは13μmであり、得られた複合繊維を経糸および緯糸として2/1ツイル織物を得た。得られた織物を実施例1と同様の条件で、精練、アルカリ処理、湿熱処理、熱セット、染色加工、撥水加工をこの順で行い、図10(a)のX1からなる八葉形状のフィラメントAと図10(b)のY1からなる扁平形状(扁平度3.0)のフィラメントBが均一に混在したマルチフィラメントで構成される織物を得た。なお、フィラメントAの繊維径は15μm、フィラメントBの繊維径は4μmであった。 In the cross section of the obtained composite fiber, eight flattened segments B (flatness 3.0) consisting of y1 in FIG. 3(a) were arranged around the outer periphery of the eight-lobed segment A consisting of x1 in FIG. 3(a). The cross-sectional area S A per segment A was 167 μm 2 , and the cross-sectional area S B per segment B was 13 μm 2. The obtained composite fiber was used as the warp and weft to obtain a 2/1 twill fabric. The obtained fabric was subjected to refining, alkali treatment, wet heat treatment, heat setting, dyeing, and water repellent treatment in this order under the same conditions as in Example 1, to obtain a fabric composed of a multifilament in which eight-lobed filaments A consisting of X1 in FIG. 10(a) and flattened filaments B consisting of Y1 in FIG. 10(b) were uniformly mixed. The fiber diameter of the filaments A was 15 μm, and the fiber diameter of the filaments B was 4 μm.
 比較例4においては、極細繊維であるフィラメントBが捲縮を有さないことから、織物表面に凹凸がなく、さらっと感に欠けるのみならず、繊維の摩擦・摩耗の際に摩擦面が固定されることで、フィラメントAとフィラメントBが共に摩耗され、発生する平坦部の面積が大きくなることで、耐テカリ性にも劣るものであった。結果を表に示す。 In Comparative Example 4, the ultrafine fiber filament B did not have any crimps, so not only was there no unevenness on the woven surface, and it lacked a smooth feel, but the frictional surface became fixed when the fibers were rubbed and worn, so both filament A and filament B were worn away, and the area of the resulting flat area became larger, resulting in poor shine resistance. The results are shown in the table.
 本発明の複合繊維、マルチフィラメント、織編物は、複合繊維内の断面配置およびマルチフィラメント中の繊維配置が精密に制御された特殊な繊維形態を有していることで、さらっとした触感や反発感のある柔軟な風合いを有しつつも、他素材との摩擦・摩耗等によって発生する表面品位の低下が抑制され、さらに撥水加工を施した場合には高い撥水性能を発現するテキスタイルを得ることができる。 The composite fibers, multifilaments, and woven/knitted fabrics of the present invention have a special fiber morphology in which the cross-sectional arrangement within the composite fibers and the fiber arrangement within the multifilaments are precisely controlled, resulting in textiles that have a smooth feel and a soft, bouncy texture while suppressing the deterioration of surface quality that occurs due to friction and abrasion with other materials, and that exhibit high water-repellent performance when treated with a water-repellent finish.
 そのため、ジャケット、スカート、パンツ、下着などの一般衣料から、スポーツ衣料、衣料資材に加え、その特性を生かしてカーペット、ソファーなどのインテリア製品、カーシートなどの車輌内装品、化粧品、マスク、健康用品などの生活用途など多岐に渡る繊維製品に好適に用いることができるが、着用時の他素材との摩耗によるテカリ現象が抑制できることや、柔軟でありながら、さらっとした触感が得られる、撥水加工を施した場合に高い撥水性能を発現することができるという観点からすると、衣料用途に用いることが特に好ましい。  Therefore, it can be used for a wide range of textile products, from general clothing such as jackets, skirts, pants, and underwear, to sports clothing and clothing materials, and by taking advantage of its properties, it can be used for a wide range of textile products, including interior products such as carpets and sofas, vehicle interior products such as car seats, cosmetics, masks, health products, and other daily uses. However, from the viewpoints that it can suppress the shine phenomenon caused by friction with other materials when worn, it is flexible yet has a smooth feel, and it can exhibit high water repellency when water repellent processing is applied, it is particularly preferable to use it for clothing applications.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
x1、x2: セグメントAを形成するポリマー
y1,y2: セグメントBを形成するポリマー
z: 海成分を形成するポリマー
a1、a2: 最も距離が離れた2点
b1、b2: 最も距離が離れた2点(a1およびa2)を結んだ直線の中点を通って直交する直線と繊維外周の交点
R1、R2: 外接円
J1、J2: 共通外接線
X1、X2: フィラメントAを形成するポリマー
Y1、Y2: フィラメントBを形成するポリマー
1: 計量プレート
2: 分配プレート
3: 吐出プレート
x1, x2: polymers forming segment A; y1, y2: polymer z forming segment B; polymers forming the sea component; a1, a2: two most distant points; b1, b2: intersection points R1, R2 of a straight line passing through the midpoint of a line connecting the two most distant points (a1 and a2) and intersecting at right angles with the outer periphery of the fiber; circumscribing circles J1, J2: common circumscribing lines X1, X2: polymers Y1, Y2 forming filament A; polymer 1 forming filament B; metering plate 2: distribution plate 3: discharge plate

Claims (13)

  1.  繊維横断面において2種類のセグメントAおよびBが存在する複合繊維であって、セグメントBはセグメントAよりも小さい断面積を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されている、複合繊維。 A composite fiber in which two types of segments A and B exist in the cross section of the fiber, where segment B has a smaller cross-sectional area than segment A, and is formed from two types of polymers that are combined in a side-by-side or eccentric core-sheath configuration.
  2.  繊維横断面において、セグメントAの外周に3個以上のセグメントBが配置されている、請求項1に記載の複合繊維。 The composite fiber according to claim 1, in which three or more segments B are arranged around the outer periphery of segment A in the cross section of the fiber.
  3.  繊維横断面において、セグメントBの1個当たりの断面積Sが1μm≦S<65μmである、請求項1または2に記載の複合繊維。 The composite fiber according to claim 1 or 2, wherein in the fiber cross section, the cross-sectional area S B of each segment B is 1 μm 2 ≦S B <65 μm 2 .
  4.  セグメントAおよびBを島成分とする海島複合繊維であって、海島複合繊維を構成するポリマーのうち溶剤に対する溶解速度が最も速いポリマーで海成分が形成されている、請求項1または2に記載の複合繊維。 The composite fiber according to claim 1 or 2, which is a sea-island composite fiber having segments A and B as island components, and in which the sea component is formed of a polymer that has the fastest dissolution rate in a solvent among the polymers that make up the sea-island composite fiber.
  5.  請求項1または2に記載の複合繊維からセグメントA、Bを分割して得られる、マルチフィラメント。 A multifilament obtained by dividing segments A and B from the composite fiber described in claim 1 or 2.
  6.  請求項5に記載のマルチフィラメントが少なくとも一部に含まれる繊維製品。 A textile product at least partially containing the multifilament according to claim 5.
  7.  2種類のフィラメントAおよびBからなるマルチフィラメントであって、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在しており、フィラメントBはフィラメントAよりも小さい繊維径を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されている、マルチフィラメント。 A multifilament consisting of two types of filaments A and B, in which one or more filaments B are present between any two filaments A in the multifilament, and filament B has a smaller fiber diameter than filament A, and is formed from two types of polymers combined in a side-by-side or eccentric core-sheath configuration.
  8.  フィラメントBの繊維径Dが1μm≦D<9μmである、請求項7に記載のマルチフィラメント。 The multifilament according to claim 7, wherein the fiber diameter D B of the filament B is 1 μm≦D B <9 μm.
  9.  請求項7または8に記載のマルチフィラメントが少なくとも一部に含まれる織編物。 A woven or knitted fabric at least partially containing the multifilament according to claim 7 or 8.
  10.  撥水加工が施された、請求項9に記載の織編物。 The woven or knitted fabric according to claim 9, which has been treated with a water-repellent finish.
  11.  2種類のフィラメントAおよびBからなるマルチフィラメントを含み、マルチフィラメント中の任意の2本のフィラメントAの間に1本以上のフィラメントBが存在しており、フィラメントBはフィラメントAよりも小さい繊維径を有し、かつサイドバイサイド型または偏心芯鞘型に複合された2種類のポリマーで形成されており、水滴滑落角度が1~20度である、撥水加工が施された、織編物。 A water-repellent woven or knitted fabric that includes a multifilament consisting of two types of filaments A and B, in which one or more filaments B are present between any two filaments A in the multifilament, and filament B has a smaller fiber diameter than filament A and is formed from two types of polymers that are combined in a side-by-side or eccentric core-sheath type, and has a water drop sliding angle of 1 to 20 degrees.
  12.  JIS L1930-2014-C4M法での洗濯とA法(吊り干し乾燥)での乾燥を20回繰り返した前後での水滴滑落角度の差が0~20度である、請求項11に記載の織編物。 The woven or knitted fabric according to claim 11, in which the difference in water droplet sliding angle before and after 20 cycles of washing according to JIS L1930-2014-C4M method and drying according to A method (line drying) is 0 to 20 degrees.
  13.  燃焼イオンクロマトグラフィー測定におけるフッ素含有量が25ng/g以下である、請求項11または12に記載の織編物。 The woven or knitted fabric according to claim 11 or 12, having a fluorine content of 25 ng/g or less as measured by combustion ion chromatography.
PCT/JP2023/033522 2022-09-29 2023-09-14 Composite fiber, multifilament, woven article, and textile product WO2024070726A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-156187 2022-09-29
JP2022156189 2022-09-29
JP2022156187 2022-09-29
JP2022-156189 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070726A1 true WO2024070726A1 (en) 2024-04-04

Family

ID=90477511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033522 WO2024070726A1 (en) 2022-09-29 2023-09-14 Composite fiber, multifilament, woven article, and textile product

Country Status (1)

Country Link
WO (1) WO2024070726A1 (en)

Similar Documents

Publication Publication Date Title
CN110088365B (en) Eccentric core-sheath composite fiber and combined filament yarn
JP2020186503A (en) Polyester conjugated false-twisted yarn, stretchable woven or knitted fabric, and method of manufacturing these
JP2006214056A (en) Woven fabric
JP2020105682A (en) Sheath-core composite fiber
WO2024070726A1 (en) Composite fiber, multifilament, woven article, and textile product
JP2001316923A (en) Polyester-based stretchable lining fabric
JP3575395B2 (en) Polyester stretch fabric
JP4886368B2 (en) Long / short composite spun yarn and fabric using the same
JP4923173B2 (en) Polyester knitted fabric
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
WO2024070727A1 (en) Woven/knitted article
JP4123646B2 (en) Polyester fiber yarn and fabric
WO2023008500A1 (en) Composite fiber bundle and fiber product
KR20010082770A (en) Texturized, combined polyester multifilament yarn and process for producing same
JP3992604B2 (en) Polyester blended yarn
JP7439960B2 (en) Composite fibers, multifilaments and textile products
WO2022039129A1 (en) Composite fiber, hollow fiber and multifilament
JP5357859B2 (en) Long / short composite spun yarn
WO2023100570A1 (en) Eccentric core-sheath composite false twisted yarn and woven/knitted fabric using same
JP2005194661A (en) Polyester blended yarn
JP3863051B2 (en) Polyester spotted yarn
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
JP4380519B2 (en) Method for producing soft stretch yarn
JP2023149539A (en) Polyester fiber and manufacturing method thereof
JP2024058245A (en) Latent crimp polyester composite yarn and woven/knitted fabric