WO2023008500A1 - Composite fiber bundle and fiber product - Google Patents

Composite fiber bundle and fiber product Download PDF

Info

Publication number
WO2023008500A1
WO2023008500A1 PCT/JP2022/029025 JP2022029025W WO2023008500A1 WO 2023008500 A1 WO2023008500 A1 WO 2023008500A1 JP 2022029025 W JP2022029025 W JP 2022029025W WO 2023008500 A1 WO2023008500 A1 WO 2023008500A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugate
polymer
composite
fiber
fiber bundle
Prior art date
Application number
PCT/JP2022/029025
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 松浦
正人 増田
慎也 川原
康二郎 稲田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020247002834A priority Critical patent/KR20240034772A/en
Priority to JP2022547306A priority patent/JPWO2023008500A1/ja
Priority to CN202280052686.1A priority patent/CN117716076A/en
Publication of WO2023008500A1 publication Critical patent/WO2023008500A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers

Definitions

  • the present invention relates to a composite fiber bundle suitable for clothing textiles and a fiber product containing the composite fiber bundle.
  • Synthetic fibers such as polyester and polyamide have excellent mechanical properties and dimensional stability, so they are widely used for both clothing and non-clothing applications.
  • Synthetic fibers such as polyester and polyamide have excellent mechanical properties and dimensional stability, so they are widely used for both clothing and non-clothing applications.
  • fibers with higher tactile sensations and functions.
  • This side-by-side type conjugate fiber is intended to give a texture such as a moderate feeling of resilience and swelling by expressing crimps due to the difference in heat shrinkage between polymers.
  • all the composite fibers express the same crimped form, so that the crimp phases are aligned, and there are cases where the texture lacks a feeling of swelling and is flat. rice field.
  • the composite fibers that make up the composite fiber bundle are devised one by one.
  • Various techniques have been proposed to make the tactile feel and texture of natural materials more complex and bring them closer to the unique tactile feel and texture found in natural materials.
  • Patent Document 1 in a conjugate fiber bundle composed of conjugate fibers in which polyethylene terephthalate (PET) having different viscosities are conjugated side-by-side, the conjugate ratio is changed between the conjugate fibers to reduce the variation in the curvature of the polymer interface. It is disclosed that the crimps are formed independently without meshing due to the difference in crimp shape between the conjugate fibers depending on the conjugate ratio.
  • PET polyethylene terephthalate
  • a conjugate fiber bundle composed of such conjugate fibers expresses voids between the conjugate fibers according to the difference in crimp configuration, so when the conjugate fiber bundle is used as a textile, it has a bulging texture.
  • Patent Document 2 a conjugated fiber in which polyethylene terephthalate (PET) having different viscosities is conjugated in a side-by-side type is used as a modified cross section, and three or more types of conjugates having different states of the conjugated bonding surfaces, which are the bonding surfaces between the conjugated components, are used. It discloses that by forming a conjugate fiber bundle composed of fiber groups, each conjugate fiber group has a different flexural rigidity, and conjugate fiber groups with different crimp development properties can be obtained.
  • PET polyethylene terephthalate
  • the change in the conjugate ratio which can be used as a means for changing the crimp configuration of each conjugate fiber, is substantially in the range of 40:60 to 60:40 in order to maintain spinning stability.
  • the difference in crimp shape change obtained here is small, and naturally the texture obtained is sometimes monotonous.
  • each composite fiber group has a different bending rigidity, and crimp development is achieved. may be different composite fiber groups.
  • the conjugate fiber described in Patent Document 2 has a substantially multilobed cross section, and the distance between the polymer centers of gravity required for crimp development is naturally short, so the crimp development force is low. In some cases, the bulge and resilience required for comfortable clothing were insufficient.
  • the object of the present invention is to solve the above-described problems of the prior art, and to control the crimped form of each conjugate fiber that constitutes the conjugate fiber bundle, so that in addition to a smooth touch, an appropriate resilience is obtained.
  • a conjugate fiber bundle composed of conjugate fibers composed of at least two kinds of polymers having different melting points, wherein the variation coefficient CV of the value of (distance between polymer centers of gravity/fiber diameter) between the conjugate fibers is 5 to 30.
  • the conjugate fiber bundle according to (1) wherein the difference between the maximum and minimum flatness values of the conjugate fibers is less than 0.5; (3) The conjugate fiber bundle according to (1) or (2), characterized in that the average value of flatness between the conjugate fibers is 1.2 to 3.0; (4) The conjugate fiber bundle according to any one of (1) to (3), wherein the surface layer of the conjugate fiber is covered with one type of polymer; (5) A textile product partially containing the composite fiber bundle according to any one of (1) to (4) above, is.
  • the conjugate fiber bundle of the present invention has the features described above, so that the crimped form of each conjugate fiber constituting the conjugate fiber bundle is precisely controlled. Therefore, by using the conjugate fiber bundle of the present invention, it is possible to obtain a textile for clothing that is excellent in wearing comfort and has a moderate resilience and a puffy texture in addition to a dry feel.
  • FIG. 1 are schematic diagrams showing an example of the cross-sectional structure of the composite fibers that constitute the composite fiber bundle of the present embodiment.
  • FIGS. 2(a) and 2(b) are schematic diagrams showing an example of the cross-sectional structure of the conjugate fibers forming the conjugate fiber bundle of the present embodiment.
  • FIG. 3 is a schematic diagram showing an example of a cross-sectional structure of conjugate fibers forming a conventional conjugate fiber bundle.
  • FIG. 4 is a schematic diagram showing an example of the cross-sectional structure of each composite fiber that constitutes the composite fiber bundle of the present embodiment.
  • FIG. 5 is a diagram for understanding the coefficient of variation CV of the value of (distance between center of gravity of polymer/fiber diameter) between conjugate fibers constituting the conjugate fiber bundle of the present embodiment. means the top, bottom, left, and right sides of .
  • FIG. 6 is a schematic diagram showing an example of the crimped form of the conjugate fibers that constitute the conjugate fiber bundle of the present embodiment.
  • FIG. 7 is a cross-sectional view for explaining the manufacturing method of the conjugate fibers forming the conjugate fiber bundle of the present embodiment.
  • the present inventors have made intensive studies to realize complex voids and irregularities like natural materials with synthetic fibers, and have found that in a conjugate fiber bundle composed of conjugate fibers composed of at least two types of polymers having different melting points, the conjugate By controlling the distance between the polymer centers of gravity of each fiber and aligning the crimp phase appropriately, we discovered that it was possible to form complex voids and irregularities that were difficult to obtain with conventional synthetic fibers.
  • the conjugate fiber bundle when all the conjugate fibers constituting the conjugate fiber bundle express the same crimped form, the conjugate fiber bundle is converged with the same crimp phase, and the gap between the conjugate fibers becomes smaller.
  • the texture when used as a textile may be flat without a feeling of swelling.
  • the conjugate fibers constituting the conjugate fiber bundle express different crimped forms, gaps tend to be formed between the conjugate fibers due to the shift in the crimp phase of the conjugate fibers.
  • the morphology of the conjugate fiber bundle does not change, and the size of the voids formed between the conjugate fibers becomes uniform, so that when the conjugate fiber bundle is used as a textile, the appearance and texture may be monotonous. .
  • the crimp expression of the composite fibers constituting the composite fiber bundle is changed, if the crimp phase of the composite fibers is controlled to be partially aligned, when the composite fiber bundle is used as a textile Furthermore, in addition to the fine voids inherent in the conjugate fiber bundle, there are areas where the crimp phases are aligned and those where the crimp phases are not aligned between adjacent conjugate fibers. As a result, complex voids are created between the composite fibers, and complex irregularities not found in conventional composite fiber bundles are created. can be expressed.
  • the present invention is constructed based on this idea, and specifically, a conjugate fiber bundle composed of conjugate fibers composed of at least two kinds of polymers having different melting points, and the distance between the centers of gravity of the polymers (distance between the centers of gravity of the polymers /fiber diameter) is 5 to 30%.
  • the conjugate fiber bundle in the present embodiment is a conjugate fiber bundle in which, for example, 20 or more conjugate fibers made of at least two types of polymers are bundled. say.
  • thermoplastic polymer is preferable as the polymer used for the conjugate fibers constituting the conjugate fiber bundle of the present embodiment because of its excellent workability.
  • Preferred thermoplastic polymers are, for example, polyester-based, polyethylene-based, polypropylene-based, polystyrene-based, polyamide-based, polycarbonate-based, polymethyl methacrylate-based, polyphenylene sulfide-based polymers, and copolymers thereof. From the viewpoint that a particularly high interfacial affinity can be imparted and a fiber having no abnormalities in the composite cross section can be obtained, all the thermoplastic polymers used in the composite fiber are preferably the same polymer group and copolymers thereof.
  • additives such as inorganic substances such as titanium oxide, silica, and barium oxide, carbon black, colorants such as dyes and pigments, flame retardants, fluorescent brighteners, antioxidants, and ultraviolet absorbers are included in the polymer. You can stay.
  • titanium oxide in the polymer it is preferable to include titanium oxide in the polymer.
  • the titanium oxide on the surface of the composite fiber diffusely reflects light, which only improves the appearance quality, such as suppressing the appearance unevenness (glare) caused by the increase or decrease in reflection depending on the angle of incidence of light.
  • the titanium oxide inside the composite fiber also provides functionality such as anti-see-through and UV shielding.
  • the content of titanium oxide in the polymer is preferably 1.0 wt % or more in order to sufficiently obtain the above effects.
  • the content of titanium oxide is preferably 10.0 wt % or less, because an increase in diffuse reflection of light by titanium oxide may lead to a decrease in color developability.
  • the conjugate fibers constituting the conjugate fiber bundle of the present embodiment need to be made of at least two types of polymers with different melting points in order to control the crimped form.
  • the conjugated fiber is greatly curved toward the low-melting polymer side where the shrinkage is high after the heat treatment. Shortened forms can be expressed. Furthermore, by controlling the distance between the centers of gravity of the polymers, it is possible to express any crimped form, thereby achieving the control of the crimp phase, which is the object of the present invention.
  • Polymers with different melting points in the present embodiment include a group of melt-moldable thermoplastic polymers such as polyesters, polyethylenes, polypropylenes, polystyrenes, polyamides, polycarbonates, polymethyl methacrylates, and polyphenylene sulfides, and their A combination of polymers having different melting points of 10°C or more among copolymers.
  • melt-moldable thermoplastic polymers such as polyesters, polyethylenes, polypropylenes, polystyrenes, polyamides, polycarbonates, polymethyl methacrylates, and polyphenylene sulfides, and their A combination of polymers having different melting points of 10°C or more among copolymers.
  • the purpose is to express a crimped form by the difference in shrinkage of polymers with different melting points.
  • a combination of polymers such as ester-bonded polyesters and amide-bonded polyamides existing in the main chain It is more preferable to select from among the same group of polymers in which the bonds that bind are identical.
  • Combinations of low-melting polymers and high-melting polymers in the same polymer group include, for example, polyester-based copolymer polyethylene terephthalate/polyethylene terephthalate, polypropylene terephthalate/polyethylene terephthalate, polybutylene terephthalate/polyethylene terephthalate, and thermoplastic polyurethane.
  • polyethylene terephthalate polyester elastomer/polyethylene terephthalate, polyester elastomer/polybutylene terephthalate, nylon 66/nylon 610, nylon 6-nylon 66 copolymer/nylon 6 or 610, PEG copolymer nylon 6/nylon 6 as polyamide or 610, thermoplastic polyurethane/nylon 6 or 610, polyolefins such as ethylene-propylene rubber finely dispersed polypropylene/polypropylene, and propylene- ⁇ -olefin copolymer/polypropylene.
  • polymers with different melting points are used together from the viewpoint that when the conjugate fiber bundle is made into textiles, a moderate resilience can be obtained from high bending recovery and good color development can be obtained when dyed.
  • a polymerized polyethylene terephthalate/polyethylene terephthalate combination is particularly preferred.
  • copolymerization components in copolymerized polyethylene terephthalate include succinic acid, adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, maleic acid, phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, and the like. is mentioned. Among these, it is preferable to use polyethylene terephthalate copolymerized with 5 to 15 mol % of isophthalic acid from the viewpoint of maximizing the difference in shrinkage from polyethylene terephthalate.
  • recycled polyethylene terephthalate is preferably used as the polymer used in the present embodiment from the viewpoint of obtaining an appropriate resilience from high bending recovery and obtaining good color development when dyed. can be used.
  • the cross section of the composite fiber of the present embodiment is preferably a composite section in which polymers with different melting points are arranged so that their centers of gravity are different.
  • Examples of such a composite cross section include a side-by-side type as shown in FIG. 1(a) and an eccentric core-sheath type as shown in FIG. 1(b). be done.
  • the surface layer of the composite fiber is preferably covered with one type of polymer. Since the surface layer of the conjugate fiber is covered with one type of polymer, even if a polymer with low heat resistance and abrasion resistance is used as one component of the conjugate fiber, the fiber does not peel off at the interface due to friction or impact. Good properties can be retained.
  • the conjugate fiber bundle of the present embodiment when the conjugate fiber bundle of the present embodiment is produced, if melts of polymers with a large melting point difference are spun from the die as a composite flow, the high melting point polymer curves toward the low melting point polymer side due to the cooling difference after ejection. Yarn bending occurs, which causes yarn breakage by contacting the spinneret or interfering with the composite flow spun from another location.
  • the cooling difference can be alleviated and yarn bending can be suppressed. Become.
  • Examples of one type of polymer covering the surface layer of the conjugate fiber include polyethylene terephthalate, copolymerized polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate as polyesters, nylon 6, nylon 66 and nylon 610 as polyamides, and polypropylene as polyolefins. is mentioned.
  • polyethylene terephthalate or copolymerized polyethylene terephthalate is preferably used to cover the surface layer of the conjugate fiber from the viewpoint of excellent heat resistance and color development.
  • the thickness of one type of polymer covering the surface layer of the conjugate fiber can be adjusted as appropriate. is preferably 0.01 to 0.1. Within this range, even if the composite fiber or textile is subjected to friction or impact, whitening or fluffing does not occur, and the yarn processing stability and textile quality can be maintained. Furthermore, when the S/D is 0.02 to 0.08, the center of gravity of the high-melting polymer and the low-melting polymer are separated, and the crimp due to the difference in shrinkage can be maximized, so it is mentioned as a more preferable range. .
  • the ratio S/D between the minimum thickness S of the polymer covering the surface layer of the conjugate fiber and the fiber diameter D in the present embodiment is obtained by embedding the conjugate fiber bundle in an embedding agent such as an epoxy resin, and then It is obtained by taking an image with a transmission electron microscope (TEM) at a magnification that allows observation of 10 or more composite fibers, and observing the cross section of the composite. At this time, by applying metal dyeing, a difference in dyeing between polymers can be obtained, so that the contrast of the joints of the composite cross section can be clarified.
  • TEM transmission electron microscope
  • the composite cross section of the photographed image is an eccentric core-sheath type cross section as shown in FIG.
  • a value obtained by dividing the value of the obtained minimum thickness S by the value of the fiber diameter D obtained by measuring the area of each conjugate fiber and measuring the diameter obtained in terms of a perfect circle in units of ⁇ m to the first decimal place. is calculated, and the average value is rounded to the third decimal place to obtain the ratio S/D between the minimum thickness S of the polymer covering the surface layer of the composite fiber and the fiber diameter D.
  • the area ratio of the low-melting polymer and the high-melting polymer in the composite cross-section of the composite fiber constituting the composite fiber bundle of the present embodiment is 70/30 to 30/70. A range is preferred, and 60/40 to 40/60 is more preferred. Within this range, the crimped form due to the difference in shrinkage of the polymer can be sufficiently developed without being affected by the hardening of the texture that occurs when the low-melting-point polymer undergoes high shrinkage due to heat treatment.
  • the portions where the crimp phases are aligned and the portions where the crimp phases are not aligned are Since there is a difference in voids, unevenness can be formed on the surface when the composite fiber bundle is used as a textile.
  • the coefficient of variation CV of the value of (distance between the center of gravity of the polymer / fiber diameter) between the conjugate fibers is 5 ⁇ 30% is important.
  • the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) referred to in this embodiment can be calculated by the following method.
  • the cross section of the textile perpendicular to the thickness direction of the textile and the fiber axis direction of the conjugate fiber is measured using a scanning electron microscope (SEM) as a magnification that allows observation of 20 or more conjugate fibers.
  • SEM scanning electron microscope
  • the area of the composite fiber is measured, and the diameter obtained by converting to a perfect circle is measured in ⁇ m to the first decimal place. do.
  • the obtained value is defined as the fiber diameter ( ⁇ m) of the composite fiber.
  • the length of a straight line connecting the respective centers of gravity (Gx, Gy) of the low melting point polymer x and the high melting point polymer y in the cross section of the conjugate fiber as shown in FIG. Measure to the first decimal place in units of ⁇ m. The obtained value is taken as the polymer center-to-center distance ( ⁇ m).
  • This evaluation is performed on 20 composite fibers ((1) to (20) in FIG. 5) randomly extracted from the same image as above, and the standard deviation and average value are obtained. Calculate the value by dividing by and multiplying by 100, and round off to the nearest whole number. The obtained value is defined as the coefficient of variation CV (%) of the value of (distance between polymer centers of gravity/fiber diameter).
  • the crimp form can be controlled by the distance between the polymer centers of gravity and the fiber diameter.
  • a shortened form can be expressed. That is, the crimp development force is represented by (distance between polymer centers of gravity/fiber diameter). It is possible to control the formation of voids and irregularities on the textile surface.
  • the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) between conjugate fibers constituting the conjugate fiber bundle is 5% or more.
  • the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) is more preferably in the range of 10 to 20%, more preferably in the range of 15 to 20%.
  • the coefficient of variation CV is within the above range, when the composite fiber bundle is used as a textile, the pitch of the irregularities on the surface of the textile becomes finer, and the dry feel is conspicuous.
  • the voids between the conjugate fibers increase, when the conjugate fiber bundle is used as a textile, the apparent density is lowered, and an effect of improving swelling is also added.
  • the coefficient of variation CV is 30% or less.
  • the conjugate fibers constituting the conjugate fiber bundle of the present embodiment as a method of controlling (distance between polymer centers of gravity/fiber diameter), a method of changing the cross-sectional shape and conjugate ratio of the conjugate fibers for each conjugate fiber is conceivable.
  • the cross-sectional shape of the composite fibers constituting the composite fiber bundle is flattened, and the difference between the maximum value and the minimum value of the flatness between the composite fibers is set to 0.5.
  • a method of less than 5 is preferred.
  • the term "flat” means an elongated shape in a plan view, and specifically, the "flatness" of the cross section of the conjugate fiber described later is 1.1 or more.
  • the cross-sectional shape of the conjugate fiber is flat (flat cross section), when polymers with different melting points are joined in the longitudinal direction of the flat cross section as shown in FIG. In the case of bonding in the direction of the minor axis of the flat cross section as shown in FIG. 2B, the distance between the polymer centers of gravity is minimized. In this way, by making the cross-sectional shape of the conjugate fiber flat, it is possible to control the value of (distance between polymer centers of gravity/fiber diameter) by changing the direction of the joint surface of the conjugate fiber.
  • the difference between the maximum flatness value and the minimum value of the flatness between the conjugate fibers is less than 0.5. is more preferable.
  • the conjugate fibers have the above structure, the crimp phase between the conjugate fibers becomes easier to partially align, and the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) can be easily set within the desired range.
  • the difference between the maximum and minimum values of is less than 0.2.
  • the average value of the flatness between the conjugate fibers is preferably 1.2 or more, more preferably 1.4 or more, and further preferably 1.6 or more. preferable.
  • the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) can be brought closer to the optimum range.
  • voids are formed between the conjugate fibers due to steric hindrance when the conjugate fibers having a flat cross section are crimped, and swelling is obtained when the conjugate fiber bundle is used as a textile.
  • the average value of flatness in the present embodiment is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.0 or less.
  • the average flatness value and the difference between the maximum and minimum values of the flatness between the conjugate fibers are obtained by the following method.
  • a composite fiber bundle is embedded in an embedding agent such as an epoxy resin, and an image of the cross section of the fiber in the direction perpendicular to the fiber axis is observed with a scanning electron microscope (SEM) at a magnification of 10 or more composite fibers. to shoot.
  • SEM scanning electron microscope
  • a straight line connecting two points (a1, a2) separated by a distance is taken as the major axis, and a straight line passing through the midpoint of the long axis and perpendicular to the long axis and the intersection point (b1, b2) of the outer circumference of the fiber is taken as the short straight line.
  • the value obtained by dividing the length of the long axis by the length of the short axis is calculated, and the obtained value is defined as the flatness.
  • a simple numerical average of the results obtained by performing the same procedure on 10 conjugate fibers randomly extracted from the same image is calculated, and the value rounded to the second decimal place is used as the average flatness value.
  • the value obtained by subtracting the smallest value from the largest value is obtained, and the value is rounded off to the second decimal place as the difference between the maximum flatness value and the minimum flatness value.
  • the cross-sectional shape of the conjugate fibers constituting the conjugate fiber bundle of the present embodiment is flat as shown in FIG. 1(a), multilobed as shown in FIG. shape, gear shape, petal shape, star shape, and the like.
  • conjugate fibers having a cross-sectional shape with three or more protrusions on the conjugate fiber surface.
  • conjugate fibers having a cross-sectional shape with three or more protrusions on the surface of the conjugate fiber, it is possible to suppress appearance unevenness (glare) due to diffuse reflection of light and improve water absorption due to fine voids between the conjugate fibers.
  • the number of protrusions is more preferably 5 or more, and even more preferably 8 or more. However, if the number of protrusions becomes too large, the effect will gradually decrease, so the practical upper limit of the number of protrusions is 20, and 12 or less is more preferable.
  • the conjugate fibers constituting the conjugate fiber bundle of the present embodiment preferably have a crimped form with a number of crimp crests of 5 crimps/cm or more.
  • the number of crimp crests is obtained by the following method.
  • the conjugate fiber is pulled out from the textile so as not to be plastically deformed, one end of the conjugate fiber is fixed, and a load of 1 mg / dtex is applied to the other end for 30 seconds or more. Mark any point where the distance between two points is 1 cm.
  • the sample was fixed on a slide glass after adjustment so that the distance between the markings made in advance was 1 cm so as not to plastically deform the composite fiber, and the 1 cm marking of this sample could be observed with a digital microscope. Take an image at magnification. In the photographed image, when the composite fiber CF has a crimped form as shown in FIG.
  • the crimped form has a crimp number of crimps of 5 crests/cm or more, complex voids between the conjugate fibers and irregularities on the textile surface are formed by aligning the crimp phase between the conjugate fibers. be able to. More preferably, the number of crimp crests is 10 crests/cm or more. When the number of crimp crests is 10 crests/cm or more, not only is it possible to obtain the effect of improving swelling due to the increase in voids between conjugate fibers due to the excluded volume effect between conjugate fibers, but also the crimp form is fine. Stretchability is also given by becoming a spiral structure.
  • the number of crimp crests in this embodiment is preferably 50 crests/cm or less, more preferably 40 crests/cm or less, and even more preferably 30 crests/cm or less.
  • the conjugate fibers constituting the conjugate fiber bundle of the present embodiment have a fiber diameter of 20 ⁇ m or less. Within this range, the diffused reflection of light from the conjugate fiber is increased, and not only is it possible to suppress the appearance unevenness (glare) when made into a textile, but it is also possible to obtain a sufficient sense of repulsion. As a result, it is suitable for use in clothing such as pants and shirts that require a firm texture.
  • the fiber diameter is set to 15 ⁇ m or less.
  • the flexibility of the composite fiber bundle is increased, and it can be suitably used for apparel such as innerwear and blouses that come in contact with the skin. More preferably, the fiber diameter is 12 ⁇ m or less.
  • the fiber diameter is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more.
  • conjugate fiber bundle of the present embodiment since there is a difference in gaps between adjacent conjugate fibers where the crimp phase is aligned and where the crimp phase is not aligned, complex voids and unevenness are created between the conjugate fibers. is formed.
  • the complex voids between the conjugate fibers provide an appropriate sense of resilience and swelling.
  • a textile having a certain texture and excellent wearing comfort can be obtained.
  • Composite fiber bundles of the present embodiment can be used for general clothing such as jackets, skirts, pants, and underwear, as well as sports clothing and clothing materials. It can be suitably used for a wide variety of textile products such as interior goods, cosmetics, cosmetic masks, and health products.
  • the method for spinning the composite fiber bundle of the present embodiment includes a melt spinning method for the purpose of producing multifilament and spun yarn, a solution spinning method such as a wet and dry-wet method, and a method suitable for obtaining a sheet-like fiber structure. It can be produced by a melt blow method, a spunbond method, or the like. Among these, from the viewpoint of obtaining a composite fiber bundle that can be applied to textiles with high productivity, it is preferable to use the melt spinning method to form a multifilament or a spun yarn.
  • the spinning temperature at that time is the temperature at which the high melting point polymer and the high viscosity polymer mainly show fluidity among the polymer types used. It is preferable to Although the temperature at which this fluidity is exhibited varies depending on the molecular weight, if it is set between the melting point of the polymer and +60° C., stable production can be achieved.
  • the spinning speed is preferably about 500 to 6000 m/min, but it can be changed as appropriate depending on the physical properties of the polymer and the intended use of the composite fiber bundle. In particular, from the viewpoint of achieving high orientation and improving mechanical properties, it is more preferable to set the spinning speed to 500 to 4000 m/min and then draw. By setting the spinning speed to 500 to 4000 m/min, the uniaxial orientation of the conjugate fiber can be promoted.
  • the preheating temperature When stretching, it is preferable to appropriately set the preheating temperature, using the softening temperature such as the glass transition temperature of the polymer as a guideline.
  • the upper limit of the preheating temperature is preferably a temperature at which the conjugate fiber bundle is spontaneously stretched during the preheating process so that the yarn path is not disturbed. For example, in the case of PET having a glass transition temperature of around 70.degree.
  • the ejection amount per single hole in the spinneret for manufacturing the composite fiber bundle of the present embodiment is preferably 0.1 to 10 g/min/hole.
  • the discharge amount is preferably 0.1 to 10 g/min/hole.
  • the melt viscosity ratio of the conjugated polymer is less than 5.0.
  • the melt viscosity ratio is set within such a range, excessive crimping is suppressed, and the formation of complex voids and unevenness on the textile surface, which is the object of the present invention, is controlled by aligning the crimp phase between the conjugate fibers. becomes easier.
  • the melt viscosity ratio of the composite polymer is preferably less than 5.0.
  • the difference in the solubility parameter value is less than 2.0, because it is possible to stably form a composite polymer flow and obtain a composite fiber having a favorable composite cross section.
  • the spinneret used when manufacturing the composite fiber bundle of the present embodiment for example, the composite spinneret described in Japanese Patent Application Laid-Open No. 2011-208313 is suitably used.
  • the composite spinneret shown in FIG. 7 is incorporated into a spinning pack in a state in which roughly three types of members, namely a weighing plate 1, a distribution plate 2 and a discharge plate 3, are layered from the top, and used for spinning.
  • FIG. 7 is an example using three types of polymers, A polymer, B polymer, and C polymer. Since it is difficult to combine three or more types of polymers with a conventional composite spinneret, a composite spinneret using fine flow channels as shown in FIG. It is preferable to use
  • the metering plate 1 measures and flows the amount of polymer per each discharge hole and each distribution hole, and the distribution plate 2 controls the cross section of each conjugate fiber and its cross-sectional shape.
  • 3 has the role of compressing and discharging the composite polymer stream formed by the distribution plate 2 .
  • the flow of the composite polymer may be controlled such that the direction of the bonding surface of the polymer differs for each ejection hole in the distribution plate 2 while the ejection holes of the ejection plate 3 are flat. From the viewpoint of being able to control an arbitrary composite cross section for each discharge hole in this way, it is preferable to use a composite spinneret using fine flow channels as illustrated in FIG. 7 in this embodiment.
  • the members stacked above the weighing plate 1 are formed with flow paths in accordance with the spinning machine and the spinning pack. Just do it.
  • the metering plate 1 By designing the metering plate 1 according to the existing channel member, the existing spinning pack and its members can be used as they are. Therefore, it is not necessary to dedicate a spinning machine specifically for the spinneret.
  • the composite polymer stream discharged from the discharge plate 3 is cooled and solidified in accordance with the above-described manufacturing method, then applied with an oil solution and taken up by a roller having a specified peripheral speed. After that, it is drawn with a heating roller and post-processed as necessary to form a conjugate fiber bundle in which desired conjugate fibers are bundled.
  • the post-processing referred to here is applied when producing a spun yarn composed of short fibers, and after drawing, crimping is applied using a crimper or the like, and then the fiber length is 20. It may be cut into short fibers of ⁇ 120 mm and then subjected to known spinning processing techniques.
  • known yarn processing techniques such as false twisting and non-uniform drawing processing may be applied at the same time as drawing.
  • non-uniform drawing processing is performed and the composite fiber is drawn at a draw ratio within a range not exceeding the natural draw ratio of the composite fiber.
  • the non-uniform stretching process creates a difference in dyeability between the stretched and unstretched sections, which emphasizes the shade of the color, and when used as a textile, it can express the heathered tone of natural materials. .
  • the stretching ratio is within the range of the lower limit of the natural stretching ratio x 1.2 times to the upper limit. Magnification may be determined according to the key.
  • the number of false twists T (unit: times/m), which is the number of twists of the yarn bundle in the twisting region, is determined according to the total fineness Df (unit: dtex) of the yarn bundle after false twisting. It is preferable to set the false twisting conditions such as the rotation speed of the twisting mechanism and the processing speed so as to satisfy the following conditions. 20000/ Df0.5 ⁇ T ⁇ 40000 / Df0.5
  • the false twist number T is measured by the following method. That is, the yarn bundle running in the twisting area of the false twisting step is collected with a length of 50 cm or more so as not to untwist just before the twister.
  • the false twist number T is obtained by attaching the collected yarn sample to a twist tester and measuring the number of twists by the method described in JIS L1013 (2010) 8.13.
  • the obtained yarn bundle can control a coarse crimp diameter of 300 ⁇ m or more, and can suppress deterioration of the textile surface quality such as grains and streaks.
  • the draw ratio referred to here is calculated as Vd/V0 using the peripheral speed V0 of the roller that supplies the yarn to the twisting region and the peripheral speed Vd of the roller installed immediately after the twisting mechanism. It is preferable to determine according to the characteristics of the yarn to be used.
  • Vd/V0 When drawn yarn is used as the supply yarn, Vd/V0 may be 0.9 to 1.4 times, and when undrawn yarn is used as the supply yarn, Vd/V0 is 1.2 to 1.2. At 2.0 times, drawing may be performed at the same time as false twisting. By setting the draw ratio within such a range, uniform crimping can be imparted to the entire conjugate fibers forming the conjugate fiber bundle without causing excessive tension in the twisting region or slackening of the yarn bundle.
  • the false twisting temperature in the range of Tg + 50 to Tg + 150 ° C based on the Tg of the polymer on the high Tg side in the composite polymer.
  • the false twist temperature here means the temperature of the heater installed in the twisting area. By setting the false-twisting temperature within this range, it is possible to sufficiently fix the structure of the polymer that has been greatly twisted and deformed within the cross section of the conjugate fiber. Good quality textiles can be obtained. In order to fix the crimps obtained in the twisting step and not to impair the crimp development force obtained by polymer compositing, it is preferable to use a one-heater method in which a heater is arranged only in the twisting region.
  • melt Viscosity of Polymer Chip-shaped polymer was adjusted to a moisture content of 200 ppm or less by a vacuum dryer, and the melt viscosity was measured by changing the strain rate stepwise by Toyo Seiki Capillograph. The measurement temperature was the same as the spinning temperature, the sample was placed in the heating furnace under a nitrogen atmosphere and the measurement was started in 5 minutes.
  • a chip-shaped polymer is made to have a moisture content of 200 ppm or less by a vacuum dryer, and about 5 mg is weighed and heated from 0 ° C. to 300 ° C. using a differential scanning calorimeter (DSC) Q2000 manufactured by TA Instruments. After the temperature was raised at a temperature rate of 16°C/min, the DSC measurement was performed after holding at 300°C for 5 minutes. The melting point was calculated from the melting peak observed during the heating process. The measurement was performed three times for each sample, and the average value was taken as the melting point. When multiple melting peaks were observed, the melting peak top on the highest temperature side was taken as the melting point.
  • DSC differential scanning calorimeter
  • the conjugate fiber bundle is embedded in an embedding agent such as epoxy resin, and the cross section of the fiber in the direction perpendicular to the fiber axis is observed with a scanning electron microscope (SEM) manufactured by HITACHI as a magnification at which 10 or more conjugate fibers can be observed.
  • SEM scanning electron microscope
  • One composite fiber randomly extracted from the photographed image is analyzed using image analysis software, and as shown in FIG. A straight line connecting two distant points (a1, a2) is taken as the long axis, and a straight line passing through the midpoint of the long axis and perpendicular to the long axis is taken as the short axis, and a straight line joining the intersection points (b1, b2) of the outer circumference of the fiber is taken.
  • the value obtained by dividing the length of the long axis by the length of the short axis was calculated, and the obtained value was taken as the flatness.
  • a simple numerical average of the results of 10 conjugate fibers randomly extracted from the same image was obtained, and the value rounded to the second decimal place was used as the average flatness value.
  • the value obtained by subtracting the smallest value from the largest value was obtained, and the value was rounded off to the second decimal place as the difference between the maximum flatness value and the minimum flatness value.
  • Fiber diameter A composite fiber bundle is embedded in an embedding agent such as epoxy resin, and the cross section of the fiber in the direction perpendicular to the fiber axis is observed with a scanning electron microscope (SEM) as a magnification at which 10 or more composite fibers can be observed. I took a picture. The area of one conjugate fiber randomly extracted from the photographed image was measured, and the diameter obtained in terms of a perfect circle was measured in ⁇ m to the first decimal place. A simple number average of the results obtained in the same manner for 10 conjugate fibers randomly extracted from the same image as above was obtained, and the value rounded to the first decimal place was taken as the fiber diameter ( ⁇ m).
  • SEM scanning electron microscope
  • the length of a straight line connecting the respective centers of gravity (Gx, Gy) of the low melting point polymer x and the high melting point polymer y in the cross section of the conjugate fiber as shown in FIG. It was measured in units of ⁇ m to the first decimal place. The obtained value was defined as the distance between polymer centers of gravity ( ⁇ m).
  • the conjugate fiber is extracted from the textile so as not to be plastically deformed, one end of the conjugate fiber is fixed, and a load of 1 mg / dtex is applied to the other end for 30 seconds or more. Marking was performed at an arbitrary point where the distance between two points in the fiber axis direction of the fiber was 1 cm. After that, the sample was fixed on a slide glass after adjustment so that the distance between the markings made in advance was 1 cm so as not to plastically deform the composite fiber, and the 1 cm marking of this sample could be observed with a digital microscope. Images were taken at magnification. When the composite fiber had a crimped form as shown in FIG.
  • the resulting woven fabric was subjected to scouring, wet heat treatment, alkali treatment and heat setting in this order, and then evaluated for two functions of water absorption and quick drying and stretchability using the following methods.
  • the scouring, relaxation treatment, and heat setting were performed under the same conditions as in the textile feel evaluation, and the alkali treatment was performed under the following conditions.
  • the stretchability was evaluated in three stages based on the following criteria. S: Excellent stretchability (20 ⁇ elongation rate) A: Good stretchability (5 ⁇ elongation rate ⁇ 20) C: Poor stretchability (elongation ratio ⁇ 5).
  • the obtained woven fabric was subjected to scouring, relaxation treatment, and heat setting under the same conditions as those used for textile texture evaluation.
  • an automatic variable angle photometer (GONIOPHOTOMETER GP-200 type) manufactured by Murakami Color Research Laboratory, light was incident on each sample at an incident angle of 60 °, and the light receiving angle was 0 ° to 90 ° for every 0.1 °. was determined by two-dimensional reflected light distribution measurement, and a value was calculated by dividing the maximum light intensity (specular reflection) near the light receiving angle of 60° by the minimum light intensity (diffuse reflection) near the light receiving angle of 0°.
  • GONIOPHOTOMETER GP-200 type manufactured by Murakami Color Research Laboratory
  • This operation was performed 3 times per location, and a simple numerical average of the results of performing this operation for a total of 10 locations was obtained, and the value rounded to the second decimal place was taken as the degree of glare.
  • the appearance quality of the textile was evaluated in four stages based on the following criteria. S: excellent appearance quality (glare degree ⁇ 2.0) A: Good appearance quality (2.0 ⁇ glare degree ⁇ 2.5) B: Good appearance quality (2.5 ⁇ glare degree ⁇ 3.0) C: Inferior in appearance quality (3.0 ⁇ glare degree).
  • a disc on which the fabric moistened with distilled water is attached is brought into horizontal contact with the fabric fixed on a horizontal plate so that the center of the disc draws a circle with a diameter of 10 cm, with a load of 420 g and a speed of 50 rpm.
  • the disc was circularly moved for 10 minutes to rub the two fabrics.
  • the degree of discoloration of the fabric attached to the disk was evaluated using a discoloration gray scale, grades 1 to 5 in increments of 0.5 grade. Based on the results of the grade judgment obtained, the wear resistance was judged in four grades based on the following criteria.
  • Example 1 Polyethylene terephthalate (IPA copolymer PET, melt viscosity: 140 Pa s, melting point: 232° C.) obtained by copolymerizing 7 mol % of isophthalic acid as polymer 1, and polyethylene terephthalate (PET, melt viscosity: 130 Pa s, melting point: 254° C.) as polymer 2. °C) was prepared.
  • IPA copolymer PET melt viscosity: 140 Pa s, melting point: 232° C.
  • PET melt viscosity: 130 Pa s, melting point: 254° C.
  • polymer 1/polymer 2 was weighed so that the area ratio in the composite cross section was 50/50.
  • the above polymer is flowed into a spinning pack incorporating a composite spinneret shown in FIG.
  • the inflow polymer was discharged from the discharge hole so that the cross section and the joint surface direction of each composite fiber changed (6 types in FIG. 4 are examples of the composite cross section).
  • an oil agent is applied, wound at a spinning speed of 1500 m / min, and drawn between rollers heated to 90 ° C. and 130 ° C. to obtain 84 dtex-36 filament (fiber diameter 15 ⁇ m ) was spun into a composite fiber bundle. At this time, the number of yarn breakages was 1.5 times/10 million m, indicating good spinning stability.
  • All of the conjugate fibers constituting the obtained conjugate fiber bundle had a flattened cross-sectional shape, the average flatness value among the conjugate fibers was 1.8, and the difference between the maximum and minimum flatness values was was 0.1. Also, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) between conjugate fibers was 18%, confirming that the conjugate fiber bundle of the present embodiment was obtained.
  • the obtained conjugate fiber bundle is woven, subjected to scouring treatment at 80°C and wet heat treatment at 130°C, and then heat setting at 180°C, whereby the number of crimp crests of the conjugate fiber is 18 crests/cm.
  • a woven fabric composed of composite fiber bundles having a crimped form of .
  • the woven fabric made of the conjugate fiber bundle has a dry feel (friction fluctuation : 1.3 ⁇ 10 ⁇ 2 ). Furthermore, in the fabric composed of the composite fiber bundle, complex voids are generated between the composite fibers, and a moderate rebound feeling (bending recovery 2HB: 1.1 ⁇ 10 -2 gf cm / cm) and swelling (apparent density: 0 .8 g/cm 3 ), it has excellent stretchability (elongation rate: 18%) and water absorption and quick drying due to the voids formed between the composite fibers (moisture diffusion time: 25 minutes). was Therefore, the woven fabric composed of the conjugate fiber bundle was a woven fabric excellent in wearing comfort, having both a texture and functions directly related to wearing comfort of the wearer.
  • the composite fiber is made of polyethylene terephthalate and its copolymer, it has good wear resistance (4th grade) that does not cause discoloration due to fibrillation caused by the polymer, and has properties suitable for clothing textiles. I also found out that Table 1 shows the above results.
  • Comparative Example 1 the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) was 0%, so that all the conjugate fibers constituting the conjugate fiber bundle exhibited the same crimped form. A phase-aligned composite fiber bundle was obtained. As a result, the texture of the textile surface is small, lacking a dry feel, and the voids between the conjugate fibers are also small, resulting in a lack of a bulging feel. Table 1 shows the results.
  • Comparative Example 2 Polymer 1 was changed to the same PET as polymer 2, and after stretching, the processing speed was 250 m / min, and the stretching ratio was 1.05 times between rollers, while heating with a heater set to 180 ° C., using a friction disk. , was carried out according to Comparative Example 1 except that false twisting was performed at a number of revolutions such that the number of false twists was 3000 T/m.
  • an oil agent is applied, wound at a spinning speed of 1500 m / min, and drawn between rollers heated to 90 ° C. and 130 ° C. to obtain 84 dtex-36 filament (fiber diameter 14 ⁇ m (minimum value: 11 ⁇ m (18 filaments), maximum value: 17 ⁇ m (18 filaments))).
  • the fiber diameter of the composite fiber bundle here was calculated by (minimum value+maximum value)/2.
  • the resulting conjugate fiber bundle was woven, subjected to scouring treatment at 80°C and wet heat treatment at 130°C, and then heat-set at 180°C to obtain a fabric composed of the conjugate fiber bundle. .
  • Example 2 Everything was carried out according to Example 1 except that the surface layer of the composite fiber was covered with PET and the composite cross section was changed as shown in FIG. 1(b).
  • the ratio S/D between the minimum thickness S of PET and the fiber diameter D determined by the method described above was 0.03.
  • Example 2 since the copolymer PET is not exposed on the surface layer of the conjugate fiber, not only the wear resistance is improved, but also the difference in cooling between the PET and the copolymer PET is alleviated, so that after ejection from the nozzle Yarn bending could be suppressed, and the spinning stability was also excellent. Table 1 shows the results.
  • Example 3 Everything was carried out according to Example 1, except that the cross-sectional shape of the conjugate fiber was changed to a flat multi-lobed shape having eight protrusions on the surface as shown in FIG. 1(c).
  • Example 3 unevenness in the appearance of the textile (glittering) was suppressed due to irregular reflection of light by forming unevenness on the surface of the composite fiber, and the quality of the appearance was improved. Furthermore, by combining conjugate fibers having an uneven surface, fine inter-fiber voids are formed in the conjugate fiber bundle, and dry feeling and water absorption and quick-drying properties are improved. Table 1 shows the results.
  • Example 4 Everything was carried out according to Example 1, except that the average value of the flatness between the conjugate fibers was changed to 1.3.
  • Example 4 As the average value of flatness of the conjugate fibers decreased, the crimped shape developed by the heat treatment became finer and closer to a coil shape. As a result, not only is the stretchability increased, but also the flattened edges are reduced to reduce friction and improve wear resistance. Table 2 shows the results.
  • Example 5 Everything was carried out according to Example 1 except that polymer 2 was changed to PET having a melt viscosity of 30 Pa ⁇ s.
  • Example 5 the crimped form was more strongly expressed, and not only the resulting woven fabric had an increased feeling of fullness, but also the stretchability was improved. Table 2 shows the results.
  • Example 6 Everything was carried out according to Example 1 except that the discharge amount was changed so that the fiber diameter of the composite fiber was 10 ⁇ m (Example 6) and 20 ⁇ m (Example 7).
  • Example 6 by setting the fiber diameter of the conjugate fiber to 10 ⁇ m, the diffused reflection of light was increased, and the appearance quality was improved by suppressing the appearance unevenness (glare) when made into textiles. Flexibility improved as the bending stiffness of the book decreased. Table 2 shows the results.
  • Example 7 by setting the fiber diameter to 20 ⁇ m, the crimped loops developed by the heat treatment became larger, and in addition to improving the dry feeling and the swelling feeling, the bending hardness was increased. Therefore, a characteristic elastic tactile sensation was obtained. Table 2 shows the results.
  • Example 8 Everything was carried out according to Example 1, except that the polymer 2 was changed to polyethylene terephthalate (TiO 2 -containing PET) containing 5.0 wt% of titanium oxide.
  • Example 8 the titanium oxide on the surface of the composite fiber diffusely reflects light, thereby suppressing the increase or decrease in reflection (glare) depending on the angle of incidence of light, thereby improving the appearance quality of the textile.
  • the titanium oxide inside the conjugate fiber provided functionality such as anti-see-through and ultraviolet shielding. Table 2 shows the results.
  • Example 9 Everything was carried out according to Example 1 except that the polymer 1 was changed to polypropylene terephthalate (PPT) (Example 9) and polybutylene terephthalate (PBT) (Example 10).
  • PPT polypropylene terephthalate
  • PBT polybutylene terephthalate
  • Example 11 After winding at a spinning speed of 2500 m/min and storing for one month under standard conditions (temperature of 23°C, relative humidity of 65%), hot pin temperature of 70°C was applied at the same draw ratio as the upper limit of the natural draw ratio of the composite fiber bundle. Everything was carried out according to Example 1, except that non-uniform stretching was applied at a set temperature of 130°C. In Example 11, since a difference in dyeability occurs between the stretched portion and the unstretched portion of the conjugate fiber, when the conjugate fiber bundle is used as a textile, the shade of the color is more emphasized, and the heather tone like a natural material is obtained. was obtained. Table 2 shows the results.
  • the portions where the crimp phases are aligned between adjacent conjugate fibers are aligned. Differences in the gaps are created where there are no gaps, and complex gaps and irregularities can be formed between the composite fibers, and a unique smooth feel can be expressed.
  • the composite fiber bundle of the present invention it is possible to obtain a textile that is comfortable to wear and has a moderate resilience due to the complex voids between the composite fibers and a puffy texture. Therefore, in addition to general clothing such as jackets, skirts, pants, and underwear, sports clothing, clothing materials, interior products such as carpets and sofas, vehicle interiors such as car seats, It can be suitably used for a wide variety of textile products such as cosmetics, cosmetic masks, and health products.
  • x Low-melting point polymer
  • y High-melting point polymer
  • a1 Two points b1, b2 farthest apart on the outer circumference of the fiber: Within a straight line connecting the two farthest points on the outer circumference of the fiber
  • Intersection point Gx of a straight line perpendicular to the point and the circumference of the fiber Center of gravity Gy of low melting point polymer: Center of gravity CF of high melting point polymer:
  • Composite fiber Cr Crimp crest 1: Weighing plate 2: Distributing plate 3: Discharge plate

Abstract

The present invention pertains to a composite fiber bundle characterized by being constituted by composite fibers comprising at least two types of polymers having different melting points, and by being such that the variation coefficient CV for the value of the ((distance between polymer centers of gravity)/(fiber diameter)) among the composite fibers is 5-30%.

Description

複合繊維束および繊維製品Composite fiber bundles and textile products
 本発明は、衣料用テキスタイルに適した複合繊維束および該複合繊維束を含む繊維製品に関するものである。 The present invention relates to a composite fiber bundle suitable for clothing textiles and a fiber product containing the composite fiber bundle.
 ポリエステルやポリアミドなどからなる合成繊維は優れた力学特性や寸法安定性を有しているため、衣料用途から非衣料用途まで幅広く利用されている。しかし、人々の生活が多様化し、より良い生活を求めるようになった昨今では、より高度な触感や機能を有する繊維が求められている。 Synthetic fibers such as polyester and polyamide have excellent mechanical properties and dimensional stability, so they are widely used for both clothing and non-clothing applications. However, in recent years, when people's lives have diversified and people have come to seek a better life, there is a demand for fibers with higher tactile sensations and functions.
 このような、より高度な触感や機能を有する繊維として、異なるポリマーを貼り合せたサイドバイサイド型の断面を有する複合繊維を用いる方法が提案されている。 As a fiber with such a higher touch and function, a method of using a composite fiber with a side-by-side cross section that is made by bonding different polymers has been proposed.
 このサイドバイサイド型複合繊維は、ポリマー間の熱収縮差により捲縮を発現させることで、適度な反発感やふくらみなどの風合いを付与することを狙ったものであるが、該複合繊維を複数本束ねた複合繊維束を用いてテキスタイルとした際には、全ての複合繊維が同一の捲縮形態を発現することで捲縮位相が揃ってしまい、ふくらみ感に欠けたフラットな風合いになる場合があった。 This side-by-side type conjugate fiber is intended to give a texture such as a moderate feeling of resilience and swelling by expressing crimps due to the difference in heat shrinkage between polymers. When the composite fiber bundles are used to make textiles, all the composite fibers express the same crimped form, so that the crimp phases are aligned, and there are cases where the texture lacks a feeling of swelling and is flat. rice field.
 一方、人肌に触れる衣料用テキスタイルにおいては優れた着用快適性が求められる場合が多く、特に天然繊維が有するような、人の着心地に直結する風合いを有した繊維に対する要求が強い。羊毛(ウール)、綿(コットン)、絹(シルク)などの天然素材の持つ風合いや機能は非常にバランスに優れたものであり、これ等が織り成す複雑な外観や触感に人間が魅力や高級感を感じるからである。 On the other hand, textiles for clothing that come into contact with the human skin are often required to be comfortable to wear, and there is a strong demand for fibers that have a texture that is directly linked to human comfort, like natural fibers. The texture and functions of natural materials such as wool, cotton, and silk are extremely well-balanced, and the complex appearance and texture woven by these materials are attractive and luxurious to humans. Because I feel
 合成繊維における、複合繊維間の捲縮位相が揃うことによる、ふくらみ感に欠けたフラットな風合いになる課題に対し、複合繊維束を構成する複合繊維一本一本に工夫を施すことで、得られる触感や風合いを複雑にし、天然素材に見られる特異的な触感や風合いに近づけた技術が種々提案されている。 In order to solve the problem that the crimp phase between the composite fibers in the synthetic fibers is uniform and the texture lacks a feeling of fullness, the composite fibers that make up the composite fiber bundle are devised one by one. Various techniques have been proposed to make the tactile feel and texture of natural materials more complex and bring them closer to the unique tactile feel and texture found in natural materials.
 特許文献1では、粘度が異なるポリエチレンテレフタレート(PET)がサイドバイサイド型に複合された複合繊維で構成された複合繊維束において、複合繊維間で複合比率を変化させて、ポリマー界面の湾曲率のバラツキを発現させることで、複合比率に応じた複合繊維間の捲縮形態差により、捲縮が噛み合うことなく、独立して捲縮を形成することを開示している。 In Patent Document 1, in a conjugate fiber bundle composed of conjugate fibers in which polyethylene terephthalate (PET) having different viscosities are conjugated side-by-side, the conjugate ratio is changed between the conjugate fibers to reduce the variation in the curvature of the polymer interface. It is disclosed that the crimps are formed independently without meshing due to the difference in crimp shape between the conjugate fibers depending on the conjugate ratio.
 このような複合繊維で構成された複合繊維束は捲縮形態差に応じた複合繊維間の空隙を発現するため、複合繊維束をテキスタイルとした際にはふくらみ感のある風合いを有するとしている。 A conjugate fiber bundle composed of such conjugate fibers expresses voids between the conjugate fibers according to the difference in crimp configuration, so when the conjugate fiber bundle is used as a textile, it has a bulging texture.
 また特許文献2では、粘度が異なるポリエチレンテレフタレート(PET)がサイドバイサイド型に複合された複合繊維を異型断面とし、さらに、複合成分同士の接合面である複合接合面の状態が異なる3種以上の複合繊維群で構成された複合繊維束とすることにより、各々の複合繊維群でそれぞれ異なる曲げ剛性が働き、捲縮発現性の異なる複合繊維群が得られることを開示している。 Further, in Patent Document 2, a conjugated fiber in which polyethylene terephthalate (PET) having different viscosities is conjugated in a side-by-side type is used as a modified cross section, and three or more types of conjugates having different states of the conjugated bonding surfaces, which are the bonding surfaces between the conjugated components, are used. It discloses that by forming a conjugate fiber bundle composed of fiber groups, each conjugate fiber group has a different flexural rigidity, and conjugate fiber groups with different crimp development properties can be obtained.
 このような複合繊維束を活用することで、天然繊維ライクなふくらみや嵩高性と共にストレッチ性、反発感を兼ね備えたテキスタイルが得られるとしている。 By utilizing such composite fiber bundles, it is possible to obtain textiles that combine natural fiber-like swelling and bulkiness with stretchability and resilience.
日本国特開2000-212838号公報Japanese Patent Application Laid-Open No. 2000-212838 日本国特開2001-355132号公報Japanese Patent Application Laid-Open No. 2001-355132
 特許文献1のように、複合繊維束を構成する複合繊維間で複合比率を変化させてポリマー界面の湾曲率のバラツキを発現させることで、複合繊維間の捲縮形態差が発現する場合がある。 As in Patent Document 1, by changing the conjugate ratio between the conjugate fibers that make up the conjugate fiber bundle to develop variations in the curvature of the polymer interface, crimp morphological differences between the conjugate fibers may appear. .
 しかしながら特許文献1では、複合繊維毎の捲縮形態を変化させる手段として用いることができる複合比率の変化は、製糸安定性を維持するために、実質的に40:60~60:40の範囲であり、ここで得られる捲縮形態変化の差は小さく、自ずと、得られる風合いも単調なものとなる場合があった。 However, in Patent Document 1, the change in the conjugate ratio, which can be used as a means for changing the crimp configuration of each conjugate fiber, is substantially in the range of 40:60 to 60:40 in order to maintain spinning stability. However, the difference in crimp shape change obtained here is small, and naturally the texture obtained is sometimes monotonous.
 また、特許文献2のように、複合接合面の状態が異なる3種以上の複合繊維群からなる複合繊維束とすることにより、各々の複合繊維群でそれぞれ異なる曲げ剛性が働き、捲縮発現性の異なる複合繊維群となる場合がある。 In addition, as in Patent Document 2, by forming a composite fiber bundle composed of three or more types of composite fiber groups having different states of composite joint surfaces, each composite fiber group has a different bending rigidity, and crimp development is achieved. may be different composite fiber groups.
 しかしながら、特許文献2に記載された複合繊維は実質的に多葉型断面となっており、捲縮発現に必要となるポリマー重心間距離は自ずと短くなることから、その捲縮発現力は小さくなり、快適衣料として求められるふくらみや反発感が不足する場合があった。 However, the conjugate fiber described in Patent Document 2 has a substantially multilobed cross section, and the distance between the polymer centers of gravity required for crimp development is naturally short, so the crimp development force is low. In some cases, the bulge and resilience required for comfortable clothing were insufficient.
 そこで本発明の目的は上記した従来技術の問題点を解消し、複合繊維束を構成する複合繊維一本一本の捲縮形態を制御することで、さらっとした触感に加えて、適度な反発感やふくらみのある風合いを有した着用快適性に優れる衣料用テキスタイルを得るのに適した複合繊維束を提供することにある。 Therefore, the object of the present invention is to solve the above-described problems of the prior art, and to control the crimped form of each conjugate fiber that constitutes the conjugate fiber bundle, so that in addition to a smooth touch, an appropriate resilience is obtained. To provide a conjugate fiber bundle suitable for obtaining a textile for clothing having a feeling and a puffy texture and excellent wearing comfort.
 本発明の目的は、以下の手段によって達成される。すなわち、
(1)少なくとも2種類の融点の異なるポリマーからなる複合繊維で構成された複合繊維束であり、前記複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVが5~30%であることを特徴とする複合繊維束、
(2)前記複合繊維間での扁平度の最大値と最小値の差が0.5未満であることを特徴とする前記(1)に記載の複合繊維束、
(3)前記複合繊維間での扁平度の平均値が1.2~3.0であることを特徴とする前記(1)または(2)に記載の複合繊維束、
(4)複合繊維の表層が1種類のポリマーで覆われていることを特徴とする前記(1)~(3)のいずれか1つに記載の複合繊維束、
(5)前記(1)~(4)のいずれか1つに記載の複合繊維束が一部に含まれる繊維製品、
である。
The object of the present invention is achieved by the following means. i.e.
(1) A conjugate fiber bundle composed of conjugate fibers composed of at least two kinds of polymers having different melting points, wherein the variation coefficient CV of the value of (distance between polymer centers of gravity/fiber diameter) between the conjugate fibers is 5 to 30. %,
(2) The conjugate fiber bundle according to (1), wherein the difference between the maximum and minimum flatness values of the conjugate fibers is less than 0.5;
(3) The conjugate fiber bundle according to (1) or (2), characterized in that the average value of flatness between the conjugate fibers is 1.2 to 3.0;
(4) The conjugate fiber bundle according to any one of (1) to (3), wherein the surface layer of the conjugate fiber is covered with one type of polymer;
(5) A textile product partially containing the composite fiber bundle according to any one of (1) to (4) above,
is.
 本発明の複合繊維束は、上記した特徴を有することにより、複合繊維束を構成する複合繊維一本一本の捲縮形態が緻密に制御される。そのため、本発明の複合繊維束を用いることで、さらっとした触感に加えて、適度な反発感やふくらみのある風合いを有した着用快適性に優れる衣料用テキスタイルを得ることができる。 The conjugate fiber bundle of the present invention has the features described above, so that the crimped form of each conjugate fiber constituting the conjugate fiber bundle is precisely controlled. Therefore, by using the conjugate fiber bundle of the present invention, it is possible to obtain a textile for clothing that is excellent in wearing comfort and has a moderate resilience and a puffy texture in addition to a dry feel.
図1の(a)、(b)、(c)は、本実施形態の複合繊維束を構成する複合繊維における断面構造の一例を示す概略図である。(a), (b), and (c) of FIG. 1 are schematic diagrams showing an example of the cross-sectional structure of the composite fibers that constitute the composite fiber bundle of the present embodiment. 図2の(a)、(b)は、本実施形態の複合繊維束を構成する複合繊維における横断面構造の一例を示す概略図である。FIGS. 2(a) and 2(b) are schematic diagrams showing an example of the cross-sectional structure of the conjugate fibers forming the conjugate fiber bundle of the present embodiment. 図3は、従来の複合繊維束を構成する複合繊維における横断面構造の一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of a cross-sectional structure of conjugate fibers forming a conventional conjugate fiber bundle. 図4は、本実施形態の複合繊維束を構成する複合繊維毎の横断面構造の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of the cross-sectional structure of each composite fiber that constitutes the composite fiber bundle of the present embodiment. 図5は、本実施形態の複合繊維束を構成する複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVを理解するための図であり、外枠の破線は撮影画像の上下左右の辺を意味する。FIG. 5 is a diagram for understanding the coefficient of variation CV of the value of (distance between center of gravity of polymer/fiber diameter) between conjugate fibers constituting the conjugate fiber bundle of the present embodiment. means the top, bottom, left, and right sides of . 図6は、本実施形態の複合繊維束を構成する複合繊維が有する捲縮形態の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of the crimped form of the conjugate fibers that constitute the conjugate fiber bundle of the present embodiment. 図7は、本実施形態の複合繊維束を構成する複合繊維の製造方法を説明するための横断面図である。FIG. 7 is a cross-sectional view for explaining the manufacturing method of the conjugate fibers forming the conjugate fiber bundle of the present embodiment.
 以下、本発明について望ましい実施形態と共に詳述する。
 さらっとした触感やふくらみのある柔らかな風合いを有する天然素材として幅広く展開しているコットンを分析すると、繊維一本ごとに捲縮形態が異なるものである、この捲縮形態の異なる繊維を複数本束ねられることで、テキスタイルとした際に複雑な空隙や凹凸を形成することとなり、その特異的な触感や風合いが達成されていると考えられる。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
An analysis of cotton, which is widely used as a natural material with a smooth feel and a soft, fluffy texture, reveals that each fiber has a different crimp pattern. By bundling, complex voids and irregularities are formed when it is made into textiles, and it is thought that the unique tactile sensation and texture are achieved.
 天然素材のような複雑な空隙や凹凸を合成繊維で実現するために本発明者らが鋭意検討し、少なくとも2種類の融点の異なるポリマーからなる複合繊維で構成された複合繊維束において、該複合繊維毎のポリマー重心間距離を制御して捲縮位相を適度に揃えることで、従来の合成繊維では得ることが難しかった複雑な空隙や凹凸が形成できることを発見した。 The present inventors have made intensive studies to realize complex voids and irregularities like natural materials with synthetic fibers, and have found that in a conjugate fiber bundle composed of conjugate fibers composed of at least two types of polymers having different melting points, the conjugate By controlling the distance between the polymer centers of gravity of each fiber and aligning the crimp phase appropriately, we discovered that it was possible to form complex voids and irregularities that were difficult to obtain with conventional synthetic fibers.
 すなわち、複合繊維束を構成する全ての複合繊維が同一の捲縮形態を発現する場合には、捲縮位相が揃った、収束した複合繊維束になり、複合繊維間の空隙は小さくなることから、テキスタイルとした際の風合いはふくらみ感に欠けたフラットなものになる場合がある。 That is, when all the conjugate fibers constituting the conjugate fiber bundle express the same crimped form, the conjugate fiber bundle is converged with the same crimp phase, and the gap between the conjugate fibers becomes smaller. , The texture when used as a textile may be flat without a feeling of swelling.
 一方、複合繊維束を構成する複合繊維がそれぞれ異なる捲縮形態を発現する場合には、複合繊維の捲縮位相がずれることで複合繊維間での空隙は形成される傾向がみられる。しかしながら、複合繊維束の形態は変化せず、複合繊維間にできる空隙のサイズも均質なものとなるため、複合繊維束をテキスタイルとした際の外観や風合いは単調なものとなる場合があった。 On the other hand, when the conjugate fibers constituting the conjugate fiber bundle express different crimped forms, gaps tend to be formed between the conjugate fibers due to the shift in the crimp phase of the conjugate fibers. However, the morphology of the conjugate fiber bundle does not change, and the size of the voids formed between the conjugate fibers becomes uniform, so that when the conjugate fiber bundle is used as a textile, the appearance and texture may be monotonous. .
 これに対して、複合繊維束を構成する複合繊維の捲縮発現に変化がありながら、複合繊維の捲縮位相が部分的に揃う複合繊維束に制御すれば、複合繊維束をテキスタイルとした際に、複合繊維束に内在した細かな空隙に加えて、隣り合う複合繊維間で捲縮位相が揃っている箇所と揃っていない箇所が生まれることとなる。これにより、複合繊維間に複雑な空隙が生まれるとともに、複合繊維束として従来にはない複雑な凹凸が生まれ、複合繊維束をテキスタイルとした際には、天然素材のような特異的な触感や風合いを発現できる。 On the other hand, if the crimp expression of the composite fibers constituting the composite fiber bundle is changed, if the crimp phase of the composite fibers is controlled to be partially aligned, when the composite fiber bundle is used as a textile Furthermore, in addition to the fine voids inherent in the conjugate fiber bundle, there are areas where the crimp phases are aligned and those where the crimp phases are not aligned between adjacent conjugate fibers. As a result, complex voids are created between the composite fibers, and complex irregularities not found in conventional composite fiber bundles are created. can be expressed.
 この着想に基づいて本発明は構成されており、具体的には少なくとも2種類の融点の異なるポリマーからなる複合繊維で構成された複合繊維束であり、該複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVが5~30%であることが重要となる。 The present invention is constructed based on this idea, and specifically, a conjugate fiber bundle composed of conjugate fibers composed of at least two kinds of polymers having different melting points, and the distance between the centers of gravity of the polymers (distance between the centers of gravity of the polymers /fiber diameter) is 5 to 30%.
 本実施形態における複合繊維束とは、少なくとも2種類のポリマーからなる複合繊維が例えば20本以上束ねられた複合繊維束のことであり、長繊維からなるマルチフィラメントや短繊維からなる紡績糸などをいう。 The conjugate fiber bundle in the present embodiment is a conjugate fiber bundle in which, for example, 20 or more conjugate fibers made of at least two types of polymers are bundled. say.
 本実施形態の複合繊維束を構成する複合繊維に用いるポリマーとしては、加工性に優れることから熱可塑性ポリマーであることが好ましい。熱可塑性ポリマーとしては、例えばポリエステル系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアミド系、ポリカーボネート系、ポリメタクリル酸メチル系、ポリフェニレンサルファイド系などのポリマー群およびその共重合体が好ましい。特に高い界面親和性を付与することができ、複合断面に異常のない繊維が得られるという観点から、複合繊維に用いる熱可塑性ポリマーは全て同ポリマー群およびその共重合体であることが好ましい。 A thermoplastic polymer is preferable as the polymer used for the conjugate fibers constituting the conjugate fiber bundle of the present embodiment because of its excellent workability. Preferred thermoplastic polymers are, for example, polyester-based, polyethylene-based, polypropylene-based, polystyrene-based, polyamide-based, polycarbonate-based, polymethyl methacrylate-based, polyphenylene sulfide-based polymers, and copolymers thereof. From the viewpoint that a particularly high interfacial affinity can be imparted and a fiber having no abnormalities in the composite cross section can be obtained, all the thermoplastic polymers used in the composite fiber are preferably the same polymer group and copolymers thereof.
 また、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。 In addition, various additives such as inorganic substances such as titanium oxide, silica, and barium oxide, carbon black, colorants such as dyes and pigments, flame retardants, fluorescent brighteners, antioxidants, and ultraviolet absorbers are included in the polymer. You can stay.
 これらの中でも、酸化チタンをポリマーに含有させることが好ましい。酸化チタンをポリマーに含有させることにより、複合繊維表面の酸化チタンが光を乱反射することで、光の入射角による反射の増減に起因する外観ムラ(ギラツキ)を抑制できるといった外観品位の良化のみならず、複合繊維内部の酸化チタンにより防透けや紫外線遮蔽といった機能性も得られる。ポリマーにおける酸化チタンの含有量は、上記の効果を十分に得るため、1.0wt%以上が好ましい。また、酸化チタンの光の乱反射が増加すると発色性の低下を引き起こす場合があることから、酸化チタンの含有量は10.0wt%以下が好ましい。 Among these, it is preferable to include titanium oxide in the polymer. By including titanium oxide in the polymer, the titanium oxide on the surface of the composite fiber diffusely reflects light, which only improves the appearance quality, such as suppressing the appearance unevenness (glare) caused by the increase or decrease in reflection depending on the angle of incidence of light. Not only that, the titanium oxide inside the composite fiber also provides functionality such as anti-see-through and UV shielding. The content of titanium oxide in the polymer is preferably 1.0 wt % or more in order to sufficiently obtain the above effects. In addition, the content of titanium oxide is preferably 10.0 wt % or less, because an increase in diffuse reflection of light by titanium oxide may lead to a decrease in color developability.
 本実施形態の複合繊維束を構成する複合繊維においては、捲縮形態を制御するために、少なくとも2種類の融点の異なるポリマーからなることが必要となる。 The conjugate fibers constituting the conjugate fiber bundle of the present embodiment need to be made of at least two types of polymers with different melting points in order to control the crimped form.
 複合繊維の横断面において融点の異なるポリマーをそれぞれの重心が異なるように配置すれば、熱処理後には複合繊維が高収縮となる低融点ポリマー側に大きく湾曲し、これが連続することでコイル状の捲縮形態を発現させることができる。さらにポリマー重心間距離を制御することで任意の捲縮形態を発現することが可能であり、これにより、本発明の目的である捲縮位相の制御を達成できる。 If polymers with different melting points are arranged at different centers of gravity in the cross section of the conjugated fiber, the conjugated fiber is greatly curved toward the low-melting polymer side where the shrinkage is high after the heat treatment. Shortened forms can be expressed. Furthermore, by controlling the distance between the centers of gravity of the polymers, it is possible to express any crimped form, thereby achieving the control of the crimp phase, which is the object of the present invention.
 本実施形態における融点の異なるポリマーとは、ポリエステル系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアミド系、ポリカーボネート系、ポリメタクリル酸メチル系、ポリフェニレンサルファイド系などの溶融成形可能な熱可塑性ポリマー群およびその共重合体の中から、融点が10℃以上異なるポリマーの組合せをいう。 Polymers with different melting points in the present embodiment include a group of melt-moldable thermoplastic polymers such as polyesters, polyethylenes, polypropylenes, polystyrenes, polyamides, polycarbonates, polymethyl methacrylates, and polyphenylene sulfides, and their A combination of polymers having different melting points of 10°C or more among copolymers.
 本実施形態の複合繊維束を構成する複合繊維においては、融点の異なるポリマーの収縮差により捲縮形態を発現することが目的であることから、融点の異なるポリマーの組合せとして、1種類を高収縮の低融点ポリマーとし、もう1種類を低収縮の高融点ポリマーとすることが好ましい。 In the conjugate fibers constituting the conjugate fiber bundle of the present embodiment, the purpose is to express a crimped form by the difference in shrinkage of polymers with different melting points. is preferably a low melting point polymer and the other is a low shrinkage high melting point polymer.
 特に、剥離を抑制して高次加工の安定性やテキスタイルに使用耐久性を付与するという観点からすると、ポリマーの組合せとしては、エステル結合のポリエステル系、アミド結合のポリアミド系といった主鎖中に存在する結合が同一である同じポリマー群の中から選択することがより好ましい。 In particular, from the viewpoint of suppressing peeling and imparting stability in advanced processing and durability in use to textiles, a combination of polymers such as ester-bonded polyesters and amide-bonded polyamides existing in the main chain It is more preferable to select from among the same group of polymers in which the bonds that bind are identical.
 このような同じポリマー群での低融点ポリマーと高融点ポリマーの組合せとしては、例えば、ポリエステル系として、共重合ポリエチレンテレフタレート/ポリエチレンテレフタレート、ポリプロピレンテレフタレート/ポリエチレンテレフタレート、ポリブチレンテレフタレート/ポリエチレンテレフタレート、熱可塑性ポリウレタン/ポリエチレンテレフタレート、ポリエステル系エラストマー/ポリエチレンテレフタレート、ポリエステル系エラストマー/ポリブチレンテレフタレート、ポリアミド系としてナイロン66/ナイロン610、ナイロン6-ナイロン66共重合体/ナイロン6または610、PEG共重合ナイロン6/ナイロン6または610、熱可塑性ポリウレタン/ナイロン6または610、ポリオレフィン系としてエチレン-プロピレンゴム微分散ポリプロピレン/ポリプロピレン、プロピレン-αオレフィン共重合体/ポリプロピレンなどの種々の組み合わせが挙げられる。 Combinations of low-melting polymers and high-melting polymers in the same polymer group include, for example, polyester-based copolymer polyethylene terephthalate/polyethylene terephthalate, polypropylene terephthalate/polyethylene terephthalate, polybutylene terephthalate/polyethylene terephthalate, and thermoplastic polyurethane. /polyethylene terephthalate, polyester elastomer/polyethylene terephthalate, polyester elastomer/polybutylene terephthalate, nylon 66/nylon 610, nylon 6-nylon 66 copolymer/nylon 6 or 610, PEG copolymer nylon 6/nylon 6 as polyamide or 610, thermoplastic polyurethane/nylon 6 or 610, polyolefins such as ethylene-propylene rubber finely dispersed polypropylene/polypropylene, and propylene-α-olefin copolymer/polypropylene.
 これらの中でも、複合繊維束をテキスタイルに仕立てた際に、高い曲げ回復性から適度な反発感が得られ、かつ染色した際に良好な発色性が得られるという観点から、融点の異なるポリマーは共重合ポリエチレンテレフタレート/ポリエチレンテレフタレートの組合せとすることが特に好ましい。 Among these, polymers with different melting points are used together from the viewpoint that when the conjugate fiber bundle is made into textiles, a moderate resilience can be obtained from high bending recovery and good color development can be obtained when dyed. A polymerized polyethylene terephthalate/polyethylene terephthalate combination is particularly preferred.
 また共重合ポリエチレンテレフタレートにおける共重合成分としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸、マレイン酸、フタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などが挙げられる。これらの中でも、ポリエチレンテレフタレートとの収縮差を最大化できるという観点から、イソフタル酸を5~15mol%共重合されたポリエチレンテレフタレートとすることが好ましい。 Examples of copolymerization components in copolymerized polyethylene terephthalate include succinic acid, adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, maleic acid, phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, and the like. is mentioned. Among these, it is preferable to use polyethylene terephthalate copolymerized with 5 to 15 mol % of isophthalic acid from the viewpoint of maximizing the difference in shrinkage from polyethylene terephthalate.
 また環境問題に注目が集まる中、本実施形態においても植物由来のバイオポリマーやリサイクルポリマーを用いることは環境負荷低減の観点からも好適である。したがって、上記した本実施形態に用いるポリマーとして、ケミカルリサイクル、マテリアルリサイクルおよびサーマルリサイクルのいずれの手法で再資源化されたリサイクルポリマーを用いることができる。 In addition, while attention is focused on environmental problems, using plant-derived biopolymers and recycled polymers in this embodiment is also suitable from the viewpoint of reducing environmental impact. Therefore, as the polymer used in the present embodiment described above, a recycled polymer recycled by any of chemical recycling, material recycling, and thermal recycling can be used.
 バイオポリマーやリサイクルポリマーを用いる場合であっても、ポリエチレンテレフタレート系樹脂はそのポリマー特性として、本発明の特徴を顕著化することができる。したがって、上記した通り、高い曲げ回復性から適度な反発感が得られ、かつ染色した際に良好な発色性が得られるという観点から、本実施形態に用いるポリマーとしては、リサイクルポリエチレンテレフタレートを好適に用いることができる。 Even when biopolymers or recycled polymers are used, polyethylene terephthalate-based resins can make the features of the present invention remarkable as their polymer characteristics. Therefore, as described above, recycled polyethylene terephthalate is preferably used as the polymer used in the present embodiment from the viewpoint of obtaining an appropriate resilience from high bending recovery and obtaining good color development when dyed. can be used.
 本実施形態の複合繊維の横断面は、融点の異なるポリマーをそれぞれの重心が異なるように配置された複合断面であることが好ましい。このような複合断面としては例えば、図1の(a)のようなサイドバイサイド型、図1の(b)のような偏心芯鞘型が挙げられ、その他にも、海島型やブレンド型などが挙げられる。 The cross section of the composite fiber of the present embodiment is preferably a composite section in which polymers with different melting points are arranged so that their centers of gravity are different. Examples of such a composite cross section include a side-by-side type as shown in FIG. 1(a) and an eccentric core-sheath type as shown in FIG. 1(b). be done.
 また、本実施形態においては、複合繊維の表層が1種類のポリマーで覆われていることが好ましい。複合繊維の表層が1種類のポリマーで覆われていることにより、耐熱性や耐摩耗性の低いポリマーを複合繊維の一成分として用いても、摩擦や衝撃によって界面において剥離が生じることなく、繊維特性を良好に保持することができる。 Further, in the present embodiment, the surface layer of the composite fiber is preferably covered with one type of polymer. Since the surface layer of the conjugate fiber is covered with one type of polymer, even if a polymer with low heat resistance and abrasion resistance is used as one component of the conjugate fiber, the fiber does not peel off at the interface due to friction or impact. Good properties can be retained.
 加えて、本実施形態の複合繊維束を製造する際に、融点差の大きいポリマーの溶融体を複合流として口金から紡出すると、吐出後の冷却差から高融点ポリマーが低融点ポリマー側に湾曲する糸曲がりが発生し、口金に接触あるいは別箇所から紡出した複合流に干渉して糸切れの原因となる。しかしながら、複合繊維の表層が1種類のポリマーで覆われていることで、冷却差が緩和され糸曲がりが抑制でき、融点差の大きいポリマーの組合せを用いたとしても、安定して製糸が可能となる。 In addition, when the conjugate fiber bundle of the present embodiment is produced, if melts of polymers with a large melting point difference are spun from the die as a composite flow, the high melting point polymer curves toward the low melting point polymer side due to the cooling difference after ejection. Yarn bending occurs, which causes yarn breakage by contacting the spinneret or interfering with the composite flow spun from another location. However, by covering the surface layer of the conjugate fiber with one type of polymer, the cooling difference can be alleviated and yarn bending can be suppressed. Become.
 複合繊維の表層を覆う1種類のポリマーとしては、例えば、ポリエステル系としてポリエチレンテレフタレート、共重合ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリアミド系としてナイロン6、ナイロン66、ナイロン610、ポリオレフィン系としてポリプロピレンなどが挙げられる。これらの中でも、耐熱性と発色性に優れるという観点から、ポリエチレンテレフタレートまたは共重合ポリエチレンテレフタレートを用いて複合繊維の表層を覆うと好ましい。 Examples of one type of polymer covering the surface layer of the conjugate fiber include polyethylene terephthalate, copolymerized polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate as polyesters, nylon 6, nylon 66 and nylon 610 as polyamides, and polypropylene as polyolefins. is mentioned. Among these, polyethylene terephthalate or copolymerized polyethylene terephthalate is preferably used to cover the surface layer of the conjugate fiber from the viewpoint of excellent heat resistance and color development.
 また、複合繊維の表層を覆う1種類のポリマーの厚みは、適宜調整できるが、例えば、複合繊維束を構成する各複合繊維の表層を覆うポリマーの最小厚みSと繊維径Dの比S/Dが0.01~0.1であることが好ましい。係る範囲とすることで、複合繊維やテキスタイルに摩擦や衝撃が加わっても白化現象や毛羽立ちなどが生じることなく、糸加工安定性やテキスタイル品位を保つことができるのである。さらにS/Dを0.02~0.08とすれば、高融点ポリマーと低融点ポリマーの重心点が離れ、収縮差による捲縮を最大限発現することができるため、より好ましい範囲として挙げられる。 In addition, the thickness of one type of polymer covering the surface layer of the conjugate fiber can be adjusted as appropriate. is preferably 0.01 to 0.1. Within this range, even if the composite fiber or textile is subjected to friction or impact, whitening or fluffing does not occur, and the yarn processing stability and textile quality can be maintained. Furthermore, when the S/D is 0.02 to 0.08, the center of gravity of the high-melting polymer and the low-melting polymer are separated, and the crimp due to the difference in shrinkage can be maximized, so it is mentioned as a more preferable range. .
 なお、本実施形態における複合繊維の表層を覆うポリマーの最小厚みSと繊維径Dの比S/Dは、複合繊維束をエポキシ樹脂などの包埋剤にて包埋した後、この横断面を透過型電子顕微鏡(TEM)で10本以上の複合繊維が観察できる倍率として画像を撮影し、複合断面を観察することで求められる。この際、金属染色を施すことで、ポリマー間の染め差ができるため、複合断面の接合部のコントラストを明確できる。 The ratio S/D between the minimum thickness S of the polymer covering the surface layer of the conjugate fiber and the fiber diameter D in the present embodiment is obtained by embedding the conjugate fiber bundle in an embedding agent such as an epoxy resin, and then It is obtained by taking an image with a transmission electron microscope (TEM) at a magnification that allows observation of 10 or more composite fibers, and observing the cross section of the composite. At this time, by applying metal dyeing, a difference in dyeing between polymers can be obtained, so that the contrast of the joints of the composite cross section can be clarified.
 さらに撮影された画像の複合断面が図1の(b)に示すような偏心芯鞘型断面である場合には、各画像から同一画像内で無作為に抽出した10本の複合繊維について、複合繊維の表層を覆うポリマーの最小厚みをμm単位にて求める。得られた最小厚みSの値を、各複合繊維の面積を測定して真円換算で求められる直径をμm単位で小数点1桁目まで測定して求めた繊維径Dの値で割り返した値を算出し、これらの平均値の小数点3桁目で四捨五入することで、複合繊維の表層を覆うポリマーの最小厚みSと繊維径Dの比S/Dが得られる。 Furthermore, when the composite cross section of the photographed image is an eccentric core-sheath type cross section as shown in FIG. Determine the minimum thickness of the polymer covering the surface layer of the fiber in μm. A value obtained by dividing the value of the obtained minimum thickness S by the value of the fiber diameter D obtained by measuring the area of each conjugate fiber and measuring the diameter obtained in terms of a perfect circle in units of μm to the first decimal place. is calculated, and the average value is rounded to the third decimal place to obtain the ratio S/D between the minimum thickness S of the polymer covering the surface layer of the composite fiber and the fiber diameter D.
 本実施形態の複合繊維束を構成する複合繊維における複合断面内の低融点ポリマーと高融点ポリマーの面積比としては、低融点ポリマーの面積/高融点ポリマーの面積が70/30~30/70の範囲であることが好ましく、60/40~40/60がより好ましい。かかる範囲であれば、低融点ポリマーが熱処理で高収縮する際に生じる風合い硬化の影響を受けることなく、ポリマーの収縮差による捲縮形態を十分に発現することができる。 The area ratio of the low-melting polymer and the high-melting polymer in the composite cross-section of the composite fiber constituting the composite fiber bundle of the present embodiment is 70/30 to 30/70. A range is preferred, and 60/40 to 40/60 is more preferred. Within this range, the crimped form due to the difference in shrinkage of the polymer can be sufficiently developed without being affected by the hardening of the texture that occurs when the low-melting-point polymer undergoes high shrinkage due to heat treatment.
 本実施形態において、複合繊維束を構成する複合繊維間での捲縮位相が部分的に揃うようにすることで、隣り合う複合繊維間で捲縮位相が揃っている箇所と揃っていない箇所で空隙に差が生まれるため、複合繊維束をテキスタイルとした際に、その表面に凹凸を形成することができる。 In the present embodiment, by partially aligning the crimp phases between the conjugate fibers constituting the conjugate fiber bundle, the portions where the crimp phases are aligned and the portions where the crimp phases are not aligned are Since there is a difference in voids, unevenness can be formed on the surface when the composite fiber bundle is used as a textile.
 上記の本発明の特徴となる複合繊維間の複雑な空隙やテキスタイル表面への凹凸を形成する要件としては、複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVが5~30%であることが重要となる。 As a requirement for forming the complex voids between the conjugate fibers and the irregularities on the textile surface, which are the features of the present invention, the coefficient of variation CV of the value of (distance between the center of gravity of the polymer / fiber diameter) between the conjugate fibers is 5 ~30% is important.
 本実施形態で言う(ポリマー重心間距離/繊維径)の値の変動係数CVとは、以下の方法によって算出できる。 The coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) referred to in this embodiment can be calculated by the following method.
 まず、複合繊維束からなるテキスタイルにおいて、テキスタイルの厚み方向かつ複合繊維の繊維軸方向に垂直なテキスタイル断面を、走査型電子顕微鏡(SEM)を用いて、20本以上の複合繊維が観察できる倍率として画像を撮影する。撮影された画像から同一画像内で無作為に抽出した1本の複合繊維を解析することで、複合繊維の面積を測定し、真円換算で求められる直径をμm単位で小数点1桁目まで測定する。得られる値を複合繊維の繊維径(μm)とする。 First, in a textile made of a bundle of conjugate fibers, the cross section of the textile perpendicular to the thickness direction of the textile and the fiber axis direction of the conjugate fiber is measured using a scanning electron microscope (SEM) as a magnification that allows observation of 20 or more conjugate fibers. Take an image. By analyzing one composite fiber randomly extracted from the same image from the photographed image, the area of the composite fiber is measured, and the diameter obtained by converting to a perfect circle is measured in μm to the first decimal place. do. The obtained value is defined as the fiber diameter (μm) of the composite fiber.
 次いで、上記と同じ複合繊維について、図2の(a)に示すように複合繊維の断面における低融点ポリマーxと高融点ポリマーyのそれぞれの重心(Gx,Gy)を結んだ直線の長さをμm単位で小数点1桁目まで測定する。得られる値をポリマー重心間距離(μm)とする。 Next, for the same conjugate fiber as above, the length of a straight line connecting the respective centers of gravity (Gx, Gy) of the low melting point polymer x and the high melting point polymer y in the cross section of the conjugate fiber as shown in FIG. Measure to the first decimal place in units of μm. The obtained value is taken as the polymer center-to-center distance (μm).
 上記で求めた繊維径とポリマー重心間距離について、その比(ポリマー重心間距離/繊維径)の単純な数平均を算出し、小数点1桁目で四捨五入した値を(ポリマー重心間距離/繊維径)とする。 For the fiber diameter and the polymer center-of-gravity distance obtained above, calculate the simple number average of the ratio (polymer center-of-gravity distance/fiber diameter), and calculate the value rounded to the first decimal place (polymer center-of-gravity distance/fiber diameter ).
 この評価を上記と同じ画像の中から無作為に抽出した複合繊維20本(図5中の(1)~(20))について行い、それらの標準偏差と平均値を求め、標準偏差を平均値で割り返して100を掛けた値を算出し、小数点以下を四捨五入する。得られる値を、(ポリマー重心間距離/繊維径)の値の変動係数CV(%)とする。 This evaluation is performed on 20 composite fibers ((1) to (20) in FIG. 5) randomly extracted from the same image as above, and the standard deviation and average value are obtained. Calculate the value by dividing by and multiplying by 100, and round off to the nearest whole number. The obtained value is defined as the coefficient of variation CV (%) of the value of (distance between polymer centers of gravity/fiber diameter).
 本実施形態の複合繊維束を構成する複合繊維においては、ポリマー重心間距離および繊維径によって捲縮形態の制御が可能であり、ポリマー重心間距離が大きいほど、また繊維径が小さいほど微細な捲縮形態を発現できる。すなわち、捲縮発現力は(ポリマー重心間距離/繊維径)によって表され、この捲縮発現力を複合繊維毎に制御することにより、複合繊維間で捲縮位相が揃うことで発現する複雑な空隙やテキスタイル表面への凹凸の形成を制御できる。 In the conjugate fibers constituting the conjugate fiber bundle of the present embodiment, the crimp form can be controlled by the distance between the polymer centers of gravity and the fiber diameter. A shortened form can be expressed. That is, the crimp development force is represented by (distance between polymer centers of gravity/fiber diameter). It is possible to control the formation of voids and irregularities on the textile surface.
 すなわち、本実施形態においては、複合繊維束を構成する複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVが5%以上である。該変動係数CVを上記の範囲とすることにより、捲縮位相が部分的に揃うため、テキスタイル表面に凹凸が発現し、表面を触った際には摩擦変動が大きいことに起因したさらっとした触感が得られる。また、複合繊維間では複雑な空隙が生まれ、適度な反発感のある風合いや光の乱反射による外観ムラ(ギラツキ)抑制効果も発現できる。 That is, in the present embodiment, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) between conjugate fibers constituting the conjugate fiber bundle is 5% or more. By setting the coefficient of variation CV in the above range, the crimp phase is partially aligned, so unevenness appears on the surface of the textile, and when the surface is touched, the texture is smooth due to the large frictional variation. is obtained. In addition, complex voids are created between the conjugate fibers, and a texture with a moderate repulsive feeling and an effect of suppressing uneven appearance (glitter) due to diffused reflection of light can be realized.
 さらに(ポリマー重心間距離/繊維径)の値の変動係数CVを10~20%の範囲とすることがより好ましく、15~20%の範囲がさらに好ましい。該変動係数CVを上記範囲とすれば、複合繊維束をテキスタイルとした際に、テキスタイル表面の凹凸のピッチが細かくなり、さらっとした触感が際立つ。さらに、複合繊維間の空隙が増加することで、複合繊維束をテキスタイルとした際には見かけ密度が低下し、ふくらみ向上効果も加わる。 Furthermore, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) is more preferably in the range of 10 to 20%, more preferably in the range of 15 to 20%. When the coefficient of variation CV is within the above range, when the composite fiber bundle is used as a textile, the pitch of the irregularities on the surface of the textile becomes finer, and the dry feel is conspicuous. Furthermore, since the voids between the conjugate fibers increase, when the conjugate fiber bundle is used as a textile, the apparent density is lowered, and an effect of improving swelling is also added.
 また、変動係数CVが大きくなりすぎると、テキスタイル表面に発現する凹凸が細かく、さらに摩擦変動も小さくなり、単調な風合いに近づく。したがって、該変動係数CVは30%以下である。 On the other hand, if the coefficient of variation CV becomes too large, the irregularities appearing on the surface of the textile become finer and the frictional fluctuation becomes smaller, resulting in a monotonous texture. Therefore, the coefficient of variation CV is 30% or less.
 本実施形態の複合繊維束を構成する複合繊維において、(ポリマー重心間距離/繊維径)を制御する方法としては、複合繊維の断面形状や複合比率を複合繊維毎に変化させる方法が考えられるが、捲縮位相揃いの制御や製糸安定性の観点からすると、複合繊維束を構成する複合繊維の断面形状を扁平状とし、複合繊維間での扁平度の最大値と最小値の差を0.5未満とする方法が好ましい。ここで、「扁平状」とは、平面視で細長い形状のことであり、具体的には、後述する複合繊維の断面における「扁平度」が1.1以上のものをいう。 In the conjugate fibers constituting the conjugate fiber bundle of the present embodiment, as a method of controlling (distance between polymer centers of gravity/fiber diameter), a method of changing the cross-sectional shape and conjugate ratio of the conjugate fibers for each conjugate fiber is conceivable. From the viewpoint of the control of the crimp phase alignment and the spinning stability, the cross-sectional shape of the composite fibers constituting the composite fiber bundle is flattened, and the difference between the maximum value and the minimum value of the flatness between the composite fibers is set to 0.5. A method of less than 5 is preferred. Here, the term "flat" means an elongated shape in a plan view, and specifically, the "flatness" of the cross section of the conjugate fiber described later is 1.1 or more.
 複合繊維の断面形状を扁平状(扁平断面)とすれば、図2の(a)のように融点の異なるポリマーが扁平断面の長軸方向に接合した場合にはポリマー重心間距離が最大となり、図2の(b)のように扁平断面の短軸方向に接合した場合にはポリマー重心間距離が最小になる。このように、複合繊維の断面形状を扁平状とすることで、複合繊維の接合面の方向を変化させることで、(ポリマー重心間距離/繊維径)の値を制御することが可能となる。 If the cross-sectional shape of the conjugate fiber is flat (flat cross section), when polymers with different melting points are joined in the longitudinal direction of the flat cross section as shown in FIG. In the case of bonding in the direction of the minor axis of the flat cross section as shown in FIG. 2B, the distance between the polymer centers of gravity is minimized. In this way, by making the cross-sectional shape of the conjugate fiber flat, it is possible to control the value of (distance between polymer centers of gravity/fiber diameter) by changing the direction of the joint surface of the conjugate fiber.
 そのため、複合繊維間での扁平度の最大値と最小値の差が0.5未満であることが好ましく、さらに、図4のように、複合繊維毎に接合面方向を変化させた複合断面とすることがより好ましい。複合繊維が上記構成を有することにより、複合繊維間の捲縮位相が部分的に揃いやすくなり、容易に(ポリマー重心間距離/繊維径)の値の変動係数CVを目的の範囲にできる。さらに、断面形状や複合比率を複合繊維毎に変化させる場合と比較して冷却斑による糸干渉等での糸切れが抑制され、製糸安定性も向上できるという観点から、複合繊維間での扁平度の最大値と最小値の差は0.2未満であることがより好ましい。 Therefore, it is preferable that the difference between the maximum flatness value and the minimum value of the flatness between the conjugate fibers is less than 0.5. is more preferable. When the conjugate fibers have the above structure, the crimp phase between the conjugate fibers becomes easier to partially align, and the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) can be easily set within the desired range. Furthermore, compared to the case where the cross-sectional shape and conjugate ratio are changed for each conjugate fiber, yarn breakage due to yarn interference due to cooling spots is suppressed, and the spinning stability can be improved. More preferably, the difference between the maximum and minimum values of is less than 0.2.
 上記効果をより発現するために、本実施形態においては、複合繊維間での扁平度の平均値が1.2以上であることが好ましく、1.4以上がより好ましく、1.6以上がさらに好ましい。複合繊維間での扁平度の平均値が1.2以上であることで、(ポリマー重心間距離/繊維径)の値の変動係数CVをより最適な範囲に近づけることができる。さらに、扁平断面を有する複合繊維が捲縮を発現した際の立体障害により複合繊維間の空隙が形成され、複合繊維束をテキスタイルとした際のふくらみも得られる。 In order to further develop the above effect, in the present embodiment, the average value of the flatness between the conjugate fibers is preferably 1.2 or more, more preferably 1.4 or more, and further preferably 1.6 or more. preferable. When the average value of the flatness between the conjugate fibers is 1.2 or more, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) can be brought closer to the optimum range. Furthermore, voids are formed between the conjugate fibers due to steric hindrance when the conjugate fibers having a flat cross section are crimped, and swelling is obtained when the conjugate fiber bundle is used as a textile.
 上記の通り、(ポリマー重心間距離/繊維径)の値の変動係数CVを制御することや複合繊維間の空隙を安定的に形成するという観点から、扁平度の平均値は高いほど好ましい。一方、扁平度の平均値が高くなりすぎると、複合繊維表面で反射される光が強くなることで、外観ムラ(ギラツキ)が生じるおそれがある。また、エッジのある断面形状により曲げ剛性が必要以上に高くなることで柔軟性が損なわれるおそれもある。そのため、本実施形態における扁平度の平均値は3.0以下であることが好ましく、2.5以下であることがより好ましく、2.0以下がさらに好ましい。 As described above, from the viewpoint of controlling the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) and stably forming voids between conjugate fibers, the higher the average flatness value, the better. On the other hand, if the average value of the flatness is too high, the intensity of the light reflected on the surface of the composite fiber may increase, which may cause uneven appearance (glare). In addition, there is a possibility that the bending rigidity becomes higher than necessary due to the edged cross-sectional shape, thereby impairing the flexibility. Therefore, the average value of flatness in the present embodiment is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2.0 or less.
 本実施形態において複合繊維間の扁平度の平均値および最大値と最小値の差は、以下の方法によって求められる。
 まず、複合繊維束をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面を走査型電子顕微鏡(SEM)で10本以上の複合繊維が観察できる倍率として画像を撮影する。次いで、撮影された画像から無作為に抽出した1本の複合繊維を、画像解析ソフトを用いて解析し、図1の(a)に示すように複合繊維の外周上の任意の点のうち最も距離が離れた2点(a1、a2)を結んだ直線を長軸とし、長軸の中点を通って長軸と直交する直線と繊維外周の交点(b1、b2)を結んだ直線を短軸として、長軸の長さを短軸の長さで割り返した値を算出し、得られた値を扁平度とする。これを同一画像内で無作為に抽出した複合繊維10本について同様に行った結果の単純な数平均を求め、小数点第2位で四捨五入した値を扁平度の平均値とする。また、扁平度を求めた複合繊維のうち、最も大きい値から最も小さい値を引いた値を求め、小数点第2位で四捨五入した値を扁平度の最大値と最小値の差とする。
In the present embodiment, the average flatness value and the difference between the maximum and minimum values of the flatness between the conjugate fibers are obtained by the following method.
First, a composite fiber bundle is embedded in an embedding agent such as an epoxy resin, and an image of the cross section of the fiber in the direction perpendicular to the fiber axis is observed with a scanning electron microscope (SEM) at a magnification of 10 or more composite fibers. to shoot. Next, one composite fiber randomly extracted from the photographed image is analyzed using image analysis software, and as shown in FIG. A straight line connecting two points (a1, a2) separated by a distance is taken as the major axis, and a straight line passing through the midpoint of the long axis and perpendicular to the long axis and the intersection point (b1, b2) of the outer circumference of the fiber is taken as the short straight line. As the axis, the value obtained by dividing the length of the long axis by the length of the short axis is calculated, and the obtained value is defined as the flatness. A simple numerical average of the results obtained by performing the same procedure on 10 conjugate fibers randomly extracted from the same image is calculated, and the value rounded to the second decimal place is used as the average flatness value. Also, among the conjugate fibers for which the flatness was obtained, the value obtained by subtracting the smallest value from the largest value is obtained, and the value is rounded off to the second decimal place as the difference between the maximum flatness value and the minimum flatness value.
 本実施形態の複合繊維束を構成する複合繊維の断面形状としては、図1の(a)のような扁平状であることに加えて、図1の(c)のような多葉状、その他多角状、歯車状、花弁状、星状などが挙げられる。 The cross-sectional shape of the conjugate fibers constituting the conjugate fiber bundle of the present embodiment is flat as shown in FIG. 1(a), multilobed as shown in FIG. shape, gear shape, petal shape, star shape, and the like.
 本実施形態においては、複合繊維表面に凸部を3個以上有した断面形状を有する複合繊維を組み合わせることが好ましい。複合繊維表面に凸部を3個以上有した断面形状を有する複合繊維を組み合わせることにより、光の乱反射による外観ムラ(ギラツキ)の抑制や複合繊維間の微細な空隙による吸水性を高めることができる。凸部の数は、5個以上がより好ましく、8個以上がさらに好ましい。
 ただし、凸部の数が多くなりすぎるとその効果は徐々に小さくなることから、凸部の実質的な上限は20個であり、12個以下がより好ましい。
In this embodiment, it is preferable to combine conjugate fibers having a cross-sectional shape with three or more protrusions on the conjugate fiber surface. By combining conjugate fibers having a cross-sectional shape with three or more protrusions on the surface of the conjugate fiber, it is possible to suppress appearance unevenness (glare) due to diffuse reflection of light and improve water absorption due to fine voids between the conjugate fibers. . The number of protrusions is more preferably 5 or more, and even more preferably 8 or more.
However, if the number of protrusions becomes too large, the effect will gradually decrease, so the practical upper limit of the number of protrusions is 20, and 12 or less is more preferable.
 本実施形態の複合繊維束を構成する複合繊維においては、捲縮山数が5山/cm以上の捲縮形態を有することが好ましい。 The conjugate fibers constituting the conjugate fiber bundle of the present embodiment preferably have a crimped form with a number of crimp crests of 5 crimps/cm or more.
 ここで、捲縮山数は以下の方法によって求められる。
 まず、テキスタイルから複合繊維を塑性変形させないように抜き出し、複合繊維の片方の末端を固定し、もう片方の末端へ1mg/dtexの荷重をかけて30秒間以上経過後に、複合繊維の繊維軸方向へ2点間の距離が1cmとなる任意の箇所にマーキングを施す。
 その後、複合繊維を塑性変形させないように予めつけておいたマーキングの間が元の1cmとなるように調整してスライドガラス上に固定し、このサンプルをデジタルマイクロスコープにて1cmのマーキングが観察できる倍率で画像を撮影する。撮影した画像において図6のように複合繊維CFが捲縮形態を有していた場合には、マーキング間に存在する捲縮の山Crの数を求める。この動作を複合繊維10本について行った結果の単純な数平均を求め、小数点第1位で四捨五入した値を捲縮山数(山/cm)とする。
Here, the number of crimp crests is obtained by the following method.
First, the conjugate fiber is pulled out from the textile so as not to be plastically deformed, one end of the conjugate fiber is fixed, and a load of 1 mg / dtex is applied to the other end for 30 seconds or more. Mark any point where the distance between two points is 1 cm.
After that, the sample was fixed on a slide glass after adjustment so that the distance between the markings made in advance was 1 cm so as not to plastically deform the composite fiber, and the 1 cm marking of this sample could be observed with a digital microscope. Take an image at magnification. In the photographed image, when the composite fiber CF has a crimped form as shown in FIG. 6, the number of crimped peaks Cr present between the markings is obtained. A simple numerical average of the results obtained by performing this operation on 10 conjugate fibers is rounded off to the first decimal place to determine the number of crimp crests (crests/cm).
 捲縮山数が5山/cm以上の捲縮形態を有していれば、複合繊維間で捲縮位相が揃うことで発現する複合繊維間の複雑な空隙やテキスタイル表面への凹凸を形成することができる。捲縮山数は10山/cm以上であることがより好ましい。捲縮山数が10山/cm以上であることで、複合繊維間での排除体積効果で複合繊維間の空隙が増大することによるふくらみの向上効果が得られるのみならず、捲縮形態が微細なスパイラル構造になることでストレッチ性も付与される。 If the crimped form has a crimp number of crimps of 5 crests/cm or more, complex voids between the conjugate fibers and irregularities on the textile surface are formed by aligning the crimp phase between the conjugate fibers. be able to. More preferably, the number of crimp crests is 10 crests/cm or more. When the number of crimp crests is 10 crests/cm or more, not only is it possible to obtain the effect of improving swelling due to the increase in voids between conjugate fibers due to the excluded volume effect between conjugate fibers, but also the crimp form is fine. Stretchability is also given by becoming a spiral structure.
 ふくらみやストレッチ性という観点では、この捲縮山数は増加させることが好適となるが、捲縮山数が過剰になると、捲縮位相がずれやすくなり、複合繊維間での空隙が均一になることで、複合繊維束をテキスタイルとした際の風合いも単調なものとなるおそれがある。したがって、本実施形態における捲縮山数は、50山/cm以下であることが好ましく、40山/cm以下がより好ましく、30山/cm以下がさらに好ましい。 From the viewpoint of swelling and stretchability, it is preferable to increase the number of crimp ridges. As a result, when the composite fiber bundle is used as a textile, the texture may be monotonous. Therefore, the number of crimp crests in this embodiment is preferably 50 crests/cm or less, more preferably 40 crests/cm or less, and even more preferably 30 crests/cm or less.
 本実施形態の複合繊維束を構成する複合繊維は、繊維径を20μm以下とすることが好ましい。係る範囲とすれば、複合繊維の光の乱反射が増し、テキスタイルとした際の外観ムラ(ギラツキ)を抑制できるのみならず、反発感も十分に得ることができる。これにより、パンツやシャツ等のハリコシのある風合いが求められる衣料用途に好適となる。 It is preferable that the conjugate fibers constituting the conjugate fiber bundle of the present embodiment have a fiber diameter of 20 μm or less. Within this range, the diffused reflection of light from the conjugate fiber is increased, and not only is it possible to suppress the appearance unevenness (glare) when made into a textile, but it is also possible to obtain a sufficient sense of repulsion. As a result, it is suitable for use in clothing such as pants and shirts that require a firm texture.
 さらに、繊維径を15μm以下とすることがより好ましい。繊維径を15μm以下とすることにより、複合繊維束の柔軟性が増し、肌に触れるインナーやブラウス等の衣料用途にも好適に用いることができる。繊維径は12μm以下がさらに好ましい。 Furthermore, it is more preferable to set the fiber diameter to 15 μm or less. By setting the fiber diameter to 15 μm or less, the flexibility of the composite fiber bundle is increased, and it can be suitably used for apparel such as innerwear and blouses that come in contact with the skin. More preferably, the fiber diameter is 12 μm or less.
 また、曲げ回復性および、発色性の低下を抑制する観点から、繊維径は5μm以上とすることが好ましく、8μm以上とすることがより好ましい。 In addition, from the viewpoint of suppressing deterioration in bending recovery and coloring properties, the fiber diameter is preferably 5 μm or more, more preferably 8 μm or more.
 以上のように、本実施形態の複合繊維束は、隣り合う複合繊維間で捲縮位相が揃っている箇所と揃っていない箇所で空隙に差が生まれるため、複合繊維間に複雑な空隙や凹凸が形成される。 As described above, in the conjugate fiber bundle of the present embodiment, since there is a difference in gaps between adjacent conjugate fibers where the crimp phase is aligned and where the crimp phase is not aligned, complex voids and unevenness are created between the conjugate fibers. is formed.
 したがって、繊維製品が本実施形態の複合繊維束を少なくとも一部含むことで、特異的なさらっとした触感を発現できることに加えて、さらに複合繊維間の複雑な空隙によって適度な反発感やふくらみのある風合いも実現した着用快適性に優れるテキスタイルが得られる。
 本実施形態の複合繊維束は、ジャケット、スカート、パンツ、下着などの一般衣料から、スポーツ衣料、衣料資材に加えて、その快適性を生かしてカーペット、ソファーなどのインテリア製品、カーシートなどの車輌内装品、化粧品、化粧品マスク、健康用品などの生活用途など多岐に渡る繊維製品に好適に用いることができる。
Therefore, by including at least a part of the conjugate fiber bundle of the present embodiment in the textile product, in addition to being able to express a specific dry feel, the complex voids between the conjugate fibers provide an appropriate sense of resilience and swelling. A textile having a certain texture and excellent wearing comfort can be obtained.
Composite fiber bundles of the present embodiment can be used for general clothing such as jackets, skirts, pants, and underwear, as well as sports clothing and clothing materials. It can be suitably used for a wide variety of textile products such as interior goods, cosmetics, cosmetic masks, and health products.
 以下に本実施形態の複合繊維束の製造方法の一例を詳述する。
 本実施形態の複合繊維束を製糸する方法としては、マルチフィラメントや紡績糸の製造を目的とした溶融紡糸法、湿式および乾湿式などの溶液紡糸法、シート状の繊維構造体を得るのに適したメルトブロー法およびスパンボンド法などによって製造できる。これらの中でも、高い生産性でテキスタイルに適用できる複合繊維束が得られるという観点から、溶融紡糸法にてマルチフィラメントや紡績糸とすることが好適である。
An example of the method for producing the composite fiber bundle of the present embodiment will be described in detail below.
The method for spinning the composite fiber bundle of the present embodiment includes a melt spinning method for the purpose of producing multifilament and spun yarn, a solution spinning method such as a wet and dry-wet method, and a method suitable for obtaining a sheet-like fiber structure. It can be produced by a melt blow method, a spunbond method, or the like. Among these, from the viewpoint of obtaining a composite fiber bundle that can be applied to textiles with high productivity, it is preferable to use the melt spinning method to form a multifilament or a spun yarn.
 また、溶融紡糸法においては、後述する複合口金を用いることにより製造可能であり、その際の紡糸温度については、用いるポリマー種のうち、主に高融点ポリマーや高粘度ポリマーが流動性を示す温度とすることが好ましい。この流動性を示す温度としては、分子量によっても異なるが、そのポリマーの融点から融点+60℃の間で設定すると安定して製造することができる。 In addition, in the melt spinning method, it is possible to manufacture by using a composite spinneret described later, and the spinning temperature at that time is the temperature at which the high melting point polymer and the high viscosity polymer mainly show fluidity among the polymer types used. It is preferable to Although the temperature at which this fluidity is exhibited varies depending on the molecular weight, if it is set between the melting point of the polymer and +60° C., stable production can be achieved.
 紡糸速度については、500~6000m/分程度が好ましいが、ポリマーの物性や複合繊維束の使用目的によって適宜変更可能である。特に、高配向とし力学特性を向上させるという観点から、紡糸速度を500~4000m/分とし、その後延伸することがより好ましい。紡糸速度を500~4000m/分とすることで、複合繊維の一軸配向を促進できる。 The spinning speed is preferably about 500 to 6000 m/min, but it can be changed as appropriate depending on the physical properties of the polymer and the intended use of the composite fiber bundle. In particular, from the viewpoint of achieving high orientation and improving mechanical properties, it is more preferable to set the spinning speed to 500 to 4000 m/min and then draw. By setting the spinning speed to 500 to 4000 m/min, the uniaxial orientation of the conjugate fiber can be promoted.
 延伸に際しては、ポリマーのガラス転移温度など、軟化できる温度を目安として、予熱温度を適切に設定することが好ましい。予熱温度の上限としては、予熱過程で複合繊維束の自発伸長により糸道乱れが発生しない温度とすることが好ましい。例えば、ガラス転移温度が70℃付近に存在するPETの場合には、通常この予熱温度は80~95℃程度で設定される。 When stretching, it is preferable to appropriately set the preheating temperature, using the softening temperature such as the glass transition temperature of the polymer as a guideline. The upper limit of the preheating temperature is preferably a temperature at which the conjugate fiber bundle is spontaneously stretched during the preheating process so that the yarn path is not disturbed. For example, in the case of PET having a glass transition temperature of around 70.degree.
 また、本実施形態の複合繊維束を製造する口金での単孔当たりにおける吐出量としては、0.1~10g/分・孔が好ましい。吐出量を上記範囲にすることで、安定して製造可能となる。吐出されたポリマー流は、冷却固化後、油剤を付与され、規定の周速になったローラーで引き取られる。その後、加熱ローラーで延伸され、必要に応じてさらなる後加工を加えることで、所望の複合繊維が束ねられた複合繊維束となる。 In addition, the ejection amount per single hole in the spinneret for manufacturing the composite fiber bundle of the present embodiment is preferably 0.1 to 10 g/min/hole. By setting the discharge amount within the above range, stable production is possible. After being cooled and solidified, the discharged polymer flow is applied with oil and taken up by a roller having a specified peripheral speed. After that, it is drawn with a heating roller and, if necessary, further post-processed to form a conjugate fiber bundle in which desired conjugate fibers are bundled.
 また本実施形態の複合繊維束を構成する複合繊維においては、複合するポリマーの溶融粘度比を5.0未満とすることが好ましい。溶融粘度比をかかる範囲とすれば過剰な捲縮発現を抑え、本発明の目的である複合繊維間で捲縮位相が揃うことで発現する複雑な空隙やテキスタイル表面への凹凸の形成を制御することが容易となる。 In addition, in the conjugate fibers constituting the conjugate fiber bundle of the present embodiment, it is preferable that the melt viscosity ratio of the conjugated polymer is less than 5.0. When the melt viscosity ratio is set within such a range, excessive crimping is suppressed, and the formation of complex voids and unevenness on the textile surface, which is the object of the present invention, is controlled by aligning the crimp phase between the conjugate fibers. becomes easier.
 加えて、本実施形態の複合繊維束を製造する際に、溶融粘度差の大きいポリマーの溶融体を複合流として口金から紡出すると、口金孔内の壁面から受ける抵抗の違いによる流速差から、低粘度側のポリマーが高粘度側のポリマーを押し出すような形態となる糸曲がりが発生し、口金に接触あるいは別箇所から紡出した複合流に干渉して糸切れの原因となる場合がある。上記観点からも、複合するポリマーの溶融粘度比を5.0未満とすることが好ましい。 In addition, when the conjugate fiber bundle of the present embodiment is produced, if a polymer melt having a large difference in melt viscosity is spun from the spinneret as a composite flow, the difference in flow velocity due to the difference in the resistance received from the wall surface inside the spinneret hole causes The polymer on the low viscosity side pushes out the polymer on the high viscosity side, causing yarn bending. From the above point of view as well, the melt viscosity ratio of the composite polymer is preferably less than 5.0.
 また溶解度パラメータ値の差としては2.0未満とすることが、安定的に複合ポリマー流を形成し、良好な複合断面を有する複合繊維を得ることができるため、好ましい。 Also, it is preferable that the difference in the solubility parameter value is less than 2.0, because it is possible to stably form a composite polymer flow and obtain a composite fiber having a favorable composite cross section.
 本実施形態の複合繊維束を製造する際に用いる口金としては、例えば、日本国特開2011-208313号公報に記載される複合口金が好適に用いられる。 As the spinneret used when manufacturing the composite fiber bundle of the present embodiment, for example, the composite spinneret described in Japanese Patent Application Laid-Open No. 2011-208313 is suitably used.
 図7に示した複合口金は、上から計量プレート1、分配プレート2および吐出プレート3の大きく3種類の部材が積層された状態で紡糸パック内に組み込まれ、紡糸に供される。ちなみに図7は、Aポリマー、Bポリマー、Cポリマーといった3種類のポリマーを用いた例である。従来の複合口金では、3種類以上のポリマーを複合化することは困難であるため、本実施形態の複合繊維束の製造においては、図7に例示したような微細流路を利用した複合口金を用いることが好ましい。 The composite spinneret shown in FIG. 7 is incorporated into a spinning pack in a state in which roughly three types of members, namely a weighing plate 1, a distribution plate 2 and a discharge plate 3, are layered from the top, and used for spinning. Incidentally, FIG. 7 is an example using three types of polymers, A polymer, B polymer, and C polymer. Since it is difficult to combine three or more types of polymers with a conventional composite spinneret, a composite spinneret using fine flow channels as shown in FIG. It is preferable to use
 図7に例示した口金部材では、計量プレート1が各吐出孔および各分配孔当たりのポリマー量を計量して流入し、分配プレート2によって、各複合繊維の断面およびその断面形状を制御、吐出プレート3によって、分配プレート2で形成された複合ポリマー流を圧縮して、吐出するという役割を担っている。 In the spinneret member exemplified in FIG. 7, the metering plate 1 measures and flows the amount of polymer per each discharge hole and each distribution hole, and the distribution plate 2 controls the cross section of each conjugate fiber and its cross-sectional shape. 3 has the role of compressing and discharging the composite polymer stream formed by the distribution plate 2 .
 このとき、本実施形態の好ましい範囲として挙げられる、複合繊維束を構成する全ての複合繊維が扁平断面を有しながら、複合繊維毎に接合面方向を変化させた複合断面を達成するには、吐出プレート3の吐出孔形状を扁平孔としつつ、分配プレート2において、吐出孔毎にポリマーの接合面方向が異なるように複合ポリマー流を制御すればよい。このように吐出孔毎に任意の複合断面を制御できるという観点からも、本実施形態においては図7に例示したような微細流路を利用した複合口金を用いることが好ましい。 At this time, in order to achieve a composite cross section in which all the composite fibers constituting the composite fiber bundle have a flat cross section and the joint surface direction is changed for each composite fiber, which is mentioned as a preferable range of the present embodiment, The flow of the composite polymer may be controlled such that the direction of the bonding surface of the polymer differs for each ejection hole in the distribution plate 2 while the ejection holes of the ejection plate 3 are flat. From the viewpoint of being able to control an arbitrary composite cross section for each discharge hole in this way, it is preferable to use a composite spinneret using fine flow channels as illustrated in FIG. 7 in this embodiment.
 また、複合口金の説明が錯綜するのを避けるために、図示されていないが、計量プレート1より上に積層する部材に関しては、紡糸機および紡糸パックに合わせて、流路を形成した部材を用いればよい。計量プレート1を、既存の流路部材に合わせて設計することで、既存の紡糸パックおよびその部材がそのまま活用することができる。このため、特に該口金のために紡糸機を専有化する必要はない。 Also, in order to avoid complicating the explanation of the composite spinneret, although not shown in the drawings, the members stacked above the weighing plate 1 are formed with flow paths in accordance with the spinning machine and the spinning pack. Just do it. By designing the metering plate 1 according to the existing channel member, the existing spinning pack and its members can be used as they are. Therefore, it is not necessary to dedicate a spinning machine specifically for the spinneret.
 また、実際には流路-計量プレート1間あるいは計量プレート1-分配プレート2間に複数枚の流路プレートを積層するとよい。これは、口金断面方向および複合繊維の断面方向に効率よく、ポリマーが移送される流路を設け、分配プレート2に導入される構成とすることが目的である。吐出プレート3より吐出された複合ポリマー流は、上述の製造方法に従い、冷却固化後、油剤を付与され、規定の周速になったローラーで引き取られる。その後、加熱ローラーで延伸され、必要に応じて後加工を加えることで、所望の複合繊維が束ねられた複合繊維束となる。 Also, in practice, it is preferable to stack a plurality of flow path plates between the flow path and the measuring plate 1 or between the measuring plate 1 and the distribution plate 2 . The purpose of this is to provide a flow path through which the polymer is efficiently transported in the cross-sectional direction of the spinneret and the cross-sectional direction of the composite fiber, and to introduce the polymer into the distribution plate 2 . The composite polymer stream discharged from the discharge plate 3 is cooled and solidified in accordance with the above-described manufacturing method, then applied with an oil solution and taken up by a roller having a specified peripheral speed. After that, it is drawn with a heating roller and post-processed as necessary to form a conjugate fiber bundle in which desired conjugate fibers are bundled.
 ここでいう後加工とは、短繊維からなる紡績糸を製造する場合に施されるものであり、延伸後に押し込み式捲縮機(クリンパー)などを用いて捲縮を付与し、次いで繊維長20~120mmの短繊維に切断してから、公知の紡績加工技術を施すのがよい。 The post-processing referred to here is applied when producing a spun yarn composed of short fibers, and after drawing, crimping is applied using a crimper or the like, and then the fiber length is 20. It may be cut into short fibers of ˜120 mm and then subjected to known spinning processing techniques.
 また長繊維からなるマルチフィラメントを製造する場合には、延伸と同時に仮撚加工や不均一延伸加工など、公知の糸加工技術を施してもよい。 In addition, when manufacturing a multifilament made of long fibers, known yarn processing techniques such as false twisting and non-uniform drawing processing may be applied at the same time as drawing.
 特に、捲縮形態を不均一な形態に変化させ、得られる触感や風合いを複雑にできるという観点からすると、不均一延伸加工を施し、複合繊維の自然延伸倍率を越えない範囲の延伸倍率で延伸加工することで、延伸部と未延伸部が繊維軸方向にランダムに出現した太細(シックアンドシン)を得るのが好ましい。不均一延伸加工を行うことで、延伸部と未延伸部でも染色性の差異が生じるために、色の濃淡がより強調され、テキスタイルとした時に天然素材のような杢調を表現することができる。 In particular, from the viewpoint that the crimped form can be changed to a non-uniform form and the texture and texture obtained can be complicated, non-uniform drawing processing is performed and the composite fiber is drawn at a draw ratio within a range not exceeding the natural draw ratio of the composite fiber. By processing, it is preferable to obtain thick and thin fibers in which stretched portions and unstretched portions appear randomly in the fiber axis direction (sick and thin). The non-uniform stretching process creates a difference in dyeability between the stretched and unstretched sections, which emphasizes the shade of the color, and when used as a textile, it can express the heathered tone of natural materials. .
 不均一延伸加工を施す方法としては、延伸倍率を自然延伸倍率の下限×1.2倍~上限の範囲とすることで、自然でかつ明瞭な杢調を得ることができるため好ましく、所望の杢調に応じて、倍率を決定すればよい。 As a method for non-uniform stretching, the stretching ratio is within the range of the lower limit of the natural stretching ratio x 1.2 times to the upper limit. Magnification may be determined according to the key.
 また、仮撚加工を施す場合は、ポリエステルで汎用的に用いられている方法であれば特に限定するものではないが、生産性を考慮するとディスクやベルトを用いた摩擦仮撚機を用いて加工することが好ましい。 In the case of applying false twisting, there is no particular limitation as long as it is a method commonly used for polyester, but in consideration of productivity, processing using a friction texturing machine using a disc or belt is used. preferably.
 仮撚加工によって本発明の捲縮糸を安定的に製造するには、加撚領域での糸束の実撚数により捲縮糸の捲縮径をコントロールすることが好適である。
 すなわち、加撚領域での糸束の撚数である仮撚数T(単位は回/m)が、仮撚加工後の糸束の総繊度Df(単位はdtex)に応じて決定される、以下の条件を満たすように、加撚機構の回転数や加工速度等の仮撚条件を設定することが好ましい。
20000/Df0.5≦T≦40000/Df0.5
In order to stably produce the crimped yarn of the present invention by false twisting, it is preferable to control the crimp diameter of the crimped yarn by the number of actual twists of the yarn bundle in the twisting region.
That is, the number of false twists T (unit: times/m), which is the number of twists of the yarn bundle in the twisting region, is determined according to the total fineness Df (unit: dtex) of the yarn bundle after false twisting. It is preferable to set the false twisting conditions such as the rotation speed of the twisting mechanism and the processing speed so as to satisfy the following conditions.
20000/ Df0.5≤T≤40000 / Df0.5
 ここで仮撚数Tは、次の方法で測定したものである。すなわち、仮撚工程の加撚領域で走行している糸束を、ツイスター直前で撚りをほどかないよう、50cm以上の長さで採取する。そして、採取した糸サンプルについて検撚機に取り付け、JIS L1013(2010)8.13に記載の方法にて撚数を測定したものが仮撚数Tである。仮撚数が上述の条件を満たすことで、得られた糸束では300μm以上の粗大な捲縮径を制御でき、シボやスジといったテキスタイルの表面品位の低下を抑制できる。 Here, the false twist number T is measured by the following method. That is, the yarn bundle running in the twisting area of the false twisting step is collected with a length of 50 cm or more so as not to untwist just before the twister. The false twist number T is obtained by attaching the collected yarn sample to a twist tester and measuring the number of twists by the method described in JIS L1013 (2010) 8.13. When the number of false twists satisfies the above conditions, the obtained yarn bundle can control a coarse crimp diameter of 300 μm or more, and can suppress deterioration of the textile surface quality such as grains and streaks.
 また、上記の仮撚条件において、複合繊維束を構成する複合繊維全体に均一な捲縮を付与し、品位良く本発明の加工糸を得るためには、加撚領域での延伸倍率を調整するとよい。ここで言う延伸倍率とは加撚領域に糸を供給するローラーの周速V0と加撚機構の直後に設置されたローラーの周速Vdを用い、Vd/V0として算出されるものであり、供給する糸の特性に応じて決定することが好ましい。 Further, under the above false twisting conditions, in order to uniformly crimp the entire conjugate fibers constituting the conjugate fiber bundle and obtain the textured yarn of the present invention with good quality, it is necessary to adjust the draw ratio in the twisting region. good. The draw ratio referred to here is calculated as Vd/V0 using the peripheral speed V0 of the roller that supplies the yarn to the twisting region and the peripheral speed Vd of the roller installed immediately after the twisting mechanism. It is preferable to determine according to the characteristics of the yarn to be used.
 供給糸に延伸糸を使用する場合には、Vd/V0を0.9~1.4倍とすればよく、供給糸に未延伸糸を使用する場合には、Vd/V0を1.2~2.0倍として、仮撚加工と同時に延伸を行うこともよい。延伸倍率を係る範囲とすることで、加撚領域での過張力や糸束のたるみが発生することなく、複合繊維束を構成する複合繊維全体に均一な捲縮を付与できる。 When drawn yarn is used as the supply yarn, Vd/V0 may be 0.9 to 1.4 times, and when undrawn yarn is used as the supply yarn, Vd/V0 is 1.2 to 1.2. At 2.0 times, drawing may be performed at the same time as false twisting. By setting the draw ratio within such a range, uniform crimping can be imparted to the entire conjugate fibers forming the conjugate fiber bundle without causing excessive tension in the twisting region or slackening of the yarn bundle.
 さらに、加撚工程で得られる捲縮を強固に固定する観点から仮撚温度は複合したポリマーにおける高Tg側のポリマーのTgを基準として、Tg+50~Tg+150℃の範囲から決定することが好ましい。 Furthermore, from the viewpoint of firmly fixing the crimp obtained in the twisting process, it is preferable to determine the false twisting temperature in the range of Tg + 50 to Tg + 150 ° C based on the Tg of the polymer on the high Tg side in the composite polymer.
 ここで言う仮撚温度とは、加撚領域に設置されたヒーターの温度を意味する。仮撚温度を係る範囲とすることで、複合繊維断面内で大きく捻り変形したポリマーを十分に構造固定できるため、加撚工程で得られる捲縮の寸法安定性は良好となり、シボやスジのない品位の良いテキスタイルを得ることができる。なお、加撚工程で得られる捲縮を固定し、かつポリマー複合によって得られる捲縮の発現力を損なわないためには、加撚領域にのみヒーターを配置する1ヒーター法を用いることが好ましい。 The false twist temperature here means the temperature of the heater installed in the twisting area. By setting the false-twisting temperature within this range, it is possible to sufficiently fix the structure of the polymer that has been greatly twisted and deformed within the cross section of the conjugate fiber. Good quality textiles can be obtained. In order to fix the crimps obtained in the twisting step and not to impair the crimp development force obtained by polymer compositing, it is preferable to use a one-heater method in which a heater is arranged only in the twisting region.
 以下、実施例を挙げて、本発明の複合繊維束について具体的に説明する。
 実施例および比較例については下記の評価を行った。
Hereinafter, the composite fiber bundle of the present invention will be specifically described with reference to examples.
Examples and comparative examples were evaluated as follows.
 A.ポリマーの溶融粘度
 チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、窒素雰囲気下で加熱炉にサンプルを投入してから測定開始までを5分とし、せん断速度1216s-1の値をポリマーの溶融粘度として評価した。
A. Melt Viscosity of Polymer Chip-shaped polymer was adjusted to a moisture content of 200 ppm or less by a vacuum dryer, and the melt viscosity was measured by changing the strain rate stepwise by Toyo Seiki Capillograph. The measurement temperature was the same as the spinning temperature, the sample was placed in the heating furnace under a nitrogen atmosphere and the measurement was started in 5 minutes.
 B.ポリマーの融点
 チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、約5mgを秤量し、TAインスツルメント製示差走査熱量計(DSC)Q2000型を用いて、0℃から300℃まで昇温速度16℃/分で昇温後、300℃で5分間保持してDSC測定を行った。昇温過程中に観測された融解ピークより融点を算出した。測定は1試料につき3回行い、その平均値を融点とした。なお、融解ピークが複数観測された場合には、最も高温側の融解ピークトップを融点とした。
B. Melting point of polymer A chip-shaped polymer is made to have a moisture content of 200 ppm or less by a vacuum dryer, and about 5 mg is weighed and heated from 0 ° C. to 300 ° C. using a differential scanning calorimeter (DSC) Q2000 manufactured by TA Instruments. After the temperature was raised at a temperature rate of 16°C/min, the DSC measurement was performed after holding at 300°C for 5 minutes. The melting point was calculated from the melting peak observed during the heating process. The measurement was performed three times for each sample, and the average value was taken as the melting point. When multiple melting peaks were observed, the melting peak top on the highest temperature side was taken as the melting point.
 C.繊度
 100mの複合繊維束の重量を測定し、その値を100倍した値を算出した。この動作を10回繰り返し、その平均値の小数点第2位を四捨五入した値を繊度(dtex)とした。
C. The weight of a composite fiber bundle having a fineness of 100 m was measured, and the value multiplied by 100 was calculated. This operation was repeated 10 times, and the value obtained by rounding off the average value to the second decimal place was used as the fineness (dtex).
 D.扁平度
 複合繊維束をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面をHITACHI製走査型電子顕微鏡(SEM)で10本以上の複合繊維が観察できる倍率として画像を撮影した。撮影された画像から無作為に抽出した1本の複合繊維を、画像解析ソフトを用いて解析し、図1の(a)に示すように複合繊維の外周上の任意の点のうち最も距離が離れた2点(a1、a2)を結んだ直線を長軸とし、長軸の中点を通って長軸と直交する直線と繊維外周の交点(b1、b2)を結んだ直線を短軸として、長軸の長さを短軸の長さで割り返した値を算出し、得られた値を扁平度とした。これを同一画像内で無作為に抽出した複合繊維10本について同様に行った結果の単純な数平均を求め、小数点第2位で四捨五入した値を扁平度の平均値とした。また、扁平度を求めた複合繊維のうち、最も大きい値から最も小さい値を引いた値を求め、小数点第2位で四捨五入した値を扁平度の最大値と最小値の差とした。
D. Flatness The conjugate fiber bundle is embedded in an embedding agent such as epoxy resin, and the cross section of the fiber in the direction perpendicular to the fiber axis is observed with a scanning electron microscope (SEM) manufactured by HITACHI as a magnification at which 10 or more conjugate fibers can be observed. I took the image. One composite fiber randomly extracted from the photographed image is analyzed using image analysis software, and as shown in FIG. A straight line connecting two distant points (a1, a2) is taken as the long axis, and a straight line passing through the midpoint of the long axis and perpendicular to the long axis is taken as the short axis, and a straight line joining the intersection points (b1, b2) of the outer circumference of the fiber is taken. , the value obtained by dividing the length of the long axis by the length of the short axis was calculated, and the obtained value was taken as the flatness. A simple numerical average of the results of 10 conjugate fibers randomly extracted from the same image was obtained, and the value rounded to the second decimal place was used as the average flatness value. In addition, among the conjugate fibers for which the flatness was obtained, the value obtained by subtracting the smallest value from the largest value was obtained, and the value was rounded off to the second decimal place as the difference between the maximum flatness value and the minimum flatness value.
 E.繊維径
 複合繊維束をエポキシ樹脂などの包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面を走査型電子顕微鏡(SEM)で10本以上の複合繊維が観察できる倍率として画像を撮影した。撮影された画像から無作為に抽出した1本の複合繊維の面積を測定し、真円換算で求められる直径をμm単位で小数点1桁目まで測定した。上記と同一画像内で無作為に抽出した10本の複合繊維について同様に行った結果の単純な数平均を求め、小数点第1位を四捨五入した値を繊維径(μm)とした。
E. Fiber diameter A composite fiber bundle is embedded in an embedding agent such as epoxy resin, and the cross section of the fiber in the direction perpendicular to the fiber axis is observed with a scanning electron microscope (SEM) as a magnification at which 10 or more composite fibers can be observed. I took a picture. The area of one conjugate fiber randomly extracted from the photographed image was measured, and the diameter obtained in terms of a perfect circle was measured in μm to the first decimal place. A simple number average of the results obtained in the same manner for 10 conjugate fibers randomly extracted from the same image as above was obtained, and the value rounded to the first decimal place was taken as the fiber diameter (μm).
 F.(ポリマー重心間距離/繊維径)の変動係数CV
 複合繊維束からなるテキスタイルにおいて、テキスタイルの長さ方向に垂直かつ複合繊維の繊維軸方向に垂直なテキスタイル断面をHITACHI製走査型電子顕微鏡(SEM)で20本以上の複合繊維が観察できる倍率として画像を撮影した。撮影された画像から無作為に抽出した1本の複合繊維をコンピューターソフトウェアの三谷商事製WinROOFを用いて解析することで、複合繊維の面積を測定し、真円換算で求められる直径をμm単位で小数点1桁目まで測定した。得られた値を繊維径(μm)とした。
F. Variation coefficient CV of (distance between center of gravity of polymer/fiber diameter)
In a textile consisting of a bundle of conjugated fibers, the cross section of the textile perpendicular to the length direction of the textile and perpendicular to the fiber axis direction of the conjugated fiber is imaged with a scanning electron microscope (SEM) manufactured by HITACHI as a magnification that allows observation of 20 or more conjugated fibers. was photographed. By analyzing one composite fiber randomly extracted from the photographed image using the computer software WinROOF manufactured by Mitani Shoji, the area of the composite fiber is measured, and the diameter obtained in terms of a perfect circle is measured in μm. Measured to the first decimal place. The obtained value was taken as the fiber diameter (μm).
 また、上記と同じ複合繊維について、図2の(a)に示すように複合繊維の断面における低融点ポリマーxと高融点ポリマーyのそれぞれの重心(Gx,Gy)を結んだ直線の長さをμm単位で小数点1桁目まで測定した。得られた値をポリマー重心間距離(μm)とした。 Further, for the same conjugate fiber as above, the length of a straight line connecting the respective centers of gravity (Gx, Gy) of the low melting point polymer x and the high melting point polymer y in the cross section of the conjugate fiber as shown in FIG. It was measured in units of μm to the first decimal place. The obtained value was defined as the distance between polymer centers of gravity (μm).
 上記で得られた繊維径とポリマー重心間距離について、その比(ポリマー重心間距離/繊維径)の単純な数平均を算出し、小数点1桁目で四捨五入した値を(ポリマー重心間距離/繊維径)とした。この評価を同じ画像の中から無作為に抽出した複合繊維20本(図5中の(1)~(20))について同様に行った結果の標準偏差と平均値を求め、標準偏差を平均値で割り返して100を掛けた値を算出し、小数点以下を四捨五入した。得られた値を、(ポリマー重心間距離/繊維径)の値の変動係数CV(%)とした。 For the fiber diameter and the polymer center-of-gravity distance obtained above, a simple number average of the ratio (polymer center-of-gravity distance/fiber diameter) is calculated, and the value rounded to the first decimal place is calculated as (polymer center-of-gravity distance/fiber diameter). This evaluation was performed in the same manner for 20 composite fibers ((1) to (20) in FIG. 5) randomly extracted from the same image, and the standard deviation and average value of the results were obtained. The value was calculated by dividing by and multiplying by 100, and rounded off to the nearest whole number. The obtained value was defined as the coefficient of variation CV (%) of the value of (distance between polymer centers of gravity/fiber diameter).
 G.捲縮山数(山/cm)
 複合繊維束からなるテキスタイルにおいて、テキスタイルから複合繊維を塑性変形させないように抜き出し、複合繊維の片方の末端を固定し、もう片方の末端に1mg/dtexの荷重をかけて30秒間以上経過後に、複合繊維の繊維軸方向へ2点間の距離が1cmとなる任意の箇所にマーキングを施した。その後、複合繊維を塑性変形させないように予めつけておいたマーキングの間が元の1cmとなるように調整してスライドガラス上に固定し、このサンプルをデジタルマイクロスコープにて1cmのマーキングが観察できる倍率で画像を撮影した。撮影した画像において複合繊維が図6のような捲縮形態を有していた場合には、マーキング間に存在する捲縮の山数を求めた。この動作を複合繊維10本について行った結果の単純な数平均を求め、小数点第1位で四捨五入した値を捲縮山数(山/cm)とした。
G. Number of crimp threads (peak/cm)
In a textile made of a conjugate fiber bundle, the conjugate fiber is extracted from the textile so as not to be plastically deformed, one end of the conjugate fiber is fixed, and a load of 1 mg / dtex is applied to the other end for 30 seconds or more. Marking was performed at an arbitrary point where the distance between two points in the fiber axis direction of the fiber was 1 cm. After that, the sample was fixed on a slide glass after adjustment so that the distance between the markings made in advance was 1 cm so as not to plastically deform the composite fiber, and the 1 cm marking of this sample could be observed with a digital microscope. Images were taken at magnification. When the composite fiber had a crimped form as shown in FIG. 6 in the photographed image, the number of crimped crimps existing between the markings was obtained. A simple numerical average of the results obtained by performing this operation on 10 composite fibers was obtained, and the value rounded to the first decimal place was taken as the number of crimp crests (crests/cm).
 H.製糸安定性
 各実施例および比較例についての製糸を行い、1千万m当たりの糸切れ回数(回/千万m)から製糸安定性をそれぞれ次の基準に基づき4段階判定した。
S:優れた製糸安定性(糸切れ回数<1.0)
A:良好な製糸安定性(1.0≦糸切れ回数<2.0)
B:製糸安定性がある(2.0≦糸切れ回数<3.0)
C:製糸安定性に劣る(3.0≦糸切れ回数)。
H. Spinning Stability Spinning was carried out for each of the examples and comparative examples, and the spinning stability was evaluated in four stages based on the following criteria based on the number of yarn breakages per 10 million m (times/10 million m).
S: Excellent spinning stability (number of yarn breaks <1.0)
A: Good spinning stability (1.0 ≤ number of yarn breaks <2.0)
B: Stable spinning (2.0 ≤ number of yarn breaks < 3.0)
C: Inferior in reeling stability (3.0 ≤ number of thread breaks).
 I.テキスタイル風合い評価(ふくらみ感、反発感、さらっと感)
 経糸方向のカバーファクター(CFA)が800、緯糸方向のカバーファクター(CFB)が1200となるように複合繊維の本数を調整し、3/1ツイル織物を作成した。
 ただし、ここで言うCFAおよびCFBとは、織物の経密度および緯密度をJIS-L-1096:2010 8.6.1に準じて2.54cmの区間にて測定し、CFA=経密度×(経糸の繊度)1/2、CFB=緯密度×(緯糸の繊度)1/2の式より求めた値である。得られた織物について、以下の条件の精練、リラックス処理、熱セットをこの順で行った後、以下の手法を用いてふくらみ感、反発感、さらっと感の3つの風合いを評価した。
I. Textile texture evaluation (fluffiness, resilience, smoothness)
The number of conjugated fibers was adjusted so that the cover factor (CFA) in the warp direction was 800 and the cover factor (CFB) in the weft direction was 1,200 to prepare a 3/1 twill fabric.
However, the CFA and CFB referred to here are the warp and weft densities of the fabric measured in a 2.54 cm section according to JIS-L-1096: 2010 8.6.1, and CFA = Warp × ( It is a value obtained from the formula: warp fineness) 1/2 , CFB = weft density x (weft fineness) 1/2 . The resulting woven fabric was subjected to scouring, relaxation treatment, and heat setting under the following conditions in this order, and then evaluated for three textures, ie, bulging feel, rebound feel, and dry feel, using the following methods.
 (精練・湿熱処理・熱セット)
 界面活性剤を含む80℃の温水中で10分間精練をおこなったのち、130℃の温水中で30分間のリラックス処理を行った。次いで、180℃、5分の条件にて、熱セットをおこなった。
(scouring, wet heat treatment, heat setting)
After scouring for 10 minutes in 80°C warm water containing a surfactant, relaxation treatment was performed in 130°C warm water for 30 minutes. Then, heat setting was performed at 180° C. for 5 minutes.
 I-1.ふくらみ感
 テロテック製定圧厚さ測定器(PG-14J)を用いて、20cm×20cmの織物の厚み(cm)を一定圧力下(0.7kPa)で測定し、織物の体積を算出した。次いで、該織物の重量(g)を得られた体積で除した値を求め、小数点第2位を四捨五入した値を織物の見掛け密度(g/cm)とした。得られた見掛け密度からふくらみ感をそれぞれ次の基準に基づき4段階判定した。
S:優れたふくらみ感(見掛け密度≦0.5)
A:良好なふくらみ感(0.5<見掛け密度≦0.8)
B:ふくらみ感がある(0.8<見掛け密度≦1.1)
C:ふくらみ感に劣る(1.1<見掛け密度)。
I-1. Puffiness Using a Telotech constant pressure thickness gauge (PG-14J), the thickness (cm) of a 20 cm×20 cm fabric was measured under a constant pressure (0.7 kPa) to calculate the volume of the fabric. Next, the value obtained by dividing the weight (g) of the fabric by the obtained volume was obtained, and the value rounded off to the second decimal place was taken as the apparent density (g/cm 3 ) of the fabric. Based on the obtained apparent density, the bulging feeling was evaluated in four stages according to the following criteria.
S: excellent swelling feeling (apparent density ≤ 0.5)
A: good swelling feeling (0.5 < apparent density ≤ 0.8)
B: There is a swelling feeling (0.8 < apparent density ≤ 1.1)
C: Poor swelling feeling (1.1<apparent density).
 I-2.反発感
 カトーテック製純曲げ試験機(KES-FB2)を用いて、20cm×20cmの織物を有効試料長20cm×1cmで把持し、緯糸方向に曲げたときの、曲率±1.0cm-1におけるヒステリシスの幅(gf・cm/cm)を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点第4位を四捨五入した後に100で割った値を曲げ回復2HB×10-2(gf・cm/cm)とした。得られた曲げ回復2HB×10-2から反発感をそれぞれ次の基準に基づき4段階判定した。
S:優れた反発感(曲げ回復2HB×10-2≦0.8)
A:良好な反発感(0.8<曲げ回復2HB×10-2≦1.5)
B:反発感がある(1.5<曲げ回復2HB×10-2≦2.5)
C:反発感に劣る(2.5<曲げ回復2HB×10-2)。
I-2. Feeling of repulsion Using a pure bending tester (KES-FB2) manufactured by Kato Tech, a 20 cm × 20 cm fabric is held with an effective sample length of 20 cm × 1 cm and bent in the weft direction, at a curvature of ± 1.0 cm -1 The hysteresis width (gf·cm/cm) was calculated. This operation is performed 3 times per location, and a simple number average of the results of performing this operation for a total of 10 locations is obtained.・cm/cm). Based on the obtained bending recovery 2HB×10 −2 , the feeling of resilience was evaluated in four stages according to the following criteria.
S: Excellent resilience (bending recovery 2HB × 10 -2 ≤ 0.8)
A: good resilience (0.8<bending recovery 2HB×10 −2 ≦1.5)
B: There is a sense of repulsion (1.5<bending recovery 2HB×10 −2 ≦2.5)
C: Poor resilience (2.5<bending recovery 2HB×10 −2 ).
 I-3.さらっと感
 カトーテック製自動化表面試験機(KES-FB4)を用いて、20cm×20cmの織物の10cm×10cmの範囲をピアノ線で巻かれた1cm×1cmの端子に50gの荷重をかけて、1.0mm/secの速さで滑らすことで平均摩擦係数の変動MMDを求めた。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果について単純な数平均を求め、小数点第4位を四捨五入した値を摩擦変動(×10-2)とした。得られた摩擦変動からさらっと感を次の基準に基づき4段階判定した。
S:優れたさらっと感(1.5≦摩擦変動)
A:良好なさらっと感(1.2≦摩擦変動<1.5)
B:さらっと感がある(0.9≦摩擦変動<1.2)
C:さらっと感に劣る(摩擦変動<0.9)。
I-3. Smooth feeling Using Kato Tech's automated surface tester (KES-FB4), a 10 cm x 10 cm range of a 20 cm x 20 cm fabric was wrapped with a piano wire, and a 1 cm x 1 cm terminal was applied with a load of 50 g. The variation MMD of the average coefficient of friction was determined by sliding at a speed of 1.0 mm/sec. This operation was performed three times per location, and a simple number average was obtained for the results of performing this operation for a total of 10 locations . Based on the obtained frictional fluctuations, the dry feeling was evaluated in four stages based on the following criteria.
S: excellent smooth feeling (1.5 ≤ friction variation)
A: Good smooth feeling (1.2 ≤ friction variation <1.5)
B: Smooth feeling (0.9≦friction variation<1.2)
C: Inferior in dry feeling (friction variation <0.9).
 J.テキスタイル機能評価(吸水速乾性、ストレッチ性)
 経糸方向のカバーファクター(CFA)が800、緯糸方向のカバーファクター(CFB)が1200となるように複合繊維の本数を調整し、3/1ツイル織物を作成した。ただし、ここで言うCFAおよびCFBとは、織物の経密度および緯密度をJIS-L-1096:2010 8.6.1に準じて2.54cmの区間にて測定し、CFA=経密度×(経糸の繊度)1/2、CFB=緯密度×(緯糸の繊度)1/2の式より求めた値である。得られた織物について、精練、湿熱処理、アルカリ処理、熱セットをこの順で行った後、以下の手法を用いて吸水速乾性、ストレッチ性の2つの機能を評価した。なお、精練、リラックス処理、熱セットは、テキスタイル風合い評価で行った条件と同様に行い、アルカリ処理は、以下の条件によって行った。
J. Textile function evaluation (water absorption and quick drying, stretchability)
The number of conjugated fibers was adjusted so that the cover factor (CFA) in the warp direction was 800 and the cover factor (CFB) in the weft direction was 1,200 to prepare a 3/1 twill fabric. However, the CFA and CFB referred to here are the warp and weft densities of the fabric measured in a 2.54 cm section according to JIS-L-1096: 2010 8.6.1, and CFA = Warp × ( It is a value obtained from the formula: warp fineness) 1/2 , CFB = weft density x (weft fineness) 1/2 . The resulting woven fabric was subjected to scouring, wet heat treatment, alkali treatment and heat setting in this order, and then evaluated for two functions of water absorption and quick drying and stretchability using the following methods. The scouring, relaxation treatment, and heat setting were performed under the same conditions as in the textile feel evaluation, and the alkali treatment was performed under the following conditions.
 (アルカリ処理)
 濃度0.5~2質量%の水酸化ナトリウム水溶液に、温度90℃、30分間浸漬させた。
(alkali treatment)
It was immersed in an aqueous sodium hydroxide solution with a concentration of 0.5 to 2% by mass at a temperature of 90° C. for 30 minutes.
 J-1.吸水速乾性
 吸水速乾性は、10cm×10cmの織物に水を0.1cc滴下後、温度20度で相対湿度65RH%の環境下で、5分ごとに織物の重量を測定し、残留水分率が1.0%以下となる時間(分)を求めた。この動作を合計3箇所について行った結果の単純な数平均を求め、小数点以下を四捨五入した値を水分拡散時間(分)とした。得られた水分拡散時間から吸水速乾性をそれぞれ次の基準に基づき3段階判定した。
S:優れた吸水速乾性(水分拡散時間≦15)
A:良好な吸水速乾性(15<水分拡散時間≦30)
C:吸水速乾性に劣る(30<水分拡散時間)。
J-1. Water absorption and quick drying After 0.1 cc of water is dropped on a 10 cm x 10 cm fabric, the weight of the fabric is measured every 5 minutes in an environment with a temperature of 20 degrees and a relative humidity of 65 RH%. The time (minutes) at which the content becomes 1.0% or less was determined. A simple numerical average of the results obtained by performing this operation at a total of three locations was obtained, and the value obtained by rounding off the decimal point was taken as the moisture diffusion time (minute). Based on the obtained moisture diffusion time, the water absorption and quick drying properties were evaluated in three stages based on the following criteria.
S: Excellent water absorption and quick drying (moisture diffusion time ≤ 15)
A: Good water absorption and quick drying (15 < water diffusion time ≤ 30)
C: Inferior in water absorption and quick drying (30<moisture diffusion time).
 J-2.ストレッチ性
 ストレッチ性は、JIS-L-1096:2010の第8.16.1項に記載の伸び率A法(定速伸長法)に準じて行った。なお、ストリップ法の17.6N(1.8kg)荷重時を採用し、試験条件は、サンプル幅5cm×長さ20cm、クランプ間隔10cm、引張速度20cm/分とした。また、初荷重は、JIS-L-1096:2010の方法に準じて、試料幅1m相当の重さを使用した。織物のヨコ方向に試験を3回行った結果の単純な数平均を求め、小数点以下を四捨五入した値を伸長率(%)とした。得られた伸長率からストレッチ性をそれぞれ次の基準に基づき3段階判定した。
S:優れたストレッチ性(20≦伸長率)
A:良好なストレッチ性(5≦伸長率<20)
C:ストレッチ性に劣る(伸長率<5)。
J-2. Stretchability Stretchability was measured according to the elongation rate A method (constant speed elongation method) described in JIS-L-1096:2010, Section 8.16.1. A 17.6 N (1.8 kg) load of the strip method was adopted, and the test conditions were a sample width of 5 cm x length of 20 cm, a clamp interval of 10 cm, and a tensile speed of 20 cm/min. Also, as the initial load, a weight corresponding to a sample width of 1 m was used according to the method of JIS-L-1096:2010. A simple number average of the results of three tests in the horizontal direction of the fabric was obtained, and the value rounded off to the nearest whole number was taken as the elongation rate (%). Based on the obtained elongation rate, the stretchability was evaluated in three stages based on the following criteria.
S: Excellent stretchability (20 ≤ elongation rate)
A: Good stretchability (5 ≤ elongation rate < 20)
C: Poor stretchability (elongation ratio <5).
 K.テキスタイル品位評価(外観品位)
 経糸方向のカバーファクター(CFA)が800、緯糸方向のカバーファクター(CFB)が1200となるように複合繊維の本数を調整し、3/1ツイル織物を作成した。ただし、ここで言うCFAおよびCFBとは、織物の経密度および緯密度をJIS-L-1096:2010 8.6.1に準じて2.54cmの区間にて測定し、CFA=経密度×(経糸の繊度)1/2、CFB=緯密度×(緯糸の繊度)1/2の式より求めた値である。
K. Textile quality evaluation (appearance quality)
The number of conjugated fibers was adjusted so that the cover factor (CFA) in the warp direction was 800 and the cover factor (CFB) in the weft direction was 1,200 to prepare a 3/1 twill fabric. However, the CFA and CFB referred to here are the warp and weft densities of the fabric measured in a 2.54 cm section according to JIS-L-1096: 2010 8.6.1, and CFA = Warp × ( It is a value obtained from the formula: warp fineness) 1/2, CFB = weft density x (weft fineness) 1/2.
 得られた織物について、テキスタイル風合い評価と同様の条件で精練、リラックス処理、熱セットを行った。その後、村上色彩技術研究所製自動変角光度計(GONIOPHOTOMETER GP―200型)を用いて、入射角60°で各サンプルに光を入射し、0.1°毎に受光角0°~90°での光強度を二次元反射光分布測定にて求め、受光角60°付近における最大光強度(鏡面反射)を受光角0°付近における最小光強度(拡散反射)で割った値を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点第2位を四捨五入した値をギラツキ度とした。得られたギラツキ度からテキスタイルの外観品位を次の基準に基づき4段階判定した。
S:優れた外観品位(ギラツキ度<2.0)
A:良好な外観品位(2.0≦ギラツキ度<2.5)
B:外観品位がある(2.5≦ギラツキ度<3.0)
C:外観品位に劣る(3.0≦ギラツキ度)。
The obtained woven fabric was subjected to scouring, relaxation treatment, and heat setting under the same conditions as those used for textile texture evaluation. After that, using an automatic variable angle photometer (GONIOPHOTOMETER GP-200 type) manufactured by Murakami Color Research Laboratory, light was incident on each sample at an incident angle of 60 °, and the light receiving angle was 0 ° to 90 ° for every 0.1 °. was determined by two-dimensional reflected light distribution measurement, and a value was calculated by dividing the maximum light intensity (specular reflection) near the light receiving angle of 60° by the minimum light intensity (diffuse reflection) near the light receiving angle of 0°. This operation was performed 3 times per location, and a simple numerical average of the results of performing this operation for a total of 10 locations was obtained, and the value rounded to the second decimal place was taken as the degree of glare. Based on the degree of glare obtained, the appearance quality of the textile was evaluated in four stages based on the following criteria.
S: excellent appearance quality (glare degree <2.0)
A: Good appearance quality (2.0 ≤ glare degree <2.5)
B: Good appearance quality (2.5 ≤ glare degree <3.0)
C: Inferior in appearance quality (3.0≦glare degree).
 L.耐摩耗性
 経糸方向のカバーファクター(CFA)が1100、緯糸方向のカバーファクター(CFB)が1100となるように複合繊維の本数を調整し、平織物を作成した。得られた平織物について、分散染料Sumikaron Black S-3B(10%owf)を用いて黒色に染色した。染色後の平織物を直径10cmの円形に切り出し、蒸留水で湿潤させて円盤に取り付けた。更に30cm角に切り出した平織物を乾いたまま水平の板の上に固定した。蒸留水で湿潤させた織物が取り付けられた円盤を水平な板の上に固定された織物に対して水平に接触させ、円盤の中心が直径10cmの円を描くように、荷重420g、速度50rpmで10分間円盤を円運動させ、2枚の織物を摩擦させた。摩擦終了後4時間放置してから、円盤に取り付けた織物の変褪色の程度を、変褪色用グレースケールを用い、0.5級刻みで1~5級の級判定を実施した。得られた級判定の結果から耐摩耗性を次の基準に基づき4段階判定した。
S:優れた耐摩耗性(級判定:4.5級以上)
A:良好な耐摩耗性(級判定:3.5級、4級)
B:良好な耐摩耗性(級判定:2.5級、3級)
C:耐摩耗性に劣る(級判定:2級以下)。
L. Abrasion Resistance The number of conjugate fibers was adjusted so that the cover factor (CFA) in the warp direction was 1,100 and the cover factor (CFB) in the weft direction was 1,100 to prepare a plain weave fabric. The resulting plain weave fabric was dyed black using a disperse dye Sumikaron Black S-3B (10% owf). A circle of 10 cm in diameter was cut from the dyed plain weave, moistened with distilled water and attached to a disc. Furthermore, the plain fabric cut into 30 cm squares was fixed on a horizontal plate while dry. A disc on which the fabric moistened with distilled water is attached is brought into horizontal contact with the fabric fixed on a horizontal plate so that the center of the disc draws a circle with a diameter of 10 cm, with a load of 420 g and a speed of 50 rpm. The disc was circularly moved for 10 minutes to rub the two fabrics. After leaving for 4 hours after the end of rubbing, the degree of discoloration of the fabric attached to the disk was evaluated using a discoloration gray scale, grades 1 to 5 in increments of 0.5 grade. Based on the results of the grade judgment obtained, the wear resistance was judged in four grades based on the following criteria.
S: Excellent wear resistance (grade judgment: grade 4.5 or higher)
A: Good wear resistance (class judgment: 3.5 grade, 4 grade)
B: Good wear resistance (class judgment: 2.5 grade, 3 grade)
C: Inferior to abrasion resistance (grade judgment: grade 2 or lower).
 [実施例1]
 ポリマー1としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー2としてポリエチレンテレフタレート(PET、溶融粘度:130Pa・s、融点:254℃)を準備した。
[Example 1]
Polyethylene terephthalate (IPA copolymer PET, melt viscosity: 140 Pa s, melting point: 232° C.) obtained by copolymerizing 7 mol % of isophthalic acid as polymer 1, and polyethylene terephthalate (PET, melt viscosity: 130 Pa s, melting point: 254° C.) as polymer 2. °C) was prepared.
 これらのポリマーを290℃で別々に溶融後、ポリマー1/ポリマー2を複合断面における面積比が50/50となるように計量した。次いで、上記のポリマーを、図7に示した複合口金が組み込まれた紡糸パックに流入させ、図1の(a)に示すような扁平状かつポリマー1とポリマー2がサイドバイサイド型に接合された複合断面であって、複合繊維毎の接合面方向が変化する(図4の6種は当該複合断面の一例)よう、吐出孔から流入ポリマーを吐出した。 After melting these polymers separately at 290°C, polymer 1/polymer 2 was weighed so that the area ratio in the composite cross section was 50/50. Next, the above polymer is flowed into a spinning pack incorporating a composite spinneret shown in FIG. The inflow polymer was discharged from the discharge hole so that the cross section and the joint surface direction of each composite fiber changed (6 types in FIG. 4 are examples of the composite cross section).
 吐出された複合ポリマー流を冷却固化後、油剤を付与し、紡糸速度1500m/minで巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、84dtex-36フィラメント(繊維径15μm)の複合繊維束を製糸した。このときの糸切れ回数は1.5回/千万mであり、良好な製糸安定性であった。 After cooling and solidifying the discharged composite polymer flow, an oil agent is applied, wound at a spinning speed of 1500 m / min, and drawn between rollers heated to 90 ° C. and 130 ° C. to obtain 84 dtex-36 filament (fiber diameter 15 μm ) was spun into a composite fiber bundle. At this time, the number of yarn breakages was 1.5 times/10 million m, indicating good spinning stability.
 得られた複合繊維束を構成する複合繊維は全て扁平状の断面形状を有しており、複合繊維間での扁平度の平均値は1.8、扁平度の最大値と最小値の差は0.1であった。また複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVは18%であり、本実施形態の複合繊維束であることが確認できた。 All of the conjugate fibers constituting the obtained conjugate fiber bundle had a flattened cross-sectional shape, the average flatness value among the conjugate fibers was 1.8, and the difference between the maximum and minimum flatness values was was 0.1. Also, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) between conjugate fibers was 18%, confirming that the conjugate fiber bundle of the present embodiment was obtained.
 得られた複合繊維束を製織し、80℃での精練処理および130℃での湿熱処理を施した後、180℃で熱セットを加えることで、複合繊維の捲縮山数が18山/cmの捲縮形態を有する複合繊維束からなる織物を得た。 The obtained conjugate fiber bundle is woven, subjected to scouring treatment at 80°C and wet heat treatment at 130°C, and then heat setting at 180°C, whereby the number of crimp crests of the conjugate fiber is 18 crests/cm. A woven fabric composed of composite fiber bundles having a crimped form of .
 該複合繊維束からなる織物は、捲縮位相が部分的に揃うことで発現したテキスタイル表面の凹凸により、生地表面を触った際には摩擦変動が大きいことに起因したさらっとした触感(摩擦変動:1.3×10-2)を発現した。さらに、該複合繊維束からなる織物は、複合繊維間では複雑な空隙が生まれ、適度な反発感(曲げ回復2HB:1.1×10-2gf・cm/cm)やふくらみ(見掛け密度:0.8g/cm)のある風合いを有しつつ、優れたストレッチ性(伸長率:18%)や複合繊維間に空隙が形成したことによる吸水速乾性(水分拡散時間:25分)を有していた。したがって、該複合繊維束からなる織物は、人の着心地に直結する風合いや機能を両立した着用快適性に優れた織物であった。 The woven fabric made of the conjugate fiber bundle has a dry feel (friction fluctuation : 1.3×10 −2 ). Furthermore, in the fabric composed of the composite fiber bundle, complex voids are generated between the composite fibers, and a moderate rebound feeling (bending recovery 2HB: 1.1 × 10 -2 gf cm / cm) and swelling (apparent density: 0 .8 g/cm 3 ), it has excellent stretchability (elongation rate: 18%) and water absorption and quick drying due to the voids formed between the composite fibers (moisture diffusion time: 25 minutes). was Therefore, the woven fabric composed of the conjugate fiber bundle was a woven fabric excellent in wearing comfort, having both a texture and functions directly related to wearing comfort of the wearer.
 さらに織物外観においては、複合繊維間に空隙が形成したことによる光の乱反射で外観ムラ(ギラツキ)が抑制され、良好な外観品位(ギラツキ度:2.4)を有していた。また複合繊維がポリエチレンテレフタレートおよびその共重合体からなることで、ポリマー起因でのフィブリル化による変褪色もない良好な耐摩耗性(4級)も有するといった、衣料用テキスタイルに適した特性を有していることも分かった。上記の結果を表1に示す。 Furthermore, in terms of the appearance of the woven fabric, irregular reflection of light due to the formation of voids between the conjugate fibers suppressed appearance unevenness (glare), and had a good appearance quality (glare degree: 2.4). In addition, since the composite fiber is made of polyethylene terephthalate and its copolymer, it has good wear resistance (4th grade) that does not cause discoloration due to fibrillation caused by the polymer, and has properties suitable for clothing textiles. I also found out that Table 1 shows the above results.
 [比較例1]
 複合繊維束を構成する全ての複合繊維において、複合繊維毎の接合面方向の変化をなしとした以外は全て実施例1に従い実施した。
[Comparative Example 1]
All the conjugate fibers constituting the conjugate fiber bundle were carried out according to Example 1, except that the direction of the joint surface of each conjugate fiber was not changed.
 比較例1においては、(ポリマー重心間距離/繊維径)の値の変動係数CVが0%であったため、複合繊維束を構成する全ての複合繊維が同一の捲縮形態を発現し、捲縮位相が揃った複合繊維束となった。そのため、テキスタイル表面の凹凸感が小さく、さらっと感に欠けることに加えて、複合繊維間の空隙も小さく、ふくらみ感にも欠けるものであった。結果を表1に示す。 In Comparative Example 1, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) was 0%, so that all the conjugate fibers constituting the conjugate fiber bundle exhibited the same crimped form. A phase-aligned composite fiber bundle was obtained. As a result, the texture of the textile surface is small, lacking a dry feel, and the voids between the conjugate fibers are also small, resulting in a lack of a bulging feel. Table 1 shows the results.
 [比較例2]
 ポリマー1をポリマー2と同じPETに変更し、延伸後に加工速度を250m/分、延伸倍率を1.05倍としたローラー間で、180℃に設定したヒーターにて加熱しながら、フリクションディスクを用い、仮撚数が3000T/mとなるような回転数にて仮撚加工を施した以外は全て比較例1に従い実施した。
[Comparative Example 2]
Polymer 1 was changed to the same PET as polymer 2, and after stretching, the processing speed was 250 m / min, and the stretching ratio was 1.05 times between rollers, while heating with a heater set to 180 ° C., using a friction disk. , was carried out according to Comparative Example 1 except that false twisting was performed at a number of revolutions such that the number of false twists was 3000 T/m.
 比較例2においては、同一のポリマーからなる複合繊維としたため、複合繊維束を構成するすべての複合繊維が均一な捲縮形態を発現した。そのため、テキスタイル表面の凹凸は単調となり、さらっと感に欠けるものであった。結果を表1に示す。 In Comparative Example 2, since the conjugated fibers were made of the same polymer, all the conjugated fibers constituting the conjugated fiber bundle developed a uniform crimped shape. Therefore, unevenness on the surface of the textile becomes monotonous and lacks a smooth feeling. Table 1 shows the results.
 [比較例3]
 ポリマー1としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー2としてポリエチレンテレフタレート(PET、溶融粘度:130Pa・s、融点:254℃)を準備した。
[Comparative Example 3]
Polyethylene terephthalate (IPA copolymer PET, melt viscosity: 140 Pa s, melting point: 232° C.) obtained by copolymerizing 7 mol % of isophthalic acid as polymer 1, and polyethylene terephthalate (PET, melt viscosity: 130 Pa s, melting point: 254° C.) as polymer 2. °C) was prepared.
 これらのポリマーを290℃で別々に溶融後、複合断面における面積比が50/50となるように計量して、図3に示すような丸断面かつポリマー1とポリマー2がサイドバイサイド型に接合された複合断面となるように、吐出孔から流入ポリマーを吐出した。このとき複合繊維束が繊維径の異なる2種類の複合繊維で構成されるよう、各吐出孔の吐出量を調整した。 After melting these polymers separately at 290° C., they were weighed so that the area ratio in the composite cross section was 50/50, and polymer 1 and polymer 2 were bonded side-by-side with a round cross section as shown in FIG. The inflow polymer was discharged from the discharge hole so as to form a composite cross section. At this time, the discharge amount of each discharge hole was adjusted so that the composite fiber bundle was composed of two types of composite fibers having different fiber diameters.
 吐出された複合ポリマー流を冷却固化後、油剤を付与し、紡糸速度1500m/minで巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、84dtex-36フィラメント(繊維径14μm(最小値:11μm(18フィラメント)、最大値:17μm(18フィラメント)))の複合繊維束を製造した。ここでの複合繊維束の繊維径は、(最小値+最大値)/2で算出した。
 得られた複合繊維束を製織し、80℃での精練処理および130℃での湿熱処理を施した後、180℃で熱セットを加えることで、上記複合繊維束で構成される織物を得た。
After cooling and solidifying the discharged composite polymer flow, an oil agent is applied, wound at a spinning speed of 1500 m / min, and drawn between rollers heated to 90 ° C. and 130 ° C. to obtain 84 dtex-36 filament (fiber diameter 14 μm (minimum value: 11 μm (18 filaments), maximum value: 17 μm (18 filaments))). The fiber diameter of the composite fiber bundle here was calculated by (minimum value+maximum value)/2.
The resulting conjugate fiber bundle was woven, subjected to scouring treatment at 80°C and wet heat treatment at 130°C, and then heat-set at 180°C to obtain a fabric composed of the conjugate fiber bundle. .
 比較例3においては、(ポリマー重心間距離/繊維径)の値の変動係数CVが0%であるため、複合繊維束を構成する複合繊維間で同一の捲縮発現力を示し、捲縮位相が揃った複合繊維束となった。そのため、テキスタイル表面の凹凸感が小さく、さらっと感に欠けることに加えて、複合繊維間の空隙も小さく、ふくらみ感や反発感にも欠けるものであった。
 また、繊維製造時には繊維径が異なる複合繊維を同時に巻き取ることから、冷却固化の挙動が異なることでの糸干渉が発生し、製糸安定性に劣るものであった。結果を表1に示す。
In Comparative Example 3, since the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) is 0%, the conjugate fibers constituting the conjugate fiber bundle exhibit the same crimp development force, and the crimp phase It became a composite fiber bundle in which the As a result, the texture of the textile surface is small, and in addition to lacking a dry feel, the voids between the conjugate fibers are also small, and the feeling of swelling and resilience is lacking.
In addition, since conjugate fibers with different fiber diameters are wound at the same time during fiber production, yarn interference occurs due to different cooling and solidification behaviors, resulting in poor yarn production stability. Table 1 shows the results.
 [比較例4]
 ポリマー1としてイソフタル酸を7mol%共重合したポリエチレンテレフタレート(IPA共重合PET、溶融粘度:140Pa・s、融点:232℃)、ポリマー2としてポリエチレンテレフタレート(PET、溶融粘度:130Pa・s、融点:254℃)を準備した。
[Comparative Example 4]
Polyethylene terephthalate (IPA copolymer PET, melt viscosity: 140 Pa s, melting point: 232° C.) obtained by copolymerizing 7 mol % of isophthalic acid as polymer 1, and polyethylene terephthalate (PET, melt viscosity: 130 Pa s, melting point: 254° C.) as polymer 2. °C) was prepared.
 これらのポリマーを290℃で別々に溶融後、複合断面における面積比が50/50となるように計量して、図1の(a)に示すような扁平状かつポリマー1とポリマー2がサイドバイサイド型に接合された複合断面となるように(複合繊維毎の接合面方向の変化はなし)、吐出孔から流入ポリマーを吐出した。このとき複合繊維束を構成する複合繊維間での扁平度の平均値が1.8、扁平度の最大値と最小値の差が0.5となるよう、吐出孔を調整した。 After melting these polymers separately at 290 ° C., they were weighed so that the area ratio in the composite cross section was 50/50, and the flat shape and polymer 1 and polymer 2 were side-by-side as shown in FIG. The inflowing polymer was discharged from the discharge hole so that the composite cross section was bonded to the composite fiber (there was no change in the bonding surface direction for each composite fiber). At this time, the discharge holes were adjusted so that the average value of flatness among the composite fibers constituting the composite fiber bundle was 1.8 and the difference between the maximum and minimum flatness was 0.5.
 吐出された複合ポリマー流に冷却固化後油剤を付与し、紡糸速度1500m/minで巻取り、90℃と130℃に加熱したローラー間で延伸を行うことで、84dtex-36フィラメント(繊維径15μm)の複合繊維束を製造した。
 得られた複合繊維束を製織し、80℃での精練処理および130℃での湿熱処理を施した後、180℃で熱セットを加えることで、上記複合繊維束で構成される織物を得た。
After cooling and solidifying the discharged composite polymer flow, an oil solution is applied, wound at a spinning speed of 1500 m / min, and drawn between rollers heated to 90 ° C. and 130 ° C. to obtain 84 dtex-36 filament (fiber diameter 15 μm). of composite fiber bundles were produced.
The resulting conjugate fiber bundle was woven, subjected to scouring treatment at 80°C and wet heat treatment at 130°C, and then heat-set at 180°C to obtain a fabric composed of the conjugate fiber bundle. .
 比較例4においては、(ポリマー重心間距離/繊維径)の値の変動係数CVが31%であるため、テキスタイルとした際に、テキスタイル表面の凹凸が細かくなり、摩擦変動が小さく、単調な風合いとなった。
 また、繊維製造時には扁平度が大きく異なる複合繊維を同時に巻き取ることから、冷却固化の挙動が異なることでの糸干渉が発生し、製糸安定性に劣るものであった。
In Comparative Example 4, the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) is 31%, so that when it is made into a textile, the unevenness of the textile surface becomes finer, the friction fluctuation is small, and the texture is monotonous. became.
In addition, since conjugate fibers with greatly different flatnesses are wound at the same time during fiber production, yarn interference occurs due to different cooling and solidification behaviors, resulting in poor spinning stability.
 [実施例2]
 複合繊維の表層をPETによって覆い、図1の(b)のような複合断面に変更する以外は全て実施例1に従い実施した。なお、上述した方法によって求められる、PETの最小厚みSと繊維径Dの比S/Dは、0.03であった。
[Example 2]
Everything was carried out according to Example 1 except that the surface layer of the composite fiber was covered with PET and the composite cross section was changed as shown in FIG. 1(b). The ratio S/D between the minimum thickness S of PET and the fiber diameter D determined by the method described above was 0.03.
 実施例2においては、複合繊維の表層に共重合PETが露出していないことで耐摩耗性が向上するのみならず、PETと共重合PETの冷却差が緩和されることで口金から吐出後の糸曲がりが抑制でき、製糸安定性にも優れるものであった。結果を表1に示す。 In Example 2, since the copolymer PET is not exposed on the surface layer of the conjugate fiber, not only the wear resistance is improved, but also the difference in cooling between the PET and the copolymer PET is alleviated, so that after ejection from the nozzle Yarn bending could be suppressed, and the spinning stability was also excellent. Table 1 shows the results.
 [実施例3]
 複合繊維の断面形状を図1の(c)のような、表面に凸部を8個有する扁平多葉状に変更する以外は全て実施例1に従い実施した。
[Example 3]
Everything was carried out according to Example 1, except that the cross-sectional shape of the conjugate fiber was changed to a flat multi-lobed shape having eight protrusions on the surface as shown in FIG. 1(c).
 実施例3においては、複合繊維の表面に凹凸が形成されることで、光の乱反射によりテキスタイルの外観ムラ(ギラツキ)が抑制され、外観品位が向上した。さらに、表面に凹凸を有する複合繊維を組み合わせることによって、複合繊維束に微細な繊維間空隙が形成され、さらっと感や吸水速乾性も高まるものであった。結果を表1に示す。 In Example 3, unevenness in the appearance of the textile (glittering) was suppressed due to irregular reflection of light by forming unevenness on the surface of the composite fiber, and the quality of the appearance was improved. Furthermore, by combining conjugate fibers having an uneven surface, fine inter-fiber voids are formed in the conjugate fiber bundle, and dry feeling and water absorption and quick-drying properties are improved. Table 1 shows the results.
 [実施例4]
 複合繊維間での扁平度の平均値が1.3となるように変更した以外は全て実施例1に従い実施した。
[Example 4]
Everything was carried out according to Example 1, except that the average value of the flatness between the conjugate fibers was changed to 1.3.
 実施例4においては、複合繊維の扁平度の平均値が小さくなることに伴って熱処理にて発現する捲縮形態が微細になりコイル状に近づいた。これにより、ストレッチ性が増大するのみならず、扁平状のエッジが小さくなることで摩擦が低減し、耐摩耗性も向上するものであった。結果を表2に示す。 In Example 4, as the average value of flatness of the conjugate fibers decreased, the crimped shape developed by the heat treatment became finer and closer to a coil shape. As a result, not only is the stretchability increased, but also the flattened edges are reduced to reduce friction and improve wear resistance. Table 2 shows the results.
 [比較例5]
 複合繊維の断面形状が図3のような丸断面となるように変更(複合繊維毎の接合面方向の変化はなし)した以外は全て実施例1に従い実施した。
[Comparative Example 5]
Everything was carried out according to Example 1, except that the cross-sectional shape of the conjugated fiber was changed so as to have a circular cross-section as shown in FIG.
 比較例5においては、(ポリマー重心間距離/繊維径)の値の変動係数CVが0%であるため、複合繊維束を構成する全ての複合繊維が同一の捲縮形態を発現し、捲縮位相が揃った収束した複合繊維束となった。そのため、テキスタイル表面の凹凸感がなく、フラットな風合いになることに加えて、複合繊維間の空隙もないことから、ふくらみ感や反発感、吸水速乾性にも欠けるものであった。結果を表2に示す。 In Comparative Example 5, since the coefficient of variation CV of the value of (distance between polymer centers of gravity/fiber diameter) was 0%, all the conjugate fibers constituting the conjugate fiber bundle exhibited the same crimped form, and crimped. This resulted in a converged composite fiber bundle that was in phase. As a result, the textile surface does not have an uneven texture and has a flat texture. In addition, since there are no voids between the composite fibers, the fabric lacks a feeling of swelling, a feeling of resilience, and quick-drying water absorption. Table 2 shows the results.
 [実施例5]
 ポリマー2を溶融粘度:30Pa・sのPETに変更する以外は全て実施例1に従い実施した。
[Example 5]
Everything was carried out according to Example 1 except that polymer 2 was changed to PET having a melt viscosity of 30 Pa·s.
 実施例5においては、より捲縮形態が強く発現して、得られる織物のふくらみ感が増すのみならず、ストレッチ性も向上するものであった。結果を表2に示す。 In Example 5, the crimped form was more strongly expressed, and not only the resulting woven fabric had an increased feeling of fullness, but also the stretchability was improved. Table 2 shows the results.
 [実施例6、7]
 複合繊維の繊維径を10μm(実施例6)、20μm(実施例7)となるように吐出量を変更する以外は全て実施例1に従い実施した。
[Examples 6 and 7]
Everything was carried out according to Example 1 except that the discharge amount was changed so that the fiber diameter of the composite fiber was 10 μm (Example 6) and 20 μm (Example 7).
 実施例6においては、複合繊維の繊維径を10μmとすることで、光の乱反射が増し、テキスタイルとした際の外観ムラ(ギラツキ)を抑制して外観品位が向上することに加えて、繊維一本の曲げ剛性が低下することで柔軟性も向上した。結果を表2に示す。 In Example 6, by setting the fiber diameter of the conjugate fiber to 10 μm, the diffused reflection of light was increased, and the appearance quality was improved by suppressing the appearance unevenness (glare) when made into textiles. Flexibility improved as the bending stiffness of the book decreased. Table 2 shows the results.
 実施例7においては、繊維径を20μmとすることで、熱処理にて発現する捲縮形態のループが大きくなり、さらっと感やふくらみ感が向上することに加えて、曲げ硬さが大きくなることから、特徴的な弾力のある触感が得られるものであった。結果を表2に示す。 In Example 7, by setting the fiber diameter to 20 μm, the crimped loops developed by the heat treatment became larger, and in addition to improving the dry feeling and the swelling feeling, the bending hardness was increased. Therefore, a characteristic elastic tactile sensation was obtained. Table 2 shows the results.
 [実施例8]
 ポリマー2を酸化チタンが5.0wt%含有されたポリエチレンテレフタレート(TiO含有PET)に変更する以外は全て実施例1に従い実施した。
[Example 8]
Everything was carried out according to Example 1, except that the polymer 2 was changed to polyethylene terephthalate (TiO 2 -containing PET) containing 5.0 wt% of titanium oxide.
 実施例8においては、複合繊維の表面の酸化チタンが光を乱反射することで、光の入射角による反射の増減(ギラツキ)を抑制して、テキスタイル外観品位が向上した。加えて、複合繊維の内部の酸化チタンにより防透けや紫外線遮蔽といった機能性も得られるものであった。結果を表2に示す。 In Example 8, the titanium oxide on the surface of the composite fiber diffusely reflects light, thereby suppressing the increase or decrease in reflection (glare) depending on the angle of incidence of light, thereby improving the appearance quality of the textile. In addition, the titanium oxide inside the conjugate fiber provided functionality such as anti-see-through and ultraviolet shielding. Table 2 shows the results.
 [実施例9、10]
 ポリマー1をポリプロピレンテレフタレート(PPT)(実施例9)、ポリブチレンテレフタレート(PBT)(実施例10)に変更する以外は全て実施例1に従い実施した。
[Examples 9 and 10]
Everything was carried out according to Example 1 except that the polymer 1 was changed to polypropylene terephthalate (PPT) (Example 9) and polybutylene terephthalate (PBT) (Example 10).
 実施例9、10においては、ポリマー1として用いたPPT、PBTが有するゴム弾性の特性が相まって、複合繊維束をテキスタイルとした際において、柔軟性に優れた風合いを発現するのみならず、ストレッチ機能も大幅に向上するものであった。結果を表2に示す。 In Examples 9 and 10, the properties of rubber elasticity possessed by PPT and PBT used as the polymer 1 are combined, and when the composite fiber bundle is used as a textile, not only does it exhibit a texture with excellent flexibility, but it also has a stretch function. was also significantly improved. Table 2 shows the results.
 [実施例11]
 紡糸速度を2500m/minで巻取り、標準状態(温度23℃、相対湿度65%)で一か月間保管した後、複合繊維束の自然延伸倍率の上限と同じ延伸倍率にてホットピン温度70℃、セット温度130℃で不均一延伸加工を施す以外は全て実施例1に従い実施した。
 実施例11においては、複合繊維の延伸部と未延伸部でも染色性の差異が生じるために、複合繊維束をテキスタイルとした際に、色の濃淡がより強調され、天然素材のような杢調が得られるものであった。結果を表2に示す。
[Example 11]
After winding at a spinning speed of 2500 m/min and storing for one month under standard conditions (temperature of 23°C, relative humidity of 65%), hot pin temperature of 70°C was applied at the same draw ratio as the upper limit of the natural draw ratio of the composite fiber bundle. Everything was carried out according to Example 1, except that non-uniform stretching was applied at a set temperature of 130°C.
In Example 11, since a difference in dyeability occurs between the stretched portion and the unstretched portion of the conjugate fiber, when the conjugate fiber bundle is used as a textile, the shade of the color is more emphasized, and the heather tone like a natural material is obtained. was obtained. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2021年7月27日出願の日本特許出願(特願2021-122063)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2021-122063) filed on July 27, 2021, the content of which is incorporated herein by reference.
 本実施形態の複合繊維束は、複合繊維束を構成する複合繊維一本一本の捲縮形態を緻密に制御することで、隣り合う複合繊維間で捲縮位相が揃っている箇所と揃っていない箇所で空隙に差が生まれ、複合繊維間に複雑な空隙や凹凸を形成でき、特異的なさらっとした触感を発現できる。 In the conjugate fiber bundle of the present embodiment, by precisely controlling the crimped form of each conjugate fiber that constitutes the conjugate fiber bundle, the portions where the crimp phases are aligned between adjacent conjugate fibers are aligned. Differences in the gaps are created where there are no gaps, and complex gaps and irregularities can be formed between the composite fibers, and a unique smooth feel can be expressed.
 したがって、本発明の複合繊維束を活用することで、複合繊維間の複雑な空隙による適度な反発感やふくらみのある風合いも実現した着用快適性に優れるテキスタイルが得られる。そのため、本発明は、ジャケット、スカート、パンツ、下着などの一般衣料から、スポーツ衣料、衣料資材に加えて、その快適性を生かしてカーペット、ソファーなどのインテリア製品、カーシートなどの車輌内装品、化粧品、化粧品マスク、健康用品などの生活用途など多岐に渡る繊維製品に好適に用いることができる。 Therefore, by utilizing the composite fiber bundle of the present invention, it is possible to obtain a textile that is comfortable to wear and has a moderate resilience due to the complex voids between the composite fibers and a puffy texture. Therefore, in addition to general clothing such as jackets, skirts, pants, and underwear, sports clothing, clothing materials, interior products such as carpets and sofas, vehicle interiors such as car seats, It can be suitably used for a wide variety of textile products such as cosmetics, cosmetic masks, and health products.
x: 低融点ポリマー
y: 高融点ポリマー
a1、a2: 繊維外周上にあり、最も距離が離れた2点
b1、b2: 繊維外周上にあり、最も距離が離れた2点を結んだ直線の中点を通って直交する直線と繊維外周の交点
Gx: 低融点ポリマーの重心
Gy: 高融点ポリマーの重心
CF: 複合繊維
Cr: 捲縮の山
1: 計量プレート
2: 分配プレート
3: 吐出プレート
x: Low-melting point polymer y: High-melting point polymer a1, a2: Two points b1, b2 farthest apart on the outer circumference of the fiber: Within a straight line connecting the two farthest points on the outer circumference of the fiber Intersection point Gx of a straight line perpendicular to the point and the circumference of the fiber: Center of gravity Gy of low melting point polymer: Center of gravity CF of high melting point polymer: Composite fiber Cr: Crimp crest 1: Weighing plate 2: Distributing plate 3: Discharge plate

Claims (5)

  1.  少なくとも2種類の融点の異なるポリマーからなる複合繊維で構成された複合繊維束であり、前記複合繊維間での(ポリマー重心間距離/繊維径)の値の変動係数CVが5~30%であることを特徴とする複合繊維束。 A conjugate fiber bundle composed of conjugate fibers composed of at least two kinds of polymers having different melting points, wherein the variation coefficient CV of the value of (distance between polymer centers of gravity/fiber diameter) between the conjugate fibers is 5 to 30%. A composite fiber bundle characterized by:
  2.  前記複合繊維間での扁平度の最大値と最小値の差が0.5未満であることを特徴とする請求項1に記載の複合繊維束。 The conjugate fiber bundle according to claim 1, wherein the difference between the maximum flatness value and the minimum value of the flatness between the conjugate fibers is less than 0.5.
  3.  前記複合繊維間での扁平度の平均値が1.2~3.0であることを特徴とする請求項1または2に記載の複合繊維束。 The composite fiber bundle according to claim 1 or 2, characterized in that the average value of flatness between the composite fibers is 1.2 to 3.0.
  4.  複合繊維の表層が1種類のポリマーで覆われていることを特徴とする請求項1~3のいずれか1項に記載の複合繊維束。 The composite fiber bundle according to any one of claims 1 to 3, characterized in that the surface layer of the composite fiber is covered with one type of polymer.
  5.  請求項1~4のいずれか1項に記載の複合繊維束が一部に含まれる繊維製品。 A textile product partly containing the composite fiber bundle according to any one of claims 1 to 4.
PCT/JP2022/029025 2021-07-27 2022-07-27 Composite fiber bundle and fiber product WO2023008500A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247002834A KR20240034772A (en) 2021-07-27 2022-07-27 Composite fiber bundles and fiber products
JP2022547306A JPWO2023008500A1 (en) 2021-07-27 2022-07-27
CN202280052686.1A CN117716076A (en) 2021-07-27 2022-07-27 Composite fiber bundle and fiber product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122063 2021-07-27
JP2021-122063 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023008500A1 true WO2023008500A1 (en) 2023-02-02

Family

ID=85086980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029025 WO2023008500A1 (en) 2021-07-27 2022-07-27 Composite fiber bundle and fiber product

Country Status (4)

Country Link
JP (1) JPWO2023008500A1 (en)
KR (1) KR20240034772A (en)
CN (1) CN117716076A (en)
WO (1) WO2023008500A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968009A (en) * 1972-11-06 1974-07-02
JPS51116217A (en) * 1973-03-26 1976-10-13 Rhone Poulenc Textile Crimped multifilament yarn and its manufacture
JPS61116770U (en) * 1984-07-24 1986-07-23
JP2000212838A (en) 1999-01-20 2000-08-02 Nippon Ester Co Ltd Polyester conjugate multifilaments for stretchable woven or knitted fabric
JP2001355132A (en) 2000-06-15 2001-12-26 Toray Ind Inc Polyester conjugated fiber
JP2011208313A (en) 2010-03-30 2011-10-20 Toray Ind Inc Composite spinneret and method for producing conjugated fiber
JP2021122063A (en) 2019-07-30 2021-08-26 昭和電工マテリアルズ株式会社 Manufacturing method of electronic component device and electronic component device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968009A (en) * 1972-11-06 1974-07-02
JPS51116217A (en) * 1973-03-26 1976-10-13 Rhone Poulenc Textile Crimped multifilament yarn and its manufacture
JPS61116770U (en) * 1984-07-24 1986-07-23
JP2000212838A (en) 1999-01-20 2000-08-02 Nippon Ester Co Ltd Polyester conjugate multifilaments for stretchable woven or knitted fabric
JP2001355132A (en) 2000-06-15 2001-12-26 Toray Ind Inc Polyester conjugated fiber
JP2011208313A (en) 2010-03-30 2011-10-20 Toray Ind Inc Composite spinneret and method for producing conjugated fiber
JP2021122063A (en) 2019-07-30 2021-08-26 昭和電工マテリアルズ株式会社 Manufacturing method of electronic component device and electronic component device

Also Published As

Publication number Publication date
JPWO2023008500A1 (en) 2023-02-02
CN117716076A (en) 2024-03-15
KR20240034772A (en) 2024-03-14

Similar Documents

Publication Publication Date Title
JP7135854B2 (en) Eccentric core-sheath composite fiber and mixed fiber yarn
JP7135469B2 (en) Woven or knitted fabric using eccentric core-sheath composite fiber
CN112996956B (en) Telescopic processing yarn, fiber product, composite spinneret and manufacturing method of composite fiber
WO2023008500A1 (en) Composite fiber bundle and fiber product
CN114521216A (en) Core-sheath composite fiber and multifilament
JP7136361B2 (en) multifilament and textiles
JP2017226941A (en) Woven or knitted fabric and initial yarn for polyamide sheath-core type blended yarn
JP7439960B2 (en) Composite fibers, multifilaments and textile products
WO2024070726A1 (en) Composite fiber, multifilament, woven article, and textile product
JP7322730B2 (en) Eccentric core-sheath composite staple fiber
JP3992604B2 (en) Polyester blended yarn
WO2023100570A1 (en) Eccentric core-sheath composite false twisted yarn and woven/knitted fabric using same
WO2023153459A1 (en) Crimped fibers
JP5357859B2 (en) Long / short composite spun yarn
JP2005194661A (en) Polyester blended yarn
JP4679803B2 (en) Strong twisted yarn-like latent crimped yarn and knitted fabric
JP4228504B2 (en) Woven knitted fabric made of blended yarn
JP2023123956A (en) Woven fabric
JP2020111840A (en) Latent crimped yarn
CN116601344A (en) Woven/knitted fabric
JP2001207339A (en) Partially hollow polyester yarn and method for producing the same
JP2006083489A (en) Latently crimpable polyester conjugate fiber filament yarn, woven/knitted fabric and method for producing the same
JP2004285503A (en) Latent crimp finished yarn having specific cross section and woven and knitted fabric
JP2000160451A (en) Production of high-twist woven fabric
JPS6039424A (en) Polyester bulky blended fiber yarn

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022547306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247002834

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022849561

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849561

Country of ref document: EP

Effective date: 20240227