JP2023149539A - Polyester fiber and manufacturing method thereof - Google Patents

Polyester fiber and manufacturing method thereof Download PDF

Info

Publication number
JP2023149539A
JP2023149539A JP2022058166A JP2022058166A JP2023149539A JP 2023149539 A JP2023149539 A JP 2023149539A JP 2022058166 A JP2022058166 A JP 2022058166A JP 2022058166 A JP2022058166 A JP 2022058166A JP 2023149539 A JP2023149539 A JP 2023149539A
Authority
JP
Japan
Prior art keywords
fiber
mass
fibers
polyester
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022058166A
Other languages
Japanese (ja)
Inventor
智広 脇坂
Tomohiro Wakisaka
敬一 主森
Keiichi Tonomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2022058166A priority Critical patent/JP2023149539A/en
Publication of JP2023149539A publication Critical patent/JP2023149539A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

【課題】細繊度ポリエステル系繊維を用いて織編物とした際のギラツキを抑制し、細繊度繊維であっても自然な光沢感とソフトな風合いを兼ね備えるポリエステル系細繊度繊維およびその製造方法を提供する。【解決手段】単繊維繊度0.20dtex以上、0.80dtex以下のポリエステル系繊維であって、平均粒子径0.60μm以上、1.00μm以下の無機粒子を0.10質量%以上、0.50質量%以下含み、横断面の扁平度が3以上、10以下であり、繊維表面に0.05μm2以上、0.20μm2以下の凹部を5×103個/mm2以上、5.0×105個/mm2以下有するポリエステル系繊維。【選択図】なし[Problem] To provide a fine-grained polyester fiber that suppresses glare when made into a woven or knitted fabric using fine-grained polyester fiber, and which has both a natural luster and a soft texture even when it is a fine-grained fiber, and a method for producing the same. do. [Solution] A polyester fiber with a single fiber fineness of 0.20 dtex or more and 0.80 dtex or less, containing 0.10% by mass or more of inorganic particles with an average particle diameter of 0.60 μm or more and 1.00 μm or less, 0.50 dtex or more % by mass or less, the flatness of the cross section is 3 or more and 10 or less, and the fiber surface has concave portions of 0.05 μm2 or more and 0.20 μm2 or less of 5 x 103 pieces/mm2 or more and 5.0 x 105 pieces/mm2 Polyester fibers with: [Selection diagram] None

Description

本発明は、ポリエステル系繊維およびその製造方法に関する。 The present invention relates to a polyester fiber and a method for producing the same.

合成繊維の中でもポリエステル系繊維は安価で物理特性に優れることから、衣料、産業用途問わず幅広く用いられている。衣料用途においては、素材本来の特性である速乾性や防しわ性に加え、薬剤を用いた後加工による吸湿性や抗菌性の付与といった高機能化が種々検討されている他、繊維の物理形状による高機能化としては、単繊維細繊度化による生地風合いのソフト性向上も検討されている。 Among synthetic fibers, polyester fibers are inexpensive and have excellent physical properties, so they are widely used in both clothing and industrial applications. For clothing applications, in addition to the material's inherent properties of quick drying and wrinkle resistance, various improvements are being considered to improve functionality, such as adding moisture absorption and antibacterial properties through post-processing using chemicals, as well as changes in the physical shape of the fibers. In order to improve the functionality of fabrics, improving the softness of the texture of fabrics by making single fibers finer is also being considered.

単繊維を細繊度化する手段として、製糸技術によるものとしては、特許文献1に単繊維繊度0.7dtexクラスの細繊度ポリエステルフィラメントを直接紡糸にて得る方法が示されている。直接紡糸法の他には、難溶出性成分を島成分とし、易溶出性成分を海成分とした海島複合繊維を紡糸後に海成分を溶出する方法が知られている。この方法では単繊維直径がナノメートルオーダーの超極細繊度糸を得ることも可能であり、人工皮革やワイピングクロスなどの用途にも用いられている。特許文献2では、ポリエチレンテレフタレート繊維を島成分とし、5-ナトリウムスルホイソフタル酸およびジエチレングリコールが共重合されたポリエステルを海成分とし、アルカリ脱海により平均単繊維径が10~1500nmの繊維を得る方法が示されている。 As a means for making single fibers finer by spinning technology, Patent Document 1 discloses a method for obtaining fineness polyester filaments with a single fiber fineness of 0.7 dtex class by direct spinning. In addition to the direct spinning method, a method is known in which the sea component is eluted after spinning a sea-island composite fiber in which the poorly soluble component is an island component and the easily soluble component is a sea component. With this method, it is possible to obtain ultrafine yarn with a single fiber diameter on the order of nanometers, and it is also used for applications such as artificial leather and wiping cloth. Patent Document 2 discloses a method in which polyethylene terephthalate fiber is used as an island component, polyester copolymerized with 5-sodium sulfoisophthalic acid and diethylene glycol is used as a sea component, and fibers having an average single fiber diameter of 10 to 1500 nm are obtained by alkaline sea removal. It is shown.

易溶出性成分を用いた複合繊維の後溶出により細繊度化する手法としては、海島複合繊維の他に、特許文献3では割繊型の繊維断面が示されており、後溶出によって単繊維繊度0.2dtexの異形断面糸を得る方法が開示されている。 In addition to sea-island composite fibers, Patent Document 3 discloses a split-type fiber cross section as a method for making the fineness of composite fibers finer by post-elution using easily eluted components. A method for obtaining a 0.2 dtex irregular cross-section yarn is disclosed.

単繊維繊度が細くなるにつれて、同じフィラメント繊度、紡績糸番手では単繊維構成本数が増加するため、乱反射の増加によって見かけの発色性が低下することに対し、特許文献4ではポリマーの重合工程で無機粒子を生成させ、繊維化した後に溶出することで粒子を脱落させ、繊維表面に高密度の凹部を形成することで濃色化する手法が示されている。 As the single fiber fineness becomes finer, the number of single fibers increases for the same filament fineness and spun yarn count, so the apparent coloring property decreases due to an increase in diffuse reflection. However, in Patent Document 4, inorganic A method has been shown in which particles are generated, turned into fibers, and then eluted to cause the particles to fall off, forming high-density recesses on the fiber surface to darken the color.

特開2004-204431号公報JP2004-204431A 特開2014-101613号公報Japanese Patent Application Publication No. 2014-101613 特許第3715375号公報Patent No. 3715375 特開2019-44281号公報Japanese Patent Application Publication No. 2019-44281

特許文献1~3に記載の手段等によって得られる細繊度ポリエステル系繊維では、より太い繊度のものと比べ、繊維束を構成する単繊維本数が増加することにより、繊維表面での乱反射が増加することから、見かけの発色性が低下する他、合繊特有のギラツキが強調される、生地表面のチラつきが生じるなど、好ましくない質感をもたらすことがあった。特許文献4のように、高密度の凹部形成によって濃色化効果が得られるとともに正反射が抑制され、上記のギラツキを抑える効果は得られるが、この手法では高密度の凹部が形成されるため、むしろ光沢感が失われたマットな質感であり、生地表面の質感の改善には至っていなかった。 In fine-grained polyester fibers obtained by the means described in Patent Documents 1 to 3, etc., diffuse reflection on the fiber surface increases as the number of single fibers constituting the fiber bundle increases compared to those with thicker fineness. As a result, in addition to a decrease in apparent color development, undesirable textures may be produced, such as an emphasis on the glare characteristic of synthetic fibers and flickering on the surface of the fabric. As in Patent Document 4, by forming a high density of recesses, a deep coloring effect can be obtained and regular reflection can be suppressed, and the above-mentioned effect of suppressing glare can be obtained, but since this method forms a high density of recesses, Rather, it had a matte texture with a loss of gloss, and the texture of the fabric surface had not been improved.

本発明の目的は、細繊度ポリエステル系繊維を用いて織編物とした際のギラツキを抑制し、細繊度繊維であっても自然な光沢感とソフトな風合いを兼ね備えるポリエステル系細繊度繊維およびその製造方法を提供することである。 The purpose of the present invention is to suppress glare when woven or knitted fabrics are made using fine-grained polyester fibers, and to produce polyester-based fine-grained fibers that have both a natural luster and a soft texture even when the fine-grained fibers are used. The purpose is to provide a method.

本発明は上記課題を解決するために次の構成を有する。 The present invention has the following configuration to solve the above problems.

(1)単繊維繊度0.20dtex以上、0.80dtex以下のポリエステル系繊維であって、平均粒子径0.60μm以上、1.00μm以下の無機粒子を0.10質量%以上、0.50質量%以下含み、横断面の扁平度が3以上、10以下であり、繊維表面に0.05μm以上、0.20μm以下の凹部を5×10個/mm以上、5.0×10個/mm以下有するポリエステル系繊維。 (1) Polyester fibers with a single fiber fineness of 0.20 dtex or more and 0.80 dtex or less, containing 0.10% by mass or more and 0.50% by mass of inorganic particles with an average particle diameter of 0.60 μm or more and 1.00 μm or less % or less, the flatness of the cross section is 3 or more and 10 or less, and the fiber surface has concavities of 0.05 μm 2 or more and 0.20 μm 2 or less 5 × 10 3 / mm 2 or more, 5.0 × 10 Polyester fiber having 5 fibers/mm2 or less .

(2)上記ポリエステル系繊維を40質量%以上含む織編物。 (2) A woven or knitted fabric containing 40% by mass or more of the above polyester fibers.

(3)易溶出性成分を海とし、難溶出性成分を島とする横断面を有する海島型の複合繊維、および島となる難溶出性成分を易溶出性成分が複数個に分割するように配置された横断面を有する分割型の複合繊維から選択される複合繊維であって、難溶出性成分にポリエステルを含む複合繊維の易溶出性成分を溶出し、前記難溶出性成分のポリエステルを2質量%以上15質量%以下減量することを特徴とする、上記ポリエステル系繊維の製造方法。 (3) A sea-island type composite fiber having a cross section in which the easily eluted component is a sea and the poorly eluted component is an island, and the easily eluted component is divided into multiple pieces, with the easily eluted component being an island. A conjugate fiber selected from split-type conjugate fibers having arranged cross sections, the easily eluting component of the conjugate fiber containing polyester as the hardly eluting component is eluted, and the polyester as the hardly eluting component is eluted. The method for producing the above-mentioned polyester fiber, characterized by reducing the weight by 15% by mass or more.

本発明によれば、良好なソフトな風合いを有し、細繊度繊維であってもギラツキを抑えた自然な光沢感を有する繊維製品を提供することができる。 According to the present invention, it is possible to provide a textile product that has a good soft feel and has a natural luster with suppressed glare even if it is a fine fiber.

図1は、3分割型の分割型複合短繊維の繊維横断面の構造の一態様を示す模式図である。FIG. 1 is a schematic diagram showing one aspect of the fiber cross-sectional structure of a three-part split type composite short fiber. 図2は、2分割型の分割型複合短繊維の繊維横断面の構造の一態様を示す模式図である。FIG. 2 is a schematic diagram showing one aspect of the fiber cross-sectional structure of a two-part split-type conjugate short fiber. 図3は、4分割型の分割型複合短繊維の繊維横断面の構造の一態様を示す模式図である。FIG. 3 is a schematic diagram showing one aspect of the fiber cross-sectional structure of a four-part split type composite staple fiber. 図4は、紡糸口金の吐出孔形状の一態様を示す模式図である。FIG. 4 is a schematic diagram showing one aspect of the shape of the discharge hole of the spinneret.

以下、本発明を詳細に説明する。本発明のポリエステル系繊維の単繊維繊度は0.20dtex以上、好ましくは0.40dtex以上であり、0.80dtex以下、好ましくは0.70dtex以下である。0.20dtex以上であることで、繊維束としたときに適度な構成単繊維本数となり、織編物としたときの生地表面の乱反射が抑えられることでチラつきを抑え、自然な光沢感を得ることができる。また、0.80dtex以下とすることで、ソフト風合いが得られるほか、織編物にした際に生地表面に現れる毛羽がピーチタッチとなり、滑らかな肌触りを得ることができる。 The present invention will be explained in detail below. The single fiber fineness of the polyester fiber of the present invention is 0.20 dtex or more, preferably 0.40 dtex or more, and 0.80 dtex or less, preferably 0.70 dtex or less. By being 0.20 dtex or more, when made into a fiber bundle, the number of constituent single fibers will be appropriate, and when made into a woven or knitted fabric, diffused reflection on the fabric surface will be suppressed, suppressing flickering and giving a natural luster. can. Furthermore, by setting the dtex to 0.80 dtex or less, not only a soft texture can be obtained, but also the fluff that appears on the surface of the fabric when it is woven or knitted will have a peach touch, giving it a smooth feel.

本発明に用いるポリエステル系繊維を得る方法としては、単成分のポリマーを直接紡糸する方法の他、易溶出性成分と難溶出性成分からなる複合繊維を紡糸した後に、易溶出性成分を溶出する方法を取ることも可能である。複合繊維の形態としては、易溶出性成分を海とし、難溶出性成分を島(島数は複数であってよい)とする横断面を有する海島型の複合繊維や、島となる難溶出性成分を易溶出性成分が複数に分割するように配置された横断面を有する分割型の複合繊維の他、易溶出性成分の溶出により中空や異形構造を得る後溶出型の異形繊維を用いることも可能である。原糸製造工程や、紡績加工工程における糸切れなどのトラブルを回避でき、易溶出性成分の溶出加工に合わせて難溶出性成分の減量加工も同時に行うことができる利点から、易溶出性成分と難溶出性成分からなる複合繊維を用いることが好ましく、中でも易溶出性成分が低比率でも溶出が速やかに進行し、細繊度繊維が比較的容易に得られる分割型の複合繊維がより好ましい。 The polyester fiber used in the present invention can be obtained by directly spinning a single-component polymer, or by spinning a composite fiber consisting of an easily soluble component and a poorly soluble component, and then eluting the easily soluble component. It is also possible to take other methods. Composite fibers can take the form of sea-island composite fibers, which have a cross section in which the easily eluted component is a sea and the poorly eluted component is an island (the number of islands may be plural), or the conjugate fiber is a conjugate fiber that has a sea-island shape in which the easily eluted component is a sea, and the poorly eluted component is an island (the number of islands may be plural); In addition to split-type composite fibers having a cross section arranged so that the easily eluted component is divided into a plurality of parts, post-elution type irregularly shaped fibers that obtain a hollow or irregularly shaped structure by elution of the easily eluted component can be used. is also possible. It is possible to avoid troubles such as yarn breakage in the raw yarn manufacturing process and spinning processing process, and the process to reduce the amount of poorly soluble components can be performed at the same time as the leaching process of easily soluble components. It is preferable to use a conjugate fiber made of a hardly eluting component, and more preferably a split type conjugate fiber, in which elution proceeds quickly even at a low ratio of easily eluting components, and fine fibers can be obtained relatively easily.

複合繊維を用いる場合の複合繊維全体の質量に対する易溶出性成分の比率としては、減量加工が可能な範囲で特に限定されないが、40質量%以下が好ましく、25質量%以下がより好ましい。40質量%以下とすることで、後の溶出加工における薬剤や用役、排水処理の負荷を低減し、生産性に優れた繊維とすることができる。また、易溶出性成分の比率は10質量%以上であることが好ましく、より好ましくは15質量%以上である。10質量%以上とすることで、紡糸工程での島合流の回避や、溶出加工において易溶出性成分が繊維表面に露出する面積を一定程度確保することで、溶出不良を回避することが可能となる。 In the case of using composite fibers, the ratio of the easily leached component to the total mass of the composite fibers is not particularly limited as long as weight reduction processing is possible, but it is preferably 40% by mass or less, and more preferably 25% by mass or less. By controlling the content to 40% by mass or less, the burden of chemicals, utilities, and wastewater treatment in the subsequent elution process can be reduced, and fibers with excellent productivity can be obtained. Further, the ratio of easily eluted components is preferably 10% by mass or more, more preferably 15% by mass or more. By setting the content to 10% by mass or more, it is possible to avoid poor elution by avoiding island merging during the spinning process and ensuring a certain amount of area where easily eluted components are exposed on the fiber surface during the elution process. Become.

本発明におけるポリエステル系繊維を構成する素材としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのポリアルキレンテレフタレートやその共重合体などのポリマーが挙げられるが、これらに限定されるものではなく、例えば、前記ポリマーにさらにイソフタル酸スルホネート、アジピン酸、イソフタル酸、ポリエチレングリコールなどを共重合して得られる共重合体、またはポリエチレングリコールをブレンドして得られる変性ポリエステルであってもよい。 Examples of materials constituting the polyester fiber in the present invention include, but are not limited to, polymers such as polyalkylene terephthalates such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate, and copolymers thereof. Instead, it may be a copolymer obtained by further copolymerizing the above polymer with isophthalic acid sulfonate, adipic acid, isophthalic acid, polyethylene glycol, etc., or a modified polyester obtained by blending polyethylene glycol.

また、難溶出性成分と易溶出性成分からなる複合繊維とする場合、難溶出性成分としては上記の素材を用いることができるほか、易溶出性成分としてはアルカリや熱水に対する溶解性が難溶出性成分より高く、溶融紡糸が可能であれば特に限定されることはなく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのポリアルキレンテレフタレートの共重合体や、ポリ乳酸といったポリエステル(共)重合体の他、ポリアミド、ポリスチレンおよびその共重合体、ポリエチレン、ポリビニールアルコールなどを用いることができる。難溶出性成分としては、強度や速乾性に優れ、安価に入手可能なポリエチレンテレフタレートが好ましく、易溶出性成分としては、汎用のアルカリ水溶液に対して易溶出性を示し、複合繊維間の融着等が起こりにくく高次加工通過性が良いことから、5-スルホイソフタル酸ナトリウムおよび、またはポリエチレングリコールを共重合したポリエチレンテレフタレートが好ましい。より好ましくは5-スルホイソフタル酸ナトリウムが全ジカルボン酸に対し5mol%から15mol%を共重合したポリエチレンテレフタレートおよび5-スルホイソフタル酸ナトリウムが全ジカルボン酸に対し5mol%から15mol%に加えて重量平均分子量500から3000のポリエチレングリコールを5質量%から15質量%の範囲で共重合されたポリエチレンテレフタレートが好ましい。これらの素材は、常法に基づいて溶融紡糸してポリエステル系繊維とすることができ、1種単独、または、2種以上組み合わせて用いることができる。 In addition, when making a composite fiber consisting of a poorly eluted component and an easily leached component, the above-mentioned materials can be used as the leached component, and the easily leached component has difficulty in solubility in alkali or hot water. It is not particularly limited as long as it is higher than the eluting component and can be melt-spun, and copolymers of polyalkylene terephthalates such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate, and polyesters such as polylactic acid (copolymers) may be used. In addition to polymers, polyamide, polystyrene and its copolymers, polyethylene, polyvinyl alcohol, etc. can be used. As the hardly leached component, polyethylene terephthalate, which has excellent strength and quick-drying properties and is available at low cost, is preferable.As the easily leached component, it is preferable to use polyethylene terephthalate, which is easily leached in a general-purpose alkaline aqueous solution and is suitable for fusion between composite fibers. Polyethylene terephthalate, which is copolymerized with sodium 5-sulfoisophthalate and/or polyethylene glycol, is preferred because it is less likely to cause such problems and has good passability through higher processing. More preferably, sodium 5-sulfoisophthalate is copolymerized with 5 mol% to 15 mol% of the total dicarboxylic acids, and sodium 5-sulfoisophthalate is copolymerized with 5 mol% to 15 mol% of the total dicarboxylic acids, in addition to the weight average molecular weight. Polyethylene terephthalate copolymerized with 500 to 3000 polyethylene glycol in a range of 5% by mass to 15% by mass is preferred. These materials can be melt-spun into polyester fibers using conventional methods, and can be used singly or in combination of two or more.

本発明におけるポリエステル系繊維の形態は、フィラメントであっても、ステープルであってもよい。なお、フィラメントの概念として、延伸糸および各種撚糸を含む。撚糸の種類は特に限定されず、例えば仮撚加工糸、仮撚融着糸、中強撚糸などが挙げられる。ステープルの場合、繊維長は特に制限は無く、組み合わせる繊維の種類により適した繊維長の繊維を用いることができるが、繊維方向が揃いやすく光沢感が得られやすい観点から、繊維長はより長い方が好ましく、38mm以上、より好ましくは51mm以上の繊維長が好ましい。 The form of the polyester fiber in the present invention may be a filament or a staple. Note that the concept of filament includes drawn yarn and various twisted yarns. The type of twisted yarn is not particularly limited, and examples thereof include false-twisted processed yarn, false-twisted fused yarn, and medium-strong twisted yarn. In the case of staples, there is no particular restriction on the fiber length, and fibers with a fiber length suitable for the type of fibers to be combined can be used. However, from the viewpoint of aligning the fiber direction and easily obtaining a glossy appearance, the longer fiber length is used. The fiber length is preferably 38 mm or more, more preferably 51 mm or more.

本発明におけるポリエステル系繊維の単繊維の横断面(繊維軸方向に対して垂直方向の断面)は扁平形状であり、その扁平度は3~10、好ましくは4~8である。扁平度は後述する方法で測定されるが、単繊維横断面における最短軸長に対する最長軸長の比(最長軸長/最短軸長)で表され、最長軸長とは、単繊維断面において最大となる径であり、最短軸長とは、最長軸に対し直角を保ちつつ最大となる径のことである。単繊維横断面が扁平形状であることで、細繊度であっても繊維束表面における反射面が揃うことで正反射光の割合が高まり、布帛にした時にチラつきを抑えた光沢を与えることができ、特に後述する凹部が存在する場合に特徴的な自然な光沢感を得ることができる。このとき、扁平度が3以上であると、上記のような繊維束表面の整列が起きやすく、正反射光強度が増して十分な光沢を得ることができ、扁平度が10以下であることで、布帛とした時のテカリやギラツキに繋がる過度の正反射を抑制する他、繊維束としたときの単繊維同士の重なりを抑え、繊維製品としたときにかさ高さを維持し、さらに布帛のハリコシを与えることができる。扁平度が上記の範囲である限り、単繊維断面の形状は特に限定されず、多葉断面やアレイ型、中空型、等を採用することができ、用途により求められる質感や機能性に合わせて適宜選択することができる。扁平度は常法により調整することが可能であり、紡糸口金の吐出孔形状を適宜選択する他、複合繊維であれば単繊維横断面形状の設計により適宜調整することが可能である。 The cross section of a single fiber of the polyester fiber in the present invention (the cross section in the direction perpendicular to the fiber axis direction) is flat, and its flatness is 3 to 10, preferably 4 to 8. Flatness is measured by the method described below, and is expressed as the ratio of the longest axis length to the shortest axis length in the cross section of a single fiber (longest axis length/shortest axis length), and the longest axis length is the maximum length in the cross section of a single fiber. The shortest axis length is the maximum diameter while maintaining a right angle to the longest axis. Because the single fiber cross section is flat, the reflective surfaces on the surface of the fiber bundle are aligned, increasing the proportion of specularly reflected light even when the fibers are fine, and when made into a fabric, it can give a gloss that suppresses flicker. In particular, when there are recesses described below, a characteristic natural glossiness can be obtained. At this time, when the flatness is 3 or more, the above-mentioned alignment of the fiber bundle surfaces is likely to occur, the intensity of specularly reflected light increases, and sufficient gloss can be obtained, while when the flatness is 10 or less, In addition to suppressing excessive specular reflection that can lead to shine and glare when made into a fabric, it suppresses the overlap of single fibers when made into a fiber bundle, maintains bulk when made into a textile product, and further improves the fabric's appearance. It can give you harikoshi. As long as the flatness is within the above range, the shape of the single fiber cross section is not particularly limited, and multi-leaf cross sections, array types, hollow types, etc. can be adopted, depending on the texture and functionality required by the application. It can be selected as appropriate. The flatness can be adjusted by a conventional method, and in addition to appropriately selecting the shape of the discharge hole of the spinneret, in the case of a composite fiber, it can be adjusted as appropriate by designing the cross-sectional shape of the single fiber.

本発明のポリエステル系繊維は無機粒子を含み、その素材は特に限定されないが、酸化チタン、酸化亜鉛、酸化ケイ素、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、炭酸カルシウム、などを用いることができ、単独、または組み合わせて用いることが可能である。中でも、ポリエステル重合体への分散性が良好で、製糸性に優れる酸化チタンが好適に用いられる。該無機粒子をポリエステル系繊維に分散させる方法としては、特に限定されないが、ポリマーの重合工程で練り込み添加する方法を取ることができる。 The polyester fiber of the present invention contains inorganic particles, and the material thereof is not particularly limited, but titanium oxide, zinc oxide, silicon oxide, magnesium oxide, zirconium oxide, aluminum oxide, calcium carbonate, etc. can be used alone, Alternatively, they can be used in combination. Among these, titanium oxide, which has good dispersibility in polyester polymers and excellent thread-spinning properties, is preferably used. The method of dispersing the inorganic particles into the polyester fibers is not particularly limited, but a method of kneading and adding them in the polymerization process can be used.

前記無機粒子の平均粒子径は後述の方法で測定されるが、ポリエステル系繊維中で存在する凝集した状態での粒子径、すなわち二次粒子径のことであり、前記無機粒子の平均粒子径は0.60μm以上、1.00μm以下である。0.60μm以上であることで、後述のアルカリ減量加工を行った際に無機粒子が脱落することにより、繊維表面に適度なサイズの凹部を形成し、自然な光沢感を与えることができる。また、1.00μm以下であることで、原糸製造工程や紡績工程等での糸切れトラブルを抑制し、優れた加工性を得ることができる。さらにこの範囲の粒子が繊維表層に存在することで、入射光の散乱により前述の扁平度であっても繊維表面や内部での正反射を抑制することが可能である。前記無機粒子の平均粒子径は、用いる無機粒子自体の一次粒子径、原糸製造工程における凝集性などによって変化する。そのため、無機粒子の平均粒子径を上述の範囲となる様に調整する手段としては、用いる無機粒子の平均粒子径を選択する他、無機粒子の表面を親水化処理したものを用いることで凝集を抑制したり、無機粒子を溶媒やポリマー等に分散させる際の攪拌条件を調整するなど、粒子分散条件により適宜調整が可能である。好ましく用いられる無機粒子の例として、酸化チタンであれば富士チタン工業社製TA-100(平均粒子径0.60μm、カタログ値、製品形態:分散液)、TA-300(平均粒子径0.58μm、カタログ値、製品形態:分散液)が好ましく用いられる。 The average particle size of the inorganic particles is measured by the method described below, and is the particle size in an aggregated state existing in the polyester fiber, that is, the secondary particle size, and the average particle size of the inorganic particles is It is 0.60 μm or more and 1.00 μm or less. When the diameter is 0.60 μm or more, the inorganic particles fall off during the alkali weight reduction process described below, thereby forming concave portions of an appropriate size on the fiber surface and giving a natural luster. Moreover, by having a diameter of 1.00 μm or less, troubles of thread breakage in the yarn manufacturing process, spinning process, etc. can be suppressed, and excellent workability can be obtained. Furthermore, the presence of particles in this range on the fiber surface layer makes it possible to suppress specular reflection on the fiber surface or inside the fiber even if the fiber has the above flatness due to scattering of incident light. The average particle diameter of the inorganic particles varies depending on the primary particle diameter of the inorganic particles themselves used, the cohesiveness in the fiber manufacturing process, and the like. Therefore, as a means of adjusting the average particle size of inorganic particles to fall within the above range, in addition to selecting the average particle size of the inorganic particles to be used, using inorganic particles whose surfaces have been hydrophilized can prevent agglomeration. The particle dispersion conditions can be appropriately adjusted by suppressing the dispersion or adjusting the stirring conditions when dispersing inorganic particles in a solvent, polymer, etc. Examples of preferably used inorganic particles include titanium oxide such as TA-100 (average particle size 0.60 μm, catalog value, product form: dispersion) manufactured by Fuji Titanium Industries, Ltd., and TA-300 (average particle size 0.58 μm). , catalog value, product form: dispersion) is preferably used.

本発明のポリエステル系繊維に含まれる前記無機粒子の割合は、ポリエステル系繊維全体を100質量%としたときに、0.10質量%以上、好ましくは0.20質量%以上であり、0.50質量%以下、好ましくは0.40質量%以下である。0.10質量%以上であることで、後述の減量加工を行った際に、十分な密度の凹部を形成し得る他、前述の繊維表面や内部の反射光を抑制することができ、ギラツキを適度に抑えることができる。また、0.50質量%以下とすることで、製糸工程や紡績工程等での糸切れや、該無機粒子の脱落によるスカム発生のトラブルを抑制し、優れた加工性が得られることに加え、該無機粒子による過度の光散乱を抑制し、減量後の過剰な凹部形成を抑制することで、ダル調の質感を回避することができる。前記無機粒子は繊維内部に均一に分散していても、部分的に含有量が異なっていてもよいが、本発明のポリエステル系繊維が有する後述の凹部の発現を容易にするためには少なくとも繊維表面に前記の無機粒子が存在することが好ましい。かかる構成となる繊維横断面の形態としては、芯鞘構造であれば少なくとも鞘部に前記無機粒子を含有するものや、2成分以上が層状に積層した構造、あるいは中空構造を取ることも可能である。 The proportion of the inorganic particles contained in the polyester fiber of the present invention is 0.10% by mass or more, preferably 0.20% by mass or more, and 0.50% by mass or more, when the entire polyester fiber is 100% by mass. It is not more than 0.40% by mass, preferably not more than 0.40% by mass. By having a content of 0.10% by mass or more, it is possible to form recesses with sufficient density during the weight reduction process described below, and it is also possible to suppress the reflected light on the fiber surface and inside, thereby reducing glare. It can be suppressed appropriately. In addition, by setting the content to 0.50% by mass or less, troubles such as yarn breakage in the spinning process, spinning process, etc. and scum generation due to shedding of the inorganic particles can be suppressed, and excellent workability can be obtained. By suppressing excessive light scattering by the inorganic particles and suppressing excessive formation of recesses after weight reduction, dull texture can be avoided. The inorganic particles may be uniformly dispersed inside the fiber, or the content may be partially different. Preferably, the inorganic particles described above are present on the surface. The cross-sectional form of the fiber having such a structure may include a core-sheath structure in which at least the sheath portion contains the inorganic particles, a structure in which two or more components are laminated in a layered structure, or a hollow structure. be.

本発明のポリエステル系繊維は、その繊維表面に0.05μm以上、0.20μm以下の凹部を含む。凹部の面積が0.05μm以上であることで、入射光の乱反射抑制効果が得られチラツキを抑えることができ、0.20μm以下であることで織編物としたときに適度な光沢感を与えることができる。また、該凹部は上記の面積の範囲であれば、形状は特に限定されず、円形、楕円形、筋状に形成されていても良いが、乱反射の抑制効果がより高く得られることや、生地にした時のキシみ感を回避できる観点から、円形および楕円形であることが好ましい。左記円形、楕円形は厳密に円形、楕円形である必要はなく、略円形、略楕円形であってもよい。 The polyester fiber of the present invention includes a concave portion of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface. When the area of the concave portion is 0.05 μm 2 or more, it is possible to obtain the effect of suppressing diffuse reflection of incident light and suppress flickering, and when it is 0.20 μm 2 or less, it can provide a moderate gloss when made into a woven or knitted fabric. can give. In addition, the shape of the recess is not particularly limited as long as it has the above-mentioned area, and may be formed in a circle, an ellipse, or a striped shape. A circular or oval shape is preferable from the viewpoint of avoiding a squeaky feeling when worn. The circular and elliptical shapes shown on the left do not need to be strictly circular or elliptical, and may be approximately circular or elliptical.

また、本発明における前記0.05μm以上、0.20μm以下の凹部の密度は、5×10個/mm以上、5.0×10個/mm以下であり、好ましくは1.0×10個/mm以上、2.0×10個/mm以下、より好ましくは5.0×10個/mm以上、1.0×10個/mm以下である。繊維表面における前記凹部の密度が5×10個/mm以上であることで、前述の乱反射抑制効果を十分に得ることができ、ギラツキやチラつきの抑制が可能となる。また、5.0×10個/mm以下とすることで、繊維製品としたときの繊維表面の凹凸から生じるダル感を抑制し、発色の鮮明さが損なわれるのを回避することができる。 Further, the density of the recesses of 0.05 μm 2 or more and 0.20 μm 2 or less in the present invention is 5×10 3 or more/mm 2 or more and 5.0×10 5 /mm 2 or less, preferably 1 .0×10 4 pieces/mm 2 or more and 2.0×10 5 pieces/mm 2 or less, more preferably 5.0×10 4 pieces/mm 2 or more and 1.0×10 5 pieces/mm 2 or less. be. When the density of the recesses on the fiber surface is 5×10 3 pieces/mm 2 or more, the above-mentioned effect of suppressing diffused reflection can be sufficiently obtained, and glare and flickering can be suppressed. In addition, by setting the number to 5.0×10 5 pieces/mm 2 or less, it is possible to suppress the dull feeling caused by the unevenness of the fiber surface when it is made into a textile product, and to avoid loss of clarity of color development. .

前記凹部を形成する方法は特に限定されないが、前記無機粒子を含むポリエステル系繊維を後述の方法等で減量し、含有する無機粒子を脱落させることにより前記凹部を発現させる方法を取ることが可能である。ポリエステル系繊維を減量する方法としては、通常の方法を取ることが可能であり、高温のアルカリ水溶液によってポリエステルを加水分解するアルカリ減量や、ポリエステル系繊維を溶解可能な溶剤により溶解する方法、あるいはエメリーロールなどを用いた表面研磨を行う方法などが挙げられる。なかでも、繊維表面を全面的に減量することで前記凹部をより均一に発現可能であり、かつ使用する薬剤が安価で回収処理も比較的容易な手段として、アルカリ減量が好適に用いられる。アルカリ減量の方式としては特に限定されず、浴中方式であればチーズ減量やビーム減量、液流染色機での減量が挙げられる他、アルカリ水溶液を付与後に圧搾した後にスチーム処理を行う連続スチーム方式などが採用できる。中でも、連続加工により高い生産性が得られる他、生地同士の接触や浴中処理による液との摩擦や繊維同士の接触による単繊維のバラけを抑制し、繊維構造物としたときの表面品位を維持できる観点から、連続スチーム方式が好適に用いられる。 The method for forming the recesses is not particularly limited, but it is possible to develop the recesses by reducing the amount of polyester fiber containing the inorganic particles by the method described below and causing the contained inorganic particles to fall off. be. Conventional methods can be used to reduce the weight of polyester fibers, such as alkaline reduction in which polyester is hydrolyzed with a high-temperature alkaline aqueous solution, dissolution in a solvent that can dissolve polyester fibers, or emery treatment. Examples include a method of surface polishing using a roll or the like. Among these, alkali reduction is preferably used as it is possible to more uniformly develop the recesses by reducing the entire surface of the fiber, and the chemicals used are inexpensive and the recovery process is relatively easy. The method of alkali weight loss is not particularly limited, and bath methods include cheese weight loss, beam weight loss, and jet dyeing machine weight loss, as well as a continuous steam method in which aqueous alkali solution is applied, squeezed, and then steam treated. etc. can be adopted. Above all, in addition to achieving high productivity through continuous processing, it suppresses the unraveling of single fibers due to contact between fabrics, friction with liquid during bath treatment, and contact between fibers, and improves surface quality when fabricated into a fiber structure. A continuous steam method is preferably used from the viewpoint of maintaining the temperature.

易溶出性成分を海とし、難溶出性成分を島とする横断面を有する海島型の複合繊維、および島となる難溶出性成分を易溶出性成分が複数個に分割するように配置された横断面を有する分割型の複合繊維から選択される複合繊維であって、難溶出性成分にポリエステルを含む複合繊維を用いる場合には、複合繊維の易溶出性成分を溶出し、前記難溶出性成分のポリエステルを減量することになるが、前記減量加工は、易溶出性成分の溶出後に行うこともできるが、生産効率上の観点から、易溶出性成分の溶出と難溶出性成分の減量加工は同時に行うことが好ましい。なお、複合繊維とする場合、繊維軸方向に対して垂直な断面における島の扁平度が3以上、10以下であることが好ましく、4~8であることがより好ましい。扁平度の測定は、後述のポリエステル系繊維の扁平度の測定に準じて測定でき、その際は単繊維の横断面における径を複合繊維の横断面における島の径に読み替えるものとする。通常、島の扁平度は易溶出性成分溶出および減量後のポリエステル系繊維の扁平度とほぼ同等の値となる。 A sea-island type composite fiber having a cross section in which the easily eluted component is a sea and the poorly eluted component is an island, and the easily eluted component is arranged so that the easily eluted component is divided into a plurality of pieces. When using a conjugate fiber selected from split-type conjugate fibers having a cross section and containing polyester as a poorly soluble component, the easily soluble component of the conjugate fiber is eluted, and the conjugate fiber is The amount of the component polyester is reduced, and the above-mentioned reduction processing can also be performed after elution of the easily eluted component, but from the viewpoint of production efficiency, it is necessary to elute the easily eluted component and reduce the amount of the hardly eluted component. It is preferable to perform both at the same time. In the case of forming composite fibers, the flatness of the islands in a cross section perpendicular to the fiber axis direction is preferably 3 or more and 10 or less, more preferably 4 to 8. The flatness can be measured in accordance with the measurement of the flatness of polyester fibers described below, in which case the diameter in the cross section of the single fiber is read as the diameter of the island in the cross section of the composite fiber. Usually, the flatness of the islands is approximately the same value as the flatness of the polyester fiber after elution of easily eluted components and weight loss.

前記の難溶出性成分のポリエステル系繊維の減量率は、該難溶出性成分のポリエステル系繊維の質量に対して2質量%以上、15質量%以下であることが好ましく、より好ましくは4質量%以上、13質量%以下、より好ましくは6質量%以上、11質量%以下である。2質量%以上とすることで、前記凹部の形成が十分に行われることに加え、繊維間の空隙を確保することでソフト性の向上を図ることができる他、減量により繊維表面が平滑となることで、より均一な光沢感が得られやすくなる。また、15質量%以下とすることで、ポリエステル系繊維への過剰なダメージを回避して織編物の加工や使用上で必要な強度を確保することができる。 The weight loss rate of the polyester fiber as the hardly eluting component is preferably 2% by mass or more and 15% by mass or less, more preferably 4% by mass, based on the mass of the polyester fiber as the hardly eluting component. The content is 13% by mass or less, more preferably 6% by mass or more and 11% by mass or less. By setting the amount to 2% by mass or more, in addition to sufficient formation of the recesses, it is possible to improve softness by securing voids between fibers, and the fiber surface becomes smooth due to the weight loss. This makes it easier to obtain a more uniform gloss. Further, by setting the content to 15% by mass or less, excessive damage to the polyester fibers can be avoided and the strength required for processing and use of woven or knitted fabrics can be ensured.

なお、前記複合繊維を用いる場合は、易溶出性成分を溶出することにより、難溶出性成分のポリエステル系繊維が得られるので、これを減量することにより単繊維繊度0.20dtex以上、0.80dtex以下のポリエステル系繊維とすることができる。なお、最終的に得られる本発明のポリエステル系繊維の単繊維繊度を本発明で規定する範囲に調整するには、直接紡糸する際の繊度設計と減量率を調整する、複合繊維とする場合は、その繊度、島となる難溶出性成分の複合比率と島数および減量率を調整することにより、適宜調整することができる。 In addition, when using the above-mentioned composite fiber, a polyester fiber containing a hardly eluting component can be obtained by eluting the easily eluting component. The following polyester fibers can be used. In addition, in order to adjust the single fiber fineness of the finally obtained polyester fiber of the present invention to the range specified by the present invention, the fineness design and weight loss rate during direct spinning should be adjusted, and when making it into composite fiber, can be adjusted as appropriate by adjusting its fineness, the composite ratio of the poorly eluted component forming the islands, the number of islands, and the weight loss rate.

前記アルカリ減量の条件としては、易溶出性成分との複合繊維である場合、使用する易溶出性成分の組成や溶出速度に合わせ、さらに難溶出性成分の組成や減量速度も加味した上で、所定の減量率となる範囲で調整可能である。用いることのできるアルカリ薬剤としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、テトラメチルアンモニウムなどが挙げられるが、工業的に入手容易で安価な水酸化ナトリウムが好ましく用いられる。アルカリ濃度としては所望の減量率が得られる範囲で設定が可能であり、浴中方式の場合、1g/L以上、20g/L以下、連続スチーム方式の場合、20g/L以上、100g/L以下で設定することが可能である。また、処理温度は、浴中方式では例えば80℃以上、120℃以下で設定が可能である。80℃以上とすることにより十分な溶出、減量速度を発揮し、溶出、減量不良となる可能性が極めて少なくなる一方、120℃以下であることにより適度な減量速度となり、単繊維間での減量バラつきが生じにくい点で好ましい。連続スチーム方式であれば、常圧スチーマーによる100℃処理の他、高圧スチーム装置や過熱スチームを用いることにより100℃より高温での処理も可能であるが、設備の汎用性や処理の均一性の観点から、常圧スチーマーによる処理が好ましく用いられる。処理時間についても素材ごとの減量速度により適宜選定できるが、1分以上、60分以下が好ましい。 The conditions for the alkali weight loss include, in the case of composite fibers with easily eluting components, in accordance with the composition and elution rate of the easily eluting components used, and also taking into account the composition and weight loss rate of the poorly eluting components. It can be adjusted within a range that provides a predetermined weight loss rate. Examples of alkaline chemicals that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and tetramethylammonium, but sodium hydroxide, which is industrially easily available and inexpensive, is preferably used. The alkali concentration can be set within a range that provides the desired weight loss rate; in the case of a bath method, it is 1 g/L or more and 20 g/L or less, and in the case of a continuous steam method, it is 20 g/L or more and 100 g/L or less. It is possible to set it with . Further, in the bath method, the treatment temperature can be set at, for example, 80° C. or higher and 120° C. or lower. By setting the temperature to 80°C or higher, sufficient elution and weight loss rates can be achieved, and the possibility of poor elution and weight loss is extremely reduced. On the other hand, by setting the temperature to 120°C or lower, a moderate rate of weight loss can be achieved and weight loss between single fibers can be achieved. This is preferable in that variations are less likely to occur. With the continuous steam method, in addition to processing at 100°C using a normal pressure steamer, it is also possible to process at temperatures higher than 100°C using a high-pressure steam device or superheated steam. From this point of view, treatment using a normal pressure steamer is preferably used. Although the processing time can be appropriately selected depending on the weight loss rate for each material, it is preferably 1 minute or more and 60 minutes or less.

本発明のポリエステル系繊維は単独で用いることもできる他、他の繊維と組み合わせて用いることもできる。組み合わせる繊維の種類としては、合成繊維であっても、天然系繊維であってもよいが、前記減量の手段としてアルカリ減量を施す場合には、耐アルカリ性の低いアクリル系繊維などを組み合わせて用いると、黄変や脆化することがあり注意が必要である。他の繊維と組み合わせて用いる場合の本発明のポリエステル系繊維の混率は特に限定されないが、ソフト風合いや光沢感を維持する観点から40質量%以上、好ましくは60質量%以上の混率とすることができ、また、組み合わせる繊維の特性も発現する観点から、80質量%以下が好ましい。 The polyester fiber of the present invention can be used alone or in combination with other fibers. The type of fibers to be combined may be synthetic fibers or natural fibers, but when performing alkali weight loss as a means of weight loss, it is recommended to use acrylic fibers with low alkali resistance in combination. Please be careful as it may cause yellowing or brittleness. The blending ratio of the polyester fiber of the present invention when used in combination with other fibers is not particularly limited, but from the viewpoint of maintaining soft texture and gloss, the blending ratio may be 40% by mass or more, preferably 60% by mass or more. 80% by mass or less is preferable from the viewpoint of achieving the desired properties and also exhibiting the characteristics of the fibers to be combined.

本発明のポリエステル系繊維と組み合わせて用いることのできる合成繊維としては、例えば、ナイロン6繊維やナイロン66繊維などのポリアミド系繊維、ポリアクリルニトリルを主成分とするアクリル系繊維、ポリエチレン繊維やポリプロピレン繊維などのポリオレフィン系繊維、ポリ塩化ビニル系繊維などの合成繊維が挙げられる。また、前述のポリエステルフィラメントを構成する素材からなる繊維であって、ステープル形状のものを用いることも可能である。中でも物理的特性に優れ、相対的に安価な芳香族ポリエステル系繊維(ポリエチレンテレフタレート繊維、共重合ポリエチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維等)が好ましく使用される。 Examples of synthetic fibers that can be used in combination with the polyester fibers of the present invention include polyamide fibers such as nylon 6 fibers and nylon 66 fibers, acrylic fibers containing polyacrylonitrile as a main component, polyethylene fibers, and polypropylene fibers. Synthetic fibers such as polyolefin fibers such as polyolefin fibers and polyvinyl chloride fibers may be mentioned. Further, it is also possible to use staple-shaped fibers made of the material constituting the aforementioned polyester filament. Among them, aromatic polyester fibers (polyethylene terephthalate fiber, copolymerized polyethylene terephthalate fiber, polytrimethylene terephthalate fiber, polybutylene terephthalate fiber, etc.), which have excellent physical properties and are relatively inexpensive, are preferably used.

本発明のポリエステル系繊維と組み合わせて用いることのできる天然系繊維としては、セルロース系繊維、ウールや絹などといったタンパク質繊維等を使用することができ、該セルロース系繊維としては、綿、麻、パルプ等の天然セルロース系繊維、ビスコースレーヨン、キュプラ等の再生セルロース系繊維等を使用することが出来る。衣料用途に好適な吸水性やコストの観点から、セルロース系繊維が好ましく、中でも天然繊維の良好な風合いを与えることができる綿がより好ましく用いられる。 As natural fibers that can be used in combination with the polyester fibers of the present invention, cellulose fibers, protein fibers such as wool and silk, etc. can be used, and the cellulose fibers include cotton, linen, pulp, etc. Natural cellulose fibers such as Viscose rayon, regenerated cellulose fibers such as Cupra, etc. can be used. From the viewpoint of water absorption and cost suitable for clothing applications, cellulose fibers are preferred, and among them, cotton is more preferably used because it can provide the good feel of natural fibers.

本発明のポリエステル系繊維を用いた繊維束としては、マルチフィラメント単独の他、紡績糸として用いることも可能であり、リング紡績糸、コンパクト糸、MVS糸、長短複合糸、短短複合糸など公知の紡績方法により紡績糸として用いることが可能である。長短複合糸や短短複合糸とする場合は、風合いや光沢感をより生かすことができる観点から、鞘側に本発明のポリエステル系繊維を配置することが好ましい。紡績糸とする場合の撚り係数は適宜設定することができ、好ましくは3.0以上、4.0以下である。4.0以下とすることでソフト性を生かした風合いを得ることができ、3.0以上であれば、単繊維の毛羽立ちが抑制され、光沢感を維持することができる。 The fiber bundle using the polyester fiber of the present invention can be used not only as a multifilament alone but also as a spun yarn, such as ring spun yarn, compact yarn, MVS yarn, long and short composite yarn, short and short composite yarn, and other known fiber bundles. It is possible to use it as a spun yarn by the following spinning method. When using long and short composite yarns or short and short composite yarns, it is preferable to arrange the polyester fiber of the present invention on the sheath side from the viewpoint of making better use of texture and gloss. The twist coefficient in the case of forming a spun yarn can be set as appropriate, and is preferably 3.0 or more and 4.0 or less. When it is 4.0 or less, a texture that takes advantage of softness can be obtained, and when it is 3.0 or more, fluffing of the single fibers is suppressed and glossiness can be maintained.

本発明のポリエステル系繊維は繊維構造物として好適に用いることができるが、織編物として用いる場合にその組織は特に限定されず、織物である場合、平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、絡み織などが挙げられる。また、編物の場合、丸編、緯編、経編(トリコット編、ラッシェル編を含む)、パイル編、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、挿入組織などが挙げられる。繊維構造物の組織が緻密であり、生地表面の光沢感や滑らかさをより発現できることから織物が好ましく、適度な繊維束の拘束により単繊維のバラけや毛羽の発生が抑えられ光沢を維持しやすい観点から、平織組織がより好ましい。 The polyester fiber of the present invention can be suitably used as a fiber structure, but when used as a woven or knitted fabric, its structure is not particularly limited, and in the case of a woven fabric, it can be a plain weave, a twill weave, a satin weave, a modified plain weave, Examples include variable oblique weave, variable satin weave, variable weave, patterned weave, single layer weave, double weave, multiple weave, warp pile weave, weft pile weave, and interlocking weave. In the case of knitted fabrics, circular knitting, weft knitting, warp knitting (including tricot knitting and raschel knitting), pile knitting, flat knitting, jersey knitting, rib knitting, smooth knitting (double-sided knitting), elastic knitting, pearl knitting, and denby knitting are available. Examples include tissue, cord tissue, atlas tissue, chain tissue, and insertion tissue. Woven fabrics are preferable because the structure of the fiber structure is dense and can enhance the gloss and smoothness of the surface of the fabric. Appropriate restraint of the fiber bundles suppresses the unraveling of single fibers and the occurrence of fluff, and maintains gloss. From the viewpoint of ease of use, a plain weave structure is more preferable.

また、本発明のポリエステル系繊維を用いた繊維製品は、カレンダー加工などのプレス加工が施されてもよい。プレス加工により扁平断面の最長軸に沿った面が繊維製品の表面に現れるため、より均一な光沢感を得ることが可能であり、プレス条件により光沢感の発現度合いを調整することが可能である。特に本発明のポリエステル系繊維の混率が低い繊維製品では好適に用いることができる。また、適度に繊維同士を圧着することで、着用や洗濯などの物理衝撃によって繊維束中の単繊維が分散してしまうのを防ぎ、光沢感の耐久性向上が可能となる。一方、カレンダー処理が強すぎるとギラツキが発生することがあるため、適宜条件を選定することが好ましい。 Further, a textile product using the polyester fiber of the present invention may be subjected to press processing such as calendar processing. By pressing, a surface along the longest axis of the flat cross section appears on the surface of the textile product, so it is possible to obtain a more uniform gloss, and the degree of gloss development can be adjusted by pressing conditions. . In particular, it can be suitably used in textile products having a low blending ratio of polyester fibers of the present invention. In addition, by appropriately pressing the fibers together, it is possible to prevent the single fibers in the fiber bundle from being dispersed due to physical shocks such as wearing or washing, and it is possible to improve the durability of the glossy appearance. On the other hand, if the calender treatment is too strong, glare may occur, so it is preferable to select conditions appropriately.

本発明のポリエステル系繊維を用いた繊維製品は、公知の方法により毛焼加工を施すことも可能である。細繊度繊維を用いた繊維製品では毛羽立ちやピリングが悪化することがあるが、適度な毛焼加工を行うことでこれらを抑制することができ、さらに表面の平滑性を向上させることでより上品な光沢感を与えることができる。一方、毛焼を全く行わないか、弱い条件で毛焼を施すことにより、あえて細繊度繊維の毛羽を残し、表面タッチを滑らかにすることも可能である。 Fiber products using the polyester fibers of the present invention can also be subjected to a fluffing process by a known method. Fuzzing and pilling may worsen in textile products using fine-grained fibers, but these can be suppressed by performing an appropriate pilling process, and by improving the surface smoothness, it becomes more elegant. It can give a glossy feel. On the other hand, it is also possible to leave the fluff of the fine fibers and make the surface touch smooth by not performing the firing at all or by performing the firing under weak conditions.

上記繊維製品としては、織編物が好ましく挙げられ、特にポリエステル系繊維を40質量%以上含む織編物とすることが好ましい。このような織編物はギラツキが抑制され、細繊度繊維であっても自然な光沢感とソフトな風合いを兼ね備えるため、ブラウス、ドレスシャツ用として、特に好適である。 Preferable examples of the above-mentioned fiber products include woven and knitted fabrics, particularly woven and knitted fabrics containing 40% by mass or more of polyester fibers. Such woven or knitted fabrics are particularly suitable for use in blouses and dress shirts because they suppress glare and have both a natural luster and a soft texture even if they are made of fine-grained fibers.

本願発明は以下の実施例に限定されるものではない。なお、実施例における性能の評価は、以下の方法に従った。 The present invention is not limited to the following examples. In addition, performance evaluation in Examples was performed according to the following method.

(1)単繊維繊度
ポリエステル系繊維の単繊維繊度は、フィラメントであればJIS L1013:2021、ステープル(短繊維)であればJIS L1015:2021に記載の手法により測定を行った。紡績糸や織編物などの繊維構造物においては、フィラメントであれば分解糸を用いてJIS L1013:2021の8.3.1B法により測定し、ステープルであれば分解糸から単繊維を取り出し、JIS L1015:2021の8.5.1B法により測定した。
(1) Single fiber fineness The single fiber fineness of polyester fibers was measured by the method described in JIS L1013:2021 for filaments and JIS L1015:2021 for staples (short fibers). For fibrous structures such as spun yarn and woven or knitted fabrics, if it is a filament, it is measured using a decomposed yarn according to method 8.3.1B of JIS L1013:2021, and if it is a staple, a single fiber is taken out from the decomposed yarn and measured using JIS L1013:2021 method 8.3.1B. Measured by method 8.5.1B of L1015:2021.

なお、表中溶出・減量前織編物における減量前単繊維繊度は、上記の方法で測定した複合繊維の単繊維繊度(易溶出性成分除去前かつ、減量加工前の複合繊維の単繊維繊度)に難溶出性成分の組成比率を乗じ、海島繊維や分割繊維であればその島数または分割数で除した値(以下、複合繊維における易溶出性成分を除去した場合に得られるポリエステル系繊維の単繊維繊度として「理論単繊維繊度」と称する場合がある)を示した。 In addition, the single fiber fineness before weight loss in the woven and knitted fabrics before elution and weight loss in the table is the single fiber fineness of the composite fiber measured by the above method (single fiber fineness of the composite fiber before removal of easily eluted components and before weight loss processing) is multiplied by the composition ratio of the poorly eluted component, and divided by the number of islands or the number of splits in the case of sea-island fibers or split fibers (hereinafter, the value of the polyester fiber obtained when the easily leached components of the composite fiber are removed). The single fiber fineness is sometimes referred to as "theoretical single fiber fineness."

(2)減量率
上記(1)で測定した減量前の単繊維繊度、減量後の単繊維繊度から、フィラメント、ステープルにおける減量率は以下の算式で算出した。
減量率(質量%)=(1-減量後の単繊維繊度/減量前の単繊維繊度)×100
(2) Weight loss rate From the single fiber fineness before weight loss and the single fiber fineness after weight loss measured in (1) above, the weight loss rate in filaments and staples was calculated using the following formula.
Weight loss rate (mass%) = (1 - single fiber fineness after weight loss/single fiber fineness before weight loss) x 100

なお、易溶出性成分を含む複合繊維の場合、減量前の単繊維繊度は、前記(1)で説明した溶出・減量前織編物における理論単繊維繊度を代入した。 In the case of a composite fiber containing an easily eluted component, the theoretical single fiber fineness of the woven or knitted fabric before elution and weight loss explained in (1) above was substituted for the single fiber fineness before weight loss.

布帛などの繊維構造物の場合は、以下の方法により測定を行った。 In the case of fibrous structures such as fabrics, measurements were performed using the following method.

繊維構造物の5×20cmの領域を切り出し、減量加工前(複合繊維を使用した場合は、易溶出性成分除去前)の生地質量を測定する。 A 5×20 cm area of the fibrous structure is cut out, and the mass of the fabric before weight reduction processing (in the case of using composite fibers, before removal of easily eluted components) is measured.

繊維構造物の5×20cmの領域に印を施し、減量加工後にその印に沿って生地を切り出し、減量加工後の質量から、以下の式に従い減量率を計算した。
減量率(質量%)=減量加工後の質量÷(減量加工前の質量×複合繊維の混率×難溶出性成分の比率)×100
A mark was made on a 5 x 20 cm area of the fiber structure, and after weight reduction processing, the fabric was cut out along the mark, and the weight loss rate was calculated from the mass after weight reduction processing according to the following formula.
Weight loss rate (mass %) = Mass after weight loss processing ÷ (mass before weight loss processing x Mixing ratio of composite fiber x Ratio of poorly soluble components) x 100

なお、上記式において、複合繊維を用いず、単独繊維を用いた場合には、複合繊維は単独繊維と読み替え、難溶出性成分の比率は1を代入するものとする。 In addition, in the above formula, when a single fiber is used instead of a composite fiber, the composite fiber is read as a single fiber, and 1 is substituted for the ratio of the hardly soluble component.

(3)無機粒子の平均粒子径
単繊維をランダムに10本採取し、片刃カミソリを用いて繊維方向に対して垂直に切断して試料サンプルを作製し、この単繊維の断面を、走査型電子顕微鏡(SEM、日立製 TM3030 Plus Miniscope)を用いて倍率2000倍で撮影し、繊維中で存在している二次粒子を観察する。凝集した二次粒子は1つの粒子とみなし、その最大径を粒子径とする。観察した無機粒子100個分の粒子径の平均値をとったものを無機粒子の平均粒子径とした。
(3) Average particle diameter of inorganic particles 10 single fibers were randomly collected and cut perpendicular to the fiber direction using a single-edged razor to prepare a sample. Photographs are taken using a microscope (SEM, Hitachi TM3030 Plus Miniscope) at a magnification of 2000 times to observe secondary particles present in the fibers. The aggregated secondary particles are regarded as one particle, and the maximum diameter thereof is defined as the particle diameter. The average value of the particle diameters of 100 observed inorganic particles was taken as the average particle diameter of the inorganic particles.

(4)扁平度
単繊維をランダムに10本採取し、片刃カミソリを用いて繊維方向に対して垂直に切断して試料サンプルを作製し、この単繊維の繊維軸方向に対して垂直方向の断面(横断面)を、走査型電子顕微鏡(SEM、日立製 TM3030 Plus Miniscope)を用いて倍率500倍で撮影した。撮影した単繊維の横断面において最大となる径を最長軸長とし、最長軸に対して直角を保ち、かつ最大となる径を最短軸長としたときの、最短軸長に対する最長軸長の比(最長軸長/最短軸長)を求め、単繊維50本に対して算出した値の平均値を扁平度とした。
(4) Flatness 10 single fibers were randomly collected and cut perpendicularly to the fiber direction using a single-edged razor to prepare a sample, and a cross section of the single fibers was taken in a direction perpendicular to the fiber axis direction. (Cross section) was photographed at a magnification of 500 times using a scanning electron microscope (SEM, Hitachi TM3030 Plus Miniscope). The ratio of the longest axis length to the shortest axis length, where the maximum diameter in the cross section of the photographed single fiber is the longest axis length, and the longest axis is kept perpendicular to the longest axis, and the maximum diameter is the shortest axis length. (Longest axis length/Shortest axis length) was determined, and the average value of the values calculated for 50 single fibers was taken as the flatness.

(5)繊維表面凹部のサイズおよび個数
ポリエステル系繊維の単繊維をランダムに10本採取し、この単繊維の表面を、走査型電子顕微鏡(SEM、日立製 TM3030 Plus Miniscope)を用いて倍率2000倍で撮影した。単繊維表面から5μm×2μmの領域をランダムに10か所ずつ設定し、この領域内に存在する凹部のうち、0.05μm以上、0.20μm以下である凹部の数をカウントし、これを単繊維10本分で測定した平均値を1mmあたりの凹部個数に換算した。
(5) Size and number of concavities on the fiber surface 10 single fibers of polyester fibers were randomly sampled, and the surface of the single fibers was examined at a magnification of 2000 times using a scanning electron microscope (SEM, Hitachi TM3030 Plus Miniscope). Photographed at. Ten areas of 5 μm x 2 μm are randomly set from the surface of the single fiber, and among the recesses existing in this area, the number of recesses that are 0.05 μm 2 or more and 0.20 μm 2 or less is counted. The average value measured for 10 single fibers was converted into the number of recesses per 1 mm 2 .

(6)繊維混用率
JIS L1030-2:2012繊維混用率に記載の手法により測定を行った。
(6) Fiber mixture ratio Measurement was performed using the method described in JIS L1030-2:2012 Fiber mixture ratio.

(7)織物密度
JIS L1096:2020に記載の手法により測定を行った。
(7) Fabric density Measurement was performed using the method described in JIS L1096:2020.

(8)風合い
風合いの評価は官能評価で以下に示す通り実施した。織編物などの繊維構造物であればそのもので評価を実施し、フィラメント、紡績糸などの繊維束であれば筒編地を作製して評価を実施し、ステープルであれば公知の方法で作製した紡績糸から筒編地を作製して、評価を実施した。筒編地の作製は筒編機(栄光産業製NCR-ES、27G)を用い、筒編地として編成した。上記の筒編地は、本発明のポリエステル系繊維を用いて作製してもよいし、作製した筒編地に前述のような減量加工等を施すことで本発明のポリエステル系繊維を得てもよい。風合いは下記の基準で評価した。
(8) Texture The texture was evaluated by sensory evaluation as shown below. If it is a fibrous structure such as a woven or knitted fabric, the evaluation was performed on the actual product, if it was a fiber bundle such as a filament or spun yarn, a tubular knitted fabric was prepared and evaluated, and if it was a staple, it was prepared using a known method. A tubular knitted fabric was produced from the spun yarn and evaluated. The tube knitted fabric was knitted using a tube knitting machine (NCR-ES, 27G manufactured by Eiko Sangyo). The above tubular knitted fabric may be produced using the polyester fiber of the present invention, or the polyester fiber of the present invention may be obtained by subjecting the produced tubular knitted fabric to weight loss processing as described above. good. Texture was evaluated using the following criteria.

(ソフト性)
生地を曲げた時の抵抗感が低く、ドレープ性のあるものを◎(非常に良好)、柔軟性を有するが、ややハリコシが感じられるものを〇(良好)、生地のハリコシが強く、ドレープ感に乏しいものを△(やや不良)、生地を掴んだ時の抵抗感が大きく、粗硬な風合いのものを×(不良)で判断した。
(Softness)
◎ (very good) is the fabric that has low resistance when bent and has drapability; ○ (good) is the fabric that has flexibility but has a slight stiffness; the fabric has strong elasticity and drapability Those with poor quality were evaluated as △ (slightly poor), and those with a rough texture and a strong feeling of resistance when gripping the fabric were evaluated as × (poor).

(肌触り)
極細繊維によるピーチタッチ調が感じられ、滑らかで肌触りの抵抗感が小さいものを◎(非常に良好)、起毛感があり滑らかさを感じるものを○(良好)、肌触りに抵抗感やきしみ感のあるものを△(やや不良)、表面が粗野でがさつに感じられるものを×(不良)とした。
(touch)
◎ (very good) has a peach-touch feel made of ultra-fine fibers, is smooth and has little resistance to the touch, ○ (good) has a brushed feel and feels smooth, and has no resistance or squeaks to the touch. If the surface was rough, it was rated as △ (slightly poor), and if the surface felt rough and rough, it was rated as × (poor).

(9)光沢感
光沢感の評価は(8)の風合い評価に用いたサンプルを使用し、官能評価で実施した。上記(8)で作製した筒編地を、光源ブース(Xライト社製、SPECTRALIGHT QC)内のD65光源下、45°の角度から見たときの光沢感を下記の基準で評価した。
(9) Glossiness The glossiness was evaluated by sensory evaluation using the sample used for the texture evaluation in (8). The cylindrical knitted fabric produced in (8) above was evaluated for glossiness when viewed from an angle of 45° under a D65 light source in a light source booth (manufactured by X-Light Co., Ltd., SPECTRALIGHT QC) using the following criteria.

ギラツキやチラつきがなく、シルクのような上品な光沢感が感じられるものを◎(非常に良好)、◎には及ばないが、光沢感があり、多少チラついて見えるものを○(良好)、反射光が強くテカっているように感じられるものや、チラつきのあるもの、逆に光沢感が弱くダル調に見えるものを△(やや不良)、テカりが強いもの、あるいは粉っぽくくすんだ外観のものを×(不良)で判断した。 ◎ (very good) for those that do not have glare or flicker and have an elegant silk-like luster, ○ (good) for those that are not as good as ◎ but have a glossy feel and some flickering. △ (slightly poor) for those that feel shiny due to strong light or have a flickering appearance, or on the other hand, those that have a weak gloss or dull appearance, and those that have a strong shine or a powdery and dull appearance. Items were judged as × (defective).

[実施例1]
ジメチルテレフタル酸100質量部と、酸化チタンとして富士チタン工業社製TA-100(平均粒子径0.60μm)を0.5質量%含むエチレングリコールスラリー75質量部、反応触媒として酢酸マグネシウム0.05質量部および酸化アンチモン0.04質量部をエステル交換缶に仕込み、窒素雰囲気下で150℃から250℃に徐々に加熱し、生成するメタノールを抽出しつつエステル交換反応を行った後、リン酸トリメチルを0.05質量部添加し、ついで徐々に減圧しつつ280℃まで昇温して2時間重合し、酸化チタン含有ポリエステル(ポリエチレンテレフタレート)チップを得た。酸化チタン含有量は生成ポリエステルに対して0.27質量%であった。前記酸化チタン含有ポリエステルを難溶出性成分とし、5-スルホイソフタル酸ナトリウムを全ジカルボン酸に対して8mol%、重量平均分子量2000のポリエチレングリコールを10質量%共重合したポリエチレンテレフタレートを易溶出性成分として、前記難溶出性成分と易溶出性成分を、エクストルーダーを用いて280℃で溶融後、前記難溶出性成分を85質量%、前記易溶出性成分を15質量%の比率となるよう、計量ポンプにて計量し、図1に示すような難溶出性成分2が繊維内に円周状に等間隔に3か所配置され、難溶出性成分2を分断するように繊維の中心から放射状に易溶出性成分1が配置した、繊維横断面構造となる複合口金を用いて紡糸した。なお、図1は、3分割型の分割型複合短繊維の繊維横断面の構造の一態様を示す模式図である。紡糸糸条を1300m/分の速度で引き取りながら冷却した後、風温20℃、風速40m/分、冷却長600mmの冷風吹出し冷却装置により冷却した。糸条の冷却後、工程油剤を0.1質量%付与し、フリーローラーを経て収束ガイドで20本合糸し、未延伸糸を得た。その後、20本の未延伸糸を引き揃えながら、90℃の温水中にて延伸倍率2.8倍で延伸した延伸糸を、160℃の加熱ローラーで5秒間緊張熱処理してクリンパーへ導き、延伸トウの温度を70℃、トウの押し込み圧を0.15MPaで機械捲縮を付与し、得られた捲縮トウを80℃で乾燥後、仕上げ油剤を0.2質量%付与し、回転式のカッターにより繊維長38mmに切断し、単繊維繊度1.56dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.44dtex)の分割型複合短繊維を得た。得られた分割型複合短繊維100質量%を用いて常法に基づき、綿番手30s、撚り係数3.4のリング紡績糸を作成した。筒編機(栄光産業製NCR-ES)を用い、27Gの筒編地に編成した後、濃度70g/Lの水酸化ナトリウム水溶液に浸漬し、筒編地質量に対して200質量%の絞り率となるようマングルで圧搾し、100℃×40分間のスチーミング処理を施すことで易溶出性成分の溶出と、難溶出性成分の減量加工とを同時に行い、本発明のポリエステル系繊維からなる筒編地を作製した。上記ポリエステル系繊維の分割、減量後の繊維横断面の扁平度は4、単繊維繊度は0.40dtex(減量率9.1質量%)であり、前述のSEMを用いた観察により測定した無機粒子の平均粒子径は0.85μm、繊維表面における0.05μm以上、0.20μm以下の凹部は7.2×10個/mmであった。本筒編地の官能評価において、風合いはソフトでドレープ性があり、表面の適度な起毛感(ピーチタッチ)の滑らかな手触りであり、また生地外観はシルクのような自然な光沢感が感じられる良好なものであった。
[Example 1]
100 parts by mass of dimethyl terephthalic acid, 75 parts by mass of ethylene glycol slurry containing 0.5% by mass of TA-100 manufactured by Fuji Titanium Industries Co., Ltd. (average particle size 0.60 μm) as titanium oxide, and 0.05 parts by mass of magnesium acetate as a reaction catalyst. 1 part and 0.04 parts by mass of antimony oxide were charged into a transesterification can, and gradually heated from 150°C to 250°C under a nitrogen atmosphere to carry out the transesterification reaction while extracting the methanol produced. 0.05 part by mass was added, and then the temperature was raised to 280° C. while gradually reducing the pressure and polymerization was carried out for 2 hours to obtain titanium oxide-containing polyester (polyethylene terephthalate) chips. The titanium oxide content was 0.27% by mass based on the produced polyester. The titanium oxide-containing polyester is used as a hardly eluting component, and polyethylene terephthalate obtained by copolymerizing 8 mol% of sodium 5-sulfoisophthalate based on the total dicarboxylic acid and 10% by mass of polyethylene glycol having a weight average molecular weight of 2000 is used as an easily eluting component. , After melting the hardly eluting component and the easily eluting component at 280° C. using an extruder, they were weighed so that the ratio of the hardly eluting component was 85% by mass and the easily eluting component was 15% by mass. Measured with a pump, the poorly eluted components 2 as shown in Fig. 1 are arranged in three locations circumferentially at equal intervals within the fiber, and radially from the center of the fiber so as to divide the hardly eluted components 2. Spinning was performed using a composite spinneret having a fiber cross-sectional structure in which easily eluted component 1 was arranged. Note that FIG. 1 is a schematic diagram showing one aspect of the fiber cross-sectional structure of a three-part split type conjugate short fiber. The spun yarn was cooled while being taken at a speed of 1300 m/min, and then cooled by a cold air blowing cooling device with an air temperature of 20° C., a wind speed of 40 m/min, and a cooling length of 600 mm. After cooling the yarn, 0.1% by mass of process oil was applied, and 20 yarns were combined using a convergence guide via a free roller to obtain an undrawn yarn. Thereafter, while aligning the 20 undrawn yarns, the drawn yarn was stretched at a draw ratio of 2.8 times in hot water at 90°C, and then subjected to tension heat treatment for 5 seconds with a heated roller at 160°C, guided to a crimper, and stretched. Mechanical crimping was applied to the tow at a temperature of 70°C and a pressing pressure of 0.15 MPa, and the resulting crimped tow was dried at 80°C, 0.2% by mass of finishing oil was applied, and a rotary crimper was applied. The fibers were cut to a fiber length of 38 mm using a cutter to obtain splittable composite short fibers with a single fiber fineness of 1.56 dtex (theoretical single fiber fineness of polyester fiber after elution of easily eluted components (but before weight loss): 0.44 dtex). A ring spun yarn having a cotton count of 30 s and a twist coefficient of 3.4 was prepared using 100% by mass of the obtained splittable conjugate short fibers according to a conventional method. After knitting into a 27G tubular knitted fabric using a tubular knitting machine (NCR-ES manufactured by Eiko Sangyo), it was immersed in a sodium hydroxide aqueous solution with a concentration of 70 g/L, and the reduction rate was 200% by mass based on the mass of the tubular knitted fabric. By squeezing with a mangle so that A knitted fabric was produced. The flatness of the fiber cross section after division and weight loss of the above polyester fiber is 4, the single fiber fineness is 0.40 dtex (weight loss rate 9.1% by mass), and the inorganic particles were measured by observation using the SEM described above. The average particle diameter of the fiber was 0.85 μm, and the number of concavities of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 7.2×10 4 /mm 2 . In the sensory evaluation of the main tube knitted fabric, the texture was soft and drapey, the surface had a moderately brushed feel (peach touch) and was smooth to the touch, and the fabric had a natural luster similar to silk. It was in good condition.

[実施例2]
実施例1で得られた分割型複合短繊維70質量%と、綿30質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。以降は実施例1と同様の手順により、27Gの筒編地編成、及び易溶出性成分の溶出と難溶出性成分の減量加工を行い、本発明のポリエステル系繊維を含む筒編地を作製した。分割、減量後のポリエステル系繊維の単繊維繊度は0.41dtex(減量率6.8質量%)、混率は65質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径0.82μm、繊維表面における0.05μm以上、0.20μm以下の凹部は5.3×10個/mmであった。本筒編地の官能評価において、風合いはソフトでドレープ性があり、表面の適度な起毛感(ピーチタッチ)の滑らかな手触りに加え、天然繊維である綿のさらっとしたタッチもあり、また綿との混紡品であっても生地外観はシルクのような自然な光沢感が得られた。
[Example 2]
A ring spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was prepared by blending 70% by mass of the splittable conjugate staple fiber obtained in Example 1 with 30% by mass of cotton using a conventional method. Thereafter, according to the same procedure as in Example 1, a 27G tubular knitted fabric was knitted, and the easily eluted components were eluted and the hardly eluted components were reduced to produce a cylindrical knitted fabric containing the polyester fiber of the present invention. . The single fiber fineness of the polyester fiber after splitting and weight loss is 0.41 dtex (loss rate: 6.8% by mass), the blending ratio is 65% by mass, and the flatness of the fiber cross section is determined by observation using the SEM described above. 4. The average particle diameter of the inorganic particles was 0.82 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 5.3×10 4 pieces/mm 2 . In the sensory evaluation of the main tube knitted fabric, the texture was soft and drapey, and in addition to the smooth feel of the moderately raised surface (peach touch), it also had the smooth touch of cotton, which is a natural fiber. Even though it was a blended product with 200% polyurethane, the fabric had a natural glossy appearance similar to silk.

[実施例3]
実施例2で得られたリング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを70g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、本発明のポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.41dtex(減量率6.8質量%)、混率は65質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は0.87μm、繊維表面における0.05μm以上、0.20μm以下の凹部は5.1×10個/mmであった。官能評価において、風合いはソフトでドレープ性があり、毛焼により表面毛羽を除去しているにもかかわらず生地表面はピーチタッチ調の滑らかな手触りが得られ、また綿との混紡品であっても生地外観はシルクのような自然な光沢感を維持していた。
[Example 3]
Using the ring spun yarn obtained in Example 2, sizing, warping, and weaving were carried out according to conventional methods to produce plain weave Zocchi fabric with a vertical density of 136 yarns/25.4 mm and a horizontal density of 72 yarns/25.4 mm. Created. In the continuous processing process, after the burning process, the dough is immersed in an aqueous solution containing 70 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 80% by mass based on the mass of the dough. The polyester of the present invention is obtained by squeezing and steaming in an L-BOX at 100°C for 40 minutes to perform desizing, scouring, elution of easily eluting components, and reducing the amount of hardly eluting components in one step. A woven fabric containing fibers was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.41 dtex (weight loss rate 6.8% by mass), the blending ratio is 65% by mass, and the flatness of the fiber cross section is 4 according to the observation using the SEM described above. The average particle diameter of the inorganic particles was 0.87 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 5.1×10 4 pieces/mm 2 . In the sensory evaluation, the texture was soft and drapey, the surface of the fabric had a peach-like smooth feel even though the surface fuzz was removed by burning, and it was a blended product with cotton. The fabric's appearance maintained a natural luster similar to silk.

[実施例4]
実施例1で得られた分割型複合短繊維70質量%と、綿30質量%との混紡により、常法に基づいて綿番手12s、撚り係数3.4のリング紡績糸を作製した。前記リング紡績糸を用いて、常法に基づいて糊付、整経、製織を行い、タテ密度83本/25.4mm、ヨコ密度48本/25.4mmの2/1ツイル織物を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを70g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率100質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で施し、本発明のポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の繊維横断面の扁平度は4、単繊維繊度0.40dtex(減量率9.1質量%)、混率は64質量%であり、前述のSEMを用いた観察により、無機粒子の平均粒子径0.81μm、繊維表面における0.05μm以上、0.20μm以下の凹部は8.2×10個/mmであった。官能評価において、風合いはソフトでドレープ性があり、毛焼により表面毛羽を除去しているにもかかわらず生地表面はピーチタッチ調の滑らかな手触りが得られ、また綿との混紡品であっても生地外観はシルクのような自然な光沢感を維持していた。
[Example 4]
A ring spun yarn having a cotton count of 12s and a twist coefficient of 3.4 was prepared by blending 70% by mass of the splittable composite short fibers obtained in Example 1 with 30% by mass of cotton using a conventional method. Using the ring spun yarn, sizing, warping, and weaving were carried out according to conventional methods to produce a 2/1 twill fabric with a vertical density of 83 threads/25.4 mm and a horizontal density of 48 threads/25.4 mm. In the continuous processing process, after the burning process, the dough is immersed in an aqueous solution containing 70 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 100% by mass based on the mass of the dough. The polyester of the present invention is compressed and steamed in an L-BOX at 100°C for 40 minutes to perform desizing, scouring, elution of easily eluting components, and weight reduction of hardly eluting components in one step. A woven fabric containing fibers was obtained. The flatness of the fiber cross section of the polyester fiber after splitting and weight loss was 4, the single fiber fineness was 0.40 dtex (weight loss rate: 9.1% by mass), and the blending rate was 64% by mass, as determined by observation using the SEM described above. The average particle diameter of the inorganic particles was 0.81 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 8.2×10 4 pieces/mm 2 . In the sensory evaluation, the texture was soft and drapey, the surface of the fabric had a peach-like smooth feel even though the surface fuzz was removed by burning, and it was a blended product with cotton. The fabric's appearance maintained a natural luster similar to silk.

[実施例5]
実施例1に記載の難溶出性成分、易溶出性成分を用い、前記難溶出性成分を80質量%、前記易溶出性成分を20質量%の組成とし、図2に示すような難溶出性成分2が繊維内に円周状に等間隔に2か所配置され、難溶出性成分2を分断するように繊維の中心から放射状に易溶出性成分1が配置した、繊維横断面構造となる複合口金を用い、紡糸工程の吐出量を変更した以外は、実施例1と同様の加工を行い、単繊維繊度1.93dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.77dtex)の分割型複合短繊維を得た。なお、図2は、2分割型の分割型複合短繊維の繊維横断面の構造の一態様を示す模式図である。前記分割型複合短繊維を70質量%、綿を30質量%からなる綿番手39s、撚り係数3.4のリング紡績糸を作成した。以降は実施例1と同様に、筒編機(栄光産業製NCR-ES)を用い、27Gの筒編地として編成した後、濃度70g/Lの水酸化ナトリウム水溶液に浸漬し、筒編地質量に対して200質量%の絞り率となるようマングルで圧搾し、100℃×40分間のスチーミング処理を施すことで易溶出性成分の溶出と、難溶出性成分の減量加工とを同時に行い、本発明のポリエステル系繊維からなる筒編地を作製した。分割、減量後のポリエステル系繊維の単繊維繊度0.71dtex(減量率7.8質量%)、混率は63質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は6、無機粒子の平均粒子径0.78μm、繊維表面における0.05μm以上、0.20μm以下の凹部は6.9×10個/mmであった。本筒編地の官能評価において、風合いは実施例2には及ばないがソフトなタッチで、表面の適度な起毛感(ピーチタッチ)の滑らかな手触りに加え、天然繊維である綿のさらっとしたタッチもあり、また綿との混紡品であっても生地外観はシルクのような自然な光沢感が得られた。
[Example 5]
Using the hardly eluting component and the easily eluting component described in Example 1, the composition was made to be 80% by mass of the hardly eluting component and 20% by mass of the easily eluting component, and the eluting property as shown in FIG. 2 was obtained. The fiber has a cross-sectional structure in which component 2 is arranged in two circumferentially equally spaced locations within the fiber, and easily eluted component 1 is arranged radially from the center of the fiber so as to separate the hardly eluted component 2. The same processing as in Example 1 was carried out except that a composite die was used and the discharge rate of the spinning process was changed. A split type composite short fiber with a single fiber fineness of 0.77 dtex) was obtained. Note that FIG. 2 is a schematic diagram showing one aspect of the fiber cross-sectional structure of a two-split type split-type conjugate short fiber. A ring-spun yarn with a cotton count of 39s and a twist coefficient of 3.4 was prepared, consisting of 70% by mass of the splittable composite short fibers and 30% by mass of cotton. Thereafter, in the same manner as in Example 1, a tube knitted fabric of 27G was knitted using a tube knitting machine (NCR-ES manufactured by Eiko Sangyo), and then immersed in an aqueous sodium hydroxide solution with a concentration of 70 g/L to determine the mass of the tube knitted fabric. By squeezing with a mangle to a squeezing rate of 200% by mass and steaming at 100°C for 40 minutes, the easily eluted components are eluted and the hardly eluted components are reduced at the same time. A tubular knitted fabric made of the polyester fiber of the present invention was produced. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.71 dtex (weight loss rate 7.8% by mass), the blending ratio is 63% by mass, and the flatness of the fiber cross section is 6 according to the observation using the above-mentioned SEM. The average particle diameter of the inorganic particles was 0.78 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 6.9×10 4 pieces/mm 2 . In the sensory evaluation of the main tube knitted fabric, the texture was not as good as that of Example 2, but it was soft to the touch, and in addition to the smooth feel of the moderately raised surface (peach touch), it also had the smooth feel of cotton, which is a natural fiber. It had a nice touch, and even though it was a blend with cotton, the fabric had a natural luster similar to silk.

[実施例6]
実施例2で得られたリング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを60g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、本発明のポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度は0.72dtex(減量率6.5質量%)、混率は64質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は6、無機粒子の平均粒子径は0.84μm、繊維表面における0.05μm以上、0.20μm以下の凹部は5.7×10個/mmであった。官能評価において、風合いは実施例2には及ばないがソフトなタッチで、毛焼により表面毛羽を除去しているにもかかわらず生地表面はピーチタッチ調の滑らかな手触りが得られ、また綿との混紡品であっても生地外観はシルクのような自然な光沢感を維持していた。
[Example 6]
Using the ring spun yarn obtained in Example 2, sizing, warping, and weaving were carried out according to conventional methods to produce plain weave Zocchi fabric with a vertical density of 136 yarns/25.4 mm and a horizontal density of 72 yarns/25.4 mm. Created. In the continuous processing process, after the burning process, the dough is immersed in an aqueous solution containing 60 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 80% by mass based on the mass of the dough. The polyester of the present invention is obtained by squeezing and steaming in an L-BOX at 100°C for 40 minutes to perform desizing, scouring, elution of easily eluting components, and reducing the amount of hardly eluting components in one step. A woven fabric containing fibers was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.72 dtex (weight loss rate 6.5% by mass), the blending ratio is 64% by mass, and the flatness of the fiber cross section is determined by observation using the SEM described above. 6. The average particle diameter of the inorganic particles was 0.84 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 5.7×10 4 pieces/mm 2 . In the sensory evaluation, the texture was not as good as that of Example 2, but it was soft to the touch, and even though the surface fuzz was removed by burning, the surface of the fabric had a peach-like smooth feel, and it was similar to cotton. Even though it was a blended product, the fabric appearance maintained a natural luster similar to silk.

[実施例7]
実施例1に記載の難溶出性成分、易溶出性成分を用い、前記難溶出性成分を80質量%、前記易溶出性成分を20質量%の組成とし、図2に示すような難溶出性成分2が繊維内に円周状に等間隔に2か所配置され、難溶出性成分2を分断するように繊維の中心から放射状に易溶出性成分1が配置した、構造となる複合口金で、かつ、吐出孔の形状が図4に示すような矩形であり、その長辺と短辺の比が2:1である口金を用いた以外は、実施例5と同様の加工を行い、単繊維繊度1.93dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.77dtex)の分割型複合短繊維を得た。なお、図4は、紡糸口金の吐出孔形状の一態様を示す模式図である。前記分割型複合短繊維70質量%と、綿30質量%との混紡により、常法に基づいて綿番手39s、撚り係数3.4のリング紡績糸を作成した。以降は実施例6と同様に、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製し、連続加工工程にて、毛焼加工の後、水酸化ナトリウムを50g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、本発明のポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.74dtex(減量率3.9質量%)、混率は64質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は10、無機粒子の平均粒子径0.78μm、繊維表面における0.05μm以上、0.20μm以下の凹部は1.1×10個/mmであった。前記織物の官能評価において、風合いは実施例3には及ばないがソフトで柔らかなタッチで、表面の適度な起毛感(ピーチタッチ)の滑らかな手触りに加え、天然繊維である綿のさらっとしたタッチもあり、また綿との混紡品であっても生地外観はシルクのような自然な光沢感が得られた。
[Example 7]
Using the hardly eluting component and the easily eluting component described in Example 1, the composition was made to be 80% by mass of the hardly eluting component and 20% by mass of the easily eluting component, and the eluting property as shown in FIG. 2 was obtained. A composite nozzle with a structure in which component 2 is arranged circumferentially at two equally spaced locations within the fiber, and easily eluted component 1 is arranged radially from the center of the fiber so as to divide the hardly eluted component 2. The same processing as in Example 5 was carried out, except that the shape of the discharge hole was rectangular as shown in FIG. 4, and the ratio of the long side to the short side was 2:1. A split type composite staple fiber having a fiber fineness of 1.93 dtex (theoretical single fiber fineness of polyester fiber after elution of easily eluted components (but before weight reduction) of 0.77 dtex) was obtained. Note that FIG. 4 is a schematic diagram showing one aspect of the shape of the discharge hole of the spinneret. A ring spun yarn having a cotton count of 39s and a twist coefficient of 3.4 was prepared by blending 70% by mass of the splittable composite short fibers with 30% by mass of cotton using a conventional method. Thereafter, in the same manner as in Example 6, a plain weave Zocchi fabric with a vertical density of 136 lines/25.4 mm and a horizontal density of 72 lines/25.4 mm was produced, and in the continuous processing process, after the wool burning process, sodium hydroxide was added. Immerse in an aqueous solution containing 50g/L and 2g/L of hydrogen peroxide, squeeze with a mangle so that the squeezing rate is 80% by mass based on the mass of the dough, and steam for 40 minutes at 100°C in an L-BOX. By performing the treatment, desizing, scouring, elution of easily eluted components, and reduction of hardly eluted components were performed in one step, and a fabric containing the polyester fiber of the present invention was obtained. After splitting and weight loss, the single fiber fineness of the polyester fiber was 0.74 dtex (weight loss rate: 3.9% by mass), the blending ratio was 64% by mass, and the flatness of the fiber cross section was found to be 10% by observation using the SEM described above. The average particle diameter of the inorganic particles was 0.78 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 1.1×10 4 pieces/mm 2 . In the sensory evaluation of the fabric, the texture was not as good as that of Example 3, but it was soft to the touch, with a moderately brushed surface (peach touch), and a smooth texture of cotton, which is a natural fiber. It had a nice touch, and even though it was a blend with cotton, the fabric had a natural luster similar to silk.

[実施例8]
実施例1に記載の難溶出性成分、易溶出性成分を用い、前記難溶出性成分を70質量%、前記易溶出性成分を30質量%の組成とし、図3に示すような難溶出性成分2が繊維内に円周状に等間隔に4か所配置され、難溶出性成分2を分断するように繊維の中心から放射状に易溶出性成分1が配置した繊維横断面構造となる複合口金で、かつ吐出孔形状が図4に示すような矩形であり、その長辺と短辺の比が3:1である口金を用いた以外は、実施例5と同様の加工を行い、単繊維繊度1.31dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.23dtex)の分割型複合短繊維を得た。なお、図3は4分割型の分割型複合短繊維の繊維横断面の構造の一態様を示す模式図である。常法により、前記分割型複合短繊維100質量%からなる綿番手39s、撚り係数3.4のリング紡績糸を作製し、糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、水酸化ナトリウム90g/Lの水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、本発明のポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.20dtex(減量率13.0質量%)であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は0.64μm、繊維表面における0.05μm以上、0.20μm以下の凹部は1.1×10個/mmであった。官能評価において、風合いは非常に柔らかでドレープ性があり、生地表面はピーチタッチ調の滑らかな手触りが得られ、また生地外観は多少ちらつきがあるが自然な光沢感を維持していた。
[Example 8]
Using the hardly eluting component and the easily eluting component described in Example 1, the composition was made such that the eluting component was 70% by mass and the easily eluting component was 30% by mass, and the eluting property as shown in FIG. 3 was obtained. A composite having a fiber cross-sectional structure in which component 2 is arranged at four equal intervals circumferentially within the fiber, and easily eluted component 1 is arranged radially from the center of the fiber so as to divide the hardly eluted component 2. The same processing as in Example 5 was carried out, except that a mouthpiece with a rectangular discharge hole shape as shown in FIG. 4 and a ratio of long side to short side of 3:1 was used. A split type composite staple fiber having a fiber fineness of 1.31 dtex (theoretical single fiber fineness of polyester fiber after elution of easily eluted components (but before weight loss) of 0.23 dtex) was obtained. In addition, FIG. 3 is a schematic diagram showing one aspect of the fiber cross-sectional structure of a four-split type split-type conjugate short fiber. A ring spun yarn with a cotton count of 39s and a twist coefficient of 3.4 made of 100% by mass of the splittable composite short fibers was prepared by a conventional method, and subjected to sizing, warping, and weaving to a vertical density of 136 yarns/25.4 mm. A plain weave Zocchi fabric with a width density of 72 lines/25.4 mm was produced. In the continuous processing process, the dough is immersed in an aqueous solution of 90 g/L of sodium hydroxide, squeezed with a mangle so that the squeezing rate is 80% by mass based on the mass of the dough, and steamed at 100°C for 40 minutes in an L-BOX. By performing desizing, scouring, elution of easily eluted components, and reduction of hardly eluted components in one step, a fabric containing the polyester fiber of the present invention was obtained. After splitting and weight loss, the single fiber fineness of the polyester fiber is 0.20 dtex (weight loss rate: 13.0% by mass), the flatness of the cross section of the fiber is 4, and the average particle size of the inorganic particles is determined by observation using the above-mentioned SEM. The diameter was 0.64 μm, and the number of recesses of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 1.1×10 5 /mm 2 . In the sensory evaluation, the texture was very soft and drapey, the surface of the fabric had a smooth feel with a peach touch, and although the fabric appearance had some flickering, it maintained a natural luster.

[実施例9]
実施例1に記載の難溶出性成分、易溶出性成分を用い、前記難溶出性成分を70質量%、前記易溶出性成分を30質量%の組成とし、難溶出性成分が繊維横断面上に等間隔に7か所配置された海島型複合口金で、かつ吐出孔形状が図4に示すような矩形状であり、その長辺と短辺の比が4:1である口金を用いた以外は、実施例5と同様の加工を行い、単繊維繊度1.31dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.23dtex)の海島型複合短繊維を得た。以降は実施例1と同様の手順により、27Gの筒編地編成、及び易溶出性成分の溶出と難溶出性成分の減量加工を行い、本発明のポリエステル系繊維を含む筒編地を作製した。分割、減量後のポリエステル系繊維の単繊維繊度0.20dtex(減量率13.0質量%)であり、前述のSEMを用いた観察により、繊維横断面の扁平度は3、無機粒子の平均粒子径は0.67μm、繊維表面における0.05μm以上、0.20μm以下の凹部は1.3×10個/mmであった。官能評価において、風合いは非常に柔らかでドレープ性があり、生地表面はピーチタッチ調の滑らかな手触りが得られ、また生地外観は多少ちらつきがあるが自然な光沢感を維持していた。
[Example 9]
Using the hardly eluting component and the easily eluting component described in Example 1, the composition was made such that the hardly eluting component was 70% by mass and the easily eluting component was 30% by mass, and the hardly eluting component was on the cross section of the fiber. A sea-island composite nozzle was used, with seven equally spaced locations in the sea-island composite nozzle, and the discharge hole had a rectangular shape as shown in Figure 4, with a long side to short side ratio of 4:1. Other than that, the same processing as in Example 5 was carried out, and sea-island type composite short fibers with a single fiber fineness of 1.31 dtex (theoretical single fiber fineness of polyester fiber after elution of easily eluted components (but before weight loss) of 0.23 dtex) were obtained. I got it. Thereafter, according to the same procedure as in Example 1, a 27G tubular knitted fabric was knitted, and the easily eluted components were eluted and the hardly eluted components were reduced to produce a cylindrical knitted fabric containing the polyester fiber of the present invention. . After splitting and weight loss, the single fiber fineness of the polyester fiber is 0.20 dtex (weight loss rate: 13.0% by mass), the flatness of the cross section of the fiber is 3, and the average particle size of the inorganic particles is determined by observation using the above-mentioned SEM. The diameter was 0.67 μm, and the number of recesses of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 1.3×10 5 /mm 2 . In the sensory evaluation, the texture was very soft and drapey, the surface of the fabric had a smooth feel with a peach touch, and although the fabric appearance had some flickering, it maintained a natural luster.

[実施例10]
実施例1で作製した筒編地に対し、濃度40g/Lの水酸化ナトリウム水溶液に浸漬し、筒編地質量に対して200質量%の絞り率となるようマングルで圧搾し、100℃×40分間のスチーミング処理を施すことで易溶出性成分の溶出と、難溶出性成分の減量加工とを同時に行い、本発明のポリエステル系繊維からなる筒編地を作製した。上記ポリエステル系繊維の分割、減量後の繊維横断面の扁平度は4、単繊維繊度は0.43dtex(減量率2.3質量%)であり、前述のSEMを用いた観察により測定した無機粒子の平均粒子径は0.85μm、繊維表面における0.05μm以上、0.20μm以下の凹部は7×10個/mmであった。本筒編地の官能評価において、風合いは実施例1の筒編地には劣るがソフトなタッチで、表面の適度な起毛感(ピーチタッチ)があり、また生地外観はややチラつきがあるもののシルクのような自然な光沢感が感じられる良好なものであった。
[Example 10]
The cylindrical knitted fabric produced in Example 1 was immersed in an aqueous sodium hydroxide solution with a concentration of 40 g/L, compressed with a mangle to give a reduction rate of 200% by mass based on the mass of the cylindrical knitted fabric, and then compressed at 100°C x 40 A tubular knitted fabric made of the polyester fiber of the present invention was produced by steaming for 1 minute to simultaneously elute easily eluted components and reduce the amount of hardly eluted components. The flatness of the fiber cross section after splitting and weight loss of the polyester fiber is 4, the single fiber fineness is 0.43 dtex (weight loss rate: 2.3% by mass), and the inorganic particles were measured by observation using the SEM described above. The average particle diameter was 0.85 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 7×10 3 /mm 2 . In the sensory evaluation of the main tube knitted fabric, the texture was inferior to the tube knitted fabric of Example 1, but it was soft to the touch, had a moderate raised feel (peach touch) on the surface, and the fabric appearance was silky, although it had some flickering. It was a good product with a natural glossy feel.

[実施例11]
酸化チタン含有ポリエステルチップ中の酸化チタン含有量を0.48質量%とした以外は実施例1と同様の方法で重合、紡糸を行い、短繊維繊度1.56dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.44dtex)の分割型複合短繊維を得た。得られた分割型複合短繊維70質量%と、綿30質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。前記リング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。前記平織生地に対し、連続加工工程にて、毛焼加工の後、水酸化ナトリウムを90g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×60分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、本発明のポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.38dtex(減量率13.6質量%)、混率は63質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は0.96μm、繊維表面における0.05μm以上、0.20μm以下の凹部は4.4×10個/mmであった。官能評価において、風合いはややキシみを感じるものの柔らかさがあり、毛焼により表面毛羽を除去しているにもかかわらず生地表面はピーチタッチ調の滑らかな手触りが得られ、またややダル調ではあるもののシルクのような自然な光沢感を維持していた。
[Example 11]
Polymerization and spinning were carried out in the same manner as in Example 1 except that the titanium oxide content in the titanium oxide-containing polyester chips was 0.48% by mass. A split type composite staple fiber with a theoretical single fiber fineness of 0.44 dtex (before weight loss) was obtained. A ring-spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was produced by blending 70% by mass of the obtained splittable conjugate short fibers with 30% by mass of cotton using a conventional method. Using the ring spun yarn, sizing, warping, and weaving were carried out according to conventional methods to produce a plain weave zocchi fabric with a vertical density of 136 threads/25.4 mm and a horizontal density of 72 threads/25.4 mm. In a continuous processing step, the plain weave fabric was sintered and then immersed in an aqueous solution containing 90 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and the drawing rate was 80 mass based on the mass of the fabric. %, and then steamed in an L-BOX at 100℃ for 60 minutes to remove desizing, scouring, elute easily eluting components, and reduce the amount of difficultly eluting components in one step. A woven fabric containing the polyester fiber of the present invention was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.38 dtex (weight loss rate: 13.6% by mass), the blending ratio is 63% by mass, and the flatness of the fiber cross section is 4 according to the observation using the above-mentioned SEM. The average particle diameter of the inorganic particles was 0.96 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 4.4×10 5 pieces/mm 2 . In the sensory evaluation, the texture was a little squishy but soft, and despite the removal of surface fluff by burning, the surface of the fabric had a smooth touch with a peach touch, and was slightly dull. It maintained a natural silk-like luster.

[比較例1]
実施例1で作製した筒編地に対し、濃度10g/Lの水酸化ナトリウム水溶液に浸漬し、筒編地質量に対して80質量%の絞り率となるようマングルで圧搾し、100℃×40分間のスチーミング処理を施すことで易溶出性成分の溶出と、難溶出性成分の減量加工とを同時に行い、ポリエステル系繊維からなる筒編地を作製した。上記ポリエステル系繊維の分割、減量後の繊維横断面の扁平度は4、単繊維繊度は0.436dtex(減量率0.9質量%)であり、前述のSEMを用いた観察により測定した無機粒子の平均粒子径は0.78μm、繊維表面における0.05μm以上、0.20μm以下の凹部は3×10個/mmであった。本筒編地の官能評価において、風合いは実施例1の筒編地には劣るがソフトで滑らかなタッチであったが、生地外観としてはチラつきが見られ、自然な光沢感は得られなかった。
[Comparative example 1]
The cylindrical knitted fabric produced in Example 1 was immersed in an aqueous sodium hydroxide solution with a concentration of 10 g/L, compressed with a mangle to give a reduction rate of 80% by mass based on the mass of the cylindrical knitted fabric, and then compressed at 100°C x 40 A tubular knitted fabric made of polyester fibers was produced by steaming for a minute to simultaneously elute easily eluted components and reduce the amount of hardly eluted components. The flatness of the fiber cross section after division and weight loss of the polyester fiber is 4, the single fiber fineness is 0.436 dtex (weight loss rate: 0.9% by mass), and the inorganic particles were measured by observation using the SEM described above. The average particle diameter was 0.78 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 3×10 3 /mm 2 . In the sensory evaluation of the main tube knitted fabric, the texture was soft and smooth to the touch, although it was inferior to the tube knitted fabric of Example 1, but the fabric appearance showed flickering and no natural luster was obtained. .

[比較例2]
酸化チタン含有ポリエステルチップ中の酸化チタン含有量を0.54質量%とした以外は実施例1と同様の方法で重合、紡糸を行い、短繊維繊度1.56dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.44dtex)の分割型複合短繊維を得た。得られた分割型複合短繊維70質量%と、綿30質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。前記リング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを90g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×60分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、ポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.37dtex(減量率15.9質量%)、混率は63質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は0.94μm、繊維表面における0.05μm以上、0.20μm以下の凹部は5.8×10個/mmであった。官能評価において、風合いはソフトで滑らかなタッチであったが、生地外観は光沢感がなくダル調の生地外観であった。
[Comparative example 2]
Polymerization and spinning were carried out in the same manner as in Example 1, except that the titanium oxide content in the titanium oxide-containing polyester chips was 0.54% by mass. A split type composite staple fiber with a theoretical single fiber fineness of 0.44 dtex (before weight loss) was obtained. A ring-spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was produced by blending 70% by mass of the obtained splittable conjugate short fibers with 30% by mass of cotton using a conventional method. Using the ring spun yarn, sizing, warping, and weaving were carried out according to conventional methods to produce a plain weave zocchi fabric with a vertical density of 136 threads/25.4 mm and a horizontal density of 72 threads/25.4 mm. In the continuous processing process, after the burning process, it is immersed in an aqueous solution containing 90 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 80% by mass based on the mass of the dough. By squeezing and steaming at 100°C for 60 minutes in an L-BOX, desizing, scouring, elution of easily eluting components, and reduction of hardly eluting components are performed in one step, resulting in polyester fibers. A fabric containing the following was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.37 dtex (loss rate: 15.9% by mass), the blending ratio is 63% by mass, and the flatness of the fiber cross section is 4 according to the observation using the above-mentioned SEM. The average particle diameter of the inorganic particles was 0.94 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 5.8×10 5 pieces/mm 2 . In the sensory evaluation, the texture was soft and smooth to the touch, but the fabric appearance lacked luster and had a dull texture.

[比較例3]
酸化チタン含有ポリエステルチップ中の酸化チタン含有量を0.08質量%とした以外は実施例1と同様の方法で重合、紡糸を行い、短繊維繊度1.56dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.44dtex)の分割型複合短繊維を得た。得られた分割型複合短繊維70質量%と、綿30質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。前記リング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを70g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、ポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.41dtex(減量率6.8質量%)、混率は65質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は0.78μm、繊維表面における0.05μm以上、0.20μm以下の凹部は1×10個/mmであった。官能評価において、風合いは柔らかく滑らかなタッチであったが、生地外観は光沢感が得られず、ギラツキ、チラつきが目立つものであった。
[Comparative example 3]
Polymerization and spinning were carried out in the same manner as in Example 1, except that the titanium oxide content in the titanium oxide-containing polyester chips was 0.08% by mass. A split type composite staple fiber with a theoretical single fiber fineness of 0.44 dtex (before weight loss) was obtained. A ring-spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was produced by blending 70% by mass of the obtained splittable conjugate short fibers with 30% by mass of cotton using a conventional method. Using the ring spun yarn, sizing, warping, and weaving were carried out according to conventional methods to produce a plain weave zocchi fabric with a vertical density of 136 threads/25.4 mm and a horizontal density of 72 threads/25.4 mm. In the continuous processing process, after the burning process, the dough is immersed in an aqueous solution containing 70 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 80% by mass based on the mass of the dough. By squeezing and steaming in an L-BOX at 100°C for 40 minutes, the process of desizing, scouring, elution of easily eluting components, and reducing the amount of difficultly eluting components is carried out in one step, resulting in polyester fibers. A fabric containing the following was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.41 dtex (weight loss rate 6.8% by mass), the blending ratio is 65% by mass, and the flatness of the fiber cross section is 4 according to the observation using the SEM described above. The average particle diameter of the inorganic particles was 0.78 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 1×10 3 pieces/mm 2 . In the sensory evaluation, the texture was soft and smooth to the touch, but the appearance of the fabric did not have a glossy feel and had noticeable glare and flickering.

[比較例4]
吐出孔形状が丸である口金を用いた以外は、実施例8と同様の加工を行い、単繊維繊度1.31dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.23dtex)の分割型複合短繊維を得た。前記分割型複合短繊維100質量%を用い、常法に基づいて綿番手39s、撚り係数3.4のリング紡績糸を作成した。以降は実施例6と同様に、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製し、連続加工工程にて、毛焼加工の後、水酸化ナトリウムを50g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、ポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.20dtex(減量率13.0質量%)であり、前述のSEMを用いた観察により、繊維横断面の扁平度は1、無機粒子の平均粒子径0.64μm、繊維表面における0.05μm以上、0.20μm以下の凹部は1.2×10個/mmであった。前記織物の官能評価において、風合いは細繊度によるソフト性と滑らかなタッチを備えていたが、光沢感は得られずチラつきが目立つ生地外観であった。
[Comparative example 4]
The same processing as in Example 8 was carried out except that a nozzle with a round discharge hole shape was used. A splittable composite short fiber with a fineness of 0.23 dtex) was obtained. A ring spun yarn having a cotton count of 39s and a twist coefficient of 3.4 was prepared using 100% by mass of the splittable composite short fibers according to a conventional method. Thereafter, in the same manner as in Example 6, a plain weave Zocchi fabric with a vertical density of 136 lines/25.4 mm and a horizontal density of 72 lines/25.4 mm was produced, and in the continuous processing process, after the wool burning process, sodium hydroxide was added. Immerse in an aqueous solution containing 50g/L and 2g/L of hydrogen peroxide, squeeze with a mangle so that the squeezing rate is 80% by mass based on the mass of the dough, and steam for 40 minutes at 100°C in an L-BOX. By performing the treatment, desizing, scouring, elution of easily eluted components, and reduction of hardly eluted components were performed in one step, and a fabric containing polyester fibers was obtained. After splitting and weight loss, the single fiber fineness of the polyester fiber is 0.20 dtex (weight loss rate: 13.0% by mass), the flatness of the cross section of the fiber is 1, and the average particle size of the inorganic particles is determined by observation using the above-mentioned SEM. The number of recesses with a diameter of 0.64 μm and a size of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 1.2×10 5 /mm 2 . In the sensory evaluation of the fabric, it was found that the texture was soft and smooth to the touch due to the fineness of the fabric, but the fabric did not have a glossy feel and had a noticeable flicker in appearance.

[比較例5]
ジメチルテレフタル酸100質量部と、酸化チタンとして堺化学工業社製SA-1(一次粒子径0.15μm)を0.5質量%含むエチレングリコールスラリー75質量部、反応触媒として酢酸マグネシウム0.05質量部および酸化アンチモン0.04質量部をエステル交換缶に仕込み、窒素雰囲気下で150℃から250℃に徐々に加熱し、生成するメタノールを抽出しつつエステル交換反応を行った後、リン酸トリメチルを0.05質量部添加し、ついで徐々に減圧しつつ280℃まで昇温して2時間重合し、酸化チタン含有ポリエステル(ポリエチレンテレフタレート)チップを得た。酸化チタン含有量は生成ポリエステルに対して0.27質量%であった。前記酸化チタン含有ポリエステルを難溶出性成分とし、実施例1と同様の方法により、単繊維繊度1.56dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.44dtex)の分割型複合短繊維を得た。得られた分割型複合短繊維70質量%と、綿30質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。前記リング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを70g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、ポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.41dtex(減量率6.8質量%)、混率は65質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は0.30μm、繊維表面における0.05μm以上、0.20μm以下の凹部は4×10個/mmであった。官能評価において、風合いは柔らかく滑らかなタッチであったが、生地外観は光沢感が得られず、チラつきが目立つものであった。
[Comparative example 5]
100 parts by mass of dimethyl terephthalic acid, 75 parts by mass of ethylene glycol slurry containing 0.5% by mass of SA-1 manufactured by Sakai Chemical Industry Co., Ltd. (primary particle size 0.15 μm) as titanium oxide, and 0.05 parts by mass of magnesium acetate as a reaction catalyst. 1 part and 0.04 parts by mass of antimony oxide were charged into a transesterification can, and gradually heated from 150°C to 250°C under a nitrogen atmosphere to carry out the transesterification reaction while extracting the methanol produced. 0.05 part by mass was added, and then the temperature was raised to 280° C. while gradually reducing the pressure and polymerization was carried out for 2 hours to obtain titanium oxide-containing polyester (polyethylene terephthalate) chips. The titanium oxide content was 0.27% by mass based on the produced polyester. Using the titanium oxide-containing polyester as the hardly eluting component, a single fiber fineness of 1.56 dtex was obtained using the same method as in Example 1 (theoretical single fiber fineness of the polyester fiber (before weight loss) after elution of the easily eluting component was 0.56 dtex. 44 dtex) split type composite short fibers were obtained. A ring-spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was produced by blending 70% by mass of the obtained splittable conjugate short fibers with 30% by mass of cotton using a conventional method. Using the ring spun yarn, sizing, warping, and weaving were carried out according to conventional methods to produce a plain weave zocchi fabric with a vertical density of 136 threads/25.4 mm and a horizontal density of 72 threads/25.4 mm. In the continuous processing process, after the burning process, the dough is immersed in an aqueous solution containing 70 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 80% by mass based on the mass of the dough. By squeezing and steaming in an L-BOX at 100°C for 40 minutes, desizing, scouring, elution of easily eluted components, and reduction of hardly eluted components are performed in one step, and polyester fibers are made into polyester fibers. A fabric containing the following was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.41 dtex (weight loss rate 6.8% by mass), the blending ratio is 65% by mass, and the flatness of the fiber cross section is 4 according to the observation using the above-mentioned SEM. The average particle diameter of the inorganic particles was 0.30 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 4×10 3 pieces/mm 2 . In the sensory evaluation, the texture was soft and smooth to the touch, but the fabric did not have a glossy appearance and had noticeable flickering.

[比較例6]
添加する無機粒子を平均粒子径0.9μmのシリカとした以外は、比較例5と同様に重合、紡糸を行い、単繊維繊度1.56dtex(易溶出性成分溶出後のポリエステル系繊維(ただし減量前)の理論単繊維繊度0.44dtex)の分割型複合短繊維を得た。得られた分割型複合短繊維70質量%と、綿30質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。前記リング紡績糸を用い、常法に基づいて糊付、整経、製織を行い、タテ密度136本/25.4mm、ヨコ密度72本/25.4mmの平織ゾッキ生地を作製した。連続加工工程にて、毛焼加工の後、水酸化ナトリウムを70g/Lと、過酸化水素を2g/Lを含む水溶液に浸漬し、生地質量に対して絞り率80質量%となるようマングルで圧搾し、L-BOXにて100℃×40分間のスチーミング処理を施すことで糊抜、精練、易溶出性成分の溶出、難溶出性成分の減量加工を一工程で行い、ポリエステル系繊維を含む織物を得た。分割、減量後のポリエステル系繊維の単繊維繊度0.40dtex(減量率9.1質量%)、混率は63質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径は1.1μm、繊維表面における0.05μm以上、0.20μm以下の凹部は2×10個/mmであった。官能評価において、生地のソフト性は感じられるものの、サイズの大きい凹部形成によりかさつきの感じられる手触りであり、外観としてもダル感があって光沢感が得られないものであった。
[Comparative example 6]
Polymerization and spinning were carried out in the same manner as in Comparative Example 5, except that the added inorganic particles were silica with an average particle diameter of 0.9 μm. A split type composite short fiber with a theoretical single fiber fineness of 0.44 dtex) was obtained. A ring-spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was produced by blending 70% by mass of the obtained splittable conjugate short fibers with 30% by mass of cotton using a conventional method. Using the ring spun yarn, sizing, warping, and weaving were carried out according to conventional methods to produce a plain weave zocchi fabric with a vertical density of 136 threads/25.4 mm and a horizontal density of 72 threads/25.4 mm. In the continuous processing process, after the burning process, the dough is immersed in an aqueous solution containing 70 g/L of sodium hydroxide and 2 g/L of hydrogen peroxide, and is mangled so that the squeezing rate is 80% by mass based on the mass of the dough. By squeezing and steaming in an L-BOX at 100°C for 40 minutes, the process of desizing, scouring, elution of easily eluting components, and reducing the amount of difficultly eluting components is carried out in one step, resulting in polyester fibers. A fabric containing the following was obtained. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.40 dtex (weight loss rate: 9.1% by mass), the blending ratio is 63% by mass, and the flatness of the fiber cross section is 4 according to the observation using the above-mentioned SEM. The average particle diameter of the inorganic particles was 1.1 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 2×10 3 pieces/mm 2 . In the sensory evaluation, although the fabric felt soft, it felt bulky to the touch due to the formation of large concavities, and the appearance was dull and lacked gloss.

[比較例7]
実施例1で得られた酸化チタン含有の難溶出性ポリエステルチップを単成分で用い、吐出孔の形状が矩形であり、その長辺と短辺の比が4:1の扁平断面口金を用いて単独紡糸した以外は実施例1と同様の方法で紡糸を行い、単繊維繊度0.90dtexのポリエステル系短繊維を得た。得られた分割型ポリエステル系繊維100質量%を用いて常法に基づき、綿番手30s、撚り係数3.4のリング紡績糸を作成した。筒編機(栄光産業製NCR-ES)を用い、27Gの筒編地に編成した後、濃度45g/Lの水酸化ナトリウム水溶液に浸漬し、筒編地質量に対して200質量%の絞り率となるようマングルで圧搾し、100℃×40分間のスチーミング処理を施すことで易溶出性成分の溶出と、難溶出性成分の減量加工とを同時に行い、ポリエステル系繊維からなる筒編地を作製した。上記ポリエステル系繊維の分割、減量後の繊維横断面の扁平度は4、単繊維繊度は0.85dtex(減量率5.6質量%)であり、前述のSEMを用いた観察により測定した無機粒子の平均粒子径は0.64μm、繊維表面における0.05μm以上、0.20μm以下の凹部は8×10個/mmであった。本筒編地の官能評価において、風合いは柔らかなタッチで、起毛感のある手触りであったが、細繊度の直接紡糸により発生した単糸切れにより、生地表面の毛羽立ちが多く、光沢感は得られなかった。
[Comparative Example 7]
The titanium oxide-containing hard-to-lead polyester chip obtained in Example 1 was used as a single component, and a flat cross-section die with a rectangular discharge hole and a long side to short side ratio of 4:1 was used. Spinning was carried out in the same manner as in Example 1 except that the single fiber was spun to obtain polyester short fibers having a single fiber fineness of 0.90 dtex. A ring spun yarn having a cotton count of 30 s and a twist coefficient of 3.4 was prepared using 100% by mass of the obtained split polyester fiber according to a conventional method. After knitting into a 27G tubular knitted fabric using a tubular knitting machine (NCR-ES manufactured by Eiko Sangyo), it was immersed in a sodium hydroxide aqueous solution with a concentration of 45 g/L, and the reduction rate was 200% by mass based on the mass of the tubular knitted fabric. By squeezing with a mangle and steaming at 100℃ for 40 minutes, the easily eluted components are eluted and the hardly eluted components are reduced at the same time, resulting in a tubular knitted fabric made of polyester fibers. Created. The flatness of the fiber cross section after division and weight loss of the above polyester fiber is 4, the single fiber fineness is 0.85 dtex (weight loss rate 5.6% by mass), and the inorganic particles were measured by observation using the SEM described above. The average particle diameter was 0.64 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 8×10 3 /mm 2 . In the sensory evaluation of the main tube knitted fabric, it was found that the texture was soft to the touch and had a brushed feel, but due to single yarn breakage caused by direct spinning of fine fineness, there was a lot of fuzz on the fabric surface, and the gloss was not good. I couldn't.

[参考例1]
実施例1で得られた分割型複合短繊維45質量%と、綿55質量%の混紡により、常法に基づいて綿番手41s、撚り係数3.6のリング紡績糸を作製した。以降は実施例1と同様の手順により、27Gの筒編地編成、及び易溶出性成分の溶出と難溶出性成分の減量加工を行い、ポリエステル系繊維を含む筒編地を作製した。分割、減量後のポリエステル系繊維の単繊維繊度は0.40dtex(減量率9.1質量%)、混率は39質量%であり、前述のSEMを用いた観察により、繊維横断面の扁平度は4、無機粒子の平均粒子径0.74μm、繊維表面における0.05μm以上、0.20μm以下の凹部は7.2×10個/mmであった。本筒編地の官能評価において、他の実施例に比べると特徴は小さいもの、通常のポリエチレンテレフタレートを用いた同混率の筒編地よりもソフト性や肌触りに優れ、一定の光沢感も得られ、かつ綿の良好な吸水性を有することから、ブラウスやドレスシャツ用途に好適な素材であった。
[Reference example 1]
A ring spun yarn having a cotton count of 41s and a twist coefficient of 3.6 was prepared by blending 45% by mass of the splittable composite staple fiber obtained in Example 1 with 55% by mass of cotton based on a conventional method. Thereafter, according to the same procedure as in Example 1, a 27G tubular knitted fabric was knitted, and the easily eluted components were eluted and the poorly eluted components were reduced to produce a cylindrical knitted fabric containing polyester fibers. The single fiber fineness of the polyester fiber after splitting and weight loss is 0.40 dtex (weight loss rate: 9.1% by mass), the blending ratio is 39% by mass, and the flatness of the fiber cross section is determined by observation using the SEM described above. 4. The average particle diameter of the inorganic particles was 0.74 μm, and the number of concave portions of 0.05 μm 2 or more and 0.20 μm 2 or less on the fiber surface was 7.2×10 4 pieces/mm 2 . In the sensory evaluation of the main tube knitted fabric, although its characteristics were small compared to other examples, it was superior in softness and feel to the skin than the tube knitted fabric with the same blend ratio using ordinary polyethylene terephthalate, and a certain glossiness was also obtained. , and has good water absorbency compared to cotton, making it a suitable material for blouses and dress shirts.

Figure 2023149539000001
Figure 2023149539000001

本発明の細繊度扁平ポリエステル系繊維は、細繊度特有のソフト風合いに加え、シルクライクな自然な光沢感が得られることから、一般衣料等に好適に用いられる。 The fine-grained flat polyester fiber of the present invention provides a silk-like natural luster in addition to the soft texture characteristic of fine-grained fibers, and is therefore suitable for use in general clothing and the like.

1 易溶出性成分
2 難溶出性成分
1 Easily eluting component 2 Hardly eluting component

Claims (3)

単繊維繊度0.20dtex以上、0.80dtex以下のポリエステル系繊維であって、平均粒子径0.60μm以上、1.00μm以下の無機粒子を0.10質量%以上、0.50質量%以下含み、横断面の扁平度が3以上、10以下であり、繊維表面に0.05μm以上、0.20μm以下の凹部を5×10個/mm以上、5.0×10個/mm以下有するポリエステル系繊維。 A polyester fiber with a single fiber fineness of 0.20 dtex or more and 0.80 dtex or less, containing 0.10 mass% or more and 0.50 mass% or less of inorganic particles with an average particle diameter of 0.60 μm or more and 1.00 μm or less. , the flatness of the cross section is 3 or more and 10 or less, and the fiber surface has 5 ×10 3 or more recesses/mm 2 or more and 5.0×10 5 recesses/mm 2 or more and 0.20 μm 2 or less. Polyester fiber having a diameter of mm 2 or less. 請求項1のポリエステル系繊維を40質量%以上含む織編物。 A woven or knitted fabric containing 40% by mass or more of the polyester fiber according to claim 1. 易溶出性成分を海とし、難溶出性成分を島とする横断面を有する海島型の複合繊維、および島となる難溶出性成分を易溶出性成分が複数個に分割するように配置された横断面を有する分割型の複合繊維から選択される複合繊維であって、難溶出性成分にポリエステルを含む複合繊維の易溶出性成分を溶出し、前記難溶出性成分のポリエステルを2質量%以上15質量%以下減量することを特徴とする、請求項1記載のポリエステル系繊維の製造方法。 A sea-island type composite fiber having a cross section in which the easily eluted component is a sea and the poorly eluted component is an island, and the easily eluted component is arranged so that the easily eluted component is divided into a plurality of pieces. A conjugate fiber selected from split-type conjugate fibers having a cross section, in which an easily eluting component of the conjugate fiber containing polyester as a hardly eluting component is eluted, and the polyester as the hardly eluting component is 2% by mass or more. The method for producing polyester fiber according to claim 1, characterized in that the weight loss is 15% by mass or less.
JP2022058166A 2022-03-31 2022-03-31 Polyester fiber and manufacturing method thereof Pending JP2023149539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022058166A JP2023149539A (en) 2022-03-31 2022-03-31 Polyester fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022058166A JP2023149539A (en) 2022-03-31 2022-03-31 Polyester fiber and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2023149539A true JP2023149539A (en) 2023-10-13

Family

ID=88288927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022058166A Pending JP2023149539A (en) 2022-03-31 2022-03-31 Polyester fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023149539A (en)

Similar Documents

Publication Publication Date Title
JPS61113819A (en) Novel fiber cloth and yarn and its production
KR20030083577A (en) A air jet textured yarn with different shrinkage and excellent melange effect, and a process of preparing for the same
JP2023149539A (en) Polyester fiber and manufacturing method thereof
JP5298553B2 (en) Mixed yarn and woven / knitted fabric using the same
JP7615601B2 (en) Blended yarn, woven or knitted fabric using the same, manufacturing method thereof, and black formal clothing
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP7372954B2 (en) spun yarn fabric
JP7367407B2 (en) Composite false twisted yarn and woven or knitted fabrics made from it
WO2024070726A1 (en) Composite fiber, multifilament, woven article, and textile product
JP2013204196A (en) Polyester-latent crimp multifilament yarn and manufacturing method thereof, and deep-dyeable fabric and manufacturing method thereof
JP4985358B2 (en) Shrinkage difference mixed yarn
JPH0359130A (en) Polyester blended yarn having different shrinkage
JP2005290588A (en) Polyamide combined filament yarn and woven or knitted fabric
JP4228504B2 (en) Woven knitted fabric made of blended yarn
JP2007321319A (en) Filament-staple composite spun yarn and fabric comprising the same
JP2007231477A (en) Long and short fiber composite spun yarn and fabric using the same
WO2020048473A1 (en) Fabric
JP2023161320A (en) Composite combined filament yarn and fabric using the same
JP2001271239A (en) Combined filament yarn with difference in shrinkage and method for producing the same
JP2024100735A (en) Woven or knitted fabric
JP2530721B2 (en) Mixed fiber entangled yarn
JP2023144544A (en) Woven fabric, manufacturing method thereof, and binding spun yarn
JP2001207339A (en) Partially hollow polyester yarn and method for producing the same
JPH04202821A (en) Conjugate crimped yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250131