WO2024067556A1 - 用于巡检机器人系统的驱动组件 - Google Patents

用于巡检机器人系统的驱动组件 Download PDF

Info

Publication number
WO2024067556A1
WO2024067556A1 PCT/CN2023/121472 CN2023121472W WO2024067556A1 WO 2024067556 A1 WO2024067556 A1 WO 2024067556A1 CN 2023121472 W CN2023121472 W CN 2023121472W WO 2024067556 A1 WO2024067556 A1 WO 2024067556A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wheel
track
mounting seat
pair
inspection robot
Prior art date
Application number
PCT/CN2023/121472
Other languages
English (en)
French (fr)
Inventor
郭力
贾维银
Original Assignee
安徽容知日新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽容知日新科技股份有限公司 filed Critical 安徽容知日新科技股份有限公司
Publication of WO2024067556A1 publication Critical patent/WO2024067556A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present application relates to the field of rail inspection technology, and in particular to an inspection robot system and its drive components and drive devices.
  • robots have basic characteristics such as perception, decision-making, and execution, they can assist or even replace humans in completing the dangerous, arduous, and complex inspection work, thereby improving work efficiency and quality.
  • the inspection robot When the inspection robot is working, it usually moves on the track along a fixed running path with a track platform as the carrier, and monitors the environment that needs to be inspected.
  • track inspection robots such as factories, breeding plants, smart farms, municipal pipe corridors, underground coal mines, etc.
  • a driving device such as a motor and related transmission mechanisms such as pulleys are generally set at a fixed position to drive the conveyor belt or conveyor line arranged on the track and the inspection robot installed thereon to move together for inspection.
  • the inspection robot device In the existing inspection robot system, the inspection robot device generally runs as a whole on the track for inspection. Since the inspection robot device may need to work in certain harsh working conditions, such as in mines, underground, places with a lot of flammable dust, and other places with strict explosion-proof standards. Therefore, in such environments, the design of the inspection robot should meet the explosion-proof requirements, minimize the problem of excessive temperature during operation, and improve heat dissipation. Due to the limited space in some applications, the size of the inspection robot needs to be as small as possible. The limitations of conveyor belts or conveyor lines and tracks also require the inspection robot to be as light as possible and prevent local overloads. The above and other application environments also put forward higher requirements for reliability.
  • One of the basic ideas of the present application is to provide a new type of serial inspection robot system, which has a novel drive design.
  • a transmission chain is installed and arranged along its track on the track, and the drive motor, the reduction mechanism and the transmission sprocket can be assembled together by, for example, a mounting bracket, and the inspection robot can be connected to or assembled together, and the transmission sprocket can be driven to run on the track by the meshing rolling of the transmission chain on the transmission chain.
  • the mounting bracket such as the mounting seat, can be installed with a guide/limiting guide wheel.
  • All or part of the transmission chain of this drive design such as the transmission chain installed in the curved track segment, preferably adopts a transmission chain that can bend sideways/has three-dimensional extension freedom.
  • This transmission chain-sprocket arrangement has great advantages over the traditional pulley rail design and the gear rack transmission design.
  • the operation process and trajectory of the pulley rail are unstable, and basically cannot run under load; the movement of the gear rack transmission is basically unlikely to achieve two-dimensional and three-dimensional motion freedom, and it is even more impossible to achieve the movement from the upright running track to the curved/torsion track to the horizontal circumferential running track in some cases.
  • the reduction mechanism which is preferably a worm gear, not only saves installation space, but is also naturally self-locking, which is very important and advantageous for fixing and maintaining the position of the drive device and the inspection robot on the track when needed.
  • a substantially closed track is used, and a track with a polygonal cross section, such as a square cross section, is easier to manufacture and supply, has a low cost, and can avoid dust and water accumulation.
  • a closed track with a regular shape is that in some dusty application environments such as mines and underground, dust accumulation in the groove of the track (if the track is an open grooved track) can be avoided to affect the use, and the manufacturing and processing cost of the closed track with a regular shape is also lower, and the strength and rigidity can be higher.
  • Another basic concept of the present application is to provide a new type of cable traction design.
  • the traction design multiple traction trolleys are installed and arranged along the track, and the cables are fixed on the traction trolleys and driven by the driving device.
  • the driving device and/or the inspection robot can be powered very conveniently, and the cables can follow the driving device smoothly, which facilitates the installation and operation of the cables and ensures the reliability of power supply and the life of the cables. This provides advantages compared with the busbar power supply method of the prior art.
  • the serial inspection robot can be equipped with multiple serial robot modules, making the small volume design and explosion-proof design of the robot module possible, because each module only needs a relatively small capacity battery to meet the explosion-proof standards, and such a design also provides improved maintenance/replacement convenience and high reliability.
  • a drive assembly for an inspection robot system including: a drive device, the drive device includes a motor, a reduction mechanism and a transmission sprocket, the rotational motion of the motor is transmitted to the transmission sprocket via the reduction mechanism, thereby driving the transmission sprocket to rotate; a mounting seat, at least two pairs of upper guide wheels and at least two pairs of lower guide wheels rolling on the track of the inspection robot system are installed on the mounting seat, and the drive device is rotatably mounted on the mounting seat; a transmission chain, the transmission chain is fixedly mounted on the track, wherein the transmission sprocket is meshed with the transmission chain, so that it can move along the track together with the mounting seat when rotating.
  • At least two pairs of upper guide wheels include: a pair of upper guide wheels arranged to roll close to the left edge above the track, and a pair of upper guide wheels arranged to roll close to the right edge above the track.
  • at least two pairs of lower guide wheels include: a pair of lower guide wheels arranged to roll close to the left edge below the track, and a pair of lower guide wheels arranged to roll close to the right edge below the track.
  • the mounting seat includes a lower bracket and two upper bracket parts, wherein each upper bracket part can independently pivot relative to the lower bracket.
  • the upper bracket part is an upper U-shaped part, wherein each upper U-shaped part includes a bottom plate and two side plates extending upward from the bottom plate.
  • an upper guide wheel and a lower guide wheel are respectively mounted on each side plate of each upper U-shaped part.
  • the upper guide wheel and the lower guide wheel are installed to match the profile of the track, and can respectively guide and carry the drive assembly in a rolling manner close to the two side edges above and below the track.
  • a side guide wheel is further installed on each side plate of each upper U-shaped part, between the upper guide wheel and the lower guide wheel, and the side guide wheel is configured to roll on the side of the track.
  • the track is a square track with a square cross section as a whole, and the side guide wheels roll on the side surfaces of the left and right sides of the square track respectively.
  • two pivot holes are provided on the lower bracket, and the two upper bracket parts are independently pivotally mounted on the lower bracket through the pivots passing through the corresponding pivot holes.
  • a thrust ball bearing sleeved on the pivot is further provided at the lower end of the pivot hole of the lower bracket.
  • the transmission chain is fixedly mounted on the bottom surface of the track and extends along the track.
  • the transmission chain is fixedly mounted on the bottom surface of the track by rivets or screws at a position near the center line.
  • the track has a cross section that is generally polygonal, and the polygonal shape is configured so that the track has a flat bottom surface and a top surface after installation, and has two vertical side surfaces or two inclined upper side surfaces or two arc-shaped upper curved surfaces.
  • the cross section of the track is selected from one of the following: square, trapezoid, truncated isosceles triangle, pentagon, hexagon and drum.
  • the track is a square track with a square cross section as a whole, and the upper guide wheel and the lower guide wheel of the mounting seat roll and run on the top surface and the bottom surface of the square track respectively.
  • the guide wheel is a guide wheel with a flange, and the side of the flange close to the track is an inclined surface, and the inclined surface forms an inclined angle A relative to the plane perpendicular to the rotation axis of the guide wheel, wherein 0 ⁇ A ⁇ 30°. According to one embodiment, 5° ⁇ A ⁇ 20°.
  • the guide wheel is a guide wheel with a flange, and the side of the flange close to the track is an arc surface, and the arc radius of the arc surface is smaller than the bending radius of the track.
  • the transmission sprocket is rotatably connected to the rotating shaft of the motor via a reduction mechanism, and is driven to rotate by the motor.
  • the reduction mechanism is a meshing worm wheel and a worm, wherein the worm is transmission-matched with the rotating shaft of the motor, and the worm wheel is transmission-matched with the transmission sprocket.
  • the worm gear is fixed on one side of the lower bracket of the mounting seat, and the transmission sprocket is rotatably mounted coaxially with the worm gear on the other side opposite to the lower bracket.
  • a cable mounting member is provided on the mounting seat, wherein the drive assembly is also connected to the cable traction assembly of the inspection robot system.
  • an inspection robot or a robot module is mounted on the mounting seat.
  • the drive assembly is configured so that when installed on the track, the transmission sprocket is located below the track and engages with a transmission chain fixedly mounted on the bottom of the track.
  • the inspection robot is an integral inspection robot, or a serial inspection robot including a group of robot modules.
  • the transmission chain is fixedly mounted near the center line on the bottom of the track by rivets or screws.
  • the traction trolley of the cable traction assembly rolls on the common track with the mounting seat.
  • the side guide wheels are a pair of side guide wheel mechanisms spaced apart from each other along the extension direction of the track, Each side guide wheel mechanism includes an upper guide wheel and a lower guide wheel arranged up and down. An avoidance recess is reserved between the upper guide wheel and the lower guide wheel of each side guide wheel mechanism.
  • a patrol robot system is also disclosed, which includes the drive assembly as described above.
  • a driving device for an inspection robot system comprising: a first mounting seat, a pair of upper guide wheels and a pair of lower guide wheels are mounted on the first mounting seat, the pair of upper guide wheels are arranged on the left and right sides of the top surface of the track of the inspection robot system, and the pair of lower guide wheels are arranged on the left and right sides of the bottom surface of the track; a second mounting seat, a pair of upper guide wheels and a pair of lower guide wheels are mounted on the second mounting seat, the pair of upper guide wheels are arranged on the left and right sides of the top surface of the track of the inspection robot system, and the pair of lower guide wheels are arranged on the left and right sides of the bottom surface of the track; an intermediate connecting member pivotally connected between the first mounting seat and the second mounting seat; a motor, a reduction mechanism and a transmission sprocket rotatably connected to the motor mounted on at least one of the first mounting seat and the second mounting seat, wherein the motor drives the transmission sprocket via
  • the first mounting seat includes a main body, a pair of hanging arms located on the upper part of the main body and located on the left and right sides of the track when installed, wherein each of the pair of hanging arms is equipped with an upper guide wheel and a lower guide wheel arranged up and down and respectively matched on the top and bottom surfaces of the track, and a pair of side guide wheel mechanisms spaced apart from each other along the extension direction of the track; and, the second mounting seat includes a main body, a pair of hanging arms located on the upper part of the main body and located on the left and right sides of the track when installed, wherein each of the pair of hanging arms is equipped with an upper guide wheel and a lower guide wheel arranged up and down and respectively matched on the top and bottom surfaces of the track, and a pair of side guide wheel mechanisms spaced apart from each other along the extension direction of the track; and, the second mounting seat includes a main body, a pair of hanging arms located on the upper part of the main body and located on the left and right sides of the track when installed, wherein each of the
  • each side guide wheel mechanism includes an upper guide wheel and a lower guide wheel arranged up and down, and the upper guide wheel and the lower guide wheel are configured to roll on the side of the track close to the upper side and the lower side of the track respectively.
  • a clearance recess is reserved between the upper guide wheel and the lower guide wheel of each side guide wheel mechanism.
  • each side guide wheel mechanism includes an axle on which the upper guide wheel and the lower guide wheel are respectively mounted at both ends, and the axle has a smaller diameter than the upper guide wheel and the lower guide wheel, so that the axle between the upper guide wheel and the lower guide wheel reserves a clearance recess; or, the upper guide wheel and the lower guide wheel of each side guide wheel mechanism are separate guide wheels spaced apart from each other, so that the interval between the upper guide wheel and the lower guide wheel defines the clearance recess; or, the upper guide wheel and the lower guide wheel of each side guide wheel mechanism are an integrally formed structure, and the integrally formed structure provides a clearance recess between the upper guide wheel and the lower guide wheel.
  • the side guide wheel mechanism is mounted on the corresponding boom through a side guide wheel bracket.
  • the upper guide wheel on each suspension arm is arranged between the corresponding pair of side guide wheel mechanisms in the extension direction of the track.
  • all the upper guide wheels are identical to each other, all the lower guide wheels are identical to each other, and all the side guide wheel mechanisms are identical to each other.
  • the main body of the first mounting seat and its pair of suspension arms are configured in a U-shape, a clamp shape or a tuning fork shape, and the upper guide wheel is suspended on the top surface of the track and rolls along the left and right sides;
  • the main body of the second mounting seat and its pair of suspension arms are configured in a U-shape, a clamp shape or a tuning fork shape, and the upper guide wheel is suspended on the top surface of the track and rolls along the left and right sides.
  • the first mounting seat and the second mounting seat are both integrally formed; or, the main bodies of the first mounting seat and the second mounting seat are spliced by multiple plates, and the pair of suspension arms of the first mounting seat and the second mounting seat are both plate-shaped or strip-shaped suspension arms fixedly connected to their respective main bodies.
  • the upper guide wheel, the lower guide wheel, the upper side guide wheel and the lower side guide wheel can all be guide wheels without flanges, so that the drive device is a stabilized full rolling guide drive device.
  • a driving device for an inspection robot system comprising: a motor, a reduction mechanism and a transmission sprocket, wherein the rotational motion of the motor is transmitted to the transmission sprocket via the reduction mechanism, thereby driving the transmission sprocket to rotate; a mounting seat, wherein at least two pairs of upper guide wheels and at least two pairs of lower guide wheels rolling on a square track of the inspection robot system are mounted on the mounting seat, and the motor, the reduction mechanism and the transmission sprocket are rotatably mounted on the mounting seat; a transmission chain, wherein the transmission chain is fixedly mounted on the square track, wherein the transmission sprocket meshes with the transmission chain, thereby being able to move along the square track together with the mounting seat when rotating; wherein the mounting seat comprises a lower bracket and two upper bracket parts, wherein each upper bracket part is capable of independently pivoting relative to the lower bracket, and a side guide wheel is further installed between the upper guide wheel and the lower guide wheel on each side plate
  • the drive device has a lightweight structure, wherein a plurality of hollow holes are processed on the main body of the first mounting seat and the second mounting seat; and the intermediate connecting member is in the form of a perforated plate processed with a plurality of hollow holes.
  • all upper guide wheels, lower guide wheels, upper side guide wheels and lower side guide wheels are flange-less guide wheels, thereby making the drive device a stabilized full-rolling guided drive device.
  • a patrol robot system which includes the above drive device.
  • a serial inspection robot system comprising: a track, which defines an inspection path; a drive device, which comprises a motor, a reduction mechanism and a transmission sprocket, wherein the rotational motion of the motor is transmitted to the transmission sprocket via the reduction mechanism, thereby driving the transmission sprocket to rotate; a plurality of mounting seats, each mounting seat being equipped with a guide wheel that rolls on the track, and the drive device being rotatably mounted on the corresponding mounting seat; a transmission chain, which is fixedly mounted on the track along the extension direction of the track, and the transmission sprocket meshes with the transmission chain, thereby When rotating, it can move along the track together with the driving device and the mounting seat; a serial inspection robot, the serial inspection robot includes a group of robot modules connected in series to each other, each robot module is installed on a corresponding mounting seat and driven by the driving device to move along the track.
  • the robot module is assembled on the corresponding mounting seat and connected in series by a rigid rod with a universal joint.
  • the number of driving devices is one; or, the number of driving devices is at least two, and at least two driving devices have the same configuration.
  • the serial inspection robot is a battery-powered serial inspection robot, wherein the driving device has its own battery or is powered by a separate battery module; a group of robot modules also includes at least one of the following battery-powered functional modules: lighting module, video-thermal imaging-audio module, gas sensor module, intercom module, ground wireless sensor data collection module, fire protection module and video-thermal imaging lens cleaning module.
  • the serial inspection robot is a cable-powered serial inspection robot, wherein a group of robot modules includes at least one of the following functional modules: a lighting module, a video-thermal imaging-audio module, a gas sensor module, an intercom module, a ground wireless sensor data collection module, a firefighting module, and a video-thermal imaging lens cleaning module.
  • the inspection robot system further includes a cable traction assembly, which includes: a plurality of traction trolleys, each of which is installed in the track and runs along the longitudinal extension track of the track; a cable, one end of the cable is connected to the drive device and/or the serial inspection robot, and the other end is connected to the power supply and the communication gateway; wherein the cable is fixed or clamped on the plurality of traction trolleys, so that the cable can move with the movement of the traction trolleys.
  • the traction trolley includes a bracket, and two pairs of upper guide wheels and two pairs of lower guide wheels installed on the bracket and configured to run on the upper and lower sides of the track, respectively.
  • the bracket is a bracket, for example, a U-shaped bracket having a bottom plate and two side plates, and a pair of upper guide wheels and a pair of lower guide wheels are respectively installed on each side plate in a side-by-side manner so as to be able to roll along the upper and lower sides of the track respectively.
  • the bracket is made of stainless steel, carbon steel or aluminum profiles.
  • the U-shaped bracket also includes a side guide wheel installed between a pair of upper guide wheels and a pair of lower guide wheels on each side plate, and the side guide wheels are configured to roll on corresponding sides of the track respectively.
  • the traction trolley and the mounting seat share a track for rolling operation.
  • the transmission chain is a toothed chain or a roller chain.
  • at least a portion of the transmission chain is a chain that can bend sideways, for example, a chain that can provide three-dimensional extension freedom.
  • the reduction mechanism is a meshing worm wheel and a worm, wherein the worm is in driving cooperation with the rotating shaft of the motor, and the worm wheel is in driving cooperation with the transmission sprocket.
  • the worm wheel is fixed on one side of the lower bracket of the mounting seat, and the transmission sprocket is coaxially and rotatably mounted on the other side opposite to the lower bracket.
  • the cross section of the track is selected from one of the following: square, trapezoid, truncated isosceles triangle, pentagon, hexagon and drum.
  • the track is a square track with a square cross section as a whole, and the upper guide wheel and the lower guide wheel of the mounting seat roll and run on the top and bottom surfaces of the square track respectively.
  • the square track is easier to manufacture and supply, and has lower cost.
  • the track has a cross section that is polygonal as a whole, and the polygonal shape is configured so that the track has a flat bottom and top surface after installation, and has two vertical side surfaces or two inclined upper side surfaces or two arc-shaped upper curved surfaces.
  • the transmission chain is an uninterrupted chain fixedly mounted on the track along the length of the track.
  • the transmission chain is composed of at least two sections of chains that are seamlessly spliced along the length of the track and fixed on the track.
  • each of a group of robot modules can be independently repaired and/or independently replaced.
  • at least one robot module in the serial inspection robot is fixedly assembled with the drive device.
  • the track is an annular track, and the annular track defines a circular fixed inspection path of the inspection robot.
  • at least one robot module in the serial inspection robot is fixedly mounted on a mounting seat.
  • the transmission sprocket is located below the track and can engage with the transmission chain fixedly mounted on the bottom surface of the track.
  • a splicing groove for mounting a splicing pin is provided on at least part of the track segments of the track.
  • the track is an integrally formed metal part.
  • the robot module can be independently repaired and/or independently replaced.
  • the functional module has a built-in battery.
  • the functional module draws power from a cable.
  • the track can be made of metal materials such as stainless steel, carbon steel or aluminum profiles, which can provide advantages in cost, weather resistance, easy processing, easy replacement and maintainability.
  • different robot modules can communicate and power supply by cable, or can also be powered by battery and wireless communication.
  • the inspection robot adopts the design of robot modules distributed in series on the track, this design can avoid concentrated attachment on the track, thus providing a distributed light-load configuration. Since the functions and power consumption of the modules are also dispersed, the battery capacity on each module can be smaller, the pressure is small, and it is easy to pass the explosion-proof certification. Each module can be independently maintained, repaired and replaced, so it is better than the integral inspection robot in maintainability.
  • the drive device by adopting the meshing between the chain fixedly installed on the sprocket + track to drive, and cooperating with the reduction mechanism in the form of worm gear, many advantages can be provided, such as no slipping, strong climbing ability, self-locking when stopped, the drive device can still maintain a stable position even when subjected to external force, simple structure, etc.
  • the present application also discloses the use of the inspection robot system for inspection in outdoor environments, underground mines, dock transportation sites, industrial production lines, long-distance rail transportation occasions, long-distance belt transportation occasions, explosion-proof occasions, anti-freeze occasions, rainproof occasions or dustproof occasions. More embodiments of the present application can also achieve other advantageous technical effects that are not listed one by one. These other technical effects may be partially described below and are predictable and understandable to those skilled in the art after reading the present application.
  • FIG1A is a schematic diagram of the main configuration of a wireless (battery) powered serial inspection robot system according to an embodiment of the present application, showing the overall layout of an exemplary inspection robot system arranged on a circular track, for example.
  • FIG1B is a schematic diagram of the main configuration of a wired (cable) powered serial inspection robot system according to an embodiment of the present application, showing the overall layout of the inspection robot system.
  • FIG. 2A is an enlarged schematic diagram of a portion of the wireless (battery) powered inspection robot system shown in FIG. 1A , showing an enlarged view of the arrangement of the serial inspection robots (modules) and drive devices on the track.
  • FIG. 2B is an enlarged schematic diagram of a portion of the wired (cable) powered inspection robot system shown in FIG. 1B , showing an enlarged view of the arrangement of the serial inspection robots (modules) and the drive devices on the track.
  • FIG. 3 is a further enlarged view of the wired-powered inspection robot module, the drive device, and the traction trolley shown in FIG. 2B .
  • FIG. 4 is an enlarged three-dimensional schematic diagram of a driving device and a portion of a (curved) track of the wirelessly powered inspection robot system shown in FIG. 2A .
  • FIG. 5 is a further enlarged partial view of the structure shown in FIG. 2B from another perspective, and shows a track with a square cross section in a partially cut-away manner.
  • FIG6 is an enlarged schematic diagram of a driving device and an inspection robot (module) of a tandem inspection robot system according to an embodiment.
  • FIG. 7 shows an enlarged schematic diagram of the drive device and the inspection robot module assembled together through the mounting base shown in FIG. 6 in a partially cut-away form.
  • FIG8 schematically shows the structures of the driving device, inspection robot (module) and mounting base shown in FIG6 from another perspective.
  • FIG. 9 is a schematic diagram showing the structure of the driving device shown in FIG. 8 , in which the inspection robot module is removed and showing that the two upper U-shaped members of the mounting seat can each independently pivot relative to the lower portion.
  • FIGS. 8-9 is a partial perspective schematic diagram of the drive device shown in FIGS. 8-9 , particularly showing the guide wheel and pivot design of the mounting seat.
  • FIG. 11 is a partial perspective schematic diagram of a driving device of another embodiment, which is substantially the same in structure as that shown in FIG. 10 , except that a side guide wheel is added to the mounting seat.
  • FIG. 12 illustrates a rail having a square cross-section according to an embodiment, in which an electric heating device may be provided.
  • FIG13 illustrates the arrangement and design of the guide wheel of the mounting seat according to one embodiment, and particularly illustrates the flange on the guide wheel and the inclined design of the flange for facilitating the guide wheel to negotiate curves.
  • FIG. 14 shows the structure of the guide wheel of an embodiment in an enlarged view, particularly showing the flange on the roller body and the inclined design of the flange.
  • FIG. 15 illustrates an enlarged schematic perspective view of an embodiment of a traction trolley according to an embodiment, illustrating the construction and details of the traction trolley of the embodiment.
  • 16 shows a schematic perspective view of a stabilized, full guide wheel rolling (friction) guided drive device according to another embodiment, showing the arrangement of the drive device and its first and second mounting seats, guide wheels, etc.
  • FIG. 17 is a schematic perspective view showing the installation and operation of the driving device shown in FIG. 16 on a square track.
  • Figure 18 shows a schematic cross-sectional view of the first mounting base with a motor mounted on the square track as shown in Figure 17, showing more details of the cross-section of the track, the first mounting base with the motor mounted, the drive and transmission structure, and the guide wheels thereon in a lateral view.
  • Figure 19 shows a schematic top view of the first mounting seat with a motor installed on the square track as shown in Figure 17, showing a top view of the first mounting seat with a motor installed on the track, and in particular shows the installation and positional relationship of the upper guide wheel and the side guide wheels installed thereon.
  • the second mounting seat may have a structure that is substantially the same or similar to the first mounting seat.
  • Figure 20 shows a schematic stereoscopic view of the side guide wheel bracket for installing the side guide wheel mechanism, schematically showing the general structure and installation of the side guide wheel bracket and the side guide wheel installed on one side of the first mounting seat thereby.
  • the inspection robot with an integrated design of the upper carrier belt may be unable to pass through the narrow running channel due to the excessively large volume of the overall structure, resulting in the application of the inspection robot system being limited or blocked.
  • the inspection robot needs to work continuously for a long time, and its working environment may be relatively harsh, such as high temperature, high humidity, high dust environment, etc.
  • the inspection robot with an integrated design may cause a series of problems due to its integrated structure.
  • the working modules of the integrated structure work together and generate heat, resulting in heat dissipation problems.
  • the requirements may not be met.
  • a component of the working parts of the above-mentioned integrated overall structure fails, the operation of the inspection robot conveyor chain has to be stopped, and the entire inspection robot has to be disassembled for replacement or diagnosis and maintenance, which may cause the conveyor chain to be interrupted for too long. These will cause unacceptable losses in the application occasions of the inspection robot conveyor chain that require long-term and low-fault operation.
  • FIG1A is a schematic diagram of the main configuration of a wireless (battery) powered serial inspection robot system 100 according to an embodiment of the present application, showing the overall layout of an exemplary inspection robot system 100 arranged on a circular track 200.
  • FIG2A is an enlarged schematic diagram of a portion of the wireless (battery) powered inspection robot system 100 shown in FIG1A , showing an enlarged view of the arrangement of a serial inspection robot (module) 300 and a driving device 400 on the track 200.
  • FIG4 is a further enlarged perspective schematic diagram of a driving device 400 and a portion of a curved track of the wireless (battery) powered inspection robot system 100 shown in FIG2A .
  • serial inspection robot 300 of the inspection robot system 100 can be driven by the driving device 400 to engage with the transmission chain 240 fixed on the track 200 through the transmission sprocket 440, and run along the track to inspect the target in the surrounding environment.
  • an exemplary serial inspection robot 300 is shown, which includes a group of four serially arranged inspection robot modules 300A-300D. As shown in the figure, this group of robot modules 300A-300D are arranged in series and spaced apart from each other on the track 200.
  • the robot module 300D at one end is installed with a drive motor 410 and driven by it, and the robot module 300A at the other end is installed with another drive motor 410 and driven by it.
  • These robot modules can be connected to each other by rigid connecting rods such as steel rods 302 or steel wires 302, so that they can be driven together and run on the track 200.
  • rigid connecting rods such as steel rods 302
  • universal joints can be added at both ends to provide universal joints, which provide flexibility and passability when crossing a curve.
  • at least one of the robot modules, such as robot module 300B can be a battery module, which can power the inspection robot module 300A and the drive device 400 where it is located through wires or cables 301.
  • a drive device 400 with a motor and a transmission and reduction mechanism is provided at both ends.
  • a serial inspection robot with one or more drive devices 400.
  • the inspection robot modules 300A-300D can be connected to each other by wireless communication.
  • the drive motor 410 can be in the form of a servo motor, for example.
  • FIG. 1B is a schematic diagram of the main configuration of a wired (cable) powered serial inspection robot system 100 according to an embodiment of the present application, showing the overall layout of the inspection robot system 100.
  • FIG. 2B is an enlarged schematic diagram of a portion of the wired (cable) powered inspection robot system 100 shown in FIG. 1B , showing an enlarged view of the arrangement of the serial inspection robot (module) 300 and the drive device 400 on the track 200.
  • FIG. 3 is a further enlarged view of the wired powered inspection robot module 300D, the drive device 400 and the traction trolley shown in FIG. 2B .
  • FIG. 5 is a further enlarged partial view of the structure shown in FIG.
  • the embodiment of the wired-powered serial inspection robot system 100 is similar in configuration and construction to the wireless (battery-powered) serial inspection robot system shown in FIGS. 1A and 2A , except that a group of four serially arranged inspection robot modules 300A-300D of the wired-powered serial inspection robot system 100 are powered by external The power supply is provided by the cable 450, so the separate battery module can be omitted according to the situation.
  • the communication between the inspection robot modules 300A-300D (if any) can also be in a limited form, of course, this is not necessary.
  • the cable 450 is connected to the drive device and/or the inspection robot (module), and can follow the inspection robot (module) 300 on the track 200 through the traction of the traction trolley 470, as described in detail below.
  • the wired power supply and communication method is advantageous in the case of short-distance inspection, and can provide a more reliable power supply and communication method.
  • the robot module 300D at one end is connected to a traction trolley 470 carrying (e.g., clamping or other installation methods) the cable 450 through a cable 450.
  • a traction trolley 470 carrying (e.g., clamping or other installation methods) the cable 450 through a cable 450.
  • the traction trolley 470 can be connected (and electrically connected) to the drive device 400 and/or connected (and electrically connected) to the inspection robot (e.g., the module 300D shown in FIG3 ) only through the power supply and/or communication cable 450, so that the power supply cable 450 can follow the drive device 400 and run along the track 200.
  • the inspection robot e.g., the module 300D shown in FIG3
  • some inspection robots in the prior art also use cables for power supply, but generally use the arrangement of busbars.
  • One of the technical defects of busbars is that they are prone to poor contact or short circuit in a humid environment, and the reliability of busbar power supply is relatively low. This cable traction method of the present application can alleviate or avoid the above defects.
  • Fig. 5 is a further enlarged partial view of the structure shown in Fig. 2B from another perspective, and shows the track with a square cross section in a partially cutaway manner.
  • Fig. 6 is a schematic diagram of a driving device 400 and an inspection robot (one of the robot modules) 300 of a tandem inspection robot system according to an embodiment of the present application being installed and running on a track 200.
  • FIG. 7 shows the assembly of the drive device 400 on the square track 200 and an exemplary assembly structure of the transmission chain 240 in a partial cross-sectional view.
  • the track 200 has a substantially square cross-section, but other forms of structures and cross-sections of the track 200 are also possible.
  • the track 200 may have a cross-section that is generally polygonal, and the polygonal shape is configured so that the track 200 has a flat bottom surface and a top surface after installation, and has two vertical side surfaces, or two inclined upper side surfaces, or two arc-shaped upper curved surfaces.
  • the cross-section of the track 200 can be square, trapezoidal, truncated isosceles triangle, pentagon, hexagon and drum, etc.
  • the track 200 can be integrally formed of metal such as aluminum, aluminum alloy, steel, etc. In general, square tracks are easier to manufacture and supply, and the cost can be lower.
  • the transmission chain 240 can be fixedly installed by rivets, screws, bolts, etc.
  • the transmission chain 240 is arranged along a part or the entire extension length and extension direction of the track 200, and in the present application, it needs to be fixedly installed on the track 200 so that the sprocket 440 engages with it and moves along the transmission chain 240.
  • the reduction mechanism 430 is, for example, preferably but not limited to a worm gear reduction mechanism, as described in further detail below.
  • a heating wire installation groove 260 can also be provided in the track 200, in which an electric heating element 250, such as an electric heating belt, a heating wire or a thermistor PTC, can be accommodated, which is used to heat the track, de-ice and/or de-water.
  • an electric heating element 250 such as an electric heating belt, a heating wire or a thermistor PTC
  • the electric heating element 250 is provided on both sides as shown in Figure 12, the number and arrangement position of the electric heating element 250 can be changed as needed, such as more or less, and can be provided on the track 200 of any structure, not limited to a square track.
  • a regularly shaped closed track such as the square track 200
  • dust accumulation in the track grooves if the track is an open grooved track
  • the manufacturing and processing costs of the regularly shaped closed track are also lower, while the strength and rigidity can be higher.
  • FIG6 is an enlarged schematic diagram of a driving device 400 and an inspection robot 300 of a serial inspection robot system according to an embodiment of the present application.
  • FIG7 shows a schematic end view of the structure shown in FIG6 in a partially cutaway form.
  • FIG8-FIG10 show the structure of a driving device, an inspection robot (module), and a mounting seat, etc. of an embodiment.
  • this embodiment of the driving device 400 may include a motor 410, a reduction mechanism 430, and a transmission sprocket 440.
  • the reduction mechanism 430 is mainly composed of a worm gear and a worm gear that mesh with each other.
  • This worm gear and worm gear type reduction mechanism 430 can not only play a good role in speed reduction, but also self-locking, so as to facilitate the inspection robot (module) to be fixed on the track, which is not available in other forms of reduction mechanisms.
  • the motor shaft of the motor 410 and the worm gear can be coaxially connected to transmit the rotational motion from the motor, and the rotational motion after the reduction of the worm gear meshing therewith is transmitted to the transmission sprocket 440.
  • the worm gear reduction mechanism 430 is mounted on the right side of the mounting base 420, and the transmission sprocket 440 can be mounted on the left side of the mounting base 420, for example, in a coaxial or coaxial manner.
  • the inspection robot (module) 300 and the drive device 400 are assembled into one body through the mounting base 420.
  • the transmission sprocket 440 meshes with the transmission chain 240 fixed on the track. 7.
  • the drive sprocket 440 of the driving device 400 is driven to rotate by the motor 410, it can mesh with the drive chain 240 fixed on the track 200 and roll along the track 200, such as rolling forward or backward, thereby driving the entire driving device 400, the mounting base 420 and the inspection robot 300 to move along the track 200.
  • the transmission chain 240 may be a roller chain.
  • the transmission chain 240 may also be other forms that are adapted to mesh with the transmission sprocket, such as a toothed chain. Since the transmission chain 240 needs to extend upwards together with the track 200, for example, generally vertically, horizontally, and circumferentially, it may be necessary to bend sideways and/or twist. Therefore, it is preferred that at least a portion or all of the transmission chain 240 is a chain transmission chain that can bend sideways, which can have the freedom of three-dimensional spatial extension.
  • the mounting seat 420 may include a lower bracket 423 and two upper bracket portions 421 and 422, which may be generally U-shaped, and each upper U-shaped portion 421 or 422 can independently pivot relative to the lower bracket 423.
  • the upper U-shaped portion 421 or 422 can independently pivot relative to the lower bracket 423 from the orientation shown in Figure 8 to the orientation shown in Figure 9, so that the mounting seat 420 can be flexibly adjusted when turning on the track and can smoothly turn the track.
  • Each upper U-shaped portion 421 and 422 includes a bottom plate and two side plates extending upward from the bottom plate. As shown in Figure 10, an upper guide wheel 421A and a lower guide wheel 421C are installed on one side plate of the upper U-shaped portion 421, and an upper guide wheel 421B and a lower guide wheel 421D are installed on the other side plate opposite thereto, and a pivot 480 is installed on the bottom plate of the upper U-shaped portion 421, as described in detail below.
  • an upper guide wheel 422A and a lower guide wheel 422C are installed on one side plate of the upper U-shaped portion 422, and an upper guide wheel 422B and a lower guide wheel 422D are installed on the other side plate opposite thereto, and another pivot 480 is installed on the bottom plate of the upper U-shaped portion 422, as described in detail below.
  • These upper guide wheels and lower guide wheels are configured to roll on the upper and lower sides of the track 200, play the role of motion guidance, position limiting and straightening, and prevent jumping during operation. The provision of these guide wheels helps the driving device 400 and the inspection robot 300 to run smoothly along the track 200 and prevents jumping, derailment, and deviation from the track, etc. during operation.
  • a straight plate 423A can be designed on the lower bracket 423, on which the inspection robot (module) 300, such as a camera module, a battery module, a drive module, a video-audio module, a sensor module, etc., or other inspection equipment can be installed.
  • the inspection robot (module) 300 such as a camera module, a battery module, a drive module, a video-audio module, a sensor module, etc., or other inspection equipment can be installed.
  • Two pivot holes 423D and 423E can also be designed on the lower bracket 423 at the position corresponding to the bottom plate of the two upper U-shaped parts 421 and 422.
  • the two pivot holes 423D and 423E can be deliberately thickened as shown in the figure so that two pivots 480 of a certain length can pass through them, as shown in Fig. 10.
  • One end of the two pivots 480 can be fixed on the bottom plate of the corresponding upper U-shaped part, for example, by threading in the two pivot holes 423D and 423E, or/in addition, by nuts or nuts.
  • the other end of the two pivots 480 can be pivotally mounted on the lower bracket 423.
  • the end flange of the other end can be abutted against the end surface of the corresponding pivot hole, so that the upper U-shaped part can be pivoted relative to the lower bracket.
  • thrust ball bearings 423B and 423C can be sleeved between the end flange of the other end and the corresponding pivot holes 423D and 423E, so as to ensure that the two upper U-shaped parts 421 and 422 are accurately and reliably assembled relative to the lower bracket 423, and ensure that the two upper U-shaped parts 421 and 422 can independently and smoothly pivot relative to the lower bracket 423.
  • FIG. 11 is a partial perspective schematic diagram of a driving device 400 of another embodiment, which is substantially the same as the structure shown in FIG. 10 , except that a design of a side guide wheel is added to the mounting seat.
  • a side guide wheel is added to each side plate of the upper U-shaped portion 421 and 422, namely 421E, 421F, 422E and 422F.
  • these side guide wheels 421E, 421F, 422E and 422F roll on the side surfaces of the left and right sides of the track, further playing the role of motion guidance, (left and right) limit, straightening and preventing derailment, and of course, can also further help to smoothly turn.
  • FIG. 13-FIG. 14 shows a design of a guide wheel that helps to go around a curve on a track.
  • the upper guide wheel 421A of the mounting seat 420 is used as an example for illustration.
  • the upper guide wheel 421A may have a roller body 421A1 that rolls on the track 200, and a flange 421A2 that is integral with it.
  • a chamfered arc such as an inwardly concave arc C, may be used to transition between the flange 421A2 and the roller body 421A1 to avoid stress concentration, and it may more or less help to go around a curve.
  • the end face of the flange 421A2 on the side close to the track after installation is designed as an inclined plane S, and the inclined plane S forms an inclined angle A with a plane perpendicular to the rotation axis R of the guide wheel, wherein 0 ⁇ A ⁇ 30°, for example, more preferably 2° ⁇ A ⁇ 20°, 5° ⁇ A ⁇ 15°, and so on.
  • the arc radius of the arc surface is preferably smaller than the bending radius of the track to facilitate turning.
  • Figure 13 shows the situation of the upper guide wheel with a slope S design when turning.
  • the design of the slope S greatly reduces or even avoids the interference/obstruction of the side of the track 200 with the rolling of the guide wheel.
  • Figures 13-14 only show this design of the upper guide wheel of the mounting seat, the lower guide wheel of the mounting seat can also adopt this slope or arc design.
  • the upper guide wheel and lower guide wheel blades of the traction trolley 470 can adopt this slope or arc design for turning, which is easily understood by technicians in this field.
  • FIG. 15 shows an embodiment of one of the traction trolleys 470 that can roll on the inspection track 200.
  • the cable 450 can be fixed on the traction trolley 470, and the cable 450 can be directly used as a traction rope without using another traction rope. This is because the track 200 is a horizontal track in most cases, and even if the cable 450 is affected by the traction force during the traction process, the traction force/tension is small enough not to be detrimental to the life of the cable 450 and the reliability of power supply.
  • FIG. 15 is an enlarged schematic perspective view of an embodiment of a traction trolley 470, showing the structure and details of the traction trolley 470 of this embodiment.
  • the traction trolley 470 has a U-shaped bracket, which is composed of a bottom plate and two side plates extending upward from the bottom plate, for example, and can be processed by channel steel (or aluminum alloy) or I-beam (or aluminum alloy profile). A total of 8 guide wheels are installed on the U-shaped bracket.
  • a pair of upper guide wheels 471A and 471B and a pair of lower guide wheels 471C and 471D are installed on one of the side plates 471 of the traction trolley 470, which can all play the role of motion guidance, position limiting and straightening.
  • a pair of upper guide wheels 472A and 472B and a pair of lower guide wheels 472C and 472D can be installed on the other side plate 472 of the traction trolley 470, which can all play the role of motion guidance, position limiting and straightening, and preventing jumping during operation.
  • These guide wheels can help the traction trolley 470 to roll smoothly along the track 200, so that when the inspection robot 300 and the drive device 400 run along the track 200, their (power supply and/or communication) cables 450 can be used as traction cables and can therefore also be carried by the traction trolley 470 and travel along the track 200 together, providing safe and reliable power supply and/or communication.
  • the upper guide wheels and lower guide wheels of the traction trolley 470 can have the same structure and design as the upper guide wheels and lower guide wheels of the mounting seat 420, because they can run on the same track 200.
  • a cable installation member 475 may also be provided on the traction trolley 470, for example, on its bottom plate 473, which may include, for example, a main body with a slot 475A for accommodating and installing the cable 450, and two fastening screws 476, for example, for fastening the cable 450 in the slot 475A.
  • the traction trolley may adopt other forms different from those shown in the figure, as long as the traction rope and the cable can be installed and fixed, and these are all within the scope of the present application.
  • the rail 200 can be integrally formed from metal such as aluminum or aluminum alloy by extrusion process.
  • the transmission chain 240 can be a roller chain or a toothed chain, and they can be load-bearing or non-load-bearing.
  • the transmission chain 240 can also be other forms that are adapted to mesh with the transmission sprocket, such as a toothed chain.
  • the transmission chain 240 can adopt a chain transmission chain that can be side-bent, which preferably has a three-dimensional degree of freedom, so that it can have a three-dimensional degree of freedom of extension.
  • serial inspection robots 300 may be arranged on each track 200.
  • Each serial inspection robot 300 may include a group of multiple serial inspection robot modules that are separated from each other and arranged in series, such as modules 300A-300D. Although a group of four inspection robot modules are provided as shown in the figure, the number of these modules may be less or more, such as 2, 3, 5, 6, etc., depending on the needs.
  • serial inspection robot modules are spaced apart from each other by a certain gap as shown in the figure, they can also be arranged in series on the track 200 with basically no gap and close to each other.
  • two motors 410 are shown at the head and the tail as shown in Figures 2A-2B, the number of motors can be 1 or more, and their positions can also be arranged in other ways.
  • each inspection robot module can be smaller, so it is possible to apply it in places where the running channel of the inspection robot conveyor chain is relatively narrow.
  • the battery-powered inspection robot module can use a relatively small capacity battery with better explosion-proof performance when it is powered by its own battery, and it can also solve the problem of poor heat dissipation and improve the operational reliability and robustness of the system. Since the modules are distributed in series and are independent of each other, the difficulty of fault diagnosis, maintenance, and replacement is further reduced.
  • the robot module of the serial inspection robot can be selected from at least one of the following functional modules: lighting module, video-thermal imaging-audio module, gas sensor module, battery module, intercom module, wireless communication module, fire protection module, camera cleaning module.
  • the lighting module can, for example, serve as the functions of environmental lighting and visual monitoring, which is basic and necessary for remote monitoring.
  • the video-thermal imaging-audio module can, for example, be used to capture images, thermal imaging and audio information, including video, thermal imaging, temperature sensing and recording, etc., and can selectively transmit it to a ground base station, for example, in real time.
  • the fire protection module may include relevant sensors, such as temperature sensors, smoke sensors, etc., and can send corresponding warning signals, and can selectively send corresponding instructions to activate consumer facilities, such as fire hydrants, fire extinguishers, etc.
  • the camera cleaning module can be used to clean the camera of the inspection robot, for example, it is equipped with a water spray nozzle and a water tank to spray Cleaning camera, etc.
  • the serial inspection robot assembly of the present concept may also be additionally or alternatively provided with other functional modules, which are also within the scope of the present concept.
  • a group of robot modules may include a master module and at least one slave module, and the master module may be in wireless or wired communication connection with at least one slave module.
  • the functional module may be built with a rechargeable battery as a working power source, so that the module can work independently and have better explosion-proof performance.
  • these functional modules can be independently repaired and/or independently replaced.
  • the wireless communication module can act as the main module.
  • the wireless communication module can be selected from at least one of the following items: Zigbee module, WiFi module, Bluetooth module, LoRa transmission module, NB transmission module, Proprietary transmission module, Thread transmission module, Wi-SUN transmission module, Z-Wave transmission module and infrared communication module.
  • serial rail inspection robot system and its various components can be used for inspection in, for example, underground mines, dock transportation sites, industrial production lines, long-distance rail transportation sites, long-distance belt conveyor sites or explosion-proof sites, as well as in other harsh or dangerous environments.
  • the serial inspection robot system may include an online monitoring wireless sensor, which is fixed in the environment where the inspection path is located and is used to collect status data of equipment in the environment.
  • the inspection robot in the serial inspection robot system includes a wireless sensor data communication module, which is configured to wirelessly communicate with the online monitoring wireless sensor during the inspection so as to collect data collected by the online monitoring wireless sensor and issue instructions to the online monitoring wireless sensor.
  • the inspection robot adopts a serial inspection robot, which can achieve many related technical advantages, it can be understood and easily thought by those skilled in the art that when necessary, the serial inspection robot system of the present application can also be replaced by an integrated inspection robot.
  • the functional module may be powered by a power supply cable, or the functional module may have a built-in battery as a power supply.
  • FIG. 16 shows a schematic perspective view of a stabilized, full guide wheel rolling (friction) guided drive device 500 according to another embodiment, showing the arrangement of the drive device 500 and its first and second mounting seats 510, 520 and multiple guide wheels thereon.
  • FIG. 17 shows a schematic perspective view of the drive device 500 shown in FIG. 16 installed and running on a square track 200.
  • FIG. 18 shows a schematic cross-sectional view of the first mounting seat 510 with a motor installed on the square track 200 as shown in FIG. 17, showing the cross-section of the track 200, the first mounting seat 510 with a motor 540 installed, the driving and transmission structure, and more details of the guide wheels thereon in a transverse view.
  • FIG. 17 shows a schematic perspective view of the drive device 500 shown in FIG. 16 installed and running on a square track 200.
  • FIG. 18 shows a schematic cross-sectional view of the first mounting seat 510 with a motor installed on the square track 200 as shown in FIG. 17, showing the cross-section of the track 200, the first
  • FIG. 19 shows a schematic top view of the first mounting seat 510 with a motor installed on the square track 200 as shown in FIG. 17, showing a top view of the first mounting seat with a motor 540 installed on the track 200, especially showing the installation and positional relationship of the upper guide wheel and the side guide wheel installed thereon, and the second mounting seat 520 can have a structure substantially the same or similar to the first mounting seat 510.
  • FIG. 20 shows a schematic stereoscopic view of a side guide wheel bracket 560 for installing a side guide wheel mechanism, schematically showing the general structure and installation of the side guide wheel bracket 560 and the side guide wheel installed thereby on one side of the first mounting seat 510 .
  • the driving device 500 can be installed on the track 200, and the inspection robot (or inspection robot module) can be installed and fixed on the driving device 500 or connected to the driving device 500 and move along the track accordingly, so that under the drive of the driving device 500, the transmission sprocket 570 can engage with the transmission chain 210 fixed on the track 200 and run along the track 200 to perform inspections.
  • the inspection robot or inspection robot module
  • the driving device 500 may include a first mounting seat 510 installed to roll on the track 200 through its guide wheel, a second mounting seat 520 installed to roll on the track 200 through its guide wheel, and an intermediate connecting member 530 connecting the first mounting seat 510 and the second mounting seat 520 arranged in series on the track 200, so that the first mounting seat 510 and the second mounting seat 520 can roll on the track 200 in a series, one after the other.
  • the intermediate connecting member 530 can, for example, be in the form of an intermediate connecting plate as shown in the figure, and an inspection robot or an inspection robot module (not shown) can be hoisted on the intermediate connecting plate 530.
  • the first mounting seat 510, the second mounting seat 520 and the intermediate connecting member 530 of the driving device 500 can be designed in a lightweight manner to minimize the weight of the driving device 500 and the load on the driving motor 540. Excessive weight and load not only affect the operation and life of the motor 540, but may also affect the stable and reliable operation and service life of the guide wheel of the driving device 500.
  • the main body of the first mounting seat 510 and the second mounting seat 520 can be composed of a perforated plate or processed with a hollow structure such as a plurality of hollow grooves, holes, etc.
  • the intermediate connecting member 530 can also be a perforated plate or processed with a hollow structure such as a hollow groove, holes, etc., to reduce weight.
  • the driving device 500 may also include a motor 540, a speed reduction mechanism (not shown) and a transmission sprocket 570 mounted on the first mounting seat 510, and the rotational movement of the motor 540 can be directly or via the speed reduction mechanism.
  • the transmission sprocket 570 drives the transmission sprocket 570 to rotate.
  • the transmission sprocket 570 is engaged with the transmission chain 210 fixed on the track 200, so as to run along the track 200, thereby driving the driving device 500 (the first and second mounting seats 510, 520) and the inspection robot installed or connected to the driving device 500 to run along the track 200 for inspection.
  • the present embodiment is illustrated as a motor 540 installed on the first mounting seat 510, the motor 540 can also be installed on the second mounting seat 520.
  • the motor 540 can also be in the form of a servo motor 540, for example.
  • the drive motor 540 is, for example, rotatably mounted on the lower side of the main body of the first mounting seat 510, and is connected to the transmission sprocket 570 arranged in the middle of the hollow main body of the first mounting seat 510, for example, in a coaxial or coaxial manner (preferably, the transmission sprocket 570 can be decelerated via a reduction mechanism not shown), so that the transmission sprocket 570 can be driven to rotate.
  • An example of a reduction mechanism is a planetary gear set, or a planetary gear reducer.
  • Another optional example of a reduction mechanism can also be a worm-worm.
  • the worm-worm reduction mechanism can not only play a role in deceleration, but also self-locking/braking, so that it is convenient to lock the inspection robot (module) on the track 200 without moving when needed, without the need for additional braking/self-locking devices.
  • the upper part of the main body of the first mounting seat 510 may be provided with a pair of suspension arms 511 and 512 located on both sides of the square track 200 after being installed in place. Together with the main body of the first mounting seat 510, they may form a substantially U-shaped shape at the upper part of the first mounting seat 510, so that when the first mounting seat 510 is installed on the track 200, the track 200 is placed in the middle of the U-shape.
  • the pair of suspension arms 511 and 512 may be integrally formed with the main body of the first mounting seat 510, or may be a separate component assembled with the main body.
  • the pair of suspension arms 511 and 512 may preferably be arranged symmetrically, and each of them may be in the form of a plate or strip, for example, and they may form a substantially clamp-shaped or fork-shaped structure together with a pair of upper guide wheels that are rollably suspended and installed on the left and right sides of the top surface of the track 200 and the mounting seat main body.
  • the structure of the pair of suspension arms 511 and 512 and the configuration of the guide wheels thereon are substantially the same, and are preferably arranged bilaterally symmetrically, as further described below.
  • Two guide wheels spaced apart from each other are rotatably mounted on the suspension arm 511 along the substantially vertical direction in FIGS. 16-18 , namely, the upper guide wheel 511A and the lower guide wheel 511B, which are constructed and arranged to respectively cooperate with the top surface and the bottom surface of the track 200 after installation, play the role of guiding, limiting and rolling on the top surface and the bottom surface of one side (the left side as shown in FIG. 18 ) of the track 200.
  • the upper guide wheel 511A is installed to always roll on the top surface of the left side of the track 200 in the form of bearing the suspended weight of the drive device, etc.
  • the lower guide wheel 511B can be installed to form a tight fit or a loose fit with the bottom surface of the left side of the track 200 according to the application occasion and needs, such as the clearance fit form as shown in FIG. 18 , because the lower guide wheel 511B is not the main load-bearing guide wheel in this design.
  • two guide wheels spaced apart from each other are rotatably mounted on the suspension arm 512, namely, an upper guide wheel 512A and a lower guide wheel 512B, which are configured to be respectively mounted and matched with the top surface and the bottom surface of the right side of the track 200, and play the role of guiding, limiting, and rolling on the top surface and the bottom surface of the track 200.
  • the upper guide wheel 512A always rolls on the top surface of the right side of the track 200 in the form of bearing the suspended weight, and the lower guide wheel 512B can be installed to form a tight fit or a loose fit with the bottom surface of the right side of the track 200, such as the gap fit form shown in the figure, because the lower guide wheel 512B is also not a main load-bearing guide wheel.
  • FIGS. 16-19 in order to realize the design of the fully rolling friction guide of the driving device 500, the inventors installed an innovative side guide wheel mechanism on each of the suspension arms 511 and 512.
  • a pair of side guide wheel mechanisms 511C and 511D are installed side by side but spaced apart from each other on the left suspension arm 511 along the extension direction of the track 200. They provide guidance and position limiting for the operation of the driving device 500 and the inspection robot thereon by rolling (friction) on the left side of the track 200.
  • FIG. 18-19 a pair of side guide wheel mechanisms 511C and 511D are installed side by side but spaced apart from each other on the left suspension arm 511 along the extension direction of the track 200. They provide guidance and position limiting for the operation of the driving device 500 and the inspection robot thereon by rolling (friction) on the left side of the track 200.
  • the upper guide wheel 511A (and the lower guide wheel 511B) are preferably placed in the middle of the pair of side guide wheel mechanisms 511C and 511D arranged one after the other in the extension direction of the track 200.
  • the driving device 500 can be stabilized during operation without swinging left and right, for example, it is more stable during operation compared with the arrangement of the side guide wheels of the embodiment shown in FIG. 11 .
  • this pair of side guide wheel mechanisms 511C and 511D preferably have the same structure and configuration, wherein each side guide wheel mechanism 511C; 511D is composed of a wheel axle S and two upper and lower ends rotatably mounted on the wheel axle S, i.e., upper and lower side guide wheels 5111 and 5112; 5113 and 5114, and the diameter of the wheel axle S is smaller than the upper and lower side guide wheels 5111 and 5112 and 5113 and 5114 mounted thereon, so that each side guide wheel mechanism 511C; 511D has a generally dumbbell-shaped structure, and each has an avoidance recess 5110 reserved as an avoidance design, as shown in Figure 20. As shown in FIG.
  • each side guide wheel mechanism 511C; 511D respectively run on the corresponding side surfaces of the track 200 close to the top and bottom surfaces of the track, and a clearance recess 5110 is reserved in the approximate middle position of the side surfaces on the left and right sides of the track.
  • the clearance recess 5110 reserves a space for the installation parts 220 in the middle of the side surfaces of the track 200 (such as a plurality of fastening screws 220 located in the middle of the side surfaces when the track 200 is spliced, etc.).
  • the driving device 500 can be easily moved when in motion.
  • the side guide wheel bracket 560 is naturally more stable when running, for example, more stable when running compared with the side guide wheel arrangement of the embodiment shown in FIG. 11.
  • a pair of side guide wheels of each side guide wheel mechanism namely the upper side guide wheel and the lower side guide wheel, can be either separate side guide wheels without a common wheel axle or integrally formed.
  • the side guide wheel bracket 560 can have a main body 561 in the shape of an isosceles triangle plate as a whole, three mounting holes 563 are opened near the three corners of the isosceles triangle plate 561, and two mounting seats 562 are provided on the isosceles triangle plate 561, for example, which can be substantially axially symmetrically arranged.
  • the pair of side guide wheel mechanisms 511C and 511D pass through the corresponding through slots 580 on the boom 511 and are fixedly installed on the boom 511, wherein the upper ends of the two wheel axles S of the pair of side guide wheel mechanisms 511C and 511D are installed in the two mounting seats 562 of the upper side guide wheel bracket 560, and the lower ends of the two wheel axles S are installed in the two mounting seats 562 of the lower side guide wheel bracket 560.
  • the right suspension arm 512 is substantially the same as the left suspension arm 511 in terms of structure, upper and lower guide wheels, two side guide wheel mechanisms, etc., and is preferably arranged symmetrically with the left suspension arm 511, so its configuration, installation, function and effect can be directly referred to the above description of the left suspension arm 511, and will not be described in detail one by one.
  • the upper guide wheel 512A and the lower guide wheel 512B are rotatably mounted on the suspension arm 512, which are constructed and configured to cooperate with the top and bottom surfaces of the right side of the track 200 respectively after installation, and play the role of guiding, limiting and rolling on the track.
  • a pair of side guide wheel mechanisms 512C and 512D are also installed on the suspension arm 512 along the extension direction of the track 200, which are arranged side by side but spaced from each other, and provide guidance and limiting for the operation of the drive device 500 and the inspection robot by rolling (friction) on the right side of the track 200.
  • a pair of side guide wheel mechanisms 512C and 512D are also installed on the suspension arm 512 along the extension direction of the track 200, which are arranged side by side but spaced from each other, and provide guidance and limiting for the operation of the drive device 500 and the inspection robot by rolling (friction) on the right side of the track 200.
  • the upper guide wheel 512A (and the lower guide wheel 512B) are placed between the pair of side guide wheel mechanisms 512C and 512D in the extension direction of the track 200, so that the drive device 500 can be stabilized during operation without swinging left and right, and is more stable during operation compared with the arrangement of the side guide wheels shown in FIG. 11.
  • the pair of side guide wheel mechanisms 512C and 512D installed on the right suspension arm 512 are generally dumbbell-shaped structures, and each has an avoidance recess 5120 as an avoidance design, as shown in FIG. 18, for avoiding the mounting parts on the right side, such as the fastening screws 220.
  • the present embodiment thus realizes the design of the stabilized full rolling (friction) guide of the drive device 500.
  • the design of the stabilized full rolling (friction) guide of the drive device 500 is realized.
  • the upper and lower guide wheels and the side guide wheels of the side guide wheel mechanism are preferably flange-free structures, thereby further ensuring that these guide wheels do not have sliding (friction) contact when contacting the track, but full rolling (friction) contact.
  • the side guide wheel mechanisms preferably have the same structure and configuration to facilitate maintenance and replacement and reduce spare parts costs.
  • the side guide wheel mechanism provides an intermediate avoidance design through a dumbbell-shaped structure as shown in the figure, it can be understood by those skilled in the art that the wheel shaft S can also be omitted, and the two side guide wheels of the side guide wheel mechanism are directly rotatably mounted on the corresponding mounting seat 562 of the side guide wheel bracket 560, which also belongs to the scope of the present invention.
  • the second mount 520 may have substantially the same or similar construction, fit, installation and stabilization of the full rolling (friction) guide operation and design as the first mount 510, so they will not be described in detail here.
  • the entirety or a portion of the structure and configuration of the driving device 500 of this embodiment can be incorporated into the previous embodiments, and can replace the driving device or its components in the previous embodiments, such as the driving device or its components shown in FIG. 1A to FIG. 15.
  • the structure, configuration and installation of the side guide wheel mechanism in this embodiment can replace the side guide wheel shown in FIG. 11, for example; or, it can be incorporated into the traction trolley embodiment shown in FIG. 15 as a side guide wheel, which also falls within the scope of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

用于巡检机器人系统的驱动组件,包括驱动装置(400)、安装座(420)和传动链(240),驱动装置包括电机(410)、减速机构(430)和传动链轮(440),电机的旋转运动经由减速机构传递到传动链轮,从而带动传动链轮旋转;安装座上安装有在巡检机器人系统的轨道(200)上滚动运行的至少两对上导轮(421A,421B)和至少两对下导轮(421C,421D),并且,驱动装置可旋转地安装在安装座上;传动链固定安装在轨道上,其中传动链轮与传动链啮合配合,从而在旋转时能够循着轨道连同安装座一起行进。以及一种用于巡检机器人系统的驱动装置;以及一种巡检机器人系统。该驱动组件通过采用链轮与轨道上固定安装链条之间的啮合传动,爬坡能力强,停机时能自锁,驱动装置即使在承受外力时仍能保持位置稳定,结构简单。

Description

用于巡检机器人系统的驱动组件
相关申请的交叉引用
本申请要求同一申请人于2022年9月30日提交的申请号为202211211293.9的中国发明专利申请“用于巡检机器人系统的驱动组件”的优先权,该中国发明专利申请的全部内容通过引用结合于本申请中。
技术领域
本申请涉及轨道巡检技术领域,具体涉及巡检机器人系统及其驱动组件和驱动装置。
背景技术
对例如管廊、煤矿等长距离或复杂场地的巡检工作是场地安全的基础和重要保障。由于监测项目多、线路长等原因,特别是超长管廊的环境条件恶劣、封闭性强、构造物多、通讯不便,使得以人工方式对场地状态的巡检难度大,可行性极为有限,并且也难以有效保障巡检人员的人身安全。
由于机器人的具有感知、决策、执行等基本特征,因此可以辅助甚至替代人类完成巡检这一危险、繁重、复杂的工作,提高工作效率与质量。
巡检机器人工作时,通常以轨道平台为载体沿着固定的运行路径在轨道上运动,并对需要巡检的环境进行监测。随着技术进步及需求增加,许多地方也开始陆续采用轨道巡检机器人,例如工厂、饲养厂、智能农场、市政管廊、煤矿井下等等等。
现有固定轨道巡检的巡检机器人系统的传动设计中,一般通过在固定位置设置驱动装置如电机和相关传动机构如皮带轮等,来驱动轨道上布置的传送带或传送线及其上安装的巡检机器人一起移动,以进行巡检。
现有的巡检机器人系统中,巡检机器人装置一般作为一个整体在轨道上运行进行巡检。由于巡检机器人装置可能需要在某些恶劣工况下工作,例如在矿山、井下、多易燃粉尘场合等等对防爆有严格标准的场所。因此,在这类环境中,巡检机器人的设计应满足防爆要求,尽可能减少工作时的温度过高问题,改善散热。有些应用场合由于空间狭小,需要巡检机器人的体积尽可能小。传送带或传送线以及轨道的局限性也需要巡检机器人尽可能轻量,并防止局部过载,上述以及其它应用环境对可靠性也提出了更高的要求。
业内持续需要改进的巡检机器人系统,以持续改善巡检机器人系统性能表现,并尽可能减轻或者甚至消除上述技术缺陷,以及实现其它更多的技术优势。
本申请说明书的此背景技术部分中所包括的信息,包括本文中所引用的任何参考文献及其任何描述或讨论,仅出于技术参考的目的而被包括在内,并且不被认为是将限制本申请范围的主题。
发明内容
鉴于以上所述以及其他更多的构思而提出了本申请。本申请的基本构思之一在于,提供一种新型的串列式巡检机器人系统,它具有新颖的驱动设计。根据该驱动设计,在轨道上循着其轨迹安装布置传动链,驱动电机、减速机构和传动链轮可通过例如安装支架组装在一起,巡检机器人可与之相连或者组装在一起,通过传动链轮在传动链上的啮合滚动,而带动它们在轨道上运行。安装支架、例如安装座上可安装引导/限位导轮。这种驱动设计的全部或者部分传动链,例如安装在弯曲轨道分段中的传动链,优选采用可侧弯/具有三维延伸自由度的传动链。这种传动链-链轮的布置,相比于传统滑轮滑轨设计,齿轮齿条的传动设计,具有很大的优越性。滑轮滑轨的运行过程和轨迹不稳定,且基本上不能负载运行;齿轮齿条传动的运动,基本上不太可能实现二维和三维运动自由度,更无法实现某些情形下从直立运行轨迹到弯曲/扭转轨迹到水平周向运行轨迹的运动。优选为蜗轮蜗杆的减速机构不仅节省了安装空间,而且天然可以自锁,这对于驱动装置和巡检机器人在需要时在轨道上的位置固定和保持是非常重要和有优势的。
根据另外一方面的构思,采用整体上基本封闭的轨道,多边形、例如方形横截面的轨道,更容易制造和供货,成本低,并且可避免积尘积水。这种形状规则的封闭轨道的另外的好处还在于,在一些多粉尘如矿山、井下等应用环境中,可以避免在轨道的槽(如果轨道是开放式的带槽轨道)中积尘而影响使用,并且形状规则的封闭轨道的制造和加工成本也更低,而强度和刚度可以更高。
本申请的另外一个基本构思在于,提供一种新型的电缆牵引设计。根据该牵引设计,在轨道上循着其轨迹安装布置多个牵引小车,电缆被固定在牵引小车上随之一起由驱动装置带动,通过这种方式,可以非常方便地给驱动装置和/或巡检机器人来供电,同时也使得电缆可以方便平顺地跟随驱动装置随动,方便了电缆的安装和运行,并保证了供电的可靠性和电缆寿命。这与例如现有技术的滑触线供电方式相比提供了优势。
串列式巡检机器人可设置多个串列的机器人模块,使得机器人模块的小体积设计和防爆设计成为可能,因为每个模块只需要一个相对小容量的电池以满足防爆标准,并且这样的设计还提供改善的维护/更换的便利性以及高的可靠性。
更具体而言,根据本申请的一方面的构思,公开了一种用于巡检机器人系统的驱动组件,包括:驱动装置,驱动装置包括电机、减速机构和传动链轮,电机的旋转运动经由减速机构传递到传动链轮,从而带动传动链轮旋转;安装座,安装座上安装有在巡检机器人系统的轨道上滚动运行的至少两对上导轮和至少两对下导轮,并且,驱动装置可旋转地安装在安装座上;传动链,传动链固定安装在轨道上,其中传动链轮与传动链啮合配合,从而在旋转时能够循着轨道同安装座一起行进。
根据一实施例,至少两对上导轮包括:布置成贴近轨道上面的左侧边沿滚动运行的一对上导轮,和布置成贴近轨道上面的右侧边沿滚动运行的一对上导轮。根据一实施例,至少两对下导轮包括:布置成贴近轨道下面的左侧边沿滚动运行的一对下导轮,和布置成贴近轨道下面的右侧边沿滚动运行的一对下导轮。根据一实施例,安装座包括下部支架和两个上支架部,其中,每个上支架部都能够独立地相对于下部支架枢转。根据一实施例,上支架部是上U形部,其中每个上U形部包括底板和从底板向上延伸的两个侧板。根据一实施例,每个上U形部的每个侧板上分别安装一个上导轮和一个下导轮。根据一实施例,上导轮和下导轮安装成匹配轨道的轮廓,且能够分别贴近轨道上面和下面的两侧边沿以滚动的方式引导并载带驱动组件运行。根据一实施例,在每个上U形部的每个侧板上、在其上导轮和下导轮之间进一步安装侧导轮,侧导轮构造成在轨道的侧面上滚动运动。根据一实施例,轨道是横截面整体上呈方形的方形轨道,侧导轮分别在方形轨道左右两侧的侧面上滚动运行。根据一实施例,在下部支架上设有两个枢轴孔,两个上支架部通过穿过相应的枢轴孔的枢轴而各自独立枢转地安装在下部支架上。根据一实施例,在下部支架的枢轴孔的下端进一步设有套在枢轴上的推力球轴承。根据一实施例,传动链固定安装在轨道的底面且沿着轨道延伸。根据一实施例,传动链通过铆钉或螺钉固定安装在轨道的底面上的中线附近位置。根据一实施例,轨道具有整体上呈多边形的横截面,多边形的形状构造成使得轨道在安装后具有平直的底面和顶面,并且具有两个垂直的侧面或者两个倾斜的上侧面或者两个弧形的上曲面。根据一实施例,轨道的横截面选自下列中的一者:方形、梯形、截头的等腰三角形、五边形、六边形和鼓形。根据一实施例,轨道是横截面整体上呈方形的方形轨道,安装座的上导轮和下导轮分别在方形轨道的顶面和底面上滚动运行。根据一实施例,导轮是带法兰的导轮,法兰的贴近轨道的那一面是斜面,斜面相对于与导轮的旋转轴线垂直的平面形成斜角A,其中,0<A≤30°。根据一实施例,5°≤A≤20°。根据一实施例,导轮是带法兰的导轮,法兰的贴近轨道的那一面是弧形面,弧形面的圆弧半径小于轨道的弯曲半径。根据一实施例,传动链轮经由减速机构可旋转地传动连接在电机的转轴上,而被电机驱动旋转。根据一实施例,减速机构是啮合配合的蜗轮和蜗杆,其中,蜗杆与电机的转轴传动配合,并且蜗轮与传动链轮传动配合。根据一实施例,蜗轮固定在安装座的下部支架的一侧,传动链轮与蜗轮同轴地可旋转地安装在下部支架的相反的另一侧。根据一实施例,安装座上设有电缆安装件,其中,驱动组件还与巡检机器人系统的电缆牵引组件相连。根据一实施例,安装座上安装巡检机器人或机器人模块。根据一实施例,驱动组件构造成在安装于轨道上时,传动链轮位于轨道的下方并与固定安装在轨道底部的传动链啮合。根据一实施例,巡检机器人是整体式巡检机器人,或者是包含一组机器人模块的串列式巡检机器人。根据一实施例,传动链通过铆钉或螺钉固定安装在轨道底部上的中线附近位置。根据一实施例,电缆牵引组件的牵引小车与安装座共用轨道滚动运行。根据一实施例,侧导轮是沿着轨道的延伸方向彼此间隔开的一对侧导轮机构, 其中,每个侧导轮机构都包括上下布置的上侧导轮和下侧导轮。在每一个侧导轮机构的上侧导轮和下侧导轮之间留出避让凹位。还公开了一种巡检机器人系统,其包括如上所述的驱动组件。
本实用新型的另一方面还提供了一种用于巡检机器人系统的驱动装置,包括:第一安装座,第一安装座上安装有一对上导轮和一对下导轮,这一对上导轮布置在巡检机器人系统的轨道的顶面上的左右两侧,这一对下导轮布置在轨道的底面上的左右两侧;第二安装座,第二安装座上安装有一对上导轮和一对下导轮,这一对上导轮布置在巡检机器人系统的轨道的顶面上的左右两侧,这一对下导轮布置在轨道的底面上的左右两侧;可枢转地连接在第一安装座与第二安装座之间的中间连接件;安装在第一安装座和第二安装座的至少一者上的电机、减速机构和与电机可旋转地连接的传动链轮,其中,电机经由减速机构驱动传动链轮旋转;固定安装在轨道底部的传动链,其中,传动链轮配置成与传动链啮合配合,在被电机驱动旋转时同驱动装置一起循着轨道运行;其中,第一安装座包括主体、位于主体上部在安装时位于轨道左右两侧的一对吊臂,其中,一对吊臂中的每一个安装有上下布置且用于分别配合在轨道的顶面和底面上的一个上导轮和一个下导轮,以及沿着轨道的延伸方向彼此间隔开的一对侧导轮机构;并且,第二安装座包括主体、位于主体上部在安装时位于轨道左右两侧的一对吊臂,一对吊臂中的每一个安装有上下布置且分别配合在轨道的顶面和底面上的一个上导轮和一个下导轮,以及沿着轨道的延伸方向彼此间隔开的一对侧导轮机构。
根据一实施例,每个侧导轮机构都包括上下布置的上侧导轮和下侧导轮,上侧导轮和下侧导轮配置成用于在轨道的侧面上分别靠近轨道的上侧和下侧滚动。在每一个侧导轮机构的上侧导轮和下侧导轮之间留出避让凹位。根据一实施例,每一个侧导轮机构包括在两端分别安装上侧导轮和下侧导轮的轮轴,轮轴具有比上侧导轮和下侧导轮更小的直径,使得上侧导轮和下侧导轮之间的轮轴留出避让凹位;或者,每一个侧导轮机构的上侧导轮和下侧导轮是彼此间隔开的单独的导轮,使得上侧导轮和下侧导轮之间的间隔限定了避让凹位;或者,每一个侧导轮机构的上侧导轮和下侧导轮是一体成型的结构,该一体成型的结构在上侧导轮和下侧导轮之间提供避让凹位。根据一实施例,侧导轮机构通过侧导轮支架安装在相应的吊臂上。根据一实施例,每个吊臂上的上导轮在轨道的延伸方向上布置在相应的一对侧导轮机构之间。根据一实施例,全部的上导轮是彼此相同的,所有的下导轮是彼此相同的,并且所有的侧导轮机构是彼此相同的。根据一实施例,第一安装座的主体及其一对吊臂构造成U形、钳形或音叉形,上导轮悬吊在轨道的顶面上沿左右两侧滚动运行;第二安装座的主体及其一对吊臂构造成U形、钳形或音叉形,上导轮悬吊在轨道的顶面上沿左右两侧滚动运行。根据一实施例,第一安装座和第二安装座均是整体成型的;或者,第一安装座和第二安装座的主体由多块板拼接而成,第一安装座和第二安装座的一对吊臂均是与各自主体固定连接的板状或条状吊臂。上导轮、下导轮、上侧导轮和下侧导轮都可以是没有法兰的导轮,由此驱动装置是稳定化的全滚动导向的驱动装置。
本实用新型的另一方面还提供了一种用于巡检机器人系统的驱动装置,包括:电机、减速机构和传动链轮,电机的旋转运动经由减速机构传递到传动链轮,从而带动传动链轮旋转;安装座,安装座上安装有在巡检机器人系统的方形轨道上滚动的至少两对上导轮和至少两对下导轮,并且,电机、减速机构和传动链轮可旋转地安装在安装座上;传动链,传动链固定安装在方形轨道上,其中传动链轮与传动链啮合配合,从而在旋转时能够循着方形轨道同安装座一起行进;其中,安装座包括下部支架和两个上支架部,其中,每个上支架部都能够独立地相对于下部支架枢转,在每个上U形部的每个侧板上的上导轮和下导轮之间进一步安装侧导轮;其中,侧导轮是沿着方形轨道的延伸方向彼此间隔开的一对侧导轮机构,每一个侧导轮机构都包括上下布置的上侧导轮和下侧导轮,上侧导轮和下侧导轮配置成用于在方形轨道的侧面上分别靠近轨道的上侧和下侧滚动,并且在每一个侧导轮机构的上侧导轮和下侧导轮之间留出避让凹位;上导轮、下导轮、上侧导轮和下侧导轮都是没有法兰的导轮。根据一实施例,驱动装置具有轻量化的构造,其中,在第一安装座和第二安装座的主体上加工有多个镂空孔;中间连接件是加工有多个镂空孔的孔板的形式。根据一实施例,所有的上导轮、下导轮、上侧导轮和下侧导轮都是没有法兰的导轮,由此使得驱动装置是稳定化的全滚动导向的驱动装置。还公开了一种巡检机器人系统,其包括如上的驱动装置。
还公开了一种串列式巡检机器人系统,包括:轨道,轨道限定了巡检路径;驱动装置,驱动装置包括电机、减速机构和传动链轮,电机的旋转运动经由减速机构传递到传动链轮,从而带动传动链轮旋转;多个安装座,各安装座上安装有在轨道上滚动运行的导轮,并且驱动装置可旋转地安装在相应的安装座上;传动链,传动链循着轨道的延伸方向固定安装在轨道上,传动链轮与传动链啮合配合,从而在 旋转时能够同驱动装置和安装座一起循着轨道行进;串列式巡检机器人,串列式巡检机器人包括彼此串列相连的一组机器人模块,各机器人模块安装在相应的安装座上被驱动装置驱动沿着轨道行进。根据一实施例,机器人模块装配在相应的安装座上,并且通过带万向接头的刚性杆串列连接。根据一实施例,驱动装置的数目为一个;或者,驱动装置的数目为至少两个,至少两个驱动装置具有相同的配置。根据一实施例,串列式巡检机器人是电池供电的串列式巡检机器人,其中,驱动装置自带电池或者由单独的电池模块供电;一组机器人模块中还包含下列由电池供电的功能模块中的至少一者:照明模块、视频-热成像-音频模块、气体传感器模块、对讲模块、地面无线传感器数据收集模块、消防模块和视频-热成像镜头清洁模块。根据一实施例,串列式巡检机器人是电缆供电的串列式巡检机器人,其中,一组机器人模块中包含下列功能模块中的至少一者:照明模块、视频-热成像-音频模块、气体传感器模块、对讲模块、地面无线传感器数据收集模块、消防模块和视频-热成像镜头清洁模块。根据一实施例,巡检机器人系统进一步包括电缆牵引组件,电缆牵引组件包括:多个牵引小车,每个牵引小车都安装在轨道内且循着轨道的纵长延伸轨迹运行;电缆,电缆一端连接至驱动装置和/或串列式巡检机器人,另一端连接至电源和通讯网关;其中,电缆被固定或者被夹持在多个牵引小车上,从而使得电缆能够随着牵引小车的移动而移动。根据一实施例,牵引小车包括支架,和安装在支架上且构造成分别在轨道的上面和下面上运行的两对上导轮和两对下导轮。根据一实施例,支架是具有底板和两个侧板的例如为U形的支架,在每一个侧板上以并排的方式分别安装一对上导轮和一对下导轮,使得能够分别沿着轨道的上面和下面滚动运行。根据一实施例,支架由不锈钢、碳钢或者铝型材加工而成。根据一实施例,U形支架还包括在每一个侧板上安装在一对上导轮和一对下导轮之间的一个侧导轮,侧导轮构造成分别在轨道的对应的侧面上滚动运行。根据一实施例,牵引小车与安装座共用轨道滚动运行。根据一实施例,传动链是齿形链或滚子链。根据一实施例,传动链的至少一部分是可侧弯的、例如可提供三维延伸自由度的链条。
根据一实施例,减速机构是啮合配合的蜗轮和蜗杆,其中,蜗杆与电机的转轴传动配合,并且蜗轮与传动链轮传动配合。根据一实施例,蜗轮固定在安装座的下部支架的一侧,传动链轮与蜗轮同轴地可旋转地安装在下部支架的相反的另一侧。根据一实施例,轨道的横截面选自下列中的一者:方形、梯形、截头的等腰三角形、五边形、六边形和鼓形。根据一实施例,轨道是横截面整体上呈方形的方形轨道,安装座的上导轮和下导轮分别在方形轨道的顶面和底面上滚动运行,方形轨道更容易制造和供货,并且成本更低。根据一实施例,轨道具有整体上呈多边形的横截面,多边形的形状构造成使得轨道在安装后具有平直的底面和顶面,并且具有两个垂直的侧面或者两个倾斜的上侧面或者两个弧形的上曲面。根据一实施例,传动链是循着轨道的长度固定安装在轨道上的不间断的链条。根据一实施例,传动链由循着轨道的长度无缝拼接并固定在轨道上的至少两段链条构成。根据一实施例,一组机器人模块中的每一个都是能够独立维修和/或独立更换的。根据一实施例,串列式巡检机器人中的至少一个机器人模块与驱动装置固定装配在一起。根据一实施例,轨道是环形轨道,环形轨道限定了巡检机器人的环形的固定巡检路径。根据一实施例,串列式巡检机器人中的至少一个机器人模块固定安装在安装座上。根据一实施例,传动链轮处于轨道的下方,并能够与固定安装在轨道底面的传动链啮合。根据一实施例,在轨道的至少部分轨道分段上设有用于安装拼接销的拼接槽。根据一实施例,轨道是整体成型的金属件。根据一实施例,机器人模块是能够独立维修和/或独立更换的。根据一实施例,功能模块内置有电池。根据一实施例,功能模块从电缆取电。根据一实施例,轨道例如可由金属材料如不锈钢、碳钢或者铝型材制成,可在成本、耐候性、易加工性、易更换和可维护性都提供了优势。根据一实施例,不同的机器人模块之间可以线缆通讯和供电,或者也可用电池供电和无线通讯。根据一实施例,由于巡检机器人采用串列地分布在轨道上的机器人模块的设计,这种设计可避免在轨道上集中附着,因此提供了分布式的轻载配置,由于模块的功能和耗电也分散开,各模块上的电池容量可以更小,压力小,容易通过防爆认证。各模块可独立维护、维修和更换,因此与整体式巡检机器人相比可维修性更好。根据本申请的一实施例,通过采用链轮+轨道上固定安装链条之间的啮合来传动,并配合蜗轮蜗杆形式的减速机构,可提供诸多优点,例如,不打滑,爬坡能力强,停机时能自锁,驱动装置即使在承受外力时仍能保持位置稳定,结构简单,等等。
本申请还公开了巡检机器人系统在室外环境、矿井井下、码头运输场所、工业生产线、长距离轨道输送场合、长距离带式输送场合、防爆场合、防冻场合、防雨水场合或防尘场合中进行巡检的用途。 本申请的更多实施例还能够实现其他未一一列出的有利技术效果,这些其他的技术效果在下文中可能有部分描述,并且对于本领域的技术人员而言在阅读了本申请后是可以预期和理解的。
附图说明
通过参考下文的描述连同附图,这些实施例的上述特征和优点及其他特征和优点以及实现他们的方式将更显而易见,并且可以更好地理解本申请的实施例。
图1A是根据本申请的一实施例的无线(电池)供电的串列式巡检机器人系统的主要配置的示意图,显示了一个示例性的例如环形的轨道上布置的巡检机器人系统的整体布局。
图1B是根据本申请的一实施例的有线(电缆)供电的串列式巡检机器人系统的主要配置的示意图,显示了该巡检机器人系统的整体布局。
图2A是图1A所示的无线(电池)供电的巡检机器人系统的一部分的放大的示意图,展示了串列式的巡检机器人(模块)和驱动装置在轨道上的布置的放大视图。
图2B是图1B所示的有线(电缆)供电的巡检机器人系统的一部分的放大的示意图,展示了串列式的巡检机器人(模块)和驱动装置在轨道上的布置的放大视图。
图3是图2B所示的有线供电的巡检机器人模块、驱动装置和牵引小车的进一步的放大视图。
图4是图2A所示的无线供电的巡检机器人系统的驱动装置和(弯道)轨道一部分的放大的立体示意图。
图5是从另一视角看去的图2B所示构造的进一步放大的局部视图,并以局部剖开的方式展示了方形横截面的轨道。
图6是根据一实施例的串列式巡检机器人系统的驱动装置和巡检机器人(模块)的放大的示意图。
图7以局部剖开的形式展示了图6所示的通过安装座装配在一起的驱动装置和巡检机器人模块的放大的示意图。
图8从另一视角示意性显示了图6所示驱动装置、巡检机器人(模块)以及安装座等构造。
图9是展示了图8所示驱动装置的构造,其中拆下了巡检机器人模块,并且展示了安装座的两个上部U形件各自可独立地相对于下部枢转的示意图。
图10是图8-9所示驱动装置的局部透视示意图,特别展示了安装座的导轮和枢转设计。
图11是另一实施例的驱动装置的局部透视示意图,其与图10所示构造基本上相同,不同之处在于在安装座上增加了侧导轮的设计。
图12展示了根据一实施例的方形横截面的轨道,其中可设置电加热装置。
图13展示了根据一实施例的安装座的导轮的布置和设计,特别展示了导轮上的法兰以及法兰的便于导轮过弯道的斜面设计。
图14以放大图展示了一实施例的导轮的构造,特别展示了其滚轮主体上的法兰以及法兰的斜面设计。
图15展示了根据一实施例的牵引小车的一实施例的放大的示意性的透视图,展示了该实施例的牵引小车的构造和细节。
图16展示了根据另一实施例的稳定化的、全导轮滚动(摩擦)导向的驱动装置的示意性透视图,展示了驱动装置及其第一和第二安装座和导轮等的布置。
图17展示了图16所示驱动装置在方形轨道上安装和运行的示意性透视图。
图18展示了如图17所示安装在方形轨道上的带电机的第一安装座的示意性横截面视图,以横向视图展示了轨道的横截面、安装有电机的第一安装座、驱动和传动构造以及其上的导轮等的更多细节。
图19展示了如图17所示安装在方形轨道上的带电机的第一安装座的示意性俯视图,展示了安装在轨道上的带电机的第一安装座的俯视图,尤其是展示了其上安装的上导轮与侧导轮的安装和位置关系,第二安装座可具有与第一安装座大体上相同或者类似的构造。
图20展示了安装侧导轮机构的侧导轮支架的示意性立体图,示意性地展示了侧导轮支架与借此安装在第一安装座一侧的侧导轮的大体结构和安装。
具体实施方式
在以下对附图和具体实施方式的描述中,将阐述本申请的一个或多个实施例的细节。从这些描述、附图以及权利要求中,可以清楚本申请的其他特征、目的和优点。
应当理解,所图示和描述的实施例在应用中不限于在以下描述中阐明或在附图中图示的构件的构造和布置的细节。所图示的实施例可以是其他的实施例,并且能够以各种方式来实施或执行。各示例通过 对所公开的实施例进行解释而非限制的方式来提供。实际上,将对本领域技术人员显而易见的是,在不背离本申请公开的范围或实质的情况下,可以对本申请的各实施例作出各种修改和变型。例如,作为一个实施例的一部分而图示或描述的特征,可以与另一实施例一起使用,以仍然产生另外的实施例。因此,本申请公开涵盖属于所附权利要求及其等同要素范围内的这样的修改和变型。
同样,可以理解,本文中所使用的词组和用语是出于描述的目的,而不应当被认为是限制性的。本文中的“包括”、“包含”或“具有”及其变型的使用,旨在开放式地包括其后列出的项及其等同项以及附加的项。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”等术语应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在现有技术的巡检机器人方案中,在巡检机器人传送链的运行通道相对狭小的应用场合中,其上载带的一体式设计的巡检机器人可能会因为整体构造的过大体积无法通过狭小的运行通道,而导致巡检机器人系统应用场合受限或者受阻。
另外,巡检机器人需要长时间不间断地工作,并且其工作环境可能比较恶劣,例如高温、高湿、高粉尘的环境等等,在这种情况下,一体式设计的巡检机器人可能会因为其整体式构造而导致一系列的问题,例如,整体构造的各工作模块集中工作而集中发热,导致散热问题,这些对于某些场合而言,例如其防爆要求和可靠性可能达不到要求。而且,上述一体式的整体构造的工作部件中,如果一个部件发生故障,就不得不停止巡检机器人传送链运行,拆下整个巡检机器人进行更换或诊断维修,而可能导致传送链中断运行的时间过长,这些都会造成要求长时间、低故障运行的巡检机器人传送链的应用场合无法接受的损失。
下面结合附图和具体实施例对本申请进行进一步的详细描述和说明。
图1A是根据本申请的一实施例的无线(电池)供电的串列式巡检机器人系统100的主要配置的示意图,显示了一个示例性的例如环形的轨道200上布置的巡检机器人系统100的整体布局。图2A是图1A所示的无线(电池)供电的巡检机器人系统100的一部分的放大的示意图,展示了串列式的巡检机器人(模块)300和驱动装置400在轨道200上的布置的放大视图。图4是图2A所示的无线(电池)供电的巡检机器人系统100的驱动装置400和弯道轨道的一部分的进一步放大的立体示意图。
如图1A、2A和图4所示,展示了无线(电池)供电的串列式巡检机器人系统100的基本构成部分和总体布置。巡检机器人系统100的串列式巡检机器人300可在驱动装置400的驱动下,通过传动链轮440与固定在轨道200上的传动链240啮合,而循着轨道运行,以对周围环境中的目标进行巡检。如图2A所示,展示了示例性的串列式巡检机器人300,它包括一组共四个串列布置的巡检机器人模块300A-300D。这一组机器人模块300A-300D如图所示串列地彼此间隔开地排列布置在轨道200上,一端的机器人模块300D与一个驱动电机410安装在一起并被其驱动,另一端的机器人模块300A与另一个驱动电机410安装在一起并被其驱动,这些机器人模块彼此之间可通过刚性连杆如钢杆302或者钢丝302牵引连接,从而可以一起被驱动而在轨道200上运行。在采用刚性连杆如钢杆302的情形下,其两头可加上万向节,从而提供了万向接头,在过弯道时提供了灵活性和可通过性。另外,在电池供电的情形下,其中至少一个机器人模块,例如机器人模块300B可以是电池模块,其可通过电线或线缆301为巡检机器人模块300A和其所在的驱动装置400供电。在图2A的实施例中,在首尾两端,即,巡检机器人模块300A和300D位置,均提供了带电机和传动和减速机构的驱动装置400。当然,为一个串列式巡检机器人配备一个或者更多个驱动装置400也是可以的。巡检机器人模块300A-300D彼此之间可以无线通讯连接。驱动电机410例如可以采用伺服电机的形式。
图1B是根据本申请的一实施例的有线(电缆)供电的串列式巡检机器人系统100的主要配置的示意图,显示了该巡检机器人系统100的整体布局。图2B是图1B所示的有线(电缆)供电的巡检机器人系统100的一部分的放大的示意图,展示了串列式的巡检机器人(模块)300和驱动装置400在轨道200上的布置的放大视图。图3是图2B所示的有线供电的巡检机器人模块300D、驱动装置400和牵引小车的进一步的放大视图。图5是从另一视角看去的图2B所示构造的进一步放大的局部视图,并以局部剖开的方式展示了方形横截面的轨道200。该有线供电的串列式巡检机器人系统100的实施例与图1A、2A所示无线(电池)供电的串列式巡检机器人系统的各方面的配置和构造类似,主要区别在于该有线供电的串列式巡检机器人系统100的一组共四个串列布置的巡检机器人模块300A-300D是由外 部通过电缆450来供电的,因此可根据情况省略单独的电池模块。另外,巡检机器人模块300A-300D之间的通讯(如有的话),也可以采用有限的形式,当然,这不是必须的。电缆450连接在驱动装置和/或巡检机器人(模块)上,并可通过牵引小车470的牵引而跟随巡检机器人(模块)300一起在轨道200上运行,如下文详述。有线供电和通讯的方式在短距离巡检的场合下是有利的,并且可以提供更高可靠性的供电和通讯方式。
如图3所示,一端的机器人模块300D通过电缆450与载带(例如卡接或其它安装方式)电缆450的牵引小车470连接。本领域的技术人员可以理解,由于巡检机器人自重不大,而且大部分情形下轨道200是水平延伸的,因此牵引小车可不必单独配备牵引索,牵引索在巡检机器人场合是可以省略的。也就是说,牵引小车470可以仅仅通过供电和/或通讯的电缆450连接(以及电连接)在驱动装置400上,并且/或者连接(以及电连接)在巡检机器人(例如图3所示模块300D)上,即可使供电电缆450跟随驱动装置400一起沿着轨道200一起运行。相比之下,现有技术的一些巡检机器人也采用电缆方式供电,但是一般会采用滑触线的布置。滑触线的技术缺陷之一在于遇到潮湿环境等容易接触不良或者短路,另外滑触线供电的可靠性相对偏低。本申请的这种电缆牵引方式可减轻或避免上述缺陷。
图5是从另一视角看去的图2B所示构造的进一步放大的局部视图,并以局部剖开的方式展示了方形横截面的轨道。图6是根据本申请一实施例的串列式巡检机器人系统的驱动装置400和巡检机器人(其中一个机器人模块)300安装并运行在轨道200上的示意图。
图7以局部横剖视图方式展示了驱动装置400在方形的轨道200上的装配,以及传动链240的一种示例性的装配构造。显然如图所示轨道200具有大体上方形的横截面,但是,轨道200的其它形式的构造和横截面也是可以的。例如,轨道200可具有整体上呈多边形的横截面,多边形的形状构造成使得轨道200在安装后具有平直的底面和顶面,并且具有两个垂直的侧面,或者两个倾斜的上侧面,或者两个弧形的上曲面。轨道200的横截面可以是方形、梯形、截头的等腰三角形、五边形、六边形和鼓形,等等。轨道200例如可由金属如铝材、铝合金、钢材等等一体成型。一般而言,方形的轨道更容易制造和供货,并且成本可以更低。
另外,重要的是,如图5和图7-图10所示,按照图7所示的方位,在轨道200上,例如在轨道200的底面中线附近或者其它部位,可通过铆钉、螺钉、螺栓连接等方式固定安装传动链240,传动链240循着轨道200的一部分或者整个延伸长度和延伸方向布置,并且在本申请中需要固定安装在轨道200上,以便于链轮440与其啮合并循着传动链240行进。图5和图7还显示了装配在驱动装置400的安装座420上的电机410和减速机构430,以及例如可安装在与电机410相对的另一侧的巡检机器人300。减速机构430例如优选是但不局限于蜗轮蜗杆减速机构,如下文中进一步详细描述。
在某些室外的或者寒冷易结冰的应用环境中,本申请的串列式巡检机器人系统的轨道200可能会因为暴露于雨水和寒冷而结冰,从而影响轨道200的正常使用。因此,如图12所示,还可在轨道200中设置电热丝安装槽260,其中可容纳电热件250,例如电热带、电热丝或热敏电阻PTC,用于加热轨道,除冰和/或除水。尽管如图12所示在两侧面设置了电热件250,但是,电热件250的数目和布置位置均可根据需要变化,例如更多或更少,并且在任何构造的轨道200上均可设置,并不限于方形轨道。
形状规则的封闭轨道,例如方形的轨道200的另外的好处还在于,在一些多粉尘如矿山、井下等应用环境中,可以避免在轨道的槽(如果轨道是开放式的带槽轨道)中积尘而影响使用,并且形状规则的封闭轨道的制造和加工成本也更低,而强度和刚度可以更高。
图6是根据本申请一实施例的串列式巡检机器人系统的驱动装置400和巡检机器人300的放大的示意图。图7以局部剖开的形式展示了图6所示构造的示意性的端视图。图8-图10展示了一个实施例的驱动装置、巡检机器人(模块)以及安装座等的构造。如图6-10所示,驱动装置400的该实施例可包括电机410、减速机构430和传动链轮440。作为一个示例性例子,减速机构430主要由彼此啮合配合的蜗轮和蜗杆构成。这种蜗轮蜗杆形式的减速机构430不仅可以很好地起到减速的左右,而且还自锁,从而便于将巡检机器人(模块)在轨道上固定,这是其它形式的减速机构不具备的。电机410的电机转轴与蜗杆例如可同轴地连接以传递来自电机的旋转运动,通过与之啮合的蜗轮减速后的旋转运动被传递给传动链轮440。如图7所示,蜗轮蜗杆减速机构430安装在安装座420的图示的右侧,而在安装座420的图示的左侧,可通过例如共轴或同轴的方式安装传动链轮440。这样,通过安装座420,就将巡检机器人(模块)300、驱动装置400组装成一体。传动链轮440与固定在轨道上的传动链240啮 合,如图7所示。这样,驱动装置400的传动链轮440在被电机410驱动旋转时,就可以与固定在轨道200上的传动链240啮合而沿着轨道200滚动行进,例如滚动前进或后退,并由此而带动整个驱动装置400、安装座420和巡检机器人300一起可沿着轨道200行进。
传动链240可以是滚子链条。当然,传动链240也可以是哪个与传动链轮适配啮合的其它形式,例如齿形链条。由于传动链240需要与轨道200一起例如大体直立地向上延伸、水平地沿着周向延伸,可能需要进行侧弯和/或扭转,因此,优选的是,传动链240的至少一部分或者全部是可侧弯的链传动链条,其可以具有三维空间延伸的自由度。
为了便于整个驱动装置400和巡检机器人300沿着轨道200平稳平滑地行进,如图8-10所示,根据一个实施例,安装座420可包括下部支架423和两个例如可呈大体U形的上支架部421和422,每个上U形部421或422都能够独立地相对于下部支架423枢转,例如,上U形部421或422可从图8所示方位各自独立地相对于下部支架423枢转到图9所示的方位,这样安装座420在轨道上过弯时能够灵活地调整,平顺地过弯道。
每个上U形部421和422,各自都包括底板和从底板向上延伸的两个侧板。如图10所示,上U形部421的一个侧板上安装上导轮421A和下导轮421C,与之相对的另一个侧板上安装上导轮421B和下导轮421D,在上U形部421的底板上安装一个枢轴480,如下所详述。类似地,上U形部422的一个侧板上安装上导轮422A和下导轮422C,与之相对的另一个侧板上安装上导轮422B和下导轮422D,在上U形部422的底板上安装另外一个枢轴480,如下详述。这些上导轮和下导轮均配置成在轨道200的上面和下面上滚动运行,起到运动引导、限位和扶正的作用,并防止运行过程中发生跳动。这些导轮的设置有助于驱动装置400和巡检机器人300沿着轨道200平稳平滑的运行,并可防止运行时发生跳动、出轨和偏轨,等等。
如图5-10所示,下部支架423上可设计直板423A,其上可安装巡检机器人(模块)300,例如摄像头模块、电池模块、驱动模块、视频-音频模块、传感器模块,等等,或其它巡检设备。下部支架423上还可在对应于两个上U形部421和422的底板的位置,设计两个枢轴孔位423D和423E。这两个枢轴孔位423D和423E如图所示可特意加厚,以便可从中穿过两根一定长度的枢轴480,如图10所示。这两根枢轴480的一端例如可固定在对应的上U形部的底板上,例如可通过螺纹固定在两个枢轴孔位423D和423E中,或者/另外可用螺帽或螺母固定。这两根枢轴480的另外一端可枢转地安装在下部支架423上。例如,可通过该另外一端的端部法兰贴靠在相应枢轴孔位的端面上,这样即可实现上U形部相对于下部支架的枢转。作为一个优选例,在该另外一端的端部法兰与相应的枢轴孔位423D和423E之间可套设推力球轴承423B和423C,从而可确保两个上U形部421和422相对于下部支架423确切可靠地装配,而且可确保两个上U形部421和422各自独立地相对于下部支架423平顺地枢转。
图11是另一实施例的驱动装置400的局部透视示意图,其与图10所示构造基本上相同,不同之处在于在安装座上增加了侧导轮的设计。在上U形部421和422的每个侧板上都增加了一个侧导轮,分别是421E、421F、422E和422F。这些侧导轮421E、421F、422E和422F在驱动装置400安装到轨道200上之后,在轨道的左右两侧的侧面上滚动运动,进一步起到运动引导、(左右)限位、扶正和防止脱轨的作用,当然也可进一步有助于平顺过弯。
图13-图14展示了有助于在轨道弯道上过弯的导轮的一种设计。如图13-图14所示,以安装座420的上导轮421A为例来图示说明。上导轮421A可具有在轨道200上滚动的滚轮主体421A1,和与之一体的法兰421A2。在法兰421A2与滚轮主体421A1之间可用倒角圆弧,例如内凹的圆弧C来过渡,以避免应力集中,并且可或多或少有助于过弯。优选的是,法兰421A2在安装后贴近轨道的那一侧的端面设计成斜面S,斜面S与垂直于导轮旋转轴线R的平面形成斜角A,其中0<A≤30°,例如更优选为2°≤A≤20°,5°≤A≤15°,等等。在法兰421A2在安装后贴近轨道200的那一侧的端面设计成弧形面,特别是向外弓出的弧形面的情形下,该弧形面的圆弧半径优选小于轨道的弯曲半径,以便有助于过弯。图13展示了具有斜面S设计的上导轮在过弯时的情形,可以看到,特别是在轨道的弯道内侧,斜面S的设计极大地减轻或甚至避免了轨道200侧面对导轮滚动的干涉/妨碍。尽管图13-14仅仅是展示了安装座的上导轮的这种设计,但是,安装座的下导轮也可采用这种斜面或弧面设计。同理,牵引小车470的上导轮和下导轮叶可采用这种斜面或弧面的过弯道设计,这是本领域的技术人员容易理解的。
图15展示了可在巡检轨道200上滚动运行的其中一个牵引小车470的一实施例。例如如图4A-4B所示,牵引小车470上可固定电缆450,并且可直接用电缆450作为牵引索,而无需采用另外的牵引索。这是因为,轨道200绝大多数情形下为水平的轨道,电缆450在牵引过程中即使受牵引力左右,该牵引力/拉力也足够小,不会不利于电缆450的寿命和供电的可靠性。
图15是牵引小车470的一个实施例的放大的示意性的透视图,展示了该实施例的牵引小车470的构造和细节。与安装座420上布置导轮类似地,在该实施例中,牵引小车470具有整体上由底板和从底板向上延伸的两个侧板构成的例如U形的支架,其例如可用槽钢(或铝合金)或者工字钢(或铝合金型材)加工而成。在该U形支架上安装有共8个导轮。其中,在牵引小车470的其中一个侧板471上安装一对上导轮471A和471B以及一对下导轮471C和471D,它们均可起到运动引导、限位和扶正的作用。在牵引小车470的另一侧板472上可安装一对上导轮472A和472B以及一对下导轮472C和472D,它们均可起到运动引导、限位和扶正、防止运行中发生跳动的作用。这些导轮可帮助牵引小车470沿着轨道200平稳平滑地滚动行进,从而在巡检机器人300和驱动装置400沿着轨道200运行时,其(供电和/或通讯)电缆450可用作牵引索并因此还可被牵引小车470载带而随之一起沿着轨道200行进,提供安全可靠的供电和/或通讯。牵引小车470的上述上导轮和下导轮均可具有与安装座420的上导轮和下导轮相同的构造和设计,因为它们可共用轨道200运行。
在牵引小车470上,例如在其底板473上,还可设有电缆安装件475,其例如可包括用于容纳安装电缆450的带卡槽475A的主体,以及可将电缆450紧固在卡槽475A中的例如两颗紧固螺钉476。当然,本领域的技术人员可以理解,牵引小车均可采用不同于如图所示的其它形式,只要能够安装固定牵引索和电缆即可,这些都在本申请的范围内。
轨道200例如可由金属如铝材、铝合金挤出工艺而一体成型。
传动链240可以是滚子链条或者齿形链条,它们可以是负重的,也可以是不负重的设计。当然,传动链240也可以是与传动链轮适配啮合的其它形式,例如齿形链条。在需要上下坡和/或拐弯的位置,可能还需要进行侧弯和/或扭转,因此在这些位置传动链240可采用可侧弯的链传动链条,其优选具有三维自由度,由此可以具有三维的延伸自由度。
每个轨道200上可布置一个或多个串列式巡检机器人300。每一个串列式巡检机器人300可包括一组多个彼此分立且串列地布置的串列式的巡检机器人模块,例如模块300A-300D。尽管如图所示设置了一组4个巡检机器人模块,但是,这些模块的数量可以更少或者更多,例如2个、3个、5个、6个等等,根据需要而定。
这些串列式巡检机器人模块虽然如图所示彼此间隔开一定的间隙,但它们也可以基本上无间隙地彼此紧靠地串列在轨道200上。尽管如图2A-2B所示展示了首尾两个电机410,但是电机的数量可以是1个或者更多个,并且其位置也可以是其它的布置方式。
通过将各个串列在一起的巡检机器人模块分布在轨道200上,实际上每一个安装位置点的重量和受力减小了,而且配重分散在多个位点而非之前的单个位置点上。通过这样的配置,就可以减轻或者甚至解决之前的巡检机器人配重不均、重心不平衡等造成的潜在问题,例如,可降低冲击、降低运行时的噪音和其它诸如此类的故障,可实现相对更低频率的维修和维护。
不仅如此,各个巡检机器人模块的体积和占用空间可以更小,因此在巡检机器人传送链的运行通道相对狭小的场合中应用成为可能。另外,通过将多个在工作时可能发热的巡检机器人模块以串列的方式分散,电池供电的巡检机器人模块例如在自带电池供电时可以采用防爆性更好的相对较小容量的电池,而且还可解决了散热不良的问题,提高了系统的运行可靠性和鲁棒性。由于模块串列分布且各自独立,因此还进一步降低了故障诊断和维检修、更换的难度。这些优势在例如高温、高爆、高粉尘等恶劣工况的应用环境下,就显得更加重要和突出。
串列式巡检机器人的机器人模块可选自下列功能模块中的至少一者:照明模块、视频-热成像-音频模块、气体传感器模块、电池模块、对讲模块、无线通讯模块、消防模块、摄像头清洁模块。照明模块例如可充当环境照明和视觉监测的功能,这对于远程监控是基本的和必要的。视频-热成像-音频模块例如可用于摄取图像、热成像和音频信息,包括摄像、热成像、温度传感和录音等等,并且可选择性地将其例如实时地传送给地面基站。消防模块可包括相关的传感器,例如温度传感器、烟雾传感器等等,并且可发送相应的警告信号,以及可选择性地发送相应的指令以启动消费设施,例如消防水龙头、灭火器,等等。摄像头清洁模块可用于清洁巡检机器人的摄像头,例如安装有喷水喷头和水箱以喷射 清洗摄像头,等等。当然,本领域的技术人员完全可以理解,根据不同的应用场合和功能,本构思的串列式巡检机器人组件还可另外地或者备选地增设其它的功能模块,这些也都在本构思的范畴内。根据一个示例,一组机器人模块可包括一个主模块和至少一个从模块,主模块可与至少一个从模块之间处于无线或者有线通讯连接。
根据一个示例,功能模块可内置有作为工作电源的充电电池,这样该模块可独立工作,并且可具有更好的防爆性能。在一个示例中,为了方便检修、维护和更换,这些功能模块是能够独立维修和/或独立更换的。
在一个示例中,无线通讯模块可以充当主模块。无线通讯模块可以选自下列项中的中的至少一者:Zigbee模块、WiFi模块、蓝牙模块、LoRa传输模块,NB传输模块、Proprietary传输模块、Thread传输模块、Wi-SUN传输模块、Z-Wave传输模块和红外通讯模块。
上述串列式的轨道巡检机器人系统及其各个构成部分,可适用于在例如矿井井下、码头运输场所、工业生产线、长距离轨道输送场所、长距离带式输送场所或防爆场所中,以及在其它工况恶劣或有危险的环境中进行巡检的用途。
在一个示例中,该串列式巡检机器人系统可包括在线监测无线传感器,在线监测无线传感器固定在巡检路径所处的环境中,用于采集环境中的设备的状态数据。
该串列式巡检机器人系统中的巡检机器人包含无线传感器数据通讯模块,该无线传感器数据通讯模块配置成在巡检期间与在线监测无线传感器进行无线通讯,以便收集在线监测无线传感器所采集的数据和给在线监测无线传感器下达指令。
尽管上述串列式巡检机器人系统的实施例中,巡检机器人采用的是串列式巡检机器人,这样可以实现诸多的相关技术优势。但是,本领域的技术人员可以理解并容易想到,在需要的时候,本申请的串列式巡检机器人系统也可以采用一体集成式巡检机器人代替。
根据一个示例,功能模块可由供电电缆供电,或者功能模块可以内置有电池,作为供电电源。
稳定化的全滚动(摩擦)导向的驱动装置的另一实施例
图16展示了根据另一实施例的稳定化的、全导轮滚动(摩擦)导向的驱动装置500的示意性透视图,展示了驱动装置500及其第一和第二安装座510,520和其上的多个导轮等的布置。图17展示了图16所示驱动装置500在方形轨道200上安装和运行的示意性透视图。图18展示了如图17所示安装在方形轨道200上的带电机的第一安装座510的示意性横截面视图,以横向视图展示了轨道200的横截面、安装有电机540的第一安装座510、驱动和传动构造以及其上的导轮等的更多细节。图19展示了如图17所示安装在方形轨道200上的带电机的第一安装座510的示意性俯视图,展示了安装在轨道200上的带电机540的第一安装座的俯视图,尤其是展示了其上安装的上导轮与侧导轮的安装和位置关系,第二安装座520可具有与第一安装座510大体上相同或者类似的构造。图20展示了安装侧导轮机构的侧导轮支架560的示意性立体图,示意性地展示了侧导轮支架560与借此安装在第一安装座510一侧的侧导轮的大体结构和安装。
如图16-20所示,展示了本发明另一实施例的驱动装置500,以便提供稳定化的、全导轮滚动(摩擦)导向的设计。通过这种设计,与前述实施例的驱动装置400相比,本发明的该实施例的驱动装置500可以提供为巡检机器人提供更加稳定的驱动、更低的驱动功耗(耗电)、更小噪音和更长寿命。
如图16-20所示,驱动装置500可安装在轨道200上,并且巡检机器人(或者巡检机器人模块)可安装固定在驱动装置500上或与驱动装置500相连而随之沿着轨道移动,从而可在驱动装置500的驱动下,通过传动链轮570与固定在轨道200上的传动链210啮合,而循着轨道200运行,以进行巡检。
具体而言,如图16-20所示,驱动装置500可包括安装成通过其导轮在轨道200上滚动运行的第一安装座510、通过其导轮在轨道200上滚动运行的第二安装座520,和将在轨道200上一前一后串联布置的第一安装座510和第二安装座520连接起来的中间连接件530,使得第一安装座510和第二安装座520能够以串列的形式一前一后地在轨道200上滚动运行,中间连接件530例如可以是如图所示的中间连接板的形式,在该中间连接板530上可吊装巡检机器人或巡检机器人模块(未示出)。
如图16-20所示,驱动装置500的第一安装座510、第二安装座520和中间连接件530的一个示例可采用轻量化的设计,以尽可能降低驱动装置500的自重和给驱动电机540带来的负荷。过大的自重和载荷不仅影响电机540的工作和寿命,还可能影响驱动装置500导轮的稳定可靠工作和使用寿命。为 此,如图所示,第一安装座510、第二安装座520的主体可以由孔板构成或加工有镂空构造如多个镂空槽、孔等,并且中间连接件530也可以是孔板或者加工有镂空构造如镂空槽、孔等,以减轻重量。驱动装置500还可包括安装在第一安装座510上的电机540、减速机构(未示出)和传动链轮570,电机540的旋转运动可直接地或者经由减速机构传递到传动链轮570而带动传动链轮570旋转。传动链轮570与固定在轨道200上的传动链210啮合,从而循着轨道200运行,由此带动驱动装置500(第一和第二安装座510,520)以及安装或者连接在驱动装置500上的巡检机器人循着轨道200运行以进行巡检。尽管本实施例图示为在第一安装座510上安装电机540,但还可以在第二安装座520上也可以安装电机540。电机540也例如可以采用伺服电机540的形式。如图16-18所示,驱动电机540例如可旋转地安装在第一安装座510主体的偏下侧部位,并与布置在第一安装座510的中空主体中间的传动链轮570例如以共轴或同轴的方式连接(优选可经由未示出的减速机构对传动链轮570减速),从而可驱动传动链轮570旋转。减速机构的一个示例是行星齿轮组,或称行星齿轮减速器。减速机构的另一可选的示例也可以是蜗轮-蜗杆。蜗轮-蜗杆减速机构不仅可以起到减速的作用,而且还可自锁/制动,从而便于在需要时将巡检机器人(模块)锁定在轨道200上不移动,而无需另外的制动/自锁装置。
如图16-20所示,第一安装座510的主体上部可设有在安装就位后位于方形轨道200两侧的一对吊臂511和512,它们与第一安装座510的主体一起可在第一安装座510上部形成大体U形的形状,使得第一安装座510安装在轨道200上时,轨道200被置于U形的中间。这一对吊臂511和512例如可以与第一安装座510主体一体成型,也可以是与该主体组装在一起的单独的构件。如图所示,这一对吊臂511和512优选可对称地布置,各自本身例如可以是板状或条状的形式,它们与可滚动地悬吊安装在轨道200顶面左右两侧的一对上导轮、安装座主体一起构成例如大体上钳状或者叉状的构造。这一对吊臂511和512的构造及其上的导轮等配置基本上相同,并且优选是左右对称地布置的,如下文进一步详述。
在吊臂511上沿着图16-18中的大体上垂直的方向可旋转地安装有彼此上下间隔开的两个导轮,即,上导轮511A和下导轮511B,它们构造且配置成在安装后分别与轨道200的顶面和底面配合,起到导向、限位且分别在轨道200一侧(图18所示左侧)的顶面和底面上滚动运行的作用。其中,尤其重要的是,上导轮511A安装成以承受驱动装置等悬吊重量的形式始终在轨道200左侧的顶面滚动运行,下导轮511B则根据应用场合和需要可安装成与轨道200左侧的底面形成紧配合或者松配合,例如如图18所示的间隙配合形式,因为下导轮511B在本设计中不是主要承载的导轮。与吊臂511的配置类似地,在吊臂512上可旋转地安装有两个彼此上下间隔开的两个导轮,上导轮512A和下导轮512B,它们配置成与轨道200右侧的顶面和底面分别安装配合,起到导向、限位且分别在轨道200的顶面和底面上滚动运行的作用。上导轮512A以承受悬吊重量的形式始终在轨道200右侧的顶面滚动运行,下导轮512B则可安装成与轨道200右侧的底面形成紧配合或者松配合,例如图示的间隙配合形式,因为下导轮512B同样不是主要承载的导轮。
在本实施例的构思中,如图16-19所示,为了实现驱动装置500的稳定化的全滚动摩擦导向的设计,本发明人在每一个吊臂511,512上安装了创新的侧导轮机构,具体而言,如图18-19所示,在左侧吊臂511上沿着轨道200的延伸方向安装了并排但彼此间隔开的一对侧导轮机构511C和511D,他们以在轨道200的左侧侧面上滚动(摩擦)的方式为驱动装置500及其上的巡检机器人的运行提供导向和限位。另外,例如如图19所示优选地使上导轮511A(和下导轮511B)在轨道200的延伸方向上置于这一对一前一后布置的侧导轮机构511C和511D的中间,这样,就可以使得驱动装置500在运行时实现稳定化,而不会左右摆动,例如与图11所示实施例的侧导轮的布置相比在运行时更稳定。
例如如图16、19和20所示,这一对侧导轮机构511C和511D优选具有相同的构造和配置,其中,每一个侧导轮机构511C;511D由轮轴S和可旋转地安装在轮轴S上的上下两端的两个,即,上、下侧导轮5111和5112;5113和5114构成,轮轴S的直径小于其上安装的上、下侧导轮5111和5112以及5113和5114,使得每个侧导轮机构511C;511D呈大体上哑铃形的结构,并且各自留出了作为避让设计的避让凹位5110,如图20所示。如图18所示,由此每个侧导轮机构511C;511D的上、下两个侧导轮分别在轨道200的相应侧面上靠近轨道顶面和底面的位置运行,而在轨道左右两侧的侧面的大体中间位置留出了避让凹位5110,该避让凹位5110为轨道200上的侧面中间的安装件220(例如轨道200拼接时的多个位于侧面中间部位的紧固螺钉220,等等)留出了避让的空间。不仅如此,由于上、下两个侧导轮分别在轨道侧面上靠近轨道顶面和底面的位置运行,因此,驱动装置500在运 行时天然更稳定,例如与图11所示实施例的侧导轮布置相比在运行时更稳定。每一个侧导轮机构的一对侧导轮,即上侧导轮和下侧导轮,既可以是无共用轮轴的单独的侧导轮,还可以是一体成型的。侧导轮支架560如图所示可具有整体上呈等腰三角板形状的主体561,在等腰三角板561上靠近三个角的位置开有三个安装孔563,并且在等腰三角板561上设有两个例如可大体上轴对称设置的安装承座562。如图20所示,通过两个侧导轮支架560,这一对侧导轮机构511C和511D穿过吊臂511上的对应通槽580固定安装在吊臂511上,其中,这一对侧导轮机构511C和511D的两个轮轴S的上端安装在上方侧导轮支架560这两个安装承座562中,这两个轮轴S的下端安装在下方侧导轮支架560的这两个安装承座562中。
本实施例中,右侧吊臂512与左侧吊臂511的构造、上下导轮、两个侧导轮机构等的配置基本上相同,并且优选与左侧吊臂511的配置是左右对称地布置的,因此其配置、安装、作用和效果等可直接参照左侧吊臂511的以上描述,不再一一详细描述。简单而言,在吊臂512上可旋转地安装有上导轮512A和下导轮512B,它们构造且配置成在安装后分别与轨道200右侧的顶面和底面配合,起到导向、限位且在轨道上滚动运行的作用。为了实现驱动装置500的稳定化的全滚动摩擦导向的设计,在吊臂512上沿着轨道200延伸方向也安装了并排但彼此间隔开的一对侧导轮机构512C和512D,他们以在轨道200的右侧侧面上滚动(摩擦)的方式为驱动装置500及巡检机器人的运行提供导向和限位。另外,例如如图19所示使上导轮512A(和下导轮512B)在轨道200的延伸方向上置于这一对侧导轮机构512C和512D之间,这样,就可以使得驱动装置500在运行时实现稳定化,而不会左右摆动,例如与图11所示侧导轮的布置相比在运行时更稳定。同样,安装在右侧吊臂512上的这一对侧导轮机构512C;512D呈大体上哑铃形的结构,而各自留出了作为避让设计的避让凹位5120,如图18所示,用于避让右侧侧面的安装件,例如紧固螺钉220。
如上所述,本领域的技术人员可以理解,本实施例由此实现了驱动装置500的稳定化的全滚动(摩擦)导向的设计。通过为每一个安装座的左右两侧分别配置在轨道左右两侧的顶面和底面上滚动的上、下两个导轮和两个在轨道侧面上靠近轨道顶面和底面位置滚动的侧导轮机构,就实现了驱动装置500的稳定化的全滚动(摩擦)导向的设计。上、下两个导轮和侧导轮机构的侧导轮优选都是无法兰(凸缘)的构造,由此进一步确保这些导轮在于轨道接触时不存在滑动(摩擦)接触,而是全滚动(摩擦)接触。侧导轮机构优选都具有相同的构造和配置,以便于维修更换以及降低备件成本。尽管侧导轮机构如图所示通过哑铃形的构造来提供中间避让设计,但是,本领域的技术人员可以理解,轮轴S也可以省略,而是将侧导轮机构的两个侧导轮直接可旋转地安装在侧导轮支架560的对应安装承座562上,这同样属于本发明的范围内。
如上所述,除了电机以外,第二安装座520可具有与第一安装座510大体上相同或者类似的构造、配合、安装和稳定化的全滚动(摩擦)导向的运行和设计,因此在此不再一一赘述。
另外,本领域的技术人员完全可以理解,在技术上可实现的情形下,本实施例的驱动装置500的构造和配置的整体或者一部分可以结合到前面的实施例中,并且可替换前面实施例中的驱动装置或者其部件,例如图1A-图15中所示的驱动装置或者其部件。比如,本实施例中的侧导轮机构的构造、配置和安装可以替换例如图11中所示的侧导轮;或者,可以作为侧导轮结合到图15所示的牵引小车实施例中,这些也属于本申请的范围内。
以上结合实施例描述了本申请的基本构思。注意,上述仅为本申请的示例性实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本申请的保护范围。本申请的范围由所附的权利要求范围决定。

Claims (30)

  1. 一种用于巡检机器人系统的驱动组件,所述驱动组件包括:
    驱动装置,包括电机、减速机构和传动链轮,所述电机经由所述减速机构驱动所述传动链轮旋转;
    安装座,所述安装座上安装有在所述巡检机器人系统的轨道上滚动运行的至少两对上导轮和至少两对下导轮,并且,所述驱动装置可旋转地安装在所述安装座上;
    传动链,所述传动链固定安装在所述轨道上,其中所述传动链轮与所述传动链啮合配合,从而在旋转时能够循着所述轨道同所述安装座一起行进。
  2. 根据权利要求1所述的驱动组件,其中,所述至少两对上导轮包括:布置成贴近所述轨道上面的左侧边沿滚动运行的一对上导轮,和布置成贴近所述轨道上面的右侧边沿滚动运行的一对上导轮。
  3. 根据权利要求2所述的驱动组件,其中,所述至少两对下导轮包括:布置成贴近所述轨道下面的左侧边沿滚动运行的一对下导轮,和布置成贴近所述轨道下面的右侧边沿滚动运行的一对下导轮。
  4. 根据以上权利要求中任一项所述的驱动组件,其中,所述安装座包括下部支架和两个上支架部,其中,每个所述上支架部都能够独立地相对于所述下部支架枢转。
  5. 根据权利要求4所述的驱动组件,其中,所述上支架部是上U形部,其中每个所述上U形部包括底板和从所述底板向上延伸的两个侧板,每个所述上U形部的每个所述侧板上分别安装一个所述上导轮和一个所述下导轮。
  6. 根据以上权利要求中任一项所述的驱动组件,其中,所述上导轮和所述下导轮安装成匹配所述轨道的轮廓,分别贴近所述轨道上面和下面的两侧边沿以滚动方式引导并载带所述驱动组件运行。
  7. 根据权利要求5所述的驱动组件,其中,在每个所述上U形部的每个所述侧板上、在其所述上导轮和所述下导轮之间进一步安装侧导轮,所述侧导轮构造成在所述轨道的侧面上滚动运动。
  8. 根据权利要求7所述的驱动组件,其中,所述轨道是横截面整体上呈方形的方形轨道,所述侧导轮分别在所述方形轨道左右两侧的侧面上滚动运行。
  9. 根据权利要求4所述的驱动组件,其中,在所述下部支架上设有两个枢轴孔,所述两个上支架部通过穿过相应的所述枢轴孔的枢轴而各自独立枢转地安装在所述下部支架上。
  10. 根据权利要求9所述的驱动组件,其中,在所述下部支架的所述枢轴孔的下端进一步设有套在所述枢轴上的推力球轴承。
  11. 根据权利要求1-10中任一项所述的驱动组件,其中,所述传动链固定安装在所述轨道的底部。
  12. 根据权利要求1-7中任一项所述的驱动组件,其中,所述轨道的横截面选自下列中的一者:方形、梯形、截头的等腰三角形、五边形、六边形和鼓形。
  13. 根据权利要求12所述的驱动组件,其中,所述轨道是横截面整体上呈方形的方形轨道,所述安装座的上导轮和下导轮分别在所述方形轨道的顶面和底面上滚动运行。
  14. 根据权利要求1-6中任一项所述的驱动组件,其中,所述导轮是带法兰的导轮,所述法兰的贴近轨道的那一面是斜面,所述斜面相对于与所述导轮的旋转轴线垂直的平面形成斜角A,0<A≤30°。
  15. 根据权利要求1-6中任一项所述的驱动组件,其中,所述导轮是带法兰的导轮,所述法兰的贴近所述轨道的那一面是弧形面,所述弧形面的圆弧半径小于所述轨道的弯曲半径。
  16. 根据权利要求1-10中任一项所述的驱动组件,其中,所述减速机构是啮合配合的蜗轮和蜗杆,其中,所述蜗杆与所述电机的转轴传动配合,并且所述蜗轮与所述传动链轮传动配合。
  17. 根据权利要求1-10中任一项所述的驱动组件,其中,所述安装座上安装巡检机器人或机器人模块。
  18. 根据权利要求1-10中任一项所述的驱动组件,其中,所述驱动组件构造成在安装于所述轨道上时,所述传动链轮位于所述轨道的下方并与固定安装在所述轨道底面的传动链啮合。
  19. 一种用于巡检机器人系统的驱动装置,所述驱动装置包括:
    第一安装座,所述第一安装座上安装有一对上导轮和一对下导轮,所述一对上导轮布置在所述巡检机器人系统的轨道的顶面上的左右两侧,并且所述一对下导轮布置在所述轨道的底面上的左右两侧;
    第二安装座,所述第二安装座上安装有一对上导轮和一对下导轮,所述一对上导轮布置在所述巡检机器人系统的轨道的顶面上的左右两侧,并且所述一对下导轮布置在所述轨道的底面上的左右两侧;
    可枢转地连接在所述第一安装座与第二安装座之间的中间连接件;
    安装在所述第一安装座和所述第二安装座的至少一者上的电机、减速机构和与所述电机可旋转地连接的传动链轮,其中,所述电机经由所述减速机构驱动所述传动链轮旋转;和
    固定安装在所述轨道底部的传动链,其中,所述传动链轮配置成与所述传动链啮合配合,在被所述电机驱动旋转时同所述驱动装置一起循着所述轨道运行;
    其中,所述第一安装座包括主体、位于所述主体上部在安装时位于所述轨道左右两侧的一对吊臂,其中,所述一对吊臂中的每一个安装有上下布置且用于分别配合在所述轨道的顶面和底面上的一个上导轮和一个下导轮,以及沿着所述轨道的延伸方向彼此间隔开的一对侧导轮机构;并且
    其中,所述第二安装座包括主体、位于所述主体上部在安装时位于所述轨道左右两侧的一对吊臂,所述一对吊臂中的每一个安装有上下布置且分别配合在所述轨道的顶面和底面上的一个上导轮和一个下导轮,以及沿着所述轨道的延伸方向彼此间隔开的一对侧导轮机构。
  20. 根据权利要求19所述的驱动装置,其中,每个所述侧导轮机构包括上下布置的上侧导轮和下侧导轮,其配置成用于在所述轨道的侧面上分别靠近所述轨道的上侧和下侧滚动。
  21. 根据权利要求20所述的驱动装置,其中,在每一个所述侧导轮机构的上侧导轮和下侧导轮之间留出避让凹位。
  22. 根据权利要求21所述的驱动装置,其中,每一个所述侧导轮机构包括在两端分别安装上侧导轮和下侧导轮的轮轴,所述轮轴具有比所述上侧导轮和下侧导轮更小的直径,使得所述上侧导轮和下侧导轮之间的所述轮轴留出所述避让凹位;或者,每一个所述侧导轮机构的所述上侧导轮和所述下侧导轮是彼此间隔开的,使得所述上侧导轮和所述下侧导轮之间的间隔限定了所述避让凹位;或者,每一个所述侧导轮机构的所述上侧导轮和所述下侧导轮是一体成型的结构,所述一体成型的结构在所述上侧导轮和所述下侧导轮之间提供所述避让凹位。
  23. 根据以上权利要求中任一项所述的驱动装置,其中,每个所述吊臂上的所述上导轮在所述轨道的延伸方向上布置在相应的所述一对侧导轮机构之间。
  24. 根据以上权利要求中任一项所述的驱动装置,其中,全部的所述上导轮是彼此相同的,所有的所述下导轮是彼此相同的,并且所有的所述侧导轮机构是彼此相同的。
  25. 根据以上权利要求中任一项所述的驱动装置,其中,所述第一安装座的主体及其上的所述一对吊臂构造成U形、钳形或音叉形,所述上导轮悬吊在所述轨道的顶面上沿左右两侧滚动运行;并且,所述第二安装座的主体及其上的所述一对吊臂构造成U形、钳形或音叉形,所述上导轮悬吊在所述轨道的顶面上沿左右两侧滚动运行。
  26. 根据以上权利要求中任一项所述的驱动装置,其中,所述第一安装座和所述第二安装座均是整体成型的;或者,所述第一安装座和所述第二安装座的主体均由多块板拼接而成,其中,所述第一安装座和所述第二安装座的所述一对吊臂均是与各自的所述主体固定连接的板状或条状吊臂。
  27. 根据以上权利要求中任一项所述的驱动装置,其中,所述上导轮、所述下导轮、所述上侧导轮和所述下侧导轮都是没有法兰的导轮,由此所述驱动装置是稳定化的全滚动导向的驱动装置。
  28. 根据以上权利要求中任一项所述的驱动装置,其中,所述驱动装置具有轻量化的构造,所述第一安装座和所述第二安装座的主体加工有多个镂空孔;并且所述中间连接件是有多个镂空孔的孔板。
  29. 一种用于巡检机器人系统的驱动装置,所述驱动装置包括:
    电机、减速机构和传动链轮,所述电机经由所述减速机构驱动所述传动链轮旋转;
    安装座,所述安装座上安装有在所述巡检机器人系统的方形轨道上滚动的至少两对上导轮和至少两对下导轮,并且,所述电机、减速机构和传动链轮可旋转地安装在所述安装座上;
    传动链,所述传动链固定安装在所述方形轨道上,其中所述传动链轮与所述传动链啮合配合,从而在旋转时能够循着所述方形轨道同所述安装座一起行进;
    其中,所述安装座包括下部支架和两个上支架部,其中,每个所述上支架部相对于所述下部支架可独立地枢转,在每个所述上U形部的每个侧板上的上导轮和下导轮之间进一步安装侧导轮;其中,每个所述侧导轮是沿着所述方形轨道的延伸方向彼此间隔开的一对侧导轮机构,每一个所述侧导轮机构包括上下布置的上侧导轮和下侧导轮,所述上侧导轮和下侧导轮配置成用于在所述方形轨道的侧面上分别靠近所述轨道的上侧和下侧滚动,并且在每一个所述侧导轮机构的所述上侧导轮和下侧导轮之间留出避让凹位;和
    其中,所述上导轮、所述下导轮、所述上侧导轮和所述下侧导轮都是没有法兰的导轮。
  30. 一种巡检机器人系统,其包括根据权利要求19-29中任一项所述的驱动装置。
PCT/CN2023/121472 2022-09-30 2023-09-26 用于巡检机器人系统的驱动组件 WO2024067556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211211293.9 2022-09-30
CN202211211293 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067556A1 true WO2024067556A1 (zh) 2024-04-04

Family

ID=90423984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121472 WO2024067556A1 (zh) 2022-09-30 2023-09-26 用于巡检机器人系统的驱动组件

Country Status (2)

Country Link
CN (1) CN117798942A (zh)
WO (1) WO2024067556A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018749A (ja) * 2000-07-11 2002-01-22 Shinryo Corp 垂直走行可能な巡視ロボットシステム
CN205384507U (zh) * 2015-12-29 2016-07-13 浙江国自机器人技术有限公司 一种轨道巡检机器人行走爬升机构及与其相配合的轨道
CN107639622A (zh) * 2017-09-15 2018-01-30 深圳市朗驰欣创科技股份有限公司 轨道巡检机器人行走机构
CN108381564A (zh) * 2017-12-20 2018-08-10 南京理工大学 一种多自由度模块化的巡检机器人
CN109129404A (zh) * 2018-09-11 2019-01-04 徐州神工智能科技有限公司 一种吊轨式巡检机器人轨道及驱动装置
CN109760014A (zh) * 2019-03-21 2019-05-17 深圳昱拓智能有限公司 一种轨道式输煤栈桥自动巡检机器人及系统
CN211940953U (zh) * 2019-12-31 2020-11-17 华南师范大学 一种定轨巡检机器人
CN212553866U (zh) * 2020-06-23 2021-02-19 深圳昱拓智能有限公司 一种模块化的巡检机器人
CN212601942U (zh) * 2020-05-18 2021-02-26 贵州贵安新区盛典科技发展有限公司 一种巡检机器人的驱动轮支架总成
CN114407033A (zh) * 2022-01-07 2022-04-29 湖南工程学院 一种用于户外大坡度运行的挂轨巡检机器人辅助爬坡机构
CN217453941U (zh) * 2022-06-30 2022-09-20 安徽容知日新科技股份有限公司 巡检机器人系统
CN218206927U (zh) * 2022-09-30 2023-01-03 安徽容知日新科技股份有限公司 风力发电机叶片净空监测系统
CN218645192U (zh) * 2022-09-30 2023-03-17 安徽容知日新科技股份有限公司 用于风力发电机叶片净空监测系统的驱动组件
CN218644408U (zh) * 2022-09-30 2023-03-17 安徽容知日新科技股份有限公司 用于风力发电机叶片净空监测系统的轨道组件
CN218659089U (zh) * 2022-09-30 2023-03-21 安徽容知日新科技股份有限公司 用于巡检机器人系统的轨道组件
CN218753103U (zh) * 2022-09-30 2023-03-28 安徽容知日新科技股份有限公司 串列式巡检机器人系统
CN218747756U (zh) * 2022-09-30 2023-03-28 安徽容知日新科技股份有限公司 用于巡检机器人系统的驱动组件
CN218750753U (zh) * 2022-09-30 2023-03-28 安徽容知日新科技股份有限公司 用于巡检机器人系统的电缆牵引组件

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018749A (ja) * 2000-07-11 2002-01-22 Shinryo Corp 垂直走行可能な巡視ロボットシステム
CN205384507U (zh) * 2015-12-29 2016-07-13 浙江国自机器人技术有限公司 一种轨道巡检机器人行走爬升机构及与其相配合的轨道
CN107639622A (zh) * 2017-09-15 2018-01-30 深圳市朗驰欣创科技股份有限公司 轨道巡检机器人行走机构
CN108381564A (zh) * 2017-12-20 2018-08-10 南京理工大学 一种多自由度模块化的巡检机器人
CN109129404A (zh) * 2018-09-11 2019-01-04 徐州神工智能科技有限公司 一种吊轨式巡检机器人轨道及驱动装置
CN109760014A (zh) * 2019-03-21 2019-05-17 深圳昱拓智能有限公司 一种轨道式输煤栈桥自动巡检机器人及系统
CN211940953U (zh) * 2019-12-31 2020-11-17 华南师范大学 一种定轨巡检机器人
CN212601942U (zh) * 2020-05-18 2021-02-26 贵州贵安新区盛典科技发展有限公司 一种巡检机器人的驱动轮支架总成
CN212553866U (zh) * 2020-06-23 2021-02-19 深圳昱拓智能有限公司 一种模块化的巡检机器人
CN114407033A (zh) * 2022-01-07 2022-04-29 湖南工程学院 一种用于户外大坡度运行的挂轨巡检机器人辅助爬坡机构
CN217453941U (zh) * 2022-06-30 2022-09-20 安徽容知日新科技股份有限公司 巡检机器人系统
CN218206927U (zh) * 2022-09-30 2023-01-03 安徽容知日新科技股份有限公司 风力发电机叶片净空监测系统
CN218645192U (zh) * 2022-09-30 2023-03-17 安徽容知日新科技股份有限公司 用于风力发电机叶片净空监测系统的驱动组件
CN218644408U (zh) * 2022-09-30 2023-03-17 安徽容知日新科技股份有限公司 用于风力发电机叶片净空监测系统的轨道组件
CN218659089U (zh) * 2022-09-30 2023-03-21 安徽容知日新科技股份有限公司 用于巡检机器人系统的轨道组件
CN218753103U (zh) * 2022-09-30 2023-03-28 安徽容知日新科技股份有限公司 串列式巡检机器人系统
CN218747756U (zh) * 2022-09-30 2023-03-28 安徽容知日新科技股份有限公司 用于巡检机器人系统的驱动组件
CN218750753U (zh) * 2022-09-30 2023-03-28 安徽容知日新科技股份有限公司 用于巡检机器人系统的电缆牵引组件

Also Published As

Publication number Publication date
CN117798942A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN218750753U (zh) 用于巡检机器人系统的电缆牵引组件
CN218753103U (zh) 串列式巡检机器人系统
CN218659089U (zh) 用于巡检机器人系统的轨道组件
CN218747756U (zh) 用于巡检机器人系统的驱动组件
CN104960082A (zh) 一种牵引小车驱动的运输料斗
CN112034860A (zh) 一种轨道式巡检机器人
WO2024067556A1 (zh) 用于巡检机器人系统的驱动组件
CN218398151U (zh) 用于巡检机器人系统的新型驱动组件
CN218398152U (zh) 用于巡检机器人系统的新型轨道组件
WO2024067561A1 (zh) 用于巡检机器人系统的轨道组件
CN218848627U (zh) 新型串列式巡检机器人系统
WO2024067557A1 (zh) 用于巡检机器人系统的电缆牵引组件
CN218206927U (zh) 风力发电机叶片净空监测系统
CN113829325A (zh) 一种挂轨式机器人的行走机构和轨道机器人
CN218645192U (zh) 用于风力发电机叶片净空监测系统的驱动组件
CN219380678U (zh) 用于巡检机器人的驱动装置
CN218644408U (zh) 用于风力发电机叶片净空监测系统的轨道组件
CN210199232U (zh) 电缆故障巡检装置
CN117800018A (zh) 串列式巡检机器人系统
CN204819899U (zh) 一种牵引小车驱动的运输料斗
JPH0767223A (ja) 架空線走行装置
CN218235354U (zh) 用于风力发电机叶片净空监测系统的电缆牵引组件
CN218706195U (zh) 用于传送巡检机器人的非负重的新型传送链、轨道组件和巡检机器人系统
CN218402282U (zh) 用于传送巡检机器人的非负重的对称传送链、轨道组件和巡检机器人系统
CN210115910U (zh) 一种双悬臂吊轨式隧道巡检机器人