WO2024067535A1 - 一种小肽及其在黏膜修复中的应用 - Google Patents

一种小肽及其在黏膜修复中的应用 Download PDF

Info

Publication number
WO2024067535A1
WO2024067535A1 PCT/CN2023/121316 CN2023121316W WO2024067535A1 WO 2024067535 A1 WO2024067535 A1 WO 2024067535A1 CN 2023121316 W CN2023121316 W CN 2023121316W WO 2024067535 A1 WO2024067535 A1 WO 2024067535A1
Authority
WO
WIPO (PCT)
Prior art keywords
small peptide
small
peptide
ulcers
mucosal
Prior art date
Application number
PCT/CN2023/121316
Other languages
English (en)
French (fr)
Inventor
张希彤
尹小建
Original Assignee
福瑞施生物医药科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福瑞施生物医药科技(深圳)有限公司 filed Critical 福瑞施生物医药科技(深圳)有限公司
Publication of WO2024067535A1 publication Critical patent/WO2024067535A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/03Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to the technical field of natural active ingredients, in particular to a small peptide and application thereof in mucosal repair.
  • Digestive tract especially gastrointestinal diseases, are one of the most common diseases at present.
  • the vast majority of digestive tract diseases are related to mucosal damage. Including oral ulcers, esophageal ulcers, gastric ulcers, intestinal ulcers, genital mucosal inflammation, etc. are all related to mucosal damage.
  • the conventional treatment for digestive tract mucosal damage or other mucosal damage such as oral cavity is acid suppression therapy and mucosal protective agents.
  • Conventional treatment drugs are proton pump inhibitors and anti-inflammatory mouthwashes, which mainly relieve mucosal ulcer symptoms by inhibiting gastric acid and physical coating of the mucosal surface, and do not directly act on mucosal repair.
  • long-term use of acid suppressants may lead to decreased digestive ability of patients, which may cause adverse reactions such as malnutrition, gastrointestinal inflammation and diarrhea.
  • This small peptide is a small molecule peptide segment with better oral absorption and utilization rate, and has a mucosal repair effect. It has been proven through toxicological experiments that it has no liver and kidney toxicity and has good safety.
  • a small peptide selected from a basic small peptide with a sequence as shown in SEQ ID NO.1 or SEQ ID NO.2, or a leading small peptide comprising the basic small peptide, wherein the leading small peptide can be enzymatically hydrolyzed under the action of digestive enzymes in an animal body to obtain the basic small peptide.
  • the polypeptide composition obtained in the early stage was purified to obtain polypeptides with a molecular weight below 1500 Daltons, peptides above 1500 Daltons were excluded. Multiple candidate small peptide segments were found, and after repeated tests and screening, it was observed that the small peptide P1 shown in SEQ ID NO.1 and the small peptide P2 shown in SEQ ID NO.2 had a mucosal repair effect. After being synthesized in large quantities by the Fmoc solid phase synthesis method, it was verified by animal experiments that it had the relevant characteristics of mucosal repair. At the same time, it was proved by toxicological experiments that it had no liver and kidney toxicity and was highly safe.
  • the invention also discloses a method for preparing the small peptide, which adopts the Fmoc solid phase synthesis method.
  • the method comprises the following steps: fixing the first amino acid at the C-terminus of the small peptide on a solid phase carrier via a covalent bond, taking the N-terminus of the amino acid as the starting point for synthesis, removing the amino protecting group and reacting with an excess of the activated second amino acid, connecting the peptide chain, repeating the operation to obtain the small peptide, cleaving the small peptide from the solid phase carrier, separating and purifying the small peptide.
  • the solid phase carrier is 2-chlorotrityl chloride (2-Chlorotrityl Chloride Resin) resin.
  • the invention also discloses the use of the small peptide in preparing medicines for preventing and treating mucosal injury diseases.
  • the diseases caused by the mucosal damage include: oral ulcers, esophageal ulcers, gastric ulcers, intestinal ulcers, and genital mucositis.
  • the gastric ulcer includes: acute gastric ulcer and chronic gastric ulcer.
  • the invention also discloses the application of the small peptide in preparing medicines for preventing and treating gastrointestinal diseases.
  • the gastrointestinal diseases include: constipation, diarrhea, and stomach discomfort.
  • the stomach discomfort includes: acid reflux, fever, indigestion, bloating, stomach pain, vomiting, and nausea.
  • the invention also discloses a pharmaceutical composition, comprising the above-mentioned small peptide and pharmaceutically acceptable auxiliary materials.
  • the present invention has the following beneficial effects:
  • the small peptide of the present invention is obtained on the basis of a rice polypeptide composition with mucosal repair effect, and a differential polypeptide spectrum is obtained by mass spectrometry polypeptide analysis of a variety of common rice polypeptides and primi 1 rice polypeptide. After repeated tests and screening, it is observed that the small peptide P1 shown in SEQ ID NO.1 and the small peptide P2 shown in SEQ ID NO.2 have a mucosal repair effect. After being synthesized in large quantities by the Fmoc solid phase synthesis method, it is verified through animal experiments that it has the relevant characteristics of mucosal repair. At the same time, it is proved through toxicological experiments that it has no liver and kidney toxicity and is highly safe.
  • the small peptide of the present invention has excellent drugability and can be widely used as a drug for gastrointestinal diseases, mucosal repair, etc.
  • the indications observed so far mainly include: constipation, diarrhea, stomach discomfort (acid reflux, heating, indigestion, bloating, stomach pain, vomiting, nausea), mucosal damage (oral ulcers, esophageal ulcers, gastric ulcers, intestinal ulcers), loss of appetite (within 30 minutes after taking it, there is a significant increase in appetite and a more obvious feeling of hunger), etc.
  • FIG1 is a liquid chromatogram of small peptide P1 in Example 2.
  • FIG2 is a liquid chromatogram of small peptide P2 in Example 2.
  • FIG3 is a mass spectrum of small peptide P1 in Example 2.
  • FIG4 is a mass spectrum of small peptide P2 in Example 2.
  • FIG5 is a photograph of stomach tissue sections of the mouse acute gastric ulcer model validation test in Example 3.
  • FIG6 is a graph showing the results of a hepatotoxicity experiment of small peptide P1 in Example 5;
  • FIG7 is a graph showing the results of a hepatotoxicity experiment of small peptide P2 in Example 5;
  • FIG8 is a graph showing the results of a nephrotoxicity experiment of small peptide P1 in Example 5;
  • FIG9 is a graph showing the results of a nephrotoxicity experiment of small peptide P2 in Example 5;
  • Figure 10 is a liver tissue section of rats administered with 1000 mg/kg for 14 days in Example 6;
  • FIG. 11 is a picture of renal tissue sections of rats in Example 6 after administration (1000 mg/kg) for 14 days.
  • Alkaline protease purchased from Shanghai Yuanye Biotechnology Co., Ltd., product number S10154-100g, specification: 100g.
  • Papain purchased from Shanghai Yuanye Biotechnology Co., Ltd., product number: S10011-25g, specification: 25g.
  • Chymotrypsin purchased from Shanghai Yuanye Biotechnology Co., Ltd., product number: S10001-10g, specification: 10g.
  • Pepsin purchased from Shanghai Yuanye Biotechnology Co., Ltd., product number: S10027-100g, specification: 100g.
  • Pretreatment According to the proportion, 0.2g of rice seeds were crushed, ground into powder with liquid nitrogen, and 1 ml of PBS (phosphate buffer, pH 7.5) was added. The homogenate was continued for 15 minutes until the homogenate was fully homogenized. The homogenate was ultrasonically broken in an ice water bath for 15 minutes to fully release the proteins and peptides.
  • PBS phosphate buffer, pH 7.5
  • Enzymolysis Add the first complex enzyme to the above homogenate at a ratio of total enzyme activity/raw material of 6350U/g.
  • the first complex enzyme is alkaline protease and papain with an activity unit ratio of 5:1.
  • Enzymolysis is performed at pH 8.0 and 37°C for 25 minutes to obtain a crude enzymolysis solution. Then centrifuge at 37°C and 12000rpm for 30 minutes, take the supernatant, and then use the second complex enzyme for final enzymolysis.
  • the second complex enzyme is chymotrypsin and pepsin with an activity unit ratio of 4:1.
  • the addition amount is 6350U/g for total enzyme activity/raw material, and enzymolysis is performed at pH 5.0 ⁇ 0.5 and 37 ⁇ 1°C for 25 ⁇ 0.5min. Then centrifuge at 37°C and 12000rpm for 30 minutes, and take the supernatant.
  • the inventors have deeply explored the active monomers in the Plimi No. 1 rice polypeptide composition, and performed mass spectrometry peptide analysis on a variety of common rice polypeptides and Plimi No. 1 rice polypeptides.
  • the exclusion method is used to exclude small peptides that are the same as ordinary rice polypeptides and have a higher content.
  • small peptides with a higher content in the Plimi No. 1 variety and a lower content in other rice varieties, as well as small peptides with a higher content in Plimi No. 1 and not available in other varieties are selected. Since the proteins with a molecular weight below 1500 Daltons are purified in the polypeptide composition obtained in the early stage, peptides above 1500 Daltons are excluded.
  • a small peptide capable of repairing mucosa and improving gastrointestinal function selected from a small peptide P1 or a small peptide P2 having a sequence as shown in SEQ ID NO.1 (GASRIIGVDL) or SEQ ID NO.2 (GPSGPELRG).
  • the small peptide P1 and the small peptide P2 are prepared by the following method:
  • Detection reagents phenol reagent, pyridine reagent, ninhydrin reagent.
  • Resin swelling Place 2-chlorotrityl chloride resin (2-Chlorotrityl Chloride Resin) into a reaction tube, add DMF (15 ml/g), and shake for 60 minutes.
  • Washing Wash twice with DMF (10 ml/g), wash twice with methanol (10 ml/g), wash twice with DMF (10 ml/g).
  • Cutting prepare cutting fluid (10/g): TFA 94.5%, water 2.5%, EDT 2.5%, TIS 1%, cutting time: 180 min.
  • Blow dry and wash Use nitrogen to blow dry the lysate as much as possible, precipitate ether, remove the supernatant by centrifugation, wash the precipitate with ether six times, and then evaporate to dryness at room temperature.
  • Identification Take a small amount of the finished peptide for molecular weight identification by MS and purity identification by HPLC analysis.
  • Chromatographic column Kromasil 100-5C18, 4.6mmX250mm, 5 ⁇ m;
  • Ion source ESI Capillary (KV): ⁇ (2500 ⁇ 3500);
  • This example uses a mouse acute gastric ulcer model to verify the function of the small peptide obtained in Example 2.
  • Control group mice were treated with anhydrous ethanol (0.1 ml/10 g) to construct an acute gastric ulcer model (refer to the literature Study on the effect of Kangfuxin solution on experimental gastric ulcer [J]. Chinese Patent Medicine, 2001, 23(2): 122-124. DOI: 10.3969/j.issn.1001-1528.), and an equal amount of normal saline was given after modeling.
  • Blank group given an equal amount of normal saline.
  • Drug treatment group An acute gastric ulcer model was established by treating mice with anhydrous ethanol (0.1 ml/10 g).
  • the rice polypeptide composition (50 mg/kg) obtained in Example 1 was given at 2h, 12h, and 22h after modeling as the composition group, the small peptide P1 (0.5 mg/kg) was given at 2h, 12h, and 22h after modeling as the small peptide P1 group, and the small peptide P2 (0.5 mg/kg) was given at 2h, 12h, and 22h after modeling as the small peptide P2 group.
  • mice Eight mice were selected from each group. The mice were killed suddenly 24 hours after modeling, and the gastric tissues were removed and dissected to observe the changes in bleeding points and ulcer areas.
  • Figure 5 is a photograph of gastric tissue sections in the mouse acute gastric ulcer model validation experiment.
  • the ulcer index is the ratio of the ulcer area to the gastric mucosal tissue area
  • the ulcer inhibition rate is the ratio of the reduction in ulcer area relative to the control group.
  • This example uses a rat chronic gastric ulcer model to verify the function of the small peptide obtained in Example 2.
  • Control group (modeling group): rats were gavaged with anhydrous ethanol (1 mL/200 g) for 2 hours and then gavaged with 200 mg/kg aspirin. Aspirin was gavaged for 4 consecutive days, once a day, to establish a rat chronic gastric ulcer model. From the 5th day, an equal amount of normal saline was given.
  • Blank group given an equal amount of normal saline.
  • Drug treatment group After rats were gavaged with anhydrous ethanol (1 mL/200 g) for 2 hours, they were gavaged with 200 mg/kg aspirin. Aspirin was gavaged for 4 consecutive days, once a day, to establish a rat chronic gastric ulcer model. Starting from the 5th day, 50 mg/kg of the polypeptide composition (prepared in Example 1), small peptide P1 (0.5 mg/kg), and small peptide P2 (0.5 mg/kg) were given every day, respectively, in the polypeptide composition group, small peptide P1 group, and small peptide P2 group, twice a day, for 3 consecutive days. Sudden death on the 4th day was followed by an autopsy of the stomach.
  • mice were killed suddenly 24 hours after modeling. The stomach tissue was removed. On the one hand, gastric juice was collected to measure the pH value, and on the other hand, the stomach tissue was dissected to observe the changes in the ulcer area. At the same time, liver and kidney tissues were collected for pathological sections to observe whether the drug was safe.
  • the ulcer index is the ratio of the ulcer area to the gastric mucosal tissue area
  • the ulcer inhibition rate is the ratio of the reduction in ulcer area relative to the control group.
  • the small peptides P1, P2 and the primi rice polypeptide composition all showed the ability to resist peptic ulcers comparable to that of the positive drug group (P>0.05).
  • the experiment showed that the small peptides P1 and P2 are the components of the primi rice polypeptide composition with anti-peptic ulcer properties.
  • the anti-peptic ulcer properties of the small peptides P1 and P2 using a drug concentration less than one-fifth of that of the positive drug group are not weaker than those of the positive drug group, indicating that the small peptides P1 and P2 have the characteristics of low dose and high efficacy.
  • Example 2 the small peptide obtained in Example 2 was used to observe liver and kidney cytotoxicity.
  • Rats were gavaged with 500mg/kg and 1000mg/kg of the peptide every day for 14 consecutive days. The weight changes of the rats were recorded. Rats died suddenly on the 14th day, and the alanine aminotransferase activity and urea nitrogen content in the rats' blood were measured to determine whether the peptide had liver and kidney damage toxicity.
  • the results of the sections showed that the hepatocytes in the liver tissue were arranged regularly. There was no obvious edema, fatty degeneration or necrosis of the hepatocytes, and no obvious dilatation of the hepatic sinusoids. There was a very small amount of inflammatory cell infiltration in the interstitium, and no obvious fibrous tissue hyperplasia was observed.
  • the boundary between the cortex and medulla of the renal tissue was clear, and the distribution of glomeruli and renal tubules was normal, and no obvious sclerosis was observed in the glomeruli. There was no obvious degeneration and necrosis of the renal tubular epithelium. There was no clear dilatation of the renal tubular lumen and casts. Some interstitium showed congestion, and no obvious inflammatory cell infiltration and fibrous tissue hyperplasia was observed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供一种小肽及其在黏膜修复中的应用;该小肽选自如SEQ ID NO.1或如SEQ ID NO.2所示序列的基础小肽,或包含所述基础小肽的先导小肽,所述先导小肽可在动物体内消化酶的作用下酶解得到所述基础小肽;该小肽具有黏膜修复效果,并通过Fmoc固相合成法大量复制后,通过动物实验验证其具备黏膜修复的相关特性,同时,通过毒理实验证明其无肝肾毒性,安全性较高。

Description

一种小肽及其在黏膜修复中的应用 技术领域
本发明涉及天然活性成分技术领域,特别是涉及一种小肽及其在黏膜修复中的应用。
背景技术
消化道,特别是胃肠道疾病是目前最为常见的疾病之一。绝大多数的消化道疾病都与黏膜损伤有关。包括口腔溃疡、食道溃疡、胃溃疡、肠道溃疡、生殖器黏膜炎症等都与黏膜损伤有关。
目前,针对消化道道黏膜损伤,或其它如口腔等部位的黏膜损伤,常规治疗方式为抑酸治疗以及黏膜保护剂,常规治疗药物为质子泵抑制剂、消炎漱口水,主要通过抑制胃酸和黏膜表面物理覆膜的方法缓解黏膜溃疡症状,并不直接作用于黏膜修复。同时长期使用抑酸剂可能导致患者消化能力下降,可能引发营养不良、消化道炎症及腹泻等不良反应。
发明内容
基于此,有必要针对上述问题,提供一种小肽,此小肽为小分子肽段,具有较优的口服吸收利用率,并具有黏膜修复作用,且通过毒理实验证明其无肝肾毒性,具有较好的安全性。
一种小肽,选自如SEQ ID NO.1或如SEQ ID NO.2所示序列的基础小肽,或包含所述基础小肽的先导小肽,所述先导小肽可在动物体内消化酶的作用下酶解得到所述基础小肽。
发明人在前期实验中发现,由于普立米1号(广东普立米生物科技有限公司,植物新品种权号:CNA20181039.9)可吸收蛋白比例低于普通水稻品种,临床上将此大米给予代谢综合证患者食用。在患者实际食用的临床观察中(穗红院医伦审2017-036-02),我们发现食用该大米的患者表现出胃肠道功能的改善,进一步分析确认,产生作用的是该水稻中的蛋白质。并通过对水稻蛋白的提取方法进行筛选,获得了能够提取得到活性混和多肽组合物的水稻多肽组合物。
进一步的,本发明人深入挖掘了该普立米1号水稻多肽的活性单体,通过对多种普通水稻多肽和普立米1号水稻多肽进行质谱多肽分析。使用排除法,排除和普通水稻多肽一样且含量较高的小肽。最终选择普立米1号品种中含量较高,且其他水稻品种含量较低的,以及普立米1号含量较高且其他品种不具备的小肽进一步深入研究。由于在前期得到的多肽组合物中,提纯得到的是分子量在1500道尔顿以下的多肽,所以排除了1500道尔顿以上的肽段。找到多个候选小肽肽段,并经过反复试验和筛选,观察到SEQ ID NO.1所示小肽P1和SEQ ID NO.2所示的小肽P2具有黏膜修复效果。并通过Fmoc固相合成法大量合成后,通过动物实验验证其具备黏膜修复的相关特性,同时,通过毒理实验证明其无肝肾毒性,安全性较高。
本发明还公开了上述的小肽的制备方法,采用Fmoc固相合成法进行。
在其中一个实施例中,包括以下步骤:将所述小肽的C端首个氨基酸通过共价键固定于固相载体上,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,得到所述小肽,将该小肽从固相载体上裂解下来,分离纯化,即得。
在其中一个实施例中,所述固相载体为2-氯三苯甲基氯(2-Chlorotrityl Chloride Resin)树脂。
本发明还公开了上述的小肽在制备用于预防和治疗黏膜损伤疾病的药物中的应用。
在其中一个实施例中,所述黏膜损伤导致疾病包括:口腔溃疡、食管溃疡、胃溃疡、肠道溃疡、生殖器黏膜炎。
在其中一个实施例中,所述胃溃疡包括:急性胃溃疡、慢性胃溃疡。
本发明还公开了上述的小肽在制备用于预防和治疗胃肠道疾病的药物中的应用。
在其中一个实施例中,所述胃肠道疾病包括:便秘、腹泻、胃部不适。
在其中一个实施例中,所述胃部不适包括:返酸、暖气、消化不良、胃胀、胃痛、呕吐、恶心。
本发明还公开了一种药物组合物,包括上述的小肽,以及药学上可接受的辅料。
与现有技术相比,本发明具有以下有益效果:
本发明的小肽,是在得到了具有黏膜修复作用的水稻多肽组合物的基础上,通过对多种普通水稻多肽和普立米1号水稻多肽进行质谱多肽分析,得到差异化多肽谱,随后经过反复试验和筛选,观察到SEQ ID NO.1所示小肽P1和SEQ ID NO.2所示的小肽P2具有黏膜修复效果。并通过Fmoc固相合成法大量合成后,通过动物实验验证其具备黏膜修复的相关特性,同时,通过毒理实验证明其无肝肾毒性,安全性较高。本发明的小肽具有优异的成药性,可广泛作为胃肠道疾病、黏膜修复等药物应用。
目前观察到的适应症主要包括:便秘,腹泻,胃部不适(返酸、暖气、消化不良、胃胀、胃痛、呕吐、恶心),黏膜损伤(口腔溃疡,食管溃疡,胃溃疡,肠道溃疡),食欲不振(服用后30分钟内有明显的食欲增加,有较明显的饥饿感)等。另有少量报道(10例以下),对男性、女性生殖器黏膜炎症有较好的抑制修复作用。以及对IBD\CD(炎症性肠病)有预防复发的效果。
附图说明
图1为实施例2中小肽P1液相色谱图;
图2为实施例2中小肽P2液相色谱图;
图3为实施例2中小肽P1质谱图;
图4为实施例2中小肽P2质谱图;
图5为实施例3中小鼠急性胃溃疡模型验证试验胃组织切片照片;
图6为实施例5中小肽P1肝毒性实验结果图;
图7为实施例5中小肽P2肝毒性实验结果图;
图8为实施例5中小肽P1肾毒性实验结果图;
图9为实施例5中小肽P2肾毒性实验结果图;
图10为实施例6中大鼠给药(1000mg/kg)14天后的肝组织切片图;
图11为实施例6中大鼠给药(1000mg/kg)14天后的肾组织切片图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
以下具体实施方式所用试剂,如非特别说明,均为市售可得;以下具体实施方式所用方法,如非特别说明,均为常规方法可实现。
大米种子:普立米1号(广东普立米生物科技有限公司,农业植物新品种保护申请号:20181039.9)。
碱性蛋白酶:购于上海源叶生物科技有限公司,货号为S10154-100g,规格:100g。
木瓜蛋白酶:购于上海源叶生物科技有限公司,货号为:S10011-25g,规格:25g。
糜蛋白酶:购于上海源叶生物科技有限公司,货号为:S10001-10g,规格:10g。
胃蛋白酶:购于上海源叶生物科技有限公司,货号为:S10027-100g,规格:100g。
实施例1
一种具有黏膜修复和改善胃肠道功能的小肽的筛选。
1、活性水稻多肽组合物的制备
1)前处理:按照比例,将0.2g大米种子破碎,用液氮研磨成粉末,加入1毫升PBS(磷酸缓冲液,pH 7.5),继续匀浆15分钟至匀浆充分。并将匀浆在冰水浴上超声破碎15分钟,充分释放蛋白和多肽。
2)酶解:按总酶活/原料为6350U/g的比例,向上述匀浆液中加入第一复合酶,该第一复合酶为活力单位比为5∶1的碱性蛋白酶和木瓜蛋白酶,在pH 8.0,37℃的条件下酶解25min,得到粗酶解液。随后在37℃,12000rpm条件下离心30分钟,取上清,上清再用第二复合酶进行终酶解,该第二复合酶为活力单位比例为4∶1的糜蛋白酶和胃蛋白酶,加入量为总酶活/原料为6350U/g,在pH 5.0±0.5,37±1℃酶解25±0.5min。随后在37℃,12000rpm条件下离心30分钟,取上清。
3)纯化:用10kD的超滤管对得到的终酶解液进行超滤,取穿透液;按照常规方式对穿透液进行除盐处理,过滤、抽干后即得水稻多肽组合物。
2、活性单体筛选
本发明人深入挖掘了该普立米1号水稻多肽组合物中的活性单体,通过对多种普通水稻多肽和普立米1号水稻多肽进行质谱多肽分析。使用排除法,排除和普通水稻多肽一样且含量较高的小肽。最终选择普立米1号品种中含量较高,且其他水稻品种含量较低的,以及普立米1号含量较高且其他品种不具备的小肽。由于在前期得到的多肽组合物中,提纯得到的是分子量在1500道尔顿以下的蛋白,所以排除了1500道尔顿以上的肽段。找到多个候选小肽肽段,并经过反复试验和筛选,观察到SEQ ID NO.1(GASRIIGVDL)所示小肽P1和SEQ ID NO.2(GPSGPELRG)所示的小肽P2具有黏膜修复效果。
实施例2
一种具有黏膜修复和改善胃肠道功能的小肽,选自如SEQ ID NO.1(GASRIIGVDL)或SEQ ID NO.2(GPSGPELRG)所示序列的小肽P1或小肽P2。上述小肽P1和小肽P2通过以下方法制备得到:
一、合成原料及相关试剂:
1,保护氨基酸原料:氨基酸保护基Fmoc。
2,缩合试剂:HBTU,DIEA。
3,溶剂:DMF,DCM,甲醇,乙腈。
4,树脂:取代度为1.1mmol/g的2-Chlorotrityl Chloride resin。
5,脱保护试剂:哌啶。
6、检测试剂:苯酚试剂,吡啶试剂,茚三酮试剂。
7,切割试剂:TFA,TIS,EDT,无水乙醚。
8,氮气。
9,精密电子天平。
10,十二通道半自动多肽合成仪。
11,高效液相色谱仪。
12,冻干机。
13,离心机。
二、合成过程:
1、树脂溶涨:将2-氯三苯甲基氯树脂(2-Chlorotrityl Chloride Resin)放入反应管中,加DMF(15ml/g),振荡60min。
2、接第一个氨基酸:通过沙芯抽滤掉溶剂,加入3倍摩尔过量的Fmoc-Gly-OH或Fmoc-Leu-OH(C端第一个氨基酸)再加入10倍摩尔过量的DIEA,最后加入DMF溶解,振荡30min。甲醇封头,30min。
3、脱保护:去掉DMF,加20%哌啶DMF溶液(15ml/g),5min,去掉再加20%哌啶DMF溶液(15ml/g),15min。
4、检测:抽掉哌啶溶液,取十几粒树脂,用乙醇洗三次,加入茚三酮,KCN,苯酚溶液各一滴,105℃-110℃加热5min,变深蓝色为阳性反应。
5、洗:DMF(10ml/g)洗两次,甲醇(10ml/g)洗两次,DMF(10ml/g)洗两次。
6、缩合:加入3倍摩尔过量Fmoc保护氨基酸,3倍摩尔过量HBTU,再加入10倍摩尔过量的DIEA,最后加入DMF溶解,振荡45min。
7、检测:取十几粒树脂,用乙醇洗三次,加入茚三酮,吡啶,苯酚溶液各一滴,105℃-110℃加热5min,无色为阴性反应。
8、洗:DMF(10ml/g)洗一次,甲醇(10ml/g)洗两次,DMF(10ml/g)洗两次。
9、重复三至八步操作,从右到左依次连接序列中的氨基酸。
10、按照下列方法洗树脂,抽干:DMF(10ml/g)两次,DCM(10ml/g)三次,甲醇(10ml/g)四次,抽干10min。
11、切割:配制切割液(10/g)TFA 94.5%;水2.5%;EDT 2.5%;TIS 1%,切割时间:180min。
12、吹干洗涤:将裂解液用氮气尽量吹干,乙醚析出,离心去除上清,沉淀用乙醚洗六次,然后常温挥干。
13、纯化制备
1)取少许粗品,H2O/ACN溶解。
2)取少量样品在HPLC分析仪器上进行分析判断目标峰对应出峰时间。
3)利用C18反相色谱制备系统:Wavelength:220nm;Flow Rate:15ml/min;Inj.Vol:20mL Column Temp:25℃,Buffer A:0.1%TFA in water Buffer B:0.1%TFA in Acetonitrile;收集目标峰溶液。
4)用1.5ml离心管取少许目标峰溶液进行质谱确认及纯度检测。
14、将合格的目标峰溶液进行冻干,得到成品。
15、鉴定:分别取少量的成品多肽,做MS的分子量鉴定和HPLC分析的纯度鉴定。
三、小肽的表征
1、HPLC鉴定
分别取少量的成品多肽,进行MS的分子量鉴定和HPLC分析的纯度鉴定。
HPLC鉴定条件:
检测波长:220nm;
流速:1.0ml/min;
进样量:10uL
色谱柱:Kromasil 100-5C18,4.6mmX250mm,5μm;
柱温:30℃
流动相A:0.1%TFA乙腈;
流动相B:0.1%TFA水溶液;
梯度洗脱条件:
小肽P1和P2的HPLC鉴定谱图分别如图1和图2所示,从图中结果可以看出,小肽P1和P2均为单一峰,证明合成小肽的纯度符合要求。
2、质谱鉴定
质谱鉴定条件:
离子源:ESI Capillary(KV):±(2500~3500);
去溶剂气流量(L/hr):800,去溶剂温度:450℃;
锥孔(V):15~30。
小肽P1和P2的质谱鉴定分别如图3和图4所示,从图中结果可以看出,小肽P1的[M+H]+分子量为1000.70,[M+2H]2+分子量为500.88,与理论分子量一致。小肽P2的[M+H]+分子量为870.23,[M+2H]2+分子量为435.79,与理论分子量一致。
上述实验表明,本实施例通过化学合成,得到了SEQ ID NO.1(GASRIIGVDL)和SEQ ID NO.2(GPSGPELRG)所示序列的小肽P1或小肽P2。
实施例3
本实施例以小鼠急性胃溃疡模型验证实施例2得到小肽的功能。
1、方法
1)分组
对照组(造模组):以无水乙醇(0.1ml/10g)处理小鼠构建急性胃溃疡模型(参照文献康复新液抗实验性胃溃疡作用的研究[J].中成药,2001,23(2):122-124.DOI:10.3969/j.issn.1001-1528.),造模后给予等量生理盐水。
空白组:给予等量生理盐水。
药物处理组:以无水乙醇(0.1ml/10g)处理小鼠构建急性胃溃疡模型,造模后2h、12h、22h分别给予实施例1得到水稻多肽组合物(50mg/kg)作为组合物组,造模后2h、12h、22h分别给予小肽P1(0.5mg/kg)作为小肽P1组,造模后2h、12h、22h分别给予小肽P2(0.5mg/kg)作为小肽P2组。
每组取8只小鼠,造模24h后将小鼠猝死,取出胃组织,进行胃组织解剖观察出血点和溃疡面积的变化。
2、结果
实验结果如下表和图5所示,图5为小鼠急性胃溃疡模型验证试验胃组织切片照片。
表1.小鼠急性胃溃疡模型验证实验结果
注:溃疡指数为溃疡面积占胃黏膜组织面积的比例,溃疡抑制率为相对于对照组溃疡面积减少的比例。
从上述实验结果可以看出,小肽P1、P2展现出优异的抗消化性溃疡的能力,且与组合物组相比,采用较小的剂量(0.5mg/kg)即可达到比组合物较大剂量(50mg/kg)更优的效果。
实施例4
本实施例以大鼠慢性胃溃疡模型验证实施例2得到小肽的功能。
1、方法
1)分组
对照组(造模组):无水乙醇(1mL/200g)灌胃大鼠2h后再灌胃200mg/kg阿司匹林,阿司匹林连续灌胃4天,每天1次,构建大鼠慢性胃溃疡模型。第5天开始给与等量的生理盐水。
空白组:给予等量生理盐水。
药物处理组:无水乙醇(1mL/200g)灌胃大鼠2h后再灌胃200mg/kg阿司匹林,阿司匹林连续灌胃4天,每天1次,构建大鼠慢性胃溃疡模型。第5天开始每天分别给予多肽组合物(实施例1制备得到)50mg/kg,小肽P1(0.5mg/kg),小肽P2(0.5mg/kg),分别为多肽组合物组、小肽P1组和小肽P2组,每天给药2次,连续给药3天。第4天猝死剖检胃。
阳性药组(奥美拉唑2.6mg/kg):无水乙醇(1mL/200g)灌胃大鼠2h后再灌胃200mg/kg阿司匹林,阿司匹林连续灌胃4天,每天1次;构建大鼠慢性胃溃疡模型。第5天开始每天给予奥美拉唑(2.6mg/kg),一天给药2次。连续给药3天,第4天猝死剖检胃。
每组取10只大鼠,造模24h后将小鼠猝死,取出胃组织,一方面收集胃液测定pH值,另一方面进行胃组织解剖观察溃疡面积的变化。同时收集肝脏和肾脏组织进行病理切片观察药物是否安全。
2、结果
实验结果如下表所示。
表2.大鼠慢性胃溃疡模型验证实验结果

注:溃疡指数为溃疡面积占胃黏膜组织面积的比例,溃疡抑制率为相对于对照组溃疡面积减少的比例。
从上述实验结果可以看出,小肽P1、P2与普立米1号水稻多肽组合物均表现出与阳性药组相当的(P>0.05)抗消化性溃疡的能力。实验表明,小肽P1、P2是普立米1号水稻多肽组合物中的具有抗消化性溃疡的组成成分。同时,小肽P1、P2使用阳性药组五分之一以下的药物浓度所展现出的抗消化性溃疡能力不弱于阳性药组,说明小肽P1、P2具备低剂量高药效的特点。
实施例5
本实施例对实施例2得到小肽进行肝、肾细胞毒性观察。
1、方法
参照文献(Determination of emodin in L-02 cells and cell culture media with liquid chromatography-mass spectrometry:application to a cellular toxicokinetic study.J Pharm Biomed Anal.2012;71:71-78)方法,将人肝实质正常细胞L-02(上海细胞库)接入96孔板,分别给予0,10,20,50,100,200ug/ml小肽P1和小肽P2,刺激24h,CCK8测定细胞毒性。
参照文献(Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats.Life Sci.2021;265:118855)方法,将人肾正常细胞HK-02(上海细胞库)接入96孔板,分别给予0,10,20,50,100,200ug/ml小肽P1和小肽P2,刺激24h,CCK8测定细胞毒性。
2、结果
肝毒性实验结果如图6-7所示。由结果图可以看出,小肽P1和小肽P2对正常人肝实质细胞L-02活力无影响,无肝细胞毒性。
肾毒性实验结果如图8-9所示。由结果图可以看出,小肽P1和小肽P2对正常人肾细胞HK-02活力无影响,无肝细胞毒性。
实施例6
小肽动物安全性观察实验。
1、方法
每天灌胃大鼠小肽500mg/kg,1000mg/kg,连续灌胃14天。记录大鼠体重变化。第14天猝死大鼠,测定大鼠血液中谷丙转氨酶活力和尿素氮含量,以判断小肽有没肝损伤和肾损伤毒性。
2、结果
小肽P1和小肽P2对大鼠体重影响结果如下表所示,大鼠给药(1000mg/kg)14天后的肝、肾组织切片如图10-11所示。
表3.小肽P1(1000mg/kg)对大鼠体重的影响
表4.小肽P2(1000mg/kg)对大鼠体重的影响
表5.小肽对大鼠肝损伤检测(谷丙转氨酶活力,IU/L)
表6.小肽对大鼠肾损伤检测(血液中尿素氮含量,mg/dl,毫克/分升)
由上表可知小肽P1(Peptide1)和小肽P2(Peptide2)对大鼠体重影响较小,且无肝损伤和肾损伤毒性。
切片结果显示:肝组织内肝细胞排列尚规则。肝细胞未见明显水肿、脂肪变性及坏死,肝窦未见明确扩张。间质见极少量炎症细胞浸润,未见明确纤维组织增生。肾组织皮髓质分界尚清,其内肾小球及肾小管分布尚正常,肾小球未见明确硬化。肾小管上皮未见明显变性及坏死。未见明确肾小管管腔扩张及管型。部分间质见淤血,未见明显炎症细胞浸润及纤维组织增生。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种小肽,其特征在于,选自如SEQ ID NO.1或SEQ ID NO.2所示序列的基础小肽,或包含所述基础小肽的先导小肽,所述先导小肽可在动物体内消化酶的作用下酶解得到所述基础小肽。
  2. 权利要求1所述的小肽的制备方法,其特征在于,采用Fmoc固相合成法进行。
  3. 根据权利要求2所述的小肽的制备方法,其特征在于,包括以下步骤:将所述小肽的C端首个氨基酸通过共价键固定于固相载体上,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,得到所述小肽,将该小肽从固相载体上裂解下来,分离纯化,即得。
  4. 根据权利要求1所述的小肽的制备方法,其特征在于,所述固相载体为2-氯三苯甲基氯树脂。
  5. 权利要求1所述的小肽在制备用于预防和治疗黏膜损伤疾病的药物中的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述黏膜损伤导致疾病包括:口腔溃疡、食管溃疡、胃溃疡、肠道溃疡、生殖器黏膜炎。
  7. 根据权利要求6所述的应用,其特征在于,所述胃溃疡包括:急性胃溃疡、慢性胃溃疡。
  8. 权利要求1所述的小肽在制备用于预防和治疗胃肠道疾病的药物中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述胃肠道疾病包括:便秘、腹泻、胃部不适。
  10. 根据权利要求9所述的应用,其特征在于,所述胃部不适包括:返酸、暖气、消化不良、胃胀、胃痛、呕吐、恶心。
  11. 一种药物组合物,其特征在于,包括权利要求1所述的小肽,以及药学上可接受的辅料。
PCT/CN2023/121316 2022-09-26 2023-09-26 一种小肽及其在黏膜修复中的应用 WO2024067535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211172690 2022-09-26
CN202211172690.X 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024067535A1 true WO2024067535A1 (zh) 2024-04-04

Family

ID=90205962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121316 WO2024067535A1 (zh) 2022-09-26 2023-09-26 一种小肽及其在黏膜修复中的应用

Country Status (2)

Country Link
CN (1) CN117720618A (zh)
WO (1) WO2024067535A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917724A (zh) * 2010-03-29 2013-02-06 N·V·努特里奇亚 具有抗幽门螺旋杆菌活性的豌豆蛋白肽
WO2013092851A1 (en) * 2011-12-21 2013-06-27 Laboratorios Ordesa, S.L. Process for obtaining rice protein hydrolysates useful in the prevention and/or treatment of obesity
WO2015113481A1 (zh) * 2014-01-30 2015-08-06 陈光健 寡肽分子及其制备方法和应用
CN110128506A (zh) * 2019-05-22 2019-08-16 中国药科大学 一种寡肽及其应用
CN114652812A (zh) * 2022-04-22 2022-06-24 上海朗泰凯尔生物技术有限公司 治疗酒精性胃损伤、胃溃疡组合物及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917724A (zh) * 2010-03-29 2013-02-06 N·V·努特里奇亚 具有抗幽门螺旋杆菌活性的豌豆蛋白肽
WO2013092851A1 (en) * 2011-12-21 2013-06-27 Laboratorios Ordesa, S.L. Process for obtaining rice protein hydrolysates useful in the prevention and/or treatment of obesity
WO2015113481A1 (zh) * 2014-01-30 2015-08-06 陈光健 寡肽分子及其制备方法和应用
CN110128506A (zh) * 2019-05-22 2019-08-16 中国药科大学 一种寡肽及其应用
CN114652812A (zh) * 2022-04-22 2022-06-24 上海朗泰凯尔生物技术有限公司 治疗酒精性胃损伤、胃溃疡组合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHRISTINA NASADYUK: "Gastroprotective Oligopeptides", GASTROENTEROLOGY & HEPATOLOGY: OPEN ACCESS, vol. 3, no. 1, 6 November 2015 (2015-11-06), XP093152148, ISSN: 2373-6372, DOI: 10.15406/ghoa.2015.03.00068 *
NAIXIN LIU: "Discovery of a novel rice-derived peptide with significant anti-gout potency", FOOD & FUNCTION, R S C PUBLICATIONS, GB, vol. 11, no. 12, 17 December 2020 (2020-12-17), GB , pages 10542 - 10553, XP093152138, ISSN: 2042-6496, DOI: 10.1039/D0FO01774D *

Also Published As

Publication number Publication date
CN117720618A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
CN111704653B (zh) 靶向于纤连蛋白衍生肽的抑制剂多肽化合物及其用途
WO2023082803A1 (zh) 一种抑制肝癌细胞生长的活性多肽及其制备方法和应用
CN102058593A (zh) 艾普拉唑钠的组合药物及其制备工艺
ES2901416T3 (es) Péptido que presenta eficacia antiobesidad y antidiabetes y uso del mismo
WO2022002186A1 (zh) 用于修复黏膜损伤或皮肤创伤的多肽及其应用
WO2024067535A1 (zh) 一种小肽及其在黏膜修复中的应用
CN112641921B (zh) 一种治疗溃疡性结肠炎的蜚蠊多肽有效部位及其制备方法和用途
WO2021047648A1 (en) New peptides
KR930002011B1 (ko) 혈압 조절제
CN108676074B (zh) 一种促肝细胞生长的活性多肽
US20230310702A1 (en) Self-assembling peptides, preparation methods, self-assembling peptide formulations and use
CN110669105B (zh) 长效多肽构建及其抗急性肾损伤和糖尿病并发肾病的应用
TW202241927A (zh) 一類用於修復皮膚損傷或黏膜損傷之多肽及其應用
JP4480204B2 (ja) カワリハラタケの抗腫瘍性画分
KR102577697B1 (ko) 염증 및 상처 치료용 펩타이드
WO2023138644A1 (zh) 多肽化合物及其治疗肠炎的用途
CN109721653A (zh) 一种胰高血糖素样肽-1片段类似物及其应用
CN103012555A (zh) 具有组织保护活性的新多肽的制备方法及在治疗中的应用
CN116854774B (zh) 衍生肽、端粒长度调节剂及其在抗衰老中的应用
CN102091070A (zh) 贝雷拉唑钠的组合药物及其制备工艺
CN116813706A (zh) 一种活性肽组合物及在制备抗炎、抗凝血产品中的应用
CN101020714A (zh) 具有降血压作用的地龙蛋白质及其制备方法
CN115998840A (zh) 含多肽类物质的组合物及其制备方法、制剂和应用
CN117720664A (zh) 一种人工拟肽二聚体及其制备方法与在制备抗痛风性关节炎药物中的应用
CN116712528A (zh) 一种沙蚕活性肽组合物及在制备抗肿瘤药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870764

Country of ref document: EP

Kind code of ref document: A1