WO2024067531A1 - 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用 - Google Patents

一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024067531A1
WO2024067531A1 PCT/CN2023/121284 CN2023121284W WO2024067531A1 WO 2024067531 A1 WO2024067531 A1 WO 2024067531A1 CN 2023121284 W CN2023121284 W CN 2023121284W WO 2024067531 A1 WO2024067531 A1 WO 2024067531A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
dual
targeting compound
radionuclide
Prior art date
Application number
PCT/CN2023/121284
Other languages
English (en)
French (fr)
Inventor
陈小元
徐鹏飞
吴晓明
郭志徳
杨清宝
文雪君
Original Assignee
烟台蓝纳成生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台蓝纳成生物技术有限公司 filed Critical 烟台蓝纳成生物技术有限公司
Priority to CA3236635A priority Critical patent/CA3236635A1/en
Priority to AU2023349260A priority patent/AU2023349260A1/en
Publication of WO2024067531A1 publication Critical patent/WO2024067531A1/zh
Priority to ZA2024/03256A priority patent/ZA202403256B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to the fields of nuclear medicine and molecular imaging, and in particular to a compound, a pharmaceutical composition comprising or consisting of the compound, a kit comprising or consisting of the compound or the pharmaceutical composition, and use of the compound or the pharmaceutical composition in diagnosing or treating a disease characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 .
  • FAP fibroblast activation protein
  • Fibroblast activation protein is a membrane serine peptidase expressed on the surface of activated fibroblasts in the tumor stroma and plays an important role in the occurrence and development of tumors.
  • FAP Fibroblast activation protein
  • Previous studies have shown that FAP is generally not expressed in normal human tissues, but is selectively highly expressed on the surface of stromal fibroblasts of more than 90% of epithelial malignancies, including breast cancer, ovarian cancer, lung cancer, colorectal cancer, gastric cancer, and pancreatic cancer. In view of its widespread expression and important role in tumors, FAP has become an important target for tumor imaging and treatment.
  • Radionuclide-labeled fibroblast activation protein inhibitors (FAPI), represented by quinolinic acid derivatives, have made important progress in the field of precise tumor imaging.
  • FAPI Radionuclide-labeled fibroblast activation protein inhibitors
  • PET/CT imaging agents such as FAPI-02 and FAPI-04 have achieved more than 30 different types of tumor-specific imaging.
  • Integrin ⁇ v ⁇ 3 is a heterodimeric receptor located on the cell surface. It is rarely expressed in normal vascular endothelial and epithelial cells, but is highly expressed on the cell surface of various solid tumors such as lung cancer, osteosarcoma, neuroblastoma, breast cancer, prostate cancer, bladder cancer, glioblastoma and invasive melanoma. It is also highly expressed on the membrane of new blood vessels in all tumor tissues, suggesting that integrin ⁇ v ⁇ 3 plays a key role in tumor growth, invasion and metastasis. Peptides containing the arginine-glycine-aspartic acid (RGD) sequence can specifically bind to integrin ⁇ v ⁇ 3.
  • RGD arginine-glycine-aspartic acid
  • RGD peptides labeled with various radionuclides have been successfully used in imaging studies of various tumor-bearing animal models.
  • 18 F-Galacto-RGD has become the first non-invasive integrin ⁇ v ⁇ 3 targeted tumor imaging agent to enter clinical trials. It has been successfully used in PET diagnosis of tumor patients and has shown good biological distribution and specific target recognition in clinical trials of glioblastoma.
  • the primary purpose of the present invention is to develop a new compound structure that can synergistically target FAP targets and integrin ⁇ v ⁇ 3 targets in tumors, thereby increasing the number and utilization efficiency of effective receptors in tumors, thereby improving tumor uptake efficiency and positive tumor detection efficiency and/or treatment efficiency.
  • Another object of the present invention is to provide a method for preparing the novel compound, so as to synthesize the compound that can synergistically target the FAP target and the integrin ⁇ v ⁇ 3 target in tumors through a convenient and readily available synthetic route.
  • Another object of the present invention is to provide use of the compound in diagnosing or treating a disease characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 .
  • FAP fibroblast activation protein
  • the present invention provides a dual targeting compound, the structure of which contains specific binding partners for both FAP and integrin ⁇ v ⁇ 3 .
  • the dual-targeting compound has a structure (the structure is referred to as "FAPI-RGD" structure in the present invention), which can simultaneously target FAP and integrin ⁇ v ⁇ 3 .
  • the structure of the dual-targeting compound is shown in the following formula (I) or formula (II):
  • R 1 , R 2 , R 3 , and R 4 may be independently selected from H or F, and said R 1 , R 2 , R 3 , and R 4 may be the same or different.
  • Z, Q, V and U are the same or different linking structures, independently selected from -NH-, Or a replacement structure based on -(CH 2 ) n -.
  • each -CH2- is individually replaced with or without -O-, -NH-, -(CO)-, -NH-(CO)-, -CH( NH2 )- or -(CO)-NH-, provided that no two adjacent -CH2- groups are replaced.
  • n is an integer selected from 0 to 30 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30).
  • A is a ligand structure that specifically binds to integrin ⁇ v ⁇ 3 , and its structure is shown in formula (III) or formula (IV):
  • R 5 in the formula (III) is selected from H or OH.
  • R 5 and R 6 in the formula (IV) are the same or different and are independently selected from H or OH.
  • M and P in formula (IV) are replacement structures based on -( CH2 )n-, wherein each -CH2- is individually replaced with or without -O-, -NH-, -(CO)-, -NH-(CO)-, -CH( NH2 )- or -(CO)-NH-, provided that no two adjacent -CH2- groups are replaced; and n is an integer selected from 0 to 30 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30).
  • Z, Q, V, U, M and/or P described in any one of the above items is a replacement structure based on -(CH 2 ) n -, it can be independently selected from the following structures: -NH-CH 2 -(CH 2 -O-CH 2 ) 2 -CH 2 -(CO)-, -NH-CH 2 -(CH 2 -O-CH 2 ) 3 -CH 2 -(CO)-, -NH-CH 2 -(CH 2 -O-CH 2 ) 4 -CH 2 -(CO)-, -(CO)-NH- or -(CH 2 ) 0 - (i.e., a "null" structure).
  • R 1 and R 2 in the structure of formula (I) are both H (i.e., R 1 is H and R 2 is H); in other preferred embodiments, R 1 and R 2 in the structure of formula (I) are both F (i.e., R 1 is F and R 2 is F); in other preferred embodiments, one of R 1 and R 2 in the structure of formula (I) is H and the other is F (i.e., R 1 is H and R 2 is F; or R 1 is F and R 2 is H).
  • R 1 , R 2 , R 3 , and R 4 in the structure of formula (II) are all H; in other preferred embodiments, R 1 , R 2 , R 3 , and R 4 in the structure of formula (II) are all F; in other preferred embodiments, R 1 and R 2 in the structure of formula (II) are all H; R 3 and R 4 are all F; in other preferred embodiments, R 1 and R 2 in the structure of formula (II) are all H; one of R 3 and R 4 is H and the other is F (i.e., R 3 is H and R 4 is F; or R 3 is F and R 4 is H); in other preferred embodiments, R 1 and R 2 in the structure of formula (II) are all F; one of R 3 and R 4 is H and the other is F (i.e., R 3 is H and R 4 is F; or R 3 is F and R 4 is H).
  • R 5 in the formula (III) is H; in other preferred embodiments, R 5 in the formula (III) is OH.
  • R 5 and R 6 in the formula (IV) are both H (i.e., R 5 is H and R 6 is H); in other preferred embodiments, R 5 and R 6 in the formula (IV) are both F (i.e., R 5 is F and R 6 is F); in other preferred embodiments, R 5 in the formula (IV) is H and R 6 is F; in other preferred embodiments, R 5 in the formula (IV) is F and R6 is H.
  • Z in the above formula (I) or formula (II) is selected from -NH- CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 3 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 4 - CH2- (CO)-, -(CO)-NH- or -(CH 2 ) 0 -; more preferably, Z in the above formula (I) or (II) is selected from -NH-CH 2 -(CH 2 -O-CH 2 ) 2 -CH 2 -(CO)-, -NH-CH 2 -(CH 2 -O-CH 2 ) 3 -CH 2 -(CO)-, -NH-CH 2 -(CH 2 -O-CH 2 ) 4 -CH 2 -(CO)-, -(CO)-NH- or -(CH 2 )
  • Q in the above formula (I) or formula (II) is selected from More preferably, Q in the above formula (I) or formula (II) is selected from
  • V in the above formula (I) or formula (II) is selected from -NH- CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 3 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 4 - CH2- (CO)-, -( CH2 ) 0- or -NH-(CO)-.
  • U in the above formula (I) or formula (II) is selected from -NH-, -NH- CH2- .
  • Z 1 in the above formula (II) is
  • M in the above formula (IV) is selected from -NH- CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO ) -, -NH- CH2- (CH2-O- CH2 ) 3 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 4 - CH2- (CO)-, -( CH2 ) 0- ; more preferably, M in the above formula (IV) is selected from -NH- CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 4 - CH2- (CO)-.
  • P in the above formula (IV) is selected from -NH- CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO ) -, -NH- CH2- (CH2-O- CH2 ) 3 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 4 - CH2- (CO)-, -( CH2 ) 0- ; more preferably, P in the above formula (IV) is selected from -NH- CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO)-, -NH- CH2- ( CH2 -O- CH2 ) 4 - CH2- (CO)-.
  • the dual targeting compound is selected from the following structures:
  • the present invention further provides a compound that can be labeled with a radionuclide based on any of the above dual-targeting compounds, wherein the compound that can be labeled with a radionuclide is formed by connecting a radionuclide chelating group to an amino group in any structure of Z, Q or V in any of the above formulas (I) or (II), and the general formula of the compound that can be labeled with a radionuclide is shown in the following formula (V) or (VI):
  • the definitions of A, Z, Q, V, U, R 1 and R 2 in formula (V) are consistent with the definitions of A, Z, Q, V, U, R 1 and R 2 in the aforementioned formula (I); the definitions of A, Z, Q, V, U, Z 1 , R 1 , R 2 , R 3 and R 4 in formula (VI) are consistent with the definitions of A, Z, Q, V, U, Z 1 , R 1 , R 2 , R 3 and R 4 in the aforementioned formula (II).
  • the W is a fragment with a nuclide chelating group, and its structure is any one of 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid (DOTA), ethylenediaminetetraacetic acid (EDTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), triethylenetetraamine (TETA), iminodiacetic acid, diethylenetriamine-N,N,N',N',N"-pentaacetic acid (DTPA), bis-(carboxymethylimidazole)glycine or 6-hydrazinopyridine-3-carboxylic acid (HYNIC), or any one of the following structures:
  • DOTA 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • NOTA 1,4,7-triazacyclon
  • D in any of the above items is a replacement structure based on -( CH2 ) p- , and each -CH2- is individually replaced with or without -O-, -NH-, -(CO)-, -NH-(CO)-, -CH( NH2 )- or -(CO)-NH-, the condition for the replacement is that no two adjacent -CH2- groups are replaced, and p is an integer selected from 0 to 30 (such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30).
  • D described in any one of the above is selected from -(CO)-CH2-CH2-(CO)-, -(CO) -CH2- ( CH2 -O- CH2 ) 2 - CH2- (CO)- or -( CH2 ) 0- . (See structures V-38 to V-40).
  • the W is selected from the following structures:
  • the W is selected from the following structures:
  • the compound that can be labeled with a radionuclide is selected from the following structures:
  • the present invention also provides a radionuclide-labeled dual-targeted compound based on any of the above-mentioned compounds that can be labeled with radionuclides, wherein the radionuclide-labeled dual-targeted compound is formed by chelating the radionuclide with the W group in the compound represented by formula (V) or formula (VI) as described in any of the above-mentioned compounds.
  • the radioactive nuclide can be selected from an isotope emitting ⁇ rays, an isotope emitting ⁇ rays, an isotope emitting ⁇ rays, an isotope emitting Auger electrons, or an isotope emitting X rays.
  • the radionuclide is selected from 18 F, 51 Cr, 67 Ga, 68 Ga, 111 In, 99m Tc, 186 Re, 188 Re, 139 La, 140 La, 175 Yb, 153 Sm, 166 Ho, 86 Y, 90 Y, 149 Pm, 165 Dy, 169 Er, 177 Lu, 47 Sc, 142 Pr, 159 Gd, 212 Bi, 213 Bi, 72 As, 72 Se, 97 Ru, 109 Pd, 105 Rh, 101m Rh, 119 Sb, 128 Ba, 123 I, 124 I, 131 I, 197 Hg, 211 At, 151 Eu, 153 Eu, 169 Any one of Eu, 201 Tl, 203 Pb, 212 Pb, 64 Cu, 67 Cu, 198 Au, 225 Ac, 227 Th, 89 Zr or 199 Ag.
  • the radionuclide is any one of 18 F, 64 Cu, 68 Ga, 89 Zr, 90 Y, 111 In, 99m Tc, 177 Lu, 188 Re or 225 Ac.
  • the radionuclide is 18 F; in other specific embodiments, the radionuclide is 64 Cu; in other specific embodiments, the radionuclide is 68 Ga; in other specific embodiments, the radionuclide is 89 Zr; in other specific embodiments, the radionuclide is 90 Y; in other specific embodiments, the radionuclide is 111 In; in other specific embodiments, the radionuclide is 99m Tc; in other specific embodiments, the radionuclide is 177 Lu; in other specific embodiments, the radionuclide is 188 Re; in other specific embodiments, the radionuclide is 225 Ac.
  • the present invention also provides any of the above dual-targeting compounds, compounds that can be labeled with radionuclides, and pharmaceutically acceptable tautomers, racemates, hydrates, solvates or salts of the dual-targeting compounds labeled with radionuclides.
  • the present invention also provides a method for preparing a targeting compound represented by any one of the above formulas (V) and a radionuclide-labeled compound thereof, comprising:
  • the carboxyl group of 6-hydroxyquinoline-4-carboxylic acid first undergoes an amide condensation reaction with the amino group of glycine tert-butyl ester; then the Boc-protected piperazine group is connected to the hydroxyl position of the amide condensation product through an alkyl chain; the Boc and tert-butyl protecting groups are removed under acidic conditions, and then the Boc protecting group is introduced into the piperazine ring; then an amide condensation reaction is carried out with (S)-pyrrolidine-2-carbonitrile hydrochloride or (S)-4,4-difluoropyrrolidine-2-carbonitrile hydrochloride; after removing the Boc protecting group, a condensation reaction is carried out with N-Boc-3-[2-(2-aminoethoxy)ethoxy]propionic acid; then the Boc protecting group is removed, and the product is reacted with propionic acid maleimide and protected cysteine in sequence, or with protected glutamic acid or lysine in sequence; finally
  • radionuclide chelator selected from any one of hydroxysuccinimide-tetraazacyclododecane-N,N',N,N'-tetraacetic acid (DOTA-NHS), NOTA-succinimide ester (NOTA-NHS), succinimide active ester of iminodiacetic acid, succinimide active ester of diethylenetriamine-N,N,N',N',N"-pentaacetic acid (DTPA-NHS), bis-(carboxymethylimidazole)glycine or succinimide active ester of 6-hydrazinopyridine-3-carboxylic acid (HYNIC-NHS), to obtain a part of the compound represented by formula (V) that can be labeled with radionuclide;
  • DOTA-NHS hydroxysuccinimide-tetraazacyclododecane-N,N',N,N'-tetraacetic acid
  • NOTA-NHS NOTA-succ
  • the compound that can be labeled with a radionuclide obtained in 2 is reacted with a compound containing a radionuclide according to an existing wet labeling method or a freeze-drying labeling method to prepare a radionuclide-labeled targeting compound of the present invention.
  • the present invention further provides a pharmaceutical composition, comprising any of the above-mentioned dual-targeting compounds, compounds that can be labeled with radionuclides, dual-targeting compounds labeled with radionuclides, or any pharmaceutically acceptable combinations thereof.
  • the invention relates to a dual-targeting compound of any one of the above items, a compound that can be labeled with a radionuclide, a dual-targeting compound labeled with a radionuclide, or any pharmaceutically acceptable tautomer, racemate, hydrate, solvate or salt thereof and any pharmaceutically acceptable carrier and/or excipient.
  • the present invention further provides the use of any of the above dual-targeting compounds, compounds that can be labeled with radionuclides, and dual-targeting compounds labeled with radionuclides in the preparation of drugs for diagnosing or treating diseases characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 in animals or human individuals.
  • FAP fibroblast activation protein
  • the present invention also provides a method for diagnosing or treating a disease characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 in an animal or human individual using any of the dual-targeting compounds, compounds that can be labeled with radionuclides, and dual-targeting compounds labeled with radionuclides described above.
  • FAP fibroblast activation protein
  • the diseases characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 described in any of the above items include but are not limited to: cancer, chronic inflammation, atherosclerosis, fibrosis, tissue remodeling and scar disease; preferably, the cancer is further selected from breast cancer, pancreatic cancer, small intestine cancer, colon cancer, rectal cancer, lung cancer, head and neck cancer, ovarian cancer, hepatocellular carcinoma, esophageal cancer, hypopharyngeal cancer, nasopharyngeal cancer, laryngeal cancer, myeloma cells, bladder cancer, cholangiocarcinoma, clear cell renal carcinoma, neuroendocrine tumors, carcinogenic osteomalacia, sarcoma, CUP (cancer of unknown primary), thymic carcinoma, glioma, glioma, astrocytoma, cervical cancer or prostate cancer.
  • FAP fibroblast activation protein
  • the present invention further provides a kit, which comprises or consists of a targeted compound represented by formula (I) or (II) of the present invention, a compound represented by formula (V) or (VI), a radionuclide-labeled targeted compound of the present invention, or a pharmaceutical composition of the present invention, and instructions for diagnosing a disease.
  • a kit which comprises or consists of a targeted compound represented by formula (I) or (II) of the present invention, a compound represented by formula (V) or (VI), a radionuclide-labeled targeted compound of the present invention, or a pharmaceutical composition of the present invention, and instructions for diagnosing a disease.
  • the FAPI-RGD compound structure provided by the present invention can synergistically target the FAP target and the integrin ⁇ v ⁇ 3 target in the tumor, and can increase the number and utilization efficiency of effective receptors in the tumor.
  • the radiolabeled compound further provided based on the structure is expected to be used in the diagnosis or treatment of diseases characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 .
  • FAP fibroblast activation protein
  • FIG1 is a mass spectrum of compound 2 in Example 1 of the present invention.
  • FIG. 2 is the H NMR spectrum of compound 2 in Example 1 of the present invention.
  • FIG3 is the NMR carbon spectrum of compound 2 in Example 1 of the present invention.
  • FIG4 is a mass spectrum of compound 3 in Example 1 of the present invention.
  • FIG5 is a hydrogen NMR spectrum of compound 3 in Example 1 of the present invention.
  • FIG6 is a mass spectrum of compound 4 in Example 1 of the present invention.
  • FIG. 7 is a hydrogen NMR spectrum of compound 4 in Example 1 of the present invention.
  • FIG8 is the NMR carbon spectrum of compound 4 in Example 1 of the present invention.
  • FIG9 is a mass spectrum of compound 7 in Example 1 of the present invention.
  • FIG10 is the H NMR spectrum of compound 7 in Example 1 of the present invention.
  • FIG11 is the NMR carbon spectrum of compound 7 in Example 1 of the present invention.
  • FIG12 is a mass spectrum of compound 9 in Example 1 of the present invention.
  • FIG13 is a mass spectrum of compound 10 in Example 1 of the present invention.
  • FIG14 is a mass spectrum of compound 11 in Example 1 of the present invention.
  • FIG15 is a mass spectrum of the compound of formula (V-1) in Example 1 of the present invention.
  • FIG16 is a mass spectrum of intermediate M in Example 2 of the present invention.
  • FIG. 17 is a mass spectrum of intermediate O in Example 2 of the present invention.
  • FIG18 is a mass spectrum of intermediate B in Example 2 of the present invention.
  • FIG19 is a mass spectrum of intermediate C in Example 2 of the present invention.
  • FIG20 is a mass spectrum of intermediate D in Example 2 of the present invention.
  • FIG21 is a mass spectrum of intermediate E in Example 2 of the present invention.
  • FIG. 22 is a mass spectrum of intermediate F in Example 2 of the present invention.
  • FIG23 is a mass spectrum of intermediate G in Example 2 of the present invention.
  • FIG. 24 is a mass spectrum of intermediate H in Example 2 of the present invention.
  • Figure 25 is a mass spectrum of intermediate I in Example 2 of the present invention.
  • FIG26 is a mass spectrum of intermediate J in Example 2 of the present invention.
  • Figure 27 is a mass spectrum of intermediate Q in Example 2 of the present invention.
  • Figure 28 is a mass spectrum of the compound of formula (V-14) in Example 2 of the present invention.
  • FIG29 is a mass spectrum of intermediate K in Example 3 of the present invention.
  • Figure 30 is the mass spectrum of the compound of formula (V-23) in Example 3 of the present invention.
  • FIG31 is a mass spectrum of intermediate B1 in Example 4 of the present invention.
  • FIG32 is a mass spectrum of intermediate D1 in Example 4 of the present invention.
  • FIG33 is a mass spectrum of intermediate G1 in Example 4 of the present invention.
  • FIG34 is a mass spectrum of intermediate H1 in Example 4 of the present invention.
  • FIG35 is a mass spectrum of intermediate I1 in Example 4 of the present invention.
  • FIG36 is a mass spectrum of intermediate J1 in Example 4 of the present invention.
  • Figure 37 is the mass spectrum of the compound of formula (V-25) in Example 4 of the present invention.
  • FIG38 is a mass spectrum of intermediate H3 in Example 6 of the present invention.
  • Figure 39 is a mass spectrum of intermediate I2 in Example 6 of the present invention.
  • FIG40 is a mass spectrum of intermediate O1 in Example 6 of the present invention.
  • FIG41 is a mass spectrum of intermediate P1 in Example 6 of the present invention.
  • Figure 42 is the mass spectrum of the compound of formula (V-30) in Example 6 of the present invention.
  • Figure 43 is a mass spectrum of intermediate N2 in Example 7 of the present invention.
  • Figure 44 is a mass spectrum of intermediate F3 in Example 7 of the present invention.
  • Figure 45 is the mass spectrum of the compound of formula (V-35) in Example 7 of the present invention.
  • FIG. 46 is a graph showing the HPLC quality control results of the 68 Ga-FAPI-RGD (V-1) compound of the present invention.
  • FIG. 47 is a diagram showing the MicroPET imaging results of the 68 Ga-FAPI-RGD (V-1) compound of the present invention in HepG2-FAP tumor-bearing mice.
  • FIG. 48 is a diagram showing the MicroPET imaging results of the 68 Ga-FAPI-RGD (V-1) compound of the present invention co-injected with FAPI-02 in HepG2-FAP tumor-bearing mice.
  • FIG. 49 is a diagram showing the MicroPET imaging results of the 68 Ga-FAPI-RGD (V-1) compound of the present invention co-injected with RGD in HepG2-FAP tumor-bearing mice.
  • Figure 50 is a statistical graph of the uptake results of tumors and important organs 30 minutes after co-injection of the 68Ga -FAPI-RGD (V-1) compound of the present invention with C (RGDfK) or FAPI-02 (the horizontal axis in the figure represents different organs, and the bar graphs from left to right in each organ correspond to the uptake of the 68Ga -labeled FAPI-RGD complex, the uptake of 68Ga -FAPI-RGD after co-injection of FAPI-02 to block FAP protein, and the uptake of 68Ga -FAPI-RGD after co-injection of RGD to block integrin).
  • FIG. 51 is a graph showing the stability test results of the 68 Ga-FAPI-RGD (V-25) compound of the present invention in physiological saline.
  • FIG. 52 is a graph showing the results of the cell uptake and cell binding experiments of the 68 Ga-FAPI-RGD (V-25) compound of the present invention.
  • FIG. 53 is a diagram showing the MicroPET imaging results of the 68 Ga-FAPI-RGD (V-25) compound and monomers 68 Ga-FAPI-02 and 68 Ga-C (RGDfK) in the present invention in HT1080-FAP tumor-bearing mice.
  • FIG. 54 is a statistical diagram showing the MicroPET imaging results and the uptake results of tumors and important organs 30 minutes after the co-injection of the 68 Ga-FAPI-RGD (V-25) compound of the present invention and C (RGDfK) or/and FAPI-02.
  • FIG55 is a diagram showing the PET/CT imaging results of the 68 Ga-FAPI-RGD (V-25) compound, 18F-FDG and 68 Ga-FAPI46 of the present invention in patients with pancreatic cancer, non-small cell lung cancer, small cell lung cancer and nasopharyngeal cancer 3 hours after intravenous injection.
  • FIG56 is a mass spectrum of intermediate G2 of the present invention.
  • FIG57 is a mass spectrum of intermediate N1 of the present invention.
  • FIG58 is a mass spectrum of intermediate P of the present invention.
  • Figure 59 is a mass spectrum of the compound of formula (V-26) of the present invention.
  • FIG. 60 is a SPECT imaging diagram of the 177 Lu radioactively labeled compound V-40 (ie, 177 Lu-FAPI-RGD (V-40) compound) provided by the present invention.
  • the synthetic route is as follows:
  • compound 4 (0.52 g, 1.0 mmol) was dissolved in a mixed solution of 10 mL of dichloromethane and trifluoroacetic acid (volume ratio 9:1), and the system was heated to room temperature for 2 h. After the reaction, the solvent was distilled off under reduced pressure and dissolved in 10 mL of N,N-dimethylformamide to obtain compound 5 for later use.
  • FIG. 13 is a mass spectrum of compound 10.
  • the synthetic route is as follows:
  • the intermediate G was dissolved in 10 mL of acetonitrile, p-toluenesulfonic acid monohydrate (2.87 g, 15.1 mmol) was added, and the reaction was carried out at 65°C and monitored by HPLC. After the reaction was completed, the system was dried and column purified to obtain the intermediate H.
  • the theoretical molecular weight was 996.4193, the measured molecular weight was 996.42947, and the mass spectrum results were consistent with the target product.
  • Figure 24 is the mass spectrum of the intermediate H.
  • the synthetic route is as follows:
  • the intermediate J prepared according to the method of Example 2 was dissolved in 30 mL of DMF, and DIPEA (0.97 g, 7.5 mmol) and 2 eq NOTA-Bis-TBU-NHS Ester (calculated according to the intermediate J) were added.
  • the reaction was carried out in an external bath at 25°C and monitored by HPLC. After the reaction was completed, the system was dried and sent to the preparation to obtain the intermediate K with a two-step yield of 25.1%.
  • the theoretical molecular weight was 1756.9112
  • the measured molecular weight was 1756.92282
  • the mass spectrometry results were consistent with the target.
  • Figure 29 is the mass spectrum of the intermediate K.
  • the intermediate K was dissolved in 30 mL of TFA, reacted in an external bath at 25°C, and monitored by HPLC. After the reaction was completed, 200 mL of MTBE was added to the system for crystallization, and the mixture was allowed to stand. The supernatant was sucked out, and the remaining system was concentrated to dryness, and MTBE was used to shrink the mixture until no obvious TFA residue was left.
  • the compound of formula (V-23) was prepared and purified, and the yield was 14.2%.
  • the theoretical molecular weight was 1644.7860, the measured molecular weight was 1644.8104, and the mass spectrum results were consistent with the target compound.
  • Figure 30 is a mass spectrum of the compound of formula (V-23).
  • the synthetic route is as follows:
  • intermediate B1 p-toluenesulfonic acid monohydrate (1.61 g, 8.5 mmol) and 20 mL of acetonitrile to a reaction flask, react at 65 ° C for 1 h, and evaporate to dryness under reduced pressure at 40 ° C.
  • 20 mL of DMF and DIPEA (1.83 g, 14.2 mmol) stir at 25 ° C, reaction number (1), that is, deprotection of intermediate B1 to obtain intermediate C1.
  • FIG32 is a mass spectrum of intermediate D1.
  • FIG33 is a mass spectrum of intermediate G1.
  • the synthetic route is as follows:
  • the theoretical molecular weight of the target compound is 1566.72893, and the molecular weight indicated by LC-MS is 1566.74480, and the mass spectrometry result is consistent with the target compound.
  • Figure 57 is the mass spectrum of intermediate N1.
  • the synthetic route is as follows:
  • Fmoc-PEG4-CH 2 CH 2 COOH i.e., compound Cmpd1, 1.46 g, 3.0 mmol
  • DCC 0.68 g, 3.3 mmol
  • HOSu 0.38 g, 3.3 mmol
  • the mixture was filtered, and TEA (0.90 g, 9.0 mmol) was added to the filtrate.
  • Cyclo (RGDfK) i.e., compound Cmpd2, 2.23 g, 3.6 mmol was added, and the mixture was reacted at room temperature for 3 hours.
  • the reaction mixture was spin-dried and dissolved in 25% DEA/THF.
  • Boc-Glu-OH (0.4 g, 2.0 mmol) was dissolved in DMF, and then DCC (0.45 g, 2.2 mmol) and HOSu (0.25 g, 2.2 mmol) were added, and the mixture was reacted at room temperature for 6 hours. The mixture was filtered, and TEA (0.60 g, 6.0 mmol) was added to the filtrate. Cyclo (RGDfK) -PEG 4 (i.e., intermediate Cmpd3, 2.61 g, 2.4 mmol) was added, and the mixture was reacted at room temperature for 3 hours. The reaction solution was spin-dried and then dissolved in TFA.
  • the mixture was reacted at room temperature for 10 minutes, and the mixture was added to 10 times the volume of ether. A large amount of solid was precipitated, and the crude product 2 (RGDfK) -PEG4-Glu was filtered to obtain the purified (RGDfK) 2 -PEG 4 -Glu.
  • the eluting solvent was (liquid A: 0.1% TFA in H2O; liquid B: acetonitrile).
  • the purified (RGDfK) 2 -PEG 4 -Glu was adjusted to a neutral pH with TEA, and then subjected to a reverse phase preparation liquid phase, and freeze-dried to obtain the finished product (RGDfK) 2 -PEG 4 -Glu.
  • the intermediate O1 was dissolved in 5 mL of DMF, HATU (0.076 g, 0.2 mmol) was added, and the mixture was stirred at room temperature for 1 h to obtain system 1; DIPEA (0.090 g, 0.7 mmol) and (RGDfK) 2 -PEG 4 -Glu (0.24 g, 0.13 mmol) were dissolved in 5 mL of DMSO to obtain system 2; after system 1 was added to system 2, the mixture was stirred at 28°C and monitored by HPLC.
  • the intermediate P1 was dissolved in 5 mL of TFA, reacted in an external bath at 25°C, and monitored by HPLC. After the reaction was completed, 25 mL of MTBE was added to the system for crystallization, and the system was allowed to stand. The supernatant was aspirated, and the remaining system was banded with MTBE until no obvious TFA residue was left. The system was sent for preparation and purification to obtain V-30 with a yield of 32.13%. The theoretical molecular weight was 2759.3919, the measured molecular weight was 2759.40972, and the mass spectrometry results were consistent with the target product.
  • Figure 42 is the mass spectrum of V-30.
  • the synthetic route is as follows:
  • the intermediate F3 was dissolved in 20 mL of TFA, reacted in an external bath at 25°C, and monitored by HPLC. After the reaction was completed, 50 mL of MTBE was added to the system for crystallization, and the system was allowed to stand. The supernatant was poured out, and the remaining system was shrunk with MTBE until there was no obvious TFA residue in the system, and then sent for preparation and purification to obtain the compound of formula (V-35) with a yield of 2.89%.
  • the theoretical molecular weight was 2658.3442, the measured molecular weight was 2658.36508, and the mass spectrum results were consistent with the target product.
  • Figure 45 is a mass spectrum of the compound of formula (V-35).
  • the synthetic route is as follows:
  • V-22 compound, (V-27) compound, (V-28) compound, (V-29) compound, (V-31) compound, (V-32) compound, (V-33) compound, (V-34) compound, (V-36) compound, (V-37) compound, (V-38) compound, (V-39) compound, (VI-1) compound, (VI-2) compound, (VI-3) compound, (VI-4) compound, (VI-5) compound, (VI-6) compound, (VI-7) compound, and (VI-8) compound.
  • Example 134 General method for preparing radionuclide labels
  • This example uses the compound of formula (V-1) as an example to illustrate the general preparation method (wet method) of radioactive nuclide label (using Ga-68 as an example): about 18.5-1850 megabecquerel (MBq) 68 GaCl 3 hydrochloric acid solution (eluted from a germanium gallium generator) is added to a centrifuge tube containing 0.5 mL of acetic acid-acetate solution (1.0 g/L) of the compound of formula (V-1) prepared in Example 1, and the mixture is placed at 37°C for 20 minutes. Take a C 18 separation column and first use Slowly elute with 10 mL of anhydrous ethanol, and then elute with 10 mL of water.
  • This example uses the compound of formula (V-1) as an example to illustrate the general preparation method (lyophilization method) of the radionuclide label (using Ga-68 as an example): about 18.5 to 1850 megabecquerel (MBq) 68 GaCl 3 hydrochloric acid solution (eluted from a germanium gallium generator) is added to the lyophilized drug box containing the compound of formula (V-1), mixed and reacted at 37°C for 20 minutes. Take a C18 separation column, first slowly elute with 10 mL of anhydrous ethanol, and then elute with 10 mL of water.
  • the above-mentioned general labeling method is used to label other radionuclide-labeled compounds provided by the present invention, such as using 68 Ga to label the compound of formula (V-2), the compound of formula (V-3), the compound of formula (V-4), the compound of formula (V-5), the compound of formula (V-6), the compound of formula (V-7), the compound of formula (V-8), the compound of formula (V-9), the compound of formula (V-10), the compound of formula (V-11), the compound of formula (V-12), the compound of formula (V-13), the compound of formula (V-14), the compound of formula (V-16), the compound of formula (V-17), the compound of formula (V-18), the compound of formula (V-19), the compound of formula (V-20), the compound of formula (V-21), the compound of formula (V-22), the compound of formula (V-23), the compound of formula (V-25), the compound of formula (V-26) Compound, compound of formula (V-27), compound of formula (V-28), compound of formula (V-29), compound
  • radioactive nuclide-labeled compounds provided by the present invention such as the compound of formula (V-1), the compound of formula (V-2), the compound of formula (V-3), the compound of formula (V-4), the compound of formula (V-5), the compound of formula (V-6), the compound of formula (V-7), the compound of formula (V-8), the compound of formula (V-9), the compound of formula (V-10), the compound of formula (V-11), the compound of formula (V-12), the compound of formula (V-13), the compound of formula (V-14), the compound of formula (V-16), the compound of formula (V-17), the compound of formula (V-18), the compound of formula (V-19), the compound of formula (V-20), the compound of formula (V-21), the compound of formula (V-22) Compound (V-23), compound (V-25), compound (V-26), compound (V-27), compound (V-28), compound (V-29), compound (V-30), compound (V-31), compound (V-32), compound (V-33), compound (V-34),
  • the radioactive nuclide-labeled compound provided by the present invention can also be labeled with reference to other labeling methods provided by the prior art (including but not limited to the method provided by the present invention), and the radioactive nuclides include but are not limited to: 18 F, 51 Cr, 64 Cu, 67 Cu, 67 Ga, 68 Ga, 89 Zr, 111 In, 99 mTc, 186 Re, 188 Re, 139 La, 140 La, 175 Yb, 153 Sm, 166 Ho, 86 Y, 90 Y, 149 Pm, 165 Dy, 169 Er, 177 Lu, 47 Sc, 142 Pr, 159 Gd, 212 Bi, 213 Bi, 72 As, 72 Se, 97 Ru, 109 Pd, 105 Rh, 101 mRh, 128 Ba, 123 I , 124 I, 131 I, 197 Hg, 211 At, 151 Eu, 153 Eu, 169 Eu, 201 Tl, 203 Pb, 212 Pb,
  • the HPLC system is as follows: SHIMADZULC-20A; C18 column (YMC, 3 ⁇ m, 4.6 ⁇ 150mm) is used for analysis.
  • the detection wavelength is 254nm
  • the flow rate is 1mL/min
  • the elution gradient is: 0-3 minutes: 10% acetonitrile 0 and 90% water (50mM ammonium acetate) remain unchanged; 3-16 minutes: increase to 90% acetonitrile and 10% water (50mM ammonium acetate); 16-18min: maintain 90% acetonitrile and 10% water (50mM ammonium acetate); 18-20min: reduce to 10% acetonitrile and 90% water (50mM ammonium acetate); 20-22min: maintain 10% acetonitrile and 90% water (50mM ammonium acetate),
  • the HPLC quality control results of 68 Ga-FAPI-RGD (V-1) are shown in Figure 46.
  • test results are shown in FIG. 51 , which show that after incubation in physiological saline, the 68 Ga-FAPI-RGD (V-25) compound showed no obvious decomposition, and the radiochemical purity was greater than 99%, indicating that the 68 Ga-FAPI-RGD (V-25) prepared by the present invention has excellent stability.
  • the cell uptake experiment of 68 Ga-FAPI-RGD (V-25) compound was carried out in HT1080-FAP tumor cells, and the test results are shown in Part A of Figure 52.
  • the results showed that 68 Ga-FAPI-RGD (V-25) had rapid cell uptake, and the uptake reached a maximum at 30 minutes of incubation and remained at a similar uptake level for up to 2 hours.
  • this experiment also used "FAPI-02", “C(RGDfK)” and “FAPI-RGD” for blocking experiments, and the test results are shown in Part A of Figure 52.
  • the results showed that the cellular uptake of 68 Ga-FAPI-RGD(V-25) could be partially inhibited by C(RGDfK) or FAPI-02, and could be completely blocked by FAPI-RGD (see Part A of Figure 52).
  • mice randomly divided into groups were injected with 7.4 MBq of 68 Ga-FAPI-RGD (V-25) compound, 68 Ga-FAPI-02 and 68 Ga-C (RGDfK) via tail vein, and then, under isoflurane anesthesia, MicroPET imaging was performed at 0 to 240 min after administration in the 68 Ga-FAPI-RGD (V-25) group, and at 0 to 120 min after administration in the other groups, respectively. The results are shown in Figure 53.
  • the three uptakes in each group correspond to 0.5h, 1h and 2h after injection from left to right.
  • FIG53 shows that at the time point of image acquisition, the tumor is clearly visible, and the tumor uptake of 68 Ga-FAPI-RGD (V-25) is higher than that of 68 Ga-FAPI-02 and 68 Ga-C (RGDfK).
  • the four images of A correspond from left to right to the images obtained by single injection of 68 Ga-FAPI-RGD (V-25), co-injection of 68 Ga-FAPI-RGD (V-25) and C (RGDfK), co-injection of 68 Ga-FAPI-RGD (V-25) and FAPI-02, and co-injection of 68 Ga-FAPI-RGD (V-25) and C (RGDfK) and FAPI-02; B and C respectively reflect the uptake of 68 Ga-FAPI-RGD (V-25) and target/non-target ratios of various organs or tissues (blood, liver, kidney, tumor and muscle) of mice after injection with the above four different injection methods.
  • each organ or tissue of B and C correspond from left to right to the four injection methods in A.
  • co-injection of RGD or FAPI-02 with 68 Ga-FAPI-RGD (V-25) can reduce the tumor's uptake of 68 Ga-FAPI-RGD (V-25), and co-injection of RGD+FAPI-02 with 68 Ga-FAPI-RGD (V-25) further reduces the tumor's uptake of 68 Ga-FAPI-RGD (V-25).
  • Blocking experiments confirm that 68 Ga-FAPI-RGD (V-25) can achieve tumor-specific targeting in vivo by binding to integrins and FAP proteins.
  • the subjects were divided into one patient with pancreatic cancer, one patient with non-small cell lung cancer, one patient with small cell lung cancer, and one patient with nasopharyngeal carcinoma.
  • the dose of intravenous 68 Ga-FAPI-RGD (V-25) (1.8-2.2 MBq [0.05-0.06 mCi]/kg) was calculated according to the weight of the subjects.
  • Three hours after intravenous injection data were acquired using a hybrid PET/CT scanner (Discovery MI, GE Healthcare, Milwaukee, WI, USA), and the imaging results are shown in Figure 55.
  • the maximum standard uptake value (SUV max ) was automatically calculated using the region of interest (ROI) drawn on the transaxial image.
  • the SUV max of dual-targeted 68 Ga-FAPI-RGD (V-25) in different types of tumors was higher than that of single-targeted FAP protein 68 Ga-FAPI-46, with an increase of about 30-50%, confirming that the dual-targeted design can increase the number and utilization efficiency of effective receptors in tumors and thus increase tumor uptake.
  • the compound V-40 prepared in Example 8 was radiolabeled with 177 Lu using conventional techniques in the art to obtain a 177 Lu-FAPI-RGD (V-40) compound.
  • a SPECT imaging experiment was performed to observe the distribution of the tracer in the tumor mice.
  • 37 MBq of the 177 Lu-FAPI-RGD (V-40) compound was injected into the U87MG tumor mice.
  • the U87MG tumor mice were anesthetized and placed on a SPECT scanner to perform static SPECT scans on the mice. The results are shown in FIG60.
  • the 177 Lu-FAPI-RGD (V-40) compound showed obvious tumor uptake in U87MG tumor mice 1 hour after injection, and was significantly higher than the uptake of all organs except the bladder. As the time after injection increased, the tumor uptake increased and remained high until 96 hours, while the uptake of the bladder and other organs gradually decreased, proving the excellent tumor uptake and retention of the probe, and it has great potential for the treatment of glioma tumors.
  • Embodiment 138 Other embodiments
  • the present invention also verifies the 68 Ga-FAPI-RGD (V-2) compound (i.e., the 68 Ga-labeled complex of the compound of formula (2), the same below), the 68 Ga-FAPI-RGD (V-3) compound, the 68 Ga-FAPI-RGD (V-4) compound, the 68 Ga-FAPI-RGD (V-5) compound, the 68 Ga-FAPI-RGD (V-6) compound, the 68 Ga-FAPI-RGD (V-7) compound, the 68 Ga-FAPI-RGD (V-8) compound, the 68 Ga-FAPI-RGD (V-9) compound, the 68 Ga-FAPI-RGD (V-10) compound, the 68 Ga-FAPI-RGD (V-11) compound, the 68 Ga-FAPI-RGD (V-12) compound, the 68 Ga-FAPI-RGD (V-13) compound, the 68 Ga-FAPI-RGD (V-14) compound, and the 68 Ga-FAPI-RGD(V-16)
  • the present invention further verifies the uptake and blocking experiments and affinity experiments of the above-mentioned FAPI-RGD radioactive markers.
  • experiments (2) and (3) of Example 136 see experiments (2) and (3) of Example 136.
  • the experimental results show that the FAPI-RGD radioactive markers provided by the present invention can exhibit rapid cellular uptake in the corresponding cell models, and the corresponding cellular uptake can be blocked by the corresponding monomeric compounds/dimeric compounds; in addition, the FAPI-RGD radioactive markers provided by the present invention can also exhibit similar affinity to the corresponding receptors FAP protein and integrin ⁇ v ⁇ 3 .
  • the present invention further verifies the MicroPET imaging of the above-mentioned FAPI-RGD radioactive marker in tumor-bearing mice.
  • experiment (4) of Example 136 The experimental groups were subjected to MicroPET imaging at 0 to 240 minutes after administration. The results showed that in the MicroPET maximum density projection images of the animal model at different times after intravenous injection, the tumor was clearly visible at the time point of imaging acquisition, and the tumor uptake of the experimental group (i.e., the FAPI-RGD radioactive marker provided by the present invention) was higher than the tumor uptake of the corresponding monomer.
  • the FAPI-RGD dual-targeting structure has a high affinity for both the FAP target and the integrin ⁇ v ⁇ 3 target, can synergistically target the FAP target and the integrin ⁇ v ⁇ 3 target in the tumor, and exhibits excellent metabolic kinetics, high tumor uptake and tumor retention time, and is expected to be applied to the diagnosis or treatment of diseases characterized by overexpression of fibroblast activation protein (FAP) and/or integrin ⁇ v ⁇ 3 .
  • FAP fibroblast activation protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种可靶向FAP和整合素αvβ3的双重靶向化合物,所述的靶向化合物及其放射性核素标记物可协同靶向肿瘤中的FAP靶点及整合素αvβ3靶点,可以提升肿瘤中的有效受体数量和利用效率。还提供基于所述靶向化合物的放射性核素标记物,及其制备方法和在诊断或治疗以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病中的应用。

Description

一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用 技术领域
本发明涉及核医学与分子影像学领域,具体地涉及一种化合物、包含或组成为所述化合物的药物组合物、包含或组成为所述化合物或药物组合物的试剂盒,以及所述化合物或药物组合物在诊断或治疗以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病中的用途。
背景技术
成纤维细胞活化蛋白(Fibroblast activation protein,FAP)是一种膜丝氨酸肽酶,表达于肿瘤间质活化的成纤维细胞表面,在肿瘤的发生发展过程中发挥重要作用。既往研究表明,FAP在正常人组织中一般无表达,但是选择性地高表达于90%以上的上皮恶性肿瘤的基质成纤维细胞表面,包括乳腺癌、卵巢癌、肺癌、结直肠癌、胃癌和胰腺癌等。鉴于其在肿瘤中的广泛表达及重要作用,FAP已成为肿瘤显像和治疗的重要靶点。放射性核素标记的以喹啉酸衍生物为代表的成纤维细胞活化蛋白抑制剂(FAPI)已在肿瘤精准成像领域取得了重要进展。例如,FAPI-02和FAPI-04等PET/CT显像剂已实现30余种不同类型的肿瘤特异性显像。
整合素αvβ3(integrin αvβ3)是位于细胞表面的异源二聚体受体,在正常血管内皮和上皮细胞很少表达,但在肺癌、骨肉瘤、成神经细胞瘤、乳腺癌、前列腺癌、膀胱癌、胶质母细胞瘤及浸润性黑色素瘤等多种实体肿瘤细胞表面有高水平的表达,而且在所有肿瘤组织新生血管内皮细胞膜有高表达,提示整合素αvβ3在肿瘤生长、侵袭和转移过程中起着关键作用。含精氨酸-甘氨酸-天冬氨酸(RGD)序列的多肽能与整合素αvβ3特异性结合。多种放射性核素标记的RGD肽已在多种荷瘤动物模型成像研究中获得成功。在临床方面,18F-Galacto-RGD已成为第一个进入临床试验的非侵入的整合素αvβ3靶向肿瘤显像剂,成功地应用于肿瘤患者的PET诊断,在胶质母细胞瘤的临床试验中表现出好的生物学分布及特异性靶点识别。
考虑到肿瘤的异质性,为了进一步提高肿瘤的诊断和治疗效率,有必要开发一种针对FAP和整合素αvβ3两种靶点均可发挥靶向作用的药物。
发明内容
鉴于上述背景,本发明的首要目的在于:开发一种新的化合物结构,可协同靶向肿瘤中的FAP靶点及整合素αvβ3靶点,可以提升肿瘤中的有效受体数量和利用效率,从而提升肿瘤的摄取效率和阳性肿瘤检出效率和/或治疗效率。
本发明的另一个目的在于:提供制备所述的新化合物的方法,以通过方便易得的合成路线合成可协同靶向肿瘤中的FAP靶点及整合素αvβ3靶点的化合物。
本发明的再一个目的在于:提供所述化合物在诊断或治疗以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病中的应用。
本发明的上述目的通过以下技术方案实现:
第一方面,本发明提供了一种双重靶向化合物,其结构中同时包含FAP和整合素αvβ3的特异性结合配 体结构(本发明将该结构记作“FAPI-RGD”结构),可以同时靶向FAP和整合素αvβ3,所述的双重靶向化合物的结构如下式(I)或式(II)所示:
其中:
R1、R2、R3、R4可独立地选自H或F,且所述的R1、R2、R3、R4可以相同或不同。
Z、Q、V和U为相同或不同的连接结构,分别独立地选自-NH-、 或者基于-(CH2)n-的替换结构。
进一步的,当Z、Q、V和/或U为基于-(CH2)n-的替换结构时,其中每个-CH2-单独地用或不用-O-、-NH-、-(CO)-、-NH-(CO)-、-CH(NH2)-或-(CO)-NH-替换,替换的条件是没有两个相邻的-CH2-基团被替换。
n为选自0至30的整数(如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30)。
Z1
A是与整合素αvβ3特异性结合的配体结构,其结构如式(III)或式(IV)所示:

所述式(III)中的R5选自H或OH。
所述式(IV)中的R5和R6相同或不同,均独立的选自H或OH。
所述式(IV)中的M和P为基于-(CH2)n-的替换结构,其中每个-CH2-单独地用或不用-O-、-NH-、-(CO)-、-NH-(CO)-、-CH(NH2)-或-(CO)-NH-替换,替换的条件是没有两个相邻的-CH2-基团被替换;且所述的n为选自0至30的整数(如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30)。
所述式(IV)中的G选自
在一些优选的实施例中,当上述任一项所述的Z、Q、V、U、M和/或P为基于-(CH2)n-的替换结构时,其可独立的选自以下结构:-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、-(CO)-NH-或-(CH2)0-(即为“空”结构)。
在一些优选的实施例中,所述的式(I)结构中的R1和R2同时为H(即R1为H,R2为H);在另一些优选的实施例中,所述的式(I)结构中的R1和R2同时为F(即R1为F,R2为F);在另一些优选的实施例中,所述的式(I)结构中的R1和R2一个为H,另一个为F(即R1为H且R2为F;或者R1为F且R2为H)。
在一些优选的实施例中,所述的式(II)结构中的R1、R2、R3、R4同时为H;在另一些优选的实施例中,所述的式(II)结构中的R1、R2、R3、R4同时为F;在另一些优选的实施例中,所述的式(II)结构中的R1和R2同时为H;R3、R4同时为F;在另一些优选的实施例中,所述的式(II)结构中的R1和R2同时为H;R3、R4中一个为H,另一个为F(即R3为H且R4为F;或者R3为F且R4为H);在另一些优选的实施例中,所述的式(II)结构中的R1和R2同时为F;R3、R4中一个为H,另一个为F(即R3为H且R4为F;或者R3为F且R4为H)。
在一些优选的实施例中,所述的式(III)中的R5为H;在另一些优选的实施例中,所述的式(III)中的R5为OH。
在一些优选的实施例中,所述的式(IV)中的R5和R6同时为H(即R5为H且R6为H);在另一些优选的实施例中,所述的式(IV)中的R5和R6同时为F(即R5为F且R6为F);在另一些优选的实施例中,所述的式(IV)中的R5为H且R6为F;在另一些优选的实施例中,所述的式(IV)中的R5为F且 R6为H。
在一些优选的实施例中,上述式(I)或式(II)中所述的Z选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、 -(CO)-NH-或-(CH2)0-;更优选的,上述式(I)或式(II)中所述的Z选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、-(CO)-NH-或-(CH2)0-。
在一些优选的实施例中,上述式(I)或式(II)中所述的Q选自 更优选的,上述式(I)或式(II)中所述的Q选自
在一些优选的实施例中,上述式(I)或式(II)中所述的V选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、-(CH2)0-或-NH-(CO)-。
在一些优选的实施例中,上述式(I)或式(II)中所述的U选自-NH-、-NH-CH2-。
在一些优选的实施例中,上述式(II)中所述的Z1
在一些优选的实施例中,上述式(IV)中所述的M选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、-(CH2)0-;更优选的,上述式(IV)中所述的M选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-。
在一些优选的实施例中,上述式(IV)中所述的P选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、-(CH2)0-;更优选的,上述式(IV)中所述的P选自-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-。
在更进一步的优选实施例中,所述的双重靶向化合物选自如下结构:












第二方面,本发明进一步提供了基于上述任一项所述的双重靶向化合物的可被放射性核素标记的化合物,其中,所述的可被放射性核素标记的化合物是通过与上述任一项所述的式(I)或式(II)中Z、Q或V任一结构中的氨基连接核素螯合基团构成的,所述的可被放射性核素标记的化合物的通式如下式(V)或(VI)所示:
其中,式(V)所述的A、Z、Q、V、U、R1、R2的限定同前述式(I)中所述的A、Z、Q、V、U、R1、R2的限定一致;式(VI)中所述的A、Z、Q、V、U、Z1、R1、R2、R3、R4的限定同前述式(II)中所述的A、Z、Q、V、U、Z1、R1、R2、R3、R4的限定一致。
所述的W是带有核素螯合基团的片段,其结构来自1,4,7,10-四氮杂环十二烷-N,N',N,N'-四乙酸(DOTA)、乙二胺四乙酸(EDTA)、1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)、三亚乙基四胺(TETA)、亚氨基二乙酸、二亚乙基三胺-N,N,N',N',N”-五乙酸(DTPA)、双-(羧甲基咪唑)甘氨酸或6-肼基吡啶-3-羧酸(HYNIC)中的任意一种,或者是以下任意一种结构:
进一步的,上述任一项所述的D是基于-(CH2)p-的替换结构,且每个-CH2-单独地用或不用-O-、-NH-、-(CO)-、-NH-(CO)-、-CH(NH2)-或-(CO)-NH-替换,替换的条件是没有两个相邻的-CH2-基团被替换,且所述的p是选自0至30的整数(如0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30)。
在一些优选的实施例中,上述任一项所述的D选自-(CO)-CH2-CH2-(CO)-、-(CO)-CH2-(CH2-O-CH2)2-CH2-(CO)-或-(CH2)0-。(参见结构V-38至V-40)。
在一些优选的实施例中,所述的W选自如下结构:
更优选的,所述的W选自如下结构:

在更进一步的优选实施例中,所述的可被放射性核素标记的化合物选自如下结构:











第三方面,本发明还提供了一种基于上述任一项所述的可被放射性核素标记的化合物的放射性核素标记的双重靶向化合物,其中,所述的放射性核素标记的双重靶向化合物是由上述任一项所述的式(V)或式(VI)所示的化合物中的W基团螯合了放射性核素形成。
优选的,所述的放射性核素可以选自发射α射线的同位素、发射β射线的同位素、发射γ射线的同位素、发射俄歇电子的同位素或发射X射线的同位素等。
更优选的,所述的放射性核素选自18F、51Cr、67Ga、68Ga、111In、99mTc、186Re、188Re、139La、140La、175Yb、153Sm、166Ho、86Y、90Y、149Pm、165Dy、169Er、177Lu、47Sc、142Pr、159Gd、212Bi、213Bi、72As、72Se、97Ru、109Pd、105Rh、101mRh、119Sb、128Ba、123I、124I、131I、197Hg、211At、151Eu、153Eu、169Eu、201Tl、203Pb、212Pb、64Cu、67Cu、198Au、225Ac、227Th、89Zr或199Ag中的任一种。
更优选的,所述的放射性核素为18F、64Cu、68Ga、89Zr、90Y、111In、99mTc、177Lu、188Re或225Ac中的任一种。在一些具体的实施例中,所述的放射性核素为18F;在另一些具体的实施例中,所述的放射性核素为64Cu;在另一些具体的实施例中,所述的放射性核素为68Ga;在另一些具体的实施例中,所述的放射性核素为89Zr;在另一些具体的实施例中,所述的放射性核素为90Y;在另一些具体的实施例中,所述的放射性核素为111In;在另一些具体的实施例中,所述的放射性核素为99mTc;在另一些具体的实施例中,所述的放射性核素为177Lu;在另一些具体的实施例中,所述的放射性核素为188Re;在另一些具体的实施例中,所述的放射性核素为225Ac。
第四方面,本发明还提供了上述任一项所述的双重靶向化合物、可被放射性核素标记的化合物、以及放射性核素标记的双重靶向化合物在药学上可接受的互变异构体、外消旋体、水合物、溶剂化物或盐。
第五方面,本发明还提供了一种制备上述任一项式(V)所示的靶向化合物及其放射性核素标记化合物的方法,包括:
①6-羟基喹啉-4-羧酸的羧基首先与甘氨酸叔丁酯的氨基发生酰胺缩合反应;然后在酰胺缩合产物羟基位置通过烷基链连接Boc保护的哌嗪基;酸性条件下脱去Boc和叔丁基保护基,接着在哌嗪环引入Boc保护基;接着与(S)-吡咯烷-2-甲腈盐酸盐或(S)-4,4-二氟吡咯烷-2-甲腈盐酸盐发生酰胺缩合反应;脱除Boc保护基后与N-Boc-3-[2-(2-氨基乙氧基)乙氧基]丙酸发生缩合反应;接着脱去Boc保护基,依次与丙酸马来酰亚胺、带保护的半胱氨酸反应,或者接着与带保护的谷氨酸或赖氨酸反应;最后通过活化酯反应引入RGD(c(RGDyK)、c(RGDfK)或者带有PEG短链的c(RGDyK)/c(RGDfK)),得到双重靶向化合物。
②将①所得的双重靶向化合物与核素螯合剂反应,所述的核素螯合剂选自羟基琥珀酰亚胺-四氮杂环十二烷-N,N',N,N'-四乙酸(DOTA-NHS)、NOTA-琥珀酰亚胺酯(NOTA-NHS)、亚氨基二乙酸的琥珀酰亚胺活性酯、二亚乙基三胺-N,N,N',N',N”-五乙酸的琥珀酰亚胺活性酯(DTPA-NHS)、双-(羧甲基咪唑)甘氨酸或6-肼基吡啶-3-羧酸的琥珀酰亚胺活性酯(HYNIC-NHS)中的任意一种,得到一部分式(V)所示的可被放射性核素标记的化合物;
③将②所得可被放射性核素标记的化合物与含放射性核素的化合物按照现有的湿法标记方法或冻干法标记法反应,即可制备得到本发明所述的一种放射性核素标记的靶向化合物。
第六方面,本发明还提供了一种药物组合物,所述的药物组合物包含上述任一项所述的双重靶向化合物、可被放射性核素标记的化合物、放射性核素标记的双重靶向化合物、或它们在药学上可接受的任意互 变异构体、外消旋体、水合物、溶剂化物或盐;或者是由上述任一项所述的双重靶向化合物、可被放射性核素标记的化合物、放射性核素标记的双重靶向化合物、或它们在药学上可接受的任意互变异构体、外消旋体、水合物、溶剂化物或盐与药学上可接受的任意载体和/或赋形剂组成。
第七方面,本发明还提供了上述任一项所述的双重靶向化合物、可被放射性核素标记的化合物、放射性核素标记的双重靶向化合物在制备用于诊断或治疗动物或人类个体的以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病的药物中的应用。
本发明还提供了利用上述任一项所述的双重靶向化合物、可被放射性核素标记的化合物、放射性核素标记的双重靶向化合物诊断或治疗动物或人类个体的以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病的方法。
优选的,上述任一项所述的以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病包括但不限于:癌症、慢性炎症、动脉粥样硬化、纤维化、组织重塑和瘢痕病;优选地,所述的癌症进一步选自乳腺癌、胰腺癌、小肠癌、结肠癌、直肠癌、肺癌、头颈癌、卵巢癌、肝细胞癌、食道癌、下咽癌、鼻咽癌、喉癌、骨髓瘤细胞、膀胱癌、胆管细胞癌、透明细胞肾癌、神经内分泌肿瘤、致癌性骨软化症、肉瘤、CUP(原发性未知癌)、胸腺癌、胶质瘤、神经胶质瘤、星形细胞瘤、子宫颈癌或前列腺癌。
第八方面,本发明还提供了一种试剂盒,其包含或组成为本发明式(I)或式(II)所示的靶向化合物、式(V)或式(VI)所示的化合物、本发明所述的放射性核素标记的靶向化合物、或本发明所述的药物组合物,以及用于诊断疾病的说明书。
本发明提供的所述FAPI-RGD化合物结构,能够协同靶向肿瘤中的FAP靶点及整合素αvβ3靶点,可以提升肿瘤中的有效受体数量和利用效率,基于该结构进一步提供的放射性标记的化合物有望应用于诊断或治疗以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病。
附图说明
图1为本发明实施例1中的化合物2的质谱图。
图2为本发明实施例1中的化合物2的核磁氢谱。
图3为本发明实施例1中的化合物2的核磁碳谱。
图4为本发明实施例1中的化合物3的质谱图。
图5为本发明实施例1中的化合物3的核磁氢谱。
图6为本发明实施例1中的化合物4的质谱图。
图7为本发明实施例1中的化合物4的核磁氢谱。
图8为本发明实施例1中的化合物4的核磁碳谱。
图9为本发明实施例1中的化合物7的质谱图。
图10为本发明实施例1中的化合物7的核磁氢谱。
图11为本发明实施例1中的化合物7的核磁碳谱。
图12为本发明实施例1中的化合物9的质谱图。
图13为本发明实施例1中的化合物10的质谱图。
图14为本发明实施例1中的化合物11的质谱图。
图15为本发明实施例1中的式(V-1)化合物的质谱图。
图16为本发明实施例2中的中间体M的质谱图。
图17为本发明实施例2中的中间体O的质谱图。
图18为本发明实施例2中的中间体B的质谱图。
图19为本发明实施例2中的中间体C的质谱图。
图20为本发明实施例2中的中间体D的质谱图。
图21为本发明实施例2中的中间体E的质谱图。
图22为本发明实施例2中的中间体F的质谱图。
图23为本发明实施例2中的中间体G的质谱图。
图24为本发明实施例2中的中间体H的质谱图。
图25为本发明实施例2中的中间体I的质谱图。
图26为本发明实施例2中的中间体J的质谱图。
图27为本发明实施例2中的中间体Q的质谱图。
图28为本发明实施例2中的式(V-14)化合物的质谱图。
图29为本发明实施例3中的中间体K的质谱图。
图30为本发明实施例3中的式(V-23)化合物的质谱图。
图31为本发明实施例4中的中间体B1的质谱图。
图32为本发明实施例4中的中间体D1的质谱图。
图33为本发明实施例4中的中间体G1的质谱图。
图34为本发明实施例4中的中间体H1的质谱图。
图35为本发明实施例4中的中间体I1的质谱图。
图36为本发明实施例4中的中间体J1的质谱图。
图37为本发明实施例4中的式(V-25)化合物的质谱图。
图38为本发明实施例6中的中间体H3的质谱图。
图39为本发明实施例6中的中间体I2的质谱图。
图40为本发明实施例6中的中间体O1的质谱图。
图41为本发明实施例6中的中间体P1的质谱图。
图42为本发明实施例6中的式(V-30)化合物的质谱图。
图43为本发明实施例7中的中间体N2的质谱图。
图44为本发明实施例7中的中间体F3的质谱图。
图45为本发明实施例7中的式(V-35)化合物的质谱图。
图46为本发明中68Ga-FAPI-RGD(V-1)化合物的HPLC质控结果图。
图47为本发明中68Ga-FAPI-RGD(V-1)化合物在HepG2-FAP荷瘤小鼠体内的MicroPET显像结果图。
图48为本发明中68Ga-FAPI-RGD(V-1)化合物与FAPI-02共注射后在HepG2-FAP荷瘤小鼠体内的MicroPET显像结果图。
图49为本发明中68Ga-FAPI-RGD(V-1)化合物与RGD共注射后在HepG2-FAP荷瘤小鼠体内的MicroPET显像结果图。
图50为本发明中68Ga-FAPI-RGD(V-1)化合物与C(RGDfK)或FAPI-02共注射30min后肿瘤及重要器官的摄取结果统计图(图中横坐标为不同器官,每个器官中从左到右的柱状图形分别对应68Ga标记的FAPI-RGD配合物的摄取、共注射FAPI-02阻断FAP蛋白后68Ga-FAPI-RGD的摄取和共注射RGD阻断整合素后68Ga-FAPI-RGD的摄取)。
图51为本发明中68Ga-FAPI-RGD(V-25)化合物在生理盐水中的稳定性实验结果图。
图52为本发明中68Ga-FAPI-RGD(V-25)化合物的细胞摄取和细胞结合实验结果图。
图53为本发明中68Ga-FAPI-RGD(V-25)化合物以及单体68Ga-FAPI-02和68Ga-C(RGDfK)在HT1080-FAP荷瘤小鼠体内的MicroPET显像结果图。
图54为本发明中68Ga-FAPI-RGD(V-25)化合物与C(RGDfK)或/和FAPI-02共注射30min后MicroPET成像结果及肿瘤及重要器官的摄取结果统计图。
图55为本发明中68Ga-FAPI-RGD(V-25)化合物、18F-FDG和68Ga-FAPI46在胰腺癌、非小细胞肺癌、小细胞肺癌和鼻咽癌患者经静脉注射3小时后的PET/CT显像结果图。
图56为本发明中间体G2的质谱图。
图57为本发明中间体N1的质谱图。
图58为本发明中间体P的质谱图。
图59为本发明式(V-26)化合物的质谱图。
图60为本发明提供的177Lu放射性标记的化合物V-40(即177Lu-FAPI-RGD(V-40)化合物)的SPECT成像图。
具体实施方式
现结合具体实施方式对本发明的技术方案作进一步非限制性的详细说明。需要指出的是,下述实施例仅为说明本发明的技术构思及特点,其目的在于让本领域技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
实施例1:式(I-1)化合物和式(V-1)化合物的制备
合成路线如下:

(1)化合物2的合成
在100mL烧瓶中分别投入化合物1(6-羟基喹啉-4-羧酸,1.89g,10.0mmol)、甘氨酸叔丁酯(1.89g,10.0mmol)、HATU(3.8g,10.0mmol)和N,N-二异丙基乙胺(2.6g,20.0mmol)依次投入至30mL N,N-二甲基甲酰胺。反应混合物搅拌过夜,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=30:1)纯化得白色固体化合物2,产率87%,图1为化合物2的质谱图,图2为化合物2的核磁氢谱,图3为化合物2的核磁碳谱。
(2)化合物3的合成
在100mL烧瓶中分别将化合物2(1.51g,5.0mmol))、1-溴-3-氯丙烷(1.55g,10.0mmol)、碳酸钾(1.38g,10.0mmol)依次投入至50mL N,N-二甲基甲酰胺中。将体系升温到60度,保持体系60度搅拌过夜,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=50:1)纯化得白色固体化合物3,产率63%,图4为化合物3的质谱图,图5为化合物3的核磁氢谱。
(3)化合物4的合成
在100mL烧瓶中分别将化合物3(0.76g,2.0mmol)、1-叔丁氧羰基哌嗪(0.55g,3.0mmol)和碘化钾(0.49g,3.0mmol)依次投入至30mL乙腈中。将体系升温到60摄氏度,保持体系60摄氏度搅拌过夜,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=30:1)纯化得白色固体化合物4,产率58%。MS(ESI)m/z calculatedfor[C28H40N4O6]:528.29;found:529.10[M+H]+.图6为化合物4的质谱图,图7显示了化合物4的核磁氢谱,图8为化合物4的核磁碳谱。
(4)化合物5的合成
在冰浴条件下,将化合物4(0.52g,1.0mmol)溶解在10mL二氯甲烷和三氟乙酸(体积比9:1)混合溶液中,将体系升温到室温反应2h,反应结束后减压蒸馏除去溶剂,用10mL的N,N-二甲基甲酰胺溶解,得到化合物5,备用。
(5)化合物6的合成
向化合物5的N,N-二甲基甲酰胺中分别加入二碳酸二叔丁酯(0.22g,1.0mmol)和N,N-二异丙基乙胺(0.39g,3.0mmol),室温搅拌过夜,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=10:1)纯化得白色固体化合物6,产率72%。
(6)化合物7的合成
在100mL烧瓶中分别投入化合物6(0.47g,1.0mmol)、(S)-吡咯烷-2-甲腈盐酸盐(0.13g,1.0mmol),HATU(0.38g,1.0mmol)和N,N-二异丙基乙胺(0.26g,2.0mmol)依次投入至10mL N,N-二甲基甲酰胺。反应混合物室温搅拌至反应结束,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=50:1)纯化得白色固体化合物7,产率85%。图9为化合物7的质谱图,图10为化合物7的核磁氢谱,图11为化合物7的核磁碳谱。
(7)化合物8的合成
在100mL烧瓶中分别投入化合物7(0.55g,1.0mmol)和对甲苯磺酸一水合物(0.27g,1.5mmol)依次投入至10mL乙腈中。反应体系升温至60摄氏度搅拌至反应结束,减压蒸馏除去溶剂,得到化合物8粗产物。
(8)化合物9的合成
在上述化合物8的反应烧瓶中分别投入N-Boc-3-[2-(2-氨基乙氧基)乙氧基]丙酸(0.27g,1.0mmol)、HATU(0.38g,1.0mmol)和N,N-二异丙基乙胺(0.26g,2.0mmol)以及10mL N,N-二甲基甲酰胺。反应混合物搅拌过夜,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=50:1)纯化得白色固体化合物9,产率64%。图12为化合物9的质谱图。
(9)化合物10的合成
在100mL烧瓶中分别投入化合物9(0.66g,1.0mmol)和对甲苯磺酸一水合物(0.27g,1.5mmol)依次投入至10mL乙腈中。反应体系升温至60摄氏度搅拌至反应结束,减压蒸馏除去溶剂,得到粗产物。将粗产物溶解在10mL N,N-二甲基甲酰胺中,加入HATU(0.38g,1.0mmol)和N,N-二异丙基乙胺(0.26g,2.0mmol)以及丙酸马来酰亚胺(0.17g,1.0mmol),反应3h,减压蒸馏除去溶剂,得到粗产物。经硅胶柱(二氯甲烷/甲醇=50:1)纯化得白色固体化合物10,产率59%。MS(ESI)m/z calculatedfor[C35H51N7O8]:697.38;found:698.43[M+H]+.图13为化合物10的质谱图。
(10)化合物11(即式(I-1)化合物)的合成
在25mL烧瓶中分别投入化合物10(0.072g,0.1mmol)、Boc保护的半胱氨酸(0.022g,0.1mmol)以及10mL N,N-二甲基甲酰胺,常温搅拌反应3h。监测反应结束后,向体系加入0.12mmol的DCC和NHS,体系搅拌反应12h,加入c(RGDyK)(0.06g,0.1mmol)以及N,N-二异丙基乙胺(0.065g,0.05mmol)反应12h,减压蒸馏除去溶剂,得到粗产物。将粗产物经反相柱化,冷冻干燥得到纯的化合物11(即式(I-1)化合物),两步产率43%。图14为化合物11的质谱图。
(11)式(V-1)化合物的合成
在25mL烧瓶中分别投入化合物11(0.146g,0.1mmol)、使用硫代苯甲醚:1,2-乙二硫醇:苯甲醚:TFA(5:3:2:90)在室温下下进行脱处叔丁酯和Boc保护。反应结束后,通过氩气流除去TFA,接着用10mLN,N-二甲基甲酰胺溶解,依次加入DOTA-NHS(0.05g,0.1mmol)以及N,N-二异丙基乙胺(0.04g,0.3mmol)。反应体系室温搅拌反应,通过HPLC监测脱至反应结束,减压蒸馏除去溶剂,得到粗产物。将粗产物经反相柱化,冷冻干燥得到纯的式(V-1)化合物,产率53%。图15为式(V-1)化合物的质谱图。
实施例2:式(I-14)化合物和式(V-14)化合物的制备
合成路线如下:

(1)中间体M的制备
将SM(6-羟基喹啉-4-羧酸)溶于100mL甲醇中,滴入1mL浓硫酸,放入90℃外浴反应过夜,TLC监控反应结束。将甲醇缩干,将缩干后体系滴入40mL饱和NaHCO3中,滴加完毕搅拌析晶1h,过滤干燥得中间体M,收率59%。理论分子量203.0582,实测分子量203.06767,质谱结果与目标物一致。图16为 中间体M的质谱图。
(2)中间体N的制备
将中间体M溶于30mL的DMF中,依次加入碳酸钾(2.00g,14.5mmol)和1-溴-3-氯丙烷(2.19g,13.9mmol),25℃外浴反应过夜,TLC监控,反应结束后,加入70mL纯化水,用70mL的DCM萃取两次,合并有机相干燥后缩干得粗品中间体N,粗品收率83.8%。
(3)中间体O的制备
将中间体N、1-Boc-哌嗪(1.67g,6.8mmol)、KI(1.11g,6.7mmol),依次溶于10mL的DMF中,100℃外浴反应,TLC监控反应结束后,加入60mL的纯化水,用30mL的DCM萃取两次,合并有机相用30mL纯化水洗涤两次,有机相用无水硫酸钠干燥后进行柱纯化,粗品收率86%。理论分子量429.2264,实测分子量429.24041,质谱结果与目标物一致。图17为中间体O的质谱图。
(4)中间体B的制备
将中间体O溶于10mL甲醇中,加入LiOH/1V的水溶液,25℃外浴反应,TLC监控反应结束后,将体系中甲醇缩干,体系中加入2mL水,缓慢滴入1N的HCl,调节pH到6-7,析晶1h,过滤干燥得中间体B,收率85%。理论分子量415.2107,实测分子量415.21775,质谱结果与目标物一致。图18为中间体B的质谱图。
(5)中间体C的制备
将中间体B、(S)-4,4-二氟-1-甘氨酰吡咯烷-2-甲腈盐酸盐(1.11g,2.7mmol),HATU(1.06g,2.8mmol)和DIPEA(1.1g,8.1mmol),依次溶于10mL的DMF中,25℃外浴反应,TLC监控反应结束后,向体系中加入30mL纯化水,然后用3mL的DCM萃取两次,合并有机相用无水硫酸钠干燥后缩干,进行柱纯化,得到中间体C,收率73.4%。理论分子量586.2715,实测分子量586.28448,质谱结果与目标物一致。图19为中间体C的质谱图。
(6)中间体D的制备
将中间体C溶于10mL的乙腈中,加入对甲苯磺酸一水合物(1.54g,8.1mmol),放入65℃外浴反应,TLC监控反应,结束后得粗品中间体D。理论分子量486.2191,实测分子量486.22858,质谱结果与目标物一致。图20为中间体D的质谱图。
(7)中间体E的制备
将中间体D溶于10mL的DMF中,依次加入DIPEA(2.71g,21.1mmol),t-Boc-N-amido-PEG2-NHS-ester(1.22g,6.3mmol),外浴25℃反应,HPLC监控,反应结束后,向体系中加入30mL的纯化水,用30mL的DCM萃取两次,合并有机相干燥浓缩后进行柱纯化,得中间体E,两步收率64.7%。理论分子量745.3611,实测分子量745.37466,质谱结果与目标物一致。图21为中间体E的质谱图。
(8)中间体F的制备
将中间体E溶于10mL的乙腈中,加入对甲苯磺酸一水合物(2.42g,12.7mmol),65℃外浴反应,HPLC监控,反应结束后将体系缩干,得到中间体F粗品。理论分子量645.3086,实测分子量645.31807,质谱结果与目标物一致。图22为中间体F的质谱图。
(9)中间体G的制备
将中间体F和DIPEA(1.28g,10.1mmol)依次溶于5mL的DMF得到体系①;将HATU(0.84g,2.2mmol)和Fmoc-Glu(OtBu)OH(0.61g,2.2mmol)依次溶于5mL的DMF中,得体系②;将体系②25℃ 搅拌1h后加入体系①中,25℃反应,TLC监控反应,反应结束后,向体系中加入20mL的纯化水,然后用20mL的DCM萃取两次,合并有机相用饱和氯化钠洗涤一次,浓缩后进行柱纯化得中间体G,两步收率63.6%。理论分子量1052.4819,实测分子量1052.49330,质谱结果与目标物一致。图23为中间体G的质谱图。
(10)中间体H的制备
将中间体G溶于10mL的乙腈中,加入对甲苯磺酸一水合物(2.87g,15.1mmol),65℃反应,HPLC监控,反应结束后将体系缩干,进行柱纯化,得到中间体H。理论分子量996.4193,实测分子量996.42947,质谱结果与目标物一致。图24为中间体H的质谱图。
(11)中间体I的制备
将中间体H和DIPEA(1.62g,10.1mmol)溶于10mL的DMF中,依次加入HATU(1.37g,3.6mmol)和NHS(1.28g,5.85mmol),30℃搅拌反应,得体系①;将RGDfK(2.17g,3.6mmol)溶于10mL的DMSO中,得体系②;TLC监控体系①反应结束后,将体系②分三批加入体系①中,每批间隔15min,全部加完后,30℃外浴反应,HPLC监控,反应结束后体系缩干送制备,得中间体I,收率34.2%。理论分子量1581.7216,实测分子量1581.7372,质谱结果与目标物一致。图25为中间体I的质谱图。
(12)中间体J(即式(I-14)化合物)的制备
将中间体I溶于30mL的DMF中,加入2mL的哌啶,25℃反应,HPLC监控,反应结束后向体系中加入200mL的MTBE析晶,静置,将上清液吸出,将剩余体系缩干,得中间体J(即式(I-14)化合物)粗品,直接用于下一步。理论分子量1359.6536,实测分子量1359.66432,质谱结果与目标物一致。图26为中间体J的质谱图。
(13)中间体Q的制备
将中间体J溶于20mL的DMF,依次加入DIPEA(0.81g,5.0mmol)和DOTA-TRIS-TBU-NHS Ester(0.50g,1.0mmol),HPLC监控,反应结束后,体系浓缩送制备纯化,得到中间体Q,两步收率15.7%。理论分子量1914.0215,实测分子量1914.03418,质谱结果与目标物一致。图27为中间体Q的质谱图。
(14)式(V-14)化合物制备
将中间体Q溶于10mL的TFA中,25℃外浴反应,HPLC监控,反应结束后,向体系中加入100mL的MTBE析晶,静置,将上清液吸出,剩余体系浓缩干,然后用MTBE缩带至无明显TFA残留,送制备纯化,得到式(V-14)化合物。理论分子量1745.8337,实测分子量1745.84714,质谱结果与目标物一致。图28为式(V-14)化合物的质谱图。
实施例3:式(V-23)化合物的制备
合成路线如下:

(1)中间体K的制备
将按照实施例2的方法制备的中间体J溶于30mL的DMF中,加入DIPEA(0.97g,7.5mmol)和2eq NOTA-Bis-TBU-NHS Ester(按中间体J计算),25℃外浴反应,HPLC监控,反应结束后将体系缩干送制备,得到中间体K,两步收率25.1%。理论分子量1756.9112,实测分子量1756.92282,质谱结果与目标物一致。图29为中间体K的质谱图。
(2)式(V-23)化合物的制备
将中间体K溶于30mL的TFA中,25℃外浴反应,HPLC监控,反应结束后,向体系中加入200mL的MTBE析晶,静置,将上清液吸出,剩余体系浓缩干,并用MTBE缩带至无明显TFA残留,制备纯化,得到式(V-23)化合物,收率14.2%。理论分子量1644.7860,实测分子量1644.8104,质谱结果与目标物一致。图30为式(V-23)化合物的质谱图。
实施例4:式(I-25)化合物和式(V-25)化合物的制备
合成路线如下:


(1)中间体B1的制备
将化合物7(2.50g,4.5mmol)、对甲苯磺酸一水合物(2.58g,13.6mmol)和25mL的乙腈加入反应瓶中,65℃反应1h,TLC监测反应完全(甲醇:二氯甲烷=5:1),40℃减压蒸干。加入14mL的DMF、DIPEA(3.05g,23.6mmol),25℃搅拌,反应编号(1),即化合物7的哌嗪脱保护得到中间体8。将N-叔丁氧羰基-二聚乙二醇-羧酸(1.62g,4.8mmol)、HATU(2.60g,6.8mmol)和10mL的DMF加入另一反应瓶中,25℃反应30min,反应编号(2),将反应(2)流加到反应(1)中,反应1h。40℃减压蒸干,加入50mL的纯化水,用DCM萃取两次,每次50mL,合并DCM,用无水硫酸钠干燥,过滤,蒸干,得粗品,柱层析提纯,得目标物1.68g。理论分子量709.3799,实测分子量709.38801,质谱结果与目标物一致。图31为中间体B1的质谱图。
(2)中间体D1的制备
将中间体B1、对甲苯磺酸一水合物(1.61g,8.5mmol)和20mL的乙腈加入反应瓶中,65℃反应1h,40℃减压蒸干。加入20mL的DMF,DIPEA(1.83g,14.2mmol),25℃搅拌,反应编号(1),即中间体B1脱保护得到中间体C1。将Fmoc-O-叔丁基-L-谷氨酸(1.43g,3.4mmol)、HATU(1.29g,3.4mmol)和20mL的DMF加入另一反应瓶中,25℃反应30min,反应编号(2),将反应(2)流加到反应(1)中,反应1h。40℃减压蒸干,得粗品,柱层析提纯,得目标物1.19g。理论分子量1016.5008,实测分子量1016.51094,质谱结果与目标物一致。图32为中间体D1的质谱图。
(3)中间体G1的制备
将c(RGDfK)(1.00g,1.7mmol)、t-Boc-N-amido-PEG2-NHS ester(0.74g,1.9mmol)、DIPEA(0.44g,3.4mmol)和20mL的DMF加入反应瓶中,30℃反应20h。40℃减压蒸干,加入10mL的甲醇,滴加60mL的MTBE,析出固体,得到中间体F1,抽滤,40℃真空干燥2h。将固体的中间体F1加入反应瓶中,加入30mL的TFA,1.5mL的纯化水,30℃反应1h,降温至0-5℃,滴加200mL的MTBE,0-5℃搅拌30min,抽滤,用MTBE淋洗,40℃真空干燥,得产品。理论分子量762.4024,实测分子量762.40768,质谱结果与目标物一致。图33为中间体G1的质谱图。
(4)中间体H1的制备
将中间体D1、对甲苯磺酸一水合物(0.34g,1.8mmol)和20mL的乙腈加入反应瓶中,65℃反应4h,40℃减压蒸干。加入20mL的DMF、DIPEA(0.36g,2.8mmol)、DCC(0.14g,0.7mmol)和NHS(0.08g,0.7mmol),35℃反应15-20h得到中间体E1,降温至25℃,加入中间体G1,反应1h,40℃减压蒸干,得粗品,制备液相制备,得目标物66.5mg。理论分子量1704.8300,实测分子量1704.84518,质谱结果与目标物一致。图34为中间体H1的质谱图。
(5)中间体I1(即式(I-25)化合物)的制备
将中间体H1、0.5mL的哌啶和2mL的DMF加入反应瓶中,25℃反应1h,滴加10mL的乙酸乙酯析晶,搅拌30min,抽滤,固体40℃真空干燥2h,得中间体I1(即式(I-25)化合物)50.8mg。理论分子量1482.7619,实测分子量1482.7759,质谱结果与目标物一致。图35为中间体I1的质谱图。
(6)中间体J1的制备
将中间体I1、NOTA-Bis-TBU-NHS Ester、DIPEA(0.010g,0.08mmol)和2mL的DMF加入反应瓶中,25℃反应1h,40℃减压蒸干,加入2mL的乙酸乙酯,2mL的MTBE析晶,搅拌20min,抽滤,固体40℃真空干燥,得产品43.2mg。理论分子量1880.0196,实测分子量1880.0369,质谱结果与目标物一致。图36为中间体J1的质谱图。
(7)式(V-25)化合物的制备
将中间体J1和2mL的三氟乙酸加入反应瓶中,25℃反应1h,40℃减压蒸干,得粗品,用制备液相提纯,冻干,得产品(即式(V-25)化合物),理论分子量1767.8944,实测分子量1767.91036,质谱结果与目标物一致。图37为式(V-25)化合物的质谱图。
实施例5:式(I-3)化合物和式(V-26)化合物的制备
合成路线如下:

(1)中间体B1的制备
称取起始物料7(5.50g,10mmol)和对甲苯磺酸(5.71g,30mmol)加入反应瓶中,加入10mL的乙腈,搅拌升温至65℃反应1h,脱去哌嗪环上的保护基,得到中间体8。TLC检测(展开剂二氯甲烷:甲醇=5:1)反应完全,40℃减压蒸干。加入4mL的DMF和DIPEA(9.05,70mmol)搅拌溶解,加入 t-Boc-N-amido-PEG2-NHS ester(中间体C2,5.62g,15mmol),25℃反应3h。TLC检测(展开剂二氯甲烷:甲醇=5:1)反应完全,40℃减压蒸干。加入5mL的纯化水,用DCM萃取两次,每次5mL的,合并有机相,用无水硫酸钠(1m/m)干燥30min,抽滤,母液40℃减压蒸干,得到粗品。柱层析提纯得到中间体B1。产品直接用于下一步投料。
(2)中间体G2的制备
称取中间体B1和对甲苯磺酸(5.14g,27mmol)加入反应瓶中,加入10mL的乙腈,搅拌升温至65℃反应1h,脱去保护基,得到中间体C1。TLC检测(展开剂二氯甲烷:甲醇=10:1)反应完全,40℃减压蒸干。加入DIPEA(5.82g,45mmol)、10mL的DMF和3-马来酰亚胺丙酸N-羟基琥珀酰亚胺酯(2.88g,10.8mmol),室温反应1h。TLC板检测(展开剂二氯甲烷:甲醇=10:1)反应完全,40℃减压蒸干。柱层析提纯得到中间体G2。目标物理论分子量为760.35443,液质显示分子量为760.37090,质谱结果与目标物一致。图56为中间体G2的质谱图。
(3)中间体N1的制备
称取中间体G2和Boc-半胱氨酸(1.77g,8mmol)加入反应瓶中,加入10mL的DMF,25℃反应2h,得到中间体H2。TLC检测(展开剂二氯甲烷:甲醇=5:1)反应完全,加入DCC(1.98g,9.6mmol)、NHS(1.86g,9.6mmol),35℃反应2h。TLC检测(展开剂二氯甲烷:甲醇=5:1)反应完全,加入环肽Cyclo(Arg-Gly-Asp-DPhe-Lys)(4.83g,8mmol)和DIPEA(3.10g,24mmoleq),25℃反应1h。TLC检测(展开剂二氯甲烷:甲醇=5:1)反应完全,40℃减压蒸干,得到粗品,制备液相提纯,得中间体N1。目标物理论分子量为1566.72893,液质显示分子量为1566.74480,质谱结果与目标物一致。图57为中间体N1的质谱图。
(4)中间体P(即式(I-3)化合物)的制备
称取中间体N1加入反应瓶中,加入2mL的甲基苯基硫醚、2mL的1,2-乙二硫醇和20mL的三氟乙酸,氮气保护,室温反应1h。加入20mL的甲基叔丁基醚,有固体析出,抽滤,固体40℃真空干燥1h,得中间体P。目标物理论分子量为1466.67650,液质显示分子量为1466.69746,质谱结果与目标物一致。图58为中间体P的质谱图。
(5)式(V-26)化合物的制备
称取中间体P和NOTA-Bis-TBU-NHS Ester加入反应瓶中,加入40mL的DMF室温反应1h。加入4mL的DIPEA,室温反应3h。40℃减压蒸干,得到中间体S。加入30mL的三氟乙酸,室温搅拌1h。40℃减压蒸干,得到粗品,制备液相提纯,得到产品(即式(V-26)化合物)。目标物理论分子量为1751.80898,液质显示分子量为1751.83088,质谱结果与目标物一致。图59为式(V-26)化合物的质谱图。
实施例6:式(V-30)化合物的制备
合成路线如下:

(1)中间体Cmpd3的制备
将Fmoc-PEG4-CH2CH2COOH(即化合物Cmpd1,1.46g,3.0mmol)溶解于DMF中,再加入DCC(0.68g,3.3mmol)和HOSu(0.38g,3.3mmol),室温下反应6小时,过滤,滤液中加入TEA(0.90g,9.0mmol),再加入Cyclo(RGDfK)(即化合物Cmpd2,2.23g,3.6mmol),室温下反应3小时,旋干反应液,再溶于25%DEA/THF中,室温反应4小时,浓缩至剩少量溶液,加到10倍体积的乙醚中,大量固体析出,过滤得粗品Cyclo(RGDfK)-PEG4,通过反相制备液相纯化后得精品Cyclo(RGDfK)-PEG4(即中间体Cmpd3),洗脱液为(A液:0.1%TFA in H2O;B液:乙腈)。
(2)中间体(RGDfK)2-PEG4-Glu的合成
将Boc-Glu-OH(0.4g,2.0mmol)溶解于DMF中,再加入DCC(0.45g,2.2mmol)和HOSu(0.25g,2.2mmol),室温下反应6小时,过滤,滤液中加入TEA(0.60g,6.0mmol),再加入Cyclo(RGDfK)-PEG4(即中间体Cmpd3,2.61g,2.4mmol),室温下反应3小时,旋干反应液,再溶解于TFA中,室温反应10分钟,加到10倍体积的乙醚中,大量固体析出,过滤得粗品2(RGDfK)-PEG4-Glu,通过反相制备液相纯化后得纯化后的(RGDfK)2-PEG4-Glu,洗脱液为(A液:0.1%TFA in H2O;B液:乙腈),再将纯化后的(RGDfK)2-PEG4-Glu用TEA调pH至中性,再走一遍反相制备液相,冻干得成品(RGDfK)2-PEG4-Glu。
(3)中间体H3的制备
将按照实施例1方法制备的中间体8(0.45g,1mmol)、Fmoc-O-叔丁基-L-谷氨酸(0.42g,1mmol)、HATU(0.38g,1mmol)和DIPEA(0.58g,4.5mmol)依次溶于10mL的DMF中,25℃外浴反应,HPLC监控,反应结束后,向反应体系中加入20mL的纯化水,用20mL的DCM萃取两次,合并有机相用无水硫酸钠干燥后浓缩进行柱纯化,得到中间体H3,两步粗品收率97%。理论分子量735.3956,实测分子量735.40744,质谱结果与目标物一致。图38为中间体H3的质谱图。
(4)中间体I2的制备
将中间体H3溶于20mL的乙腈中,加入对甲苯磺酸一水合物(0.65g,3.4mmol),70℃外浴反应,HPLC监控,反应结束后将体系中乙腈缩干后直接用于下一步。理论分子量579.2805,实测分子量579.28563,质谱结果与目标物一致。图39为中间体I2的质谱图。
(5)中间体O1的制备
将中间体I2和DIPEA(0.64g,5.0mmol)溶于10mL的DMF中,然后加入DOTA-TRIS-TBU-NHS Ester(1.7g,2.5mmol),HPLC监控,反应结束后,将体系中溶剂缩干,剩余体系进行制备纯化后得到中间体O1,两步收率27.15%。理论分子量1133.6485,实测分子量1133.65551,质谱结果与目标物一致。图40为中间体O1的质谱图。
(6)中间体P1的制备
将中间体O1溶于5mL的DMF中,加入HATU(0.076g,0.2mmol),室温搅拌1h得体系①;将DIPEA(0.090g,0.7mmol)和(RGDfK)2-PEG4-Glu(0.24g,0.13mmol)溶于5mL的DMSO中,得体系②;将体系①加入体系②中后,28℃搅拌,HPLC监控,反应结束后,将DMF缩干,加入100mL的MTBE析晶,静置,将上层清液倒出,剩余油状物送制备纯化,得到中间体P1,收率17.09%。理论分子量2927.5797,实测分子量2927.60652,质谱结果与目标物一致。图41为中间体P1的质谱图。
(7)化合物V-30的制备
将中间体P1溶于5mL的TFA中,25℃外浴反应,HPLC监控,反应结束后,向体系中加入25mL的MTBE析晶,静置,将上清液吸出,剩余体系用MTBE缩带至无明显TFA残留,送制备纯化,得V-30,收率32.13%。理论分子量2759.3919,实测分子量2759.40972,质谱结果与目标物一致。图42为V-30的质谱图。
实施例7:式(V-35)化合物的制备
合成路线如下:

(1)中间体N2的制备
将按照实施例6的方法制备的中间体I2和DIPEA(3.90g,30mmol)溶于10mL的DMF中,然后向体系中加入NOTA-Bis-TBU-NHS Ester(7.65g,15mmol),HPLC监控,反应结束后将体系内DMF缩干,剩余体系进行制备纯化,得到中间体N2,两步收率22.88%。理论分子量976.5382,实测分子量976.56026,质谱结果与目标物一致。图43为中间体N2的质谱图。
(2)中间体F3的制备
将中间体N2溶于10mL的DMF中,加入HATU(0.46g,1.2mmol),30℃外浴反应1h后得到体系①;将c(RGDfK)2-PEG4-Glu(1.54g,0.8mmol)和DIPEA(0.62g,4.8mmol)溶于5mL的DMF和5mL的DMSO中,得到体系②;将体系①加入体系②中,30℃外浴搅拌,HPLC监控,反应结束后将溶剂缩干,剩余体系进行制备纯化得到中间体F3,收率15.34%。理论分子量2770.4894,实测分子量2770.49229,质谱结果与目标物一致。图44为中间体F3的质谱图。
(3)式(V-35)化合物的制备
将中间体F3溶于20mL的TFA中,25℃外浴反应,HPLC监控,反应结束后向体系中加入50mL的MTBE析晶,静置,将上清液倒出,剩余体系用MTBE缩带至体系中无明显TFA残留后送制备纯化,得到式(V-35)化合物,收率2.89%。理论分子量2658.3442,实测分子量2658.36508,质谱结果与目标物一致。图45为式(V-35)化合物的质谱图。
实施例8式(I-16)化合物、式(I-40)化合物和式(V-40)化合物的制备
合成路线如下:



参照实施例1-7提供的制备例/方法在实施例8中制备式(I-16)化合物、式(I-40)化合物和式(V-40)化合物。本领域技术人员可以在实施例1-7的基础/启示下结合上述制备路线做相应原料的替换,不赘述。
实施例9-45:其他双重靶向化合物的制备
参照实施例1-8提供的制备例/方法在实施例9-45中制备式(I-2)化合物、式(I-4)化合物、式(I-5)化合物、式(I-6)化合物、式(I-7)化合物、式(I-8)化合物、式(I-9)化合物、式(I-10)化合物、式(I-11)化合物、式(I-12)化合物、式(I-13)化合物、式(I-17)化合物、式(I-18)化合物、式(I-19)化合物、式(I-20)化合物、式(I-21)化合物、式(I-27)化合物、式(I-28)化合物、式(I-29)化合物、式(I-30)化合物、式(I-31)化合物、式(I-32)化合物、式(I-33)化合物、式(I-34)化合物、式(I-35)化合物、式(I-36)化合物、式(I-37)化合物、式(I-38)化合物式(I-39)化合物、式(II-1)化合物、式(II-2)化合物、式(II-3)化合物、式(II-4)化合物、式(II-5)化合物、式(II-6)化合物、式(II-7)化合物、以及式(II-8)化合物。本领域技术人员可以在实施例1-8的基础/启示下做相应原料的替换,如 将c(RGDfK)替换为c(RGDyK)、将c(RGDyK)替换为c(RGDfK)、将(S)-二氟吡咯烷-2-甲腈盐酸盐替换成(S)-4,4-二氟吡咯烷-2-甲腈盐酸盐等,相关制备例的化合物结构如本申请前述内容所示,不赘述。
实施例46-83:其他可被放射性核素标记化合物的制备
参照实施例1-8提供的制备例/方法在实施例46-83中制备式(V-2)化合物、式(V-3)化合物、式(V-4)化合物、式(V-5)化合物、式(V-6)化合物、式(V-7)化合物、式(V-8)化合物、式(V-9)化合物、式(V-10)化合物、式(V-11)化合物、式(V-12)化合物、式(V-13)化合物、式(V-16)化合物、式(V-17)化合物、式(V-18)化合物、式(V-19)化合物、式(V-20)化合物、式(V-21)化合物、式(V-22)化合物、式(V-27)化合物、式(V-28)化合物、式(V-29)化合物、式(V-31)化合物、式(V-32)化合物、式(V-33)化合物、式(V-34)化合物、式(V-36)化合物、式(V-37)化合物、式(V-38)化合物、式(V-39)化合物、式(VI-1)化合物、式(VI-2)化合物、式(VI-3)化合物、式(VI-4)化合物、式(VI-5)化合物、式(VI-6)化合物、式(VI-7)化合物、以及式(VI-8)化合物。本领域技术人员可以在实施例1-8的基础/启示下做相应原料的替换,如将c(RGDfK)替换为c(RGDyK)、将c(RGDyK)替换为c(RGDfK)、将(S)-二氟吡咯烷-2-甲腈盐酸盐替换成(S)-4,4-二氟吡咯烷-2-甲腈盐酸盐等,相关制备例的化合物结构如本申请前述内容所示,不赘述。
实施例84-133:其他制备例
参考实施例1-83的制备方法,制备以下表1中的属于式(V)或表2中属于式(VI)的FAPI-RGD化合物:
表1



表2



实施例134.放射性核素标记物的通用制备方法
(1)湿法
本实施例以式(V-1)化合物为例阐述放射性核素标记物(以Ga-68为例)的通用制备方法(湿法):将约18.5~1850兆贝可(MBq)68GaCl3盐酸溶液(淋洗自锗镓发生器)加入到含0.5mL实施例1制备的式(V-1)化合物的醋酸-醋酸盐溶液(1.0g/L)的离心管中,置于37℃下反应20min。取一C18分离小柱,先用 10mL无水乙醇缓慢淋洗,再用10mL水淋洗。用10mL水将标记液稀释后,上样到分离柱上,先用10mL水除去未标记的68Ga离子,再用0.3mL 10mM的HCl的乙醇溶液淋洗,收集淋洗液并将该淋洗液经生理盐水稀释,并经无菌过滤后即得68Ga标记的式(V-1)化合物(即 68Ga-FAPI-RGD(V-1))的注射液。
(2)冻干法
本实施例以式(V-1)化合物为例阐述放射性核素标记物(以Ga-68为例)的通用制备方法(冻干法):将约18.5~1850兆贝可(MBq)68GaCl3盐酸溶液(淋洗自锗镓发生器)加入到含有式(V-1)化合物的冻干药盒中,混匀后37℃下反应20min。取一C18分离小柱,先用10mL无水乙醇缓慢淋洗,再用10mL水淋洗。用10mL水将标记液稀释后,上样到分离柱上,先用10mL水除去未标记的68Ga离子,再用0.3mL10mM的HCl的乙醇溶液淋洗得到配合物淋洗液,该淋洗液经生理盐水稀释,并经无菌过滤后即得68Ga标记的式(V-1)化合物(即 68Ga-FAPI-RGD(V-1))的注射液。
采用上述通用标记方法标记本发明提供的其他可被放射性核素标记化合物,如采用68Ga标记式(V-2)化合物、式(V-3)化合物、式(V-4)化合物、式(V-5)化合物、式(V-6)化合物、式(V-7)化合物、式(V-8)化合物、式(V-9)化合物、式(V-10)化合物、式(V-11)化合物、式(V-12)化合物、式(V-13)化合物、式(V-14)化合物、式(V-16)化合物、式(V-17)化合物、式(V-18)化合物、式(V-19)化合物、式(V-20)化合物、式(V-21)化合物、式(V-22)化合物、式(V-23)化合物、式(V-25)化合物、式(V-26)化合物、式(V-27)化合物、式(V-28)化合物、式(V-29)化合物、式(V-30)化合物、式(V-31)化合物、式(V-32)化合物、式(V-33)化合物、式(V-34)化合物、式(V-35)化合物、式(V-36)化合物、式(V-37)化合物、式(V-38)化合物、式(V-39)化合物、式(V-40)化合物、式(VI-1)化合物、式(VI-2)化合物、式(VI-3)化合物、式(VI-4)化合物、式(VI-5)化合物、式(VI-6)化合物、式(VI-7)化合物、式(VI-8)化合物。
另外,还可以参照专利CN102123739B和/或CN102066974B提供的18-F标记方法对本发明提供的可被放射性核素标记化合物(如式(V-1)化合物、式(V-2)化合物、式(V-3)化合物、式(V-4)化合物、式(V-5)化合物、式(V-6)化合物、式(V-7)化合物、式(V-8)化合物、式(V-9)化合物、式(V-10)化合物、式(V-11)化合物、式(V-12)化合物、式(V-13)化合物、式(V-14)化合物、式(V-16)化合物、式(V-17)化合物、式(V-18)化合物、式(V-19)化合物、式(V-20)化合物、式(V-21)化合物、式(V-22)化合物、式(V-23)化合物、式(V-25)化合物、式(V-26)化合物、式(V-27)化合物、式(V-28)化合物、式(V-29)化合物、式(V-30)化合物、式(V-31)化合物、式(V-32)化合物、式(V-33)化合物、式(V-34)化合物、式(V-35)化合物、式(V-36)化合物、式(V-37)化合物、式(V-38)化合物、式(V-39)化合物、式(V-40)化合物、式(VI-1)化合物、式(VI-2)化合物、式(VI-3)化合物、式(VI-4)化合物、式(VI-5)化合物、式(VI-6)化合物、式(VI-7)化合物、式(VI-8)化合物,下同)进行标记。另外,还可以参照现有技术提供的其他标记方法(包括但不限于本发明提供的方法)对本发明提供的可被放射性核素标记化合物进行标记,放射性核素包括但不限于:18F、51Cr、64Cu、67Cu、67Ga、68Ga、89Zr、111In、99mTc、186Re、188Re、139La、140La、175Yb、153Sm、166Ho、86Y、90Y、149Pm、165Dy、169Er、177Lu、47Sc、142Pr、159Gd、212Bi、213Bi、72As、72Se、97Ru、109Pd、105Rh、101mRh、119Sb、128Ba、123I、124I、131I、197Hg、211At、151Eu、153Eu、169Eu、201Tl、203Pb、212Pb、198Au、225Ac、227Th或199Ag等。
实验例135.68Ga-FAPI-RGD(V-1)化合物的分析及应用效果
(1)HPLC分析鉴定
HPLC体系如下:SHIMADZULC-20A;C18色谱柱(YMC,3μm,4.6×150mm)用于分析。检测波长254nm,流速为1mL/min,淋洗梯度:0~3分钟:10%乙腈0和90%水(50mM醋酸铵)保持不变;3-16分钟:增加到90%乙腈和10%水(50mM醋酸铵);16-18min:保持90%乙腈和10%水(50mM醋酸铵);18-20min:降低到10%乙腈和90%水(50mM醋酸铵);20-22min:保持10%乙腈和90%水(50mM醋酸铵),68Ga-FAPI-RGD(V-1)的HPLC质控结果如图46所示。
(2)在荷瘤小鼠体内的MicroPET显像
在HepG2-FAP荷瘤小鼠中,经尾静脉注射7.4MBq的68Ga-FAPI-RGD(V-1)化合物,然后在异氟烷麻醉下,分别于给药后0~120min进行MicroPET显像,结果见图47。图47显示了静脉注射68Ga-FAPI-RGD(V-1)后不同时间的HepG2-FAP荷瘤小鼠(n=3)的代表性冠状MicroPET图像。在采集成像的时间点(30min和2h),肿瘤清晰可见。68Ga-FAPI-RGD(V-1)在体内特异性结合整合素和FAP的性能通过阻断实验得到证实。另外,将上述68Ga-FAPI-RGD(V-1)与RGD或FAPI-02共注射到HepG2-FAP荷瘤小鼠体内,其MicroPET显像结果图及器官摄取结果如图48、图49、图50所示。从图48-49中可以看到,共注射RGD或FAPI-02均能降低肿瘤对68Ga-FAPI-RGD(V-1)的摄取。从图50中可以看到,注射0.5小时后获得主要器官和肿瘤的摄取值(%ID/g),肿瘤摄取68Ga-FAPI-RGD(V-1)被RGD或FAPI-02部分抑制,阻断实验证实68Ga-FAPI-RGD(V-1)在体内能够通过结合整合素和FAP蛋白实现肿瘤特异性靶向。
实验例136.68Ga-FAPI-RGD(V-25)化合物的分析及应用效果
(1)稳定性分析
参考实施例134的方法,制备68Ga标记的式(V-25)化合物(即68Ga-FAPI-RGD(V-25)化合物)。移取20μL的68Ga-FAPI-RGD(V-25)(3.7MBq活度/20μL)的溶液加入到含有100μL生理盐水或PBS(pH=7.4)的离心管中,在37℃条件下共孵育0.5h、1h和4h,共孵育溶液。取20μL共孵育溶液,过0.22μm针式滤膜,采用HPLC分析放射化学纯度。
测试结果如图51所示,结果显示,68Ga-FAPI-RGD(V-25)化合物在生理盐水中孵育后,未见明显分解,放射化学纯度均大于99%,说明本发明制备的68Ga-FAPI-RGD(V-25)稳定性优异。
(2)摄取和阻断
在HT1080-FAP肿瘤细胞中进行68Ga-FAPI-RGD(V-25)化合物的细胞摄取实验,测试结果如图52中的A部分所示。结果显示,68Ga-FAPI-RGD(V-25)具有快速的细胞摄取,在孵育30分钟时,摄取达到最大并保持在相似摄取水平长达2小时。
此外,该实验还采用“FAPI-02”和“C(RGDfK)”以及“FAPI-RGD”进行阻断实验,测试结果如图52中的A部分所示。结果显示,68Ga-FAPI-RGD(V-25)的细胞摄取可以被C(RGDfK)或FAPI-02部分抑制,可以被FAPI-RGD完全阻断(参见图52中的A部分)。
(3)亲和力
在HT1080-FAP和U87MG肿瘤细胞中进行了细胞结合实验,测试结果分别如图52中的B和C所示, 在HT1080-FAP细胞实验中,测得68Ga-FAPI-RGD(V-25)化合物和68Ga-FAPI-02的IC50两分别为11.17nM和4.14nM。HT1080-FAP细胞实验中,测得68Ga-FAPI-RGD(V-25)化合物和68Ga-C(RGDfK)的IC50两分别为18.93nM和11.49nM组。实验结果表明68Ga-FAPI-RGD(V-25)化合物与相应的单体相比,与相应受体FAP蛋白和整合素αvβ3具有相似的亲和力。
(4)在荷瘤小鼠体内的MicroPET显像
在HT1080-FAP荷瘤小鼠中,针对随机分组的小鼠,分别经尾静脉注射7.4MBq的68Ga-FAPI-RGD(V-25)化合物、68Ga-FAPI-02和68Ga-C(RGDfK),然后在异氟烷麻醉下,68Ga-FAPI-RGD(V-25)组分别于给药后0~240min进行MicroPET显像,其余组分别于给药后0~120min进行MicroPET显像,结果见图53。图53中A、C和E分别显示了上述三组小鼠静脉注射后不同时间的HT1080-FAP荷瘤小鼠(n=3)的MicroPET最大密度投影图像,B、D和F分别体现了上述三组小鼠注射后各器官或组织(血、肝、肾、肿瘤和肌肉)在不同时间点的摄取,每组中三个摄取量从左至右分别对应注射后0.5h、1h和2h。图53显示了在采集成像的时间点,肿瘤清晰可见,并且68Ga-FAPI-RGD(V-25)的肿瘤摄取高于68Ga-FAPI-02和68Ga-C(RGDfK)的肿瘤摄取。68Ga-FAPI-RGD(V-25)在体内特异性结合整合素αvβ3和FAP的性能通过阻断实验得到证实。将上述68Ga-FAPI-RGD(V-25)与C(RGDfK)或FAPI-02共注射到HT1080-FAP荷瘤小鼠体内,其MicroPET显像结果图及器官摄取结果如图54所示。图54中,A的四个影像从左至右分别对应单独注射68Ga-FAPI-RGD(V-25)、68Ga-FAPI-RGD(V-25)与C(RGDfK)共注射、68Ga-FAPI-RGD(V-25)与FAPI-02共注射、68Ga-FAPI-RGD(V-25)与C(RGDfK)和FAPI-02共注射得到的影像;B和C分别体现了上述四组不同注射方式注射后小鼠各器官或组织(血、肝、肾、肿瘤和肌肉)对68Ga-FAPI-RGD(V-25)的摄取和靶/非靶比值,B和C的每种器官或组织中四个柱状从左至右分别对应A中的四种注射方式。从图54中可以看到,与68Ga-FAPI-RGD(V-25)共注射RGD或FAPI-02均能降低肿瘤对68Ga-FAPI-RGD(V-25)的摄取,与68Ga-FAPI-RGD(V-25)共注射RGD+FAPI-02则进一步降低肿瘤对68Ga-FAPI-RGD(V-25)的摄取,阻断实验证实68Ga-FAPI-RGD(V-25)在体内能够通过结合整合素和FAP蛋白实现肿瘤特异性靶向。
(5)在肿瘤病人上的PET/CT显像
在真实世界的临床试验中,受试患者分为胰腺癌患者(一名),非小细胞肺癌患者(一名),小细胞肺癌患者(一名)和鼻咽癌患者(一名)。根据受试者体重计算静脉注射68Ga-FAPI-RGD(V-25)的剂量(1.8~2.2MBq[0.05~0.06mCi]/kg)。在静脉注射3小时后,使用混合PET/CT扫描仪(Discovery MI,GE Healthcare,Milwaukee,WI,USA)获取数据,显像结果如图55。使用在经轴图像上绘制的感兴趣区域(ROI)自动计算最大标准摄取值(SUVmax)。双靶点靶向的68Ga-FAPI-RGD(V-25)在不同类型肿瘤中的SUVmax均高于FAP蛋白单靶向的68Ga-FAPI-46,SUVmax升高约30-50%,证实了双靶点靶向的设计可以提升肿瘤中的有效受体数量和利用效率进而提升肿瘤摄取。
实施例137.177Lu放射性标记的化合物V-40(即177Lu-FAPI-RGD(V-40)化合物)的分析及应用效果
采用本领域常规技术手段对实施例8制备的化合物V-40进行177Lu放射性标记,得177Lu-FAPI-RGD(V-40)化合物。对其进行SPECT成像实验以观察示踪剂在肿瘤鼠体内的分布情况,将37MBq的177Lu-FAPI-RGD(V-40)化合物注射入U87MG肿瘤鼠中,在注射后1、4、12、24、48、72、96小时,将U87MG肿瘤小鼠麻醉并置于SPECT扫描仪上对小鼠进行静态SPECT扫描。结果如图60所示, 177Lu-FAPI-RGD(V-40)化合物在U87MG肿瘤鼠注射后1小时即有明显肿瘤摄取,且显著高于除膀胱外的其他所有脏器的摄取。随着注射后时间的延长,肿瘤摄取有所增加,并在持续至96小时时仍保持了高的肿瘤摄取,而膀胱和其他脏器的摄取逐渐降低,证明了该探针优异的肿瘤摄取和滞留,有很大的潜力用于胶质瘤肿瘤的治疗。
实施例138其他实施例
本发明还分别验证了68Ga-FAPI-RGD(V-2)化合物(即式(2)化合物的68Ga标记配合物,下同)、68Ga-FAPI-RGD(V-3)化合物、68Ga-FAPI-RGD(V-4)化合物、68Ga-FAPI-RGD(V-5)化合物、68Ga-FAPI-RGD(V-6)化合物、68Ga-FAPI-RGD(V-7)化合物、68Ga-FAPI-RGD(V-8)化合物、68Ga-FAPI-RGD(V-9)化合物、68Ga-FAPI-RGD(V-10)化合物、68Ga-FAPI-RGD(V-11)化合物、68Ga-FAPI-RGD(V-12)化合物、68Ga-FAPI-RGD(V-13)化合物、68Ga-FAPI-RGD(V-14)化合物、68Ga-FAPI-RGD(V-16)化合物、68Ga-FAPI-RGD(V-17)化合物、68Ga-FAPI-RGD(V-18)化合物、68Ga-FAPI-RGD(V-19)化合物、68Ga-FAPI-RGD(V-20)化合物、68Ga-FAPI-RGD(V-21)化合物、68Ga-FAPI-RGD(V-22)化合物、68Ga-FAPI-RGD(V-23)化合物、68Ga-FAPI-RGD(V-26)化合物、68Ga-FAPI-RGD(V-27)化合物、68Ga-FAPI-RGD(V-28)化合物、68Ga-FAPI-RGD(V-29)化合物、68Ga-FAPI-RGD(V-30)化合物、68Ga-FAPI-RGD(V-31)化合物、68Ga-FAPI-RGD(V-32)化合物、68Ga-FAPI-RGD(V-33)化合物、68Ga-FAPI-RGD(V-34)化合物、68Ga-FAPI-RGD(V-35)化合物、68Ga-FAPI-RGD(V-36)化合物、68Ga-FAPI-RGD(V-37)化合物、68Ga-FAPI-RGD(V-38)化合物、68Ga-FAPI-RGD(V-39)化合物、68Ga-FAPI-RGD(VI-1)化合物、68Ga-FAPI-RGD(VI-2)化合物、68Ga-FAPI-RGD(VI-3)化合物、68Ga-FAPI-RGD(VI-4)化合物、68Ga-FAPI-RGD(VI-5)化合物、68Ga-FAPI-RGD(VI-6)化合物、68Ga-FAPI-RGD(VI-7)化合物、68Ga-FAPI-RGD(VI-8)化合物(在本发明中统称为FAPI-RGD放射性标记物)的稳定性分析,相关分析方法参见实施例136的实验(1),结果显示,本发明提供的成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物的放射性标记物均能够表现出良好的稳定性。
本发明还进一步验证了上述FAPI-RGD放射性标记物的摄取和阻断实验以及亲和力实验,相关方法参见实施例136的实验(2)和(3),实验结果显示,本发明提供的FAPI-RGD放射性标记物在相应的细胞模型中均能够表现出快速的细胞摄取力,且相应的细胞摄取力都可以被对应的单体化合物/双体化合物阻断;除此之外,本发明提供的FAPI-RGD放射性标记物也均可以表现出与相应受体FAP蛋白和整合素αvβ3相似的亲和力。
本发明更进一步的验证了上述FAPI-RGD放射性标记物的在荷瘤小鼠体内的MicroPET显像,相关方法参见实施例136的实验(4),实验组分别于给药后0~240min进行MicroPET显像,结果显示,在静脉注射后不同时间的动物模型的MicroPET最大密度投影图像,在采集成像的时间点,肿瘤清晰可见,并且实验组(即本发明提供的FAPI-RGD放射性标记物)的肿瘤摄取均高于对应单体的肿瘤摄取。
综上所述,本发明提供的FAPI-RGD双靶向的结构,对于FAP靶点及整合素αvβ3靶点均具有较高的亲和力,能够协同靶向肿瘤中的FAP靶点及整合素αvβ3靶点,表现出优异的代谢动力学、较高的肿瘤摄取和肿瘤滞留时间,有望应用于诊断或治疗以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (17)

  1. 一种双重靶向化合物,其特征在于,所述的双重靶向化合物包含FAP和整合素αvβ3的特异性结合配体结构,且所述的双重靶向化合物结构式如式(I)或式(II)所示:
    其中:
    R1、R2、R3、R4可独立地选自H或F,且所述的R1、R2、R3、R4可以相同或不同;
    Z、Q、V和U为相同或不同的连接结构,分别独立地选自-NH-、 或者基于-(CH2)n-的替换结构;
    Z1
    当Z、Q、V和U为基于-(CH2)n-的替换结构时,其中的n是0至30的整数,其中每个-CH2-单独地用或不用-O-、-NH-、-(CO)-、-NH-(CO)-、-CH(NH2)-或-(CO)-NH-替换,替换的条件是没有两个相邻的-CH2-基团被替换;
    A是与整合素αvβ3特异性结合的配体结构,其结构如式(III)或式(IV)所示:

    所述的式(III)中的R5选自H或OH;
    所述的式(IV)中的R5和R6相同或不同,均独立的选自H或OH;M和P为基于-(CH2)n-的替换结构时,其中的n是0至30的整数,其中每个-CH2-单独地用或不用-O-、-NH-、-(CO)-、-NH-(CO)-、-CH(NH2)-或-(CO)-NH-替换,替换的条件是没有两个相邻的-CH2-基团被替换;G选自或者
  2. 根据权利要求1所述的双重靶向化合物,其特征在于,所述的式(I)或式(II)中的Z为-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-、
  3. 根据权利要求1-2任一项所述的双重靶向化合物,其特征在于,所述的式(I)或式(II)中的Q为
  4. 根据权利要求1-3任一项所述的双重靶向化合物,其特征在于,所述的式(I)或式(II)中的V为-NH-CH2-(CH2-O-CH2)2-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)3-CH2-(CO)-、-NH-CH2-(CH2-O-CH2)4-CH2-(CO)-或-(CH2)0-。
  5. 根据权利要求1-4任一项所述的双重靶向化合物,其特征在于,所述的式(I)或式(II)中的U为-NH-或者
  6. 根据权利要求1-5任一项所述的双重靶向化合物,其特征在于,所述的式(II)中的Z1
  7. 一种可被放射性核素标记的双重靶向化合物,它是权利要求1-6任一项所述的式(I)或式(II) 中Z、Q或V任一结构中的氨基连接核素螯合基团构成的,其通式如下式(V)或(VI)所示:
    其中,W是带有核素螯合基团的片段,来自1,4,7,10-四氮杂环十二烷-N,N',N,N'-四乙酸(DOTA)、乙二胺四乙酸(EDTA)、1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)、三亚乙基四胺(TETA)、亚氨基二乙酸、二亚乙基三胺-N,N,N',N',N”-五乙酸(DTPA)、双-(羧甲基咪唑)甘氨酸或6-肼基吡啶-3-羧酸(HYNIC)中的任意一种;或者W是以下任意一种结构:
    上述结构中的D是基于-(CH2)p-的替换结构,其中的p是0至30的整数,每个-CH2-单独地用或不用-O-、-NH-、-(CO)-、-NH-(CO)-、-CH(NH2)-或-(CO)-NH-替换,替换的条件是没有两个相邻的-CH2-基团被替换。
  8. 根据权利要求7所述的双重靶向化合物,其特征在于:所述的式(V)化合物结构是以下式(V-1)至式(V-40)所示的任意一种:










    或者
  9. 根据权利要求7所述的双重靶向化合物,其特征在于:所述的式(VI)化合物结构是以下式(VI-1)至式(VI-8)所示的任意一种:


  10. 一种放射性核素标记的双重靶向化合物,它是权利要求7-9任一项所述的双重靶向化合物标记了放射性核素得到的;优选的,所述的放射性核素选自发射α射线的同位素、发射β射线的同位素、发射γ射线的同位素、发射俄歇电子的同位素或发射X射线的同位素;更优选的,所述的放射性核素选自18F、51Cr、64Cu、67Cu、67Ga、68Ga、89Zr、111In、99mTc、186Re、188Re、139La、140La、175Yb、153Sm、166Ho、86Y、90Y、149Pm、165Dy、169Er、177Lu、47Sc、142Pr、159Gd、212Bi、213Bi、72As、72Se、97Ru、109Pd、105Rh、101mRh、119Sb、128Ba、123I、124I、131I、197Hg、211At、151Eu、153Eu、169Eu、201Tl、203Pb、212Pb、198Au、225Ac、227Th或199Ag中的任意一种;更优选的放射性核为18F、64Cu、68Ga、89Zr、90Y、111In、99mTc、177Lu、188Re或225Ac。
  11. 制备权利要求7-8任一项所述式(V)所示的一种可被放射性核素标记的双重靶向化合物的方法,包括:6-羟基喹啉-4-羧酸的羧基首先与甘氨酸叔丁酯的氨基发生酰胺缩合反应;然后在酰胺缩合产物羟基位置通过烷基链连接Boc保护的哌嗪基;酸性条件下脱去Boc和叔丁基保护基,接着在哌嗪环引入Boc保护基;接着与(S)-吡咯烷-2-甲腈盐酸盐或(S)-4,4-二氟吡咯烷-2-甲腈盐酸盐发生酰胺缩合反应;脱除Boc保护基后与N-Boc-3-[2-(2-氨基乙氧基)乙氧基]丙酸发生缩合反应;接着脱去Boc保护基,依次与丙酸马来酰亚胺、带保护的半胱氨酸反应,或者接着与带保护的谷氨酸或赖氨酸反应;最后通过活化酯反应引入RGD(c(RGDyK)、c(RGDfK)或者带有PEG短链的c(RGDyK)/c(RGDfK)),得到双重靶向化合物;最后双重靶向化合物与核素螯合剂反应,得到一种可被放射性核素标记的双重靶向化合物。
  12. 制备权利要求10所述放射性核素标记的双重靶向化合物的方法,包括:6-羟基喹啉-4-羧酸的羧基首先与甘氨酸叔丁酯的氨基发生酰胺缩合反应;然后在酰胺缩合产物羟基位置通过烷基链连接Boc保护的哌嗪基;酸性条件下脱去Boc和叔丁基保护基,接着在哌嗪环引入Boc保护基;接着与(S)-吡咯烷-2-甲腈盐酸盐或(S)-4,4-二氟吡咯烷-2-甲腈盐酸盐发生酰胺缩合反应;脱除Boc保护基后与N-Boc-3-[2-(2-氨基乙氧基)乙氧基]丙酸发生缩合反应;接着脱去Boc保护基,依次与丙酸马来酰亚胺、带保护的半胱氨酸反应,或者接着与带保护的谷氨酸或赖氨酸反应;然后通过活化酯反应引入RGD(c(RGDyK)、c(RGDfK)或者带有PEG短链的c(RGDyK)/c(RGDfK)),得到双重靶向化合物;双重靶向化合物与核素螯合剂反应,得到可被放射性核素标记的双重靶向化合物;所得的可被放射性核素标记的双重靶向化合物与含放射性核素的化合物按照现有的湿法标记方法或冻干法标记法反应,即可制备得到所述的放射性核素标记的靶向化合物。
  13. 一种药物组合物,其特征在于:包含权利要求1-6所述的双重靶向化合物、权利要求7-9任一项所述的可被放射性核素标记的双重靶向化合物、权利要求10所述的放射性核素标记的双重靶向化合物、或它们在药学上可接受的任意互变异构体、外消旋体、水合物、溶剂化物或盐。
  14. 一种药物组合物,其特征在于:由药学上可接受的任意载体和/或赋形剂与权利要求1-6任一项所述的双重靶向化合物、权利要求7-9任一项所述的可被放射性核素标记的双重靶向化合物、权利要求10所述的放射性核素标记的双重靶向化合物、或它们在药学上可接受的任意互变异构体、外消旋体、水合物、溶剂化物或盐组成。
  15. 权利要求1-6任一项所述的双重靶向化合物、权利要求7-9任一项所述的可被放射性核素标记的双重靶向化合物、权利要求10所述的放射性核素标记的双重靶向化合物、或它们在药学上可接受的任意互变异构体、外消旋体、水合物、溶剂化物或盐、或权利要求13-14任一项所述的药物组合物在制备用于诊断或治疗动物或人类个体的以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病的药物 中的应用。
  16. 根据权利要求15所述的应用,其特征在于:所述的以成纤维细胞激活蛋白(FAP)和/或整合素αvβ3过度表达为特征的疾病包括但不限于:癌症、慢性炎症、动脉粥样硬化、纤维化、组织重塑和瘢痕病;优选地,所述的癌症进一步选自乳腺癌、胰腺癌、小肠癌、结肠癌、直肠癌、肺癌、头颈癌、卵巢癌、肝细胞癌、食道癌、下咽癌、鼻咽癌、喉癌、骨髓瘤细胞、膀胱癌、胆管细胞癌、透明细胞肾癌、神经内分泌肿瘤、致癌性骨软化症、肉瘤、CUP(原发性未知癌)、胸腺癌、胶质瘤、神经胶质瘤、星形细胞瘤、子宫颈癌或前列腺癌。
  17. 一种试剂盒,其包含或组成为:①权利要求1-6任一项所述的双重靶向化合物、权利要求7-9任一项所述的可被放射性核素标记的双重靶向化合物、权利要求10所述的放射性核素标记的双重靶向化合物、或它们在药学上可接受的任意互变异构体、外消旋体、水合物、溶剂化物或盐、或权利要求13-14任一项所述的药物组合物;②用于诊断疾病的说明书。
PCT/CN2023/121284 2022-09-29 2023-09-26 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用 WO2024067531A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3236635A CA3236635A1 (en) 2022-09-29 2023-09-26 Dual-targeting compound for fibroblast activation protein (fap) and integrin .alpha.v.beta.3, preparation method therefor and use thereof
AU2023349260A AU2023349260A1 (en) 2022-09-29 2023-09-26 DUAL-TARGETING COMPOUND AGAINST FIBROBLAST ACTIVATION PROTEIN FAP AND INTEGRIN αVβ3, AND PREPARATION METHOD THEREFOR AND USE THEREOF
ZA2024/03256A ZA202403256B (en) 2022-09-29 2024-04-26 Dual-targeting compound for fibroblast activation protein (fap) and integrin αvβ3, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211203390.3A CN115505032A (zh) 2022-09-29 2022-09-29 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用
CN202211203390.3 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024067531A1 true WO2024067531A1 (zh) 2024-04-04

Family

ID=84508671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121284 WO2024067531A1 (zh) 2022-09-29 2023-09-26 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用

Country Status (5)

Country Link
CN (1) CN115505032A (zh)
AU (1) AU2023349260A1 (zh)
CA (1) CA3236635A1 (zh)
WO (1) WO2024067531A1 (zh)
ZA (1) ZA202403256B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118271393A (zh) * 2024-05-31 2024-07-02 中国药科大学 一种靶向fap的二聚化合物及其探针和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505032A (zh) * 2022-09-29 2022-12-23 烟台蓝纳成生物技术有限公司 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420337A (zh) * 2019-05-24 2019-11-08 中国科学院生物物理研究所 一种靶向整合素α6的二聚体多肽放射性药物及其制备方法
CN111699181A (zh) * 2018-02-06 2020-09-22 海德堡大学 Fap抑制剂
CN113164630A (zh) * 2018-10-24 2021-07-23 Scv-特种化学品销售有限公司 具有方酸连接的标记前体
CN113292538A (zh) * 2021-05-10 2021-08-24 北京肿瘤医院(北京大学肿瘤医院) 靶向肿瘤相关成纤维细胞激活蛋白的化合物及其制备方法和应用与靶向fap的肿瘤显影剂
CN113603678A (zh) * 2021-08-10 2021-11-05 上海蓝纳成生物技术有限公司 一种靶向成纤维细胞活化蛋白的诊断药物及其制备方法
CN113621021A (zh) * 2021-08-10 2021-11-09 上海蓝纳成生物技术有限公司 一种靶向成纤维细胞活化蛋白的治疗药物及其制备方法
CN113880810A (zh) * 2021-09-24 2022-01-04 厦门大学 一种核素标记的配合物及其制备方法和应用
CN114984255A (zh) * 2022-05-31 2022-09-02 苏州大学 一种放射性核素标记的PSMA-αvβ3双靶点偶联体及其应用
CN115505032A (zh) * 2022-09-29 2022-12-23 烟台蓝纳成生物技术有限公司 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用
WO2023098920A1 (zh) * 2022-09-29 2023-06-08 烟台蓝纳成生物技术有限公司 一种双重靶向化合物及其制备方法和应用
CN116751259A (zh) * 2022-03-06 2023-09-15 烟台蓝纳成生物技术有限公司 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699181A (zh) * 2018-02-06 2020-09-22 海德堡大学 Fap抑制剂
CN113164630A (zh) * 2018-10-24 2021-07-23 Scv-特种化学品销售有限公司 具有方酸连接的标记前体
CN110420337A (zh) * 2019-05-24 2019-11-08 中国科学院生物物理研究所 一种靶向整合素α6的二聚体多肽放射性药物及其制备方法
CN113292538A (zh) * 2021-05-10 2021-08-24 北京肿瘤医院(北京大学肿瘤医院) 靶向肿瘤相关成纤维细胞激活蛋白的化合物及其制备方法和应用与靶向fap的肿瘤显影剂
CN113603678A (zh) * 2021-08-10 2021-11-05 上海蓝纳成生物技术有限公司 一种靶向成纤维细胞活化蛋白的诊断药物及其制备方法
CN113621021A (zh) * 2021-08-10 2021-11-09 上海蓝纳成生物技术有限公司 一种靶向成纤维细胞活化蛋白的治疗药物及其制备方法
CN113880810A (zh) * 2021-09-24 2022-01-04 厦门大学 一种核素标记的配合物及其制备方法和应用
CN116751259A (zh) * 2022-03-06 2023-09-15 烟台蓝纳成生物技术有限公司 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法
CN114984255A (zh) * 2022-05-31 2022-09-02 苏州大学 一种放射性核素标记的PSMA-αvβ3双靶点偶联体及其应用
CN115505032A (zh) * 2022-09-29 2022-12-23 烟台蓝纳成生物技术有限公司 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用
WO2023098920A1 (zh) * 2022-09-29 2023-06-08 烟台蓝纳成生物技术有限公司 一种双重靶向化合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZANG JIE, WEN XUEJUN, LIN RONG, ZENG XINYING, WANG CHAO, SHI MENGQI, ZENG XUEYUAN, ZHANG JIAYING, WU XIAOMING, ZHANG XIANZHONG, MI: "Synthesis, preclinical evaluation and radiation dosimetry of a dual targeting PET tracer [ 68 Ga]Ga-FAPI-RGD", THERANOSTICS, IVYSPRING INTERNATIONAL PUBLISHER, AU, vol. 12, no. 16, 1 January 2022 (2022-01-01), AU , pages 7180 - 7190, XP093151735, ISSN: 1838-7640, DOI: 10.7150/thno.79144 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118271393A (zh) * 2024-05-31 2024-07-02 中国药科大学 一种靶向fap的二聚化合物及其探针和应用

Also Published As

Publication number Publication date
TW202412767A (zh) 2024-04-01
CN115505032A (zh) 2022-12-23
ZA202403256B (en) 2024-06-26
AU2023349260A1 (en) 2024-05-16
CA3236635A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2024067531A1 (zh) 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法和应用
CN115286697B (zh) 一种双重靶向化合物及其制备方法和应用
US8414864B2 (en) Gastrin releasing peptide compounds
AU2022228391A1 (en) Compound targeting prostate specific membrane antigen, and preparation method therefor and use thereof
CN111065646A (zh) 放射性药物
JP6164556B2 (ja) 非特異的腎集積が低減された放射性標識ポリペプチド作製用薬剤
CN115260160B (zh) 一种靶向成纤维细胞活化蛋白fap的化合物及其制备方法和应用
CN114369084A (zh) 一种截短型伊文思蓝修饰的成纤维细胞活化蛋白抑制剂及其制备方法和应用
CN118126024B (zh) 一种全新骨架99mTc-FAPI诊断探针及其在制备诊断肿瘤的药物或试剂中的应用
WO2024099245A1 (zh) 一种rgd二聚体化合物及其制备方法和应用
CN116751259A (zh) 一种成纤维细胞活化蛋白FAP和整合素αvβ3双重靶向化合物及其制备方法
CN118165073A (zh) 一种fap抑制剂及其制备方法和应用
JP7541532B2 (ja) 診断及び治療のための新規な放射性標識されたcxcr4を標的とする化合物
JP2004526671A (ja) 診断および治療への適用において使用するための抗酸化剤の金属キレート配位子との結合体
TWI852782B (zh) 一種成纖維細胞活化蛋白FAP和整合素αvβ3雙重靶向化合物及其製備方法和應用
JP2023545213A (ja) 切断型エバンスブルー修飾線維芽細胞活性化タンパク質阻害剤及びその調製方法と応用
JP2023550371A (ja) 前立腺特異的膜抗原(psma)リガンドの合成
US20220072165A1 (en) Radiodrug for diagnostic/therapeutic use in nuclear medicine and radio-guided medicine
WO2024051794A1 (zh) 放射性核素偶联药物及其药物组合物和应用
AU2023257191A1 (en) Cxcr4-targeting compounds, and methods of making and using the same
WO2023158802A1 (en) Compounds and radioligands for targeting neurotensin receptor and uses thereof
TW202428306A (zh) 神經肽y1受體(npy1r)靶向治療劑及其用途
WO2023133645A1 (en) Radiolabeled compounds for imaging of fibroblast activation protein (fap) and treatment of fap-related disorders

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: AU2023349260

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3236635

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023349260

Country of ref document: AU

Date of ref document: 20230926

Kind code of ref document: A