WO2024066605A1 - 一种锥齿轮卡簧槽高度的检具及检测方法 - Google Patents

一种锥齿轮卡簧槽高度的检具及检测方法 Download PDF

Info

Publication number
WO2024066605A1
WO2024066605A1 PCT/CN2023/104801 CN2023104801W WO2024066605A1 WO 2024066605 A1 WO2024066605 A1 WO 2024066605A1 CN 2023104801 W CN2023104801 W CN 2023104801W WO 2024066605 A1 WO2024066605 A1 WO 2024066605A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
stop
positioning
gauge
bevel gear
Prior art date
Application number
PCT/CN2023/104801
Other languages
English (en)
French (fr)
Inventor
徐树存
申卫东
张军
袁雨峰
浦浩
Original Assignee
江苏太平洋精锻科技股份有限公司
江苏太平洋齿轮传动有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏太平洋精锻科技股份有限公司, 江苏太平洋齿轮传动有限公司 filed Critical 江苏太平洋精锻科技股份有限公司
Publication of WO2024066605A1 publication Critical patent/WO2024066605A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness

Definitions

  • the invention relates to the technical field of inspection tools, and in particular to an inspection tool and a method for inspecting the height of a bevel gear circlip groove.
  • Gears are a common mechanical part. Most of these mechanical parts that rely on rotational motion are positioned and installed with inner holes.
  • the inner holes are usually provided with circlip grooves, which are used to cooperate with the matching circlips of the shaft for axial limitation.
  • the inner hole of the half-axle gear in the automobile differential has a circlip groove, and the circlip groove in the inner hole has a size restriction with the outer end face of the gear (the outer end face of the gear is the installation surface, the positioning surface, and the reference for the axial dimension).
  • the height L ⁇ of the circlip groove is an indirect dimension, commercially available length measuring instruments cannot be used directly for detection.
  • profilometers and three-dimensional coordinate measuring machines can be used for precision measurement, but they cannot be used for direct measurement. It is necessary to measure the distance from the retaining ring groove and the outer end face to the end face of the workpiece shaft respectively, and then calculate the difference between the two distances to indirectly convert the distance from the bottom surface of the retaining ring groove to the outer end face, which is prone to errors.
  • precision instruments have very high requirements for inspection conditions and low detection efficiency. They are only suitable for verification and inspection in precision measurement rooms and cannot be used for on-site production inspections.
  • the patent with application number CN201910616105.2 discloses a gauge and detection method for measuring the width of the inner hole ring groove and the relative spacing from the outer shoulder. The measurement is also performed with the help of a dial indicator, a gauge block, etc. Due to the lack of necessary gauges in the workshop, the operators on the production line cannot detect quality deviations in time, which can easily lead to batch scrapping accidents and cause economic losses.
  • the present invention provides a convenient bevel gear retaining ring groove height inspection tool and inspection method that can be used in a workshop.
  • a bevel gear circlip groove height gauge wherein the bevel gear has a reference end face and a to-be-detected surface parallel to the reference end face, and the gauge is used to detect whether the to-be-detected distance between the reference end face and the to-be-detected surface meets the requirements, and the gauge comprises:
  • the intermediate specimen the bottom end face of which is mounted on the reference end face of the bevel gear,
  • the intermediate specimen is provided with a reference surface
  • a first specimen the first specimen is mounted on the reference surface of the intermediate specimen, the first specimen is provided with a through-end measuring end surface, the through-end measuring end surface is used to approach the surface to be tested to detect whether the distance to be tested between the reference end surface and the surface to be tested is greater than the minimum limit size;
  • the second specimen is mounted on the reference surface of the intermediate specimen and is provided with a stop end measuring end surface, which is used to approach the surface to be tested to detect whether the distance between the reference end surface and the surface to be tested is less than the maximum limit size.
  • the surface to be detected is the bottom surface of the retaining ring groove on the circumferential surface of the bevel gear, a first measuring protrusion is provided on one side of the through-end measuring end surface of the first test body, and a second measuring protrusion is provided on one side of the stop-end measuring end surface of the second test body.
  • the thickness of the first measuring protrusion and the second measuring protrusion are both smaller than the size of the retaining ring groove.
  • the first measuring protrusion or the second measuring protrusion can be rotated at a set angle to extend into the retaining ring groove to detect the distance to be measured between the bottom surface of the groove and the reference end surface.
  • the reference end face is located on the outside of the bevel gear
  • the retaining ring groove is located on the inside of the bevel gear
  • the intermediate test body is provided with a through hole for the through gauge rod or the stop gauge rod to extend into
  • the through hole includes an eccentric hole and a slot hole for the first measuring lug and the second measuring lug to pass through
  • the eccentric hole is a hole larger than a semicircle
  • the first measuring lug or the second measuring lug can extend into the retaining ring groove after rotating around the center line of the eccentric hole at a set angle to detect the distance to be measured between the bottom surface of the groove and the reference end face.
  • the eccentric hole is larger than the semicircular hole, so that the first measuring rod or the second measuring rod will not fall out of the eccentric hole when rotating, thereby realizing the rotation of the first measuring rod or the second measuring rod around the center line of the eccentric hole, which is convenient for operation.
  • the reference end surface is located between the reference surface and the surface to be tested, and the first specimen is provided with a through-end reference surface that matches the reference surface of the intermediate specimen.
  • the distance between the through-end reference surface and the through-end measuring end surface is the designed through-end dimension HT.
  • H is the distance between the reference surface and the bottom end surface of the intermediate specimen
  • L is the basic design dimension of the distance to be measured
  • is the design tolerance of the distance to be measured
  • the second specimen is provided with a stop end reference surface matched with the reference surface of the intermediate specimen, and the distance between the stop end reference surface and the stop end measurement end surface is the designed stop end dimension HZ.
  • H is the distance between the reference surface and the bottom end surface of the intermediate specimen
  • L is the basic design dimension of the distance to be measured
  • is the design tolerance of the distance to be measured.
  • the intermediate specimen comprises a positioning sleeve, the bottom end surface of the positioning sleeve is mounted on the reference end surface, and the center line of the positioning sleeve coincides with the center line of the bevel gear.
  • the first test body includes a through gauge rod, the through gauge rod includes a first positioning platform for mounting on a positioning sleeve and a first measuring rod for extending into the inner hole of the bevel gear, the through end reference surface is arranged on the first positioning platform, and the through end measuring end surface is arranged at the through end of the first measuring rod away from the first positioning platform;
  • the second test body includes a stop gauge rod, the stop gauge rod includes a second positioning platform for mounting on a positioning sleeve and a second measuring rod for extending into the inner hole of the bevel gear, the stop end reference surface is arranged on the second positioning platform, and the stop end measuring end surface is arranged at the stop end of the second measuring rod away from the second positioning platform.
  • the inspection fixture also includes a positioning mechanism, which includes a first positioning mechanism for circumferential pre-positioning of the go gauge rod or the no-go gauge rod after it is installed in the positioning sleeve, and a second positioning mechanism for circumferential measurement and positioning of the go gauge rod or the no-go gauge rod after it is rotated around the center line of the eccentric hole by a set angle.
  • a positioning mechanism which includes a first positioning mechanism for circumferential pre-positioning of the go gauge rod or the no-go gauge rod after it is installed in the positioning sleeve, and a second positioning mechanism for circumferential measurement and positioning of the go gauge rod or the no-go gauge rod after it is rotated around the center line of the eccentric hole by a set angle.
  • first positioning mechanism and the second positioning mechanism both include positioning pins
  • the through gauge rod and the stop gauge rod are provided with pin holes matching the positioning pins
  • the positioning sleeve is provided with positioning holes matching the positioning pins.
  • the through gauge measurement includes the following steps:
  • the gauge rod drives the first measuring protrusion thereon to rotate around the center line of the eccentric hole at a set angle, and then the gauge rod and the positioning sleeve are circumferentially positioned by the positioning pin;
  • the stop gauge measurement includes the following steps:
  • the stop gauge rod drives the second measuring protrusion thereon to rotate around the center line of the eccentric hole to a set angle, and the stop end measuring end face of the stop gauge rod contacts the plane to be measured, and then the stop gauge rod and the positioning sleeve are circumferentially positioned by the positioning pin;
  • the circumferential pre-positioning between the through gauge rod or the stop gauge rod and the positioning sleeve is first performed, and then the set angle is rotated around the center line of the eccentric hole.
  • the present application adopts a mechanical measurement structure, and the intermediate specimen, the first specimen, and the second specimen cooperate to measure whether the distance between a certain surface to be tested and the reference end surface meets the requirements.
  • the structure is simple and reasonable, and the requirements for the measurement environment are not high. It is particularly suitable for configuration at the production site, and online detection at any time can timely discover quality deviations and avoid batch scrapping accidents;
  • the present application solves the problem of inaccurate indirect measurement of the height of the circlip groove in the inner hole of the bevel gear by converting the height of the circlip groove to be measured in the hole (the distance between the bottom surface of the groove and the reference end surface) into an external measurement structure through a positioning sleeve;
  • the second measuring protrusion is provided on the through gauge rod of the present application, and the second measuring protrusion is provided on the stop gauge rod, and is adapted to the eccentric hole and the slot hole on the positioning sleeve.
  • the through gauge rod or the stop gauge rod rotates around the center line of the eccentric hole, so that the first measuring protrusion or the second measuring protrusion can be inserted into the retaining spring groove, thereby realizing the detection of the distance between the groove bottom surface and the reference end surface, which solves the problem that the existing inspection tool is difficult to insert into the retaining spring groove for measurement;
  • the eccentric hole of the present invention is larger than the semicircular hole, so that when the first measuring rod or the second measuring rod rotates The first measuring rod or the second measuring rod will not fall out of the eccentric hole, thereby realizing the rotation of the first measuring rod or the second measuring rod around the center line of the eccentric hole, further improving the convenience of operation.
  • the sizes of the through gauge rod and the stop gauge rod of the present application are related to the distance to be measured. In fact, no reading is required during the test. It is only necessary to observe the positional relationship between the through end reference surface or the stop end reference surface and the reference surface to convert the quantitative index into a sensory index. This is easy for workers to operate and implement, and at the same time solves the deviation caused by different people's reading habits.
  • FIG1 is a structural cross-sectional view of a bevel gear under test
  • FIG2 is a front view of the matching relationship between the gauge rod, the positioning sleeve and the bevel gear
  • FIG3 is a top view of the matching relationship between the gauge rod, the positioning sleeve and the bevel gear
  • FIG4 is a front view showing the matching relationship between the gauge rod, the positioning sleeve and the bevel gear
  • FIG5 is a top view of the matching relationship between the gauge rod, the positioning sleeve and the bevel gear
  • Fig. 6 is a front view of the through gauge rod
  • FIG7 is a bottom view of the through gauge rod
  • FIG8 is a front view of a stop gauge rod
  • FIG9 is a bottom view of the stop gauge rod
  • FIG10 is a cross-sectional view of a positioning sleeve
  • FIG. 11 is a top view of the positioning sleeve.
  • spatially relative terms such as “above”, “above”, “on the upper surface of”, “above”, etc. may be used here to describe the spatial positional relationship between a device or feature and other devices or features as shown in the figure. It should be understood that spatially relative terms are intended to include different orientations of the device in use or operation in addition to the orientation described in the figure. For example, if the device in the accompanying drawings is inverted, the device described as “above other devices or structures” or “above other devices or structures” will be positioned as “below other devices or structures” or “below other devices or structures”. Thus, the exemplary term “above” can include both “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or in other orientations), and the spatially relative descriptions used here are interpreted accordingly.
  • the object to be measured in the present invention is a bevel gear 5, which includes a gear portion and a gear shaft portion.
  • the bevel gear 5 has a reference end face 5-1 and a surface to be detected, and the surface to be detected needs to be parallel to the reference end face 5-1.
  • the present invention improves a gauge for the height of a bevel gear retaining ring groove, as shown in FIGS. 2 to 11 .
  • the gauge is used to detect whether the distance to be measured between the reference end face 5-1 and the surface to be detected meets the requirements.
  • the gauge includes an intermediate specimen, a first specimen, and a second specimen.
  • the intermediate specimen is mounted on the reference end face 5-1 of the bevel gear 5, and a reference surface 4-4 is provided on the intermediate specimen;
  • the first specimen is mounted on the reference surface 4-4 of the intermediate specimen, and a through-end measuring end face is provided on the first specimen, and the through-end measuring end face is used to approach the surface to be detected to detect whether the distance to be measured between the reference end face 5-1 and the surface to be detected is greater than the minimum limit size;
  • the second specimen is mounted on the reference surface 4-4 of the intermediate specimen, and a stop-end measuring end face is provided on the second specimen, and the stop-end measuring end face is used to approach the surface to be detected to detect whether the distance to be measured between the reference end face 5-1 and the surface to be detected is less than the maximum limit size.
  • the surface to be tested is the bottom surface 5-21 of the retaining ring groove 5-2 on the circumferential surface of the bevel gear 5.
  • a first measuring protrusion 1-1 is provided on one side of the through-end measuring end surface of the first test body, and a second measuring protrusion 2-1 is provided on one side of the stop-end measuring end surface of the second test body.
  • the thickness of the first measuring protrusion 1-1 and the second measuring protrusion 2-1 are both smaller than the size of the retaining ring groove 5-2.
  • the first measuring protrusion 1-1 or the second measuring protrusion 2-1 rotates The set angle can be extended into the retaining ring groove 5-2 to detect the distance to be measured between the groove bottom surface 5-21 and the reference end surface 5-1.
  • the reference end face 5-1 and the surface to be detected can be both located on the inner side of the bevel gear 5, or both located on the outer side of the bevel gear 5, or one of them is located on the inner side and the other is located on the outer side.
  • the reference end face 5-1 is located on the outer side of the bevel gear 5, and the retaining spring groove 52 is located on the inner side of the bevel gear 5.
  • the intermediate test body is provided with a through hole for the through gauge rod 1 or the stop gauge rod 2 to extend into.
  • the through hole includes an eccentric hole 4-1 and a slot hole 4-2 for the first measuring protrusion 1-1 and the second measuring protrusion 2-1 to pass through.
  • the first measuring protrusion 1-1 or the second measuring protrusion 2-1 can be extended into the retaining spring groove 5-2 after rotating around the center line of the eccentric hole 4-1 at a set angle to detect the distance to be measured between the groove bottom surface 5-21 and the reference end face 5-1.
  • the eccentric hole 4-1 is connected to the slot hole 4-2.
  • the size is slightly larger than the first measuring rod 1-3 or the second measuring rod 2-3 (the first measuring rod 1-3 and the second measuring rod 2-3 can be designed with the same diameter), and the slot hole 4-2 is adapted to the shape of the first measuring protrusion 1-1 or the second measuring protrusion 1-2 (the first measuring protrusion 1-1 and the second measuring protrusion 1-2 can be designed with the same size).
  • the eccentric hole 4-1 is larger than the semicircular hole, so that the first measuring rod 1-3 or the second measuring rod 2-3 will not fall out of the eccentric hole 4-1 when rotating, thereby realizing the rotation of the first measuring rod 1-3 or the second measuring rod 2-3 around the center line of the eccentric hole 4-1, which is easy to operate.
  • the end face of the positioning sleeve 4 away from the reference end face of the bevel gear is the reference face 4-4, and the reference end face 5-1 is located between the reference face 4-4 and the surface to be detected.
  • the first specimen is provided with a through-end reference face 1-21 that matches the reference face 4-4 of the intermediate specimen.
  • the distance between the through-end reference face 1-21 and the through-end measuring end face is the designed through-end dimension HT.
  • H is the distance between the reference surface 4-4 and the bottom end surface of the intermediate specimen
  • L is the basic design dimension of the distance to be measured
  • is the design tolerance of the distance to be measured
  • the second specimen is provided with a stop end reference surface 2-21 matched with the reference surface 4-4 of the intermediate specimen, and the distance between the stop end reference surface 2-21 and the stop end measurement end surface is the design stop end dimension HZ.
  • H is the distance between the reference surface 4-4 and the bottom surface of the intermediate specimen
  • L is the distance to be measured.
  • is the design tolerance of the distance to be measured.
  • the distance H between the reference surface 4 - 4 and the reference end surface 5 - 1 , the basic design dimension L of the distance to be measured, and the design tolerance ⁇ of the distance to be measured are all design values.
  • the intermediate specimen includes a positioning sleeve 4, the bottom end face of the positioning sleeve 4 is installed on the reference end face 5-1, the reference surface 4-4 of the intermediate specimen is located at the top, and the center line of the positioning sleeve 4 coincides with the center line of the bevel gear 5.
  • the specific implementation method is: the positioning sleeve 4 has a matching hole that is compatible with the outer peripheral surface of the gear shaft of the bevel gear 5, and the positioning sleeve 4 is sleeved on the outside of the gear shaft.
  • the first specimen includes a through gauge rod 1, which includes a first positioning platform 1-2 for mounting on a positioning sleeve 4 and a first measuring rod 1-3 for extending into the inner hole of a bevel gear 5, a through end reference surface 1-21 is arranged on the first positioning platform 1-2, and a through end measuring end surface is arranged at a through end T of the first measuring rod 1-3 away from the first positioning platform.
  • the second test body includes a stop gauge rod 2, which includes a second positioning platform 2-2 for mounting on the positioning sleeve 4 and a second measuring rod 2-3 for extending into the inner hole of the bevel gear 5, a stop end reference surface 2-21 is arranged on the second positioning platform 2-2, and a stop end measuring end surface is arranged at a stop end Z of the second measuring rod 2-3 away from the second positioning platform.
  • a stop gauge rod 2 which includes a second positioning platform 2-2 for mounting on the positioning sleeve 4 and a second measuring rod 2-3 for extending into the inner hole of the bevel gear 5, a stop end reference surface 2-21 is arranged on the second positioning platform 2-2, and a stop end measuring end surface is arranged at a stop end Z of the second measuring rod 2-3 away from the second positioning platform.
  • the inspection fixture also includes a positioning mechanism, which includes a first positioning mechanism for circumferential pre-positioning of the through gauge rod 1 or the no-stop gauge rod 2 after being installed in the positioning sleeve 4, and a second positioning mechanism for circumferential measurement and positioning of the through gauge rod 1 or the no-stop gauge rod 2 after rotating the through gauge rod 1 or the no-stop gauge rod 2 around the center line of the eccentric hole 4-1 by a set angle.
  • a positioning mechanism which includes a first positioning mechanism for circumferential pre-positioning of the through gauge rod 1 or the no-stop gauge rod 2 after being installed in the positioning sleeve 4, and a second positioning mechanism for circumferential measurement and positioning of the through gauge rod 1 or the no-stop gauge rod 2 after rotating the through gauge rod 1 or the no-stop gauge rod 2 around the center line of the eccentric hole 4-1 by a set angle.
  • the first positioning mechanism and the second positioning mechanism both include a positioning pin 3, a pin hole matching the positioning pin 3 is provided on the through gauge rod 1 and the stop gauge rod 2, and a positioning hole 4-3 matching the positioning pin 3 is provided on the positioning sleeve 4.
  • the positioning pin 3 passes through the pin hole of the through gauge rod 1 or the stop gauge rod 2, and then is inserted into the corresponding positioning hole 4-3.
  • the through gauge measurement includes the following steps:
  • the gauge rod 1 drives the first measuring protrusion 1-1 thereon to rotate around the center line of the eccentric hole 4-1 to a set angle, and then the circumferential measurement and positioning between the gauge rod 1 and the positioning sleeve 4 are performed through the positioning pin 3;
  • the stop gauge measurement includes the following steps:
  • the stop gauge rod 2 drives the second measuring protrusion 2-1 thereon to rotate around the center line of the eccentric hole 4-1 to a set angle, and makes the stop end measuring end face of the stop gauge rod 2 contact with the plane to be measured, and then the circumferential measurement positioning between the stop gauge rod 2 and the positioning sleeve 4 is performed through the positioning pin 3;
  • the through gauge measurement or the no-go gauge measurement can be performed separately. In the present invention, only if both the through gauge measurement and the no-go gauge measurement meet the requirements, the distance to be measured from the reference end face 5-1 to the groove bottom face 5-21 is qualified. Otherwise, if one or both of the through gauge measurement and the no-go gauge measurement do not meet the requirements, the distance to be measured is unqualified.
  • the circumferential pre-positioning between the through-gauge rod 1 or the stop-gauge rod 2 and the positioning sleeve 4 is first performed, and then the eccentric hole 4-1 is rotated to set the angle. Since the internal situation cannot be seen afterwards, it is necessary to pre-position the through gauge rod 1 or the stop gauge rod 2, and use this position as the initial rotation position for subsequent rotation setting angles to prevent the through gauge rod 1 or the stop gauge rod 2 from rotating by itself due to external force or other reasons after being installed in the positioning sleeve 4, making it impossible to determine the initial rotation position.
  • the through gauge rod 1 or the stop gauge rod 2 is inserted from the through hole of the positioning sleeve 4 into the inner hole of the bevel gear 5.
  • the first measuring protrusion 1-1 or the second measuring protrusion 2-1 does not extend into the retaining spring groove 5-2.
  • the height from the reference end face 5-1 to the groove bottom face 5-21 cannot be measured.
  • the first measuring protrusion 1-1 or the second measuring protrusion 2-1 can extend into the retaining spring groove 5-2.
  • the measurement can be realized.
  • the setting angle is 180°, which is convenient for locating the position of the positioning hole 4-3 on the positioning sleeve 4.
  • the first measuring protrusion 1-1 or the second measuring protrusion 2-1 can extend into the retaining spring groove 5-2 to a greater extent, thereby making the measurement more accurate.
  • the invention discloses a go/no-go check fixture for detecting the height of the inner hole circlip groove, which is used for qualitative measurement in the production process, and occasionally a profilometer is used for accurate calibration and inspection.
  • the check fixture has a simple structure and is easy to implement, and can realize effective production.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

一种锥齿轮卡簧槽高度的检具,包括中间检体、第一检体和第二检体,中间检体安装在锥齿轮(5)的基准端面(5-1)上,中间检体上设有参照面(4-4);第一检体安装在中间检体的参照面(4-4)上,第一检体上设有通端测量端面,通端测量端面用于靠近待检测面以检测基准端面(5-1)与待检测面之间的待测距离是否大于最小极限尺寸;第二检体安装在中间检体的参照面(4-4)上,第二检体上设有止端测量端面,止端测量端面用于靠近待检测面以检测基准端面(5-1)与待检测面之间的待测距离是否小于最大极限尺寸。采用中间检体、第一检体和第二检体配合,即可测得某一待检测面与基准端面(5-1)的测量,使得测量过程简单,效率高。还公开了一种锥齿轮卡簧槽高度的检具的检测方法。

Description

一种锥齿轮卡簧槽高度的检具及检测方法 技术领域
本发明涉及检具技术领域,特别涉及一种锥齿轮卡簧槽高度的检具及检测方法。
背景技术
齿轮是一种常见的机械零件,这类靠旋转运动的机械零件多数以内孔定位安装。对于一些精密机械配套的齿轮内孔通常设有卡簧槽,利用卡簧槽与轴配套卡簧配合作轴向限位。例如,汽车差速器中的半轴齿轮内孔有一道卡簧槽,该内孔中的卡簧槽与齿轮外端面有尺寸限制(齿轮外端面是安装面,是定位面,是轴向尺寸的基准)。如图1,由于该卡簧槽高度L±δ(外端面与卡簧槽的底面之间的距离)为间接尺寸,市售的长度测量器具不可以直接用于检测。
现代检测设备中轮廓仪、三维坐标测量仪可以用于精密测量,但也不能直接测量,需分别测量卡簧槽、外端面到工件轴端面的距离,然后对两个距离进行求差,间接换算出卡簧槽的底面至外端面的距离,易出错。加上精密仪器对检验条件要求很高,检测效率很低,只适合在精密测量室内用于验证检验,不能用于生产现场检验。如申请号为CN201910616105.2的专利公开了一种测量内孔环凹槽宽及相对外台肩间距的检具和检测方法,也是借助百分表、量块等进行测量,由于车间缺少必要的检具,生产线上的操作工不能及时发现质量偏差,易产生批量报废事故,造成经济损失。
发明内容
为了解决现有技术存在的通过借助测量装置不能及时发现产品质量偏差的问题,本发明提供一种可在车间使用的便捷的锥齿轮卡簧槽高度的检具及检测方法。
本发明解决其技术问题所采用的技术方案是:
一种锥齿轮卡簧槽高度的检具,其中,锥齿轮具有基准端面和与基准端面平行的待检测面,检具用于检测基准端面与待检测面之间的待测距离是否符合要求,所述的检具包括:
中间检体,所述的中间检体底端面安装在锥齿轮的基准端面上,所 述的中间检体上设有参照面;
第一检体,所述的第一检体安装在中间检体的参照面上,所述的第一检体上设有通端测量端面,通端测量端面用于靠近待检测面以检测基准端面与待检测面之间的待测距离是否大于最小极限尺寸;
第二检体,所述的第二检体安装在中间检体的参照面上,所述的第二检体上设有止端测量端面,止端测量端面用于靠近待检测面以检测基准端面与待检测面之间的待测距离是否小于最大极限尺寸。
进一步的,所述的待检测面为锥齿轮周面上的卡簧槽的槽底面,所述的第一检体的通端测量端面的一侧设有第一测量凸片,所述的第二检体的止端测量端面的一侧设有第二测量凸片,所述的第一测量凸片和第二测量凸片厚度均小于卡簧槽的尺寸,第一测量凸片或第二测量凸片转动设定角度可伸入到卡簧槽中以检测槽底面与基准端面之间的待测距离。
进一步的,所述的基准端面位于锥齿轮的外侧,卡簧槽位于锥齿轮的内侧,所述的中间检体上设有供通规量杆或止规量杆伸入的通孔,所述的通孔包括偏心孔和供第一测量凸片及第二测量凸片通过的槽孔,偏心孔为大于半圆的孔,第一测量凸片或第二测量凸片绕偏心孔的中心线转动设定角度后可以伸入到卡簧槽中以检测槽底面与基准端面之间的待测距离。偏心孔大于半圆孔,这样第一量杆或第二量杆旋转时不会脱出偏心孔,从而实现第一量杆或第二量杆绕偏心孔的中心线转动,便于操作。
进一步的,基准端面位于参照面与待检测面之间,所述的第一检体设有与中间检体的参照面配合的通端基准面,通端基准面与通端测量端面的距离为设计通端尺寸HT,设计通端尺寸HT计算公式为:
HT=L-δ+H,      (1)
其中,H为中间检体的参照面与底端面之间的距离,L为待测距离的基本设计尺寸,δ为待测距离的设计公差;
所述的第二检体设有与中间检体的参照面配合的止端基准面,且止端基准面与止端测量端面的距离为设计止端尺寸HZ,设计止端尺寸HZ的 计算公式为:
HZ=L+δ+H      (2)
其中,H为中间检体的参照面与底端面之间的距离,L为待测距离的基本设计尺寸,δ为待测距离的设计公差。
进一步的,所述的中间检体包括定位轴套,定位轴套的底端面安装在基准端面上,定位轴套的中心线与锥齿轮的中心线重合。
进一步的,所述的第一检体包括通规量杆,所述的通规量杆包括用于安装在定位轴套上的第一定位台和用于伸入到锥齿轮的内孔中的第一量杆,所述的通端基准面设置在第一定位台上,所述的通端测量端面设置在第一量杆远离第一定位台的通端;所述的第二检体包括止规量杆,所述的止规量杆包括用于安装在定位轴套上的第二定位台和用于伸入到锥齿轮的内孔中的第二量杆,所述的止端基准面设置在第二定位台上,所述的止端测量端面设置在第二量杆远离第二定位台的止端。
进一步的,所述的检具还包括定位机构,所述的定位机构包括通规量杆或止规量杆装入定位轴套后进行周向预定位的第一定位机构和用于通规量杆或止规量杆绕偏心孔的中心线旋转设定角度后进行周向测量定位的第二定位机构。
进一步的,所述的第一定位机构和第二定位机构均包括定位销,所述的通规量杆和止规量杆上设有与定位销匹配的销孔,定位轴套上设有与定位销匹配的定位孔。
一种如上述的一种锥齿轮卡簧槽高度的检具的检测方法,包括通规测量和止规测量:
通规测量包括以下步骤:
S11:首先安装定位轴套,使得定位轴套的底端面贴合到锥齿轮的基准端面上;
S12:将通规量杆从定位轴套的通孔中塞入至锥齿轮的内孔,
S13:通规量杆带动其上的第一测量凸片绕偏心孔的中心线旋转设定角度,然后通过定位销进行通规量杆与定位轴套之间的周向定位;
S14:观察通规量杆的通端基准面是否紧靠定位轴套的参照面,如果 通端基准面紧靠定位轴套的参照面,说明通规量杆的通端测量端面与待测平面不接触,则通规测量合格,否则通规测量不合格;
止规测量包括以下步骤:
S21:首先安装定位轴套,使得轴套的底端面贴合到锥齿轮的基准端面上;
S22:将止规量杆从定位轴套的通孔中塞入至锥齿轮的内孔,
S23:止规量杆带动其上的第二测量凸片绕偏心孔的中心线旋转设定角度,并使得止规量杆的止端测量端面与待测平面接触,然后通过定位销进行止规量杆与定位轴套之间的周向定位;
S24:观察止规量杆的止端基准面是否紧靠定位轴套的参照面,如果止端基准面不紧靠定位轴套的参照面,则止规测量合格,否则止规测量不合格。
优选的,通规量杆或止规量杆从定位轴套的通孔中塞入至锥齿轮的内孔后,首先要进行通规量杆或止规量杆与定位轴套之间的周向预定位,然后再绕偏心孔的中心线旋转设定角度。
有益效果:
(1)本申请采用机械测量结构,中间检体、第一检体和第二检体配合,即可测得某一待检测面与基准端面的距离是否符合要求,结构简单、合理,对测量环境要求不高,特别适合在生产现场配置,在线随时检测,能够及时发现质量偏差,避免批量报废事故;
(2)本申请通过将孔内待测的卡簧槽高度(槽底面与基准端面的距离)经定位轴套转化为外测量结构,解决了锥齿轮内孔卡簧槽高度的间接测量不精确的问题;
(3)本申请通规量杆上设置第二测量凸片,止规量杆上设置第二测量凸片,并与定位轴套上的偏心孔和槽孔适配,通规量杆或止规量杆绕偏心孔的中心线转动,即可实现第一测量凸片或第二测量凸片伸入到卡簧槽中,从而实现槽底面与基准端面的距离的检测,解决了现有检具难以伸入卡簧槽进行测量的问题;
(4)本申请通偏心孔大于半圆孔,这样第一量杆或第二量杆旋转时 不会脱出偏心孔,从而实现第一量杆或第二量杆绕偏心孔的中心线转动,进一步提高操作的便捷性。
(5)本申请的通规量杆和止规量杆的尺寸与待测距离相关联,实际在测试时不需要读数,只需要观察通端基准面或止端基准面与参考面之间的位置关系,将量化指标转换为感官指标,对于工人来讲易于操作和实现,同时解决了不同人读数习惯造成的偏差。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为被测锥齿轮的结构剖视图;
图2为通规量杆、定位轴套与锥齿轮的配合关系正视图;
图3为通规量杆、定位轴套与锥齿轮的配合关系俯视图;
图4为止规量杆、定位轴套与锥齿轮的配合关系正视图;
图5为止规量杆、定位轴套与锥齿轮的配合关系俯视图;
图6为通规量杆的正视图;
图7为通规量杆的仰视图;
图8为止规量杆的正视图;
图9为止规量杆的仰视图;
图10为定位轴套的剖视图;
图11为定位轴套的俯视图。
其中,1、通规量杆,1-1、第一测量凸片,1-2、第一定位台,1-21、通端基准面,1-3、第一量杆,T、通端,2、止规量杆,2-1、第二测量凸片,2-2、第二定位台,2-21、止端基准面,2-3、第二量杆,Z、止端,3、定位销,4、定位轴套,4-1、偏心孔,4-2、槽孔,4-3、定位孔,4-4、参照面,5、锥齿轮,5-1、基准端面,5-2、卡簧槽,5-21、槽底面,HT、设计通端尺寸,HZ、设计止端尺寸,H、中间检体的参照面与底端面之间的距离,L、待测距离的基本设计尺寸,δ、待测距离的设计公差。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
如图1,本发明需要测量的对象为锥齿轮5,锥齿轮包括齿轮部分和齿轮轴部分,锥齿轮5具有基准端面5-1和待检测面,待检测面需要与基准端面5-1平行,本发明提高一种锥齿轮卡簧槽高度的检具,如图2~11,检具用于检测基准端面5-1与待检测面之间的待测距离是否符合要求,检具包括中间检体、第一检体和第二检体,中间检体安装在锥齿轮5的基准端面5-1上,中间检体上设有参照面4-4;第一检体安装在中间检体的参照面4-4上,第一检体上设有通端测量端面,通端测量端面用于靠近待检测面以检测基准端面5-1与待检测面之间的待测距离是否大于最小极限尺寸;第二检体安装在中间检体的参照面4-4上,第二检体上设有止端测量端面,止端测量端面用于靠近待检测面以检测基准端面5-1与待检测面之间的待测距离是否小于最大极限尺寸。
待检测面为锥齿轮5周面上的卡簧槽5-2的槽底面5-21,第一检体的通端测量端面的一侧设有第一测量凸片1-1,第二检体的止端测量端面的一侧设有第二测量凸片2-1,第一测量凸片1-1和第二测量凸片2-1厚度均小于卡簧槽5‐2的尺寸,第一测量凸片1-1或第二测量凸片2-1转动 设定角度可伸入到卡簧槽5-2中以检测槽底面5-21与基准端面5-1之间的待测距离。
基准端面5-1与待检测面可以均位于锥齿轮5的内侧,也可以均位于锥齿轮5的外侧,或者其中一个位于内侧,另一个位于外侧,作为本发明的实施例,基准端面5-1位于锥齿轮5的外侧,卡簧槽52位于锥齿轮5的内侧,中间检体上设有供通规量杆1或止规量杆2伸入的通孔,通孔包括偏心孔4-1和供第一测量凸片1-1及第二测量凸片2-1通过的槽孔4-2,第一测量凸片1-1或第二测量凸片2-1绕偏心孔4-1的中心线转动设定角度后可以伸入到卡簧槽5-2中以检测槽底面5-21与基准端面5-1之间的待测距离。偏心孔4-1与槽孔4-2相通,本发明中,尺寸比第一量杆1-3或第二量杆2-3稍大(第一量杆1-3和第二量杆2-3可以设计相同直径),槽孔4-2与第一测量凸片1-1或第二测量凸片1-2的形状适配(第一测量凸片1-1和第二测量凸片1-2可以设计相同尺寸),当然也可以大于第一测量凸片1-1或第二测量凸片1-2的尺寸,另外,偏心孔4-1大于半圆孔,这样第一量杆1-3或第二量杆2-3旋转时不会脱出偏心孔4-1,从而实现第一量杆1-3或第二量杆2-3绕偏心孔4-1的中心线转动,便于操作。
本发明中,定位轴套4远离锥齿轮的基准端面的端面为参照面4-4,且基准端面5-1位于参照面4-4与待检测面之间,第一检体设有与中间检体的参照面4-4配合的通端基准面1-21,通端基准面1-21与通端测量端面的距离为设计通端尺寸HT,设计通端尺寸HT计算公式为:
HT=L-δ+H,      (1)
其中,H为中间检体的参照面4-4与底端面之间的距离,L为待测距离的基本设计尺寸,δ为待测距离的设计公差;
第二检体设有与中间检体的参照面4-4配合的止端基准面2-21,且止端基准面2-21与止端测量端面的距离为设计止端尺寸HZ,设计止端尺寸HZ的计算公式为:
HZ=L+δ+H      (2)
其中,H为中间检体的参照面4-4与底端面之间的距离,L为待测距 离的基本设计尺寸,δ为待测距离的设计公差。
参照面4-4与基准端面5-1之间的距离H、待测距离的基本设计尺寸L和待测距离的设计公差δ都是设计值。
中间检体包括定位轴套4,定位轴套4的底端面安装在基准端面5-1上,中间检体的参照面4-4位于顶部,定位轴套4的中心线与锥齿轮5的中心线重合,具体实现方式为:定位轴套4具有与锥齿轮5的齿轮轴外周面相适配的配合孔,定位轴套4套在齿轮轴外部。
第一检体包括通规量杆1,通规量杆1包括用于安装在定位轴套4上的第一定位台1-2和用于伸入到锥齿轮5的内孔中的第一量杆1-3,通端基准面1-21设置在第一定位台1-2上,通端测量端面设置在第一量杆1-3远离第一定位台的通端T。
第二检体包括止规量杆2,止规量杆2包括用于安装在定位轴套4上的第二定位台2-2和用于伸入到锥齿轮5的内孔中的第二量杆2-3,止端基准面2-21设置在第二定位台2-2上,止端测量端面设置在第二量杆2-3远离第二定位台的止端Z。
检具还包括定位机构,定位机构包括通规量杆1或止规量杆2装入定位轴套4后进行周向预定位的第一定位机构和用于通规量杆1或止规量杆2绕偏心孔4‐1的中心线旋转设定角度后进行周向测量定位的第二定位机构。
第一定位机构和第二定位机构均包括定位销3,通规量杆1和止规量杆2上设有与定位销3匹配的销孔,定位轴套4上设有与定位销3匹配的定位孔4-3。定位轴套4上的定位孔4-3数量为两个,一个用于通规量杆1或止规量杆2的周向预定位,另一个用于通规量杆1或止规量杆2旋转设定角度后进行进行周向测量定位,需要周向预定位或周向测量定位时,定位销3穿过通规量杆1或止规量杆2的销孔,然后插入到相应的定位孔4-3中。
一种如上述的锥齿轮卡簧槽高度的检具的检测方法,包括通规测量和止规测量:
通规测量包括以下步骤:
S11:首先安装定位轴套4,使得定位轴套4的底端面贴合到锥齿轮5的基准端面5-1上;
S12:将通规量杆1从定位轴套4的通孔中塞入至锥齿轮5的内孔,
S13:通规量杆1带动其上的第一测量凸片1-1绕偏心孔4‐1的中心线旋转设定角度,然后通过定位销3进行通规量杆1与定位轴套4之间的周向测量定位;
S14:观察通规量杆1的通端基准面1-21是否紧靠定位轴套4的参照面4-4,如果通端基准面1-21紧靠定位轴套4的参照面4-4,说明通规量杆1的通端测量端面与待测平面不接触,则通规测量合格,否则通规测量不合格;
止规测量包括以下步骤:
S21:首先安装定位轴套4,使得轴套的底端面贴合到锥齿轮5的基准端面5-1上;
S22:将止规量杆2从定位轴套4的通孔中塞入至锥齿轮5的内孔,
S23:止规量杆2带动其上的第二测量凸片2-1绕偏心孔4‐1的中心线旋转设定角度,并使得止规量杆2的止端测量端面与待测平面接触,然后通过定位销3进行止规量杆2与定位轴套4之间的周向测量定位;
S24:观察止规量杆2的止端基准面2-21是否紧靠定位轴套4的参照面4-4,如果止端基准面2-21不紧靠定位轴套4的参照面4-4,即止端基准面2-21与定位轴套4的参照面4-4之间具有均匀的缝隙(能透光),则止规测量合格,否则止规测量不合格。
通规测量或止规测量可以单独进行,本发明中,只有通规测量和止规测量均符合要求,则基准端面5-1至槽底面5-21的待测距离合格,否则,通规测量和止规测量其中一个或两个不符合要求,则待测距离不合格。
其中,通规量杆1或止规量杆2从定位轴套4的通孔中塞入至锥齿轮5的内孔后,首先要进行通规量杆1或止规量杆2与定位轴套4之间的周向预定位,然后再绕偏心孔4-1的中心线旋转设定角度。因为定位轴套4的通孔具有尺寸限制,通规量杆1或止规量杆2插入定位轴套4 后看不到内部的情况,所以需要对通规量杆1或止规量杆2进行预定位,并以此位置为旋转初始位置进行后续的旋转设定角度,防止通规量杆1或止规量杆2装入定位轴套4后受到外力或其他原因自行发生转动,从而无法确定旋转初始位置。
本发明中,首先将通规量杆1或止规量杆2从定位轴套4的通孔中塞入至锥齿轮5的内孔,插入时第一测量凸片1-1或第二测量凸片2-1未伸入到卡簧槽5-2中,此时无法测量基准端面5-1至槽底面5-21的高度,然后通规量杆1或止规量杆2转动设定角度后第一测量凸片1-1或第二测量凸片2-1可以伸入到卡簧槽5-2中,理论上,只要一部分第一测量凸片1-1或第二测量凸片2-1位于卡簧槽5-2中即可实现测量,优选的,设定角度为180°,这样既方便定位定位轴套4上定位孔4-3的位置,同时,通规量杆1或止规量杆2绕定位轴套4的偏心孔转动180°后,第一测量凸片1-1或第二测量凸片2-1可以较大程度的伸入到卡簧槽5-2中,从而测量更准确。
本申请的一种检测内孔卡簧槽高度的通止检具用于生产过程中的定性测量,偶用轮廓仪作精确校核检查。该检具结构简单、实施也很容易,能够实现有效生产。
以上,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

  1. 一种锥齿轮卡簧槽高度的检具,其特征在于:
    锥齿轮(5)具有基准端面(5-1)和与基准端面(5-1)平行的待检测面,检具用于检测基准端面(5-1)与待检测面之间的待测距离是否符合要求,所述的检具包括:
    中间检体,所述的中间检体的底端面安装在锥齿轮(5)的基准端面(5-1)上,所述的中间检体上设有参照面(4-4);
    第一检体,所述的第一检体安装在中间检体的参照面(4-4)上,所述的第一检体上设有通端测量端面,通端测量端面用于靠近待检测面以检测基准端面(5-1)与待检测面之间的待测距离是否大于最小极限尺寸;
    第二检体,所述的第二检体安装在中间检体的参照面(4-4)上,所述的第二检体上设有止端测量端面,止端测量端面用于靠近待检测面以检测基准端面(5-1)与待检测面之间的待测距离是否小于最大极限尺寸;
    所述的待检测面为锥齿轮(5)周面上的卡簧槽(5-2)的槽底面(5-21),所述的第一检体的通端测量端面的一侧设有第一测量凸片(1-1),所述的第二检体的止端测量端面的一侧设有第二测量凸片(2-1),所述的第一测量凸片(1-1)和第二测量凸片(2-1)厚度均小于卡簧槽(5‐2)的尺寸,第一测量凸片(1-1)或第二测量凸片(2-1)转动设定角度可伸入到卡簧槽(5‐2)中以检测槽底面(5‐21)与基准端面(5-1)之间的待测距离;
    所述的基准端面(5-1)位于锥齿轮(5)的外侧,卡簧槽(5-2)位于锥齿轮(5)的内侧,所述的中间检体上设有供通规量杆(1)或止规量杆(2)伸入的通孔,所述的通孔包括偏心孔(4-1)和供第一测量凸片(1-1)及第二测量凸片(2-1)通过的槽孔(4-2),偏心孔(4-1)为大于半圆的孔,第一测量凸片(1-1)或第二测量凸片(2-1)绕偏心孔(4-1)的中心线转动设定角度后可以伸入到卡簧槽(5-2)中以检测槽底面(5-21)与基准端面(5-1)之间的待测距离;
    所述的基准端面(5-1)位于参照面(4-4)与待检测面之间,所述的第一检体设有与中间检体的参照面(4-4)配合的通端基准面(1-21),通端基准面(1-21)与通端测量端面的距离为设计通端尺寸HT,设计通 端尺寸HT计算公式为:
    HT=L-δ+H,   (1)
    其中,H为中间检体的参照面(4-4)与底端面之间的距离,L为待测距离的基本设计尺寸,δ为待测距离的设计公差;
    所述的第二检体设有与中间检体的参照面(4-4)配合的止端基准面(2-21),且止端基准面(2-21)与止端测量端面的距离为设计止端尺寸HZ,设计止端尺寸HZ的计算公式为:
    HZ=L+δ+H   (2)
    其中,H为中间检体的参照面(4-4)与底端面之间的距离,L为待测距离的基本设计尺寸,δ为待测距离的设计公差;
    所述的中间检体包括定位轴套(4),定位轴套(4)的底端面安装在基准端面(5-1)上,定位轴套(4)的中心线与锥齿轮(5)的中心线重合;
    所述的第一检体包括通规量杆(1),所述的通规量杆(1)包括用于安装在定位轴套(4)上的第一定位台(1-2)和用于伸入到锥齿轮(5)的内孔中的第一量杆(1-3),所述的通端基准面(1-21)设置在第一定位台(1-2)上,所述的通端测量端面设置在第一量杆(1-3)远离第一定位台(1-2)的通端(T);所述的第二检体包括止规量杆(2),所述的止规量杆(2)包括用于安装在定位轴套(4)上的第二定位台(2-2)和用于伸入到锥齿轮(5)的内孔中的第二量杆(2-3),所述的止端基准面(2-21)设置在第二定位台(2-2)上,所述的止端测量端面设置在第二量杆(2-3)远离第二定位台(2-2)的止端(Z);
    所述的检具还包括定位机构,所述的定位机构包括通规量杆(1)或止规量杆(2)装入定位轴套(4)后进行周向预定位的第一定位机构和用于通规量杆(1)或止规量杆(2)绕偏心孔(4-1)的中心线旋转设定角度后进行周向测量定位的第二定位机构。
  2. 根据权利要求1所述的一种锥齿轮卡簧槽高度的检具,其特征在于:所述的第一定位机构和第二定位机构均包括定位销(3),所述的通规量杆(1)和止规量杆(2)上设有与定位销(3)匹配的销孔,定位轴 套(4)上设有与定位销(3)匹配的定位孔(4-3)。
  3. 一种如权利要求2所述的一种锥齿轮卡簧槽高度的检具的检测方法,其特征在于:包括通规测量和止规测量:
    通规测量包括以下步骤:
    S11:首先安装定位轴套(4),使得定位轴套(4)的底端面贴合到锥齿轮(5)的基准端面(5-1)上;
    S12:将通规量杆(1)从定位轴套(4)的通孔中塞入至锥齿轮(5)的内孔,
    S13:通规量杆(1)带动其上的第一测量凸片(1-1)绕偏心孔(4-1)的中心线旋转设定角度,然后通过定位销(3)进行通规量杆(1)与定位轴套(4)之间的周向测量定位;
    S14:观察通规量杆(1)的通端基准面(1-21)是否紧靠定位轴套(4)的参照面(4-4),如果通端基准面(1-21)紧靠定位轴套(4)的参照面(4-4),说明通规量杆(1)的通端测量端面与待测平面不接触,则通规测量合格,否则通规测量不合格;
    止规测量包括以下步骤:
    S21:首先安装定位轴套(4),使得轴套的底端面贴合到锥齿轮(5)的基准端面(5-1)上;
    S22:将止规量杆(2)从定位轴套(4)的通孔中塞入至锥齿轮(5)的内孔,
    S23:止规量杆(2)带动其上的第二测量凸片(2-1)绕偏心孔(4‐1)的中心线旋转设定角度,并使得止规量杆(2)的止端测量端面与待测平面接触,然后通过定位销(3)进行止规量杆(2)与定位轴套(4)之间的周向测量定位;
    S24:观察止规量杆(2)的止端基准面(2-21)是否紧靠定位轴套(4)的参照面(4-4),如果止端基准面(2-21)不紧靠定位轴套(4)的参照面(4-4),则止规测量合格,否则止规测量不合格。
  4. 根据权利要求3所述的一种锥齿轮卡簧槽高度的检具的检测方法,其特征在于:通规量杆(1)或止规量杆(2)从定位轴套(4)的通 孔中塞入至锥齿轮(5)的内孔后,首先要进行通规量杆(1)或止规量杆(2)与定位轴套(4)之间的周向预定位,然后再绕偏心孔(4‐1)的中心线旋转设定角度。
PCT/CN2023/104801 2022-09-28 2023-06-30 一种锥齿轮卡簧槽高度的检具及检测方法 WO2024066605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211186290.4A CN115265319B (zh) 2022-09-28 2022-09-28 一种锥齿轮卡簧槽高度的检具及检测方法
CN202211186290.4 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024066605A1 true WO2024066605A1 (zh) 2024-04-04

Family

ID=83756620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104801 WO2024066605A1 (zh) 2022-09-28 2023-06-30 一种锥齿轮卡簧槽高度的检具及检测方法

Country Status (2)

Country Link
CN (1) CN115265319B (zh)
WO (1) WO2024066605A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265319B (zh) * 2022-09-28 2022-12-27 江苏太平洋精锻科技股份有限公司 一种锥齿轮卡簧槽高度的检具及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311922A (en) * 1969-04-21 1973-03-28 Deckel Praezisionsmechanik Mas Centring gauge
JP2001255104A (ja) * 2000-03-13 2001-09-21 Mitsubishi Motors Corp リング溝幅測定装置
CN105157522A (zh) * 2015-07-22 2015-12-16 贵州航太精密制造有限公司 一种用于测量沉头螺钉锥面高度的测量装置
CN105180877A (zh) * 2015-09-25 2015-12-23 江苏太平洋精锻科技股份有限公司 机械零件内孔相邻沉槽间距计量检具
CN207019598U (zh) * 2017-05-11 2018-02-16 浙江亚太机电股份有限公司 制动钳卡簧槽高度检测装置
CN110132106A (zh) * 2019-06-18 2019-08-16 江苏太平洋齿轮传动有限公司 一种用于检测齿轮轴深孔长度的检具
CN115265319A (zh) * 2022-09-28 2022-11-01 江苏太平洋精锻科技股份有限公司 一种锥齿轮卡簧槽高度的检具及检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203286948U (zh) * 2012-04-12 2013-11-13 江苏太平洋精锻科技股份有限公司 锥齿轮高度检具
CN202885719U (zh) * 2012-10-29 2013-04-17 江苏太平洋精锻科技股份有限公司 锥齿轮齿端高度检具
KR102598402B1 (ko) * 2018-07-24 2023-11-06 현대자동차 주식회사 기어 검사장치 및 이를 이용한 기어 검사방법
CN110132096A (zh) * 2019-06-18 2019-08-16 江苏太平洋齿轮传动有限公司 一种用于检测锥齿轮内孔球端倒角高度的检具
CN110132095A (zh) * 2019-06-18 2019-08-16 江苏太平洋齿轮传动有限公司 一种用于检测锥齿轮内孔齿小端倒角高度的检具
CN110285743A (zh) * 2019-07-09 2019-09-27 江苏太平洋齿轮传动有限公司 测量内孔环凹槽宽及相对外台肩间距的检具和检测方法
CN110425965A (zh) * 2019-08-28 2019-11-08 江苏太平洋齿轮传动有限公司 检测锥齿轮内孔卡簧槽与外端面距离的对比检具
CN111795634A (zh) * 2020-07-06 2020-10-20 东风汽车车轮随州有限公司 一种车轮螺母座锥孔口部尺寸检测装置及检测方法
CN216558635U (zh) * 2021-12-06 2022-05-17 荆州环球汽车零部件制造有限公司 一种快速检测轴类工件止推面长度的检具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311922A (en) * 1969-04-21 1973-03-28 Deckel Praezisionsmechanik Mas Centring gauge
JP2001255104A (ja) * 2000-03-13 2001-09-21 Mitsubishi Motors Corp リング溝幅測定装置
CN105157522A (zh) * 2015-07-22 2015-12-16 贵州航太精密制造有限公司 一种用于测量沉头螺钉锥面高度的测量装置
CN105180877A (zh) * 2015-09-25 2015-12-23 江苏太平洋精锻科技股份有限公司 机械零件内孔相邻沉槽间距计量检具
CN207019598U (zh) * 2017-05-11 2018-02-16 浙江亚太机电股份有限公司 制动钳卡簧槽高度检测装置
CN110132106A (zh) * 2019-06-18 2019-08-16 江苏太平洋齿轮传动有限公司 一种用于检测齿轮轴深孔长度的检具
CN115265319A (zh) * 2022-09-28 2022-11-01 江苏太平洋精锻科技股份有限公司 一种锥齿轮卡簧槽高度的检具及检测方法

Also Published As

Publication number Publication date
CN115265319A (zh) 2022-11-01
CN115265319B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US10365081B2 (en) Checking tool for measuring distance between adjacent sinking grooves in inner hole of mechanical part
US5271271A (en) Method and apparatus for inspection of gears
WO2024066605A1 (zh) 一种锥齿轮卡簧槽高度的检具及检测方法
CN102252583A (zh) 检测汽车发动机曲轴键槽对称度的检具
CN102494580B (zh) 行星锥齿轮球面比较测量仪
CN207936891U (zh) 一种内螺纹中径测量仪
CN105928435A (zh) 锥齿轮端面沉孔跳动检具
CN112146553B (zh) 一种内斜孔位置尺寸测量装置的设计方法和使用方法
CN210981108U (zh) 内花键齿顶圆直径检验夹具
CN205655775U (zh) 直齿锥齿轮齿厚检具
CN111076639A (zh) 一种内圆跳动检具
CN207007036U (zh) 一种斜孔位置度检具
CN108827214A (zh) 一种特大型轴承套圈外径尺寸的检测装置及方法
CN106767315B (zh) 一种测量孔中心距的检具
CN211042049U (zh) 一种精确测量沟槽位置检具
CN109724497B (zh) 在线检测内球面半径值的方法
CN203534468U (zh) 一种盘槽中心距尺寸的检测装置
CN106017373A (zh) 一种飞轮壳盆口、端面跳动检测装置
CN208366251U (zh) 一种零件锥孔角度和端面开口直径的测量工具
CN208902084U (zh) 一种特大型轴承套圈外径尺寸的检测装置
CN108151613B (zh) 一种测量v型外环槽空间直径的测具的测量方法
CN106907982B (zh) 一种海洋平台桩腿圆度测量工具
CN205537562U (zh) 一种飞轮壳盆口、端面跳动检测装置
CN205537686U (zh) 炮用象限仪的校准装置
CN210922477U (zh) 电机分体式转子的角度检验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869853

Country of ref document: EP

Kind code of ref document: A1