WO2024065670A1 - 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法 - Google Patents

一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法 Download PDF

Info

Publication number
WO2024065670A1
WO2024065670A1 PCT/CN2022/123258 CN2022123258W WO2024065670A1 WO 2024065670 A1 WO2024065670 A1 WO 2024065670A1 CN 2022123258 W CN2022123258 W CN 2022123258W WO 2024065670 A1 WO2024065670 A1 WO 2024065670A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber mesh
steel bars
tensioning
prefabricated composite
mesh
Prior art date
Application number
PCT/CN2022/123258
Other languages
English (en)
French (fr)
Inventor
姚东方
俞超明
仰宗录
陈小文
丁胡应
刘奎
吴涛
刘喜
吕朝乾
温厚亮
高媛
马晓光
杨光宇
郝岩
刘永丽
Original Assignee
中铁四局集团建筑工程有限公司
中铁四局集团有限公司
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁四局集团建筑工程有限公司, 中铁四局集团有限公司, 长安大学 filed Critical 中铁四局集团建筑工程有限公司
Priority to PCT/CN2022/123258 priority Critical patent/WO2024065670A1/zh
Priority to CN202280004023.2A priority patent/CN115768958A/zh
Publication of WO2024065670A1 publication Critical patent/WO2024065670A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/04Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members the elements being stressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions

Definitions

  • the present invention relates to the technical field of assembled structure engineering, and in particular to a prefabricated composite board using a pre-stretched fiber mesh anti-cracking process and a manufacturing method thereof.
  • the prefabricated concrete slabs used in large quantities in prefabricated buildings often crack or even break due to collisions and adverse bending moments during transportation, lifting and stacking, causing unnecessary economic losses and construction delays.
  • the position of the slab hook is changed, or the slab span is reduced in the design to reduce the probability of cracking, which does not fundamentally solve the problem of brittle cracking.
  • Fiber materials have the advantages of light weight, high tensile strength and good corrosion resistance. Adding fibers to concrete can improve the crack resistance of concrete slabs. However, studies have found that dispersing fibers in concrete by mechanical mixing alone often causes problems such as fiber agglomeration and slurry voids. The working efficiency of fibers is only 40% to 70%, and their performance cannot be fully utilized.
  • the prestressed fiber mesh is added to the concrete composite slabs.
  • This type of component not only has good bearing capacity, but also has stronger durability and crack resistance. It can effectively save resources, reduce waste, and is in line with the advanced concept of "green building".
  • the purpose of the present invention is to overcome the above-mentioned shortcomings and provide a prefabricated composite board and a manufacturing method thereof using a pre-stretched fiber mesh anti-cracking process, which has a simple structure and a reasonable design and improves the durability and crack resistance of the component.
  • the present invention adopts the following technical solutions:
  • the present invention discloses a prefabricated composite board using a pre-stretched fiber mesh anti-cracking process, comprising a fiber mesh, a concrete layer is arranged above the fiber mesh, and distributed steel bars and truss steel bars are arranged in the concrete layer.
  • the fiber grid is an orthogonal grid with protruding fiber whiskers, the grid aperture is 20 mm to 50 mm, and the fiber grid is tensioned by a pre-tensioning method before pouring concrete.
  • the thickness of the concrete layer is 60 mm to 120 mm, and the particle size of concrete aggregate used in the concrete layer is smaller than the mesh aperture of the fiber mesh.
  • the distribution steel bars include longitudinal distribution steel bars and transverse distribution steel bars, and the longitudinal distribution steel bars and the transverse distribution steel bars are both located above the fiber grid.
  • the truss steel bars include two bottom longitudinal steel bars, a top longitudinal steel bar and a plurality of connecting steel bars, the two bottom longitudinal steel bars are located between the longitudinal distribution steel bars, the top longitudinal steel bars are located above the concrete layer, and the two ends of the connecting steel bars are respectively connected to the bottom longitudinal steel bars and the top longitudinal steel bars.
  • a method for manufacturing a prefabricated composite board using a pre-stretched fiber mesh anti-cracking process comprises the following steps:
  • Step 1 Install the template, which includes two long side templates, a whole bottom template, two layered detachable slit side panels that can pass through the fiber mesh, rubber strips and side panel bolts for sealing the gaps, the side templates are installed on both sides of the bottom template, and the lower layer parts of the layered detachable slit side panels are installed on the other two sides of the bottom template;
  • Step 2 placing the fiber mesh in the groove of the layered detachable slit side panel, and installing the upper part of the layered detachable slit side panel;
  • Step three installing a tensioning pedestal
  • the tensioning pedestal includes a rectangular tensioning steel rod, a prestressed control bolt, a pressure sensor at the reaction end, and a special pin bolt anchor for the fiber mesh at the other side of the template, one end of the fiber mesh is fixed by the pin bolt anchor, and the other end is fixed to the tensioning steel rod, the fiber mesh is tensioned by a prestressed control bolt, the tensioning force is controlled by a pressure sensor at the reaction end, and the side panel bolts are tightened to compact the reserved seam of the side panel;
  • Step 4 arranging and placing the distribution steel bars and the truss steel bars above the fiber grid, and controlling the height position of the steel bars by using concrete pads;
  • Step 5 pouring concrete in the formwork and vibrating it sufficiently
  • Step six regular maintenance, after the strength meets the requirements, remove the tensioning base and the formwork, and complete the production of the prefabricated composite board using the pre-stretched fiber mesh anti-cracking process.
  • the present invention has a simple structure, reasonable design, easy manufacture and loading and unloading, and low cost; the large-aperture orthogonal grid of the extended fiber whiskers and the aggregate particle size control method are adopted to effectively improve the problem of the fiber mesh cutting the plate concrete, weaken the stratification effect, and improve the performance of the composite board; the upper and lower layers of the template are detachably connected, low-cost and easy-to-operate tensioning equipment, and a reasonable tension control device are adopted to effectively solve the problem of difficulty in the construction and manufacture of the fiber mesh tensioning; by arranging a pre-tensioned fiber grid at the bottom of the prefabricated composite board, the cracks caused by the collision and adverse bending moment of the composite board during transportation, hoisting, and stacking can be effectively improved, and the deflection and crack width of the composite board during normal use can be reduced, thereby improving the impact resistance of the material and playing a positive role in protecting the ecological environment and promoting the development of prefabricated buildings.
  • FIG1 is a front cross-sectional view of a prefabricated laminated board using a pre-stretched fiber mesh anti-cracking process according to the present invention
  • FIG2 is a side cross-sectional view of a prefabricated laminated board using a pre-stretched fiber mesh anti-cracking process according to the present invention
  • FIG3 is a top view of the tensioning platform of the present invention.
  • FIG4 is a three-dimensional view of the tensioning pedestal of the present invention.
  • FIG5 is a schematic diagram of the structure of the layered detachable slit side panels of the present invention.
  • a prefabricated composite panel using a pre-stretched fiber mesh anti-cracking process includes a fiber mesh 2 , a concrete layer 1 is disposed above the fiber mesh 2 , and distribution steel bars 3 and truss steel bars 4 are disposed in the concrete layer 1 .
  • the fiber grid 2 is an orthogonal grid with protruding fiber whiskers to improve the grid adhesion and solve the problem of concrete slab stratification caused by the fiber grid;
  • the grid aperture is 20mm ⁇ 50mm, and is required to be larger than the aggregate particle size to facilitate the passage of aggregate through the grid, thereby increasing the uniformity of aggregate in the slab, improving the shrinkage resistance of the bottom protective layer of the slab, and reducing the probability of shrinkage cracking of the precast slab;
  • the fiber grid 2 is made of materials such as GFRP, CFRP, AFRP and BFRP, and the fiber grid 2 is pre-tensioned by the pre-tensioning method before pouring concrete.
  • the thickness of the concrete layer 1 is 60 mm to 120 mm, and the particle size of the concrete aggregate used in the concrete layer 1 is smaller than the mesh aperture of the fiber mesh 2 .
  • the distribution steel bars 3 include longitudinal distribution steel bars 31 and transverse distribution steel bars 32 , and both the longitudinal distribution steel bars 31 and the transverse distribution steel bars 32 are located above the fiber grid 2 .
  • the truss reinforcement 4 includes two bottom longitudinal reinforcements 41, a top longitudinal reinforcement 42 and a plurality of connecting reinforcements 43.
  • the two bottom longitudinal reinforcements 41 are located between the longitudinal distribution reinforcements 31, the top longitudinal reinforcement 42 is located above the concrete layer 1, and the two ends of the connecting reinforcement 43 are respectively connected to the bottom longitudinal reinforcement 41 and the top longitudinal reinforcement 42.
  • a method for manufacturing a prefabricated composite board using a pre-stretched fiber mesh anti-cracking process comprises the following steps:
  • Step 1 Install the template 5, which includes two long side templates 51, a whole bottom template 52, two layered detachable slit side panels 53 through which the fiber mesh can pass, a rubber strip 54 for sealing the gap, and side panel bolts 55.
  • the side templates 51 are installed on both sides of the bottom template 52, and the lower part of the layered detachable slit side panels 53 is installed on the other two sides of the bottom template 52;
  • Step 2 placing the fiber mesh 2 in the groove of the layered detachable slit side panel 53, and installing the upper part of the layered detachable slit side panel 53;
  • Step three install the tensioning pedestal 6,
  • the tensioning pedestal 6 includes a rectangular tensioning steel rod 61, a prestressed control bolt 62, a pressure sensor 63 at the reaction end, and a fiber mesh special pin anchor 64 at the other side of the template 5, one end of the fiber mesh 2 is fixed by the pin anchor 64, and the other end is fixed to the tensioning steel rod 61, the prestressed control bolt 62 is used to tension the fiber mesh 2, the pressure sensor 63 at the reaction end is used to complete the tensioning force control, and the side panel bolts 55 are tightened to compact the side panel reserved seam;
  • Step 4 Arrange and place the distribution steel bars 3 and the truss steel bars 4 above the fiber grid 2, and use concrete pads to control the height of the steel bars;
  • Step 5 pouring concrete in the template 5 and vibrating it fully;
  • Step six regular maintenance, after the strength meets the requirements, remove the tensioning base 6 and the template 5, and complete the production of the prefabricated composite board using the pre-stretched fiber mesh anti-cracking process.
  • the pre-tightening force controls the bolt to be under compression but not tension during the entire tensioning process.
  • the pressure sensor is used, which is more accurate and economical.
  • the pre-tightening force is used to control the compression reaction force of the bolt to drive the tensioning steel rod to complete the tensioning.
  • the tensioning steel rod passes through the tensioning pedestal, and the pedestal hole increases the constraint on the angle of the tensioning steel rod. No eccentric loading will occur during the tensioning process, and the tensioning is more stable.
  • the upper and lower layers of the layered detachable slit side panels are connected by bolts.
  • the design of the layered detachable slit side panels is convenient for laying and positioning the fiber grid each time, with high reuse rate, green and efficient, and suitable for industrial production of composite panels in prefabricated plants.
  • the slit design of the detachable slit side panels is used to control the height of the fiber mesh, and the pin anchor is used to control the position of each fiber bundle, which is more convenient and efficient and less affected by disturbance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

一种采用预拉纤维网抗裂工艺的预制叠台板及制作方法,属于装配式结构工程技术领域,叠合板包括混凝土层(1)、纤维网格(2)、分布钢筋(3)和桁架钢筋(4);采用先张法对纤维网格(2)进行预应力张拉,并进行浇筑形成新型叠合板,采用分层模板整体浇筑工艺,能够有效解决纤维网格预应力张拉时的施工难题,叠合板采用预应力网格可以有效提高抗裂性能,增大刚度,减小在正常使用情况下的裂缝宽度。

Description

一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法 技术领域
本发明涉及装配式结构工程技术领域,尤其涉及一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法。
背景技术
目前,装配式建筑中大量使用的混凝土预制叠合板常因为运输、吊装、堆放过程中的碰撞和不利弯矩产生裂缝,甚至诱发断裂,带来不必要的经济损伤和工期延误。实践中仅改变叠合板吊钩位置,或设计中缩小板跨以减少开裂概率,没有从根本上解决脆性易裂问题。
纤维材料具有质量轻、抗拉强度高、耐腐蚀性能好等优点,将纤维掺入混凝土能够改善混凝土板的抗裂性能,但研究发现,仅靠机械搅拌将纤维分散于混凝土中,常常存在纤维团聚,浆体空洞等问题,纤维的工作效率只有40%~70%,不能充分发挥其性能。
为解决上述叠合板易开裂问题,提高纤维的工作效率,将经预应力张拉后的纤维织网加入混凝土叠合板中,此类构件不但具有良好的承载能力,而且耐久性、抗裂能力更强,可有效节约资源,减少浪费,符合“绿色建筑”的先进理念。
发明内容
本发明的目的在于克服上述不足,提供一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法,其结构简单,设计合理,提高构件耐久性及抗裂能力。
为解决上述技术问题,本发明采用如下技术方案:
本发明一种采用预拉纤维网抗裂工艺的预制叠合板,包括纤维网格,所述 纤维网格的上方设置有混凝土层,所述混凝土层内设置有分布钢筋和桁架钢筋。
进一步的,所述纤维网格为带有外伸纤维须的正交网格,网格孔径为20mm~50mm,所述纤维网格在浇筑混凝土前采用先张法对网格进行张拉。
再进一步的,所述混凝土层的厚度为60mm~120mm,所述混凝土层采用的混凝土骨料粒径小于所述纤维网格的网格孔径。
再进一步的,所述分布钢筋包括纵分布钢筋和横分布钢筋,且所述纵分布钢筋和所述横分布钢筋均位于所述纤维网格的上方。
再进一步的,所述桁架钢筋包括两根底部纵向钢筋、顶部纵向钢筋和若干连接钢筋,两根所述底部纵向钢筋位于所述纵分布钢筋之间,所述顶部纵向钢筋位于所述混凝土层的上方,所述连接钢筋的两端分别连接所述底部纵向钢筋和所述顶部纵向钢筋。
一种采用预拉纤维网抗裂工艺的预制叠合板的制作方法,包括以下步骤:
步骤一,安装模板,所述模板包括两个长边侧面模板、一个整板底层模板、两个可穿过纤维网的分层可拆卸开缝侧板、用于密封缝隙的橡皮条和侧板螺栓,在所述底层模板的两侧安装有所述侧面模板,在所述底层模板的另外两侧安装有所述分层可拆卸开缝侧板的下层部分;
步骤二,将所述纤维网格放置于所述分层可拆卸开缝侧板的槽道中,安装所述分层可拆卸开缝侧板的上层部分;
步骤三,安装张拉台座,所述张拉台座包括矩形张拉钢杆、预应力控制螺栓、位于反力端的压力传感器和位于所述模板另一侧的纤维网专用销栓锚具,所述纤维网格的一端由所述销栓锚具固定,另一端固定在所述张拉钢杆上,采用预应力控制螺栓对所述纤维网格进行张拉,利用反力端的压力传感器完成张拉力控制,拧紧所述侧板螺栓压实侧板预留缝;
步骤四,在所述纤维网格的上方排布放置所述分布钢筋和所述桁架钢筋,利用混凝土垫块控制钢筋高度位置;
步骤五,在所述模板内完成混凝土浇筑,充分振捣;
步骤六,定期养护,强度满足要求后拆除所述张拉台座及所述模板,完成采用预拉纤维网抗裂工艺的预制叠合板的制作。
与现有技术相比,本发明的有益技术效果:
本发明结构简单、设计合理、易制作易装卸,成本较低;采用外伸纤维须的大孔径正交网格以及骨料粒径控制方法,有效改善纤维网割裂板体混凝土的问题,减弱分层效应,提高叠合板性能;采用上下两层模板可拆卸连接,低成本易操作的张拉设备,合理的拉力控制装置,有效解决了纤维网格张拉施工制作困难的问题;通过在预制叠合板底部设置预拉纤维网格,可以有效改善由于叠合板在运输、吊装、堆放过程中的碰撞和不利弯矩产生的裂缝,并且可以减小叠合板在正常使用过程中的挠度及裂缝宽度,提高了材料的抗冲击性能,对保护生态环境及推进装配式建筑的发展起到了积极的作用。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为本发明采用预拉纤维网抗裂工艺的预制叠合板正视剖面图;
图2为本发明采用预拉纤维网抗裂工艺的预制叠合板侧视剖面图;
图3为本发明张拉台座俯视图;
图4为本发明张拉台座立体图;
图5为本发明分层可拆卸开缝侧板结构示意图;
附图标记说明:1、混凝土层;2、纤维网格;3、分布钢筋;4、桁架钢筋;5、模板;31、纵分布钢筋;32、横分布钢筋;41、底部纵向钢筋;42、顶部纵 向钢筋;43、连接钢筋;51、侧面模板;52、底层模板;53、分层可拆卸开缝侧板;54、橡皮条;55、侧板螺栓;6、张拉台座;61、张拉钢杆;62、预紧力控制螺栓;63、压力传感器;64、销栓锚具。
具体实施方式
如图1-5所示,一种采用预拉纤维网抗裂工艺的预制叠合板,包括纤维网格2,所述纤维网格2的上方设置有混凝土层1,所述混凝土层1内设置有分布钢筋3和桁架钢筋4。
具体来说,所述纤维网格2为带有外伸纤维须的正交网格,以提高网格粘结力,解决了纤维网格引起的混凝土板分层问题;网格孔径为20mm~50mm,且要求大于骨料粒径,便于骨料穿过网格,增加了板内骨料均匀性,提升了板底保护层抗收缩性能,减少预制板收缩开裂概率;纤维网格2采用GFRP、CFRP、AFRP和BFRP等材料制成,所述纤维网格2在浇筑混凝土前采用先张法对网格进行张拉。
所述混凝土层1的厚度为60mm~120mm,所述混凝土层1采用的混凝土骨料粒径小于所述纤维网格2的网格孔径。
所述分布钢筋3包括纵分布钢筋31和横分布钢筋32,且所述纵分布钢筋31和所述横分布钢筋32均位于所述纤维网格2的上方。
所述桁架钢筋4包括两根底部纵向钢筋41、顶部纵向钢筋42和若干连接钢筋43,两根所述底部纵向钢筋41位于所述纵分布钢筋31之间,所述顶部纵向钢筋42位于所述混凝土层1的上方,所述连接钢筋43的两端分别连接所述底部纵向钢筋41和所述顶部纵向钢筋42。
一种采用预拉纤维网抗裂工艺的预制叠合板的制作方法,包括以下步骤:
步骤一,安装模板5,所述模板5包括两个长边侧面模板51、一个整板底 层模板52、两个可穿过纤维网的分层可拆卸开缝侧板53、用于密封缝隙的橡皮条54和侧板螺栓55,在所述底层模板52的两侧安装有所述侧面模板51,在所述底层模板52的另外两侧安装有所述分层可拆卸开缝侧板53的下层部分;
步骤二,将所述纤维网格2放置于所述分层可拆卸开缝侧板53的槽道中,安装所述分层可拆卸开缝侧板53的上层部分;
步骤三,安装张拉台座6,所述张拉台座6包括矩形张拉钢杆61、预应力控制螺栓62、位于反力端的压力传感器63和位于所述模板5另一侧的纤维网专用销栓锚具64,所述纤维网格2的一端由所述销栓锚具64固定,另一端固定在所述张拉钢杆61上,采用预应力控制螺栓62对所述纤维网格2进行张拉,利用反力端的压力传感器63完成张拉力控制,拧紧所述侧板螺栓55压实侧板预留缝;
步骤四,在所述纤维网格2的上方排布放置所述分布钢筋3和所述桁架钢筋4,利用混凝土垫块控制钢筋高度位置;
步骤五,在所述模板5内完成混凝土浇筑,充分振捣;
步骤六,定期养护,强度满足要求后拆除所述张拉台座6及所述模板5,完成采用预拉纤维网抗裂工艺的预制叠合板的制作。
具体的,预紧力控制螺栓张拉全过程受压不受拉,采用压力传感器,更加精确经济,采用预紧力控制螺栓压缩反力带动张拉钢杆完成张拉。
所述步骤三中,张拉钢杆穿过张拉台座,台座孔对张拉钢杆角度增加约束,张拉过程不会发生偏心加载,更加稳定。
分层可拆卸开缝侧板的上下两层通过螺栓连接,设计分层可拆卸开缝侧板便于每次纤维网格的铺设和定位,重复利用率高,绿色高效,适用于预制厂房工业化生产叠合板;利用可拆卸开缝侧板的开缝设计,控制纤维网高度,利用 销栓锚具控制每束纤维位置,更加方便高效,受扰动影响小。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (6)

  1. 一种采用预拉纤维网抗裂工艺的预制叠合板,其特征在于:包括纤维网格,所述纤维网格的上方设置有混凝土层,所述混凝土层内设置有分布钢筋和桁架钢筋。
  2. 根据权利要求1所述的采用预拉纤维网抗裂工艺的预制叠合板,其特征在于:所述纤维网格为带有外伸纤维须的正交网格,网格孔径为20mm~50mm,所述纤维网格在浇筑混凝土前采用先张法对网格进行张拉。
  3. 根据权利要求2所述的采用预拉纤维网抗裂工艺的预制叠合板,其特征在于:所述混凝土层的厚度为60mm~120mm,所述混凝土层采用的混凝土骨料粒径小于所述纤维网格的网格孔径。
  4. 根据权利要求1所述的采用预拉纤维网抗裂工艺的预制叠合板,其特征在于:所述分布钢筋包括纵分布钢筋和横分布钢筋,且所述纵分布钢筋和所述横分布钢筋均位于所述纤维网格的上方。
  5. 根据权利要求4所述的采用预拉纤维网抗裂工艺的预制叠合板,其特征在于:所述桁架钢筋包括两根底部纵向钢筋、顶部纵向钢筋和若干连接钢筋,两根所述底部纵向钢筋位于所述纵分布钢筋之间,所述顶部纵向钢筋位于所述混凝土层的上方,所述连接钢筋的两端分别连接所述底部纵向钢筋和所述顶部纵向钢筋。
  6. 一种如权利要求1~5任意一项所述的采用预拉纤维网抗裂工艺的预制叠合板的制作方法,其特征在于:包括以下步骤:
    步骤一,安装模板,所述模板包括两个长边侧面模板、一个整板底层模板、两个可穿过纤维网的分层可拆卸开缝侧板、用于密封缝隙的橡皮条和侧板螺栓,在所述底层模板的两侧安装有所述侧面模板,在所述底层模板的另外两侧安装有所述分层可拆卸开缝侧板的下层部分;
    步骤二,将所述纤维网格放置于所述分层可拆卸开缝侧板的槽道中,安装所述分层可拆卸开缝侧板的上层部分;
    步骤三,安装张拉台座,所述张拉台座包括矩形张拉钢杆、预应力控制螺栓、位于反力端的压力传感器和位于所述模板另一侧的纤维网专用销栓锚具,所述纤维网格的一端由所述销栓锚具固定,另一端固定在所述张拉钢杆上,采用预应力控制螺栓对所述纤维网格进行张拉,利用反力端的压力传感器完成张拉力控制,拧紧所述侧板螺栓压实侧板预留缝;
    步骤四,在所述纤维网格的上方排布放置所述分布钢筋和所述桁架钢筋,利用混凝土垫块控制钢筋高度位置;
    步骤五,在所述模板内完成混凝土浇筑,充分振捣;
    步骤六,定期养护,强度满足要求后拆除所述张拉台座及所述模板,完成采用预拉纤维网抗裂工艺的预制叠合板的制作。
PCT/CN2022/123258 2022-09-30 2022-09-30 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法 WO2024065670A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/123258 WO2024065670A1 (zh) 2022-09-30 2022-09-30 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法
CN202280004023.2A CN115768958A (zh) 2022-09-30 2022-09-30 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123258 WO2024065670A1 (zh) 2022-09-30 2022-09-30 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法

Publications (1)

Publication Number Publication Date
WO2024065670A1 true WO2024065670A1 (zh) 2024-04-04

Family

ID=85348451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123258 WO2024065670A1 (zh) 2022-09-30 2022-09-30 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法

Country Status (2)

Country Link
CN (1) CN115768958A (zh)
WO (1) WO2024065670A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208545875U (zh) * 2018-05-28 2019-02-26 许学勤 一种预制装配式楼板
WO2019135719A1 (en) * 2018-01-03 2019-07-11 Natchrungsunkh Phanawisittha Method of prestress!ng concrete with bamboo
CN110524679A (zh) * 2019-08-06 2019-12-03 浙江大学 一种加捻预应力frcm板及其成型工艺
CN111794519A (zh) * 2020-05-26 2020-10-20 河海大学 一种trc预应力实施装置及其加固rc构件施工方法
CN113089928A (zh) * 2021-04-07 2021-07-09 浙江大学 碳纤维-frp-钢筋复层网格海水海砂混凝土叠合板及其制作方法
CN217353122U (zh) * 2022-05-20 2022-09-02 黄嘉诚 一种装配式免支模楼承板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135719A1 (en) * 2018-01-03 2019-07-11 Natchrungsunkh Phanawisittha Method of prestress!ng concrete with bamboo
CN208545875U (zh) * 2018-05-28 2019-02-26 许学勤 一种预制装配式楼板
CN110524679A (zh) * 2019-08-06 2019-12-03 浙江大学 一种加捻预应力frcm板及其成型工艺
CN111794519A (zh) * 2020-05-26 2020-10-20 河海大学 一种trc预应力实施装置及其加固rc构件施工方法
CN113089928A (zh) * 2021-04-07 2021-07-09 浙江大学 碳纤维-frp-钢筋复层网格海水海砂混凝土叠合板及其制作方法
CN217353122U (zh) * 2022-05-20 2022-09-02 黄嘉诚 一种装配式免支模楼承板

Also Published As

Publication number Publication date
CN115768958A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN212957170U (zh) 集成桁架钢筋及预应力钢丝网的预制混凝土底板
CN108360722B (zh) 一种带平面桁架临时支撑的装配式大模块半焊接叠合梁板结构
CN108360721A (zh) 预制混凝土超薄型双向受力装配式钢筋桁架叠合楼板
CN108301545A (zh) 一种带立体桁架临时支撑的装配式大模块叠合梁板结构
CN106702914A (zh) 一种提升混凝土结构承载能力的加固系统及其施工方法
CN110005109A (zh) 一种开槽式预应力混凝土叠合板
CN111455874A (zh) 一种波形钢腹板pc桥高墩超长边跨直线段施工方法
JP3610828B2 (ja) 高強度軽量合成桁橋及びその構築方法
CN212641878U (zh) 一种预应力混凝土叠合板底板
CN109914666A (zh) 压型钢板混凝土组合楼面大面积浇筑施工方法
WO2024065670A1 (zh) 一种采用预拉纤维网抗裂工艺的预制叠合板及其制作方法
CN211340366U (zh) 一种连续组合梁桥
CN216920894U (zh) 带可移除刚度件的预制底板
CN110067198A (zh) 一种钢混组合梁桥及其施工方法
CN210947410U (zh) 一种预应力再生混凝土空腹叠合梁
CN211897803U (zh) 采用uhpc横梁-带栓钉钢端板的组合梁结构连续新构造
CN213390771U (zh) 一种免焊叠合板
CN209817214U (zh) 一种楼承板与装配式混凝土梁的连接结构
CN219196452U (zh) 装配式自承力预应力板
CN110080461A (zh) 一种预应力再生混凝土空腹叠合梁
CN219137371U (zh) 一种波形钢腹板组合箱梁负弯矩区预应力结构
CN220763053U (zh) 一种加固用钢绞线网增强ecc预制板制作装置
CN218149157U (zh) 一种预应力混凝土钢管桁架叠合板
CN113832826B (zh) 一种预应力混凝土板梁桥型式及其施工方法
CN220686123U (zh) 预约束块材筏板及节点

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18022615

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960291

Country of ref document: EP

Kind code of ref document: A1