WO2024065398A1 - 自动铲雪方法、装置、设备及可读存储介质 - Google Patents

自动铲雪方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2024065398A1
WO2024065398A1 PCT/CN2022/122597 CN2022122597W WO2024065398A1 WO 2024065398 A1 WO2024065398 A1 WO 2024065398A1 CN 2022122597 W CN2022122597 W CN 2022122597W WO 2024065398 A1 WO2024065398 A1 WO 2024065398A1
Authority
WO
WIPO (PCT)
Prior art keywords
snow
shoveling
clearing
preset
robot
Prior art date
Application number
PCT/CN2022/122597
Other languages
English (en)
French (fr)
Inventor
黄阳
李佳来
曾畅翔
Original Assignee
深圳汉阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汉阳科技有限公司 filed Critical 深圳汉阳科技有限公司
Priority to PCT/CN2022/122597 priority Critical patent/WO2024065398A1/zh
Publication of WO2024065398A1 publication Critical patent/WO2024065398A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H5/00Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice
    • E01H5/04Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material

Definitions

  • the present application relates to the field of robots, and in particular to an automatic snow shoveling method, device, equipment and readable storage medium.
  • This application obtains local real-time weather information; if the weather information is preset weather information, a first control instruction is generated; based on the first control instruction, the snow-clearing robot is controlled to execute the preset snow-clearing plan corresponding to the weather information; based on the preset snow-clearing plan, the snow-clearing robot is controlled to automatically clear snow in the preset snow-clearing area.
  • This application does not require operators to control the snow-clearing robot in real time, but only needs to control the snow-clearing robot to automatically execute the snow-clearing plan and automatically clear snow in the preset area according to the local weather conditions.
  • FIG1 is a schematic diagram of a flow chart of a first embodiment of an automatic snow shoveling method of the present application
  • FIG2 is a schematic diagram of a process of drawing a connection path in the first embodiment of the automatic snow shoveling method of the present application
  • FIG3 is a schematic diagram of a process of drawing a preset snow shoveling area according to a first embodiment of the automatic snow shoveling method of the present application;
  • FIG4 is a schematic diagram of a process of drawing a snow throwing direction in the first embodiment of the automatic snow shoveling method of the present application
  • FIG5 is a schematic diagram of the connection path of the second embodiment of the automatic snow shoveling method of the present application.
  • FIG6 is a schematic diagram of the connection path of the second embodiment of the automatic snow shoveling method of the present application.
  • FIG. 7 is a schematic diagram of the structure of the hardware operating environment involved in the embodiment of the present application.
  • FIG. 1 is a flow chart of a first embodiment of the automatic snow shoveling method of the present application.
  • the present application provides an embodiment of an automatic snow shoveling method. It should be noted that although the logical order is shown in the flowchart, in some cases, the steps shown or described may be performed in a different order than that shown here. For ease of description, the following description of the various steps of the automatic snow shoveling method is omitted.
  • the automatic snow shoveling method includes:
  • Step S10 obtaining local real-time weather information.
  • Step S20 If the weather information is preset weather information, a first control instruction is generated.
  • Step S30 Based on the first control instruction, control the snow-clearing robot to execute a preset snow-clearing plan corresponding to the weather information; and control the snow-clearing robot to automatically clear snow in a preset snow-clearing area.
  • Step S10 obtaining local real-time weather information.
  • the weather information is local snowfall information, including snowfall time, snowfall area, snowfall amount, etc.
  • the local weather forecast API is accessed through the device APP (application software).
  • Each specific weather corresponds to a preset snow shoveling plan.
  • the snow shoveling robot is controlled to execute the preset snow shoveling plan corresponding to the specific weather.
  • the device can be a mobile phone device, a tablet device, a computer device, etc.
  • the user can preset a deactivation time period to deactivate the function of the snow-clearing robot to automatically perform tasks according to the weather.
  • each preset weather information corresponds to a preset snow shoveling plan, so that the snow shoveling robot can respond to each preset weather information and adjust the working mode accordingly, thereby improving the flexibility of snow shoveling work.
  • Step a obtaining historical snow-clearing data of the snow-clearing robot.
  • the historical snow-clearing data includes trajectory data, snow-throwing data, obstacle position data, etc. of the snow-clearing robot.
  • the APP is associated with the snow-clearing robot, and the real-time status data of the snow-clearing robot is obtained after the association. If the current status information of the snow-clearing robot does not meet the automatic snow-clearing conditions, an error message is output on the interactive interface to prompt the user that the current state is a snow-clearing prohibited state; if the current state information of the snow-clearing robot meets the automatic snow-clearing conditions, a normal message is output on the interactive interface to prompt the user that the current state is a snow-clearing permitted state.
  • Exemplary association methods include: the APP connects to the snow-clearing robot via Bluetooth, transmits the WLAN (Wireless Local Area Network) account and password, allows the robot to connect to the WLAN Internet, and the APP can control the robot through the Internet; the robot emits a hotspot local area network, and after the mobile phone is connected to the local area network, the robot is controlled using the APP.
  • WLAN Wireless Local Area Network
  • real-time status data includes: the battery level of the snowplow robot, the radar on status, the connection status with the satellite, the snowplow speed, the machine moving speed, the working status of the working alarm light, etc.
  • these status data will be presented in the form of text and numbers, and some status will also be presented in the machine 3D model on the APP.
  • the snow shoveling plan is formulated based on the robot's historical snow shoveling data, which greatly improves the accuracy of the plan. Before shoveling snow, the robot's status is judged to see whether it can work normally, ensuring the safety of the snow shoveling robot.
  • the step of obtaining historical snow-clearing data of the snow-clearing robot includes:
  • Step a1 When receiving a second control instruction input by the user, the snow-clearing robot is controlled to automatically clear snow.
  • the user inputs the second control instruction through the APP to control the snow-clearing robot to automatically clear snow in the area to be cleared.
  • Step a2 when receiving a collection instruction input by the user, obtaining the historical snow-clearing data of the snow-clearing robot.
  • the user clicks the "Start longitude and latitude recording” button on the APP interactive interface to generate a collection instruction and send it to the machine end.
  • the snow-clearing robot uses the RTK (Real-time kinematic) satellite positioning module to start acquiring the longitude and latitude array; when the user clicks the "End longitude and latitude recording” button on the APP interactive interface, it generates a stop collection instruction and sends it to the machine end.
  • the snow-clearing robot receives the stop collection instruction, it stops collecting the longitude and latitude array of the snow-clearing robot.
  • the data in the longitude and latitude array is filtered, the error array is eliminated, and the filtered array is transmitted to the APP to obtain the longitude and latitude required for the snow-clearing area, obstacles, and snow-throwing direction.
  • obtaining historical snow-clearing data of the snow-clearing robot includes:
  • Step a21 when receiving the collection instruction input by the user, collect the historical trajectory data of the snow-clearing robot in the process of clearing snow along the edge, collect the trajectory information of the snow-clearing robot throwing snow, and collect the location information of obstacles.
  • the RTK satellite positioning module when the snow-clearing robot receives a collection instruction input by the user, the RTK satellite positioning module is used to obtain the longitude and latitude array to obtain the historical trajectory information of snow-clearing; the RTK satellite positioning module is used to obtain the longitude and latitude of the starting position of the snow-throwing robot and the longitude and latitude of the snow-falling position, as well as the longitude and latitude array of the snow-throwing trajectory; the RTK satellite positioning module is used to obtain the longitude and latitude of the obstacle position.
  • Step b generating a preset snow clearing plan based on the historical snow clearing data.
  • the preset snow shoveling plan is generated by collecting the historical trajectory information of snow shoveling, the trajectory information of snow throwing, and the location information of obstacles through the RTK satellite positioning module.
  • the area to be shoveled is determined by the historical trajectory information, and the area is displayed in the APP.
  • the blue area represents the area to be shoveled.
  • the preset snow shoveling plan includes the range of the preset snow shoveling area, the snow throwing direction and the snow shoveling path. Wherein, each preset snow shoveling plan includes one or more preset snow shoveling areas.
  • the preset snow-clearing plan includes a first connection path and a second connection path
  • generating the preset snow-clearing plan based on the historical snow-clearing data includes:
  • Step b11 obtaining the starting point of the snow-clearing robot.
  • the snow-clearing robot does not have a charging station, it is placed at a suitable location according to user needs, the latitude and longitude of the starting point are obtained, and the location is set as the starting point in the APP.
  • the starting point is displayed on the interactive interface, and when the user confirms that the location is the starting point, it jumps to the path drawing page; if the user is not satisfied with the location, the starting point can be reset.
  • the snow-shoveling robot if the snow-shoveling robot has a charging pile, the snow-shoveling robot is placed on the charging pile and charged. It is detected whether the snow-shoveling robot is in a charging state. If it is in a charging state, the position of the charging pile is determined as the starting point and the longitude and latitude of the charging pile are obtained; if it is not in a charging state, the position of the snow-shoveling robot is adjusted until it is ensured to be in a charging state.
  • Step b12 upon receiving a first drawing instruction input by a user, generating the first connection path.
  • a connection path is drawn from the starting point to any position of the snow-clearing area.
  • the end button it is detected whether a connection path exists. If a connection path exists, it jumps to the preset snow-clearing area drawing interface; if a connection path does not exist, a prompt message is output: please draw the area, that is, draw a connection path.
  • Step b13 when the snow-clearing robot completes the automatic snow-clearing work, the snow-clearing ending position of the snow-clearing robot is obtained, and the second connection path is generated.
  • the snow-clearing ending position of the snow-clearing robot is acquired, and a second connection path is automatically generated from the snow-clearing ending position back to the starting point.
  • the preset snow shoveling plan further includes a preset snow shoveling area, a snow shoveling path, and a snow throwing direction.
  • Step b14 based on the historical snow-clearing data and the first connection path, upon receiving a second drawing instruction input by the user, generating the preset snow-clearing area.
  • a preset snow shoveling area is drawn, wherein the preset snow shoveling area needs to intersect with the first path to ensure that the snow shoveling robot can enter the preset snow shoveling area.
  • the end button it is detected whether the area intersects with the first path and whether the area belongs to the snow shoveling area. If the detection is passed, it jumps to the obstacle drawing interface or jumps to the snow throwing direction drawing interface; if the detection is not passed, the preset snow shoveling area is redrawn.
  • Step b15 based on the historical snow shoveling data and the preset snow shoveling area, upon receiving a third drawing instruction input by the user, generating the snow throwing direction.
  • FIG4 several snow throwing directions are generated according to the snow throwing directions obtained from the historical snow shoveling data.
  • the start button one direction is selected from several snow throwing directions for snow throwing, and the finger slides along the edge of the preset snow shoveling area.
  • the snow throwing direction is generated.
  • the end button it is detected whether the snow throwing direction setting is completed. If the setting is not completed, a prompt message is output: Please draw the snow throwing direction; if the setting is completed, it jumps to the interface of adding a new connection path, so that the user can draw a connection path from the current preset snow shoveling area to the new snow shoveling area.
  • Step b16 generating the snow clearing path based on the historical snow clearing data, the preset snow clearing area and the snow throwing direction.
  • the user clicks the end button to automatically generate the snow-clearing path.
  • the user draws a connection path from the starting point to the blue area to be cleared through the APP. Based on the connection path, a preset snow-clearing area is drawn, and the direction of snow throwing is drawn according to the preset snow-clearing area, and the regional position of obstacles is drawn. If another preset snow-clearing area needs to be added, another connection path is drawn from the preset snow-clearing area to the remaining area to be cleared, and another preset snow-clearing area is drawn based on the other connection path. The direction of snow throwing is drawn in the other preset snow-clearing area, and the regional position of obstacles is drawn to generate a snow-clearing path. After completing the automatic snow-clearing work of all preset snow-clearing areas, a connection path from the end snow-clearing position to the initial position is automatically generated for the snow-clearing robot to return to the initial position along the path.
  • the snow-clearing robot will not clear snow outside a preset snow-clearing area, but will only move within a specific range, thereby ensuring the safety of its work.
  • Step S20 If the weather information is preset weather information, a first control instruction is generated.
  • the preset weather information is weather information including snow information, wherein the snow information includes snowing time, snow amount, and duration, etc. Different preset weather information includes different snow information. If the weather information acquired in real time includes weather information including snow information, the corresponding preset weather information is matched according to the snow information, and a first control instruction is generated. The first control instruction is used to control the snow shoveling robot to execute a preset snow shoveling plan corresponding to the preset weather information, and automatically shovel snow.
  • Step S30 based on the first control instruction, controlling the snow-clearing robot to execute a preset snow-clearing plan corresponding to the weather information; the snow-clearing robot automatically clears snow in a preset snow-clearing area.
  • the snow-clearing robot when the snow-clearing robot receives the first control instruction, it executes the preset snow-clearing plan corresponding to the preset weather information.
  • Each preset snow-clearing plan has different settings for the snow-clearing area and the snow-clearing state of the robot. Based on the preset snow-clearing plan, the snow-clearing robot is controlled to automatically clear snow in the preset snow-clearing area.
  • This application obtains local real-time weather information; if the weather information is preset weather information, a first control instruction is generated; based on the first control instruction, the snow-clearing robot is controlled to execute the preset snow-clearing plan corresponding to the weather information; based on the preset snow-clearing plan, the snow-clearing robot is controlled to automatically clear snow in the preset snow-clearing area.
  • This application does not require operators to control the snow-clearing robot in real time. It only needs to control the snow-clearing robot to automatically execute the snow-clearing plan and automatically clear snow in the preset area according to the local weather conditions. Therefore, this application improves the automation level of the snow-clearing robot.
  • a second embodiment is proposed, wherein the method further includes:
  • a preset snow shoveling area is first drawn, and an initial snow shoveling position and an end snow shoveling position are set in the preset snow shoveling area. After the user completes the setting, a connection path can be automatically generated.
  • Step b21 obtaining the starting point of the snow-clearing robot.
  • the method of obtaining the starting point of the snow-clearing robot is basically the same as that of the first embodiment, and will not be described in detail here.
  • Step b22 based on the historical snow-clearing data, upon receiving a fourth drawing instruction input by the user, generating the preset snow-clearing area.
  • the method of drawing the preset snow clearing area is basically the same as that of the first embodiment, and will not be described in detail here.
  • the APP can establish multiple preset snow-clearing plans, and each preset snow-clearing plan can include one or more preset snow-clearing areas.
  • Step b23 setting the snow-clearing end position of the snow-clearing robot.
  • the user sets the snow shoveling end position in the preset snow shoveling area.
  • Step b24 generating the connection path based on the starting point and the ending snow shoveling position.
  • a connection path is automatically generated.
  • the preset snow shoveling plan includes a preset snow shoveling area
  • the generating of the connection path based on the starting point and the ending snow shoveling position includes:
  • Step b2411 if the preset snow shoveling plan includes a preset snow shoveling area, setting and recording a first initial snow shoveling position and a first end snow shoveling position of the snow shoveling robot in the first preset snow shoveling area;
  • Step b2412 generating a third connection path of the snow-clearing robot from the starting point to the first initial snow-clearing position.
  • 501 is the first preset snow shoveling area
  • 502 is the starting point of the snow shoveling robot
  • 503 is the first initial snow shoveling position of the snow shoveling robot in the first preset snow shoveling area
  • 504 is the first ending snow shoveling position of the snow shoveling robot in the first preset snow shoveling area
  • 505 is the third connection path
  • 506 is the fourth connection path.
  • the preset snow shoveling plan only includes one preset snow shoveling area
  • the initial snow shoveling position and the ending snow shoveling position of the snow shoveling robot in the preset snow shoveling area are set in the APP, and the first connection path from the starting point to the initial snow shoveling position is automatically generated.
  • the first path is the path with the shortest distance from the starting point to the first initial snow shoveling position.
  • Step b2413 generating a fourth connection path for the snow-clearing robot to return from the first snow-clearing ending position to the starting point.
  • a fourth connection path is generated from the snow shoveling end position to the starting point of the snow shoveling robot, so that after the snow shoveling robot reaches the snow shoveling end position, that is, completes the automatic snow shoveling work in the preset snow shoveling area, it returns to the starting point along the fourth connection path.
  • the fourth path is the path with the shortest distance from the first snow shoveling end position to the starting point.
  • the first path and the second path are both paths with the shortest distance, which can reduce the energy consumption of the robot and improve the snow shoveling efficiency.
  • the preset snow shoveling plan includes a preset snow shoveling area
  • the generating of the connection path based on the starting point and the ending snow shoveling position includes:
  • Step b2421 If the preset snow shoveling plan includes multiple preset snow shoveling areas, set and record the initial snow shoveling position and the end snow shoveling position of each preset snow shoveling area.
  • 601 is the first preset snow shoveling area
  • 602 is the second preset snow shoveling area
  • 603 is the starting point
  • 604 is the first initial snow shoveling position of the first preset snow shoveling area
  • 605 is the first end snow shoveling position of the first preset snow shoveling area
  • 606 is the second initial snow shoveling position of the second preset snow shoveling area
  • 607 is the second end snow shoveling position of the second preset snow shoveling area
  • 608 is the first path
  • 609 is the second path
  • 610 is the third path or the fourth path.
  • the preset snow shoveling plan includes multiple preset snow shoveling areas, it is necessary to set the connection path between each preset snow shoveling area so that the snow shoveling robot can change the snow shoveling area.
  • the user sets and records the initial snow shoveling position and the end snow shoveling position of each preset snow shoveling area through the APP.
  • Step b2422 generating a third connection path of the snow-clearing robot from the starting point to the first initial snow-clearing position.
  • a third connecting path from the starting point to the first initial snow shoveling position is automatically generated.
  • Step b2423 generating a fifth connection path of the snow-clearing robot from the first end snow-clearing position to the second initial snow-clearing position of the second preset snow-clearing area.
  • the second initial snow shoveling position is the initial snow shoveling position of the second preset snow shoveling area.
  • a fifth connecting path is automatically generated from the first end snow shoveling position of the first preset snow shoveling area to the second initial snow shoveling position of the second preset snow shoveling area.
  • Step b2424 if the second preset snow shoveling area is the final preset snow shoveling area, generating a sixth connection path from the second end snow shoveling position to the starting point;
  • Step b2425 if not, then use the second preset snow shoveling area as the first preset snow shoveling area, use the second end snow shoveling position as the first end snow shoveling position, use the initial snow shoveling position of the third preset snow shoveling area as the second initial snow shoveling position, and return to the fifth connection path generated by the snow shoveling robot from the first end snow shoveling position to the second initial snow shoveling position of the second preset snow shoveling area.
  • a sixth connecting path is generated from the second end snow shoveling position back to the starting point; if the second preset snow shoveling area is not the final preset snow shoveling area, the original second preset snow shoveling area is used as the first preset snow shoveling area, and the original third preset snow shoveling area is used as the second preset snow shoveling area, and a connecting path is generated.
  • the user first draws a preset snow shoveling area and sets an initial snow shoveling position and an end snow shoveling position in the preset snow shoveling area. After the user completes the setting, a connection path can be automatically generated without the user having to manually draw a connection path between each preset snow shoveling area, thereby improving the efficiency and convenience of the operation.
  • the present application also provides an automatic snow shoveling device, the automatic snow shoveling device comprising:
  • the first acquisition module is used to obtain local real-time weather information
  • a first generating module configured to generate a first control instruction if the weather information is preset weather information
  • a control module is used to control the snow-clearing robot to execute a preset snow-clearing plan corresponding to the weather information based on the first control instruction; the snow-clearing robot automatically clears snow in a preset snow-clearing area.
  • the automatic snow shoveling device further includes:
  • the second acquisition module is used to acquire historical snow-clearing data of the snow-clearing robot
  • the second generating module is used to generate a preset snow clearing plan based on the historical snow clearing data.
  • the second acquisition module includes:
  • the control submodule is used to control the snow-clearing robot to automatically clear snow when receiving a second control instruction input by a user;
  • the first acquisition submodule is used to acquire the historical snow-clearing data of the snow-clearing robot when receiving a collection instruction input by a user.
  • the first acquisition submodule includes:
  • the collecting unit is used to collect historical trajectory data of the snow-clearing robot in the process of clearing snow along the edge, collect trajectory information of the snow-clearing robot throwing snow, and collect location information of obstacles when receiving a collecting instruction input by the user.
  • the generating module includes:
  • a second acquisition submodule is used to acquire the starting point of the snow-clearing robot
  • a first generating submodule configured to generate the first connection path upon receiving a first drawing instruction input by a user
  • the third acquisition submodule is used to acquire the end snow-clearing position of the snow-clearing robot when the snow-clearing robot completes the automatic snow-clearing work, and generate the second connection path.
  • the generating module further includes:
  • a second generating submodule configured to generate the preset snow shoveling area based on the historical snow shoveling data and the first connection path when receiving a second drawing instruction input by a user;
  • a third generating submodule configured to generate the snow throwing direction based on the historical snow shoveling data and the preset snow shoveling area when receiving a third drawing instruction input by a user;
  • the fourth generation submodule is used to generate the snow clearing path based on the historical snow clearing data, the preset snow clearing area and the snow throwing direction.
  • the generating module further includes:
  • a fourth acquisition submodule is used to acquire a starting point of the snow-clearing robot
  • a fifth generating submodule configured to generate the preset snow shoveling area based on the historical snow shoveling data when receiving a fourth drawing instruction input by the user
  • a setting submodule used for setting the snow-clearing end position of the snow-clearing robot
  • the sixth generation submodule is used to generate the connection path based on the starting point and the ending snow shoveling position.
  • the sixth generation submodule includes:
  • a first setting unit configured to set and record a first initial snow-shoveling position and a first end snow-shoveling position of the snow-shoveling robot in the first preset snow-shoveling area if the preset snow-shoveling plan includes a preset snow-shoveling area;
  • a first generating unit configured to generate a third connection path of the snow-clearing robot from the starting point to the first initial snow-clearing position
  • the second generating unit is used to generate a fourth connecting path for the snow-clearing robot to return from the first snow-clearing ending position to the starting point.
  • the sixth generation submodule further includes:
  • a second setting unit configured to set and record an initial snow shoveling position and an end snow shoveling position of each preset snow shoveling area if the preset snow shoveling plan includes multiple preset snow shoveling areas;
  • a third generating unit used to generate a third connection path of the snow-clearing robot from the starting point to the first initial snow-clearing position
  • a fourth generating unit configured to generate a fifth connecting path of the snow shoveling robot from the first snow shoveling end position to the second initial snow shoveling position of the second preset snow shoveling area
  • a fifth generating unit configured to generate a sixth connecting path from a second snow shoveling end position to the starting point if the second preset snow shoveling area is the final preset snow shoveling area;
  • a return unit is used to, if not, use the second preset snow shoveling area as the first preset snow shoveling area, the second end snow shoveling position as the first end snow shoveling position, the initial snow shoveling position of the third preset snow shoveling area as the second initial snow shoveling position, and return the fifth connection path generated by the snow shoveling robot from the first end snow shoveling position to the second initial snow shoveling position of the second preset snow shoveling area.
  • FIG7 is a schematic diagram of the structure of the hardware operating environment involved in the embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of the hardware operating environment of the automatic snow shoveling equipment.
  • the automatic snow shoveling device may include a processor 701, a communication interface 702, a memory 703 and a communication bus 704, wherein the processor 701, the communication interface 702 and the memory 703 communicate with each other through the communication bus 704, the memory 703 is used to store computer programs; the processor 701 is used to implement the steps of the automatic snow shoveling method when executing the program stored in the memory 703.
  • the communication bus 704 mentioned in the automatic snow shoveling device can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus 704 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 702 is used for communication between the automatic snow-clearing device and other devices.
  • the memory 703 may include a random access memory (RMD) or a non-volatile memory (NM), such as at least one disk memory.
  • RMD random access memory
  • NM non-volatile memory
  • the memory 703 may also be at least one storage device located away from the aforementioned processor 801.
  • the processor 701 mentioned above can be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; it can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • an embodiment of the present application further proposes a computer-readable storage medium, on which an automatic snow-shoveling program is stored.
  • an automatic snow-shoveling program is executed by a processor, the steps of the automatic snow-shoveling method as described above are implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

本申请公开了一种自动铲雪方法、装置、设备及可读存储介质,该方法包括步骤:获取当地实时的天气信息;若所述天气信息为预设天气信息,则生成第一控制指令;基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;所述铲雪机器人在预设铲雪区域进行自动铲雪。本申请无需作业人员对铲雪机器人进行实时操控,只需通过当地的天气情况,控制铲雪机器人自动执行铲雪计划,在预设区域内进行自动铲雪。因此,本申请提高了铲雪机器人的自动化水平。

Description

自动铲雪方法、装置、设备及可读存储介质 技术领域
本申请涉及机器人领域,尤其涉及一种自动铲雪方法、装置、设备及可读存储介质。
背景技术
在下雪过后,若不及时铲除道路上的积雪,在积雪结冰后会加大铲雪难度,并影响行走的安全性。
随着机器人在自动铲雪领域的飞速发展,人们对自动铲雪的自动化程度有了更高的要求。目前,在机器人进行自动铲雪时,需要作业人员通过手机、手柄等操控设备对铲雪机器人进行实时操控。在道路上存在积雪时,若无作业人员对铲雪机器人进行操控,则无法及时清除道路上的积雪。
技术问题
若无作业人员对铲雪机器人进行操控,则无法及时清除道路上的积雪,铲雪机器人的自动化水平。
技术解决方案
本申请获取当地实时的天气信息;若所述天气信息为预设天气信息,则生成第一控制指令;基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;基于所述预设铲雪计划,控制所述铲雪机器人在预设铲雪区域进行自动铲雪。本申请无需作业人员对铲雪机器人进行实时操控,只需通过当地的天气情况,控制铲雪机器人自动执行铲雪计划,在预设区域内进行自动铲雪。
有益效果
提高铲雪机器人的自动化水平。
附图说明
图1是本申请自动铲雪方法第一实施例的流程示意图;
图2是本申请自动铲雪方法第一实施例的绘制连接路径的流程示意图;
图3是本申请自动铲雪方法第一实施例的绘制预设铲雪区域的流程示意图;
图4是本申请自动铲雪方法第一实施例的绘制抛雪方向的流程示意图;
图5是本申请自动铲雪方法第二实施例的连接路径示意图;
图6是本申请自动铲雪方法第二实施例的连接路径示意图;
图7是本申请实施例方案涉及的硬件运行环境的结构示意图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种自动铲雪方法,参照图1,图1为本申请自动铲雪方法第一实施例的流程示意图。
本申请实施例提供了自动铲雪方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。为了便于描述,以下省略执行主体描述自动铲雪方法的各个步骤,自动铲雪方法包括:
步骤S10,获取当地实时的天气信息。
步骤S20,若所述天气信息为预设天气信息,则生成第一控制指令。
步骤S30,基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;制所述铲雪机器人在预设铲雪区域进行自动铲雪。
具体步骤如下:
步骤S10,获取当地实时的天气信息。
在本实施例中,天气信息为当地的降雪信息,包括降雪时间、降雪区域、降雪量等。
具体的,通过设备APP(application,应用软件)接入当地天气预报API,每一特定天气对应一个预设铲雪计划,当获取的实时天气符合特定天气时,控制铲雪机器人执行与该特定天气对应的预设铲雪计划,其中,设备可以为手机设备、平板设备、电脑设备等。
示例性,用户可以预设停用时间段来停用铲雪机器人根据天气来自动执行任务的功能。
在本实施例中,通过实时获取天气信息,并对其进行及时反馈,可以大大提高机器人自动铲雪的效率和及时性。并且,每一预设天气信息对应一个预设铲雪计划,使得铲雪机器人可以对每一种预设天气信息都进行相应,并对应调整工作模式,提高了铲雪工作的灵活性。
示例性的,所述获取实时的天气信息之前,包括:
步骤a,获取铲雪机器人的历史铲雪数据。
在本实施例中,历史铲雪数据包括铲雪机器人的轨迹数据、抛雪数据、障碍物位置数据等。
具体的,关联APP与铲雪机器人,并在关联后获取铲雪机器人的实时状态数据。若铲雪机器人当前状态信息不符合自动铲雪条件,则在交互界面输出报错信息,用于提示用户当前状态为禁止铲雪状态;若铲雪机器人当前状态信息符合自动铲雪条件,则在交互界面输出正常信息,用于提示用户当前状态为允许铲雪状态。
示例性的,关联方法包括:APP通过蓝牙连接铲雪机器人,传输WLAN(Wireless Local Area Network,无线局域网)账号密码,让机器人可以连接WLAN互联网,APP能够通过互联网操控机器人;机器人散发热点局域网,手机连入该局域网后,使用APP操控机器人。
示例性的,实时状态数据包括:铲雪机器人的电量、雷达的开启状态、与卫星的连接状态、卷雪铲转速、机器移动速度、工作警报灯的工作状态等。其中,这些状态数据将会以文字和数字的方式呈现,同时部分状态也会在APP上的机器3D模型中呈现。
在本实施例中,通过机器人的历史铲雪数据来制定铲雪计划,大大提高了计划的准确性。并在铲雪前对机器人的状态进行判断是否可以正常工作,保证了铲雪机器人的安全性。
示例性的,所述获取铲雪机器人的历史铲雪数据,包括:
步骤a1,当接收到用户输入的第二控制指令时,控制铲雪机器人进行自动铲雪。
在本实施例中,用户通过APP输入第二控制指令,用于控制铲雪机器人在待铲雪区域进行自动铲雪。
步骤a2,当接收到用户输入的采集指令时,获取所述铲雪机器人的历史铲雪数据。
在在本实施例中,用户点击APP交互界面上的“开始经纬度记录”按键,生成采集指令,发送到机器端。当铲雪机器人接收到该采集指令时,利用RTK(Real - time kinematic,实时动态)卫星定位模块开始获取经纬度数组;当用户点击APP交互界面上的“结束经纬度记录”按键,生成停止采集指令,发送到机器端。当铲雪机器人接收到该停止采集指令时,停止采集铲雪机器人的经纬度数组。在铲雪机器人停止获取经纬度数组时,对该经纬度数组中的数据进行过滤,剔除误差数组,并将过滤后的数组传输至APP得到扫雪区域、障碍物、抛雪方向需要的经纬度。
示例性的,所述当接收到用户输入的采集指令时,获取所述铲雪机器人的历史铲雪数据,包括:
步骤a21,当接收到用户输入的采集指令时,采集所述铲雪机器人沿边铲雪过程中的历史轨迹数据、采集所述铲雪机器人抛雪的轨迹信息以及采集障碍物的位置信息。
在本实施例中,当铲雪机器人接收到用户输入的采集指令时,利用RTK卫星定位模块获取经纬度数组,得到铲雪的历史轨迹信息;利用RTK卫星定位模块获取铲雪机器人抛雪起始位置的经纬度及落雪位置的经纬度,以及抛雪轨迹的经纬度数组;利用RTK卫星定位模块获取障碍物位置的经纬度。
步骤b,基于所述历史铲雪数据,生成预设铲雪计划。
在本实施例中,通过RTK卫星定位模块采集的铲雪的历史轨迹信息、抛雪的轨迹信息、障碍物的位置信息,生成预设铲雪计划。通过该历史轨迹信息确定待铲雪的区域,该区域在APP中进行显示。例如,蓝色区域区域代表待铲雪的区域。
示例性的,预设铲雪计划包括预设铲雪区域的范围、抛雪方向和铲雪路径。其中,每一预设铲雪计划中包含一个或多个预设铲雪区域。
示例性的,所述预设铲雪计划包括第一连接路径和第二连接路径,所述基于所述历史铲雪数据,生成预设铲雪计划,包括:
步骤b11,获取所述铲雪机器人的起始点。
在本实施例中,若铲雪机器人无充电桩,则根据用户需求,将其放于合适的位置,获取该起始点的经纬度,并在APP中将该位置设置为起始点。在交互界面展示该起始点,在用户确定该位置为起始点时,跳转至路径绘制页面;在用户对该位置不满意,可重新设置起始点。
在本实施例中,若铲雪机器人有充电桩,则将铲雪机器人放于充电桩上并进行充电。检测铲雪机器人是否处于充电状态,若处于充电状态,则确定充电桩的位置为起始点并获取充电桩的位置经纬度;若不处于充电状态,则调整铲雪机器人的位置直至确保其处于充电状态。
步骤b12,在接收到用户输入的第一绘制指令时,生成所述第一连接路径。
在本实施例中,如图2所示,当用户点击APP中的开始按钮时,绘制从起始点至待铲雪区域的任意位置的连接路径。当用户点击结束按钮时,检测是否存在连接路径,若存在连接路径,则跳转至预设铲雪区域绘制界面;若不存在连接路径,则输出提示信息:请绘制区域,即绘制连接路径。
步骤b13,在所述铲雪机器人完成自动铲雪工作时,获取所述铲雪机器人的结束铲雪位置,并生成所述第二连接路径径。
在本实施例中,在铲雪机器人完成自动铲雪工作时,获取铲雪机器人的结束铲雪位置,并自动生成从该结束铲雪位置返回起始点的第二连接路径。
示例性的,所述预设铲雪计划还包括预设铲雪区域、铲雪路径及抛雪方向,所述在接收到用户输入的第一绘制指令时,生成所述第一连接路径之后,包括:
步骤b14,基于所述历史铲雪数据和第一连接路径,在接收到用户输入的第二绘制指令时,生成所述预设铲雪区域。
在本实施例中,如图3所示,当用户点击开始按钮时,绘制预设铲雪区域,其中,预设铲雪区域需要与上述第一路径相交,确保铲雪机器人可以进入预设铲雪区域。用户点击结束按钮时,检测该区域是否与第一路径相交以及该区域是否属于待铲雪区域。若通过检测,则跳转至障碍物绘制界面或跳转至抛雪方向绘制界面;若未通过检测,则重新绘制预设铲雪区域。
步骤b15,基于所述历史铲雪数据和所述预设铲雪区域,在接收到用户输入的第三绘制指令时,生成所述抛雪方向。
在本实施例中,如图4所示,根据历史铲雪数据中获取的抛雪方向,生成若干个抛雪方向。当用户点击开始按钮后,从若干个抛雪方向中选取一个方向进行抛雪,并且手指沿着预设铲雪区域的边缘滑动,当用户松开手指时即可生成抛雪的方向。用户点击结束按钮时,检测是否完成抛雪方向设置,若未完成设置,则输出提示信息:请绘制抛雪方向;若完成设置,则跳转至新增连接路径的界面,以供用户绘制从当前预设铲雪区域至新待铲雪区域的连接路径。
步骤b16,基于所述历史铲雪数据、所述预设铲雪区域和所述抛雪方向,生成所述铲雪路径。
在本实施中,当用户绘制完成预设铲雪区域、连接路径、抛雪方向、障碍物位置之后,用户点击结束按钮,即可自动生成铲雪路径。
在本实施例中,用户在确定铲雪机器人的起始点后,通过APP绘制从起始点至蓝色待铲雪区域的连接路径。基于该连接路径绘制预设铲雪区域,根据该预设铲雪区域绘制抛雪方向,并绘制障碍物的区域位置。若需添加另一预设铲雪区域,则从该预设铲雪区域绘制另一连接路径至剩余的待铲雪区域,基于该另一连接路径绘制另一预设铲雪区域,并在该另一预设铲雪区域中绘制抛雪方向,并绘制障碍物的区域位置,生成铲雪路径。在完成所有预设铲雪区域的自动铲雪工作后,自动生成从结束铲雪位置至初始位置的连接路径,以供铲雪机器人沿着该路径返回初始位置。
在本实施例中,铲雪机器人不会在预设铲雪区域外铲雪,仅在特定范围内活动,保证了其工作的安全性。
步骤S20,若所述天气信息为预设天气信息,则生成第一控制指令。
在本实施例中,预设天气信息信息为包含下雪信息的天气信息,其中,下雪信息包括下雪时间、雪量和持续时间等。不同的预设天气信息包括不同的下雪信息。若实时获取的天气信息中包含下雪信息的天气信息,则根据下雪信息匹配对应的预设天气信息,并生成第一控制指令。其中,第一控制指令用于控制铲雪机器人执行与预设天气信息对应的预设铲雪计划,进行自动铲雪。
步骤S30,基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;所述铲雪机器人在预设铲雪区域进行自动铲雪。
在本实施例中,当铲雪机器人端接收到第一控制指令时,执行该预设天气信息对应的预设铲雪计划。每一预设铲雪计划对铲雪区域、机器人的铲雪状态有不同设置,基于预设铲雪计划,控制铲雪机器人在预设铲雪区域进行自动铲雪。
与现有技术中,以作业人员通过手机、手柄等操控设备对铲雪机器人进行实时操控相比。本申请获取当地实时的天气信息;若所述天气信息为预设天气信息,则生成第一控制指令;基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;基于所述预设铲雪计划,控制所述铲雪机器人在预设铲雪区域进行自动铲雪。本申请无需作业人员对铲雪机器人进行实时操控,只需通过当地的天气情况,控制铲雪机器人自动执行铲雪计划,在预设区域内进行自动铲雪。因此,本申请提高了铲雪机器人的自动化水平。
示例性的,基于上述本申请自动铲雪方法第一实施例,提出第二实施例,所述方法还包括:
在本实施例中,先绘制预设铲雪区域,并在预设铲雪区域中设置初始铲雪位置和结束铲雪位置。在用户完成设置后,即可自动生成连接路径。
步骤b21,获取所述铲雪机器人的起始点。
在本实施例中,获取铲雪机器人的起始点的方法与第一实施例基本相同,在此不再赘述。
步骤b22,基于所述历史铲雪数据,在接收到用户输入的第四绘制指令时,生成所述预设铲雪区域。
在本实施例中,绘制预设铲雪区域的方法与第一实施例基本相同,在此不再赘述。
在本实施例中,APP可以建立多个预设铲雪计划,每一预设铲雪计划可以包括一个或多个预设铲雪区域。
步骤b23,设置所述铲雪机器人的结束铲雪位置。
在本实施例中,用户在预设铲雪区域中设置结束铲雪位置。
步骤b24,基于所述起始点和所述结束铲雪位置,生成所述连接路径。
在本实施例中,当用户在预设铲雪区域中完成设置初始铲雪位置和结束铲雪位置后,自动生成连接路径。
示例性的,所述预设铲雪计划中包括一个预设铲雪区域,所述基于所述起始点和所述结束铲雪位置,生成所述连接路径,包括:
步骤b2411,若所述预设铲雪计划中包括一个预设铲雪区域,则设置并记录所述铲雪机器人在第一预设铲雪区域的第一初始铲雪位置和第一结束铲雪位置;
步骤b2412,生成所述铲雪机器人从所述起始点至所述第一初始铲雪位置的第三连接路径。
在本实施例中,如图5所示,501为第一预设铲雪区域、502为铲雪机器人的起始点、503为铲雪机器人在第一预设铲雪区域的第一初始铲雪位置、504为铲雪机器人在第一预设铲雪区域的第一结束铲雪位置、505为第三连接路径、506第四连接路径。若所述预设铲雪计划中只包括一个预设铲雪区域,则在APP中设置铲雪机器人在该预设铲雪区域的初始铲雪位置和结束铲雪位置,自动生成从起始点至该初始铲雪位置的第一连接路径。其中,第一路径为起始点至第一初始铲雪位置的距离最短的路径。
步骤b2413,生成所述铲雪机器人从所述第一结束铲雪位置返回所述起始点的第四连接路径。
在本实施例中,生成铲雪机器人从结束铲雪位置至起始点的第四连接路径,以供在铲雪机器人到达结束铲雪位置,即完成预设铲雪区域的自动铲雪工作后,沿该第四连接路径返回起始点。其中,第四路径为第一结束铲雪位置至起始点的距离最短的路径。
在本实施例中,第一路径、第二路径皆为距离最短的路径,可以减少机器人的能量消耗,提高铲雪效率。
示例性的,所述预设铲雪计划中包括一个预设铲雪区域,所述基于所述起始点和所述结束铲雪位置,生成所述连接路径,包括:
步骤b2421,若所述预设铲雪计划中包括多个预设铲雪区域,则设置并记录每一预设铲雪区域的初始铲雪位置和结束铲雪位置。
在本实施例中,如图6所示,601为第一预设铲雪区域、602为第二预设铲雪区域、603为起始点、604为第一预设铲雪区域的第一初始铲雪位置、605为第一预设铲雪区域的第一结束铲雪位置、606为第二预设铲雪区域的第二初始铲雪位置、607为第二预设铲雪区域的第二结束铲雪位置、608为第一路径、609为第二路径、610为第三路径或第四路径。若所述预设铲雪计划中包括多个预设铲雪区域,则需设置每一预设铲雪区域间的连接路径,以供铲雪机器人更换铲雪区域。用户通过APP设置并记录每一预设铲雪区域的初始铲雪位置和结束铲雪位置。
步骤b2422,生成所述铲雪机器人从起始点至第一初始铲雪位置的第三连接路径。
在本实施例中,自动生成从起始点至第一初始铲雪位置的第三连接路径。
步骤b2423,生成所述铲雪机器人从第一结束铲雪位置,至第二预设铲雪区域的第二初始铲雪位置的第五连接路径。
在本实施例中,第二初始铲雪位置为第二预设铲雪区域的初始铲雪位置。自动生成从第一预设铲雪区域的第一结束铲雪位置至第二预设铲雪区域的第二初始铲雪位置的第五连接路径。
步骤b2424,若所述第二预设铲雪区域为最终预设铲雪区域,则生成第二结束铲雪位置至所述起始点的第六连接路径;
步骤b2425,若否,则将所述第二预设铲雪区域作为所述第一预设铲雪区域,将所述第二结束铲雪位置作为所述第一结束铲雪位置,将第三预设铲雪区域的初始铲雪位置作为所述第二初始铲雪位置,并返回所述生成所述铲雪机器人从第一结束铲雪位置,至第二预设铲雪区域的第二初始铲雪位置的第五连接路径。
在本实施例中,若第二预设铲雪区域为最终预设铲雪区域,则生成第二结束铲雪位置返回至起始点的第六连接路径;若第二预设铲雪区域不是最终预设铲雪区域,则将原先第二预设铲雪区域作为第一预设铲雪区域,将原先第三预设铲雪区域作为第二预设铲雪区域,并生成连接路径。
在本实施例中,用户先绘制预设铲雪区域,并在预设铲雪区域中设置初始铲雪位置和结束铲雪位置。在用户完成设置后,即可自动生成连接路径,无需用户手动绘制每一预设铲雪区域之间的连接路径,提高了操作的效率和便捷性。
示例性的,本申请还提供一种自动铲雪装置,所述自动铲雪装置包括:
第一获取模块,用于获取当地实时的天气信息;
第一生成模块,用于若所述天气信息为预设天气信息,则生成第一控制指令;
控制模块,用于基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;所述铲雪机器人在预设铲雪区域进行自动铲雪。
示例性的,所述自动铲雪装置,还包括:
第二获取模块,用于获取铲雪机器人的历史铲雪数据;
第二生成模块,用于基于所述历史铲雪数据,生成预设铲雪计划。
示例性的,所述第二获取模块,包括:
控制子模块,用于当接收到用户输入的第二控制指令时,控制铲雪机器人进行自动铲雪;
第一获取子模块,用于当接收到用户输入的采集指令时,获取所述铲雪机器人的历史铲雪数据。
示例性的,所述第一获取子模块,包括:
采集单元,用于当接收到用户输入的采集指令时,采集所述铲雪机器人沿边铲雪过程中的历史轨迹数据、采集所述铲雪机器人抛雪的轨迹信息以及采集障碍物的位置信息。
示例性的,所述生成模块,包括:
第二获取子模块,用于获取所述铲雪机器人的起始点;
第一生成子模块,用于在接收到用户输入的第一绘制指令时,生成所述第一连接路径;
第三获取子模块,用于在所述铲雪机器人完成自动铲雪工作时,获取所述铲雪机器人的结束铲雪位置,并生成所述第二连接路径径。
示例性的,所述生成模块,还包括:
第二生成子模块,用于基于所述历史铲雪数据和第一连接路径,在接收到用户输入的第二绘制指令时,生成所述预设铲雪区域;
第三生成子模块,用于基于所述历史铲雪数据和所述预设铲雪区域,在接收到用户输入的第三绘制指令时,生成所述抛雪方向;
第四生成子模块,用于基于所述历史铲雪数据、所述预设铲雪区域和所述抛雪方向,生成所述铲雪路径。
示例性的,所述生成模块,还包括:
第四获取子模块,用于获取所述铲雪机器人的起始点;
第五生成子模块,用于基于所述历史铲雪数据,在接收到用户输入的第四绘制指令时,生成所述预设铲雪区域;
设置子模块,用于设置所述铲雪机器人的结束铲雪位置;
第六生成子模块,用于基于所述起始点和所述结束铲雪位置,生成所述连接路径。
示例性的,所述第六生成子模块,包括:
第一设置单元,用于若所述预设铲雪计划中包括一个预设铲雪区域,则设置并记录所述铲雪机器人在第一预设铲雪区域的第一初始铲雪位置和第一结束铲雪位置;
第一生成单元,用于生成所述铲雪机器人从所述起始点至所述第一初始铲雪位置的第三连接路径;
第二生成单元,用于生成所述铲雪机器人从所述第一结束铲雪位置返回所述起始点的第四连接路径。
示例性的,所述第六生成子模块,还包括:
第二设置单元,用于若所述预设铲雪计划中包括多个预设铲雪区域,则设置并记录每一预设铲雪区域的初始铲雪位置和结束铲雪位置;
第三生成单元,用于生成所述铲雪机器人从起始点至第一初始铲雪位置的第三连接路径;
第四生成单元,用于生成所述铲雪机器人从第一结束铲雪位置,至第二预设铲雪区域的第二初始铲雪位置的第五连接路径;
第五生成单元,用于若所述第二预设铲雪区域为最终预设铲雪区域,则生成第二结束铲雪位置至所述起始点的第六连接路径;
返回单元,用于若否,则将所述第二预设铲雪区域作为所述第一预设铲雪区域,将所述第二结束铲雪位置作为所述第一结束铲雪位置,将第三预设铲雪区域的初始铲雪位置作为所述第二初始铲雪位置,并返回所述生成所述铲雪机器人从第一结束铲雪位置,至第二预设铲雪区域的第二初始铲雪位置的第五连接路径。
本申请自动铲雪装置具体实施方式与上述自动铲雪方法各实施例基本相同,在此不再赘述。
此外,本申请还提供一种自动铲雪设备。如图7所示,图7是本申请实施例方案涉及的硬件运行环境的结构示意图。
示例性的,图7即可为自动铲雪设备的硬件运行环境的结构示意图。
如图7所示,该自动铲雪设备可以包括处理器701、通信接口702、存储器703和通信总线704,其中,处理器701、通信接口702和存储器703通过通信总线704完成相互间的通信,存储器703,用于存放计算机程序;处理器701,用于执行存储器703上所存放的程序时,实现自动铲雪方法的步骤。
上述自动铲雪设备提到的通信总线704可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线704可以分为地址总线、数据总线和控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口702用于上述自动铲雪设备与其他设备之间的通信。
存储器703可以包括随机存取存储器( Random Access Memory,RMD),也可以包括非易失性存储器(Non- Volatile Memory,NM),例如至少一个磁盘存储器。可选的,存储器703还可以是至少一个位于远离前述处理器801的存储装置。
上述的处理器701可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器( Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路( Application Specific Integrated Circuit,ASIC)、现场可编程门阵列( Field- Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请自动铲雪设备具体实施方式与上述自动铲雪方法各实施例基本相同,在此不再赘述。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有自动铲雪程序,所述自动铲雪程序被处理器执行时实现如上所述的自动铲雪方法的步骤。
本申请计算机可读存储介质具体实施方式与上述自动铲雪方法各实施例基本相同,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,设备,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (12)

  1. 一种自动铲雪方法,其特征在于,所述方法包括:
    获取当地实时的天气信息;
    若所述天气信息为预设天气信息,则生成第一控制指令;
    基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;所述铲雪机器人在预设铲雪区域进行自动铲雪。
  2. 如权利要求1所述的方法,其特征在于,所述获取实时的天气信息之前,包括:
    获取铲雪机器人的历史铲雪数据;
    基于所述历史铲雪数据,生成预设铲雪计划。
  3. 如权利要求2所述的方法,其特征在于,所述获取铲雪机器人的历史铲雪数据,包括:
    当接收到用户输入的第二控制指令时,控制铲雪机器人进行自动铲雪;
    当接收到用户输入的采集指令时,获取所述铲雪机器人的历史铲雪数据。
  4. 如权利要求3所述的方法,其特征在于,所述当接收到用户输入的采集指令时,获取所述铲雪机器人的历史铲雪数据,包括:
    当接收到用户输入的采集指令时,采集所述铲雪机器人沿边铲雪过程中的历史轨迹数据、采集所述铲雪机器人抛雪的轨迹信息以及采集障碍物的位置信息。
  5. 如权利要求2所述的方法,其特征在于,所述预设铲雪计划包括第一连接路径和第二连接路径,所述基于所述历史铲雪数据,生成预设铲雪计划,包括:
    获取所述铲雪机器人的起始点;
    在接收到用户输入的第一绘制指令时,生成所述第一连接路径;
    在所述铲雪机器人完成自动铲雪工作时,获取所述铲雪机器人的结束铲雪位置,并生成所述第二连接路径径。
  6. 如权利要求5所述的方法,其特征在于,所述预设铲雪计划还包括预设铲雪区域、铲雪路径及抛雪方向,所述在接收到用户输入的第一绘制指令时,生成所述第一连接路径之后,包括:
    基于所述历史铲雪数据和第一连接路径,在接收到用户输入的第二绘制指令时,生成所述预设铲雪区域;
    基于所述历史铲雪数据和所述预设铲雪区域,在接收到用户输入的第三绘制指令时,生成所述抛雪方向;
    基于所述历史铲雪数据、所述预设铲雪区域和所述抛雪方向,生成所述铲雪路径。
  7. 如权利要求2所述的方法,其特征在于,所述预设铲雪计划包括预设铲雪区域和连接路径,所述基于所述历史铲雪数据,生成预设铲雪计划,还包括:
    获取所述铲雪机器人的起始点;
    基于所述历史铲雪数据,在接收到用户输入的第四绘制指令时,生成所述预设铲雪区域;
    设置所述铲雪机器人的结束铲雪位置;
    基于所述起始点和所述结束铲雪位置,生成所述连接路径。
  8. 如权利要求7所述的方法,其特征在于,所述预设铲雪计划中包括一个预设铲雪区域,所述基于所述起始点和所述结束铲雪位置,生成所述连接路径,包括:
    若所述预设铲雪计划中包括一个预设铲雪区域,则设置并记录所述铲雪机器人在第一预设铲雪区域的第一初始铲雪位置和第一结束铲雪位置;
    生成所述铲雪机器人从所述起始点至所述第一初始铲雪位置的第三连接路径;
    生成所述铲雪机器人从所述第一结束铲雪位置返回所述起始点的第四连接路径。
  9. 如权利要求7所述的方法,其特征在于,所述预设铲雪计划中包括多个预设铲雪区域,所述基于所述起始点和所述结束铲雪位置,生成所述连接路径,还包括:
    若所述预设铲雪计划中包括多个预设铲雪区域,则设置并记录每一预设铲雪区域的初始铲雪位置和结束铲雪位置;
    生成所述铲雪机器人从起始点至第一初始铲雪位置的第三连接路径;
    生成所述铲雪机器人从第一结束铲雪位置,至第二预设铲雪区域的第二初始铲雪位置的第五连接路径;
    若所述第二预设铲雪区域为最终预设铲雪区域,则生成第二结束铲雪位置至所述起始点的第六连接路径;
    若否,则将所述第二预设铲雪区域作为所述第一预设铲雪区域,将所述第二结束铲雪位置作为所述第一结束铲雪位置,将第三预设铲雪区域的初始铲雪位置作为所述第二初始铲雪位置,并返回所述生成所述铲雪机器人从第一结束铲雪位置,至第二预设铲雪区域的第二初始铲雪位置的第五连接路径。
  10. 一种自动铲雪装置,其特征在于,所述装置包括:
    第一获取模块,用于获取当地实时的天气信息;
    第一生成模块,用于若所述天气信息为预设天气信息,则生成第一控制指令;
    控制模块,用于基于所述第一控制指令,控制铲雪机器人执行所述天气信息对应的预设铲雪计划;所述铲雪机器人在预设铲雪区域进行自动铲雪。
  11. 一种自动铲雪设备,其特征在于,所述自动铲雪设备包括存储器、处理器和存储在所述存储器上并可在所述处理器上运行的自动铲雪程序,所述自动铲雪程序被所述处理器执行时实现如权利要求1至9中任一项所述的自动铲雪方法的步骤。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有自动铲雪程序,所述自动铲雪程序被处理器执行时实现如权利要求1至9中任一项所述的自动铲雪方法的步骤。
PCT/CN2022/122597 2022-09-29 2022-09-29 自动铲雪方法、装置、设备及可读存储介质 WO2024065398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122597 WO2024065398A1 (zh) 2022-09-29 2022-09-29 自动铲雪方法、装置、设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122597 WO2024065398A1 (zh) 2022-09-29 2022-09-29 自动铲雪方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024065398A1 true WO2024065398A1 (zh) 2024-04-04

Family

ID=90475344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122597 WO2024065398A1 (zh) 2022-09-29 2022-09-29 自动铲雪方法、装置、设备及可读存储介质

Country Status (1)

Country Link
WO (1) WO2024065398A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106245571A (zh) * 2016-08-31 2016-12-21 沈阳中兴电力通信有限公司 自动导航除雪机器人系统
CN108563231A (zh) * 2018-05-31 2018-09-21 北京智行者科技有限公司 一种清扫任务规划方法
US20220167820A1 (en) * 2019-04-02 2022-06-02 Beijing Roborock Technology Co., Ltd. Method and Apparatus for Constructing Map of Working Region for Robot, Robot, and Medium
CN114637280A (zh) * 2020-11-30 2022-06-17 苏州宝时得电动工具有限公司 一种自动工作系统及工作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106245571A (zh) * 2016-08-31 2016-12-21 沈阳中兴电力通信有限公司 自动导航除雪机器人系统
CN108563231A (zh) * 2018-05-31 2018-09-21 北京智行者科技有限公司 一种清扫任务规划方法
US20220167820A1 (en) * 2019-04-02 2022-06-02 Beijing Roborock Technology Co., Ltd. Method and Apparatus for Constructing Map of Working Region for Robot, Robot, and Medium
CN114637280A (zh) * 2020-11-30 2022-06-17 苏州宝时得电动工具有限公司 一种自动工作系统及工作方法

Similar Documents

Publication Publication Date Title
CN107913039B (zh) 用于清洁机器人的区块选择方法、装置及机器人
WO2022041344A1 (zh) 扫地机器人的避障方法、设备及计算机可读存储介质
CN111191931A (zh) 一种多机器人任务分配的方法、装置及终端设备
WO2019062650A1 (zh) 一种扫地机器人的控制方法及设备
CN109269506A (zh) 移动机器人的地图创建方法、装置、机器人及系统
CN112171665A (zh) 运动控制方法、装置、终端设备及存储介质
EP3633478B1 (en) Method and device for assessing probability of presence of obstacle in unknown position
CN109598670B (zh) 地图信息采集的内存管理方法、装置、存储介质和系统
CN113670292B (zh) 地图的绘制方法和装置、扫地机、存储介质、电子装置
CN109032148B (zh) 一种墙边角的识别方法、装置、终端设备及存储介质
CN108209743B (zh) 一种定点清洁方法、装置、计算机设备和存储介质
CN108113580A (zh) 扫地机自动清扫局部区域的方法及扫地机
US20170046144A1 (en) Aercloud application express and aercloud application express launcher
JP2019537730A (ja) ナビゲーションデータを生成し、対象物を搬送する方法及びシステム
CN105608893A (zh) 一种数据采集方法、装置及终端
WO2022095453A1 (zh) 一种识别障碍物的方法、装置、介质和电子设备
CN116172447A (zh) 移动机器人的清扫方法及装置、存储介质、电子装置
WO2024065398A1 (zh) 自动铲雪方法、装置、设备及可读存储介质
WO2021135355A1 (zh) 混合作业方法和相关装置
CN113806455B (zh) 地图构建方法、设备及存储介质
EP4242769A1 (en) Method and apparatus for bypassing an object, medium and electronic device
WO2024007807A1 (zh) 一种误差校正方法、装置及移动设备
CN104967648A (zh) 一种网际协议地址的调度方法、装置和系统
CN108040175A (zh) 闹钟设置方法、移动终端及计算机可读存储介质
CN112363501A (zh) 无人驾驶扫地车的避障方法、装置、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960035

Country of ref document: EP

Kind code of ref document: A1