WO2022041344A1 - 扫地机器人的避障方法、设备及计算机可读存储介质 - Google Patents

扫地机器人的避障方法、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2022041344A1
WO2022041344A1 PCT/CN2020/115674 CN2020115674W WO2022041344A1 WO 2022041344 A1 WO2022041344 A1 WO 2022041344A1 CN 2020115674 W CN2020115674 W CN 2020115674W WO 2022041344 A1 WO2022041344 A1 WO 2022041344A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
sweeping robot
cleaning
robot
distance
Prior art date
Application number
PCT/CN2020/115674
Other languages
English (en)
French (fr)
Inventor
潘俊威
Original Assignee
北京奇虎科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京奇虎科技有限公司 filed Critical 北京奇虎科技有限公司
Publication of WO2022041344A1 publication Critical patent/WO2022041344A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0253Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0285Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network

Definitions

  • the present application relates to the field of robotics, and in particular, to an obstacle avoidance method, device and computer-readable storage medium for a sweeping robot.
  • the cleaning robot has poor processing ability for low obstacles. For low obstacles, it may not be able to detect and recognize, resulting in the sweeping robot being trapped by low obstacles and unable to clean normally, or when identifying low obstacles, in order to avoid low obstacles, it may cause the attachment of low obstacles. Areas that cannot be cleaned make cleaning less efficient.
  • the main purpose of the present application is to provide an obstacle avoidance method, device, cleaning robot and readable storage medium for a sweeping robot, which aims to solve the problems of inaccurate recognition of low obstacles and low cleaning efficiency of the current sweeping robot.
  • the present application provides an obstacle avoidance method for a sweeping robot, and the obstacle avoidance method for the sweeping robot includes the following steps:
  • the position information is within a preset area relative to the sweeping robot, rotate the body of the sweeping robot and obtain the real-time distance of the obstacle relative to the sweeping robot through the second linear radar located on the side of the sweeping robot;
  • the cleaning robot is controlled to sweep around the obstacle.
  • the first plane on which the laser beam emitted by the first linear radar is located is oblique to the ground, and the second plane on which the laser beam emitted by the second linear radar is located is perpendicular to the ground.
  • the step of acquiring the position information of the obstacle by scanning the first linear radar on the front of the cleaning robot includes:
  • the position information of the obstacle is calculated.
  • the step of rotating the body of the cleaning robot includes:
  • the body of the cleaning robot is rotated so that the second linear radar located on the side of the cleaning robot faces the obstacle.
  • the step of controlling the sweeping robot to sweep around the obstacle includes:
  • the wheel speed of the sweeping robot is adjusted so that the real-time distance is equal to the preset sweeping interval distance, so as to control the sweeping robot to sweep around the obstacle.
  • the method further includes:
  • a route is planned according to the environmental information.
  • the obstacle avoidance method of the sweeping robot further includes:
  • the second linear radar acquires the point cloud information of the obstacle in real time
  • the model is marked in the map stored by the cleaning robot.
  • the step of obtaining the preset cleaning interval includes:
  • the preset cleaning interval distance is determined.
  • the obstacle avoidance method of the sweeping robot further includes:
  • the cleaning strategy when the cleaning robot sweeps around the obstacle is determined.
  • the obstacle avoidance method of the sweeping robot further includes:
  • the step of controlling the sweeping robot to sweep around the obstacle according to the real-time distance is performed.
  • the application also provides an obstacle avoidance device for a sweeping robot, and the obstacle avoidance device for the sweeping robot includes:
  • a first acquisition module used for acquiring the position information of obstacles by scanning the first linear radar located on the front of the sweeping robot
  • the second acquisition module is configured to rotate the body of the cleaning robot and obtain the relative position of the obstacle relative to the cleaning robot through the second linear radar located on the side of the cleaning robot if the position information is within the preset range of the cleaning robot. real-time distance;
  • the first control module is configured to control the sweeping robot to sweep around the obstacle according to the real-time distance.
  • the first acquisition module includes:
  • a first calculation unit configured to calculate the height of the front object according to the reference distance between the first linear radar located on the front of the sweeping robot and the ground and the acquired actual distance from the front object;
  • a determination unit configured to determine that the object ahead is an obstacle if the height is greater than a preset height value
  • the second calculation unit is configured to calculate the position information of the obstacle according to the actual distance.
  • the second obtaining module includes:
  • a first obtaining unit configured to obtain the included angle between the obstacle and the front of the sweeping robot according to the position information
  • a rotation unit configured to rotate the body of the cleaning robot according to the included angle so that the second linear radar located on the side of the cleaning robot faces the obstacle.
  • the first control module includes:
  • a second acquiring unit configured to acquire a preset cleaning interval distance
  • the adjustment unit is configured to adjust the wheel speed of the sweeping robot according to the real-time distance and the preset cleaning interval, so that the real-time distance is equal to the preset sweeping interval, so as to control the sweeping robot to sweep around the obstacle.
  • the obstacle avoidance device of the sweeping robot further includes:
  • a third obtaining module configured to obtain the environmental information of the starting position when it is detected that the sweeping robot returns to the starting position for cleaning around the obstacle;
  • the planning module is used for planning a route according to the environmental information.
  • the obstacle avoidance device of the sweeping robot further includes:
  • a fourth acquisition module used for the second linear radar to acquire point cloud information of the obstacle in real time during the process of the sweeping robot surrounding the obstacle;
  • a marking module configured to mark the model in the map stored by the sweeping robot according to the location information.
  • the second obtaining unit includes:
  • the determining subunit is used for determining the preset cleaning interval distance based on the mapping relationship between the obstacle category and the preset cleaning interval distance.
  • the obstacle avoidance device of the sweeping robot further includes:
  • an identification module used for semantically identifying the obstacle to obtain an identification result
  • a determination module configured to determine a cleaning strategy when the sweeping robot sweeps around obstacles according to the recognition result.
  • the present application also provides a cleaning robot, which includes: a memory, a processor, at least two solid-state radars respectively disposed on the front and side of the cleaning robot, and stored on the memory and can run on the processor
  • the obstacle avoidance program of the sweeping robot when the obstacle avoidance program of the sweeping robot is executed by the processor, implements the steps of the above obstacle avoidance method for the sweeping robot.
  • the present application further provides a readable storage medium, where a computer program is stored on the readable storage medium, and when the computer program is executed by a processor, the steps of the above obstacle avoidance method for a cleaning robot are implemented.
  • the position information of the obstacle is obtained by scanning the first linear radar located on the front of the sweeping robot; if the position information is within the preset area relative to the sweeping robot, rotate the body of the sweeping robot and pass the fuselage located on the side of the sweeping robot.
  • the second linear radar obtains the real-time distance of the obstacle relative to the sweeping robot.
  • the first linear radar can accurately determine the obstacles in front of the sweeping robot, and when it needs to clean around the obstacle, the distance between the sweeping robot and the obstacle is controlled by the second linear radar, so that the sweeping robot can avoid touching the obstacle without touching the obstacle. Clean the area around obstacles as much as possible to improve cleaning efficiency.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • FIG. 2 is a schematic flowchart of the first embodiment of the obstacle avoidance method of the sweeping robot according to the application;
  • FIG. 3 is a schematic diagram of the relationship between the first screen and the ground where the laser beam emitted by the first linear radar is located in the first embodiment of the obstacle avoidance method of the sweeping robot of the application;
  • FIG. 4 is a schematic diagram of the relationship between the second plane and the ground where the laser beam emitted by the second linear radar is located in the first embodiment of the control method for the cleaning robot of the present application
  • FIG. 5 is a detailed flowchart of step S30 in FIG. 2 in the fourth embodiment of the obstacle avoidance method of the sweeping robot of the present application;
  • FIG. 6 is a schematic diagram of a system structure of an embodiment of an obstacle avoidance device for a cleaning robot according to the present application.
  • FIG. 1 is a schematic structural diagram of a terminal of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal in the embodiment of the present application is a cleaning robot.
  • the terminal may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 1005 may be high-speed RAM memory, or may be non-volatile memory, such as disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the terminal may further include a camera, an RF (Radio Frequency, radio frequency) circuits, sensors, audio circuits, WiFi modules, etc.
  • sensors such as light sensors, motion sensors and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor may turn off the display screen and/or when the terminal device moves to the ear Backlight.
  • the terminal device may also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., which will not be repeated here.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and an obstacle avoidance program of the sweeping robot.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be used to call the obstacle avoidance program of the sweeping robot stored in the memory 1005, and perform the following operations:
  • the position information is within a preset area relative to the sweeping robot, rotate the body of the sweeping robot and obtain the real-time distance of the obstacle relative to the sweeping robot through the second linear radar located on the side of the sweeping robot;
  • the cleaning robot is controlled to sweep around the obstacle.
  • the present application provides an obstacle avoidance method for a sweeping robot.
  • the method includes:
  • Step S10 obtaining the position information of the obstacle by scanning the first linear radar located on the front of the sweeping robot;
  • the first linear radar is preferably a solid-state line laser radar.
  • the solid-state line laser radar includes a laser transmitter head, and the laser transmitter head can emit an infrared laser beam.
  • the solid-state line laser radar also includes a laser beam that can scatter the infrared laser beam into a fan surface distribution.
  • the optical device such as beam expander, so that the solid-state line lidar can emit a fan-distributed laser beam with the laser transmitter as the center, and the laser beam irradiated on the surface of the object (such as wall, ground) can form a segment of infrared Laser line segments.
  • the solid-state line lidar also includes an infrared camera.
  • the infrared camera can capture the formed infrared laser line segment to obtain a captured image. According to the captured image, the distance from each point in the infrared laser line segment to the laser emitter can be obtained.
  • the first linear radar is installed on the front of the sweeping robot, and at the same time, the laser transmitter head of the first linear radar is controlled to be tilted downward by a certain angle so that the emitted laser beam can be irradiated on the ground, that is, the laser beam can be irradiated on the ground.
  • the infrared laser line segment can be displayed.
  • the distance between the infrared laser line segment and the sweeping robot is appropriate, and the length of the infrared laser line segment captured by the infrared camera is greater than the diameter of the sweeping robot.
  • the infrared laser line segment presented will be bent. Therefore, according to the infrared segment captured by the infrared camera, it can be judged whether there are low obstacles on the ground.
  • the distance information of the points on the infrared segment formed on the laser beam can know the position information of obstacles such as distance information and angle information.
  • Step S20 if the position information is in a preset area relative to the sweeping robot, rotate the body of the sweeping robot and obtain the real-time distance of the obstacle relative to the sweeping robot through the second linear radar located on the side of the sweeping robot;
  • the sweeping robot moves to an area close to the obstacle, that is, when the obstacle is in the preset area relative to the sweeping robot, such as a circular area with the sweeping robot as the center and the radius of 0.5 meters, it is necessary to identify the obstacle at this time.
  • the fuselage of the rotating cleaning robot is that the second solid-state radar located on the side of the cleaning robot faces the obstacle.
  • the front of the sweeping robot is the front when the sweeping robot normally cleans, and the side refers to the range corresponding to the fan with an included angle ranging from 0 degrees to 120 degrees.
  • the second linear radar is preferably also a solid-state line laser radar, but the plane where the laser beam emitted by the second linear radar is located is parallel to the ground, that is, it can scan obstacles in the vicinity of the sweeping robot and obtain the distance to the obstacles.
  • Rotating the body of the sweeping robot enables the second linear radar to face the obstacle to obtain the real-time distance between the sweeping robot and the obstacle, so as to ensure that the sweeping robot can sweep around the obstacle without touching the obstacle. Area.
  • the rotation angle of the sweeping robot body is determined by the angle between the obstacle and the sweeping robot and the angle between the first linear radar and the second linear radar.
  • the second linear radar can face the center of the obstacle after the rotation. .
  • the first plane where the laser beam emitted by the first linear radar is located is obliquely cut to the ground
  • the second plane where the laser beam emitted by the second linear radar is located is perpendicular to the ground.
  • the first plane on which the laser beam emitted by the first linear radar is located is chamfered to the ground so that infrared laser line segments can be generated on the ground to detect the existence of obstacles.
  • the second plane on which the laser beam emitted by the second linear radar is located is perpendicular to the ground, so that it can scan the surrounding low obstacles and obtain the distance to the sweeping robot. Referring to FIG.
  • the first plane on which the laser beam emitted by the first linear radar is located is chamfered to the ground so that infrared laser line segments can be generated on the ground.
  • the second plane on which the laser beam emitted by the second linear radar is located is perpendicular to the ground so that the distance to the obstacle can be obtained.
  • Step S30 controlling the sweeping robot to sweep around the obstacle according to the real-time distance
  • the sweeping robot adjusts the rotation speed of the wheels of the sweeping robot to ensure that the distance between the sweeping robot and the obstacle is always at a fixed value, and at the same time obtain through the first linear radar whether there are other obstacles in the forward direction during the process of moving around the obstacle. object, so as to ensure that no obstacle is touched during the wrapping process and the process of wrapping the current obstacle is completed.
  • the sweeping robot can keep the distance from the obstacle and obtain the information of the objects on the surrounding path in real time during the process of surrounding the obstacle, so that there is no scanning blind spot, and the sweeping robot can be controlled more accurately. It cleans along the obstacle, providing the cleaning efficiency and cleaning effect of the area around the obstacle.
  • the position information of the obstacle is obtained by scanning the first linear radar located on the front of the sweeping robot; if the position information is within a preset area relative to the sweeping robot, rotate the body of the sweeping robot and pass the sweeping robot through the sweeping robot.
  • the second linear radar on the side of the robot obtains the real-time distance of the obstacle relative to the sweeping robot; and controls the sweeping robot to sweep around the obstacle according to the real-time distance.
  • the first linear radar can accurately determine the obstacles in front of the sweeping robot, and when it needs to clean around the obstacle, the distance between the sweeping robot and the obstacle is controlled by the second linear radar, so that the sweeping robot can avoid touching the obstacle without touching the obstacle. Clean the area around obstacles as much as possible to improve cleaning efficiency.
  • a second embodiment of the obstacle avoidance method of the sweeping robot is provided.
  • the second embodiment
  • Step S10 includes:
  • Step A1 according to the reference distance between the first linear radar located in front of the sweeping robot and the ground and the obtained actual distance from the object in front, calculate the height of the object in front;
  • the distance obtained by the first linear radar when the laser beam emitted by the first linear radar irradiates the ground is used as the reference distance between the first linear radar and the ground, and the reference distance can be directly determined by the technician. Input it into the storage device of the sweeping robot for storage.
  • the first linear radar and the object will be obtained when the laser beam emitted by the first linear radar is irradiated on the object.
  • the actual distance of the corresponding point on the upper limit, the actual distance is different from the reference distance, and the height information of the object can be obtained according to the reference distance and the actual distance.
  • Step A2 if the height is greater than the preset height value, determine that the object ahead is an obstacle
  • the detected front object is determined to be an obstacle. Because there may be some unevenness on the ground during construction, only when the height of the front object is greater than the preset height value, the front object is determined as an obstacle that needs to be avoided and surrounded, thereby improving the accuracy of obstacle recognition. .
  • Step A3 according to the actual distance, calculate the position information of the obstacle
  • the position information of the obstacle is calculated according to the actual distance to the obstacle obtained by the laser beam emitted by the first linear radar.
  • the height of the object is used to determine whether it is an obstacle that needs to be avoided and surrounded, and if it is an obstacle, the position information of the obstacle is determined, so as to determine the accuracy of the obstacle identification.
  • a third embodiment of the obstacle avoidance method of the sweeping robot is provided.
  • the third embodiment
  • Step S20 includes:
  • Step B1 according to the position information, obtain the angle between the obstacle and the front of the sweeping robot;
  • the position information includes the angle information of the obstacle relative to the sweeping robot, so the angle between the obstacle and the front of the sweeping robot can be obtained through the position information of the obstacle.
  • Step B2 rotate the body of the sweeping robot so that the second linear radar located on the side of the sweeping robot faces the obstacle;
  • the body of the sweeping robot is rotated so that the second linear radar can face the obstacle, and then the second linear radar can be used to scan the obstacle to obtain the distance between the sweeping robot and the obstacle.
  • the rotated second linear radar can face the obstacle
  • the rotation angle of the sweeping robot can be the angle between the obstacle and the straight front of the sweeping robot.
  • the second solid-state radar can be directed toward the obstacle by rotating the body of the sweeping robot, so as to control the distance between the sweeping robot and the obstacle in the process of orbiting the obstacle.
  • a fourth embodiment of the obstacle avoidance method of the sweeping robot is provided.
  • the fourth embodiment
  • Step S30 includes:
  • Step S31 obtaining a preset cleaning interval distance
  • Step S32 according to the real-time distance and the preset cleaning interval distance, adjust the wheel speed of the sweeping robot to make the real-time distance equal to the preset sweeping interval distance to control the sweeping robot to sweep around the obstacle;
  • the sweeping robot is controlled to surround the sweeping robot according to the preset sweeping interval distance to complete the cleaning process.
  • the rotation speed of the left and right wheels of the sweeping robot is controlled to adjust the real-time distance between the sweeping robot and the obstacle. For example, when the real-time distance is greater than When the cleaning interval distance is preset, the wheel speed on the side farther from the obstacle is increased, so that the sweeping robot approaches the obstacle to reduce the real-time distance.
  • step S31 includes:
  • Step C1 obtaining the height of the obstacle
  • Step C2 classifying the obstacle according to the height value
  • the height of the obstacle has been obtained when judging whether the object in front is an obstacle, so the height of the obstacle can be obtained, and the obstacles are classified according to the height.
  • the categories include large obstacles, medium obstacles and small obstacles.
  • the classification of obstacles according to height is to simplify the classification process of obstacles. In fact, more other classification standards can be used.
  • Step C3 based on the mapping relationship between the obstacle category and the preset cleaning interval distance, determine the preset cleaning interval distance
  • the corresponding preset cleaning distance is larger, such as 2 cm.
  • the corresponding preset cleaning distance can be 1 cm, and when it is a small obstacle, the preset cleaning distance can be set to 1 cm.
  • the cleaning distance can be as small as 0.5 cm.
  • the mapping relationship between the obstacle category and the preset cleaning interval distance may be in other forms, such as functional expressions corresponding to different heights and preset cleaning interval distances according to different categories. Determining the preset cleaning interval distance through the mapping relationship can further improve the cleaning efficiency of the sweeping robot in the area around the obstacle.
  • the real-time distance between the sweeping robot and the obstacle is controlled by adjusting the wheel speed of the sweeping robot to be the preset cleaning interval, so that the sweeping can be as complete as possible without touching the obstacle.
  • the surrounding area of the sweeping robot can improve the cleaning efficiency.
  • a fifth embodiment of the obstacle avoidance method of the sweeping robot is provided.
  • the fifth embodiment
  • step S30 it also includes:
  • Step D1 when it is detected that the sweeping robot returns to the starting position for cleaning around the obstacle, obtain the environmental information of the starting position;
  • Step D2 planning a route according to the environmental information
  • the surrounding environment information is obtained, such as whether there are more obstacles to sweep around. If there are new obstacles that need to be cleaned, you can plan a route to the new obstacles and perform obstacle avoidance and detour cleaning for the new obstacles according to the obstacle clearance method.
  • the route is re-planned at the initial position according to the surrounding environment information, so that the route planning of the sweeping robot during obstacle avoidance and obstacle avoidance is more timely and intelligent.
  • a sixth embodiment of the obstacle avoidance method for a sweeping robot is provided.
  • the sixth embodiment
  • the obstacle avoidance method of the sweeping robot also includes:
  • Step E1 performing semantic recognition on the obstacle to obtain a recognition result
  • Step E2 determine the cleaning strategy when the sweeping robot sweeps around obstacles
  • the neural network and knowledge map semantically recognize the obstacles to obtain the recognition results of the obstacles, such as blocks, wires, shoes, socks, etc., through the recognition results of the obstacles, determine the cleaning strategy when cleaning around the obstacles ,
  • the cleaning strategy includes the power when cleaning, the moving speed when cleaning, etc.
  • the cleaning power when cleaning around obstacles should be appropriately reduced and the moving speed when cleaning It can be reduced, and for obstacles such as shoes, it can maintain high power for cleaning.
  • the cleaning power when cleaning around the obstacle is determined according to the identification type of the obstacle, so as to ensure the safety when cleaning.
  • a seventh embodiment of the obstacle avoidance method for a sweeping robot is provided.
  • the seventh embodiment
  • the obstacle avoidance methods of the sweeping robot include:
  • Step F1 in the process of the robot sweeping around the obstacle, the second linear radar acquires the point cloud information of the obstacle in real time;
  • Step F2 establishing the model of the obstacle according to the point cloud information
  • Step F3 marking the model in the map stored by the sweeping robot according to the location information
  • the second linear radar will always scan to obtain the point cloud information of the obstacle to determine the position of the obstacle. Including the height of the obstacle and the characteristics of the surface, and then according to the position information of the obstacle, the established model of the obstacle is marked in the corresponding position in the map stored in the sweeping robot.
  • the modeling of obstacles is helpful for the sweeping robot to improve the stored map information so as to facilitate the subsequent route planning of the sweeping robot.
  • the obstacle avoidance method of the sweeping robot also includes:
  • Step G1 if the distance between multiple obstacles is less than the preset distance, then combine the multiple obstacles into a new obstacle;
  • Step G2 executing the step of controlling the sweeping robot to sweep around the obstacle according to the real-time distance
  • the sweeping robot cannot complete the obstacle cleaning for each obstacle, and these obstacles with a small distance are regarded as a new obstacle as a whole. object, and then complete the cleaning process for the new obstacle according to the obstacle clearance cleaning method in the present application.
  • the building blocks scattered in a certain area on the ground but not completely stacked together, at this time, all the building blocks in the area can be used as an obstacle for obstacle avoidance and corresponding obstacle clearance work.
  • the sweeping robot can flexibly handle the identification process of obstacles.
  • the processing capability of the sweeping robot for obstacles in the actual working environment is enhanced by merging multiple obstacles, and the step of updating the map through modeling makes the route planning of the sweeping robot more reasonable, thereby improving the sweeping robot in the The ability to handle situations in the actual working environment improves the user experience.
  • an embodiment of the present application also proposes an obstacle avoidance device for a sweeping robot, and the obstacle avoidance device for a sweeping robot includes:
  • a first acquisition module used for acquiring the position information of obstacles by scanning the first linear radar located on the front of the sweeping robot
  • the second acquisition module is configured to rotate the body of the cleaning robot and obtain the relative position of the obstacle relative to the cleaning robot through the second linear radar located on the side of the cleaning robot if the position information is within the preset range of the cleaning robot. real-time distance;
  • the first control module is configured to control the sweeping robot to sweep around the obstacle according to the real-time distance.
  • the first acquisition module includes:
  • a first calculation unit configured to calculate the height of the front object according to the reference distance between the first linear radar located on the front of the sweeping robot and the ground and the acquired actual distance from the front object;
  • a determination unit configured to determine that the object ahead is an obstacle if the height is greater than a preset height value
  • the second calculation unit is configured to calculate the position information of the obstacle according to the actual distance.
  • the second obtaining module includes:
  • a first obtaining unit configured to obtain the included angle between the obstacle and the front of the sweeping robot according to the position information
  • a rotation unit configured to rotate the body of the cleaning robot according to the included angle so that the second linear radar located on the side of the cleaning robot faces the obstacle.
  • the first control module includes:
  • a second acquiring unit configured to acquire a preset cleaning interval distance
  • the adjustment unit is configured to adjust the wheel speed of the sweeping robot according to the real-time distance and the preset cleaning interval, so that the real-time distance is equal to the preset sweeping interval, so as to control the sweeping robot to sweep around the obstacle.
  • the obstacle avoidance device of the sweeping robot further includes:
  • a third obtaining module configured to obtain the environmental information of the starting position when it is detected that the sweeping robot returns to the starting position for cleaning around the obstacle;
  • the planning module is used for planning a route according to the environmental information.
  • the obstacle avoidance device of the sweeping robot further includes:
  • a fourth acquisition module used for the second linear radar to acquire point cloud information of the obstacle in real time during the process of the sweeping robot surrounding the obstacle;
  • a marking module configured to mark the model in the map stored by the sweeping robot according to the location information.
  • the second obtaining unit includes:
  • the determining subunit is used for determining the preset cleaning interval distance based on the mapping relationship between the obstacle category and the preset cleaning interval distance.
  • the obstacle avoidance device of the sweeping robot further includes:
  • an identification module used for semantically identifying the obstacle to obtain an identification result
  • a determination module configured to determine a cleaning strategy when the sweeping robot sweeps around obstacles according to the recognition result.
  • the obstacle avoidance device of the sweeping robot further includes:
  • a merging module configured to merge the plurality of obstacles into a new obstacle if the distance between the plurality of obstacles is less than the preset distance
  • An execution module configured to execute the step of controlling the sweeping robot to sweep around the obstacle according to the real-time distance.
  • the expanded content of the specific implementation manner of the sweeping robot and the readable storage medium (ie, the computer-readable storage medium) of the present application is basically the same as the above-mentioned embodiments of the obstacle avoidance method of the sweeping robot, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请公开了一种扫地机器人的避障方法、装置、扫地机器人及可读介质,该方法包括通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。

Description

扫地机器人的避障方法、设备及计算机可读存储介质
本申请要求于2020年8月27日申请的、申请号为202010874178.4、名称为“扫地机器人的避障方法、装置、扫地机器人及可读介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器人技术领域,尤其涉及一种扫地机器人的避障方法、设备及计算机可读存储介质。
背景技术
目前,扫地机器人对于低矮障碍物的处理能力较差。对于低矮障碍物可能无法进行检测识别而导致扫地机器人被低矮障碍物困住二无法正常进行清扫,或者当识别出低矮障碍物后为了躲避低矮障碍物而导致低矮障碍物附件的区域无法进行清扫使清扫效率变低。
技术解决方案
本申请的主要目的在于提供一种扫地机器人的避障方法、装置、扫地机器人及可读存储介质,旨在解决目前扫地机器人对于低矮障碍物识别不准确和清扫效率低的问题。
为实现上述目的,本申请提供一种扫地机器人的避障方法,所述扫地机器人的避障方法包括以下步骤:
通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;
若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;
根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。
在一实施例中,所述第一线性雷达发射的激光束所处的第一平面斜切于地面,所述第二线性雷达发射的激光束所处的第二平面垂直于地面。
在一实施例中,通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息的步骤包括:
根据位于扫地机器人正面的第一线性雷达与地面的基准距离以及获取的与前方物体的实际距离,计算所述前方物体的高度;
若所述高度大于预设高度值,则判定前方物体为障碍物;
根据所述实际距离,计算所述障碍物的位置信息。
在一实施例中,旋转扫地机器人的机身的步骤包括:
根据所述位置信息,获取所述障碍物与扫地机器人正前方的夹角;
按照所述夹角,旋转所述扫地机器人的机身使位于扫地机器人侧面的第二线性雷达朝向所述障碍物。
在一实施例中,根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫的步骤包括:
获取预设清扫间隔距离;
根据所述实时距离和预设清扫间隔距离,调整扫地机器人的车轮转速使所述实时距离等于预设清扫间隔距离以控制所述扫地机器人环绕所述障碍物进行清扫。
在一实施例中,控制所述扫地机器人环绕所述障碍物清扫的步骤之后,还包括:
当检测到扫地机器人回到环绕所述障碍物清扫的起始位置时,获取所述起始位置的环境信息;
根据所述环境信息规划路线。
在一实施例中,扫地机器人的避障方法还包括:
在所述扫地机器人环绕所述障碍物的过程中,所述第二线性雷达实时获取所述障碍物的点云信息;
根据所述点云信息,建立所述障碍物的模型;
根据所述位置信息,将所述模型标记在扫地机器人存储的地图中。
在一实施例中,获取预设清扫间隔距离的步骤包括:
获取所述障碍物的所述高度;
根据所述高度值对于所述障碍物进行归类;
基于障碍物类别与预设清扫间隔距离的映射关系,确定预设清扫间隔距离。
在一实施例中,扫地机器人的避障方法还包括:
对于所述障碍物进行语义识别得到识别结果;
根据所述识别结果,确定扫地机器人环绕障碍物清扫时的清扫策略。
在一实施例中,扫地机器人的避障方法还包括:
若多个障碍物间的距离小于预设间距时,则将所述多个障碍物合并为一个新的障碍物;
执行所述根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫的步骤。
本申请还提供一种扫地机器人的避障装置,所述扫地机器人的避障装置包括:
第一获取模块,用于通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;
第二获取模块,用于若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;
第一控制模块,用于根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。
在一实施例中,第一获取模块包括:
第一计算单元,用于根据位于扫地机器人正面的第一线性雷达与地面的基准距离以及获取的与前方物体的实际距离,计算所述前方物体的高度;
判定单元,用于若所述高度大于预设高度值,则判定前方物体为障碍物;
第二计算单元,用于根据所述实际距离,计算所述障碍物的位置信息。
在一实施例中,第二获取模块包括:
第一获取单元,用于根据所述位置信息,获取所述障碍物与扫地机器人正前方的夹角;
旋转单元,用于按照所述夹角,旋转所述扫地机器人的机身使位于扫地机器人侧面的第二线性雷达朝向所述障碍物。
在一实施例中,第一控制模块包括:
第二获取单元,用于获取预设清扫间隔距离;
调整单元,用于根据所述实时距离和预设清扫间隔距离,调整扫地机器人的车轮转速使所述实时距离等于预设清扫间隔距离以控制所述扫地机器人环绕所述障碍物进行清扫。
在一实施例中,扫地机器人的避障装置还包括:
第三获取模块,用于当检测到扫地机器人回到环绕所述障碍物清扫的起始位置时,获取所述起始位置的环境信息;
规划模块,用于根据所述环境信息规划路线。
在一实施例中,扫地机器人的避障装置还包括:
第四获取模块,用于在所述扫地机器人环绕所述障碍物的过程中,所述第二线性雷达实时获取所述障碍物的点云信息;
建立模块,用于根据所述点云信息,建立所述障碍物的模型;
标记模块,用于根据所述位置信息,将所述模型标记在扫地机器人存储的地图中。
在一实施例中,第二获取单元包括:
获取子单元,用于获取所述障碍物的所述高度;
归类子单元,用于根据所述高度值对于所述障碍物进行归类;
确定子单元,用于基于障碍物类别与预设清扫间隔距离的映射关系,确定预设清扫间隔距离。
在一实施例中,扫地机器人的避障装置还包括:
识别模块,用于对于所述障碍物进行语义识别得到识别结果;
确定模块,用于根据所述识别结果,确定扫地机器人环绕障碍物清扫时的清扫策略。
本申请还提供一种扫地机器人,所述扫地机器人包括:存储器、处理器、至少两个分别设置在扫地机器人正面和侧面的固态雷达及存储在所述存储器上并可在所述处理器上运行的扫地机器人的避障程序,所述扫地机器人的避障程序被所述处理器执行时实现如上述的扫地机器人的避障方法的步骤。
本申请还提供一种可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述的扫地机器人的避障方法的步骤。
本申请中通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离。通过第一线性雷达能够准确确定扫地机器人前方存在的障碍物,而当需要环绕障碍物进行清扫时,通过第二线性雷达控制扫地机器人与障碍物的距离,使扫地机器人能够在不触碰障碍物的情况下尽可能清扫障碍物周围的区域,从而提升清扫效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2为本申请扫地机器人的避障方法第一实施例中的流程示意图;
图3为本申请扫地机器人的避障方法第一实施例中第一线性雷达发射的激光束所处的第一屏幕与地面的关系示意图;
图4为本申请扫地机器人的控制方法第一实施例中第二线性雷达发射的激光束所处的第二平面与地面的关系示意图
图5为本申请扫地机器人的避障方法第四实施例中对图2步骤S30的细化流程图;
图6为本申请扫地机器人的避障装置一实施例的系统结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端为扫地机器人。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
在一实施例中,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在终端设备移动到耳边时,关闭显示屏和/或背光。当然,终端设备还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及扫地机器人的避障程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的扫地机器人的避障程序,并执行以下操作:
通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;
若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;
根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。
基于上述终端硬件结构,提出本申请各个实施例。
本申请提供一种扫地机器人的避障方法。
参照图2、图3和图4,在扫地机器人的避障方法第一实施例中,该方法包括:
步骤S10,通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;
第一线性雷达优选的为固态线激光雷达,固态线激光雷达中包括一个激光发射头,激光发射头能够发射红外激光束,同时固态线激光雷达中还包括一个可以将红外激光束散射为扇面分布的光学装置如扩束镜,从而使固态线激光雷达能够以激光发射头为中心发射出呈扇面分布的激光束,同时该激光束照射在物体表面(如墙面、地面)是可以形成一段红外激光线段。同时固态线激光雷达中还包括一个红外摄像头,红外摄像头可以对于形成的红外激光线段进行拍摄得到拍摄图像,根据拍摄得到的图像可以获取红外激光线段中各点到激光发射头的距离。具体地,在本申请中,第一线性雷达安装于扫地机器人中的正面,同时控制第一线性雷达的激光发射头下倾一定的角度以使发射的激光束能够照射在地面上即能在地面上无障碍物时能呈现出红外激光线段,需要保证红外激光线段与扫地机器人的距离合适,同时能够通过红外摄像头拍摄的红外激光线段的长度大于扫地机器人的直径。当地面上存在低矮障碍物时,呈现出的红外激光线段会存在弯折,因此根据红外摄像头拍摄的红外线段可以判断地面上是否存在低矮障碍物,当存在障碍物,利用固态雷达发射的激光束上形成的红外线段上点的距离信息可以知道障碍物的位置信息如距离信息和角度信息。
步骤S20,若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;
当扫地机器人移动到障碍物较近的区域时,即当障碍物处于相对扫地机器人的预设区域范围如以扫地机器人为圆心半径为0.5米的圆形区域中,此时需要从识别障碍物的状态变为避障绕障状态,即需要在扫地机器人不触碰到障碍物的同时绕着障碍物进行清扫。此时旋转扫地机器人的机身是位于扫地机器人侧面的第二固态雷达朝向所述障碍物。扫地机器人的正面为扫地机器人正常清扫时在前的为正面,而侧面指与正面的夹角范围在0度到120度的扇面对应的范围。同时第二线性雷达优选的也是固态线激光雷达,但是第二线性雷达发射的激光束所处的平面与地面平行,即能够扫描到扫地机器人附近范围内的障碍物并获取与障碍物的距离。旋转扫地机器人的机身使第二线性雷达能够朝向障碍物来获取扫地机器人与障碍物间的实时距离,从而保证扫地机器人在不会触碰到障碍物的同时能够围绕着障碍物清扫障碍物周围的区域。同时扫地机器人机身的旋转角度由障碍物与扫地机器人的夹角以及第一线性雷达与第二线性雷达间的夹角确定,优选的,使旋转后第二线性雷达能够正对障碍物的中心。
其中,所述第一线性雷达发射的激光束所处的第一平面斜切于地面,所述第二线性雷达发射的激光束所处的第二平面垂直于地面。第一线性雷达发射的激光束所处的第一平面斜切于地面从而使地面上能够产生红外激光线段来检测障碍物的存在。而第二线性雷达发射的激光束所处的第二平面垂直于地面从而能够扫描到周围的低矮障碍物并获取到与扫地机器人的距离。参照图3,可以知道第一线性雷达发射的激光束所处的第一平面斜切于地面从而能够在地面上产生红外激光线段。参照图4,第二线性雷达发射的激光束所处的第二平面垂直于地面从而能够获取与障碍物的距离。
步骤S30,根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫;
根据实时距离,调整扫地机器人的车轮的转速从而保证扫地机器人与障碍物之间的距离始终在一个固定值,同时通过第一线性雷达获取环绕障碍物的行进过程中前进方向上是否还存在其他障碍物,从而保证在环绕过程中不会触碰到任何障碍物并完成环绕当前障碍物的过程。通过增加第二线性雷达使扫地机器人能够在环绕障碍物的过程中即保持与障碍物间的距离同时还能实时获取环绕路径上的物体信息,从而不存在扫描盲区,同时能够控制扫地机器人更加准确的沿着障碍物进行清扫,提供对于障碍物周围区域的清扫效率以及清扫效果。
在本实施例中,通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。通过第一线性雷达能够准确确定扫地机器人前方存在的障碍物,而当需要环绕障碍物进行清扫时,通过第二线性雷达控制扫地机器人与障碍物的距离,使扫地机器人能够在不触碰障碍物的情况下尽可能清扫障碍物周围的区域,从而提升清扫效率。
进一步地,在本申请扫地机器人的避障方法第一实施例的基础上,提供扫地机器人的避障方法第二实施例,在第二实施例中,
步骤S10包括:
步骤A1,根据位于扫地机器人正面的第一线性雷达与地面的基准距离以及获取的与前方物体的实际距离,计算所述前方物体的高度;
当地面上不存在任何障碍物时,第一线性雷达发射的激光束照射到地面上时第一线性雷达获取到的距离作为第一线性雷达与地面的基准距离,基准距离可以直接由技术人员直接输入到扫地机器人的存储装置中进行存储,同时在扫地机器人实际的清扫过程中,当地面上存在物体时,第一线性雷达发射的激光束照射在物体上时会获取到第一线性雷达与物体上相应点的实际距离,该实际距离与基准距离不同,同时根据基准距离与实际距离可以获取到物体的高度信息。
步骤A2,若所述高度大于预设高度值,则判定前方物体为障碍物;
当物体的高度大于预设高度值如1厘米时,才判定检测到的前方物体为障碍物。因为地面上可能在建造时存在一定的凹凸不平,因此只有当前方物体的高度大于预设高度值时,才确定前方物体为需要避开以及环绕的障碍物,从而提高对于障碍物识别的准确性。
步骤A3,根据所述实际距离,计算所述障碍物的位置信息;
当确定前方存在障碍物时,则根据第一线性雷达发射的激光束获取的与障碍物的实际距离,计算出障碍物的位置信息如相对扫地机器人的距离和角度信息。
在本实施例中,利用物体的高度判断是否为需要避开与环绕的障碍物,若是障碍物,则再确定障碍物的位置信息,从而通过对障碍物识别的准确性。
进一步地,在本申请扫地机器人的避障方法上述实施例的基础上,提供扫地机器人的避障方法第三实施例,在第三实施例中,
步骤S20包括:
步骤B1,根据所述位置信息,获取所述障碍物与扫地机器人正前方的夹角;
位置信息中包含障碍物相对扫地机器人的角度信息,因此可以通过障碍物的位置信息获取障碍物与扫地机器人正前方的夹角。
步骤B2,按照所述夹角,旋转所述扫地机器人的机身使位于扫地机器人侧面的第二线性雷达朝向所述障碍物;
根据夹角,旋转扫地机器人的机身使第二线性雷达能够朝向障碍物,之后就可以利用第二线性雷达扫描到障碍物以获取扫地机器人与障碍物间的距离。优选的,旋转后的第二线性雷达能正对障碍物,此时扫地机器人的旋转角度可以为障碍物与扫地机器人正前方的夹角角度。
在本实施例中,通过旋转扫地机器人的机身使第二固态雷达能够朝向障碍物,便于之后在环绕障碍物的过程中控制扫地机器人与障碍物间的距离。
进一步地,参照图2和图5,在本申请扫地机器人的避障方法上述实施例的基础上,提供扫地机器人的避障方法第四实施例,在第四实施例中,
步骤S30包括:
步骤S31,获取预设清扫间隔距离;
当需对障碍物周围的区域进行环绕清扫时,需与障碍物间保持一定的距离来确保扫地机器人不会触碰到障碍物,而该距离即为预设清扫间隔距离。
步骤S32,根据所述实时距离和预设清扫间隔距离,调整扫地机器人的车轮转速使所述实时距离等于预设清扫间隔距离以控制所述扫地机器人环绕所述障碍物进行清扫;
当确定预设清扫间隔距离后,则控制扫地机器人按照预设清扫间隔距离环绕扫地机器人完成清扫过程。当通过第二固态雷达获取的扫地机器人与障碍物的实时距离不等于预设清扫间隔距离时,则控制扫地机器人的左右车轮的转速来调整扫地机器人与障碍物的实时距离,如当实时距离大于预设清扫间隔距离时,则增大距离障碍物较远侧的车轮转速从而是扫地机器人靠近障碍物来减小实时距离。
其中,步骤S31包括:
步骤C1,获取所述障碍物的所述高度;
步骤C2,根据所述高度值对于所述障碍物进行归类;
障碍物的高度在判断前方物体是否为障碍物时已经获取得到,因此可以获取到障碍物的高度,同时根据高度对于障碍物进行归类,类别包括大型障碍物,中型障碍物和小型障碍物。同时这里根据高度对于障碍物进行归类是为了简化障碍物的分类过程,实际上可以采用其他更多的分类标准。
步骤C3,基于障碍物类别与预设清扫间隔距离的映射关系,确定预设清扫间隔距离;
当障碍物为大型障碍物时,对应的预设清扫间隔距离较大如2厘米,当障碍物为中型障碍物时,对应的预设清扫距离可以为1厘米,而为小型障碍物时预设清扫距离可以更小如0.5厘米。障碍物类别与预设清扫间隔距离间的映射关系可以为其他形式,如根据不同的类别对应有不同的高度与预设清扫间隔距离的函数表达式。通过映射关系确定预设清扫间隔距离能够进一步提升扫地机器人在绕障对于障碍物周围区域的清扫效率。
在本实施例中,在绕障清扫过程中,通过调整扫地机器人的车轮转速控制扫地机器人与障碍物的实时距离为预设清扫间隔距离,从而在不触碰到障碍物的同时尽可能清扫完全扫地机器人的周围区域从而提高清扫效率。
进一步地,在本申请扫地机器人的避障方法上述实施例的基础上,提供扫地机器人的避障方法第五实施例,在第五实施例中,
步骤S30之后,还包括:
步骤D1,当检测到扫地机器人回到环绕所述障碍物清扫的起始位置时,获取所述起始位置的环境信息;
步骤D2,根据所述环境信息规划路线;
当检测到扫地机器人回到环绕所述障碍物清扫的起始位置,即扫地机器人已经完成对障碍物的绕障清扫时,则再获取周围的环境信息如是否还存在更多的需要绕障清扫的障碍物,如果还存在需要清扫的新障碍物,则可以规划前往新障碍物的路线并按照绕障清扫的方式对于新障碍物进行避障以及绕障清扫。同时也可以选择旋转扫地机器人的机身使所述第一线性雷达的扫描方向恢复为开始环绕所述障碍物清扫时的初始方向,即当完成对当前障碍物的绕障后使扫地机器人重新按照之前的路径规划完成对于其他区域的清扫工作。即扫地机器人可以选择在初始位置重新规划清扫路线,也可以按照之前规划好的清扫路线完成对房间的清扫工作。
在本实施例中,当对当前障碍物绕障完成后,在初始位置根据周围的环境信息再重新规划路线,从而使扫地机器人在避障以及绕障过程中的路线规划更加及时与智能。
进一步地,在本申请扫地机器人的避障方法上述实施例的基础上,提供扫地机器人的避障方法第六实施例,在第六实施例中,
扫地机器人的避障方法还包括:
步骤E1,对于所述障碍物进行语义识别得到识别结果;
步骤E2,根据所述识别结果,确定扫地机器人环绕障碍物清扫时的清扫策略;
根据神经网络以及知识图谱,对于障碍物进行语义识别来获取障碍物的识别结果,如障碍物为积木、电线、鞋子、袜子等,通过对于障碍物的识别结果,确定绕障清扫时的清扫策略,清扫策略包括清扫时的功率、清扫时的移动速度等,如对于积木、袜子等可能被大功率清扫所干扰的障碍物,绕障清扫时的清扫功率应适当调小同时清扫时的移动速度可以减小,而对于鞋子等障碍物则可以保持大功率进行清扫。
在本实施例中,根据障碍物的识别类型确定绕障清扫时的清扫功率从而保证清扫时的安全性。
进一步地,在本申请扫地机器人的避障方法上述实施例的基础上,提供扫地机器人的避障方法第七实施例,在第七实施例中,
扫地机器人的避障方法包括:
步骤F1,在所述扫地机器人环绕所述障碍物的过程中,所述第二线性雷达实时获取所述障碍物的点云信息;
步骤F2,根据所述点云信息,建立所述障碍物的模型;
步骤F3,根据所述位置信息,将所述模型标记在扫地机器人存储的地图中;
在绕障清扫过程中,第二线性雷达会一直扫描获取障碍物的点云信息从而确定障碍物的位置,将在整个绕障过程中获取的点云信息进行综合即可得到障碍物的模型即包括障碍物的高度以及表面的特征,之后在根据障碍物的位置信息,将建立好的障碍物的模型标记在扫地机器人中存储的地图中的相应位置。对于障碍物的建模有利于扫地机器人完善存储的地图信息从而便于扫地机器人之后的路线规划。
其中,扫地机器人的避障方法还包括:
步骤G1,若多个障碍物间的距离小于预设间距时,则将所述多个障碍物合并为一个新的障碍物;
步骤G2,执行所述根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫的步骤;
当地面上存在多个障碍物但是障碍物间的距离较小时,扫地机器人无法完成对于每个障碍物的绕障清扫,则将这些距离较小的障碍物作为一个整体,看做一个新的障碍物,再根据本申请中的绕障清扫方法完成对于新的障碍物的清扫过程。如地面上散落在一定区域中但未完全堆积在一起的积木,此时可以将在该区域中的所有积木作为一个障碍物来进行避障以及相应的绕障清扫工作。从而使扫地机器人能够根据灵活地处理对于障碍物的识别过程。
在本实施例中,通过对于多个障碍物的合并增强扫地机器人对于实际工作环境中障碍物的处理能力,通过建模更新地图的步骤使扫地机器人之后的路线规划更加合理,从而提升扫地机器人在实际工作环境中的状况处理能力,提升使用者的使用体验。
此外,参照图6,本申请实施例还提出一种扫地机器人的避障装置,所述扫地机器人的避障装置包括:
第一获取模块,用于通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;
第二获取模块,用于若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;
第一控制模块,用于根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。
在一实施例中,第一获取模块包括:
第一计算单元,用于根据位于扫地机器人正面的第一线性雷达与地面的基准距离以及获取的与前方物体的实际距离,计算所述前方物体的高度;
判定单元,用于若所述高度大于预设高度值,则判定前方物体为障碍物;
第二计算单元,用于根据所述实际距离,计算所述障碍物的位置信息。
在一实施例中,第二获取模块包括:
第一获取单元,用于根据所述位置信息,获取所述障碍物与扫地机器人正前方的夹角;
旋转单元,用于按照所述夹角,旋转所述扫地机器人的机身使位于扫地机器人侧面的第二线性雷达朝向所述障碍物。
在一实施例中,第一控制模块包括:
第二获取单元,用于获取预设清扫间隔距离;
调整单元,用于根据所述实时距离和预设清扫间隔距离,调整扫地机器人的车轮转速使所述实时距离等于预设清扫间隔距离以控制所述扫地机器人环绕所述障碍物进行清扫。
在一实施例中,扫地机器人的避障装置还包括:
第三获取模块,用于当检测到扫地机器人回到环绕所述障碍物清扫的起始位置时,获取所述起始位置的环境信息;
规划模块,用于根据所述环境信息规划路线。
在一实施例中,扫地机器人的避障装置还包括:
第四获取模块,用于在所述扫地机器人环绕所述障碍物的过程中,所述第二线性雷达实时获取所述障碍物的点云信息;
建立模块,用于根据所述点云信息,建立所述障碍物的模型;
标记模块,用于根据所述位置信息,将所述模型标记在扫地机器人存储的地图中。
在一实施例中,第二获取单元包括:
获取子单元,用于获取所述障碍物的所述高度;
归类子单元,用于根据所述高度值对于所述障碍物进行归类;
确定子单元,用于基于障碍物类别与预设清扫间隔距离的映射关系,确定预设清扫间隔距离。
在一实施例中,扫地机器人的避障装置还包括:
识别模块,用于对于所述障碍物进行语义识别得到识别结果;
确定模块,用于根据所述识别结果,确定扫地机器人环绕障碍物清扫时的清扫策略。
在一实施例中,扫地机器人的避障装置还包括:
合并模块,用于若多个障碍物间的距离小于预设间距时,则将所述多个障碍物合并为一个新的障碍物;
执行模块,用于执行所述根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫的步骤。
本申请扫地机器人和可读存储介质(即计算机可读存储介质)的具体实施方式的拓展内容与上述扫地机器人的避障方法各实施例基本相同,在此不做赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (12)

  1. 一种扫地机器人的避障方法,其中,所述扫地机器人的避障方法包括以下步骤:
    通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息;
    若所述位置信息处于相对扫地机器人的预设区域范围时,旋转扫地机器人的机身并通过位于扫地机器人侧面的第二线性雷达,获取所述障碍物相对扫地机器人的实时距离;
    根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫。
  2. 如权利要求1所述的扫地机器人的避障方法,其中,所述第一线性雷达发射的激光束所处的第一平面斜切于地面,所述第二线性雷达发射的激光束所处的第二平面垂直于地面。
  3. 如权利要求2所述的扫地机器人的避障方法,其中,所述通过位于扫地机器人正面的第一线性雷达扫描获取障碍物的位置信息的步骤包括:
    根据位于扫地机器人正面的第一线性雷达与地面的基准距离以及获取的与前方物体的实际距离,计算所述前方物体的高度;
    若所述高度大于预设高度值,则判定前方物体为障碍物;
    根据所述实际距离,计算所述障碍物的位置信息。
  4. 如权利要求2所述的扫地机器人的避障方法,其中,所述旋转扫地机器人的机身的步骤包括:
    根据所述位置信息,获取所述障碍物与扫地机器人正前方的夹角;
    按照所述夹角,旋转所述扫地机器人的机身使位于扫地机器人侧面的第二线性雷达朝向所述障碍物。
  5. 如权利要求3所述的扫地机器人的避障方法,其中,所述根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫的步骤包括:
    获取预设清扫间隔距离;
    根据所述实时距离和预设清扫间隔距离,调整扫地机器人的车轮转速使所述实时距离等于预设清扫间隔距离以控制所述扫地机器人环绕所述障碍物进行清扫。
  6. 如权利要求2所述的扫地机器人的避障方法,其中,所述控制所述扫地机器人环绕所述障碍物清扫的步骤之后,还包括:
    当检测到扫地机器人回到环绕所述障碍物清扫的起始位置时,获取所述起始位置的环境信息;
    根据所述环境信息规划路线。
  7. 如权利要求5所述的扫地机器人的避障方法,其中,所述扫地机器人的避障方法还包括:
    在所述扫地机器人环绕所述障碍物的过程中,所述第二线性雷达实时获取所述障碍物的点云信息;
    根据所述点云信息,建立所述障碍物的模型;
    根据所述位置信息,将所述模型标记在扫地机器人存储的地图中。
  8. 如权利要求5所述的扫地机器人的避障方法,其中,所述获取预设清扫间隔距离的步骤包括:
    获取所述障碍物的所述高度;
    根据所述高度值对于所述障碍物进行归类;
    基于障碍物类别与预设清扫间隔距离的映射关系,确定预设清扫间隔距离。
  9. 如权利要求5所述的扫地机器人的避障方法,其中,所述扫地机器人的避障方法还包括:
    对于所述障碍物进行语义识别得到识别结果;
    根据所述识别结果,确定扫地机器人环绕障碍物清扫时的清扫策略。
  10. 如权利要求1所述的扫地机器人的避障方法,其中,所述扫地机器人的避障方法还包括:
    若多个障碍物间的距离小于预设间距时,则将所述多个障碍物合并为一个新的障碍物;
    执行所述根据所述实时距离,控制所述扫地机器人环绕所述障碍物清扫的步骤。
  11. 一种扫地机器人的避障设备,其中,所述扫地机器人的避障设备包括处理器、存储器、以及存储在所述存储器上并可被所述处理器执行的计算机程序,所述计算机程序被所述处理器执行时,实现如权利要求1至10中任一项所述的扫地机器人的避障方法的步骤。
  12. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1至10中任一项所述的扫地机器人的避障方法的步骤。
PCT/CN2020/115674 2020-08-27 2020-09-16 扫地机器人的避障方法、设备及计算机可读存储介质 WO2022041344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010874178.4A CN111736616A (zh) 2020-08-27 2020-08-27 扫地机器人的避障方法、装置、扫地机器人及可读介质
CN202010874178.4 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022041344A1 true WO2022041344A1 (zh) 2022-03-03

Family

ID=72658809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115674 WO2022041344A1 (zh) 2020-08-27 2020-09-16 扫地机器人的避障方法、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111736616A (zh)
WO (1) WO2022041344A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114767009A (zh) * 2022-04-24 2022-07-22 深圳市倍思科技有限公司 机器人控制方法、装置、设备以及存储介质
CN114872051A (zh) * 2022-06-02 2022-08-09 深圳鹏行智能研究有限公司 通行地图获取系统、方法、机器人及计算机可读存储介质
CN115268470A (zh) * 2022-09-27 2022-11-01 深圳市云鼠科技开发有限公司 清洁机器人的障碍物位置标记方法、装置以及介质
CN116974289A (zh) * 2023-09-22 2023-10-31 龙合智能装备制造有限公司 一种用于重载集装箱装卸搬运的智能机器人导航避障方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622462B (zh) * 2020-12-11 2023-11-03 广东博智林机器人有限公司 一种整平机的控制方法、装置、整平机及存储介质
CN112826393B (zh) * 2020-12-30 2022-04-01 北京奇虎科技有限公司 扫地机器人运行管理方法、扫地机器人、设备及存储介质
CN113050655A (zh) * 2021-03-29 2021-06-29 中国南方电网有限责任公司超高压输电公司柳州局 一种通过激光测距仪完成变电站机器人绕障的方法
CN113703437A (zh) * 2021-04-15 2021-11-26 北京石头世纪科技股份有限公司 机器人避障方法及装置、机器人、存储介质、电子设备
CN113359742B (zh) * 2021-06-18 2022-07-29 云鲸智能(深圳)有限公司 机器人及其越障方法、装置、计算机可读存储介质
CN113565299B (zh) * 2021-08-11 2022-09-16 苏州乐米凡电气科技有限公司 一种具有自修补能力的自动抹光机及其控制方法
CN114489074B (zh) * 2022-01-25 2024-05-07 深圳优地科技有限公司 避开障碍物方法、装置和机器人
CN115016509A (zh) * 2022-08-02 2022-09-06 深圳博鹏智能科技有限公司 清洁机器人控制方法及控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090053983A (ko) * 2007-11-26 2009-05-29 윤기현 주행로봇의 이동 중 장애요소 및 자동 충전 장치의 판별,분석 및 회피방법을 구비한 로봇청소기
CN110162030A (zh) * 2018-02-12 2019-08-23 北京欣奕华科技有限公司 一种移动机器人及其障碍物检测方法
CN110477820A (zh) * 2019-08-16 2019-11-22 云鲸智能科技(东莞)有限公司 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
CN110908378A (zh) * 2019-11-28 2020-03-24 深圳乐动机器人有限公司 一种机器人沿边的方法及机器人
CN111240310A (zh) * 2018-11-13 2020-06-05 北京奇虎科技有限公司 机器人避障处理的方法、装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205031182U (zh) * 2015-09-25 2016-02-17 江苏美的清洁电器股份有限公司 扫地机器人
TW201833701A (zh) * 2017-03-14 2018-09-16 聯潤科技股份有限公司 自走式清潔裝置及其建立室內地圖之方法
EP3599484A1 (en) * 2018-07-23 2020-01-29 Acconeer AB An autonomous moving object
CN110353583A (zh) * 2019-08-21 2019-10-22 追创科技(苏州)有限公司 扫地机器人及扫地机器人的自动控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090053983A (ko) * 2007-11-26 2009-05-29 윤기현 주행로봇의 이동 중 장애요소 및 자동 충전 장치의 판별,분석 및 회피방법을 구비한 로봇청소기
CN110162030A (zh) * 2018-02-12 2019-08-23 北京欣奕华科技有限公司 一种移动机器人及其障碍物检测方法
CN111240310A (zh) * 2018-11-13 2020-06-05 北京奇虎科技有限公司 机器人避障处理的方法、装置及电子设备
CN110477820A (zh) * 2019-08-16 2019-11-22 云鲸智能科技(东莞)有限公司 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
CN110908378A (zh) * 2019-11-28 2020-03-24 深圳乐动机器人有限公司 一种机器人沿边的方法及机器人

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114767009A (zh) * 2022-04-24 2022-07-22 深圳市倍思科技有限公司 机器人控制方法、装置、设备以及存储介质
CN114767009B (zh) * 2022-04-24 2024-05-07 深圳市倍思科技有限公司 机器人控制方法、装置、设备以及存储介质
CN114872051A (zh) * 2022-06-02 2022-08-09 深圳鹏行智能研究有限公司 通行地图获取系统、方法、机器人及计算机可读存储介质
CN114872051B (zh) * 2022-06-02 2023-12-26 深圳鹏行智能研究有限公司 通行地图获取系统、方法、机器人及计算机可读存储介质
CN115268470A (zh) * 2022-09-27 2022-11-01 深圳市云鼠科技开发有限公司 清洁机器人的障碍物位置标记方法、装置以及介质
CN115268470B (zh) * 2022-09-27 2023-08-18 深圳市云鼠科技开发有限公司 清洁机器人的障碍物位置标记方法、装置以及介质
CN116974289A (zh) * 2023-09-22 2023-10-31 龙合智能装备制造有限公司 一种用于重载集装箱装卸搬运的智能机器人导航避障方法
CN116974289B (zh) * 2023-09-22 2023-12-15 龙合智能装备制造有限公司 一种用于集装箱装卸搬运的智能机器人导航避障方法

Also Published As

Publication number Publication date
CN111736616A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2022041344A1 (zh) 扫地机器人的避障方法、设备及计算机可读存储介质
CN108007452B (zh) 根据障碍物更新环境地图的方法、装置及机器人
KR102032070B1 (ko) 깊이 맵 샘플링을 위한 시스템 및 방법
CN107837044B (zh) 清洁机器人的分区清洁方法、装置及机器人
JP2021534481A (ja) 障害物又は地面の認識及び飛行制御方法、装置、機器及び記憶媒体
CN110286387A (zh) 应用于自动驾驶系统的障碍物检测方法、装置及存储介质
WO2019041755A1 (zh) 清洁机器人控制方法和清洁机器人
CN108628318B (zh) 拥堵环境检测方法、装置、机器人及存储介质
JP5902275B1 (ja) 自律移動装置
CN110471086B (zh) 一种雷达测障系统及方法
WO2016063553A1 (ja) 自律移動体及び自律移動体システム
CN112741562A (zh) 扫地机控制方法、装置、设备及计算机可读存储介质
CN112826393B (zh) 扫地机器人运行管理方法、扫地机器人、设备及存储介质
WO2021168854A1 (zh) 可行驶区域检测的方法和装置
WO2016158683A1 (ja) 地図作成装置、自律走行体、自律走行体システム、携帯端末、地図作成方法、地図作成プログラム及びコンピュータ読み取り可能な記録媒体
CN112014830B (zh) 雷达激光的反射滤除方法、扫地机器人、设备及存储介质
WO2021246169A1 (ja) 情報処理装置、情報処理システム、および方法、並びにプログラム
CN114847809B (zh) 清洁机器人的环境探索方法、装置、清洁机器人及介质
CN112799416A (zh) 航线生成方法、设备和系统、无人作业系统及存储介质
Gao et al. Research on a panoramic mobile robot for autonomous navigation
CN114740867A (zh) 基于双目视觉的智能避障方法、装置、机器人及介质
CN112214018A (zh) 机器人路径规划方法及装置
WO2021035613A1 (zh) 一种喷洒作业的路径规划方法及路径规划设备
CN114415659B (zh) 一种机器人安全避障方法、装置、机器人及存储介质
CN114265412B (zh) 车辆控制方法、装置、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951013

Country of ref document: EP

Kind code of ref document: A1