WO2021035613A1 - 一种喷洒作业的路径规划方法及路径规划设备 - Google Patents

一种喷洒作业的路径规划方法及路径规划设备 Download PDF

Info

Publication number
WO2021035613A1
WO2021035613A1 PCT/CN2019/103286 CN2019103286W WO2021035613A1 WO 2021035613 A1 WO2021035613 A1 WO 2021035613A1 CN 2019103286 W CN2019103286 W CN 2019103286W WO 2021035613 A1 WO2021035613 A1 WO 2021035613A1
Authority
WO
WIPO (PCT)
Prior art keywords
waypoint
area
range
unmanned aerial
aerial vehicle
Prior art date
Application number
PCT/CN2019/103286
Other languages
English (en)
French (fr)
Inventor
赵力尧
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980030519.5A priority Critical patent/CN112106009A/zh
Priority to PCT/CN2019/103286 priority patent/WO2021035613A1/zh
Publication of WO2021035613A1 publication Critical patent/WO2021035613A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to the field of unmanned aerial vehicles, in particular to a path planning method and path planning equipment for spraying operations.
  • unmanned aerial vehicles With the rapid development of unmanned aircraft technology, unmanned aerial vehicles have been applied to many fields. Due to their simple operation, high operating efficiency, and good spraying effects, unmanned aerial vehicles have been widely used in the field of spraying operations. When the human aircraft performs spraying operations, it can save a lot of manpower and material resources.
  • the security of the boundary has not been taken into consideration, but this security issue does exist.
  • the unmanned aerial vehicle performs spraying operations in the area to be sprayed, its movement trajectory is calculated by the path planning algorithm built into the unmanned aerial vehicle.
  • the unmanned aerial vehicle is performing spraying operations close to the boundary of the area to be sprayed, the fuselage of the unmanned aerial vehicle is likely to exceed the boundary of the area to be sprayed, and the excess rotating wings and downward spraying objects are outside the boundary.
  • Pedestrians cause a very large safety hazard, and when two areas to be sprayed that require different sprays are adjacent, the unmanned aerial vehicle exceeds the boundary and the sprays are sprayed on the wrong area to be sprayed.
  • the embodiment of the invention discloses a spraying operation path planning method and path planning equipment, so as to solve the boundary safety problem caused by the unmanned aerial vehicle when performing the spraying operation in the spraying operation area.
  • the first aspect of the embodiments of the present invention discloses a method for path planning of a spraying operation, and the method includes:
  • the characteristic range of the unmanned aerial vehicle including one or more of the range of the fuselage, the working range of the power system of the unmanned aerial vehicle, and the spraying operation range;
  • a path planning device for spraying operations includes a processor and a memory, wherein:
  • the memory is configured to store a computer program, and the computer program includes program instructions
  • the characteristic range of the unmanned aerial vehicle including one or more of the range of the fuselage, the working range of the power system of the unmanned aerial vehicle, and the spraying operation range;
  • a path planning device for spraying operations includes:
  • Determining module used to determine the area to be sprayed
  • the acquisition module is used to acquire the range size parameters of the characteristic range of the unmanned aerial vehicle, the characteristic range including one or more of the range of the fuselage, the working range of the unmanned aerial vehicle's power system, and the spraying operation range;
  • the determining module is further configured to determine, according to the range size parameter, a waypoint for the unmanned aerial vehicle to perform spraying operations on the area to be sprayed, wherein the unmanned aerial vehicle is on the route indicated by the waypoint During the spraying operation, the characteristic range of the unmanned aerial vehicle does not exceed the boundary of the area to be sprayed.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the path of the spraying operation described in the first aspect is realized. Planning method.
  • the embodiment of the present invention can determine the area to be sprayed, and obtain the range size parameter of the characteristic range of the unmanned aerial vehicle.
  • the range size parameter includes one or more of the range of the fuselage, the working range of the unmanned aerial vehicle power system, and the spraying operation range. , And then determine the waypoints for the unmanned aerial vehicle to perform spraying operations in the area to be sprayed according to the range size parameters.
  • the unmanned aerial vehicle sprays on the route indicated by the waypoint, the characteristic range of the unmanned aerial vehicle does not exceed the area to be sprayed.
  • the boundary so as to solve the boundary safety problem caused by the unmanned aerial vehicle during the spraying operation in the spraying operation area.
  • FIG. 1 is a schematic flowchart of a method for path planning of spraying operations disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another method for path planning of spraying operations disclosed in an embodiment of the present invention
  • Fig. 3a is a schematic diagram of an unmanned aerial vehicle whose characteristic range exceeds the boundary of the area to be sprayed according to an embodiment of the present invention
  • Figure 3b is a schematic diagram of an initial waypoint and a dangerous waypoint mark disclosed in an embodiment of the present invention
  • Fig. 3c is a schematic diagram of calculating a dangerous distance disclosed in an embodiment of the present invention.
  • Fig. 3d is a schematic diagram of a dangerous waypoint after adjustment disclosed in an embodiment of the present invention.
  • FIG. 3e is a schematic diagram of a part of the area without coverage after the dangerous waypoint is adjusted according to an embodiment of the present invention
  • Figure 3f is a schematic diagram of a supplementary waypoint disclosed in an embodiment of the present invention.
  • 3g is a schematic diagram of the input and output of a path planning algorithm disclosed in an embodiment of the present invention.
  • Fig. 3h is a schematic diagram of a path planning process disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a path planning device for spraying operations disclosed in an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a path planning device for spraying operations disclosed in an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for planning a spraying operation path according to an embodiment of the present invention.
  • the path planning method for spraying operations described in this embodiment may include the following steps:
  • the area to be sprayed can be crops, lawns, forests and other areas.
  • the area to be sprayed can be surveyed to obtain a three-dimensional map of the area to be sprayed, and the unmanned aerial vehicle is planned to be sprayed based on the three-dimensional map of the area to be sprayed.
  • the three-dimensional map can be collected by unmanned aerial vehicles.
  • the unmanned aerial vehicle that collects the three-dimensional map and the unmanned aerial vehicle performing spraying operations can be the same unmanned aerial vehicle or different unmanned aerial vehicles.
  • the three-dimensional map can also be carried by the surveying and mapping personnel for positioning.
  • the device conducts on-site inspections in the area to be sprayed, and obtains location information by measuring the boundary points of the area to be sprayed.
  • the characteristic range of the unmanned aerial vehicle includes one or more of the range of the fuselage, the working range of the unmanned aerial vehicle's power system, and the spraying operation range.
  • the range size parameter includes radius or side length
  • the range size parameter of the characteristic range of the unmanned aerial vehicle can be the side length of the unmanned aerial vehicle's fuselage range or the radius of the working range of the unmanned aerial vehicle power system or the spraying operation of the unmanned aerial vehicle The radius of the range.
  • the characteristic range may be the spraying operation range of the unmanned aerial vehicle.
  • the spraying operation range of the unmanned aerial vehicle may be the system default range or set by the user.
  • the range size parameter of the characteristic range of the unmanned aerial vehicle can be determined to be the range of the unmanned aerial vehicle spraying operation range. radius.
  • the waypoint planning area is determined in the area to be sprayed according to the range size parameters of the characteristic range of the unmanned aerial vehicle, and further, the waypoint for the unmanned aerial vehicle to perform the spraying operation in the area to be sprayed is determined in the waypoint planning area.
  • the waypoint planning area can be determined by determining the boundary movement parameter according to the range size parameter of the characteristic range of the unmanned aerial vehicle.
  • the boundary movement parameter can be the radius of the spraying operation range of the unmanned aerial vehicle, and then according to the boundary movement parameter Move each boundary of the spraying operation area to a direction close to the spraying operation area, and the area formed after the movement is the waypoint planning area.
  • the purpose of determining the planning area of the waypoint is mainly to ensure that the characteristic range of the unmanned aerial vehicle does not exceed the boundary of the area to be sprayed when the unmanned aerial vehicle sprays on the route indicated by the waypoint.
  • the path planning device may be a ground platform, where the ground platform may include a remote control, a smart phone, a tablet computer, a laptop computer, and a smart wearable device. (Such as smart watches, smart bracelets, etc.) one or more of the equipment, the ground platform determines the waypoint and sends it to the unmanned aerial vehicle.
  • the path planning equipment can also be an unmanned aerial vehicle, that is, the unmanned aerial vehicle itself determines the waypoint.
  • the ground platform sends the spraying operation area set by the user and the above-mentioned range size parameters to the unmanned aerial vehicle, and the unmanned aerial vehicle is based on the range
  • the size parameter determines the waypoint for spraying operations in the area to be sprayed.
  • part of the components of the path planning device are arranged on the ground platform, and some of the components are arranged on the unmanned aerial vehicle, that is, the method steps can be shared by the ground platform and the unmanned aerial vehicle. To execute.
  • the area to be sprayed is determined, and the range size parameters of the characteristic range of the unmanned aerial vehicle are obtained.
  • the range size parameters include one or more of the range of the fuselage, the working range of the unmanned aerial vehicle power system, and the spraying operation range.
  • FIG. 2 is a schematic flowchart of another method for path planning of spraying operations according to an embodiment of the present invention.
  • the path planning method for spraying operations described in this embodiment may include the following steps:
  • the range size parameter includes one or more of the range of the fuselage, the working range of the unmanned aerial vehicle's power system, and the spraying operation range.
  • steps S201-S202 please refer to the specific description of steps S101-S102 in the foregoing embodiment, which will not be repeated here.
  • the initial waypoint is determined by the existing path planning algorithm. Specifically, according to the existing path planning algorithm, the initial waypoint for spraying operation in the area to be sprayed is determined in the area to be sprayed.
  • Figure 3b is a schematic diagram of the initial waypoint. There are a series of routes in the area to be sprayed. Points, including the small hollow circles in the figure, are the initial waypoints for spraying operations in the area to be sprayed.
  • the dangerous waypoint is determined from the multiple initial waypoints, and the distance between each waypoint of the multiple initial waypoints and the reference boundary corresponding to the waypoint is obtained.
  • the reference boundary is the boundary closest to the waypoint in the boundary of the area to be sprayed, and the initial waypoint whose distance is less than the range size parameter among the multiple initial waypoints is determined as the dangerous waypoint.
  • Figure 3b shows the initial waypoint and dangerous waypoint marking schematic diagram.
  • the initial waypoint is determined by the existing path planning algorithm, only the full coverage of the unmanned aerial vehicle during the spraying operation in the area to be sprayed is considered. , And did not consider the safety issues of the unmanned aerial vehicle during spraying operations.
  • the unmanned aerial vehicle's spraying operation range exceeds the area to be sprayed, it will treat pedestrians outside the boundary of the spraying area to cause safety hazards and other safety hazards, such as Figure 3a shows that the spraying operation range of the unmanned aerial vehicle exceeds the boundary of the area to be sprayed. Therefore, it is necessary to determine dangerous waypoints from multiple initial waypoints according to the radius of the spraying operation range of the unmanned aerial vehicle.
  • the method for determining dangerous waypoints from multiple initial waypoints may be to calculate the distance between each waypoint in the initial waypoint and the boundary closest to the waypoint, for example, as shown in Figure 3b ,
  • the boundary closest to the marked hollow circle is the left boundary of the area to be sprayed, and the distance between the waypoint represented by the marked hollow circle and the boundary closest to the waypoint is the boundary The distance between the marked hollow circle and the left border. If there are initial waypoints that are less than the radius of the spraying operation range among the multiple initial waypoints, these initial waypoints are determined as dangerous waypoints.
  • the marked hollow circle represents the part Dangerous waypoint.
  • the waypoints for the unmanned aerial vehicle to perform spraying operations in the area to be sprayed include multiple initial waypoints other than dangerous waypoints and safe waypoints.
  • move the dangerous waypoint in the direction close to the spraying operation area to obtain the safe waypoint corresponding to the dangerous waypoint that is, move the dangerous waypoint in a direction perpendicular to the reference boundary corresponding to the dangerous waypoint and pointing to the dangerous waypoint to obtain The safe waypoint corresponding to the dangerous waypoint, where the moving distance is the difference between the range size parameter and the distance between the dangerous waypoint and the corresponding reference boundary.
  • D in the figure represents the dangerous distance of the dangerous waypoint, that is, the above-mentioned moving distance, which is the difference between the radius of the spraying operation range and the distance between the dangerous waypoint and the corresponding reference boundary
  • the small circle is the hollow circle No. 1 in Fig. 3b, which represents a dangerous waypoint.
  • the small hollow circle No. 4 is the safe waypoint corresponding to the dangerous waypoint.
  • the area to be sprayed is determined, and the range size parameters of the characteristic range of the unmanned aerial vehicle are obtained.
  • the range size parameters include one or more of the range of the fuselage, the working range of the unmanned aerial vehicle power system, and the spraying operation range.
  • the initial waypoint for spraying operations in the area to be sprayed is determined, and the dangerous waypoint is determined from multiple initial waypoints according to the range size parameter.
  • the unmanned aerial vehicle is located at the dangerous waypoint. When the unmanned aerial vehicle's characteristic range exceeds the boundary of the area to be sprayed, move the dangerous waypoint closer to the spraying area to obtain the safe waypoint corresponding to the dangerous waypoint.
  • the characteristic range of the unmanned aerial vehicle does not exceed the boundary of the area to be sprayed, which can solve the boundary safety problem caused by the unmanned aerial vehicle during the spraying operation in the spraying operation area.
  • the problem of uncovered part of the area after the adjustment of the dangerous waypoint can be further solved.
  • the specific operation of the supplementary waypoint can be to determine the distance from the waypoints for the spraying operation For the two nearest neighboring waypoints in the uncovered area, add the supplementary waypoint between the two neighboring waypoints, and then add the supplementary waypoint to the waypoint for spraying operations.
  • a dangerous waypoint is determined among multiple initial waypoints, and the dangerous waypoint is moved a dangerous distance to determine the safe waypoint corresponding to the dangerous waypoint, which will cause the area to be sprayed.
  • the coverage area of the initial waypoint changes, and some areas of the area to be sprayed may not be covered, as shown in the shaded area in Figure 3e.
  • the small hollow circles 4 and 5 in the figure are the two adjacent waypoints closest to the uncovered area.
  • the small hollow circle No. 6 added between the two small hollow circles is the supplementary waypoint. After the waypoint, when the UAV flies to the supplementary waypoint, it can cover the uncovered area as shown in Figure 3e.
  • the purpose of setting supplementary waypoints in the uncovered area in the area to be sprayed is to ensure that the UAV can achieve full coverage of the area to be sprayed when performing spraying operations in the area to be sprayed according to the waypoints.
  • the path planning device may be a ground platform, where the ground platform may include a remote control, a smart phone, a tablet computer, and a laptop.
  • One or more of computers, smart wearable devices are sent to the unmanned aerial vehicle after the ground platform determines the waypoint.
  • the path planning equipment can also be an unmanned aerial vehicle, that is, the unmanned aerial vehicle itself determines the waypoint.
  • the ground platform sends the spraying operation area set by the user and the above-mentioned range size parameters to the unmanned aerial vehicle, and the unmanned aerial vehicle is based on the range
  • the size parameter determines the waypoint for spraying operations in the area to be sprayed.
  • part of the components of the path planning device are arranged on the ground platform, and some of the components are arranged on the unmanned aerial vehicle, that is, the method steps can be shared by the ground platform and the unmanned aerial vehicle. To execute.
  • FIG. 3g it is a schematic diagram of the input and output of the path planning algorithm for the spraying operation path planning method.
  • the input is the existing path planning algorithm, map and range size parameters, and the map is the three-dimensional image of the area to be sprayed.
  • the range size parameter is the range size parameter of the characteristic range of the unmanned aerial vehicle. Specifically, it can be the radius of the spraying operation range.
  • the existing path planning algorithm determines the waypoints of the initial path planning, and then the waypoints of the initial path planning ,
  • the three-dimensional map of the area to be sprayed and the range size parameters are input to the path planning algorithm disclosed in the embodiment of the present invention to determine the waypoint for the unmanned aerial vehicle to perform the spraying operation on the area to be sprayed, and the output is the waypoint for the spraying operation.
  • the human aircraft will perform spraying operations in the area to be sprayed based on the waypoint.
  • FIG. 3h it is a schematic diagram of the path planning process.
  • First record the input data shown in Figure 3g, namely the waypoints of the initial path planning, the three-dimensional map of the area to be sprayed and the range size parameters, according to the input
  • the data determines dangerous waypoints from multiple initial waypoints.
  • the spraying operation range of the unmanned aerial vehicle exceeds the boundary of the area to be sprayed.
  • the dangerous distance is calculated according to the range size parameter, And determine the safe waypoint corresponding to the dangerous waypoint.
  • the spraying operation range of the unmanned aerial vehicle does not exceed the boundary of the area to be sprayed.
  • the adjustment of dangerous waypoints may result in uncovered areas when the unmanned aerial vehicle performs spraying operations in the area to be sprayed, to solve this problem, further, look for the uncovered areas after modifying the waypoints, and supplement the waypoints to cover them.
  • the above-mentioned waypoints are integrated, and it is determined that the waypoints for the unmanned aerial vehicle to perform spraying operations in the spraying operation area include multiple initial waypoints other than dangerous waypoints, safe waypoints and supplementary waypoints.
  • FIG. 4 is a schematic structural diagram of a path planning device for spraying operations according to an embodiment of the present invention.
  • the path planning device for the spraying operation includes:
  • the determining module 401 is used to determine the area to be sprayed
  • the obtaining module 402 is used to obtain the range size parameters of the characteristic range of the unmanned aerial vehicle, the characteristic range including one or more of the range of the fuselage, the working range of the unmanned aerial vehicle power system, and the spraying operation range;
  • the determining module 401 is further configured to determine, according to the range size parameter, a waypoint for the unmanned aerial vehicle to perform spraying operations on the area to be sprayed, wherein the unmanned aerial vehicle is on the route indicated by the waypoint During the upper spraying operation, the characteristic range of the unmanned aerial vehicle does not exceed the boundary of the area to be sprayed.
  • the range size parameter includes a radius or a side length.
  • the characteristic range is a spraying operation range
  • the obtaining module 402 is specifically configured to:
  • the user's spraying operation range setting operation is detected, and the spraying operation range of the UAV is determined according to the operation.
  • the determining module 401 is specifically configured to:
  • the determining module 401 is specifically configured to:
  • the determining module 401 is specifically configured to:
  • the dangerous waypoint is determined from the plurality of initial waypoints according to the range size parameter, wherein when the unmanned aerial vehicle is located at the dangerous waypoint, the characteristic range of the unmanned aerial vehicle exceeds the operation to be sprayed The boundary of the area;
  • the waypoints for the unmanned aerial vehicle to perform spraying operations on the area to be sprayed include waypoints other than the dangerous waypoints of the plurality of initial waypoints and the safe waypoints.
  • the determining module 401 is specifically configured to:
  • the determining module 401 is specifically configured to:
  • the moving distance is the difference between the range size parameter and the distance between the dangerous waypoint and the corresponding reference boundary.
  • the device further includes a supplementary module 403, wherein:
  • the determining module 401 is further configured to determine the uncovered area in the area to be sprayed according to the waypoint for performing the spraying operation and the range size parameter;
  • the supplementary module 403 is configured to set supplementary waypoints for the uncovered area
  • the supplementary module 403 is also used to add the supplementary waypoint to the waypoint for performing the spraying operation.
  • the supplementary module 403 is specifically used for:
  • the supplementary waypoint is added between the two adjacent waypoints.
  • the determining module 401 can determine the area to be sprayed, and the acquiring module 402 acquires the range size parameters of the characteristic range of the unmanned aerial vehicle.
  • the range size parameters include the range of the fuselage, the working range of the unmanned aerial vehicle power system, and the spraying operation.
  • the determination module 401 determines the waypoint for the unmanned aerial vehicle to perform the spraying operation in the area to be sprayed according to the range size parameter. Among them, the unmanned aerial vehicle sprays on the route indicated by the waypoint.
  • the characteristic range of the aircraft does not exceed the boundary of the area to be sprayed, thereby solving the boundary safety problem caused by the unmanned aerial vehicle during the spraying operation in the spraying operation area.
  • FIG. 5 is a schematic structural diagram of a path planning device for spraying operations according to an embodiment of the present invention.
  • the path planning device described in this embodiment includes a processor 501 and a memory 502.
  • the aforementioned processor 501 and memory 502 are connected by a bus.
  • the above-mentioned processor 501 may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs). ), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the aforementioned memory 502 may include a read-only memory and a random access memory, and provides program instructions and data to the processor 501. A part of the memory 502 may also include a non-volatile random access memory. Wherein, the processor 501 is used to execute when calling the program instructions:
  • the characteristic range of the unmanned aerial vehicle including one or more of the range of the fuselage, the working range of the power system of the unmanned aerial vehicle, and the spraying operation range;
  • the range size parameter includes a radius or a side length.
  • the characteristic range is a spraying operation range
  • the processor 501 is specifically configured to:
  • the user's spraying operation range setting operation is detected, and the spraying operation range of the UAV is determined according to the operation.
  • the processor 501 is specifically configured to:
  • the processor 501 is specifically configured to:
  • the processor 501 is specifically configured to:
  • the dangerous waypoint is determined from the plurality of initial waypoints according to the range size parameter, wherein when the unmanned aerial vehicle is located at the dangerous waypoint, the characteristic range of the unmanned aerial vehicle exceeds the operation to be sprayed The boundary of the area;
  • the waypoints for the unmanned aerial vehicle to perform spraying operations on the area to be sprayed include waypoints other than the dangerous waypoints of the plurality of initial waypoints and the safe waypoints.
  • the processor 501 is specifically configured to:
  • the processor 501 is specifically configured to:
  • the moving distance is the difference between the range size parameter and the distance between the dangerous waypoint and the corresponding reference boundary.
  • the processor 501 is specifically configured to:
  • the supplementary waypoint is added to the waypoint for performing the spraying operation.
  • the processor 501 is specifically configured to:
  • the supplementary waypoint is added between the two adjacent waypoints.
  • the processor 501 and the memory 502 described in the embodiment of the present invention can perform the implementation described in the spraying operation path planning method provided in Figure 1 or Figure 2 of the embodiment of the present invention, and can also perform the implementation of the present invention.
  • the implementation of the spraying operation path planning device described in Figure 4 will not be repeated here.
  • the processor 501 can determine the area to be sprayed, and obtain the range size parameters of the characteristic range of the unmanned aerial vehicle.
  • the range size parameters include the range of the fuselage, the working range of the unmanned aerial vehicle power system, and the spraying operation range.
  • the boundary of the area to be sprayed so as to solve the boundary safety problem caused by the unmanned aerial vehicle during the spraying operation in the spraying area.
  • the embodiment of the present invention also provides a computer storage medium, the computer storage medium stores program instructions, and the program execution may include part or part of the spraying operation path planning method in the embodiment corresponding to FIG. 1 or FIG. 2 All steps.
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: Flash disk, read-only memory (Read-Only Memory, ROM), random access device (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

一种喷洒作业的路径规划方法及路径规划设备,其中喷洒作业的路径规划方法包括:确定待喷洒作业区域;获取无人飞行器的特征范围的范围尺寸参数,所述范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界,可见,采用这样的方式,可以解决无人飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。

Description

一种喷洒作业的路径规划方法及路径规划设备 技术领域
本发明涉及无人飞行器领域,尤其涉及一种喷洒作业的路径规划方法及路径规划设备。
背景技术
随着无人驾驶飞机技术的迅速发展,无人飞行器已应用到很多领域,由于无人飞行器其操作简单、作业效率高,喷洒效果好等优点,而被广泛使用到喷洒作业领域,在利用无人飞行器执行喷洒作业时,能够节省大量的人力物力。
在现有的无人飞行器路径规划算法当中,边界的安全性问题并没有被考虑进来,然而这个安全性问题却是实实在在存在的。当无人飞行器对待喷洒作业区域执行喷洒作业时,其运动轨迹是由无人飞行器内置的路径规划算法计算出来的。当无人飞行器在给靠近待喷洒作业区域边界的执行喷洒作业时,无人飞行器的机身很有可能超出待喷洒作业区域的边界,超出部分的旋转机翼和向下喷洒物都对边界以外的行人造成非常大的安全隐患,而且当两块需要不同喷洒物的待喷洒作业区域相邻时,无人飞行器超出边界会使喷洒物喷洒到错误的待喷洒作业区域上面。
发明内容
本发明实施例公开了一种喷洒作业的路径规划方法及路径规划设备,以解决无人飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。
本发明实施例第一方面公开了一种喷洒作业的路径规划方法,所述方法包括:
确定待喷洒作业区域;
获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时, 所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
本发明实施例第二方面公开了一种喷洒作业的路径规划设备,所述路径规划设备包括:处理器和存储器,其中:
所述存储器,用于存储有计算机程序,所述计算机程序包括程序指令;
所述处理器调用所述程序指令时用于执行:
确定待喷洒作业区域;
获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
本发明实施例第三方面公开了一种喷洒作业的路径规划装置,所述装置包括:
确定模块,用于确定待喷洒作业区域;
获取模块,用于获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
所述确定模块,还用于根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
本发明实施例第四方面公开了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面所述的喷洒作业的路径规划方法。
本发明实施例可以确定待喷洒作业区域,获取无人飞行器的特征范围的范围尺寸参数,范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种,进而根据范围尺寸参数确定无人飞行器对待喷洒作业区域执行喷洒作业的航点,其中,无人飞行器在航点指示的航线上喷洒作业时,无人飞行器的特征范围不超出待喷洒作业区域的边界,从而解决无人 飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种喷洒作业的路径规划方法的流程示意图;
图2是本发明实施例公开的另一种喷洒作业的路径规划方法的流程示意图;
图3a是本发明实施例公开的一种无人飞行器的特征范围超出待喷洒作业区域边界示意图;
图3b是本发明实施例公开的一种初始航点以及危险航点标记示意图;
图3c是本发明实施例公开的一种计算危险距离示意图;
图3d是本发明实施例公开的一种危险航点调整后的示意图;
图3e是本发明实施例公开的一种危险航点调整后部分区域无覆盖的示意图;
图3f是本发明实施例公开的一种补充航点示意图;
图3g是本发明实施例公开的一种路径规划算法输入输出示意图;
图3h是本发明实施例公开的一种路径规划流程示意图;
图4是本发明实施例公开的一种喷洒作业的路径规划装置的结构示意图;
图5是本发明实施例公开的一种喷洒作业的路径规划设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本发明实施例提供的一种喷洒作业的路径规划方法的流程示意图。本实施例中所描述的喷洒作业的路径规划方法可以包括以下步骤:
101、确定待喷洒作业区域。
其中,待喷洒作业区域可以是农作物、草坪、森林等区域。
具体的,在确定待喷洒作业区域时,可以对该待喷洒作业区域进行测绘,以得到该待喷洒作业区域的三维地图,进一步根据该待喷洒作业区域的三维地图来规划无人飞行器在待喷洒作业区域执行喷洒作业的航点。三维地图可以由无人飞行器采集获得,采集三维地图的无人飞行器和执行喷洒作业无人飞行器可以是相同的无人飞行器,也可以是不同的无人飞行器,三维地图也可以由测绘人员携带定位装置在待喷洒作业区域进行实地考察,测量出待喷洒作业区域边界点的定位信息来获得。
102、获取无人飞行器的特征范围的范围尺寸参数,特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种。
其中,范围尺寸参数包括半径或边长,则无人飞行器的特征范围的范围尺寸参数可以是无人飞行器机身范围的边长或无人飞行器动力系统的工作范围的半径或无人飞行器喷洒作业范围的半径。
可选的,特征范围可以为无人飞行器的喷洒作业范围,无人飞行器的喷洒作业范围可以是系统默认的范围,也可以由用户设置,在获取无人飞行器的特征范围的范围尺寸参数时,先检测用户的喷洒作业范围设置操作,根据用户的喷洒作业范围设置操作确定无人飞行器的喷洒作业范围,进一步的,可以确定无人飞行器的特征范围的范围尺寸参数为无人飞行器喷洒作业范围的半径。
103、根据范围尺寸参数确定无人飞行器对待喷洒作业区域执行喷洒作业的航点,其中,无人飞行器在航点指示的航线上喷洒作业时,无人飞行器的特征范围不超出待喷洒作业区域的边界。
具体的,根据无人飞行器的特征范围的范围尺寸参数在待喷洒作业区域中确定航点规划区域,进一步的,在航点规划区域内确定无人飞行器对待喷洒作业区域执行喷洒作业的航点。
可选的,航点规划区域的确定方式可以是:根据无人飞行器的特征范围的范围尺寸参数确定边界移动参数,边界移动参数可以是无人飞行器喷洒作业范 围的半径,接着,根据边界移动参数将喷洒作业区域的每一条边界向靠近喷洒作业区域的方向移动,移动后形成的区域即为航点规划区域。确定航点规划区域的目的主要是为了无人飞行器在航点指示的航线上喷洒作业时,无人飞行器的特征范围不超出待喷洒作业区域的边界。
需要说明的是,上述方法步骤可以由路径规划设备执行,路径规划设备具体可以是地面平台,其中,所述地面平台可以包括遥控器、智能手机、平板电脑、膝上型电脑、智能穿戴式设备(例如智能手表、智能手环等)等设备中的一种或多种,地面平台确定出航点后发送给无人飞行器。或者,路径规划设备具体也可以是无人飞行器,即无人飞行器自身确定航点,此时地面平台将用户设置的待喷洒作业区域以及上述范围尺寸参数发送给无人飞行器,无人飞行器根据范围尺寸参数确定对待喷洒作业区域执行喷洒作业的航点。在某些实施例中,所述路径规划设备的一部分部件设置在所述地面平台上,一部分部件设置在所述无人飞行器上,即所述方法步骤可以由地面平台和所述无人飞行器共同来执行。
本发明实施例中,确定待喷洒作业区域,获取无人飞行器的特征范围的范围尺寸参数,范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种,进一步的,根据范围尺寸参数确定无人飞行器对待喷洒作业区域执行喷洒作业的航点,其中,无人飞行器在航点指示的航线上喷洒作业时,无人飞行器的特征范围不超出待喷洒作业区域的边界,从而解决无人飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。
请参阅图2,为本发明实施例提供的另一种喷洒作业的路径规划方法的流程示意图。本实施例中所描述的喷洒作业的路径规划方法可以包括以下步骤:
201、确定待喷洒作业区域。
202、获取无人飞行器的特征范围的范围尺寸参数,范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种。
其中,步骤S201-S202的具体实施方式可以参见上述实施例步骤S101-S102的具体描述,此处不再赘述。
203、在待喷洒作业区域内确定对待喷洒作业区域执行喷洒作业的初始航 点。
其中,初始航点是由现有的路径规划算法确定。具体的,根据现有的路径规划算法在待喷洒作业区域内确定了对待喷洒作业区域执行喷洒作业的初始航点,如图3b所示为初始航点示意图,在待喷洒作业区域中有一系列航点,包括图中的空心小圆圈,即为待喷洒作业区域执行喷洒作业的初始航点。
204、根据范围尺寸参数从多个初始航点中确定出危险航点,其中,无人飞行器位于危险航点时,无人飞行器的特征范围超出待喷洒作业区域的边界。
具体的,根据无人飞行器的特征范围的范围尺寸参数从多个初始航点中确定出危险航点,获取多个初始航点中每一个航点与该航点对应的参考边界之间的距离,其中,参考边界为待喷洒作业区域的边界中距离航点最近的一条边界,将多个初始航点中距离小于范围尺寸参数的初始航点确定为危险航点。
如图3b所示为初始航点以及危险航点标记示意图,在由现有的的路径规划算法确定初始航点时,仅仅考虑了无人飞行器在对待喷洒作业区域执行喷洒作业时的全覆盖问题,并没有考虑到无人飞行器执行喷洒作业时的安全问题,当无人飞行器的喷洒作业范围超出待喷洒作业区域时,会对待喷洒作业区域边界以外的行人造成安全隐患,以及其他安全隐患,如图3a所示,表示的就是无人飞行器的喷洒作业范围超出了待喷洒作业区域边界。因此,需要根据无人飞行器的喷洒作业范围的半径从多个初始航点中确定出危险航点,如图3b所示,在待喷洒作业区域中有一系列航点标记了部分危险航点,该部分危险航点为靠近左侧边界的三个被标记的空心小圆圈,分别标记为1、2、3,无人飞行器位于危险航点时,无人飞行器的特征范围超出待喷洒作业区域边界,即无人飞行器的喷洒作业范围超出待喷洒作业区域边界。
可选的,从多个初始航点中确定出危险航点的方法可以是,计算初始航点中每一个航点与离该航点最近的一条边界之间的距离,例如,在如图3b中,与被标记的空心小圆圈最近的一条边界就是待喷洒作业区域的左侧边界,则被标记的空心小圆圈所表示的航点与离该航点最近的一条边界之间的距离就是被标记的空心小圆圈与左侧边界之间的距离。如果多个初始航点中有距离小于喷洒作业范围的半径的初始航点,就将这些初始航点确定为危险航点,例如图3b中所示,被标记的空心小圆圈所表示的就是部分危险航点。
205、将危险航点向靠近喷洒作业区域的方向移动以获取危险航点对应的安全航点,其中,无人飞行器位于安全航点时,无人飞行器的特征范围不超出待喷洒作业区域的边界。
其中,无人飞行器对待喷洒作业区域执行喷洒作业的航点包括多个初始航点除危险航点之外的航点和安全航点。
具体的,将危险航点向靠近喷洒作业区域的方向移动以获取危险航点对应的安全航点,即将危险航点向垂直于危险航点对应的参考边界且指向危险航点的方向移动以获取危险航点对应的安全航点,其中,移动的距离为范围尺寸参数与危险航点与对应的参考边界之间的距离的差值。
举例来说,如图3c所示,图中D表示危险航点的危险距离,也就是上述移动的距离,其是喷洒作业范围的半径与危险航点与对应的参考边界之间的距离的差值,为了进一步获得危险航点对应的安全航点,只需将危险航点向垂直于危险航点对应的参考边界且指向危险航点的方向移动危险距离,如图3c所示,图中空心小圆圈为图3b中1号空心小圆圈,表示的是一个危险航点,为了得到危险航点对应的安全航点,将1号空心小圆圈向右移动距离D,即得到如图3d所示的4号空心小圆圈,也就是危险航点对应的安全航点。
本发明实施例中,确定待喷洒作业区域,获取无人飞行器的特征范围的范围尺寸参数,范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种,进一步的,在待喷洒作业区域内确定对待喷洒作业区域执行喷洒作业的初始航点,根据范围尺寸参数从多个初始航点中确定出危险航点,其中,无人飞行器位于危险航点时,无人飞行器的特征范围超出待喷洒作业区域的边界,将危险航点向靠近喷洒作业区域的方向移动以获取危险航点对应的安全航点,其中,无人飞行器位于安全航点时,无人飞行器的特征范围不超出待喷洒作业区域的边界,可以解决无人飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。
可选的,确定出航点后,为了保证覆盖的全面性,还可以进一步解决由危险航点调整后导致部分区域无覆盖的问题。根据执行喷洒作业的航点和范围尺寸参数确定待喷洒作业区域中的无覆盖区域,针对无覆盖区域设置补充航点, 补充航点的具体操作可以是从执行喷洒作业的航点中确定出距离无覆盖区域最近的两个相邻航点,将补充航点添加到两个相邻航点之间,再将补充航点添加到执行喷洒作业的航点中。
举例来说,如图3e所示,在多个初始航点中确定出危险航点,并将危险航点移动危险距离,确定危险航点对应的安全航点之后,会导致待喷洒作业区域中初始航点的覆盖区域发生变化,可能会出现待喷洒作业区域中部分区域无法覆盖的情况,如图3e所示中的阴影区域。如图3f所示,图中4、5号空心小圆圈为距离无覆盖区域最近的两个相邻航点,在两空心小圆圈之间加入的6号空心小圆圈即为补充航点,补充航点之后,无人飞行器飞到补充航点时,可以覆盖到如图3e所示的无覆盖区域。
其中,在待喷洒作业区域中无覆盖区域设置补充航点的目的是为了保证无人飞行器根据航点在待喷洒作业区域执行喷洒作业时,能够实现待喷洒作业区域全覆盖。
需要说明的是,需要说明的是,上述方法步骤可以由路径规划设备执行,路径规划设备具体可以是地面平台,,其中,所述地面平台可以包括遥控器、智能手机、平板电脑、膝上型电脑、智能穿戴式设备(例如智能手表、智能手环等)等设备中的一种或多种,地面平台确定出航点后发送给无人飞行器。或者,路径规划设备具体也可以是无人飞行器,即无人飞行器自身确定航点,此时地面平台将用户设置的待喷洒作业区域以及上述范围尺寸参数发送给无人飞行器,无人飞行器根据范围尺寸参数确定对待喷洒作业区域执行喷洒作业的航点。在某些实施例中,所述路径规划设备的一部分部件设置在所述地面平台上,一部分部件设置在所述无人飞行器上,即所述方法步骤可以由地面平台和所述无人飞行器共同来执行。
如图3g所示,所表示的是一种针对喷洒作业的路径规划方法的路径规划算法输入输出示意图,其中输入是现有路径规划算法、地图和范围尺寸参数,地图为待喷洒作业区域的三维地图,范围尺寸参数为无人飞行器的特征范围的范围尺寸参数,具体可以是喷洒作业范围的半径,由现有的路径规划算法确定出初始路径规划的航点,再将初始路径规划的航点、待喷洒作业区域的三维地图和范围尺寸参数输入到本发明实施例公开的路径规划算法,确定无人飞行器对 待喷洒作业区域执行喷洒作业的航点,输出也就是执行喷洒作业的航点,无人飞行器将根据该航点对待喷洒作业区域执行喷洒作业。
如图3h所示,所表示的是一种路径规划流程示意图,首先记录如图3g所示的输入数据,即初始路径规划的航点、待喷洒作业区域的三维地图和范围尺寸参数,根据输入数据从多个初始航点中确定出危险航点,其中,无人飞行器位于危险航点时,无人飞行器的喷洒作业范围超出待喷洒作业区域的边界,接着,根据范围尺寸参数计算危险距离,并确定危险航点对应的安全航点,其中,无人飞行器位于安全航点时,无人飞行器的喷洒作业范围不超出待喷洒作业区域的边界。因为危险航点调整后可能会导致无人飞行器对待喷洒作业区域执行喷洒作业时部分区域无覆盖,为了解决这个问题,进一步的,查找修改航点后导致的无覆盖区域,并补充航点以覆盖为覆盖的区域,对上述航点进行整合,确定无人飞行器对待喷洒作业区域执行喷洒作业的航点包括多个初始航点除危险航点之外的航点、安全航点和补充航点。
请参阅图4,为本发明实施例提供的一种喷洒作业的路径规划装置的结构示意图。所述喷洒作业的路径规划装置包括:
确定模块401,用于确定待喷洒作业区域;
获取模块402,用于获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
所述确定模块401,还用于根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
可选的,所述范围尺寸参数包括半径或边长。
可选的,所述特征范围为喷洒作业范围,所述获取模块402,具体用于:
检测用户的喷洒作业范围设置操作,根据所述操作确定所述无人飞行器的喷洒作业范围。
可选的,所述确定模块401,具体用于:
根据所述范围尺寸参数在所述待喷洒作业区域中确定航点规划区域;
在所述航点规划区域内确定对所述待喷洒作业区域执行喷洒作业的航点。
可选的,所述确定模块401,具体用于:
根据所述范围尺寸参数确定边界移动参数;
根据所述边界移动参数将所述喷洒作业区域的每一条边界向靠近所述喷洒作业区域的方向移动以获取所述航点规划区域。
可选的,所述确定模块401,具体用于:
在所述待喷洒作业区域内确定对所述待喷洒作业区域执行喷洒作业的初始航点;
根据所述范围尺寸参数从所述多个初始航点中确定出危险航点,其中,所述无人飞行器位于所述危险航点时,所述无人飞行器的特征范围超出所述待喷洒作业区域的边界;
将所述危险航点向靠近所述喷洒作业区域的方向移动以获取所述危险航点对应的安全航点,其中,所述无人飞行器位于所述安全航点时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界;
其中,所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点包括所述多个初始航点除所述危险航点之外的航点和所述安全航点。
可选的,所述确定模块401,具体用于:
获取所述多个初始航点中每一个航点与该航点对应的参考边界之间的距离,其中,所述参考边界为所述待喷洒作业区域的边界中距离所述航点最近的一条边界;
将所述多个初始航点中所述距离小于所述范围尺寸参数的初始航点确定为所述危险航点。
可选的,所述确定模块401,具体用于:
将所述危险航点向垂直于所述危险航点对应的参考边界且指向所述危险航点的方向移动以获取所述危险航点对应的安全航点。
可选的,所述移动的距离为范围尺寸参数与所述危险航点与对应的参考边界之间的距离的差值。
可选的,所述装置还包括补充模块403,其中:
所述确定模块401,还用于根据所述执行喷洒作业的航点和所述范围尺寸参数确定所述待喷洒作业区域中的无覆盖区域;
所述补充模块403,用于针对所述无覆盖区域设置补充航点;
所述补充模块403,还用于将所述补充航点添加到所述执行喷洒作业的航点中。
可选的,所述补充模块403,具体用于:
从所述执行喷洒作业的航点中确定出距离所述无覆盖区域最近的两个相邻航点;
将所述补充航点添加到所述两个相邻航点之间。
可以理解的是,本发明实施例所描述的喷洒作业的路径规划装置的各功能模块的功能可根据图1或者图2所述的方法实施例中的方法具体实现,其具体实现过程可以参照图1或者图2的方法实施例的相关描述,此处不再赘述。
本发明实施例中,确定模块401可以确定待喷洒作业区域,获取模块402获取无人飞行器的特征范围的范围尺寸参数,范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种,进而确定模块401根据范围尺寸参数确定无人飞行器对待喷洒作业区域执行喷洒作业的航点,其中,无人飞行器在航点指示的航线上喷洒作业时,无人飞行器的特征范围不超出待喷洒作业区域的边界,从而解决无人飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。
请参阅图5,为本发明实施例提供的一种喷洒作业的路径规划设备的结构示意图。本实施例中所描述的路径规划设备,包括:处理器501和存储器502。上述处理器501和存储器502通过总线连接。
上述处理器501可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
上述存储器502可以包括只读存储器和随机存取存储器,并向处理器501提供程序指令和数据。存储器502的一部分还可以包括非易失性随机存取存储器。其中,所述处理器501调用所述程序指令时用于执行:
确定待喷洒作业区域;
获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
可选的,所述范围尺寸参数包括半径或边长。
可选的,所述特征范围为喷洒作业范围,所述处理器501,具体用于:
检测用户的喷洒作业范围设置操作,根据所述操作确定所述无人飞行器的喷洒作业范围。
可选的,所述处理器501,具体用于:
根据所述范围尺寸参数在所述待喷洒作业区域中确定航点规划区域;
在所述航点规划区域内确定对所述待喷洒作业区域执行喷洒作业的航点。
可选的,所述处理器501,具体用于:
根据所述范围尺寸参数确定边界移动参数;
根据所述边界移动参数将所述喷洒作业区域的每一条边界向靠近所述喷洒作业区域的方向移动以获取所述航点规划区域。
可选的,所述处理器501,具体用于:
在所述待喷洒作业区域内确定对所述待喷洒作业区域执行喷洒作业的初始航点;
根据所述范围尺寸参数从所述多个初始航点中确定出危险航点,其中,所述无人飞行器位于所述危险航点时,所述无人飞行器的特征范围超出所述待喷洒作业区域的边界;
将所述危险航点向靠近所述喷洒作业区域的方向移动以获取所述危险航点对应的安全航点,其中,所述无人飞行器位于所述安全航点时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界;
其中,所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点包括所述多个初始航点除所述危险航点之外的航点和所述安全航点。
可选的,所述处理器501,具体用于:
获取所述多个初始航点中每一个航点与该航点对应的参考边界之间的距离,其中,所述参考边界为所述待喷洒作业区域的边界中距离所述航点最近的一条边界;
将所述多个初始航点中所述距离小于所述范围尺寸参数的初始航点确定为所述危险航点。
可选的,所述处理器501,具体用于:
将所述危险航点向垂直于所述危险航点对应的参考边界且指向所述危险航点的方向移动以获取所述危险航点对应的安全航点。
可选的,所述移动的距离为范围尺寸参数与所述危险航点与对应的参考边界之间的距离的差值。
可选的,所述处理器501,具体用于:
根据所述执行喷洒作业的航点和所述范围尺寸参数确定所述待喷洒作业区域中的无覆盖区域;
针对所述无覆盖区域设置补充航点;
将所述补充航点添加到所述执行喷洒作业的航点中。
可选的,所述处理器501,具体用于:
从所述执行喷洒作业的航点中确定出距离所述无覆盖区域最近的两个相邻航点;
将所述补充航点添加到所述两个相邻航点之间。
具体实现中,本发明实施例中所描述的处理器501和存储器502可执行本发明实施例图1或者图2提供的喷洒作业的路径规划方法中所描述的实现方式,也可执行本发明实施例图4所描述的喷洒作业的路径规划装置的实现方式,在此不再赘述。
本发明实施例中,处理器501可以确定待喷洒作业区域,获取无人飞行器的特征范围的范围尺寸参数,范围尺寸参数包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种,进而根据范围尺寸参数确定无 人飞行器对待喷洒作业区域执行喷洒作业的航点,其中,无人飞行器在航点指示的航线上喷洒作业时,无人飞行器的特征范围不超出待喷洒作业区域的边界,从而解决无人飞行器在喷洒作业区域执行喷洒作业时造成的边界安全性问题。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图1或者图2对应实施例中的喷洒作业的路径规划方法的部分或全部步骤。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种喷洒作业的路径规划方法及路径规划设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (22)

  1. 一种喷洒作业的路径规划方法,其特征在于,包括:
    确定待喷洒作业区域;
    获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
    根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
  2. 根据权利要求1所述的方法,其特征在于,所述范围尺寸参数包括半径或边长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述特征范围为喷洒作业范围,其中,所述获取无人飞行器的特征范围的范围尺寸参数,包括:
    检测用户的喷洒作业范围设置操作,根据所述操作确定所述无人飞行器的喷洒作业范围。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,包括:
    根据所述范围尺寸参数在所述待喷洒作业区域中确定航点规划区域;
    在所述航点规划区域内确定对所述待喷洒作业区域执行喷洒作业的航点。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述范围尺寸参数在所述待喷洒作业区域中确定航点规划区域,包括:
    根据所述范围尺寸参数确定边界移动参数;
    根据所述边界移动参数将所述喷洒作业区域的每一条边界向靠近所述喷洒作业区域的方向移动以获取所述航点规划区域。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,包括:
    在所述待喷洒作业区域内确定对所述待喷洒作业区域执行喷洒作业的初始航点;
    根据所述范围尺寸参数从所述多个初始航点中确定出危险航点,其中,所述无人飞行器位于所述危险航点时,所述无人飞行器的特征范围超出所述待喷洒作业区域的边界;
    将所述危险航点向靠近所述喷洒作业区域的方向移动以获取所述危险航点对应的安全航点,其中,所述无人飞行器位于所述安全航点时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界;
    其中,所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点包括所述多个初始航点除所述危险航点之外的航点和所述安全航点。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述范围尺寸参数从所述多个初始航点中确定出危险航点,包括:
    获取所述多个初始航点中每一个航点与该航点对应的参考边界之间的距离,其中,所述参考边界为所述待喷洒作业区域的边界中距离所述航点最近的一条边界;
    将所述多个初始航点中所述距离小于所述范围尺寸参数的初始航点确定为所述危险航点。
  8. 根据权利要求7所述的方法,其特征在于,所述将所述危险航点向靠近所述喷洒作业区域的方向移动以获取所述危险航点对应的安全航点,包括:
    将所述危险航点向垂直于所述危险航点对应的参考边界且指向所述危险航点的方向移动以获取所述危险航点对应的安全航点。
  9. 根据权利要求8所述的方法,其特征在于,所述移动的距离为范围尺寸参数与所述危险航点与对应的参考边界之间的距离的差值。
  10. 根据权利要求6-8任一项所述的方法,其特征在于,所述根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点之后,所述方法还包括:
    根据所述执行喷洒作业的航点和所述范围尺寸参数确定所述待喷洒作业区域中的无覆盖区域;
    针对所述无覆盖区域设置补充航点;
    将所述补充航点添加到所述执行喷洒作业的航点中。
  11. 根据权利要求10所述的方法,其特征在于,所述将所述补充航点添加到所述执行喷洒作业的航点中,包括:
    从所述执行喷洒作业的航点中确定出距离所述无覆盖区域最近的两个相邻航点;
    将所述补充航点添加到所述两个相邻航点之间。
  12. 一种路径规划设备,其特征在于,包括:处理器和存储器,其中:
    所述存储器,用于存储程序指令;
    所述处理器调用所述程序指令时用于执行:
    确定待喷洒作业区域;
    获取无人飞行器的特征范围的范围尺寸参数,所述特征范围包括机身范围、无人飞行器动力系统的工作范围和喷洒作业范围中的一种或多种;
    根据所述范围尺寸参数确定所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点,其中,所述无人飞行器在所述航点指示的航线上喷洒作业时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界。
  13. 根据权利要求12所述的路径规划设备,其特征在于,所述范围尺寸参数包括半径或边长。
  14. 根据权利要求12或13所述的路径规划设备,其特征在于,所述特征范 围为喷洒作业范围,所述处理器,具体用于:
    检测用户的喷洒作业范围设置操作,根据所述操作确定所述无人飞行器的喷洒作业范围。
  15. 根据权利要求12-14任一项所述的路径规划设备,其特征在于,所述处理器,具体用于:
    根据所述范围尺寸参数在所述待喷洒作业区域中确定航点规划区域;
    在所述航点规划区域内确定对所述待喷洒作业区域执行喷洒作业的航点。
  16. 根据权利要求15所述的路径规划设备,其特征在于,所述处理器,具体用于:
    根据所述范围尺寸参数确定边界移动参数;
    根据所述边界移动参数将所述喷洒作业区域的每一条边界向靠近所述喷洒作业区域的方向移动以获取所述航点规划区域。
  17. 根据权利要求12-14任一项所述的路径规划设备,其特征在于,所述处理器,具体用于:
    在所述待喷洒作业区域内确定对所述待喷洒作业区域执行喷洒作业的初始航点;
    根据所述范围尺寸参数从所述多个初始航点中确定出危险航点,其中,所述无人飞行器位于所述危险航点时,所述无人飞行器的特征范围超出所述待喷洒作业区域的边界;
    将所述危险航点向靠近所述喷洒作业区域的方向移动以获取所述危险航点对应的安全航点,其中,所述无人飞行器位于所述安全航点时,所述无人飞行器的特征范围不超出所述待喷洒作业区域的边界;
    其中,所述无人飞行器对所述待喷洒作业区域执行喷洒作业的航点包括所述多个初始航点除所述危险航点之外的航点和所述安全航点。
  18. 根据权利要求17所述的路径规划设备,其特征在于,所述处理器,具 体用于:
    获取所述多个初始航点中每一个航点与该航点对应的参考边界之间的距离,其中,所述参考边界为所述待喷洒作业区域的边界中距离所述航点最近的一条边界;
    将所述多个初始航点中所述距离小于所述范围尺寸参数的初始航点确定为所述危险航点。
  19. 根据权利要求18所述的路径规划设备,其特征在于,所述处理器,具体用于:
    将所述危险航点向垂直于所述危险航点对应的参考边界且指向所述危险航点的方向移动以获取所述危险航点对应的安全航点。
  20. 根据权利要求19所述的路径规划设备,其特征在于,所述移动的距离为范围尺寸参数与所述危险航点与对应的参考边界之间的距离的差值。
  21. 根据权利要求17-19所述的路径规划设备,其特征在于,所述处理器,还用于:
    根据所述执行喷洒作业的航点和所述范围尺寸参数确定所述待喷洒作业区域中的无覆盖区域;
    针对所述无覆盖区域设置补充航点;
    将所述补充航点添加到所述执行喷洒作业的航点中。
  22. 根据权利要求21所述的路径规划设备,其特征在于,所述处理器,具体用于:
    从所述执行喷洒作业的航点中确定出距离所述无覆盖区域最近的两个相邻航点;
    将所述补充航点添加到所述两个相邻航点之间。
PCT/CN2019/103286 2019-08-29 2019-08-29 一种喷洒作业的路径规划方法及路径规划设备 WO2021035613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980030519.5A CN112106009A (zh) 2019-08-29 2019-08-29 一种喷洒作业的路径规划方法及路径规划设备
PCT/CN2019/103286 WO2021035613A1 (zh) 2019-08-29 2019-08-29 一种喷洒作业的路径规划方法及路径规划设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103286 WO2021035613A1 (zh) 2019-08-29 2019-08-29 一种喷洒作业的路径规划方法及路径规划设备

Publications (1)

Publication Number Publication Date
WO2021035613A1 true WO2021035613A1 (zh) 2021-03-04

Family

ID=73749027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103286 WO2021035613A1 (zh) 2019-08-29 2019-08-29 一种喷洒作业的路径规划方法及路径规划设备

Country Status (2)

Country Link
CN (1) CN112106009A (zh)
WO (1) WO2021035613A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679684A (zh) * 2016-12-27 2017-05-17 湖南挚新科技发展有限公司 自动化作业设备路径规划方法与系统
CN107289950A (zh) * 2017-07-28 2017-10-24 上海拓攻机器人有限公司 植保无人机作业航线规划方法及植保无人机
CN107860387A (zh) * 2017-10-19 2018-03-30 上海拓攻机器人有限公司 植保无人机作业航线规划方法及植保无人机
CN110134147A (zh) * 2019-06-20 2019-08-16 安阳全丰航空植保科技股份有限公司 一种植保无人机的自主路径规划方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106327024A (zh) * 2016-09-18 2017-01-11 成都天麒科技有限公司 一种无人机农药喷洒路径规划系统及方法
US11074821B2 (en) * 2016-10-06 2021-07-27 GEOSAT Aerospace & Technology Route planning methods and apparatuses for unmanned aerial vehicles
CN109324337B (zh) * 2017-07-31 2022-01-14 广州极飞科技股份有限公司 无人飞行器的航线生成及定位方法、装置及无人飞行器
CN107368094A (zh) * 2017-08-25 2017-11-21 上海拓攻机器人有限公司 一种无人机植保作业航线规划方法及装置
CN109144100B (zh) * 2018-09-03 2021-06-25 南京嘉谷初成通信科技有限公司 喷洒控制方法、装置、地面站及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679684A (zh) * 2016-12-27 2017-05-17 湖南挚新科技发展有限公司 自动化作业设备路径规划方法与系统
CN107289950A (zh) * 2017-07-28 2017-10-24 上海拓攻机器人有限公司 植保无人机作业航线规划方法及植保无人机
CN107860387A (zh) * 2017-10-19 2018-03-30 上海拓攻机器人有限公司 植保无人机作业航线规划方法及植保无人机
CN110134147A (zh) * 2019-06-20 2019-08-16 安阳全丰航空植保科技股份有限公司 一种植保无人机的自主路径规划方法及装置

Also Published As

Publication number Publication date
CN112106009A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN109634304B (zh) 无人机飞行路径规划方法、装置和存储介质
US10278333B2 (en) Pruning robot system
EP3672762B1 (en) Self-propelled robot path planning method, self-propelled robot and storage medium
CN108897312B (zh) 多无人飞行器对大规模环境的持续监控路径规划方法
WO2018121448A1 (zh) 移动机器人的拓扑地图创建方法、导航方法、可编程设备及计算机可读介质
CN108765487A (zh) 重建三维场景的方法、装置、设备和计算机可读存储介质
WO2018094741A1 (zh) 一种航线编辑方法、装置及控制设备
CN105159319A (zh) 一种无人机的喷药方法及无人机
CN104881039A (zh) 一种无人机返航的方法及系统
EP4033324A1 (en) Obstacle information sensing method and device for mobile robot
CN109934384B (zh) 一种多边形地块分割方法、装置、存储介质及电子设备
WO2022041344A1 (zh) 扫地机器人的避障方法、设备及计算机可读存储介质
US20180100740A1 (en) Method and apparatus for planning path
US11587446B2 (en) Method and system for generating aerial imaging flight path
WO2020087297A1 (zh) 一种无人机测试方法、设备及存储介质
WO2020087296A1 (zh) 一种无人机测试方法、设备及存储介质
WO2021237448A1 (zh) 路径规划方法、装置及系统
CN113093128A (zh) 用于标定毫米波雷达的方法、装置、电子设备及路侧设备
CN110383192A (zh) 可移动平台及其控制方法
WO2022095040A1 (zh) 无人机的喷洒航线规划方法和设备
WO2021035613A1 (zh) 一种喷洒作业的路径规划方法及路径规划设备
WO2024067133A1 (zh) 基于3d地图的无人驾驶航空器飞行控制方法、系统和介质
JP6730763B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP7216046B2 (ja) 巡視点検システム
CN113587937A (zh) 车辆的定位方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942996

Country of ref document: EP

Kind code of ref document: A1