WO2020087297A1 - 一种无人机测试方法、设备及存储介质 - Google Patents

一种无人机测试方法、设备及存储介质 Download PDF

Info

Publication number
WO2020087297A1
WO2020087297A1 PCT/CN2018/112780 CN2018112780W WO2020087297A1 WO 2020087297 A1 WO2020087297 A1 WO 2020087297A1 CN 2018112780 W CN2018112780 W CN 2018112780W WO 2020087297 A1 WO2020087297 A1 WO 2020087297A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
drone
waypoints
distance
position information
Prior art date
Application number
PCT/CN2018/112780
Other languages
English (en)
French (fr)
Inventor
许珠洪
吴旭民
姚川松
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/112780 priority Critical patent/WO2020087297A1/zh
Priority to CN201880010541.9A priority patent/CN110291480A/zh
Publication of WO2020087297A1 publication Critical patent/WO2020087297A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle test method, equipment and storage medium.
  • the embodiments of the present invention provide a drone test method, equipment and storage medium, which can automatically detect the function of the drone, improve the detection efficiency, meet the user's automated and intelligent needs for drone testing, and can achieve The need to analyze multiple data in real time.
  • an embodiment of the present invention provides a drone testing method, the method including:
  • the test item of the drone is analyzed according to the target flight data and the test data associated with the test item to obtain a test result.
  • an embodiment of the present invention provides a test device, including a memory and a processor;
  • the memory is used to store program instructions
  • the processor executes the program instructions stored in the memory. When the program instructions are executed, the processor is used to perform the following steps:
  • the test item of the drone is analyzed according to the target flight data and the test data associated with the test item to obtain a test result.
  • an embodiment of the present invention provides a computer-readable storage medium that stores a computer program, and the computer program is executed by a processor to implement the drone test method of the first aspect .
  • the test equipment can obtain the required target flight data from the actual flight data of the drone according to the test project, and analyze the test data on the target flight data and the test data associated with the test project to obtain the test result.
  • the test equipment can realize automated testing of the function of the drone without manual analysis, simplify the test process, and meet the user's automated and intelligent needs for drone testing. And can meet the needs of real-time analysis of a variety of data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 1 is a schematic diagram of a network architecture for drone testing provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network architecture for drone testing provided by an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a drone test method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of yet another drone test method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of yet another drone test method provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of yet another drone test method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an electronic fence provided by an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of yet another drone test method provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a reference line provided by an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of yet another drone test method provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a test device provided by an embodiment of the present invention.
  • FIG. 1 and FIG. 2 are schematic diagrams of a network architecture for drone testing provided by an embodiment of the present invention.
  • the network structure includes a sky end, a ground end, and a reference end, and the sky end includes a transmitter 10.
  • the ground end includes the receiver 11 and the test equipment 12, and the reference end includes the reference end 13.
  • FIG. 1 shows one of the communication connection methods.
  • the transmitter 10 and the reference terminal 13 communicate with each other, and the transmitter 10 can obtain the position origin information of the reference terminal 13.
  • the position origin information refers to the position information of the reference end 13.
  • the transmitter 10 and the receiver 11 can also communicate with each other, and the transmitter 10 can transmit the position information data of the sky end relative to the reference end 13 to the receiver 11.
  • the receiver 11 and the test device 12 can communicate through wired or wireless means, and transmit the received data to the test device 12 for processing and analysis.
  • FIG. 2 shows another communication connection method.
  • the reference terminal 13 and the ground equipment 11 communicate with each other, and the reference terminal 13 transmits the position origin information to the receiver 11.
  • the receiver 11 also communicates with the transmitter 10 on the sky side.
  • the receiver 11 transmits the received information of the reference terminal 13 to the transmitter 10 and obtains the flight data on the sky side from the transmitter 10.
  • the receiver 11 and the test device 12 communicate by wire or wirelessly, and transmit the received data to the test device 12 for final processing and analysis.
  • the transmitter 10 is detachably fixed on the drone, and can be used to obtain the flight data of the drone, and send the flight data to the receiver 11, the flight data can include the flying height of the drone, At least one of the longitude, latitude, and speed in three directions of each waypoint.
  • the three directions may include the forward direction, the translation direction, and the vertical direction of the drone.
  • the reference terminal 13 in the network architecture of the drone test is mainly used to provide high-precision positioning information (that is, the position origin information of the reference terminal) based on RTK (Real-Time Kinematic) real-time dynamic differential positioning technology.
  • the positioning accuracy can be controlled within a centimeter level, so as to further determine the flight data of the drone according to the positioning information provided by the reference end 13.
  • the network architecture of the drone test can obtain the flight data of the drone through the sensors of the transmitter. Therefore, in some embodiments, the network architecture of the above drone test may not Include the reference 13.
  • the transmitter 10 may include at least one of a visual sensor, a laser sensor, a radar sensor, an attitude sensor, etc.
  • the transmitter 10 may use these sensors to obtain flight data of the drone, for example, the transmitter 10 You can use the radar sensor to obtain the height of each waypoint of the radar sensor during the flight of the drone, and use the height of the radar sensor at each waypoint as the height of the drone at each waypoint.
  • the flying height of the drone can be determined according to the height of the drone at each waypoint.
  • the visual sensor can include monocular vision, binocular vision or multi-eye vision
  • the laser sensor can include ToF rangefinder
  • lidar the radar sensor can include ultrasonic radar
  • millimeter wave radar the attitude sensor can include a GNSS position sensor, IMU inertial measurement unit, multi-axis attitude sensor. It can be understood that the sensor is not limited to the above-mentioned types, and any sensor that performs the same or similar function can be used.
  • the receiver 11 may be used to receive flight data sent by the transmitter 10 and forward the flight data to the test equipment 12.
  • the receiver 11 can also directly receive the position origin data of the reference terminal 13 and transmit the data to the transmitter 10, and can also receive the flight data calculated by the transmitter 10 according to the position origin information, and finally forward the flight data To test equipment 12.
  • the test equipment 12 can be used to receive the flight data sent by the receiver 11, and analyze the test items of the drone according to the flight data and the test data associated with the test items to obtain test results, which can automatically realize the function of the drone carry out testing.
  • the test device 12 may be a smart phone, a computer, a server or other devices.
  • the ground terminal in the above network architecture may further include a control terminal of the drone.
  • the control terminal may refer to a device provided in the above test equipment.
  • the control terminal may also be an independent device.
  • the control The terminal is used to control the flight of the drone, and the control terminal may specifically be one or more of a remote controller, a smart phone, a tablet computer, a laptop computer, a ground station, and a wearable device (watch, bracelet).
  • an embodiment of the present invention provides a drone test method. Please refer to FIG. 3, the method may be executed by a test device, and the specific explanation of the test device is as described above. As shown in FIG. 3, the UAV test method may include the following steps.
  • the test equipment obtains the test data required for the drone test.
  • the test data can be the parameters corresponding to the function of the drone, and the test data can be entered by the tester into the database of the test equipment in advance.
  • the test equipment can be from the local database Get test data.
  • the test data between different types of drones may be different; the local database of the test equipment may include multiple
  • the test data of a type of drone can be obtained from the database to match the type of the drone when testing the drone.
  • the test equipment receives the actual flight data of the drone.
  • the transmitter 10 can directly receive the position origin information data of the reference terminal 13, and the transmitter 10 can calculate the position origin information data to obtain the actual flight of the drone. Data, and the transmitter 10 forwards the actual flight data of the drone to the receiver 11, and the receiver 11 forwards the actual flight data of the drone to the test equipment. Accordingly, the test equipment can receive actual flight data from the receiver 11.
  • the actual flight data of the drone may include at least one of the flying height of the drone, the longitude, latitude, and speed of the drone at multiple waypoints in three directions, the three directions Can include the UAV's forward direction, translation direction and vertical direction.
  • the receiver 11 may receive the position origin information data of the reference terminal 13, and the receiver 11 forwards the position origin information data to the transmitter 10, and the transmitter 10 will The position origin information data is solved to obtain the actual flight data of the drone, and the actual flight data of the drone is forwarded by the transmitter 10 to the receiver 11, and the actual flight data of the drone is forwarded by the receiver 11 To test equipment. Accordingly, the test equipment can receive actual flight data from the receiver 11.
  • the transmitter 10 can obtain the actual flight data of the drone in real time through the sensors of the transmitter, and then send the actual flight data of the drone to the receiver 11.
  • the receiver 11 then sends the actual flight data to the test equipment. Accordingly, the test equipment can receive actual flight data from the receiver 11.
  • the test equipment obtains the required target flight data from the actual flight data according to the test item of the drone.
  • the functions to be tested are different for different test items of drones. Therefore, the flight data required for the test is different.
  • the test equipment can obtain the required target flight data from the actual flight data according to the test items of the drone.
  • the test items may refer to the functional test items for drones.
  • the test items may include the functions of distance limit function test, speed limit function test, height limit function test, electronic fence function test, route independent planning function test and obstacle avoidance function test. At least one.
  • the test equipment analyzes the test item of the drone according to the target flight data and the test data associated with the test item to obtain a test result.
  • the test equipment may analyze the test item of the drone based on the target flight data and the test data associated with the test item to obtain test results; the test results may include the test passed and the test failed, and the test passed may refer to the The function corresponding to the UAV test item meets the standard; a failed test may mean that the function corresponding to the UAV test item does not meet the standard.
  • the test item is a distance-limiting function test, and a passing test may mean that the UAV's distance-limiting function meets the standard; a test failure may mean that the UAV's distance-limiting function does not meet the standard.
  • the function of the unmanned aerial vehicle means that the function of the drone meets the national regulations on the drone, and the function of the unmanned aerial vehicle means that the function of the drone does not meet the national regulations on the drone.
  • the test equipment can obtain the required target flight data from the actual flight data of the drone according to the test project, and analyze the test data on the target flight data and the test data associated with the test project.
  • the test equipment can realize the automatic test of the function of the drone, without manual analysis, simplify the test process, and meet the user's automation of the drone test , Intelligent requirements, and can meet the needs of real-time analysis of a variety of data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 4 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • the method may be executed by a test device, and the specific explanation of the test device is as described above.
  • the difference between the embodiment of the present invention and the embodiment of FIG. 3 is that the embodiment of the present invention is a specific application scenario of the embodiment of FIG.
  • the UAV test method may include the following steps.
  • the test equipment obtains the test data required for the drone test.
  • the test equipment specifically obtains the test data required by the UAV for the high-limit function test.
  • the test data includes a high limit threshold.
  • the height limit threshold may be 12m.
  • the height limitation threshold may be the maximum height of the drone in the height limitation function of the drone.
  • the size of the maximum height may be set according to the application scenario of the drone, for example, the drone is applied to the scenario of fertilizing crops.
  • the flying height of the aircraft is too high, therefore, the maximum height can be set to a smaller value; for another example, no one is applied to the aerial photography scene, in this scenario, the flying height of the drone is usually high, In order to capture images with a wide angle of view, you can set the maximum height in the height limit function to a larger value.
  • the maximum height in the height-limiting function may be set according to the type of test product (ie, drone).
  • test data please refer to the description corresponding to S301, which will not be repeated here.
  • the test device receives actual flight data of the drone.
  • the test equipment obtains the required target flight data from the actual flight data according to the test item of the drone.
  • the test item includes a height-limiting function test
  • the target flight data includes altitude information of multiple waypoints during the flight of the drone.
  • the test item is a height-limiting functional test
  • the testing device analyzes the height-limiting functional test of the drone according to the altitude information of multiple waypoints and the height-limiting threshold of the drone during flight, and obtains test results.
  • the test device may analyze the height-limiting functional test of the drone according to the altitude information of multiple waypoints and the height-limiting threshold of the drone during the flight to obtain the test result, so as to The test results determine whether the height-limiting function of the UAV is up to standard.
  • the altitude information includes altitude
  • step S404 includes: the test device determines the altitude according to the altitude of each waypoint in the plurality of waypoints and the altitude of the take-off waypoint in the plurality of waypoints The height of each waypoint in multiple waypoints, when there is at least one waypoint in the multiple waypoints whose height is greater than the height limit threshold, it is determined that the height limit function test of the drone fails; when the When the heights of all the waypoints in multiple waypoints are less than or equal to the height limit threshold, it is determined that the height limit function test of the drone passes.
  • the take-off waypoint may be on the ground.
  • the altitude of the first waypoint collected is the height of the poster of the takeoff waypoint. Since the takeoff waypoint is on the ground, the altitude of the waypoint can be obtained by subtracting the height of the takeoff waypoint from the altitude of the waypoint. For example, there are waypoints 1 to 10, of which waypoint 1 is the takeoff waypoint.
  • the height of waypoint 1 is the altitude of waypoint 1 minus the altitude of waypoint 1, so the height of waypoint 1 is zero.
  • the height of waypoint 2 is the altitude of waypoint 2 minus the altitude of waypoint 1.
  • the height of waypoint 3 is the altitude of waypoint 3 minus the altitude of waypoint 1.
  • the height of at least one waypoint among the multiple waypoints is greater than the height limit threshold, it indicates that the flight height of at least one waypoint among the multiple waypoints of the drone is greater than the height limit threshold, indicating that the drone Failing to achieve the height limitation well means that the drone ’s height limitation function has not reached the standard.
  • the drone can be determined that the drone ’s height limitation function test failed; when the height of all the waypoints in the multiple waypoints When all are less than or equal to the height limit threshold, it means that the flying height of all waypoints of multiple waypoints of the UAV is less than or equal to the height limit threshold, indicating that the drone can achieve the height limit better, which means that The height-limiting function of the drone meets the standard, and the height-limiting function test of the drone can be determined to pass. Therefore, by implementing this embodiment, it can be accurately determined whether the height-limiting function of the drone meets the standard.
  • the altitude information includes relative altitude
  • step S404 includes: when the relative altitude of at least one waypoint among the plurality of waypoints is greater than the height limit threshold, the test device may determine the The height limitation function test fails; when the relative heights of all the waypoints in the plurality of waypoints are less than or equal to the height limitation threshold, it is determined that the height limitation function test of the drone passes.
  • the relative altitude may refer to the altitude difference between the altitude of each waypoint in the plurality of waypoints and the altitude of the take-off waypoint in the plurality of waypoints, or the relative height refers to the plurality of waypoints
  • the height of each waypoint from the reference end 13; the relative height may be sent by the transmitter 10 to the receiver 11 and forwarded by the receiver 11 to the test equipment.
  • the relative height of at least one waypoint among the multiple waypoints is greater than the height limitation threshold, it indicates that the flight altitude of at least one waypoint among the multiple waypoints of the drone is greater than the height limitation threshold, indicating that the drone Failure to achieve the height limitation well means that the drone ’s height limitation function does not meet the standard.
  • the drone can be determined that the drone ’s height limitation function test failed; when all the waypoints in the multiple waypoints are relatively When the altitude is less than or equal to the height limit threshold, it means that the flying height of all the waypoints in the multiple waypoints of the UAV is less than or equal to the height limit threshold, indicating that the drone can achieve the height limit better, It means that the height-limiting function of the drone has reached the standard, and it can be determined that the height-limiting function test of the drone has passed.
  • the height-limiting function test process for the drone may roughly include: the test device may receive the height-limiting threshold entered by user 1 and start receiving flight data of the drone; user 2 may pass the drone ’s
  • the control terminal controls the drone to take off and increase the flying height.
  • the flying height reaches the upper limit threshold, try to control the flying height of the drone to be greater than the upper limit threshold; after a certain time of flight, control the drone to lower the flying height, and
  • the user 1 can control the sending test device 12 to stop receiving the flight data of the drone, and control the test device to analyze the high-limit functional test based on the obtained flight data to obtain the test result.
  • the test equipment can obtain the altitude information of multiple waypoints of the drone during the flight from the actual flight data of the drone according to the height-limiting function test.
  • the height information and the height limit threshold associated with the test project analyze the height limit function test to obtain the test results, so that the height limit function of the drone can be determined according to the test results, and the function of the drone can be automated
  • the test does not require manual analysis, which simplifies the test process, can meet the user's automated and intelligent needs for drone testing, and can meet the needs of real-time analysis of multiple data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 5 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • the method may be executed by a test device, and the specific explanation of the test device is as described above.
  • the difference between the embodiment of the present invention and the embodiment of FIG. 3 is that the embodiment of the present invention is a specific application scenario of the embodiment of FIG. 3, which is a scenario for testing the speed limit function of the drone.
  • the embodiment of the present invention is shown in FIG. 5
  • the UAV test method may include the following steps.
  • the test equipment can obtain the test data required for the drone test.
  • the test equipment specifically obtains the test data required by the drone for the speed limit function test.
  • the test data includes a speed limit threshold.
  • the speed limit threshold may be 20m / s.
  • the speed limit threshold may be the maximum speed of the drone in the speed limit function of the drone.
  • the size of the maximum speed may be set according to the application scenario of the drone, or the size of the maximum speed in the speed limit function may be set according to the type of test product (i.e., drone).
  • test data please refer to the description corresponding to S301, which will not be repeated here.
  • the test equipment receives actual flight data of the drone.
  • the test equipment obtains the required target flight data from the actual flight data according to the test item of the drone.
  • the test item includes a speed limit function test
  • the target flight data includes speed information of multiple waypoints of the drone during flight.
  • the test item is a high-limit function test
  • the test device analyzes the speed limit function test of the drone according to the speed information of multiple waypoints and the speed limit threshold of the drone during the flight, and obtains the test result.
  • the test device may analyze the speed limit function test of the drone according to the speed information of multiple waypoints and the speed limit threshold of the drone during the flight to obtain the test result, so as to The test results determine whether the speed limit function of the UAV is up to standard.
  • the speed information includes speeds in multiple directions
  • step S504 includes: the testing device may determine each of the plurality of waypoints according to the speed information of each of the plurality of waypoints When the integrated speed of at least one waypoint in the multiple waypoints is greater than the speed limit threshold, it is determined that the speed limit function test of the drone has not passed; when all the waypoints in the multiple waypoints When the overall speed of the point is less than or equal to the speed limit threshold, it is determined that the speed limit function test of the drone passes.
  • the test equipment can square the sum of the speeds in multiple directions of each of the multiple waypoints and then take the root number to obtain the overall speed of each waypoint, assuming the speed of the forward direction of each waypoint Is v x , the velocity in the translation direction is v y and the velocity in the vertical direction is v z , and the overall velocity is v, then the overall velocity can be expressed by equation (1).
  • the speed limit function test of the drone fails; when the combined speeds of all the waypoints in the multiple waypoints are less than or equal to the speed limit threshold, it indicates that the drone can achieve the speed limit better, This means that the speed limit function of the UAV has reached the standard, and it is determined that the speed limit function of the UAV has passed the test. Therefore, by implementing this embodiment, it can be accurately determined whether the speed limit function of the drone meets the standard.
  • the speed limit threshold is 20m / s. If there are one or more waypoints in waypoints 1-10 whose speed is greater than 20m / s, it is determined that the speed limit function test of the drone is not by. If the speeds of all the waypoints in waypoints 1 to 10 are less than or equal to 20m / s, then the UAV's speed limit test is determined to pass.
  • the test procedure for the speed limit function of the drone may generally include: the test device may receive the speed limit threshold entered by user 1 and start receiving flight data of the drone, and user 2 may pass the drone ’s
  • the control terminal controls the drone to take off and accelerate the flight. When the flight speed reaches the speed limit threshold, try to control the flight speed of the drone to be greater than the speed limit threshold; after a certain time of flight, control the drone to reduce the flying height and end During flight, the user 1 can control the sending test device 12 to stop receiving the flight data of the drone, and control the test device to analyze the speed limit function test according to the obtained flight data to obtain the test result.
  • the test equipment can obtain the speed information of multiple waypoints of the drone during flight according to the speed limit function test from the actual flight data of the drone, and according to the multiple waypoints
  • the speed information and the speed limit threshold associated with the test project analyze the speed limit function test to obtain the test result, so that the speed limit function of the drone can be determined according to the test result, and the speed limit function of the drone can be realized
  • Automated testing does not require manual analysis and simplifies the testing process. It can meet the user's automated and intelligent requirements for drone testing and can meet the needs of real-time analysis of multiple data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 6 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • the method may be executed by a test device, and the specific explanation of the test device is as described above.
  • the difference between the embodiment of the present invention and the embodiment of FIG. 3 is that the embodiment of the present invention is a specific application scenario of the embodiment of FIG. 3, and the application scenario is a scenario for testing the distance-limiting function of the drone.
  • the embodiment of the present invention is shown in FIG. 6
  • the UAV test method may include the following steps.
  • the test equipment obtains the test data required for the drone test.
  • the test equipment specifically obtains the test data required by the UAV for the function test of the distance limitation.
  • the test data includes a distance limit threshold.
  • the distance limit threshold may be 12m.
  • the distance-limiting threshold may be the maximum distance that restricts the flight of the drone in the distance-limiting function of the drone.
  • the size of the maximum distance may be set according to the application scenario of the drone, or the maximum distance in the distance-limiting function may be set according to the type of test product (ie, drone).
  • test data please refer to the description corresponding to S301, which will not be repeated here.
  • the test device receives actual flight data of the drone.
  • the test equipment obtains the required target flight data from the actual flight data according to the test item of the drone.
  • the test item includes a distance-limiting function test
  • the target flight data includes position information of multiple waypoints of the drone during flight.
  • the test item is a limited-range function test
  • Position information of multiple waypoints during the flight so that the flying distance of the UAV can be determined according to the position information of multiple waypoints.
  • the test device analyzes the distance-limiting function test of the drone according to the position information of multiple waypoints and the distance-limiting threshold of the drone during the flight, and obtains the test result.
  • the test equipment may analyze the distance-limiting function test of the drone according to the position information of the plurality of waypoints and the distance-limiting threshold of the drone during the flight to obtain the test result, so as to The test results determine whether the UAV's range-limiting function is up to standard.
  • step S604 includes: the testing device may determine each of the plurality of waypoints and the takeoff according to the position information of each of the plurality of waypoints and the position information of the takeoff point The distance between the points, when there is at least one waypoint in the multiple waypoints and the distance between the takeoff point is greater than the distance limit threshold, it is determined that the drone speed limit function test failed; when the multiple When the distance between all the waypoints and the takeoff point in each waypoint is less than or equal to the distance limit threshold, it is determined that the speed limit function test of the drone passes.
  • the location information of the waypoint and the location information of the take-off point may be latitude and longitude information.
  • the position information of the take-off point may be the collected position information of the first waypoint.
  • waypoints 1 to 10 there are waypoints 1 to 10, of which waypoint 1 is the takeoff waypoint. Assuming that the distance limit threshold is 12m, if there is one or more waypoints between waypoints 1 to 10 and the takeoff point is greater than 12m, it is determined that the UAV's distance limit function test failed. If the distance between all the waypoints and take-off points in waypoints 1-10 is less than or equal to 12m, then the UAV's distance-limiting function test is determined to pass.
  • the distance limit threshold When the distance between at least one waypoint and the take-off point among the plurality of waypoints is greater than the distance limit threshold, it indicates that the flight distance of at least one waypoint among the plurality of waypoints of the drone is greater than the distance limit threshold, It indicates that the UAV has failed to achieve the distance limit, which means that the UAV's distance limit function has not reached the standard.
  • the speed limit function test of the UAV has not passed; when all of the multiple waypoints When the distance between the waypoint and the takeoff point is less than or equal to the distance limit threshold, it means that the flying distance of all the waypoints in the multiple waypoints of the drone is less than or equal to the distance limit threshold, indicating that the drone Being able to achieve the distance limitation well means that the UAV's distance-limiting function is up to standard, and it is determined that the UAV's distance-limiting function has passed the test. Therefore, by implementing this embodiment, it can be accurately determined whether the UAV's range-limiting function meets the standard.
  • the process of testing the distance-limiting function of the drone may be as follows: the test device 12 receives the distance-limiting threshold entered by the user and starts receiving flight data of the drone; user 2 may use the control terminal of the drone Control the drone to take off and fly away from the take-off point. When the flight distance reaches the limit threshold, try to control the flight of the drone to continue to fly forward; after a certain time of flight, control the drone to reduce the flying height and end the flight User 1 can control the test equipment 12 to stop receiving flight data of the UAV, and control the test equipment to analyze the distance-limiting function test based on the obtained flight data to obtain the test results.
  • the test equipment can obtain the position information of multiple waypoints of the drone during the flight from the actual flight data of the drone according to the distance limit function test.
  • the location information and the distance limit threshold associated with the test project analyze the distance limit function test to obtain the test result, so that the distance limit function of the drone can be determined according to the test result, and the distance limit function of the drone can be realized
  • Automated testing does not require manual analysis and simplifies the testing process. It can meet the user's automated and intelligent requirements for drone testing and can meet the needs of real-time analysis of multiple data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 7 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • the method may be performed by a test device, and the specific explanation of the test device is as described above.
  • the difference between the embodiment of the present invention and the embodiment of FIG. 3 is that the embodiment of the present invention is a specific application scenario of the embodiment of FIG. 3, and the application scenario is a scenario of testing the electronic fence function of the drone.
  • the embodiment of the present invention is shown in FIG. 7
  • the UAV test method may include the following steps.
  • the test equipment can obtain the test data required for the drone test.
  • the test device specifically obtains the test data required by the drone for the electronic fence function test.
  • the test data includes the position information of the preset number of vertices of the electronic fence.
  • the preset number may be determined according to the shape of the electronic fence.
  • the shape of the electronic fence is a quadrangle, and the preset number is four; the shape of the electronic fence is a triangle, and the preset number is three.
  • the position information of the vertex includes the latitude and longitude of the vertex.
  • the vertex of the electronic fence includes points A, B, C, and D.
  • the position information of point A is (22.62, 113.93), and the position information of point B is ( 22.63, 113.93), the position information of point C is (22.64, 113.94), and the position information of point D is (22.65, 113.93).
  • test data please refer to the description corresponding to S301, which will not be repeated here.
  • the test device receives actual flight data of the drone.
  • the test equipment obtains the required target flight data from the actual flight data according to the test item of the drone.
  • the test item includes an electronic fence function test
  • the target flight data includes position information of multiple waypoints in the process of the drone flying in multiple directions, respectively.
  • the test item is an electronic fence function test
  • the data obtains the position information of multiple waypoints in the course of the UAV flying in multiple directions, so that the distance between each waypoint and the electronic fence can be determined according to the position information of the multiple waypoints.
  • the multiple directions may be two directions, three directions, four directions or more directions, which are not limited in the embodiments of the present application.
  • the test equipment analyzes the electronic fence function test of the drone according to the position information of multiple waypoints during the flight of the drone in multiple directions and the position information of the preset number of vertices of the electronic fence To get the test result.
  • the flying direction of the UAV on the corresponding side of each side of the electronic fence may be different.
  • the electronic fence may be composed of four sides.
  • the four sides include a side AB surrounded by vertices A and B, a side CD surrounded by vertices C and D, and a side BC surrounded by vertices B and C.
  • the test equipment can be based on the position information of points A, B, C and D of the electronic fence, the position information of multiple waypoints during the forward flight of the drone, and the multiple flight paths during the backward flight of the drone.
  • the position information of the point, the position information of multiple waypoints during the flight of the drone to the left, the position information of the multiple waypoints during the flight of the drone to the right, the electronic fence function of the drone The test is analyzed to obtain the test result. As shown in Figure 7, when the drone is flying on the AB side of the electronic fence, the flight direction of the drone is the direction of advance.
  • the direction of advance may refer to the direction in which the drone is facing the electronic fence with the nose and is constantly approaching the electronic fence
  • the flying direction of the drone is the backward direction.
  • the backward direction may refer to the direction of the tail of the drone toward the electronic fence and constantly approaching the electronic fence;
  • the flying direction of the drone is the right translation direction.
  • the right translation direction may refer to the direction of the right wing of the drone toward the electronic fence and constantly approaching the electronic fence;
  • the drone's flight direction is the left translation direction.
  • the left translation direction may refer to the direction of the left side of the drone toward the electronic fence and constantly approaching the electronic fence.
  • the testing device may determine the position information of the electronic fence according to the position information of the preset number of vertices of the electronic fence, and obtain the multiple waypoints during the flight of the drone in the first direction Position information, the first direction is any one of the plurality of directions, and according to the position information of each of the plurality of waypoints and the position information of the electronic fence, determine each of the plurality of waypoints The distance between each waypoint and the electronic fence, when there is at least one waypoint in the plurality of waypoints, the distance from the electronic fence is less than the first distance value, it is determined that the electronic fence of the drone for the first direction
  • the test fails; when the distance between all the waypoints and the electronic fence in the plurality of waypoints is greater than or equal to the first distance value, it is determined that the electronic drone test for the first direction of the electronic fence passes.
  • the test equipment determines the position information of the electronic fence according to the position information of the electronic fences A, B, C, and D.
  • the test equipment obtains the position information of multiple waypoints during the previous flight of the drone. For example, there are 10 such multiple waypoints. Then calculate the distance between each of the 10 waypoints and the electronic fence.
  • the electronic fence test of the drone in the forward flight direction fails; if all the waypoints in 10 waypoints If the distance from the electronic fence is greater than 5m, the electronic fence in the forward flight direction of the UAV is determined to pass the test.
  • the specific implementation principle when the first direction is the other direction is the same, and will not be repeated here.
  • the test equipment can test the front, back, left and right directions.
  • the distance from the electronic fence is less than the first distance value (the first distance may refer to a safe distance between the waypoint and the electronic fence), indicating that the drone has multiple If there is at least one waypoint in the waypoint, the distance from the electronic fence is less than the safety distance, indicating that the electronic fence function test of the drone has not reached the standard.
  • the test data further includes a second distance threshold
  • the target flight data includes a waypoint whose distance from the electronic fence is less than the second distance threshold during the flight of the drone in multiple directions, respectively Location information.
  • the test equipment can fly the drone in multiple directions, and the distance from the electronic fence to the waypoint less than the second distance threshold Analyze the position information to test and analyze the electronic fence function of the drone according to the position of the waypoint whose distance is less than the second distance threshold; and analyze the position of the waypoint whose distance from the electronic fence is greater than or equal to the second distance threshold Information discarded.
  • the first distance threshold may be smaller than the second distance threshold. For example, as shown in FIG.
  • the test device can analyze the position information of waypoints with a distance of less than 10 m from the electronic fence in all directions, and the distance from the electronic fence is greater than or equal to The position information of the 10m waypoint is discarded.
  • the test process of the electronic fence function of the drone may be as follows: the test device may receive the position information of each vertex of the electronic fence entered by user 1, and start receiving flight data of the drone, and user 2 may pass The control terminal of the drone controls the drone to take off and fly to the electronic fence, and attempts to control the drone to fly into the electronic fence; after a certain time of flight, the drone is controlled to lower the flying height and end the flight, user 1
  • the test equipment 12 can be controlled to stop receiving flight data of the drone, and the test equipment can be controlled to analyze the electronic fence function test based on the obtained flight data to obtain test results.
  • the test equipment can be based on the position information of multiple waypoints during the flight of the drone in multiple directions and the position information of the preset number of vertices of the electronic fence.
  • the electronic fence function test of the drone is analyzed to obtain test results, so that it can be determined whether the electronic fence function of the drone meets the standard according to the test result, and the automated test of the electronic fence function of the drone can be realized without manual analysis.
  • Simplify the test process meet the user's automated and intelligent needs for drone testing, and meet the needs of real-time analysis of multiple data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 9 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • the method may be executed by a test device, and the specific explanation of the test device is as described above.
  • the difference between the embodiment of the present invention and the embodiment of FIG. 3 is that the embodiment of the present invention is a specific application scenario of the embodiment of FIG.
  • the UAV test method may include the following steps.
  • the test equipment obtains the test data required for the drone test.
  • test data required for drone testing please refer to the description corresponding to S301, which will not be repeated here.
  • the test equipment specifically obtains the test data required by the UAV for autonomously planning the functional test of the waypoint.
  • the test data includes the position information of the first position and the position information of the second position and the spray pattern.
  • the spray width may be the spray range of the drone to spray pesticides or water and other objects in the autonomous route planning of the drone, for example, the spray width may be 5m.
  • test data please refer to the description corresponding to S301, which will not be repeated here.
  • the test equipment receives the actual flight data of the drone.
  • the test equipment obtains the required target flight data from the actual flight data according to the test item of the drone.
  • the test item includes a route autonomous planning function test
  • the target flight data may include position information of multiple waypoints during the flight of the drone.
  • the test item is a function test for autonomous route planning, it is necessary to test whether the flight path of the drone meets the requirements. Therefore, the test equipment can obtain the drone from the actual flight data according to the test item of the drone. Position information of multiple waypoints during the flight, so that the flight path of the drone can be determined according to the position information of multiple waypoints.
  • the test equipment analyzes the autonomous route planning function test of the drone according to the position information of multiple waypoints during the flight of the drone and the test data associated with the autonomous route planning function test function of the waypoint, and obtains the test result.
  • the test equipment can test the route planning function of the drone according to the position information of multiple waypoints during the flight of the drone and the test data associated with the function test function of the autonomous planning function of the waypoint Analyze and get the test results, so that you can determine whether the autonomous route planning function of the UAV meets the standard according to the test results.
  • the testing device may determine at least one reference line based on the position information of the first position and the position information of the second position and the spray amplitude, and determine each route based on the position information of each waypoint in the plurality of waypoints
  • the distance between the point and the corresponding reference line, when there is at least one waypoint in multiple waypoints and the distance between the corresponding reference line is greater than the third distance value, it is determined that the UAV's waypoint autonomous planning function test has not Pass; when the distance between all the waypoints in multiple waypoints and the corresponding reference line is less than or equal to the third distance value, it is determined that the UAV's waypoint autonomous planning function test passes.
  • the test equipment can determine at least one reference line based on the position information of the first position and the position information of the second position and the spray pattern, as shown in FIG. 10, assuming that the first position can refer to the position of point A, and the second position can be Refers to the position where point B is located, and the reference line may include a straight line segment AB and a line segment parallel to the line segment AB and having a distance from the line segment AB that is N times the spray amplitude, where N is a positive integer.
  • the reference line can be used as the standard flight path of the drone, and the distance between each waypoint and the corresponding reference line can be determined according to the position information of each of the multiple waypoints.
  • the corresponding reference line can refer to the distance The closest datum line to the waypoint.
  • the UAV's waypoint autonomous planning function test Did not pass. If the distance from all the waypoints in waypoints 1 to 10 to the corresponding reference line is less than or equal to 50cm, it is determined that the UAV's waypoint autonomous planning function test passed.
  • the distance between at least one waypoint in the multiple waypoints and the corresponding reference line is greater than the third distance value, it indicates that there is at least one waypoint among the multiple waypoints of the UAV that is far away from the standard trajectory , Indicating that the UAV's autonomous route planning function has not reached the standard, and it is determined that the UAV's waypoint autonomous planning function test has failed; when the distance between all waypoints in multiple waypoints and the corresponding baseline is less than or equal to the third
  • the distance value indicates that the distance of the waypoint offset from the reference trajectory among the multiple waypoints of the drone is relatively short, indicating that the UAV's route autonomous planning function has reached the standard, and the UAV's waypoint autonomous planning function test passed .
  • the target flight data includes position information of multiple waypoints in the preset area during the flight of the drone
  • the preset area has two mutually parallel sides L1 and L2, the L1 and L2 is perpendicular to the reference line, the distance between L1 and the first position is a fourth distance value, the distance between L2 and the second position is the fourth distance value, and the fourth distance value is greater than zero.
  • the first position is point A
  • the second position is point B
  • the fourth distance is 10m
  • the preset area is two parallel sides L1 and L2
  • the reference between L1 and L2 In the area enclosed by the line
  • the distance from L1 to point A is 10m
  • the distance from L2 to point B is 10m.
  • the test equipment can filter the data of the inflection point and analyze only the target flight data of the UAV in the preset area.
  • the test process of the autonomous route planning function of the drone may be as follows: the test device may receive the location information of the first location, the location information of the second location, and the spray amplitude entered by the user 1, and start receiving unmanned
  • the flight data of the aircraft user 2 can control the drone to fly according to the planned route through the control terminal of the drone. After a certain period of flight, the drone is controlled to reduce the flying height and end the flight.
  • User 1 can control the test equipment 12 Stop receiving UAV flight data, and control the test equipment to analyze the UAV's route planning function test based on the obtained flight data, and obtain the test results.
  • the test equipment can autonomously plan the route of the drone according to the position information of multiple waypoints during the flight of the drone and the test data associated with the autonomous route planning function test Analyze the function test and get the test results, so that you can determine whether the autonomous route planning function of the drone meets the standard based on the test results, and can realize the automatic test of the autonomous route planning function of the drone without manual analysis, simplifying the test process And improve test efficiency.
  • FIG. 11 is a schematic flowchart of another drone test method provided by an embodiment of the present invention.
  • the method may be executed by a test device, and the specific explanation of the test device is as described above.
  • the difference between the embodiment of the present invention and the embodiment of FIG. 3 is that the embodiment of the present invention is a specific application scenario of the embodiment of FIG. 3, which is a scenario for testing the obstacle avoidance function of the drone.
  • the embodiment of the present invention is shown in FIG. 11
  • the UAV test method may include the following steps.
  • the test equipment obtains the test data required for the drone test.
  • test data required for drone testing please refer to the description corresponding to S301, which will not be repeated here.
  • the test equipment specifically obtains the test data required by the drone for the obstacle avoidance function test.
  • the test data includes obstacle information.
  • the obstacle may be a tree, a house, or a pole.
  • the obstacle information may include obstacle position information, obstacle radius information, and obstacle height information.
  • the obstacle is a tree, the height of the obstacle is 10m, the radius of the obstacle is 123m, and the position information of the obstacle is (22.62, 113.93).
  • test data please refer to the description corresponding to S301, which will not be repeated here.
  • the test equipment receives the actual flight data of the drone.
  • the test equipment obtains the required target flight data from the actual flight data according to the test project of the drone,
  • the test item includes obstacle avoidance function test
  • the target flight data includes position information of multiple waypoints during the flight of the drone.
  • the test equipment can obtain the drone from the actual flight data according to the test item of the drone.
  • the position information of multiple waypoints during the flight so that the distance between the drone and the obstacle can be determined according to the position information of the multiple waypoints, and further, whether the drone can avoid the obstacle is determined according to the distance flight.
  • the testing device analyzes the obstacle avoidance function test of the drone according to the position information of multiple waypoints during the flight of the drone and the test data associated with the obstacle avoidance test function, and obtains the test result.
  • the test device may analyze the obstacle avoidance function test of the drone according to the position information of multiple waypoints during the flight of the drone and the test data associated with the obstacle avoidance test function to obtain Test Results.
  • the test passes, it indicates that the drone can avoid obstacles to fly, and confirms that the drone's obstacle avoidance function meets the standard; when the test fails, it indicates that the drone cannot fly from obstacles, and determines that the drone 'S obstacle avoidance performance failed to meet the standard.
  • the obstacle information includes position information of the obstacle, radius information of the obstacle, and height information of the obstacle.
  • Step 114 includes: the test device may determine the position information of each of the plurality of waypoints. , The position information of the obstacle, the radius information of the obstacle and the height information of the obstacle, determine the distance between each waypoint and the obstacle. When the distance between at least one waypoint and the obstacle in the multiple waypoints is less than the fifth distance value, it is determined that the obstacle avoidance test of the drone fails; when all the waypoints in the multiple waypoints When the distance to the obstacle is greater than or equal to the fifth distance value, it is determined that the obstacle avoidance test of the drone passes.
  • the test device can determine the distance between each waypoint and the obstacle based on the position information of each of the plurality of waypoints, the position information of the obstacle, the radius information of the obstacle, and the height information of the obstacle distance. For example, there are waypoints 1-10, assuming a fifth distance of 1m. If the distance between one or more waypoints and obstacles in the waypoints 1-10 is greater than 1m, it is determined that the UAV's obstacle avoidance function test is not by. If the distance between all the waypoints and obstacles in waypoints 1-10 is less than or equal to 1m, it is determined that the UAV's obstacle avoidance function test passed.
  • the distance between at least one waypoint and the obstacle among the multiple waypoints is less than the fifth distance value, it indicates that the drone cannot fly away from the obstacle, indicating that the obstacle avoidance function of the drone has not reached the standard. It is determined that the obstacle avoidance test of the drone fails; when the distance between all the waypoints in the multiple waypoints and the obstacle is greater than or equal to the fifth distance value, it indicates that the drone can avoid the obstacle and fly , Indicating that the UAV's obstacle avoidance function meets the standard, and it can be determined that the UAV's obstacle avoidance test passed.
  • the obstacle avoidance function test process for the drone may be as follows: the test device may receive the position information of the first position, the position information and the spray position of the second position entered by the user 1, and the The position information, the position information of the second position and the spray pattern plan the flight path of the UAV, receive the obstacle information input, and start to receive the flight data of the UAV.
  • User 2 can control the drone to fly according to the planned route through the control terminal of the drone. After the drone passes through the obstacle, the drone can be controlled to reduce the flying height and end the flight.
  • User 1 can control the test equipment 12 to stop receiving The flight data of the drone, and control the test equipment to analyze the obstacle avoidance function test of the drone according to the obtained flight data, and obtain the test result.
  • the test equipment can analyze the obstacle avoidance function test of the drone according to the position information of multiple waypoints and obstacle information during the flight of the drone, and obtain the test The results can be used to determine whether the obstacle avoidance function of the drone meets the standard according to the test results. It can realize automated testing of the obstacle avoidance function of the drone without manual analysis, simplify the test process, and meet the user ’s Automation, intelligent requirements, and can meet the needs of real-time analysis of a variety of data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • FIG. 12 is a schematic structural diagram of a test device provided by an embodiment of the present invention.
  • the test device includes: a processor 100 and a memory 101.
  • the memory 101 may include a volatile memory (volatile memory); the memory 101 may also include a non-volatile memory (non-volatile memory); the memory 101 may also include a combination of the foregoing types of memories.
  • the processor 100 may be a central processing unit (central processing unit, CPU).
  • the processor 100 may further include a hardware chip.
  • the above hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (complex programmable logic device, CPLD), field programmable logic gate array (field-programmable gate array, FPGA), or any combination thereof.
  • the memory is used to store program instructions
  • the processor may call the program instructions stored in the memory to perform the following steps:
  • the test item of the drone is analyzed according to the target flight data and the test data associated with the test item to obtain a test result.
  • the test item includes a height limitation function test
  • the target flight data includes altitude information of multiple waypoints during the flight of the drone
  • the test data includes a height limitation threshold
  • the altitude information includes altitude
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the height information includes a relative height
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the test item includes a speed limit function test
  • the target flight data includes speed information of multiple waypoints of the drone during flight
  • the test data includes a speed limit threshold
  • the speed information includes speeds in multiple directions
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the test item includes a distance-limiting function test
  • the target flight data includes position information of multiple waypoints of the drone during flight
  • the test data includes the take-off of the drone Position information of points and threshold of distance limit.
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the test item includes an electronic fence function test
  • the target flight data includes position information of multiple waypoints during the flight of the drone in multiple directions
  • the test data includes the The position information of the preset number of vertices of the electronic fence.
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the test data further includes a second distance threshold
  • the target flight data includes that the distance from the electronic fence is less than the second distance threshold when the drone is flying in multiple directions, respectively Location information of your waypoint.
  • the test item includes a function test for autonomous route planning
  • the target flight data includes position information of multiple waypoints of the drone during flight
  • the test data includes position information of a first position And the position information and spray pattern of the second position.
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the target flight data includes position information of multiple waypoints in a preset area of the drone during flight, the preset area has two parallel sides L1 and L2, the L1 and L2 are perpendicular to the reference line, the distance between L1 and the first position is a fourth distance value, and the distance between L2 and the second position is the fourth distance value, so The fourth distance value is greater than zero.
  • the test item includes an obstacle avoidance function test
  • the target flight data includes position information of multiple waypoints of the drone during flight
  • the test data includes obstacle information
  • the obstacle information includes position information of the obstacle, radius information of the obstacle, and height information of the obstacle
  • the memory is used to store program instructions.
  • the processor may call program instructions stored in the memory to perform the following steps:
  • the position information of each of the plurality of waypoints determine between each waypoint and the obstacle distance;
  • the test equipment can obtain the required target flight data from the actual flight data of the drone according to the test project, and analyze the test data on the target flight data and the test data associated with the test project to obtain the test result.
  • the test equipment can realize automated testing of the function of the drone without manual analysis, simplify the test process, and meet the user's automated and intelligent needs for drone testing. And can meet the needs of real-time analysis of a variety of data. Optimize user experience, feedback test results in real time, greatly improve test efficiency.
  • a computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor to implement the present invention.
  • FIG. 3 to FIG. 7 and FIG. 9 The test method of the drone described in the embodiment corresponding to FIG. 11 can also implement the test equipment of the embodiment of the invention described in FIG. 12, which will not be repeated here.
  • the computer-readable storage medium may be an internal storage unit of the test device described in any of the foregoing embodiments, such as a hard disk or a memory of the device.
  • the computer-readable storage medium may also be an external storage device of the vehicle control device, such as a plug-in hard disk equipped on the device, a smart memory card (Smart, Media, Card, SMC), and secure digital (SD) ) Card, flash card (Flash Card), etc.
  • the computer-readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the test device.
  • the computer-readable storage medium may also be used to temporarily store data that has been or will be output.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Abstract

一种无人机测试方法,包括:获取无人机测试所需的测试数据;接收无人机的实际飞行数据;根据无人机的测试项目从际飞行数据中获取需要的目标飞行数据;根据目标飞行数据以及与测试项目关联的测试数据对无人机的测试项目进行分析,得到测试结果。该无人机测试方法可自动检测无人机的功能,提高检测效率。还涉及一种无人机测试设备、及存储介质。

Description

一种无人机测试方法、设备及存储介质 技术领域
本发明涉及无人机技术领域,尤其涉及一种无人机测试方法、设备及存储介质。
背景技术
随着飞行技术的发展,无人机成为了当前比较热门的研究话题,且被广泛应用于农业、航空拍摄、森林火警监控等场景,给人们的生活及工作带来许多便利。为了使无人机能够应用于这些应用场景中,通常需要对无人机的功能进行测试,在根据测试结果确定无人机的功能达标时,才将无人机投入使用。实践中,需要通过人工分析方式对无人机的飞行数据进行分析,以判断无人机的功能是否达标,该方法效率较低,已经无法满足用户的需求,也无法达到实时分析多种数据的需求。
发明内容
本发明实施例提供了一种无人机测试方法、设备及存储介质,可自动检测无人机的功能,提高检测效率,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。
第一方面,本发明实施例提供了一种无人机测试方法,所述方法包括:
获取无人机测试所需的测试数据;
接收所述无人机的实际飞行数据;
根据所述无人机的测试项目从所述实际飞行数据中获取需要的目标飞行数据;
根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果。
第二方面,本发明实施例提供了一种测试设备,包括存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,执行所述存储器存储的程序指令,当程序指令被执行时,所述处理器用于执行如下步骤:
获取无人机测试所需的测试数据;
接收所述无人机的实际飞行数据;
根据所述无人机的测试项目从所述实际飞行数据中获取需要的目标飞行数据;
根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果。
第三方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述无人机测试方法。
本发明实施例中,测试设备可以根据测试项目从无人机的实际飞行数据中获取需要的目标飞行数据,对目标飞行数据及测试项目关联的测试数据对测试项目进行分析,以得到测试结果,以便可以根据测试结果确定无人机的功能是否达标,可实现对无人机的功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种无人机测试的网络架构示意图;
图2是本发明实施例提供的一种无人机测试的网络架构示意图;
图3是本发明实施例提供的一种无人机测试方法的流程示意图;
图4是本发明实施例提供的另一种无人机测试方法的流程示意图;
图5是本发明实施例提供的又一种无人机测试方法的流程示意图;
图6是本发明实施例提供的又一种无人机测试方法的流程示意图;
图7是本发明实施例提供的又一种无人机测试方法的流程示意图;
图8是本发明实施例提供的一种电子围栏的示意图;
图9是本发明实施例提供的又一种无人机测试方法的流程示意图;
图10是本发明实施例提供的一种基准线的示意图;
图11是本发明实施例提供的又一种无人机测试方法的流程示意图;
图12是本发明实施例提供的一种测试设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好理解本发明实施例提供的一种无人机测试方法、装置及设备,下面先描述本发明实施例的网络构架。
请参见图1及图2,图1及图2均是本发明实施例提供的无人机测试的网络架构示意图,该网络结构包括天空端、地面端和基准端,天空端包括发射器10,地面端包括接收器11及测试设备12,基准端包括基准端13。
图1所示的是其中一种通信连接方式,发射器10与基准端13之间相互通信,发射器10能够获取基准端13的位置原点信息。其中,位置原点信息是指基准端13的位置信息。发射器10还与接收器11之间可以相互通信,发射器10可以将天空端相对于基准端13的位置信息数据传输给接收器11。接收器11与测试设备12之间可以通过有线或无线方式进行通信,将接收到的数据传输到测试设备12中进行处理分析。
图2所示的是另一种通信连接方式,基准端13与地面设备11之间相互通信,基准端13将其位置原点信息传输给接收器11。接收器11还与天空端的发射器10相互通信,接收器11将接收到的基准端13的信息传输给发射器10并从发射器10出获取天空端的飞行数据。接收器11与测试设备12之间通过有线或无线方式通信,将接收到的数据传输给测试设备12进行最终的处理分析。
该发射器10可拆卸地固定在无人机上,可以用于获取无人机的飞行数据,并将飞行数据发送至接收器11,飞行数据可以包括无人机的飞行高度、无人机在多个航点的经度、纬度及三个方向上的速度中的至少一种,该三个方向可包括无人机的前进方向、平移方向和垂直方向。
可理解的是,该无人机测试的网络架构中的基准端13主要用于基于RTK(Real-Time Kinematic)实时动态差分定位技术提供高精度的定位信息(即基准端的位置原点信息),其定位精度能够控制在厘米级范围内,以便进一步根据基准端13提供的定位信息确定无人机的飞行数据。在一个实施例中,该无人机测试的网络架构中可以通过发射器的传感器来获取无人机的飞行数据,因此,在一些实施例中,上述该无人机测试的网络架构中可以不包括基准端13。
在一个实施例中,发射器10上可以包括视觉传感器、激光传感器、雷达传感器、姿态传感器等中的至少一种,发射器10可以使用这些传感器来获取无人机的飞行数据,例如,发射器10可以使用雷达传感器获取雷达传感器在无人机飞行过程中多个航点中的每个航点的高度,将雷达传感器在每个航点的高度作为无人机在每个航点的高度,根据无人机在每个航点的高度可以确定无人机的飞行高度。其中,视觉传感器可以包括单目视觉、双目视觉或是多目视觉,激光传感器可以包括ToF测距仪、激光雷达,雷达传感器可以包括超声波雷达、毫米波雷达,姿态传感器可以包括GNSS位置传感器、IMU惯性测量单元、多轴姿态传感器。可以理解的是,传感器并不限于上述列举的种类,与其实现相同或相似的功能的传感器均可行。
接收器11可以用于接收发射器10所发送的飞行数据,并将飞行数据转发至测试设备12。接收器11也可以直接接收基准端13的位置原点信息数据,并将该数据传输给发射器10,同时也能接收发射器10根据位置原点信息解算后的飞行数据,最后将该飞行数据转发至测试设备12。
测试设备12可以用于接收接收器11所发送的飞行数据,并根据飞行数据及测试项目关联的测试数据对无人机的测试项目进行分析,得到测试结果,可以自动实现对无人机的功能进行测试。其中,测试设备12可以为智能手机、电脑或服务器等设备。
在一个实施例中,上述网络架构中的地面端还可以包括无人机的控制终端,该控制终端可以是指设置于上述测试设备中的装置,该控制终端也可以是独立的设备,该控制终端用于控制无人机的飞行,控制终端具体地可以为遥控器、智能手机、平板电脑、膝上型电脑、地面站、穿戴式设备(手表、手环)中的一种或多种。
基于上述网络架构,本发明实施例提供一种无人机测试方法,请参见图3,所述方法可以由测试设备执行,其中,测试设备的具体解释如前所述。如图3所示,该无人机测试方法可以包括如下步骤。
S301、测试设备获取无人机测试所需的测试数据。
该测试数据可以是无人机的功能达标时所对应的参数,该测试数据可以是测试人员事先录入到测试设备的数据库中的,在对无人机进行测试时,测试设备可以从本地数据库中获取测试数据。在一个实施例中,由于不同类型(或型号)的无人机所具备的功能不一致,因此,不同类型的无人机之间的测试数据可以不相同;测试设备的本地数据库中可以包括多个类型的无人机的测试数据,在对无人机进行测试时,可以从数据库中获取与该无人机的类型匹配的测试数据。
S302、测试设备接收该无人机的实际飞行数据。
在一个实施例中,在无人机飞行的过程中,发射器10可以直接接收基准端13的位置原点信息数据,由发射器10将该位置原点信息数据解算后得到无人机的实际飞行数据,并由发射器10将该无人机的实际飞行数据转发接收器11,由接收器11将该无人机的实际飞行数据转发至测试设备。相应地,测试设备可以从接收器11接收实际飞行数据。如前述所说,无人机的实际飞行数据可包括无人机的飞行高度、无人机在多个航点的经度、纬度及三个方向上的速度中的至少一种,该三个方向可包括无人机的前进方向、平移方向和垂直方向。
在另一个实施例中,在无人机飞行的过程中,接收器11可以接收基准端13的位置原点信息数据,由接收器11将位置原点信息数据转发至发射器10,由发射器10将该位置原点信息数据解算后得到无人机的实际飞行数据,并由发射器10将该无人机的实际飞行数据转发接收器11,由接收器11将该无人机的实际飞行数据转发至测试设备。相应地,测试设备可以从接收器11接收实际飞行数据。
在又一个实施例中,在无人机飞行的过程中,发射器10可以通过该发射器的传感器实时获取无人机的实际飞行数据,再将取无人机的实际飞行数据发送给接收器11,再由接收器11将该实际飞行数据发送至测试设备。相应地,测试设备可以从接收器11接收实际飞行数据。
S303、测试设备根据该无人机的测试项目从该实际飞行数据中获取需要的目标飞行数据。
由于针对无人机的不同测试项目,所要测试的功能不同,因此,测试所需要的飞行数据不同,测试设备可以根据该无人机的测试项目从该实际飞行数据中获取需要的目标飞行数据。测试项目可以是指对无人机的功能测试项目,测试项目可以包括限距功能测试、限速功能测试、限高功能测试、电子围栏功能测试、航线自主规划功能测试及避障功能测试中的至少一种。
S304、测试设备根据该目标飞行数据以及与该测试项目关联的测试数据对该无人机的该测试项目进行分析,得到测试结果。
测试设备可以根据该目标飞行数据以及与该测试项目关联的测试数据对该无人机的该测试项目进行分析,得到测试结果;测试结果可包括测试通过及测试未通过,测试通过可以是指该无人机的测试项目对应的功能达标;测试未通过可以是指该无人机测试项目对应的功能未达标。例如,测试项目为限距功能测试,测试通过可以是指该无人机的限距功能达标;测试未通过可以是指该无人机的限距功能未达标。
可选的,无人机的功能达标是指无人机的功能满足国家对无人机的规定,无人机的功能未达标是指无人机的功能不满足国家对无人机的规定。
可见,通过实施图3所描述的方法,测试设备可以根据测试项目从无人机的实际飞行数据中获取需要的目标飞行数据,对目标飞行数据及测试项目关联的测试数据对测试项目进行分析,以得到测试结果,以便可以根据测试结果确定无人机的功能是否达标,可实现对无人机的功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
请参见图4,图4是本发明实施例提供的另一种无人机测试方法的流程示意图,所述方法可以由测试设备执行,其中,对测试设备的具体解释如前所述。本发明实施例与图3实施例的区别在于,本发明实施例为图3实施例的一个具体应用场景,该应用场景为对无人机的限高功能测试的场景,本发明实施例如图4所示,该无人机测试方法可以包括如下步骤。
S401、测试设备获取无人机测试所需的测试数据。
本申请实施例中,测试设备具体获取无人机针对限高功能测试所需的测试数据。其中,该测试数据包括限高阈值。例如,限高阈值可以为12m。其中,该限高阈值可以是无人机的限高功能中限制无人机飞行的最大高度。可选的,该最大高度的大小可以是根据该无人机的应用场景设置的,例如,该无人机应用于给农作物进行施肥的场景下,在这种应用场景下,通常不希望无人机的飞行高度过高,因此,可将最大高度设置为一个较小的值;再如,无人应用于航拍的场景下,在这种场景下,通常需要无人机的飞行高度较高,以拍摄到视角较广的图像,因此,可以将限高功能中的最大高度设置为一个较大的值。或者,该限高功能中的最大高度可以是根据测试产品(即无人机)的类型设置的。
关于测试数据的其他描述具体请参见S301对应的说明,在此不赘述。
S402、测试设备接收该无人机的实际飞行数据。
本申请实施例中,如何接收该无人机的实际飞行数据请参见S302对应的说明,在此不赘述。
S403、测试设备根据该无人机的测试项目从该实际飞行数据中获取需要的目标飞行数据。
其中,该测试项目包括限高功能测试,该目标飞行数据包括该无人机在飞行过程中的多个航点的高度信息。当该测试项目为限高功能测试时,需要测试无人机的飞行高度是否大于限高阈值,因此,测试设备可以根据该无人机的测试项目从该实际飞行数据中获取该无人机在飞行过程中的多个航点的高度信息。
S404、测试设备根据该无人机在飞行过程中的多个航点的高度信息以及限高阈值对该无人机的该限高功能测试进行分析,得到测试结果。
本申请实施例中,测试设备可以根据该无人机在飞行过程中的多个航点的高度信息以及限高阈值对该无人机的该限高功能测试进行分析,得到测试结果,以便根据测试结果确定该无人机的限高功能是否达标。
在一个实施例中,该高度信息包括海拔高度,步骤S404包括:测试设备根据该多个航点中的每个航点的海拔高度和该多个航点中的起飞航点的海拔高度确定该多个航点中的每个航点的高度,当该多个航点中存在至少一个航点的高度大于该限高阈值时,确定该无人机的该限高功能测试未通过;当该多个 航点中的所有航点的高度均小于或等于该限高阈值时,确定该无人机的该限高功能测试通过。
在该实施例中,可选的,起飞航点可以在地面。可选的,可以认为收集到的第一个航点的海拔高度为起飞航点的海报高度。由于起飞航点在地面,因此将航点的海拔高度航点减去起飞航点的高度就可以得到航点的高度。例如,有航点1~10,其中航点1为起飞航点。航点1的高度为航点1的海拔高度减去航点1的海拔高度,因此,航点1的高度为零。航点2的高度为航点2的海拔高度减去航点1的海拔高度。航点3的高度为航点3的海拔高度减去航点1的海拔高度。其余的航点的高度计算原理相同,在此不赘述。假设限高阈值为12m,如果航点1~10中存在一个或多个航点的高度大于12m,则确定无人机的限高功能测试未通过。如果航点1~10中所有航点的高度均小于或等于12m,则确定无人机的限高功能测试通过。
当该多个航点中存在至少一个航点的高度大于该限高阈值时,表明无人机的多个航点中存在至少一个航点的飞行高度大于该限高阈值,表明该无人机未能较好地实现限高,即表明该无人机的限高功能未达标,可确定该无人机的该限高功能测试未通过;当该多个航点中的所有航点的高度均小于或等于该限高阈值时,表明无人机的多个航点的所有航点的飞行高度均小于或等于该限高阈值,表明该无人机能够较好地实现限高,即表明该无人机的限高功能达标,可确定该无人机的该限高功能测试通过。因此,通过实施该实施例,可准确地确定无人机的限高功能是否达标。
在另一个实施例中,该高度信息包括相对高度,步骤S404包括:当该多个航点中存在至少一个航点的相对高度大于该限高阈值时,测试设备可以确定该无人机的该限高功能测试未通过;当该多个航点中的所有航点的相对高度均小于或等于该限高阈值时,确定该无人机的该限高功能测试通过。
相对高度可以是指该多个航点中的每个航点的海拔高度与该多个航点中的起飞航点的海拔高度之间的高度差,或相对高度是指该多个航点中的每个航点距离基准端13的高度;该相对高度可以是由发射器10所发送至接收器11,并由接收器11转发给测试设备的。当该多个航点中存在至少一个航点的相对高度大于该限高阈值时,表明无人机的多个航点中存在至少一个航点的飞行高度大于限高阈值,表明该无人机未能较好地实现限高,即表明该无人机的限高 功能未达标,可以确定该无人机的该限高功能测试未通过;当该多个航点中的所有航点的相对高度均小于或等于该限高阈值时,表明无人机的多个航点中的所有航点的飞行高度均小于或等于该限高阈值,表明该无人机能够较好地实现限高,即表明该无人机的限高功能达标,可确定该无人机的该限高功能测试通过。
在一个实施例中,对无人机的限高功能测试流程大致可以包括:测试设备可以接收用户1录入的限高阈值,并开始接收无人机的飞行数据;用户2可以通过无人机的控制终端控制无人机起飞,并提升飞行高度,当飞行高度达到限高阈值时,尝试控制无人机的飞行高度大于限高阈值;在飞行一定时间后,控制无人机降低飞行高度,并结束飞行,用户1可以控制发测试设备12停止接收无人机的飞行数据,并控制测试设备根据获取到的飞行数据分析限高功能测试,得到测试结果。
可见,通过实施图4所描述的方法,测试设备可以根据限高功能测试从无人机的实际飞行数据中获取无人机在飞行过程中的多个航点的高度信息,对多个航点的高度信息及测试项目关联的限高阈值对限高功能测试进行分析,以得到测试结果,以便可以根据测试结果确定无人机的限高功能是否达标,可实现对无人机的功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
请参见图5,图5是本发明实施例提供的另一种无人机测试方法的流程示意图,所述方法可以由测试设备执行,其中,对测试设备的具体解释如前所述。本发明实施例与图3实施例的区别在于,本发明实施例为图3实施例的一个具体应用场景,该应用场景为对无人机的限速功能测试的场景,本发明实施例如图5所示,该无人机测试方法可以包括如下步骤。
S501、测试设备可以获取无人机测试所需的测试数据。
本申请实施例中,测试设备具体获取无人机针对限速功能测试所需的测试数据。其中,该测试数据包括限速阈值。例如,限速阈值可以为20m/s。其中,该限速阈值可以是无人机的限速功能中限制无人机飞行的最大速度。可选的,该最大速度的大小可以是根据该无人机的应用场景设置的,或者该限速功能中 的最大速度的大小可以是根据测试产品(即无人机)的类型设置的。
关于测试数据的其他描述具体请参见S301对应的说明,在此不赘述。
S502、测试设备接收该无人机的实际飞行数据。
本申请实施例中,如何接收该无人机的实际飞行数据请参见S302对应的说明,在此不赘述。
S503、测试设备根据该无人机的测试项目从该实际飞行数据中获取需要的目标飞行数据。
其中,该测试项目包括限速功能测试,该目标飞行数据包括该无人机在飞行过程中的多个航点的速度信息。当该测试项目为限高功能测试时,需要测试无人机的飞行速度是否大于限速阈值,因此,测试设备可以根据该无人机的测试项目从该实际飞行数据中获取该无人机在飞行过程中的多个航点的速度信息。
S504、测试设备根据该无人机在飞行过程中的多个航点的速度信息以及与限速阈值对该无人机的该限速功能测试进行分析,得到测试结果。
本申请实施例中,测试设备可以根据该无人机在飞行过程中的多个航点的速度信息以及限速阈值对该无人机的该限速功能测试进行分析,得到测试结果,以便根据测试结果确定该无人机的限速功能是否达标。
在一个实施例中,该速度信息包括多个方向的速度,步骤S504包括:测试设备可以根据该多个航点中的每个航点的速度信息确定该多个航点中的每个航点的综合速度,当该多个航点中存在至少一个航点的综合速度大于该限速阈值时,确定该无人机的该限速功能测试未通过;当该多个航点中的所有航点的综合速度均小于或等于该限速阈值时,确定该无人机的该限速功能测试通过。
例如,测试设备可以对该多个航点中的每个航点的多个方向的速度进行平方和再取根号,得到每个航点的综合速度,假设每个航点的前进方向的速度为v x、平移方向的速度为v y和垂直方向的速度为v z,综合速度为v,则综合速度可以用式(1)表示。当该多个航点中存在至少一个航点的综合速度大于该限速阈值时,表明该无人机未能较好地实现限速,即表明该无人机的限速功能未达标,可以确定该无人机的该限速功能测试未通过;当该多个航点中的所有航点的综合速度均小于或等于该限速阈值时,表明该无人机能较好地实现限速, 即表明该无人机的限速功能达标,确定该无人机的该限速功能测试通过。因此,通过实施该实施例,可准确地确定无人机的限速功能是否达标。例如,假设有航点1~10,限速阈值为20m/s,如果航点1~10中存在一个或多个航点的速度大于20m/s,则确定无人机的限速功能测试未通过。如果航点1~10中所有航点的速度均小于或等于20m/s,则确定无人机的限高速测试通过。
Figure PCTCN2018112780-appb-000001
在一个实施例中,对无人机的限速功能测试流程大致可以包括:测试设备可以接收用户1录入的限速阈值,并开始接收无人机的飞行数据,用户2可以通过无人机的控制终端控制无人机起飞,并加速飞行,当飞行速度达到限速阈值时,尝试控制无人机的飞行速度大于限速阈值;在飞行一定时间后,控制无人机降低飞行高度,并结束飞行,用户1可以控制发测试设备12停止接收无人机的飞行数据,并控制测试设备根据获取到的飞行数据分析限速功能测试,得到测试结果。
可见,通过实施图5所描述的方法,测试设备可以根据限速功能测试从无人机的实际飞行数据中获取无人机在飞行过程中的多个航点的速度信息,根据多个航点的速度信息及测试项目关联的限速阈值对限速功能测试进行分析,以得到测试结果,以便可以根据测试结果确定无人机的限速功能是否达标,可实现对无人机的限速功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
请参见图6,图6是本发明实施例提供的另一种无人机测试方法的流程示意图,所述方法可以由测试设备执行,其中,对测试设备的具体解释如前所述。本发明实施例与图3实施例的区别在于,本发明实施例为图3实施例的一个具体应用场景,该应用场景为对无人机的限距功能测试的场景,本发明实施例如图6所示,该无人机测试方法可以包括如下步骤。
S601、测试设备获取无人机测试所需的测试数据。
本申请实施例中,测试设备具体获取无人机针对限距功能测试所需的测试数据。其中,该测试数据包括限距阈值。例如,限距阈值可以为12m。其中,该限距阈值可以是无人机的限距功能中限制无人机飞行的最大距离。可选的, 该最大距离的大小可以是根据该无人机的应用场景设置的,或者,该限距功能中的最大距离可以是根据测试产品(即无人机)的类型设置的。
关于测试数据的其他描述具体请参见S301对应的说明,在此不赘述。
S602、测试设备接收该无人机的实际飞行数据。
本申请实施例中,如何接收该无人机的实际飞行数据请参见S302对应的说明,在此不赘述。
S603、测试设备根据该无人机的该测试项目从该实际飞行数据中获取需要的目标飞行数据。
其中,该测试项目包括限距功能测试,该目标飞行数据包括该无人机在飞行过程中的多个航点的位置信息。当该测试项目为限距功能测试时,需要测试无人机的飞行距离是否大于限距阈值,因此,测试设备可以根据该无人机的测试项目从该实际飞行数据中获取该无人机在飞行过程中的多个航点的位置信息,以便可以根据多个航点的位置信息确定无人机的飞行距离。
S604、测试设备根据该无人机在飞行过程中的多个航点的位置信息以及与限距阈值对该无人机的该限距功能测试进行分析,得到测试结果。
本申请实施例中,测试设备可以根据该无人机在飞行过程中的多个航点的位置信息以及限距阈值对该无人机的该限距功能测试进行分析,得到测试结果,以便根据测试结果确定该无人机的限距功能是否达标。
在一个实施例中,步骤S604包括:测试设备可以根据该多个航点中的每个航点的位置信息及该起飞点的位置信息确定该多个航点中的每个航点与该起飞点之间的距离,当该多个航点中存在至少一个航点与该起飞点之间的距离大于该限距阈值时,确定该无人机的该限速功能测试未通过;当该多个航点中所有的航点与该起飞点之间的距离均小于或等于该限距阈值时,确定该无人机的该限速功能测试通过。
其中,该航点的位置信息和起飞点的位置信息可以是经纬度信息。可选的,起飞点的位置信息可以是收集到的第一个航点的位置信息。可选的,可以根据第i个航点的位置信息和起飞点的位置信息确定第i个航点与起始点在地球上的最小弧度θ i。再根据该最小弧度θ i和地球的半径R确定该航点到起飞点的距离D i,D i=θ i*R。其中,i为除起飞点之外的任意一个航点。
例如,有航点1~10,其中航点1为起飞航点。假设限距阈值为12m,如 果航点1~10中存在一个或多个航点与起飞点之间的距离大于12m,则确定无人机的限距功能测试未通过。如果航点1~10中所有航点与起飞点之间的距离均小于或等于12m,则确定无人机的限距功能测试通过。
当该多个航点中存在至少一个航点与该起飞点之间的距离大于该限距阈值时,表明无人机的多个航点中的至少一个航点的飞行距离大于限距阈值,表明该无人机未能较好地实现限距,即表明该无人机的限距功能未达标,确定该无人机的该限速功能测试未通过;当该多个航点中所有的航点与该起飞点之间的距离均小于或等于该限距阈值时,表明无人机的多个航点中的所有航点的飞行距离均小于或等于限距阈值,表明该无人机能够较好地实现限距,即表明该无人机的限距功能达标,确定该无人机的该限距功能测试通过。因此,通过实施该实施例,可准确地确定无人机的限距功能是否达标。
在一个实施例中,对无人机的限距功能测试的流程可以如下:测试设备12接收用户录入的限距阈值,开始接收无人机的飞行数据;用户2可以通过无人机的控制终端控制无人机起飞,远离起飞点位置飞行,当飞行距离达到限距阈值时,尝试控制无人机的飞行继续向前飞行;在飞行一定时间后,控制无人机降低飞行高度,并结束飞行,用户1可以控制发测试设备12停止接收无人机的飞行数据,并控制测试设备根据获取到的飞行数据分析限距功能测试,得到测试结果。
可见,通过实施图6所描述的方法,测试设备可以根据限距功能测试从无人机的实际飞行数据中获取无人机在飞行过程中的多个航点的位置信息,对多个航点的位置信息及测试项目关联的限距阈值对限距功能测试进行分析,以得到测试结果,以便可以根据测试结果确定无人机的限距功能是否达标,可实现对无人机的限距功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
请参见图7,图7是本发明实施例提供的另一种无人机测试方法的流程示意图,所述方法可以由测试设备执行,其中,对测试设备的具体解释如前所述。本发明实施例与图3实施例的区别在于,本发明实施例为图3实施例的一个具体应用场景,该应用场景为对无人机的电子围栏功能测试的场景,本发明实施 例如图7所示,该无人机测试方法可以包括如下步骤。
S701、测试设备可以获取无人机测试所需的测试数据。
本申请实施例中,测试设备具体获取无人机针对电子围栏功能测试所需的测试数据。其中,该测试数据包括该电子围栏的预设数量的顶点的位置信息。其中,预设数量可以是根据电子围栏的形状确定的,电子围栏的形状为四边形,则预设数量为四个;电子围栏的形状为三边形,则预设数量为三个。例如,顶点的位置信息包括顶点的经纬度,电子围栏为四边形时,电子围栏的顶点包括A、B、C及D点,A点的位置信息为(22.62,113.93),B点的位置信息为(22.63,113.93),C点的位置信息为(22.64,113.94),D点的位置信息为(22.65,113.93)。
关于测试数据的其他描述具体请参见S301对应的说明,在此不赘述。
S702、测试设备接收该无人机的实际飞行数据。
本申请实施例中,如何接收该无人机的实际飞行数据请参见S202对应的说明,在此不赘述。
S703、测试设备根据该无人机的该测试项目从该实际飞行数据中获取需要的目标飞行数据。
本申请实施例中,该测试项目包括电子围栏功能测试,该目标飞行数据包括该无人机分别向多个方向飞行的过程中的多个航点的位置信息。当该测试项目为电子围栏功能测试时,需要测试无人机的各个航点与电子围栏之间的距离是否大于安全距离,因此,测试设备可以根据该无人机的该测试项目从该实际飞行数据中获取该无人机分别向多个方向飞行的过程中的多个航点的位置信息,以便可以根据多个航点的位置信息确定各个航点与电子围栏之间的距离。其中,该多个方向可以是两个方向,三个方向,四个方向或更多的方向,本申请实施例不做限定。
S704、测试设备根据无人机分别向多个方向飞行的过程中的多个航点的位置信息以及该电子围栏的预设数量的顶点的位置信息对该无人机的电子围栏功能测试进行分析,得到测试结果。
其中,无人机在电子围栏的各条边对应侧的飞行方向可以不同。例如,如图8所示,电子围栏可以由四条边组成,四边包括顶点A与B所围成的边AB、顶点C与D所围成的边CD,顶点B与C所围成的边BC,顶点A与D所围成的边AD。测试设备可以根据该电子围栏A、B、C及D点的位置信息,无 人机向前飞行的过程中的多个航点的位置信息,无人机向后飞行的过程中的多个航点的位置信息,无人机向左飞行的过程中的多个航点的位置信息,无人机向右飞行的过程中的多个航点的位置信息,对该无人机的电子围栏功能测试进行分析,得到测试结果。如图7所示,当无人机在电子围栏的AB侧飞行时,无人机的飞行方向为前进方向,前进方向可以是指无人机以机头朝向电子围栏并不断靠近电子围栏的方向;当无人机在电子围栏的CD侧飞行时,无人机的飞行方向为后退方向,后退方向可以是指无人机机尾朝向电子围栏并不断靠近电子围栏的方向;当无人机在电子围栏的AD侧飞行时,无人机的飞行方向为右平移方向,右平移方向可以是指无人机右侧机翼朝向电子围栏并不断靠近电子围栏的方向;当无人机在电子围栏的BC侧飞行时,无人机的飞行方向为左平移方向,左平移方向可以是指无人机左侧机翼朝向电子围栏并不断靠近电子围栏的方向。
在一个实施例中,测试设备可以根据该电子围栏的预设数量的顶点的位置信息,确定该电子围栏的位置信息,并获取该无人机向第一方向飞行的过程中多个航点的位置信息,该第一方向为该多个方向中的任意一个方向,根据该多个航点中的每个航点的位置信息及该电子围栏的位置信息,确定该多个航点中的每个航点与该电子围栏之间的距离,当该多个航点中存在至少一个航点距该电子围栏的距离小于第一距离值时,确定该无人机针对该第一方向的电子围栏测试未通过;当该多个航点中所有航点与该电子围栏的距离均大于或等于该第一距离值时,确定该无人机针对该第一方向的该电子围栏测试通过。
在电子围栏功能测试时,需要测试无人机在电子围栏的各条边的方向的航点与电子围栏的距离是否大于安全距离。例如,假设第一距离为5m,如图8所示,第一方向为无人机向前飞时,测试设备根据该电子围栏A、B、C和D的位置信息确定电子围栏的位置信息。测试设备获取无人机先前飞行的过程中多个航点的位置信息。例如该多个航点为10个。然后计算该10个航点中每个航点与电子围栏之间的距离。如果10个航点中存在一个或多个航点与电子围栏的距离小于或等于5m,则确定无人机的在向前飞行方向的电子围栏测试未通过;如果10个航点中所有航点与电子围栏的距离均大于5m,则确定无人机的在向前飞行方向的电子围栏测试通过。第一方向为其他方向时的具体实现原理相同,在此不赘述。测试设备可对前、后、左右的方向均进行测试。
当该多个航点中存在至少一个航点距该电子围栏的距离小于第一距离值(该第一距离可以是指航点与电子围栏的安全距离)时,表明该无人机的多个航点中存在至少一个航点距该电子围栏的距离小于安全距离,表明该无人机的电子围栏功能测试未达标,确定该无人机针对该第一方向的电子围栏测试未通过;当该多个航点中所有航点与该电子围栏的距离均大于或等于该第一距离值时,表明该无人机的多个航点中所有航点距该电子围栏的距离均大于或等于安全距离,表明该无人机的电子围栏功能测试达标,确定该无人机针对该第一方向的该电子围栏测试通过。
在一个实施例中,该测试数据还包括第二距离阈值,该目标飞行数据包括该无人机分别向多个方向飞行的过程中,距该电子围栏的距离小于该第二距离阈值的航点的位置信息。
为了提高电子围栏功能测试的效率,并节省测试所消耗的资源,测试设备可以对无人机分别向多个方向飞行的过程中,距该电子围栏的距离小于该第二距离阈值的航点的位置信息进行分析,以便根据距离小于第二距离阈值的航点的位置对无人机的电子围栏功能测试分析;并将距该电子围栏的距离大于或等于该第二距离阈值的航点的位置信息丢弃。其中,第一距离阈值可以小于第二距离阈值。例如,如图8所示,假设第二距离为10m,测试设备可以对各个方向上距该电子围栏的距离小于10m的航点的位置信息进行分析,并将距该电子围栏的距离大于或等于10m的航点的位置信息丢弃。
在一个实施例中,在对无人机的电子围栏功能测试过程可以如下:测试设备可以接收用户1录入的电子围栏的各个顶点的位置信息,开始接收无人机的飞行数据,用户2可以通过无人机的控制终端控制无人机起飞,向电子围栏飞去,并尝试控制无人机向电子围栏内飞行;在飞行一定时间后,控制无人机降低飞行高度,并结束飞行,用户1可以控制发测试设备12停止接收无人机的飞行数据,并控制测试设备根据获取到的飞行数据分析电子围栏功能测试,得到测试结果。
可见,通过实施图7所描述的方法,测试设备可以根据无人机分别向多个方向飞行的过程中的多个航点的位置信息以及该电子围栏的预设数量的顶点的位置信息,对该无人机的电子围栏功能测试进行分析得到测试结果,以便可以根据测试结果确定无人机的电子围栏功能是否达标,可实现对无人机的电子 围栏功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
请参见图9,图9是本发明实施例提供的另一种无人机测试方法的流程示意图,所述方法可以由测试设备执行,其中,对测试设备的具体解释如前所述。本发明实施例与图3实施例的区别在于,本发明实施例为图3实施例的一个具体应用场景,该应用场景为对无人机的航线自主规划功能测试的场景,本发明实施例如图9所示,该无人机测试方法可以包括如下步骤。
S901、测试设备获取无人机测试所需的测试数据。如何获取无人机测试所需的测试数据请参见S301对应的说明,在此不赘述。
本申请实施例中,测试设备具体获取无人机针对航点自主规划功能测试所需的测试数据。其中,该测试数据包括第一位置的位置信息和第二位置的位置信息以及喷幅。其中,该喷幅可以是无人机的航线自主规划中限制无人机喷洒农药或水等物体的喷洒范围,如喷幅可以为5m。
关于测试数据的其他描述具体请参见S301对应的说明,在此不赘述。
S902、测试设备接收该无人机的实际飞行数据。
本申请实施例中,如何接收该无人机的实际飞行数据请参见S302对应的说明,在此不赘述。
S703、测试设备根据该无人机的该测试项目从该实际飞行数据中获取需要的目标飞行数据。
本申请实施例中,该测试项目包括航线自主规划功能测试,该目标飞行数据可以包括该无人机在飞行的过程中的多个航点的位置信息。当该测试项目为航线自主规划功能测试时,需要测试无人机的飞行轨迹是否满足要求,因此,测试设备可以根据该无人机的该测试项目从该实际飞行数据中获取该无人机在飞行的过程中的多个航点的位置信息,以便可以根据多个航点的位置信息确定无人机的飞行轨迹。
S904、测试设备根据无人机在飞行的过程中的多个航点的位置信息以及该航点自主规划功能测试功能关联的测试数据对该无人机的航线自主规划功能测试进行分析,得到测试结果。
本申请实施例中,测试设备可以根据无人机在飞行的过程中的多个航点的位置信息以及该航点自主规划功能测试功能关联的测试数据对该无人机的航线自主规划功能测试进行分析,得到测试结果,以便可以根据测试结果确定无人机的航线自主规划功能是否达标。
在一个实施例中,测试设备可以根据第一位置的位置信息和第二位置的位置信息以及喷幅确定至少一条基准线,根据多个航点中的每个航点的位置信息确定每个航点与对应的基准线之间的距离,当多个航点中存在至少一个航点与对应的基准线之间的距离大于第三距离值时,确定无人机的航点自主规划功能测试未通过;当多个航点中所有航点与对应的基准线之间的距离小于或等于第三距离值时,确定无人机的航点自主规划功能测试通过。
测试设备可以根据第一位置的位置信息和第二位置的位置信息以及喷幅确定至少一条基准线,如图10所示,假设第一位置可以是指A点所在的位置,第二位置可以是指B点所在的位置,则基准线可以包括直线段AB及与线段AB平行且与线段AB之间的距离为喷幅的N倍的线段,N为正整数。可以将基准线作为无人机的标准飞行轨迹,根据多个航点中的每个航点的位置信息确定每个航点与对应的基准线之间的距离,对应的基准线可以是指离航点距离最近的基准线。假设第三距离为50cm,有航点1~10,如果航点1~10中存在一个或多个航点的与对应基准线的距离大于50cm,则确定无人机的航点自主规划功能测试未通过。如果航点1~10中所有航点的与对应基准线的距离均小于或等于50cm,则确定无人机的航点自主规划功能测试通过。
当多个航点中存在至少一个航点与对应的基准线之间的距离大于第三距离值时,表明无人机的多个航点中存在至少一个航点偏移标准轨迹的距离较远,表明无人机的航线自主规划功能未达标,确定无人机的航点自主规划功能测试未通过;当多个航点中所有航点与对应的基准线之间的距离小于或等于第三距离值时,表明无人机的多个航点中的所以航点偏移参考轨迹的距离较近,表明无人机的航线自主规划功能达标,确定无人机的航点自主规划功能测试通过。
在一个实施例中,该目标飞行数据包括该无人机在飞行过程中处于预设区域的多个航点的位置信息,该预设区域具有两条相互平行的边L1和L2,该L1和L2分别与该基准线垂直,该L1与该第一位置之间的距离为第四距离值, L2与该第二位置之间的距离为该第四距离值,该第四距离值大于零。例如,如图10所示,第一位置为A点,第二位置为B点,第四距离为10m,预设区域为两条相互平行的边L1和L2,及L1到L2之间的基准线所围成的区域,L1到A点的距离为10m,L2到B点的距离为10m。为了提高航线自主规划功能测试的效率,并节省测试所消耗的资源,测试设备可以过滤掉拐点部分的数据,只对预设区域内的无人机的目标飞行数据进行分析。
在一个实施例中,在对无人机的航线自主规划功能测试过程可以如下:测试设备可以接收用户1录入的第一位置的位置信息、第二位置的位置信息及喷幅,开始接收无人机的飞行数据,用户2可以通过无人机的控制终端控制无人机按照规划航线飞行,在飞行一定时间后,控制无人机降低飞行高度,并结束飞行,用户1可以控制发测试设备12停止接收无人机的飞行数据,并控制测试设备根据获取到的飞行数据分析无人机的航线自主规划功能测试,得到测试结果。
可见,通过实施图9所描述的方法,测试设备可以根据无人机在飞行的过程中的多个航点的位置信息以及航线自主规划功能测试关联的测试数据对该无人机的航线自主规划功能测试进行分析,得到测试结果,以便可以根据测试结果确定无人机的航线自主规划功能是否达标,可实现对无人机的航线自主规划功能的自动化测试,不需要人工分析,简化测试流程,并提高测试效率。
请参见图11,图11是本发明实施例提供的另一种无人机测试方法的流程示意图,所述方法可以由测试设备执行,其中,对测试设备的具体解释如前所述。本发明实施例与图3实施例的区别在于,本发明实施例为图3实施例的一个具体应用场景,该应用场景为对无人机的避障功能测试的场景,本发明实施例如图11所示,该无人机测试方法可以包括如下步骤。
S111、测试设备获取无人机测试所需的测试数据。如何获取无人机测试所需的测试数据请参见S301对应的说明,在此不赘述。
本申请实施例中,测试设备具体获取无人机针对避障功能测试所需的测试数据。其中,该测试数据包括障碍物信息,该障碍物可以为树、房屋或电杆等,该障碍物信息可以包括障碍物的位置信息、障碍物的半径信息和障碍物的高度信息等等。例如,障碍物为树,障碍物的高度为10m,障碍物的半径为123m, 障碍物的位置信息为(22.62,113.93)。
关于测试数据的其他描述具体请参见S301对应的说明,在此不赘述。
S112、测试设备接收该无人机的实际飞行数据。
本申请实施例中,如何接收该无人机的实际飞行数据请参见S302对应的说明,在此不赘述。
S113、测试设备根据该无人机的该测试项目从该实际飞行数据中获取需要的目标飞行数据,
其中,该测试项目包括避障功能测试,该目标飞行数据包括该无人机在飞行的过程中的多个航点的位置信息。当该测试项目为避障功能测试时,需要测试无人机是否能够避开障碍物飞行,因此,测试设备可以根据该无人机的该测试项目从该实际飞行数据中获取该无人机在飞行的过程中的多个航点的位置信息,以便可以根据多个航点的位置信息确定无人机与障碍物的之间的距离,进一步,根据距离判断无人机是否可以避开障碍物飞行。
S114、测试设备根据无人机在飞行的过程中的多个航点的位置信息以及该避障测试功能关联的测试数据对该无人机的避障功能测试进行分析,得到测试结果。
本申请实施例中,测试设备可以根据无人机在飞行的过程中的多个航点的位置信息以及该避障测试功能关联的测试数据对该无人机的避障功能测试进行分析,得到测试结果。当测试通过时,表明该无人机能够避开障碍物飞行,确定无人机的避障功能达标;当测试未通过时,表明该无人机不能够避开障碍物飞行,确定无人机的避障功未能达标。
在一个实施例中,该障碍物信息包括障碍物的位置信息、障碍物的半径信息和障碍物的高度信息,步骤114包括:测试设备可以根据该多个航点中每个航点的位置信息、该障碍物的位置信息、该障碍物的半径信息和障碍物的高度信息,确定每个航点与该障碍物之间的距离。当该多个航点中存在至少一个航点与该障碍物之间的距离小于第五距离值时,确定该无人机的该避障测试未通过;当该多个航点中所有航点与该障碍物之间的距离大于或等于该第五距离值时,确定该无人机的该避障测试通过。
测试设备可以根据该多个航点中每个航点的位置信息、该障碍物的位置信息、该障碍物的半径信息和障碍物的高度信息,确定每个航点与该障碍物之间 的距离。例如,有航点1~10,假设第五距离1m,如果航点1~10中存在一个或多个航点与障碍物之间的距离大于1m,则确定无人机的避障功能测试未通过。如果航点1~10中所有航点与障碍物之间的距离均小于或等于1m,则确定无人机的避障功能测试通过。
当该多个航点中存在至少一个航点与该障碍物之间的距离小于第五距离值时,表明无人机不能避开障碍物飞行,表明无人机的避障功能未达标,可确定该无人机的该避障测试未通过;当该多个航点中所有航点与该障碍物之间的距离大于或等于该第五距离值时,表明无人机能避开障碍物飞行,表明无人机的避障功能达标,可以确定该无人机的该避障测试通过。
在一个实施例中,在对无人机的避障功能测试过程可以如下:测试设备可以接收用户1录入的第一位置的位置信息、第二位置的位置信息及喷幅,并第一位置的位置信息、第二位置的位置信息及喷幅规划无人机的飞行航线,接收输入的障碍物信息,开始接收无人机的飞行数据。用户2可以通过无人机的控制终端控制无人机按照规划航线飞行,在无人机通过障碍物后,控制无人机降低飞行高度,并结束飞行,用户1可以控制发测试设备12停止接收无人机的飞行数据,并控制测试设备根据获取到的飞行数据分析无人机的避障功能测试,得到测试结果。
可见,通过实施图11所描述的方法,测试设备可以根据无人机在飞行的过程中的多个航点的位置信息以及障碍物信息对该无人机的避障功能测试进行分析,得到测试结果,以便可以根据测试结果确定无人机的避障功能是否达标,可实现对无人机的避障功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
请参见图12,图12是本发明实施例提供的测试设备的结构示意图。具体的,所述测试设备包括:处理器100及存储器101。
所述存储器101可以包括易失性存储器(volatile memory);存储器101也可以包括非易失性存储器(non-volatile memory);存储器101还可以包括上述种类的存储器的组合。所述处理器100可以是中央处理器(central processing unit,CPU)。所述处理器100还可以进一步包括硬件芯片。上述硬件芯片可以 是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
在一个实施例中,所述存储器用于存储程序指令,所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
获取无人机测试所需的测试数据;
接收所述无人机的实际飞行数据;
根据所述无人机的测试项目从所述实际飞行数据中获取需要的目标飞行数据;
根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果。
可选的,所述测试项目包括限高功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的高度信息,所述测试数据包括限高阈值。
可选的,所述高度信息包括海拔高度,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
根据所述多个航点中的每个航点的海拔高度和所述多个航点中的起飞航点的海拔高度确定所述多个航点中的每个航点的高度;
当所述多个航点中存在至少一个航点的高度大于所述限高阈值时,确定所述无人机的所述限高功能测试未通过;
当所述多个航点中的所有航点的高度均小于或等于所述限高阈值时,确定所述无人机的所述限高功能测试通过。
可选的,所述高度信息包括相对高度,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
当所述多个航点中存在至少一个航点的相对高度大于所述限高阈值时,确定所述无人机的所述限高功能测试未通过;
当所述多个航点中的所有航点的相对高度均小于或等于所述限高阈值时,确定所述无人机的所述限高功能测试通过。
可选的,所述测试项目包括限速功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的速度信息,所述测试数据包括限速阈值。
可选的,所述速度信息包括多个方向的速度,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
根据所述多个航点中的每个航点的速度信息确定所述多个航点中的每个航点的综合速度;
当所述多个航点中存在至少一个航点的综合速度大于所述限速阈值时,确定所述无人机的所述限速功能测试未通过;
当所述多个航点中的所有航点的综合速度均小于或等于所述限速阈值时,确定所述无人机的所述限速功能测试通过。
可选的,所述测试项目包括限距功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括所述无人机的起飞点的位置信息及限距阈值。
可选的,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
根据所述多个航点中的每个航点的位置信息及所述起飞点的位置信息确定所述多个航点中的每个航点与所述起飞点之间的距离;
当所述多个航点中存在至少一个航点与所述起飞点之间的距离大于所述限距阈值时,确定所述无人机的所述限速功能测试未通过;
当所述多个航点中所有的航点与所述起飞点之间的距离均小于或等于所述限距阈值时,确定所述无人机的所述限速功能测试通过。
可选的,所述测试项目包括电子围栏功能测试,所述目标飞行数据包括所述无人机分别向多个方向飞行的过程中的多个航点的位置信息,所述测试数据包括所述电子围栏的预设数量的顶点的位置信息。
可选的,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
根据所述电子围栏的预设数量的顶点的位置信息,确定所述电子围栏的位置信息;
获取所述无人机向第一方向飞行的过程中多个航点的位置信息,所述第一方向为所述多个方向中的任意一个方向;
根据所述多个航点中的每个航点的位置信息及所述电子围栏的位置信息,确定所述多个航点中的每个航点与所述电子围栏之间的距离;
当所述多个航点中存在至少一个航点距所述电子围栏的距离小于第一距离值时,确定所述无人机针对所述第一方向的电子围栏测试未通过;
当所述多个航点中所有航点与所述电子围栏的距离均大于或等于所述第一距离值时,确定所述无人机针对所述第一方向的所述电子围栏测试通过。
可选的,所述测试数据还包括第二距离阈值,所述目标飞行数据包括所述无人机分别向多个方向飞行的过程中,距所述电子围栏的距离小于所述第二距离阈值的航点的位置信息。
可选的,所述测试项目包括航线自主规划功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括第一位置的位置信息和第二位置的位置信息以及喷幅。
可选的,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
根据所述第一位置的位置信息和第二位置的位置信息以及所述喷幅确定至少一条基准线;
根据所述多个航点中的每个航点的位置信息确定每个航点与对应的基准线之间的距离;
当所述多个航点中存在至少一个航点与对应的基准线之间的距离大于第三距离值时,确定所述无人机的所述航线自主规划功能测试未通过;
当所述多个航点中所有航点与对应的基准线之间的距离小于或等于所述第三距离值时,确定所述无人机的所述航线自主规划功能测试通过。
可选的,所述目标飞行数据包括所述无人机在飞行过程中处于预设区域的多个航点的位置信息,所述预设区域具有两条相互平行的边L1和L2,所述L1和L2分别与所述基准线垂直,所述L1与所述第一位置之间的距离为第四距离值,L2与所述第二位置之间的距离为所述第四距离值,所述第四距离值大于零。
可选的,所述测试项目包括避障功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括障碍物信息。
可选的,所述障碍物信息包括障碍物的位置信息、障碍物的半径信息和障碍物的高度信息,所述存储器用于存储程序指令。所述处理器可以调用存储器中存储的程序指令,用于执行如下步骤:
根据所述多个航点中每个航点的位置信息、所述障碍物的位置信息、所述障碍物的半径信息和障碍物的高度信息,确定每个航点与所述障碍物之间的距离;
当所述多个航点中存在至少一个航点与所述障碍物之间的距离小于第五距离值时,确定所述无人机的所述避障测试未通过;
当所述多个航点中所有航点与所述障碍物之间的距离大于或等于所述第五距离值时,确定所述无人机的所述避障测试通过。
本发明实施例中,测试设备可以根据测试项目从无人机的实际飞行数据中获取需要的目标飞行数据,对目标飞行数据及测试项目关联的测试数据对测试项目进行分析,以得到测试结果,以便可以根据测试结果确定无人机的功能是否达标,可实现对无人机的功能的自动化测试,不需要人工分析,简化测试流程,可满足用户对无人机测试的自动化、智能化需求,并可达到实时分析多种数据的需求。优化用户体验,实时反馈测试结果,大幅度提高测试效率。
在本发明的实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明图3-图7、图9和图11所对应实施例中描述的无人机测试方法,也可实现图12所述发明实施例的测试设备,在此不再赘述。
所述计算机可读存储介质可以是前述任一实施例所述的测试设备的内部存储单元,例如设备的硬盘或内存。所述计算机可读存储介质也可以是所述车辆控制装置的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述测试设备所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,所述程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。 以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (33)

  1. 一种无人机测试方法,其特征在于,包括:
    获取无人机测试所需的测试数据;
    接收所述无人机的实际飞行数据;
    根据所述无人机的测试项目从所述实际飞行数据中获取需要的目标飞行数据;
    根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果。
  2. 根据权利要求1所述的方法,其特征在于,所述测试项目包括限高功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的高度信息,所述测试数据包括限高阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述高度信息包括海拔高度,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    根据所述多个航点中的每个航点的海拔高度和所述多个航点中的起飞航点的海拔高度确定所述多个航点中的每个航点的高度;
    当所述多个航点中存在至少一个航点的高度大于所述限高阈值时,确定所述无人机的所述限高功能测试未通过;
    当所述多个航点中的所有航点的高度均小于或等于所述限高阈值时,确定所述无人机的所述限高功能测试通过。
  4. 根据权利要求2所述的方法,其特征在于,所述高度信息包括相对高度,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    当所述多个航点中存在至少一个航点的相对高度大于所述限高阈值时,确定所述无人机的所述限高功能测试未通过;
    当所述多个航点中的所有航点的相对高度均小于或等于所述限高阈值时,确定所述无人机的所述限高功能测试通过。
  5. 根据权利要求1所述的方法,其特征在于,所述测试项目包括限速功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的速度信息,所述测试数据包括限速阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述速度信息包括多个方向的速度,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    根据所述多个航点中的每个航点的速度信息确定所述多个航点中的每个航点的综合速度;
    当所述多个航点中存在至少一个航点的综合速度大于所述限速阈值时,确定所述无人机的所述限速功能测试未通过;
    当所述多个航点中的所有航点的综合速度均小于或等于所述限速阈值时,确定所述无人机的所述限速功能测试通过。
  7. 根据权利要求1所述的方法,其特征在于,所述测试项目包括限距功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括所述无人机的起飞点的位置信息及限距阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    根据所述多个航点中的每个航点的位置信息及所述起飞点的位置信息确定所述多个航点中的每个航点与所述起飞点之间的距离;
    当所述多个航点中存在至少一个航点与所述起飞点之间的距离大于所述限距阈值时,确定所述无人机的所述限速功能测试未通过;
    当所述多个航点中所有的航点与所述起飞点之间的距离均小于或等于所述限距阈值时,确定所述无人机的所述限速功能测试通过。
  9. 根据权利要求1所述的方法,其特征在于,所述测试项目包括电子围 栏功能测试,所述目标飞行数据包括所述无人机分别向多个方向飞行的过程中的多个航点的位置信息,所述测试数据包括所述电子围栏的预设数量的顶点的位置信息。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    根据所述电子围栏的预设数量的顶点的位置信息,确定所述电子围栏的位置信息;
    获取所述无人机向第一方向飞行的过程中多个航点的位置信息,所述第一方向为所述多个方向中的任意一个方向;
    根据所述多个航点中的每个航点的位置信息及所述电子围栏的位置信息,确定所述多个航点中的每个航点与所述电子围栏之间的距离;
    当所述多个航点中存在至少一个航点距所述电子围栏的距离小于第一距离值时,确定所述无人机针对所述第一方向的电子围栏测试未通过;
    当所述多个航点中所有航点与所述电子围栏的距离均大于或等于所述第一距离值时,确定所述无人机针对所述第一方向的所述电子围栏测试通过。
  11. 根据权利要求9或10所述的方法,其特征在于,所述测试数据还包括第二距离阈值,所述目标飞行数据包括所述无人机分别向多个方向飞行的过程中,距所述电子围栏的距离小于所述第二距离阈值的航点的位置信息。
  12. 根据权利要求1所述的方法,其特征在于,所述测试项目包括航线自主规划功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括第一位置的位置信息和第二位置的位置信息以及喷幅。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    根据所述第一位置的位置信息和第二位置的位置信息以及所述喷幅确定至少一条基准线;
    根据所述多个航点中的每个航点的位置信息确定每个航点与对应的基准线之间的距离;
    当所述多个航点中存在至少一个航点与对应的基准线之间的距离大于第三距离值时,确定所述无人机的所述航线自主规划功能测试未通过;
    当所述多个航点中所有航点与对应的基准线之间的距离小于或等于所述第三距离值时,确定所述无人机的所述航线自主规划功能测试通过。
  14. 根据权利要求13所述的方法,其特征在于,所述目标飞行数据包括所述无人机在飞行过程中处于预设区域的多个航点的位置信息,所述预设区域具有两条相互平行的边L1和L2,所述L1和L2分别与所述基准线垂直,所述L1与所述第一位置之间的距离为第四距离值,L2与所述第二位置之间的距离为所述第四距离值,所述第四距离值大于零。
  15. 根据权利要求1所述的方法,其特征在于,所述测试项目包括避障功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括障碍物信息。
  16. 根据权利要求15所述的方法,其特征在于,所述障碍物信息包括障碍物的位置信息、障碍物的半径信息和障碍物的高度信息,所述根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果,包括:
    根据所述多个航点中每个航点的位置信息、所述障碍物的位置信息、所述障碍物的半径信息和障碍物的高度信息,确定每个航点与所述障碍物之间的距离;
    当所述多个航点中存在至少一个航点与所述障碍物之间的距离小于第五距离值时,确定所述无人机的所述避障测试未通过;
    当所述多个航点中所有航点与所述障碍物之间的距离大于或等于所述第五距离值时,确定所述无人机的所述避障测试通过。
  17. 一种测试设备,其特征在于,包括:存储器及处理器
    所述存储器,用于存储程序指令;
    所述处理器,执行所述存储器存储的程序指令,当程序指令被执行时,所述处理器用于执行如下步骤:
    获取无人机测试所需的测试数据;
    接收所述无人机的实际飞行数据;
    根据所述无人机的测试项目从所述实际飞行数据中获取需要的目标飞行数据;
    根据所述目标飞行数据以及与所述测试项目关联的测试数据对所述无人机的所述测试项目进行分析,得到测试结果。
  18. 根据权利要求17所述的设备,其特征在于,所述测试项目包括限高功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的高度信息,所述测试数据包括限高阈值。
  19. 根据权利要求18所述的设备,其特征在于,所述高度信息包括海拔高度,所述处理器还用于执行如下步骤:
    根据所述多个航点中的每个航点的海拔高度和所述多个航点中的起飞航点的海拔高度确定所述多个航点中的每个航点的高度;
    当所述多个航点中存在至少一个航点的高度大于所述限高阈值时,确定所述无人机的所述限高功能测试未通过;
    当所述多个航点中的所有航点的高度均小于或等于所述限高阈值时,确定所述无人机的所述限高功能测试通过。
  20. 根据权利要求18所述的设备,其特征在于,所述高度信息包括相对高度,所述处理器还用于执行如下步骤:
    当所述多个航点中存在至少一个航点的相对高度大于所述限高阈值时,确定所述无人机的所述限高功能测试未通过;
    当所述多个航点中的所有航点的相对高度均小于或等于所述限高阈值时,确定所述无人机的所述限高功能测试通过。
  21. 根据权利要求17所述的设备,其特征在于,所述测试项目包括限速功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的速度信息,所述测试数据包括限速阈值。
  22. 根据权利要求21所述的设备,其特征在于,所述速度信息包括多个方向的速度,所述处理器还用于执行如下步骤:
    根据所述多个航点中的每个航点的速度信息确定所述多个航点中的每个航点的综合速度;
    当所述多个航点中存在至少一个航点的综合速度大于所述限速阈值时,确定所述无人机的所述限速功能测试未通过;
    当所述多个航点中的所有航点的综合速度均小于或等于所述限速阈值时,确定所述无人机的所述限速功能测试通过。
  23. 根据权利要求17所述的设备,其特征在于,所述测试项目包括限距功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括所述无人机的起飞点的位置信息及限距阈值。
  24. 根据权利要求23所述的设备,其特征在于,所述处理器还用于执行如下步骤:
    根据所述多个航点中的每个航点的位置信息及所述起飞点的位置信息确定所述多个航点中的每个航点与所述起飞点之间的距离;
    当所述多个航点中存在至少一个航点与所述起飞点之间的距离大于所述限距阈值时,确定所述无人机的所述限速功能测试未通过;
    当所述多个航点中所有的航点与所述起飞点之间的距离均小于或等于所述限距阈值时,确定所述无人机的所述限速功能测试通过。
  25. 根据权利要求17所述的设备,其特征在于,所述测试项目包括电子围栏功能测试,所述目标飞行数据包括所述无人机分别向多个方向飞行的过程中的多个航点的位置信息,所述测试数据包括所述电子围栏的预设数量的顶点 的位置信息。
  26. 根据权利要求25所述的设备,其特征在于,所述处理器还用于执行如下步骤:
    根据所述电子围栏的预设数量的顶点的位置信息,确定所述电子围栏的位置信息;
    获取所述无人机向第一方向飞行的过程中多个航点的位置信息,所述第一方向为所述多个方向中的任意一个方向;
    根据所述多个航点中的每个航点的位置信息及所述电子围栏的位置信息,确定所述多个航点中的每个航点与所述电子围栏之间的距离;
    当所述多个航点中存在至少一个航点距所述电子围栏的距离小于第一距离值时,确定所述无人机针对所述第一方向的电子围栏测试未通过;
    当所述多个航点中所有航点与所述电子围栏的距离均大于或等于所述第一距离值时,确定所述无人机针对所述第一方向的所述电子围栏测试通过。
  27. 根据权利要求25或26所述的设备,其特征在于,所述测试数据还包括第二距离阈值,所述目标飞行数据包括所述无人机分别向多个方向飞行的过程中,距所述电子围栏的距离小于所述第二距离阈值的航点的位置信息。
  28. 根据权利要求17所述的设备,其特征在于,所述测试项目包括航线自主规划功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括第一位置的位置信息和第二位置的位置信息以及喷幅。
  29. 根据权利要求28所述的设备,其特征在于,所述处理器还用于执行如下步骤:
    根据所述第一位置的位置信息和第二位置的位置信息以及所述喷幅确定至少一条基准线;
    根据所述多个航点中的每个航点的位置信息确定每个航点与对应的基准线之间的距离;
    当所述多个航点中存在至少一个航点与对应的基准线之间的距离大于第三距离值时,确定所述无人机的所述航线自主规划功能测试未通过;
    当所述多个航点中所有航点与对应的基准线之间的距离小于或等于所述第三距离值时,确定所述无人机的所述航线自主规划功能测试通过。
  30. 根据权利要求29所述的设备,其特征在于,所述目标飞行数据包括所述无人机在飞行过程中处于预设区域的多个航点的位置信息,所述预设区域具有两条相互平行的边L1和L2,所述L1和L2分别与所述基准线垂直,所述L1与所述第一位置之间的距离为第四距离值,L2与所述第二位置之间的距离为所述第四距离值,所述第四距离值大于零。
  31. 根据权利要求17所述的设备,其特征在于,所述测试项目包括避障功能测试,所述目标飞行数据包括所述无人机在飞行过程中的多个航点的位置信息,所述测试数据包括障碍物信息。
  32. 根据权利要求31所述的设备,其特征在于,所述障碍物信息包括障碍物的位置信息、障碍物的半径信息和障碍物的高度信息,所述处理器还用于执行如下步骤:
    根据所述多个航点中每个航点的位置信息、所述障碍物的位置信息、所述障碍物的半径信息和障碍物的高度信息,确定每个航点与所述障碍物之间的距离;
    当所述多个航点中存在至少一个航点与所述障碍物之间的距离小于第五距离值时,确定所述无人机的所述避障测试未通过;
    当所述多个航点中所有航点与所述障碍物之间的距离大于或等于所述第五距离值时,确定所述无人机的所述避障测试通过。
  33. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时用于执行如权利要求1至16任一项所述无人机测试方法。
PCT/CN2018/112780 2018-10-30 2018-10-30 一种无人机测试方法、设备及存储介质 WO2020087297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/112780 WO2020087297A1 (zh) 2018-10-30 2018-10-30 一种无人机测试方法、设备及存储介质
CN201880010541.9A CN110291480A (zh) 2018-10-30 2018-10-30 一种无人机测试方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112780 WO2020087297A1 (zh) 2018-10-30 2018-10-30 一种无人机测试方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020087297A1 true WO2020087297A1 (zh) 2020-05-07

Family

ID=68001276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112780 WO2020087297A1 (zh) 2018-10-30 2018-10-30 一种无人机测试方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN110291480A (zh)
WO (1) WO2020087297A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148542A (zh) * 2020-09-08 2022-03-08 丰翼科技(深圳)有限公司 无人机测试方法、装置及存储介质
CN112346482B (zh) * 2020-11-25 2023-03-03 中国工程物理研究院总体工程研究所 飞行航线管理方法
CN112650294B (zh) * 2020-12-30 2023-02-03 彩虹无人机科技有限公司 一种无人机自动烤机系统及其控制方法
CN113790915A (zh) * 2021-09-14 2021-12-14 山东省农业机械科学研究院 一种农用无人机飞行精度测试系统及方法
CN114348294B (zh) * 2021-12-31 2023-09-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 无人机避障测试方法、装置、计算机设备
CN116430905B (zh) * 2023-06-12 2023-09-15 武汉能钠智能装备技术股份有限公司四川省成都市分公司 电子侦查一体机测控系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109418A (zh) * 2009-12-29 2011-06-29 贵州贵航无人机有限责任公司 一种无人机系统仿真测试方法及仿真试验系统
CN107004039A (zh) * 2016-11-30 2017-08-01 深圳市大疆创新科技有限公司 对象测试方法、装置及系统
CN206523160U (zh) * 2017-02-15 2017-09-26 江苏中科院智能科学技术应用研究院 一种无人机检验检测系统
US20180039838A1 (en) * 2016-08-04 2018-02-08 International Business Machines Corporation Systems and methods for monitoring unmanned vehicles
CN107719700A (zh) * 2017-09-29 2018-02-23 深圳市大疆创新科技有限公司 无人飞行器测试方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872081B2 (en) * 2011-11-01 2014-10-28 Ge Aviation Systems Llc Methods for adjusting a relative navigation system
CN103412575B (zh) * 2013-08-23 2017-03-01 无锡汉和航空技术有限公司 一种无人直升机航线控制装置
CN105070005B (zh) * 2015-07-15 2018-11-30 合肥佳讯科技有限公司 一种多旋翼无人飞行器及遥测遥控方法
CN106373433A (zh) * 2015-07-24 2017-02-01 深圳市道通智能航空技术有限公司 一种飞行器的飞行路线设置方法及装置
CN105235895B (zh) * 2015-11-10 2017-09-26 杨珊珊 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
CN105955298B (zh) * 2016-06-03 2018-09-07 腾讯科技(深圳)有限公司 一种飞行器的自动避障方法及装置
CN106444800A (zh) * 2016-08-01 2017-02-22 中国人民武装警察部队总医院 多旋翼无人机飞行用外置式安全控制装置、方法及系统
CN106406189A (zh) * 2016-11-28 2017-02-15 中国农业大学 一种无人机植保作业的电子围栏监控方法
CN106774418A (zh) * 2017-01-16 2017-05-31 深圳电航空技术有限公司 无人机操控测试方法
CN107368094A (zh) * 2017-08-25 2017-11-21 上海拓攻机器人有限公司 一种无人机植保作业航线规划方法及装置
CN108045595B (zh) * 2017-11-30 2020-08-04 北京润科通用技术有限公司 一种无人机飞行性能参数的测试方法、装置及系统
CN107992029A (zh) * 2017-12-15 2018-05-04 中国电子产品可靠性与环境试验研究所 基于状态监测的无人机性能检测装置
CN108594849B (zh) * 2018-04-10 2022-05-13 深圳市易飞行科技有限公司 一种基于毫米波雷达的无人机避障方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109418A (zh) * 2009-12-29 2011-06-29 贵州贵航无人机有限责任公司 一种无人机系统仿真测试方法及仿真试验系统
US20180039838A1 (en) * 2016-08-04 2018-02-08 International Business Machines Corporation Systems and methods for monitoring unmanned vehicles
CN107004039A (zh) * 2016-11-30 2017-08-01 深圳市大疆创新科技有限公司 对象测试方法、装置及系统
CN206523160U (zh) * 2017-02-15 2017-09-26 江苏中科院智能科学技术应用研究院 一种无人机检验检测系统
CN107719700A (zh) * 2017-09-29 2018-02-23 深圳市大疆创新科技有限公司 无人飞行器测试方法及装置

Also Published As

Publication number Publication date
CN110291480A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2020087297A1 (zh) 一种无人机测试方法、设备及存储介质
US20210358315A1 (en) Unmanned aerial vehicle visual point cloud navigation
CN109029422B (zh) 一种多无人机协作构建三维调查地图的方法和装置
US11897607B2 (en) Unmanned aerial vehicle beyond visual line of sight control
US11218689B2 (en) Methods and systems for selective sensor fusion
JP7274674B1 (ja) 無人航空機による3次元再構成の実行
WO2017211029A1 (zh) 无人机飞行路径规划方法和装置
CN103984357B (zh) 一种基于全景立体成像设备的无人机自动避障飞行系统
CN102707724B (zh) 一种无人机的视觉定位与避障方法及系统
CN110609570A (zh) 一种基于无人机的自主避障巡检方法
WO2020087296A1 (zh) 一种无人机测试方法、设备及存储介质
WO2018090208A1 (zh) 基于三维地图的导航方法和设备
US10409292B2 (en) Movement control method, autonomous mobile robot, and recording medium storing program
CN104820429A (zh) 基于超声波距离检测的无人机避障系统及其控制方法
EP3633652A1 (en) Aircraft flight information system and method
CN113156998B (zh) 一种无人机飞控系统的控制方法
Pestana et al. Overview obstacle maps for obstacle‐aware navigation of autonomous drones
CN109163718A (zh) 一种面向建筑群的无人机自主导航方法
KR102467855B1 (ko) 자율항법지도를 설정하는 방법 및 무인비행체가 자율항법지도에 기초하여 자율 비행하는 방법 및 이를 구현하는 시스템
US20220390940A1 (en) Interfaces And Control Of Aerial Vehicle For Automated Multidimensional Volume Scanning
CN108369086A (zh) 用于服务物体的方法和系统
WO2019167210A1 (ja) 制御装置、移動体及びプログラム
Sousa et al. Isep/inesc tec aerial robotics team for search and rescue operations at the eurathlon 2015
CN107390707A (zh) 无人机控制系统
WO2018053754A1 (zh) 一种基于飞行器的功能控制方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938303

Country of ref document: EP

Kind code of ref document: A1