WO2018090208A1 - 基于三维地图的导航方法和设备 - Google Patents

基于三维地图的导航方法和设备 Download PDF

Info

Publication number
WO2018090208A1
WO2018090208A1 PCT/CN2016/105964 CN2016105964W WO2018090208A1 WO 2018090208 A1 WO2018090208 A1 WO 2018090208A1 CN 2016105964 W CN2016105964 W CN 2016105964W WO 2018090208 A1 WO2018090208 A1 WO 2018090208A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
navigation
movable object
map
screen
Prior art date
Application number
PCT/CN2016/105964
Other languages
English (en)
French (fr)
Inventor
赵开勇
姚尧
马岳文
郑石真
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680004275.XA priority Critical patent/CN107223199A/zh
Priority to PCT/CN2016/105964 priority patent/WO2018090208A1/zh
Publication of WO2018090208A1 publication Critical patent/WO2018090208A1/zh
Priority to US16/391,806 priority patent/US20190251851A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0078Surveillance aids for monitoring traffic from the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • Embodiments of the present invention generally relate to the field of navigation, and in particular, to a three-dimensional map-based navigation method and navigation device, a method and apparatus for controlling a movable object, a storage medium, and an unmanned aerial vehicle system.
  • the navigation route of the UAV can only be planned in the two-dimensional map.
  • the position and route of the UAV can only be adjusted on a horizontal plane.
  • This method can not fully utilize the characteristics that the drone can move freely in the three-dimensional space, and can not finely control the action route of the drone in the three-dimensional space.
  • the UAV flies according to the route planned in the two-dimensional map and encounters an obstacle, it can only be avoided by, for example, lifting the height, and the optimal path cannot be adopted.
  • this method also requires multiple hovering to wait for the stability of the fuselage, which will waste the precious life of the unmanned aerial vehicle.
  • embodiments of the present invention provide a three-dimensional map-based navigation method and navigation device, a method and apparatus for controlling a movable object, a storage medium, and an unmanned aerial vehicle system.
  • a first aspect of the present invention provides a navigation method based on a three-dimensional map, the package Comprising: acquiring a route mark in the three-dimensional map; generating a navigation route according to the route mark, the navigation route avoiding a specific object in the three-dimensional map; and transmitting a motion indication to the movable object according to the navigation route.
  • a second aspect of the present invention provides a method for controlling a movable object, comprising: receiving a motion indication, wherein the motion indication is generated based on a navigation route of the movable object in a three-dimensional map; The motion indication generates a control signal for controlling the movable object.
  • a third aspect of the present invention provides a three-dimensional map-based navigation device, comprising: at least one processor, separately or collectively, for: acquiring a route mark in the three-dimensional map; generating a navigation according to the route mark a route, the navigation route avoiding a specific object in the three-dimensional map; and a transmitter, configured to send a motion indication to the movable object according to the navigation route.
  • a fourth aspect of the present invention provides an apparatus for controlling a movable object, comprising: a receiver for receiving a motion indication, wherein the motion indication is based on a navigation route of the movable object in a three-dimensional map And generated; at least one processor, used singly or collectively, to generate a control signal for controlling the movable object based on the motion indication.
  • a fifth aspect of the present invention provides a storage medium in which an instruction is stored, and when the instruction is executed, a navigation method based on a three-dimensional map is implemented, the navigation method comprising: acquiring in the three-dimensional map a route marker; generating a navigation route according to the route marker, the navigation route avoiding a specific object in the three-dimensional map; and transmitting a motion indication to the movable object according to the navigation route.
  • a sixth aspect of the present invention provides a storage medium having instructions stored therein, when the instructions are executed, implementing a method for controlling a movable object, the method comprising: receiving a motion indication, wherein The motion indication is generated based on a navigation route of the movable object in a three-dimensional map; a control signal for controlling the movable object is generated according to the motion indication.
  • a seventh aspect of the invention provides an unmanned aerial vehicle system comprising: a device for controlling a movable object, the device comprising: a receiver for receiving a motion indication, The motion indication is generated based on a navigation route of the UAV in the three-dimensional map; at least one processor, used alone or in common, to generate, according to the motion indication, a control for the UAV a control signal; the UAV system further comprising a power device for driving the UAV based on the control signal.
  • the flight route can be more accurately controlled to meet more complicated shooting requirements.
  • automated operations that are unsupervised or that use only minimal human monitoring can be performed by pre-setting fine routes and workflows.
  • FIG. 1 shows a flow chart of a three-dimensional map based navigation method in accordance with some embodiments of the present invention
  • FIG. 2 illustrates a flow diagram of a method of acquiring route markers in a three-dimensional map, in accordance with some embodiments of the present invention
  • FIG. 3 illustrates a flow chart of a method of obtaining a screen location of a route marker, in accordance with some embodiments of the present invention
  • FIG. 4 illustrates a flow chart of a method of generating a navigation route from a route marker, in accordance with some embodiments of the present invention
  • Figure 5 illustrates a flow chart of a method for controlling a movable object, in accordance with some embodiments of the present invention
  • FIG. 6 shows a schematic diagram of a three-dimensional map based navigation device in accordance with some embodiments of the present invention.
  • FIG. 7 shows a schematic diagram of a three-dimensional map based navigation device in accordance with further embodiments of the present invention.
  • Figure 8 shows a schematic diagram of an apparatus for controlling a movable object, in accordance with some embodiments of the present invention.
  • Figure 9 shows a schematic diagram of an apparatus for controlling a movable object in accordance with further embodiments of the present invention.
  • the screen position refers to a three-dimensional coordinate value composed of two-dimensional screen coordinate values and a projection distance with respect to the screen.
  • the map position is the three-dimensional coordinate value in the three-dimensional map.
  • the world position refers to the longitude, latitude and altitude in the real world.
  • the movable object can be an unmanned aerial vehicle, but the present invention is not limited thereto, and the movable object can be any manned or unmanned object that can move in three-dimensional space.
  • FIG. 1 illustrates a guide for a three-dimensional map based on some embodiments of the present invention. Flow chart of the navigation method 100.
  • step 102 a route marker in the three-dimensional map is acquired.
  • the three-dimensional map is pre-built.
  • the construction of the three-dimensional map includes, but is not limited to, shooting video through an unmanned aerial vehicle or setting up a 3D scanner for algorithm reconstruction, and manual modeling based on the captured video with professional modeling software like 3ds Max.
  • the three-dimensional map can also be generated directly from images and video taken on-site by the UAV.
  • the present invention does not limit the construction of the three-dimensional map, and the three-dimensional map constructed by any means is within the protection scope of the present invention.
  • a three-dimensional map corresponding to the current location is obtained based on the current location of the user or movable object.
  • a three-dimensional map within a predetermined range centered on the current location is acquired.
  • a three-dimensional map in the range of 100 meters, 200 meters, 500 meters, 1000 meters, 2000 meters, 5000 meters, 7000 meters, and 10,000 meters centered on the current position is obtained.
  • the predetermined range can be determined according to the range of motion of the movable object or according to an instruction of the user. It should be understood that the predetermined range can be any numerical value.
  • step 102 acquiring a route marker in the three-dimensional map further includes: 1022, acquiring a screen location of the route marker, wherein the screen location includes the route a two-dimensional coordinate value marked on the screen and a projection distance with respect to the screen; and 1024, a map position of the route marker is determined according to the screen position, the map location including the route marker on the three-dimensional map The three-dimensional coordinate value in .
  • the three-dimensional coordinate value of the route mark can be accurately determined by the two-dimensional screen coordinate value and the projection distance.
  • acquiring a screen location of the route marker further includes: 10221, displaying the three-dimensional map on a screen; 10222, detecting at least one touch on the screen a point; 10223, determining a two-dimensional coordinate of the at least one contact in the screen; 1024, acquiring a projection distance of the at least one contact relative to the screen; 10225, the two-dimensional coordinates and the The projection distance is determined as the screen position of the route marker.
  • a three-dimensional map is displayed on the screen.
  • the user views the three-dimensional map and selects a contact on the screen.
  • a screen sensor detects the position of the contact. Base At this position, two-dimensional screen coordinates (xs, ys) of the contacts on the x-axis and the y-axis can be obtained.
  • acquiring a projection distance relative to the screen at a location of the at least one contact comprises acquiring the projection distance based on a value of a scroll bar on the screen.
  • the projection distance on the z-axis is obtained from the value of the scroll bar on the screen.
  • the input range of the scroll bar is, for example, -H to +H, and the value of H is determined according to actual conditions, for example, 0.1 m, 0.2 m, 0.5 m, 1 m, 10 m, 100 m, and 1000 m.
  • the value entered in the scroll bar is h, which represents the projected distance of the contact relative to the screen.
  • the screen position can be determined as (xs, ys, h).
  • the present invention is not limited to detecting one contact, and is capable of detecting any number of contacts of not less than one.
  • the at least one contact is a plurality of consecutive contacts for forming a curve.
  • an activation button is set on the screen, and the screen sensor treats the touch screen operation as an operation of selecting a route mark only when the activation button is activated.
  • the at least one contact is a continuous plurality of contacts, ie a curve.
  • Each contact on the curve can have the same or a different projection distance relative to the screen.
  • the three-dimensional coordinates of each contact on the curve can be accurately determined by the two-dimensional coordinates and projection distance of each contact on the curve.
  • the user can draw a navigation curve in a three-dimensional map.
  • the user operates a three-dimensional map to a suitable location and perspective, and then sets a navigation curve to the depth of the virtual projection camera through a scroll bar to determine a plane.
  • the plane should move in real time as the scroll bar is dragged, and the plane should be displayed as colored, which can clearly distinguish objects in front of and behind the plane to help the user adjust the depth.
  • the user continues to draw a navigation curve on the plane.
  • the screen position of the navigation curve can be determined based on the two-dimensional screen coordinates of the navigation curve and the value of the scroll bar. For example, a series of points in the navigation curve are acquired, the screen position of each point is taken, and the navigation curve is re-fitted according to the screen position of each point.
  • the user can also use a drag operation to add a route marker.
  • a route marker such as a waypoint marker
  • the waypoint marker can be dragged directly from the interface bar into the three-dimensional map. After the drag operation is completed, a new waypoint marker appears in the interface bar, and the original waypoint marker is added to the 3D map.
  • determining a map location of the route marker according to the screen position comprises: acquiring a three-dimensional coordinate value of the virtual projection camera of the screen in the three-dimensional map and an angle with the route marker; The three-dimensional coordinate values and angles of the virtual projection camera and the screen position calculate the map position of the route marker.
  • a point in the three-dimensional map is fixed as an origin (0, 0, 0), and the three-dimensional coordinate values (xc, yc, zc) of the virtual projection camera in the three-dimensional map can be obtained according to the current screen projection angle of view. .
  • the route mark can be converted into the three-dimensional map.
  • Map location (xm, ym, zm). The conversion method is a known technique and will not be described here.
  • a spin button, a pan button, and a height rocker are also provided on the screen.
  • clicking the spin button on the screen will enter the rotation mode.
  • drag left and right to adjust the azimuth of the field of view, and drag up and down to adjust the pitch angle of the field of view.
  • Click the pan button to enter the pan mode.
  • dragging left and right means shifting left and right on the horizontal plane, while dragging up and down means panning back and forth on the horizontal plane.
  • the height rocker is used to adjust the height of the field of view, dragging down means falling, and dragging up means rising.
  • the spin button and pan button can also be combined into one button, using a tap switch mode.
  • the route marker includes a map location of the movable object in the three-dimensional map.
  • acquiring the route mark in the three-dimensional map includes: acquiring a world position of the movable object, the world position including a longitude, a latitude, and a height of the movable object; The map location of the movable object.
  • the current position of the movable object can be considered, planning from the current position Navigation route.
  • acquiring a movable object detected by a position sensor of a global positioning system (GPS), an assisted global positioning system (AGPS), a height sensor, or the like by synchronous positioning and map construction (SLAM) is in the real world.
  • World location For example, the world position of a movable object is (lat, lon, hw). Where lat is the latitude of the movable object, and lon is the longitude of the movable object, and hw is the height of the movable object.
  • the map position (xm, ym, zm) of the movable object in the three-dimensional map can be converted.
  • the conversion method is a known technique and will not be described here.
  • step 104 a navigation route is generated based on the route marker.
  • step 104 includes: 1042, determining a first distance between the route marker and the particular object; 1044, adjusting the route marker responsive to the first distance being less than a first safety distance Maintaining the first safety distance with the particular object; 1046, determining a second distance between the navigation route formed according to the route marker and the particular object; 1048, responsive to the second distance being less than a second safety distance that is adjusted to maintain the second safety distance with the particular object.
  • the specific object is an obstacle (such as a building, a mountain, a bridge, a tree, etc.) or a no-fly zone (such as an airport, a military area, etc.). In this way, it is possible to ensure that the moving path of the movable object avoids the obstacle or the no-fly zone.
  • first safety distance and the second safety distance are, for example, 0.01 meters, 0.02 meters, 0.05 meters, 0.1 meters, 0.2 meters, 0.5 meters, 1 meter, 2 meters, 5 meters, 10 meters, and the like. It should be understood that the first safety distance and the second safety distance in the present invention can also be any other numerical value.
  • the route marker includes at least two waypoints, and wherein the generating a navigation route from the route marker comprises connecting the at least two waypoints to generate the navigation route.
  • the connection curve has the shortest length while ensuring that the connection curve avoids a specific object (such as an obstacle, a no-fly zone, etc.), thereby saving the movable object. Energy consumption.
  • the route marker includes at least one curve
  • the generating a navigation route based on the route marker comprises: using the at least one curve as The navigation route or a portion of the navigation route. In this way, the movable object can be moved in accordance with the desired curved route.
  • the route marker after generating the navigation route, can also be re-determined by removing, modifying, or adding additional route markers; and re-generating the navigation route based on the re-determined route markers. In this way, it is easy to adjust the navigation route at any time.
  • the generated navigation route is stored as a historical navigation route.
  • the stored historical navigation route can be used multiple times. For example, for a fixed shooting requirement of a sports route, the navigation route may be first determined by a professional and the image captured by the movable object moving along the navigation route is confirmed to meet the shooting requirements. After that, the user only needs to call the navigation route determined by the professional to shoot the same effect. Optionally, the user can also adjust the navigation route determined by the professional during the shooting process to meet his own shooting needs.
  • step 106 a motion indication is sent to the movable object in accordance with the navigation route.
  • transmitting the motion indication to the movable object according to the navigation route comprises: acquiring a map location of the plurality of sampling points on the navigation route in the three-dimensional map; calculating the map according to the map location a world position of a plurality of sampling points; transmitting the world position of the plurality of sampling points to the movable object.
  • the movable object can sequentially pass through the world positions of the plurality of sampling points, thereby moving substantially in accordance with the navigation route.
  • transmitting the motion indication to the movable object according to the navigation route comprises: generating a control instruction for controlling a driving system of the movable object according to the navigation route; transmitting the control instruction to the Movable objects.
  • the control command is a PWM control signal. In this way, the movable object moves directly according to the control command, thereby simplifying the processing in the movable object.
  • transmitting the motion indication to the movable object in accordance with the navigation route comprises transmitting the navigation route to the movable object. In this way, the processing of the navigation route is performed on the movable object.
  • the navigation method of FIG. 1 further includes: acquiring a world position of the movable object in real time; calculating a map position of the movable object in the three-dimensional map according to the world position; The map location is offset from the navigation route, and a motion correction indication is sent to the movable object. In this way, the motion path of the movable object can be corrected in real time to achieve closed loop control.
  • the navigation method in the embodiment of the present invention by pre-planning the route based on the three-dimensional map, it is possible to satisfy the complicated shooting requirements of the spatial route, such as extreme sports, movies, and the like. Furthermore, the navigation method in embodiments of the present invention facilitates reconstruction of an accurate three-dimensional model. Furthermore, it can help the operation of drones (such as agriculture, electric power, logistics drones, etc.) to plan routes so that they do not need manual control during the operation, which can significantly improve work efficiency.
  • drones such as agriculture, electric power, logistics drones, etc.
  • FIG. 5 illustrates a flow chart of a method for controlling a movable object in accordance with some embodiments of the present invention.
  • step 202 a motion indication is received, wherein the motion indication is generated based on a navigation route of the movable object in a three-dimensional map.
  • the receiving the motion indication comprises receiving a world location of the plurality of sampling points on the navigation route.
  • the movable object can sequentially pass through the world positions of the plurality of sampling points, thereby moving substantially in accordance with the navigation route.
  • the receiving the motion indication comprises receiving a control instruction for controlling a drive system of the movable object.
  • the control command is used to generate a PWM control signal. In this way, the movable object moves directly according to the control command, thereby simplifying the processing in the movable object.
  • the receiving the motion indication comprises receiving the navigation route. In this way, the processing of the navigation route is performed on the movable object.
  • step 204 a control signal for controlling the movable object is generated based on the motion indication.
  • generating the control signal for controlling the movable object according to the motion indication comprises: generating, according to the world position of the plurality of sampling points, the controlling the movable object to pass the The control signal of the sampling point.
  • the movable object knows its position through the on-board position sensor, and according to its own position and sampling point position Plan the running route and finally move along the running route.
  • generating the control signal for controlling the movable object according to the motion indication comprises: generating a control signal of a power device for controlling the movable object according to the control instruction.
  • the movable object directly controls its own power device according to the control command.
  • the control signal is a PWM control signal.
  • the controlling the movable object according to the motion indication comprises: acquiring a map location of the plurality of sampling points on the navigation route in the three-dimensional map; calculating the location according to the map location Generating a world position of the plurality of sampling points; generating a control signal for controlling the movable object to pass through the plurality of sampling points according to the world position of the plurality of sampling points.
  • the controlling the movable object according to the motion indication comprises: generating a control instruction according to the navigation route; generating a control signal for controlling a power device of the movable object according to the control instruction .
  • the control signal is a PWM control signal.
  • the method of FIG. 5 further includes: detecting a world location of the movable object in real time; transmitting the world location; receiving a motion correction indication; generating a correction for responding to receiving the motion correction indication A correction signal of a motion path of the movable object.
  • the movable object is detected in real time in the real world by means of position sensors such as Global Positioning System (GPS), Assisted Global Positioning System (AGPS), height sensor, or by means of synchronous positioning and map construction (SLAM).
  • the movable object can transmit the world location via infrared, Bluetooth, near field communication, Wi-Fi, ZigBee, wireless USB, wireless radio, and other wireless communication methods based on 2.4 GHz or 5.8 GHz.
  • the drone corrects the motion path of the movable object by using a PWM correction signal.
  • FIG. 6 shows a schematic diagram of a three-dimensional map based navigation device in accordance with some embodiments of the present invention.
  • navigation device 60 includes at least one processor 602 and a transmitter 604. At least one processor 602 for acquiring a route marker in the three-dimensional map and generating a navigation route according to the route marker, wherein the navigation route avoids the three-dimensional map Specific object. And the transmitter 604 is configured to send a motion indication to the movable object according to the navigation route. It should be understood that although only one processor 60 is shown in FIG. 6, the present invention is not limited thereto, and the navigation device 60 can also include a plurality of processors commonly used for acquiring in the three-dimensional map. a route marker and generate a navigation route based on the route marker, wherein the navigation route avoids a particular object in the three-dimensional map.
  • the at least one processor 602 is further configured to: acquire a screen location of the route marker, wherein the screen location includes two-dimensional coordinates of the route marker on the screen and relative to the screen Projection distance; determining a map location of the route marker based on the screen location, the map location including three-dimensional coordinate values of the route marker in the three-dimensional map.
  • the navigation device 60 further includes a screen 606 for displaying the three-dimensional map, a screen sensor 608 for detecting at least one contact on the screen, and
  • the at least one processor 602 is further configured to: determine two-dimensional coordinates of the at least one contact in the screen; acquire a projection distance of the at least one contact relative to the screen; The dimensional coordinates and the projected distance are determined as the screen position of the route marker.
  • the at least one contact is a plurality of consecutive contacts for forming a curve.
  • the at least one processor 602 is further configured to: acquire the projection distance according to a value of a scroll bar on the screen.
  • the at least one processor 602 is further configured to: acquire a map position of the virtual projection camera of the screen in the three-dimensional map and an angle with the route mark; according to the virtual projection camera The map position and angle and the screen position calculate a map location of the route marker.
  • the at least one processor 602 is further configured to: determine a first distance between the route marker and the particular object; responsive to the first distance being less than a first safety distance, The route marker is adjusted to maintain the first safety distance with the particular object; to determine a second distance between the navigation route and the particular object; in response to the second distance being less than a second safety distance, The navigation route is adjusted to remain with the specific object The second safety distance.
  • the particular object is an obstacle or no-fly zone.
  • the route marker includes a map location of the movable object in the three-dimensional map
  • the at least one processor 602 is further configured to: acquire a world location of the movable object,
  • the world location includes a longitude, a latitude, and a height of the movable object; and the map location of the movable object is calculated based on the world location.
  • the at least one processor 602 is further configured to: re-determine the route marker by removing, modifying, or adding another route marker; regenerating the navigation based on the re-determined route marker route.
  • the navigation device 60 further includes a memory 612 for storing the generated navigation route as a historical navigation route.
  • the route marker includes at least two waypoints, and wherein the at least one processor 602 is further configured to connect the at least two waypoints to generate the navigation route.
  • the route marker includes at least one curve
  • the at least one processor 602 is further configured to: use the at least one curve as part of the navigation route or the navigation route.
  • the at least one processor 602 is further configured to: acquire a map location of the plurality of sampling points on the navigation route in the three-dimensional map; calculate the plurality of samples according to the map location The world location of the point; and wherein the transmitter 402 is further configured to transmit the world location of the plurality of sample points to the movable object.
  • the at least one processor 602 is further configured to: generate a control instruction for controlling the power device of the movable object according to the navigation route; and wherein the transmitter 604 is further configured to The control command is sent to the movable object.
  • the transmitter 604 is further configured to transmit the navigation route to the movable object.
  • the navigation device 60 further includes: a receiver 610 for acquiring a world location of the movable object in real time; and wherein the at least one processor 602 is further configured to Calculating the movable object in the three-dimensional shape according to the world position A map location in the map; the transmitter 604 is further configured to send a motion correction indication to the movable object in response to the map location deviating from the navigation route.
  • Figure 8 shows a schematic diagram of an apparatus for controlling a movable object, in accordance with some embodiments of the present invention.
  • the apparatus 80 includes a receiver 802 for receiving a motion indication, wherein the motion indication is generated based on a navigation route of the movable object in a three-dimensional map; at least one processor 804 Used singly or collectively to generate a control signal for controlling the movable object based on the motion indication. It should be understood that although only one processor 804 is shown in FIG. 8, the present invention is not limited thereto, and the device 80 can also include a plurality of processors that are commonly used to generate according to the motion indication. A control signal for controlling the movable object.
  • the receiver 802 is further configured to: receive a world location of a plurality of sampling points on the navigation route; and wherein the at least one control 804 is further configured to: according to the plurality of samples The world position of the point generates a control signal for controlling the movable object to pass through the plurality of sampling points.
  • the receiver 802 is further configured to: receive a control instruction of a power device for controlling the movable object; and wherein the at least one processor 804 is further configured to: according to the control instruction A control signal is generated for controlling a power device of the movable object.
  • the receiver 802 is further configured to: receive the navigation route; the at least one processor 804 is further configured to: acquire a plurality of sampling points on the navigation route in the three-dimensional map a map position; calculating a world position of the plurality of sampling points according to the map position; generating a control signal for controlling the movable object to pass through the plurality of sampling points according to the world position of the plurality of sampling points.
  • the receiver 802 is further configured to: receive the navigation route; and wherein the at least one processor 804 is further configured to: generate a control instruction according to the navigation route; generate according to the control instruction A control signal for controlling a power device of the movable object.
  • the device 80 further includes: a position sensor 806, for detecting a world position of the movable object in real time; a transmitter 808, configured to send the world location; wherein the receiver 802 is further configured to: receive the motion correction indication; and wherein The at least one processor 804 is further configured to generate a correction signal for correcting a motion path of the movable object in response to receiving the motion correction indication.
  • a storage medium in which an instruction is stored, and when the instruction is executed, a three-dimensional map-based navigation method is performed, the navigation method comprising: acquiring in the a route mark in the three-dimensional map; generating a navigation route according to the route mark, the navigation route avoiding a specific object in the three-dimensional map; and transmitting a motion indication to the movable object according to the navigation route.
  • a storage medium in which instructions are stored, and when the instructions are executed, a method for controlling a movable object is performed, the method comprising: receiving a motion indication And wherein the motion indication is generated based on a navigation route of the movable object in a three-dimensional map; generating a control signal for controlling the movable object according to the motion indication.
  • an unmanned aerial vehicle system comprising: a device for controlling a movable object, the device comprising: a receiver for receiving a motion indication, wherein the motion indication is Generating based on a navigation route of the unmanned aerial vehicle in the three-dimensional map; at least one processor, individually or collectively, for generating a control signal for controlling the unmanned aerial vehicle based on the motion indication;
  • the aircraft system also includes a power device for driving the unmanned aerial vehicle in accordance with the control signal.
  • the processor in the embodiment of the present invention may be a central processing unit (Central Processing Unit, abbreviated as "CPU"), a network processor (Network Processor, abbreviated as "NP”), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an Application-Specific Integrated Circuit ("ASIC"), a Programmable Logic Device (PLD), or a combination thereof.
  • the PLD may be a Complex Programmable Logic Device (CPLD), a Field-Programmable Gate Array (FPGA), and a Generic Array Logic (Generic Array Logic). Referred to as "GAL” or any combination thereof.
  • the transmitter and receiver in the embodiment of the present invention may be a transmitter based on infrared, Bluetooth, near field communication, Wi-Fi, ZigBee, wireless USB, radio frequency or other wireless communication method based on 2.4 GHz or 5.8 GHz. receiver.
  • Embodiments of the present invention can be applied to various types of UAVs (Unmanned Aerial Vehicles).
  • the UAV can be a small UAV.
  • the UAV may be a rotorcraft, such as a multi-rotor aircraft that is propelled by air by a plurality of propelling devices, embodiments of the invention are not limited thereto, and the UAV may be other types of UAVs or Mobile device.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种基于三维地图的导航方法和导航设备、用于控制可移动物体的方法和设备、存储介质以及无人飞行器系统。基于三维地图的导航方法包括:获取在三维地图中的路线标记(102);根据路线标记生成导航路线,该导航路线避开三维地图中的特定对象(104);根据该导航路线向可移动物体发送运动指示(106)。由此,可以对飞行路线进行更精确的控制,满足更复杂的拍摄需求,并且能够进行无人监控的或者只使用较少人力监控的自动化作业。

Description

基于三维地图的导航方法和设备
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本发明的实施例总体上涉及导航领域,具体地,涉及一种基于三维地图的导航方法和导航设备、用于控制可移动物体的方法和设备、存储介质以及无人飞行器系统。
背景技术
当前,类似于地面交通工具的规划方式,只能在二维地图中对无人飞行器的导航路线进行规划。由此,只能在水平面上调节无人飞行器的位置和路线。这种方式无法充分发挥无人机可以在三维空间中自由行动的特性,不能对无人机在三维空间中的行动路线进行精细的控制。另一方面,当无人飞行器依照在二维地图中规划的路线飞行并且遇到障碍物时,只能例如采用提升高度的方式避开,而无法采用最优路径。同时这种方式还需要多次悬停等待机身稳定,这会浪费无人飞行器宝贵的续航时间。
发明内容
为了解决现有技术的上述以及其他潜在问题,本发明的实施例提供了一种基于三维地图的导航方法和导航设备、用于控制可移动物体的方法和设备、存储介质以及无人飞行器系统。
本发明的第一方面提供了一种基于三维地图的导航方法,包 括:获取在所述三维地图中的路线标记;根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;根据所述导航路线向可移动物体发送运动指示。
本发明的第二方面提供了一种用于控制可移动物体的方法,包括:接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;根据所述运动指示生成用于控制所述可移动物体的控制信号。
本发明的第三方面提供了一种基于三维地图的导航设备,包括:至少一个处理器,单独地或共同地用于:获取在所述三维地图中的路线标记;根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;发送器,用于根据所述导航路线向可移动物体发送运动指示。
本发明的第四方面提供了一种用于控制可移动物体的设备,包括:接收器,用于接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;至少一个处理器,单独地或共同地用于:根据所述运动指示生成用于控制所述可移动物体的控制信号。
本发明的第五方面提供了一种存储介质,所述存储介质内存储有指令,当执行所述指令时,实施基于三维地图的导航方法,所述导航方法包括:获取在所述三维地图中的路线标记;根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;根据所述导航路线向可移动物体发送运动指示。
本发明的第六方面提供了一种存储介质,所述存储介质内存储有指令,当执行所述指令时,实施用于控制可移动物体的方法,所述方法包括:接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;根据所述运动指示生成用于控制所述可移动物体的控制信号。
本发明的第七方面提供了一种无人飞行器系统,包括:用于控制可移动物体的设备,所述设备包括:接收器,用于接收运动指示,其 中,所述运动指示是基于无人飞行器在三维地图中的导航路线而生成的;至少一个处理器,单独地或共同地用于:根据所述运动指示生成用于控制所述无人飞行器的控制信号;所述无人飞行器系统还包括动力设备,用于根据所述控制信号驱动所述无人飞行器。
通过根据本发明的实施例的技术方案,由于三维地图信息和三维操作方式的加入,可以对飞行路线进行更精确的控制,满足更复杂的拍摄需求。此外,通过预先设置好精细的航线和工作流程,能够进行无人监控的或者只使用较少人力监控的自动化作业。
附图说明
通过参照附图的以下详细描述,本发明实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本发明的多个实施例进行说明,其中:
图1示出了根据本发明的一些实施例的基于三维地图的导航方法的流程图;
图2示出了根据本发明的一些实施例的获取在三维地图中的路线标记的方法的流程图;
图3示出了根据本发明的一些实施例的获取路线标记的屏幕位置的方法的流程图;
图4示出了根据本发明的一些实施例的根据路线标记生成导航路线的方法的流程图;
图5示出了根据本发明的一些实施例的用于控制可移动物体的方法的流程图;
图6示出了根据本发明的一些实施例的基于三维地图的导航设备的示意图;
图7示出了根据本发明的另一些实施例的基于三维地图的导航设备的示意图;
图8示出了根据本发明的一些实施例的用于控制可移动物体的设备的示意图;以及
图9示出了根据本发明的另一些实施例的用于控制可移动物体的设备的示意图。
具体实施方式
现在将参照附图中所示的各种示例性实施例对本发明的原理进行说明。应当理解,这些实施例的描述仅仅为了使得本领域的技术人员能够更好地理解并进一步实现本发明,而并不意在以任何方式限制本发明的范围。应当注意的是,在可行情况下可以在图中使用类似或相同的附图标记,并且类似或相同的附图标记可以表示类似或相同的功能。本领域的技术人员将容易地认识到,从下面的描述中,本文中所说明的结构和方法的替代实施例可以被采用而不脱离通过本文描述的本发明的原理。
除非另有定义,本发明所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
应当理解的是,下面的实施例并不限制本发明所保护的方法的步骤执行顺序。本发明的方法的各个步骤能够以任意可能的顺序并且能够以循环的方式来执行。
在本发明中,屏幕位置是指由二维屏幕坐标值和相对于所述屏幕的投影距离构成的三维坐标值。地图位置是指在三维地图中的三维坐标值。而世界位置是指在真实世界中的经度、纬度和高度。
在本发明中,可移动物体能够是无人飞行器,但本发明并不限制于此,可移动物体能够是任何可在三维空间中运动的载人或不载人的物体。
图1示出了根据本发明的一些实施例的用于基于三维地图的导 航方法100的流程图。
在步骤102中,获取在所述三维地图中的路线标记。
在一些实施例中,三维地图是预先构建好的。三维地图的构建方式包括但不限于通过无人飞行器拍摄视频或者设置3D扫描仪进行算法重建,以及用类似于3ds Max等专业建模软件根据拍摄的视频进行人工建模。此外,在另一些实施例中,三维地图也能够是根据无人飞行器现场拍摄的图像和视频直接生成的。在此,本发明并不限制三维地图的构建方式,通过任意方式构建的三维地图都在本发明的保护范围之内。
在一些实施例中,根据用户或可移动物体的当前位置来获取与所述当前位置相对应的三维地图。可选地,获取以所述当前位置为中心的预定范围内的三维地图。例如获取以所述当前位置为中心的100米、200米、500米、1000米、2000米、5000米、7000米、10000米范围内的三维地图。可选地,能够根据可移动物体的运动范围或者根据用户的指示来确定所述预定范围。应当理解,所述预定范围能够是任意数值。
在一些实施例中,如图2所示,在步骤102中,获取在所述三维地图中的路线标记进一步包括:1022,获取所述路线标记的屏幕位置,其中所述屏幕位置包括所述路线标记在屏幕上的二维坐标值和相对于所述屏幕的投影距离;以及1024,根据所述屏幕位置确定所述路线标记的地图位置,所述地图位置包括所述路线标记在所述三维地图中的三维坐标值。由此,通过二维屏幕坐标值和投影距离就能够精确地确定路线标记的三维坐标值。
在一些实施例中,如图3所示,在1022中,获取所述路线标记的屏幕位置进一步包括:10221,在屏幕上显示所述三维地图;10222,检测在所述屏幕上的至少一个触点;10223,确定所述至少一个触点在所述屏幕中的二维坐标;10224,获取所述至少一个触点相对于所述屏幕的投影距离;10225,将所述二维坐标和所述投影距离确定为所述路线标记的屏幕位置。
可选地,在屏幕中显示三维地图。用户观察所述三维地图,并且在所述屏幕上选择一个触点。屏幕传感器检测到所述触点的位置。基 于该位置,能够得到所述触点在x轴和y轴上的二维屏幕坐标(xs,ys)。
此外,在一些实施例中,获取在所述至少一个触点的位置处的相对于所述屏幕的投影距离包括:根据在所述屏幕上的滚动条的数值来获取所述投影距离。
可选地,根据在所述屏幕上的滚动条的数值来获取在z轴上的投影距离。该滚动条的输入范围例如是-H至+H,H的值根据实际情况确定,例如为0.1米、0.2米、0.5米、1米、10米、100米、1000米。例如,在滚动条中输入的数值为h,其表示所述触点相对于所述屏幕的投影距离。根据二维屏幕坐标值(xs,ys)和投影距离h,能够将屏幕位置确定为(xs,ys,h)。
应当理解,本发明并不限制于检测一个触点,也能够检测不小于一个的任意数量的触点。可选地,至少一个触点为用于构成曲线的多个连续的触点。可选地,在屏幕上设置激活按钮,只有当所述激活按钮被激活时,屏幕传感器才会将触屏操作当作选择路线标记的操作。
可选地,所述至少一个触点为连续的多个触点、即一条曲线。该曲线上的每个触点能够具有相同的或不同的相对于屏幕的投影距离。通过曲线上每个触点的二维坐标和投影距离,能够精确地确定所述曲线上每个触点的三维坐标。
可选地,用户能够在三维地图中绘制航行曲线。例如,用户操作三维地图到合适的地点和视角,然后通过滚动条设置航行曲线距离虚拟投影相机的深度,从而确定一个平面。在此,平面应当在拖动滚动条时实时移动,并且平面应该显示为有色,能明显区分平面前和平面后的物体,以助于用户调整深度。在确定平面后,用户继续在所述平面上绘制航行曲线。
在一些实施例中,在航行曲线绘制完成后,能够根据航行曲线的二维屏幕坐标和滚动条的数值来确定航行曲线的屏幕位置。例如,采集航行曲线中的一系列点,获取每个点的屏幕位置,并且根据每个点的屏幕位置重新拟合所述航行曲线。
可选地,替代触屏操作,用户也能够使用拖动操作来添加路线标记。例如,在屏幕边缘的界面栏中设置路线标记(例如航点标记),可以将所述航点标记直接从界面栏中拖动到三维地图中。在完成拖动操作后,在界面栏中会出现新的航点标记,而原航点标记被添加在三维地图中。
在一些实施例中,根据所述屏幕位置确定所述路线标记的地图位置包括:获取所述屏幕的虚拟投影相机在所述三维地图中的三维坐标值以及与所述路线标记的角度;根据所述虚拟投影相机的三维坐标值和角度以及所述屏幕位置计算所述路线标记的地图位置。可选地,将三维地图中的一点固定为原点(0,0,0),根据当前的屏幕投影视角能够得出虚拟投影相机在所述三维地图中的三维坐标值(xc,yc,zc)。接着,根据三维坐标值(xc,yc,zc)、所述虚拟投影相机与所述路线标记的角度以及屏幕位置(xs,ys,h)能够换算得出所述路线标记在所述三维地图中的地图位置(xm,ym,zm)。换算方法为已知技术,在此不再赘述。
在一些实施例中,在所述屏幕上还设置旋转按钮、平移按钮和高度摇杆。例如,点击在屏幕中的旋转按钮,则进入旋转模式。在旋转模式下,左右拖动调整视野的方位角,上下拖动调整视野的俯仰角。点击平移按钮则进入平移模式,此时,左右拖动表示在水平面上左右平移,而上下拖动表示在水平面上前后平移。此外,高度摇杆用于调节视野高度,往下拖表示下降而往上拖表示上升。同时,在任何模式下,用户可以使用两根手指进行多点触控,以缩放地图。在另一些实施例中,也能够将旋转按钮和平移按钮合并为一个按钮,使用点击切换模式。
在一些实施例中,所述路线标记包括所述可移动物体在所述三维地图中的地图位置。在此,获取在所述三维地图中的路线标记包括:获取所述可移动物体的世界位置,所述世界位置包括所述可移动物体的经度、纬度和高度;根据所述世界位置计算所述可移动物体的所述地图位置。由此,能够考虑可移动物体的当前位置,规划从所述当前位置起的 导航路线。
在一些实施例中,获取由全球定位系统(GPS)、辅助全球定位系统(AGPS)、高度传感器等位置传感器或者通过同步定位与地图构建(SLAM)的方式检测到的可移动物体在真实世界中的世界位置。例如,可移动物体的世界位置为(lat,lon,hw)。其中,lat是所述可移动物体的纬度,而lon为所述可移动物体的经度,hw为所述可移动物体的高度。根据世界位置(lat,lon,hw)能够换算得到可移动物体在三维地图中的地图位置(xm,ym,zm)。换算方法为已知技术,在此不再赘述。
返回到图1,在步骤104中,根据所述路线标记生成导航路线。
在一些实施例中,步骤104包括:1042,确定所述路线标记与所述特定对象之间的第一距离;1044,响应于所述第一距离小于第一安全距离,将所述路线标记调节为与所述特定对象保持所述第一安全距离;1046,确定根据所述路线标记形成的所述导航路线与所述特定对象之间的第二距离;1048,响应于所述第二距离小于第二安全距离,将所述导航路线调节为与所述特定对象保持所述第二安全距离。可选地,特定对象为障碍物(例如楼宇、山峰、桥梁、树木等)或禁飞区(例如机场、军事区域等)。通过这种方式,能够确保可移动物体的运动路线避开障碍物或禁飞区。
可选地,所述第一安全距离和第二安全距离例如为0.01米、0.02米、0.05米、0.1米、0.2米、0.5米、1米、2米、5米、10米等。应当理解,在本发明中的第一安全距离和第二安全距离也能够为其他任意数值。
在一些实施例中,所述路线标记包括至少两个航点,并且其中,所述根据所述路线标记生成导航路线,包括:连接所述至少两个航点以生成所述导航路线。可选地,连接所述至少两个航点时,在确保连接曲线避开特定对象(例如障碍物、禁飞区等)的前提下,使得连接曲线具有最短的长度,从而节约可移动物体的耗能。
在一些实施例中,所述路线标记包括至少一条曲线,并且其中,所述根据所述路线标记生成导航路线,包括:将所述至少一条曲线作为 所述导航路线或所述导航路线的一部分。通过这种方式,使得可移动物体能够按照期望的曲线路线进行运动。
在一些实施例中,在生成所述导航路线之后,还能够通过去除、修改路线标记或者增加另外的路线标记,重新确定所述路线标记;并且根据重新确定的路线标记重新生成所述导航路线。通过这种方式,便于随时对导航路线进行调节。
在一些实施例中,将所生成的所述导航路线存储为历史导航路线。通过这种方式,所存储的历史导航路线能够被多次使用。例如,对于运动路线固定的拍摄需求,可先由专业人员确定导航路线并且确认沿所述导航路线运动的可移动物体所拍摄的影像符合拍摄要求。之后,用户只需要调用专业人员确定的导航路线就可以拍摄出同样的效果。可选地,用户也能够在拍摄过程中对专业人员确定的导航路线进行调整,以满足自身的拍摄需求。
返回到图1,在步骤106中,根据所述导航路线向可移动物体发送运动指示。
在一些实施例中,根据所述导航路线向可移动物体发送运动指示包括:获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;根据所述地图位置计算所述多个采样点的世界位置;将所述多个采样点的世界位置发送给所述可移动物体。通过这种方式,可移动物体能够依次经过所述多个采样点的世界位置,从而基本上按照所述导航路线进行运动。
在一些实施例中,根据所述导航路线向可移动物体发送运动指示包括:根据所述导航路线生成用于控制所述可移动物体的驱动系统的控制指令;将所述控制指令发送给所述可移动物体。可选地,所述控制指令为PWM控制信号。通过这种方式,可移动物体直接根据控制指令进行运动,从而简化了在所述可移动物体中的处理过程。
在一些实施例中,根据所述导航路线向可移动物体发送运动指示包括:将所述导航路线发送给所述可移动物体。通过这种方式,对所述导航路线的处理过程在可移动物体上进行。
在一些实施例中,图1中的导航方法还包括:实时获取所述可移动物体的世界位置;根据所述世界位置计算所述可移动物体在所述三维地图中的地图位置;响应于所述地图位置偏离所述导航路线,向所述可移动物体发送运动修正指示。通过这种方式,能够对可移动物体的运动路线进行实时矫正,实现闭环控制。
根据本发明的实施例中的导航方法,通过基于三维地图预先规划路线,能够满足空间路线比较复杂的拍摄需求,例如极限运动、电影等。此外,本发明的实施例中的导航方法有助于重建精确化的三维模型。再者,能够帮助作业无人机(例如农业、电力、物流无人机等)规划路线,使其在作业过程中不再需要手动操控,可显著提升工作效率。
图5示出了根据本发明的一些实施例的用于控制可移动物体的方法的流程图。
如图5所示,在步骤202中,接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的。
在一些实施例中,所述接收运动指示包括:接收在所述导航路线上的多个采样点的世界位置。通过这种方式,可移动物体能够依次经过所述多个采样点的世界位置,从而基本上按照所述导航路线进行运动。
在一些实施例中,所述接收运动指示包括:接收用于控制所述可移动物体的驱动系统的控制指令。可选地,所述控制指令用于生成PWM控制信号。通过这种方式,可移动物体直接根据控制指令进行运动,从而简化了在所述可移动物体中的处理过程。
在一些实施例中,所述接收运动指示包括:接收所述导航路线。通过这种方式,对所述导航路线的处理过程在可移动物体上进行。
返回到图5,在步骤204中,根据所述运动指示生成用于控制所述可移动物体的控制信号。
在一些实施例中,所述根据所述运动指示生成用于控制所述可移动物体的控制信号包括:根据所述多个采样点的世界位置生成用于控制所述可移动物体通过所述多个采样点的控制信号。具体地,可移动物体通过机载的位置传感器获知自身位置,并且根据自身位置和采样点位置 规划运行路线,最后沿所述运行路线运动。
在一些实施例中,所述根据所述运动指示生成用于控制所述可移动物体的控制信号包括:根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。具体地,可移动物体直接根据控制指令控制自身的动力设备。可选地,所述控制信号为PWM控制信号。
在一些实施例中,所述根据所述运动指示控制所述可移动物体包括:获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;根据所述地图位置计算所述多个采样点的世界位置;根据所述多个采样点的世界位置生成用于控制所述可移动物体通过多个采样点的控制信号。
在一些实施例中,所述根据所述运动指示控制所述可移动物体包括:根据所述导航路线生成控制指令;根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。可选地,所述控制信号为PWM控制信号。
在一些实施例中,图5中的方法还包括:实时检测所述可移动物体的世界位置;发送所述世界位置;接收运动修正指示;响应于接收到所述运动修正指示,生成用于修正所述可移动物体的运动路线的修正信号。可选地,可移动物体通过全球定位系统(GPS)、辅助全球定位系统(AGPS)、高度传感器等位置传感器或者通过同步定位与地图构建(SLAM)的方式实时检测其在真实世界中的世界位置。可选地,可移动物体可以通过红外、蓝牙、近场通信、Wi-Fi、ZigBee、无线USB、无线射频以及其他的基于2.4GHz或5.8GHz的无线通信方式发送所述世界位置。可选地,无人机通过PWM修正信号来修正所述可移动物体的运动路线。
图6示出了根据本发明的一些实施例的基于三维地图的导航设备的示意图。
如图6所示,导航设备60包括至少一个处理器602和发送器604。至少一个处理器602用于获取在所述三维地图中的路线标记,并且根据所述路线标记生成导航路线,其中所述导航路线避开所述三维地图中的 特定对象。而发送器604用于根据所述导航路线向可移动物体发送运动指示。应当理解,虽然图6中仅示出一个处理器60,但本发明并不限制于此,导航设备60也能够包括多个处理器,该多个处理器共同用于获取在所述三维地图中的路线标记,并且根据所述路线标记生成导航路线,其中所述导航路线避开所述三维地图中的特定对象。
在一些实施例中,所述至少一个处理器602还用于:获取所述路线标记的屏幕位置,其中所述屏幕位置包括所述路线标记在屏幕上的二维坐标和相对于所述屏幕的投影距离;根据所述屏幕位置确定所述路线标记的地图位置,所述地图位置包括所述路线标记在所述三维地图中的三维坐标值。
在一些实施例中,如图7所示,所述导航设备60还包括:屏幕606,用于显示所述三维地图;屏幕传感器608,用于检测在所述屏幕上的至少一个触点;并且其中,所述至少一个处理器602还用于:确定所述至少一个触点在所述屏幕中的二维坐标;获取所述至少一个触点相对于所述屏幕的投影距离;将所述二维坐标和所述投影距离确定为所述路线标记的屏幕位置。
在一些实施例中,所述至少一个触点为用于构成曲线的多个连续的触点。
在一些实施例中,所述至少一个处理器602还用于:根据在所述屏幕上的滚动条的数值来获取所述投影距离。
在一些实施例中,所述至少一个处理器602还用于:获取所述屏幕的虚拟投影相机在所述三维地图中的地图位置以及与所述路线标记的角度;根据所述虚拟投影相机的地图位置和角度以及所述屏幕位置计算所述路线标记的地图位置。
在一些实施例中,所述至少一个处理器602还用于:确定所述路线标记与所述特定对象之间的第一距离;响应于所述第一距离小于第一安全距离,将所述路线标记调节为与所述特定对象保持所述第一安全距离;确定所述导航路线与所述特定对象之间的第二距离;响应于所述第二距离小于第二安全距离,将所述导航路线调节为与所述特定对象保持 所述第二安全距离。
在一些实施例中,所述特定对象为障碍物或禁飞区。
在一些实施例中,所述路线标记包括所述可移动物体在所述三维地图中的地图位置,并且其中,所述至少一个处理器602还用于:获取所述可移动物体的世界位置,所述世界位置包括所述可移动物体的经度、纬度和高度;根据所述世界位置计算所述可移动物体的所述地图位置。
在一些实施例中,所述至少一个处理器602还用于:通过去除、修改所述路线标记或者增加另外的路线标记,重新确定所述路线标记;根据重新确定的路线标记重新生成所述导航路线。
在一些实施例中,如图7所示,所述导航设备60还包括:存储器612,用于将所生成的所述导航路线存储为历史导航路线。
在一些实施例中,所述路线标记包括至少两个航点,并且其中,所述至少一个处理器602还用于:连接所述至少两个航点以生成所述导航路线。
在一些实施例中,所述路线标记包括至少一条曲线,并且其中,所述至少一个处理器602还用于:将所述至少一条曲线作为所述导航路线或所述导航路线的一部分。
在一些实施例中,所述至少一个处理器602还用于:获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;根据所述地图位置计算所述多个采样点的世界位置;并且其中,所述发送器402还用于将所述多个采样点的世界位置发送给所述可移动物体。
在一些实施例中,所述至少一个处理器602还用于:根据所述导航路线生成用于控制所述可移动物体的动力设备的控制指令;并且其中,所述发送器604还用于将所述控制指令发送给所述可移动物体。
在一些实施例中,所述发送器604还用于将所述导航路线发送给所述可移动物体。
在一些实施例中,如图7所示,所述导航设备60还包括:接收器610,用于实时获取所述可移动物体的世界位置;并且其中,所述至少一个处理器602还用于根据所述世界位置计算所述可移动物体在所述三维 地图中的地图位置;所述发送器604还用于响应于所述地图位置偏离所述导航路线,向所述可移动物体发送运动修正指示。
图8示出了根据本发明的一些实施例的用于控制可移动物体的设备的示意图。
如图8所示,所述设备80包括接收器802,用于接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;至少一个处理器804,单独地或共同地用于:根据所述运动指示生成用于控制所述可移动物体的控制信号。应当理解,虽然图8中仅示出一个处理器804,但本发明并不限制于此,所述设备80也能够包括多个处理器,该多个处理器共同用于根据所述运动指示生成用于控制所述可移动物体的控制信号。
在一些实施例中,所述接收器802还用于:接收在所述导航路线上的多个采样点的世界位置;并且其中,所述至少一个控制804还用于:根据所述多个采样点的世界位置生成用于控制所述可移动物体通过所述多个采样点的控制信号。
在一些实施例中,所述接收器802还用于:接收用于控制所述可移动物体的动力设备的控制指令;并且其中,所述至少一个处理器804还用于:根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。
在一些实施例中,所述接收器802还用于:接收所述导航路线;所述至少一个处理器804还用于:获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;根据所述地图位置计算所述多个采样点的世界位置;根据所述多个采样点的世界位置生成用于控制所述可移动物体通过多个采样点的控制信号。
在一些实施例中,所述接收器802还用于:接收所述导航路线;并且其中,所述至少一个处理器804还用于:根据所述导航路线生成控制指令;根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。
在一些实施例中,如图9所示,所述设备80还包括:位置传感器 806,用于实时检测所述可移动物体的世界位置;发送器808,用于发送所述世界位置;其中,所述接收器802还用于:接收所述运动修正指示;并且其中,所述至少一个处理器804还用于:响应于接收到运动修正指示,生成用于修正所述可移动物体的运动路线的修正信号。
在本发明的一些实施例中,提供了一种存储介质,所述存储介质内存储有指令,当所述指令运行时,执行基于三维地图的导航方法,所述导航方法包括:获取在所述三维地图中的路线标记;根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;根据所述导航路线向可移动物体发送运动指示。
在本发明的一些实施例中,提供了一种存储介质,所述存储介质内存储有指令,当所述指令运行时,执行用于控制可移动物体的方法,所述方法包括:接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;根据所述运动指示生成用于控制所述可移动物体的控制信号。
在本发明的一些实施例中,提供了一种无人飞行器系统,包括:用于控制可移动物体的设备,所述设备包括:接收器,用于接收运动指示,其中,所述运动指示是基于无人飞行器在三维地图中的导航路线而生成的;至少一个处理器,单独地或共同地用于:根据所述运动指示生成用于控制所述无人飞行器的控制信号;所述无人飞行器系统还包括动力设备,用于根据所述控制信号驱动所述无人飞行器。
本发明实施例中的处理器可以是中央处理器(Central Processing Unit,简称为“CPU”),网络处理器(Network Processor,简称为“NP”)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,简称为“ASIC”),可编程逻辑器件(Programmable Logic Device,简称为“PLD”)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,简称为“CPLD”),现场可编程逻辑门阵列(Field-Programmable Gate Array,简称为“FPGA”),通用阵列逻辑(Generic Array Logic,简称为“GAL”)或其任意组合。
本发明实施例中的发送器和接收器可以是基于红外、蓝牙、近场通信、Wi-Fi、ZigBee、无线USB、无线射频或其他的基于2.4GHz或5.8GHz的无线通信方式的发送器和接收器。
本发明的实施例可以应用于各种类型的UAV(Unmanned Aerial Vehicle,无人飞行器)。例如,UAV可以是小型的UAV。在某些实施例中,UAV可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此,UAV也可以是其它类型的UAV或可移动装置。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (49)

  1. 一种基于三维地图的导航方法,包括:
    获取在所述三维地图中的路线标记;
    根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;
    根据所述导航路线向可移动物体发送运动指示。
  2. 根据权利要求1所述的导航方法,其中,所述获取在所述三维地图中的路线标记,包括:
    获取所述路线标记的屏幕位置,其中所述屏幕位置包括所述路线标记在屏幕上的二维坐标值和相对于所述屏幕的投影距离;
    根据所述屏幕位置确定所述路线标记的地图位置,所述地图位置包括所述路线标记在所述三维地图中的三维坐标值。
  3. 根据权利要求2所述的导航方法,其中,所述获取所述路线标记的屏幕位置,包括:
    在屏幕上显示所述三维地图;
    检测在所述屏幕上的至少一个触点;
    确定所述至少一个触点在所述屏幕中的二维坐标值;
    获取所述至少一个触点相对于所述屏幕的投影距离;
    将所述二维坐标值和所述投影距离确定为所述路线标记的屏幕位置。
  4. 根据权利要求3所述的导航方法,其中所述至少一个触点为用于构成曲线的多个连续的触点。
  5. 根据权利要求3或4所述的导航方法,其中,所述获取所述至少一个触点相对于所述屏幕的投影距离,包括:
    根据在所述屏幕上的滚动条的数值来获取所述投影距离。
  6. 根据权利要求2所述的导航方法,其中,所述根据所述屏幕位置确定所述路线标记的地图位置,包括:
    获取所述屏幕的虚拟投影相机在所述三维地图中的地图位置以及 与所述路线标记的角度;
    根据所述虚拟投影相机的地图位置和角度以及所述屏幕位置计算所述路线标记的地图位置。
  7. 根据权利要求1所述的导航方法,其中,所述根据所述路线标记生成导航路线,包括:
    确定所述路线标记与所述特定对象之间的第一距离;
    响应于所述第一距离小于第一安全距离,将所述路线标记调节为与所述特定对象保持所述第一安全距离;
    确定所述导航路线与所述特定对象之间的第二距离;
    响应于所述第二距离小于第二安全距离,将所述导航路线调节为与所述特定对象保持所述第二安全距离。
  8. 根据权利要求1或7所述的导航方法,其中,所述特定对象为障碍物或禁飞区。
  9. 根据权利要求1所述的导航方法,其中,所述路线标记包括所述可移动物体在所述三维地图中的地图位置,并且其中,所述获取在所述三维地图中的路线标记,包括:
    获取所述可移动物体的世界位置,所述世界位置包括所述可移动物体的经度、纬度和高度;
    根据所述世界位置计算所述可移动物体的所述地图位置。
  10. 根据权利要求1所述导航方法,其中,所述方法还包括:
    通过去除、修改所述路线标记或者增加另外的路线标记,重新确定所述路线标记;
    根据重新确定的路线标记重新生成所述导航路线。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    将所生成的所述导航路线存储为历史导航路线。
  12. 根据权利要求1所述的导航方法,其中,所述路线标记包括至少两个航点,并且其中,所述根据所述路线标记生成导航路线,包括:
    连接所述至少两个航点以生成所述导航路线。
  13. 根据权利要求1所述的导航方法,其中,所述路线标记包括至 少一条曲线,并且其中,所述根据所述路线标记生成导航路线,包括:
    将所述至少一条曲线作为所述导航路线或所述导航路线的一部分。
  14. 根据权利要求1所述的导航方法,其中,所述根据所述导航路线向可移动物体发送运动指示,包括:
    获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;
    根据所述地图位置计算所述多个采样点的世界位置;
    将所述多个采样点的世界位置发送给所述可移动物体。
  15. 根据权利要求1所述的导航方法,其中,所述根据所述导航路线向可移动物体发送运动指示,包括:
    根据所述导航路线生成用于控制所述可移动物体的动力设备的控制指令;
    将所述控制指令发送给所述可移动物体。
  16. 根据权利要求1所述的导航方法,其中,所述根据所述导航路线向可移动物体发送运动指示,包括:
    将所述导航路线发送给所述可移动物体。
  17. 根据权利要求1所述的导航方法,其中,所述方法还包括:
    实时获取所述可移动物体的世界位置;
    根据所述世界位置计算所述可移动物体在所述三维地图中的地图位置;
    响应于所述地图位置偏离所述导航路线,向所述可移动物体发送运动修正指示。
  18. 一种用于控制可移动物体的方法,包括:
    接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;
    根据所述运动指示生成用于控制所述可移动物体的控制信号。
  19. 根据权利要求18所述的方法,其中,所述接收运动指示包括:
    接收在所述导航路线上的多个采样点的世界位置;
    并且其中,所述根据所述运动指示生成用于控制所述可移动物体的 控制信号,包括:
    根据所述多个采样点的世界位置生成用于控制所述可移动物体通过所述多个采样点的控制信号。
  20. 根据权利要求18所述的方法,其中,所述接收运动指示包括:
    接收用于控制所述可移动物体的动力设备的控制指令;
    并且其中,所述根据所述运动指示生成用于控制所述可移动物体的控制信号,包括:
    根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。
  21. 根据权利要求18所述的方法,其中,所述接收运动指示包括:
    接收所述导航路线;
    并且其中,所述根据所述运动指示生成用于控制所述可移动物体的控制信号,包括:
    获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;
    根据所述地图位置计算所述多个采样点的世界位置;
    根据所述多个采样点的世界位置生成用于控制所述可移动物体通过多个采样点的控制信号。
  22. 根据权利要求18所述的方法,其中,所述接收运动指示包括:
    接收所述导航路线;
    并且其中,所述根据所述运动指示生成用于控制所述可移动物体的控制信号,包括:
    根据所述导航路线生成控制指令;
    根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。
  23. 根据权利要求18至22中任一项所述的方法,其中,所述方法还包括:
    实时检测所述可移动物体的世界位置;
    发送所述世界位置;
    接收运动修正指示;
    响应于接收到所述运动修正指示,生成用于修正所述可移动物体的运动路线的修正信号。
  24. 一种基于三维地图的导航设备,包括:
    至少一个处理器,单独地或共同地用于:
    获取在所述三维地图中的路线标记;
    根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;
    发送器,用于根据所述导航路线向可移动物体发送运动指示。
  25. 根据权利要求24所述的导航设备,其中,所述至少一个处理器还用于:
    获取所述路线标记的屏幕位置,其中所述屏幕位置包括所述路线标记在屏幕上的二维坐标值和相对于所述屏幕的投影距离;
    根据所述屏幕位置确定所述路线标记的地图位置,所述地图位置包括所述路线标记在所述三维地图中的三维坐标值。
  26. 根据权利要求25所述的导航设备,其中,所述导航设备还包括:
    屏幕,用于显示所述三维地图;
    屏幕传感器,用于检测在所述屏幕上的至少一个触点;
    并且其中,所述至少一个处理器还用于:
    确定所述至少一个触点在所述屏幕中的二维坐标值;
    获取所述至少一个触点相对于所述屏幕的投影距离;
    将所述二维坐标值和所述投影距离确定为所述路线标记的屏幕位置。
  27. 根据权利要求26所述的导航设备,其中所述至少一个触点为用于构成曲线的多个连续的触点。
  28. 根据权利要求26或27所述的导航设备,其中,所述至少一个处理器还用于:
    根据在所述屏幕上的滚动条的数值来获取所述投影距离。
  29. 根据权利要求25所述的导航设备,其中,所述至少一个处理器 还用于:
    获取所述屏幕的虚拟投影相机在所述三维地图中的地图位置以及与所述路线标记的角度;
    根据所述虚拟投影相机的地图位置和角度以及所述屏幕位置计算所述路线标记的地图位置。
  30. 根据权利要求24所述的导航设备,其中,所述至少一个处理器还用于:
    确定所述路线标记与所述特定对象之间的第一距离;
    响应于所述第一距离小于第一安全距离,将所述路线标记调节为与所述特定对象保持所述第一安全距离;
    确定所述导航路线与所述特定对象之间的第二距离;
    响应于所述第二距离小于所述第二安全距离,将所述导航路线调节为与所述特定对象保持所述第二安全距离。
  31. 根据权利要求24或30所述的导航设备,所述特定对象为障碍物或禁飞区。
  32. 根据权利要求24所述的导航设备,其中所述路线标记包括所述可移动物体在所述三维地图中的地图位置,并且其中,所述至少一个处理器还用于:
    获取所述可移动物体的世界位置,所述世界位置包括所述可移动物体的经度、纬度和高度;
    根据所述世界位置计算所述可移动物体的所述地图位置。
  33. 根据权利要求24所述的导航设备,其中,所述至少一个处理器还用于:
    通过去除、修改所述路线标记或者增加另外的路线标记,重新确定所述路线标记;
    根据重新确定的路线标记重新生成所述导航路线。
  34. 根据权利要求24所述的导航设备,其中,所述导航设备还包括:
    存储器,用于将所生成的所述导航路线存储为历史导航路线。
  35. 根据权利要求24所述的导航设备,其中,所述路线标记包括至 少两个航点,并且其中,所述至少一个处理器还用于:
    连接所述至少两个航点以生成所述导航路线。
  36. 根据权利要求24所述的导航设备,其中,所述路线标记包括至少一条曲线,并且其中,所述至少一个处理器还用于:
    将所述至少一条曲线作为所述导航路线或所述导航路线的一部分。
  37. 根据权利要求24所述的导航设备,其中,所述至少一个处理器还用于:
    获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;
    根据所述地图位置计算所述多个采样点的世界位置;
    并且其中,所述发送器还用于将所述多个采样点的世界位置发送给所述可移动物体。
  38. 根据权利要求24所述的导航设备,其中,所述至少一个处理器还用于:
    根据所述导航路线生成用于控制所述可移动物体的动力设备的控制指令;
    并且其中,所述发送器还用于将所述控制指令发送给所述可移动物体。
  39. 根据权利要求24所述的导航设备,其中,所述发送器还用于将所述导航路线发送给所述可移动物体。
  40. 根据权利要求24所述的导航设备,其中,所述导航设备还包括:
    接收器,用于实时获取所述可移动物体的世界位置;
    并且其中,所述至少一个处理器还用于根据所述世界位置计算所述可移动物体在所述三维地图中的地图位置;
    所述发送器还用于响应于所述地图位置偏离所述导航路线,向所述可移动物体发送运动修正指示。
  41. 一种用于控制可移动物体的设备,包括:
    接收器,用于接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;
    至少一个处理器,单独地或共同地用于:
    根据所述运动指示生成用于控制所述可移动物体的控制信号。
  42. 根据权利要求41所述的设备,其中,所述接收器还用于:
    接收在所述导航路线上的多个采样点的世界位置;
    并且其中,所述至少一个处理器还用于:
    根据所述多个采样点的世界位置生成用于控制所述可移动物体通过所述多个采样点的控制信号。
  43. 根据权利要求41所述的设备,其中,所述接收器还用于:
    接收用于控制所述可移动物体的动力设备的控制指令;
    并且其中,所述至少一个处理器还用于:
    根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。
  44. 根据权利要求41所述的设备,其中,所述接收器还用于:
    接收所述导航路线;
    并且其中,所述至少一个处理器还用于:
    获取在所述导航路线上的多个采样点在所述三维地图中的地图位置;
    根据所述地图位置计算所述多个采样点的世界位置;
    根据所述多个采样点的世界位置生成用于控制所述可移动物体通过多个采样点的控制信号。
  45. 根据权利要求41所述的设备,其中,所述接收器还用于:
    接收所述导航路线;
    并且其中,所述至少一个处理器还用于:
    根据所述导航路线生成控制指令;
    根据所述控制指令生成用于控制所述可移动物体的动力设备的控制信号。
  46. 根据权利要求41至45中任一项所述的设备,其中,所述设备还包括:
    位置传感器,用于实时检测所述可移动物体的世界位置;
    发送器,用于发送所述世界位置;
    其中,所述接收器还用于:
    接收运动修正指示;
    并且其中,所述至少一个处理器还用于:
    响应于接收到所述运动修正指示,生成用于修正所述可移动物体的运动路线的修正信号。
  47. 一种存储介质,所述存储介质内存储有指令,当执行所述指令时,实施基于三维地图的导航方法,所述导航方法包括:
    获取在所述三维地图中的路线标记;
    根据所述路线标记生成导航路线,所述导航路线避开所述三维地图中的特定对象;
    根据所述导航路线向可移动物体发送运动指示。
  48. 一种存储介质,所述存储介质内存储有指令,当执行所述指令时,实施用于控制可移动物体的方法,所述方法包括:
    接收运动指示,其中,所述运动指示是基于所述可移动物体在三维地图中的导航路线而生成的;
    根据所述运动指示生成用于控制所述可移动物体的控制信号。
  49. 一种无人飞行器系统,包括:
    用于控制可移动物体的设备,所述设备包括:
    接收器,用于接收运动指示,其中,所述运动指示是基于无人飞行器在三维地图中的导航路线而生成的;
    至少一个处理器,单独地或共同地用于:根据所述运动指示生成用于控制所述无人飞行器的控制信号;
    动力设备,用于根据所述控制信号驱动所述无人飞行器。
PCT/CN2016/105964 2016-11-15 2016-11-15 基于三维地图的导航方法和设备 WO2018090208A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680004275.XA CN107223199A (zh) 2016-11-15 2016-11-15 基于三维地图的导航方法和设备
PCT/CN2016/105964 WO2018090208A1 (zh) 2016-11-15 2016-11-15 基于三维地图的导航方法和设备
US16/391,806 US20190251851A1 (en) 2016-11-15 2019-04-23 Navigation method and device based on three-dimensional map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105964 WO2018090208A1 (zh) 2016-11-15 2016-11-15 基于三维地图的导航方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/391,806 Continuation US20190251851A1 (en) 2016-11-15 2019-04-23 Navigation method and device based on three-dimensional map

Publications (1)

Publication Number Publication Date
WO2018090208A1 true WO2018090208A1 (zh) 2018-05-24

Family

ID=59927911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105964 WO2018090208A1 (zh) 2016-11-15 2016-11-15 基于三维地图的导航方法和设备

Country Status (3)

Country Link
US (1) US20190251851A1 (zh)
CN (1) CN107223199A (zh)
WO (1) WO2018090208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083633A (zh) * 2019-12-12 2020-04-28 华为技术有限公司 移动终端定位系统及其建立方法、移动终端的定位方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890915B2 (en) * 2016-12-06 2021-01-12 Nissan North America, Inc. Solution path overlay interfaces for autonomous vehicles
CN109074093B (zh) * 2017-12-18 2021-11-16 深圳市大疆创新科技有限公司 一种无人机的航线规划方法、控制设备及存储介质
EP3531222A1 (en) * 2017-12-26 2019-08-28 Autel Robotics Co., Ltd. Path planning method and device for unmanned aerial vehicle, and flight management method and device
CN108319264A (zh) * 2017-12-28 2018-07-24 北京臻迪科技股份有限公司 航行控制方法、装置
US10689110B2 (en) * 2018-02-12 2020-06-23 Wipro Limited Method and system for performing inspection and maintenance tasks of three-dimensional structures using drones
WO2019174053A1 (zh) * 2018-03-16 2019-09-19 深圳市大疆创新科技有限公司 可移动平台及其控制方法
CN110879067A (zh) * 2018-09-06 2020-03-13 江苏荣耀天翃航空科技有限公司 基于大数据的全自动航迹获取方法、装置及地面站
CN112154396A (zh) * 2019-10-09 2020-12-29 深圳市大疆创新科技有限公司 返航控制方法、控制终端及系统
WO2021134607A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 无人机的飞行控制方法、设备、系统和计算机可读介质
CN111680817B (zh) * 2020-04-23 2024-03-19 平安国际智慧城市科技股份有限公司 基于路线生成的跨障车辆调用方法、装置和计算机设备
CN113741490A (zh) * 2020-05-29 2021-12-03 广州极飞科技股份有限公司 一种巡检方法、装置、飞行器及存储介质
CN112327920B (zh) * 2020-11-16 2023-07-14 国网新疆电力有限公司检修公司 一种无人机自主避障巡检路径规划方法及装置
US20240044651A1 (en) * 2020-12-18 2024-02-08 Safe Ops Systems, Inc. Systems and methods for dispatching and navigating an unmanned aerial vehicle
CN113325135A (zh) * 2021-05-27 2021-08-31 深圳市中博科创信息技术有限公司 无人机路径规划方法、装置、计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793784A (zh) * 2004-12-22 2006-06-28 株式会社电装 导航系统
CN103499346A (zh) * 2013-09-29 2014-01-08 大连理工大学 一种小型无人机地面站三维导航地图实现方法
CN104850134A (zh) * 2015-06-12 2015-08-19 北京中飞艾维航空科技有限公司 一种无人机高精度自主避障飞行方法
CN105045277A (zh) * 2015-07-08 2015-11-11 西安电子科技大学 一种多无人机操控信息显示系统
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN105571588A (zh) * 2016-03-10 2016-05-11 赛度科技(北京)有限责任公司 一种无人机三维空中航路地图构建及其航路显示方法
CN105865454A (zh) * 2016-05-31 2016-08-17 西北工业大学 一种基于实时在线地图生成的无人机导航方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506822B1 (ko) * 2003-11-08 2005-08-10 엘지전자 주식회사 3차원 다각형의 화면 표시방법
US20140316614A1 (en) * 2012-12-17 2014-10-23 David L. Newman Drone for collecting images and system for categorizing image data
CN104035446B (zh) * 2014-05-30 2017-08-25 深圳市大疆创新科技有限公司 无人机的航向生成方法和系统
CN105159297B (zh) * 2015-09-11 2018-02-13 南方电网科学研究院有限责任公司 输电线路无人机巡检避障系统与方法
CN105955290B (zh) * 2016-04-27 2019-05-24 腾讯科技(深圳)有限公司 无人飞行器控制方法及装置
CN106054920A (zh) * 2016-06-07 2016-10-26 南方科技大学 一种无人机飞行路径规划方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793784A (zh) * 2004-12-22 2006-06-28 株式会社电装 导航系统
CN103499346A (zh) * 2013-09-29 2014-01-08 大连理工大学 一种小型无人机地面站三维导航地图实现方法
CN104850134A (zh) * 2015-06-12 2015-08-19 北京中飞艾维航空科技有限公司 一种无人机高精度自主避障飞行方法
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN105045277A (zh) * 2015-07-08 2015-11-11 西安电子科技大学 一种多无人机操控信息显示系统
CN105571588A (zh) * 2016-03-10 2016-05-11 赛度科技(北京)有限责任公司 一种无人机三维空中航路地图构建及其航路显示方法
CN105865454A (zh) * 2016-05-31 2016-08-17 西北工业大学 一种基于实时在线地图生成的无人机导航方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083633A (zh) * 2019-12-12 2020-04-28 华为技术有限公司 移动终端定位系统及其建立方法、移动终端的定位方法
CN111083633B (zh) * 2019-12-12 2021-06-22 华为技术有限公司 移动终端定位系统及其建立方法、移动终端的定位方法

Also Published As

Publication number Publication date
CN107223199A (zh) 2017-09-29
US20190251851A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018090208A1 (zh) 基于三维地图的导航方法和设备
US11787543B2 (en) Image space motion planning of an autonomous vehicle
US20220234733A1 (en) Aerial Vehicle Smart Landing
AU2020289790B2 (en) Drop-off location planning for delivery vehicle
US20210358315A1 (en) Unmanned aerial vehicle visual point cloud navigation
US20200019189A1 (en) Systems and methods for operating unmanned aerial vehicle
US20220019248A1 (en) Objective-Based Control Of An Autonomous Unmanned Aerial Vehicle
US20190250601A1 (en) Aircraft flight user interface
CN105556408B (zh) 一种飞行器的飞行控制方法及相关装置
CN104854428B (zh) 传感器融合
US10768623B2 (en) Drone path planning
US20210278834A1 (en) Method for Exploration and Mapping Using an Aerial Vehicle
JP2023076166A (ja) 探索装置、自律探索システム、監視装置、探索方法、およびプログラム
JP2021047738A (ja) 移動体、飛行経路制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921699

Country of ref document: EP

Kind code of ref document: A1