WO2024060631A1 - 车辆以及车辆的控制方法 - Google Patents

车辆以及车辆的控制方法 Download PDF

Info

Publication number
WO2024060631A1
WO2024060631A1 PCT/CN2023/092313 CN2023092313W WO2024060631A1 WO 2024060631 A1 WO2024060631 A1 WO 2024060631A1 CN 2023092313 W CN2023092313 W CN 2023092313W WO 2024060631 A1 WO2024060631 A1 WO 2024060631A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
mode
drive
driving mode
Prior art date
Application number
PCT/CN2023/092313
Other languages
English (en)
French (fr)
Inventor
卢军
于长虹
孙焕丽
李黎黎
南海
陈蓓娜
岳振东
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024060631A1 publication Critical patent/WO2024060631A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to the field of vehicle technology, specifically, to a vehicle and a vehicle control method. This application is required to be submitted to the State Intellectual Property Office of China on September 21, 2022. The application number is 202211152050.2, and the invention is titled “Vehicle and "Vehicle Control Method” patent application priority.
  • the drive motor system is the main actuator of the vehicle. Its characteristics determine the main performance indicators of the vehicle and directly affect the vehicle's power, economy and user's driving experience.
  • Existing electric drive control methods for new energy vehicles mainly adjust the drive motor output in real time based on various instructions issued by the driver's intention to achieve the vehicle's idling, forward, reverse, parking, energy recovery, and slope parking functions. , but these operations require human instructions to complete. If people do not send corresponding instructions in time, it can easily cause problems.
  • the main purpose of this application is to provide a vehicle and a vehicle control method to solve the problem of poor drivability and controllability in the existing technology of new energy vehicles under electric drive non-torque vector control.
  • a vehicle including: a front drive system, the front drive system includes a front wheel of the vehicle and a front drive motor, wherein the front drive motor can be selectively disconnected from the front wheel of the vehicle through the front transmission half shaft. and connected to each other; the rear drive system is controlled independently from the front drive system.
  • the rear drive system includes the rear wheels of the vehicle and the rear drive motor. The rear drive motor maintains a constant connection with the rear wheel of the vehicle through the rear transmission half shaft.
  • each front wheel of the vehicle is provided with a front drive motor.
  • each rear wheel of the vehicle is provided with a rear drive motor.
  • the two front drive motors are independently controlled,
  • the two rear-drive motors are controlled independently.
  • the output shafts of the two front drive motors are arranged asynchronously.
  • a front reducer is provided between the front wheel of each vehicle and the corresponding front drive motor
  • a rear reducer is provided between the rear wheel of each vehicle and the corresponding rear drive motor
  • a vehicle control method is provided.
  • the method is used to control the above-mentioned vehicle.
  • the method includes the following steps: receiving a switching instruction, wherein the switching instruction is used to switch the driving mode of the vehicle, and the driving mode of the vehicle includes: Four-wheel drive mode, two-wheel drive mode; based on the current vehicle's drive mode, determine the vehicle's wheel speed information in the current drive mode; determine whether to respond to the switching command based on the wheel speed information.
  • the wheel speed information of the vehicle in the current driving mode determines whether to respond to the switching instruction based on the wheel speed information, including: when the driving mode of the current vehicle is the four-wheel drive mode, And when the difference between the speed of the current vehicle and the speed limit that allows switching is greater than 0, the speed of the current vehicle is forcibly reduced until the difference between the speed of the current vehicle and the speed limit that allows switching is less than or equal to -10, and then the switching command is responded to. Execute two-wheel drive mode.
  • the front-wheel drive system is controlled to disconnect from the front wheels of the vehicle, and enter Feedback mode, where the feedback mode includes determining whether the front drive motor in the front drive system has completed state switching.
  • entering the feedback mode includes: obtaining the status information of the two front drive motors in the front drive system; judging whether the two front drive motors have completed the status switching based on the status information; and maintaining the current drive when it is determined that both front drive motors have completed the status switching. mode; if only one of the two front-drive motors completes the status switch, it will exit the current drive mode, maintain the initial drive mode, and respond to the switch command again to switch to the target drive mode; among which, after re-responding to the switch command to switch to During the process of entering the target driving mode, the number of exits from the current driving mode within the preset time period is obtained. When the number of exits from the current driving mode meets the preset number, the switch command is responded to after a first preset time interval.
  • the method includes: when the driving mode of the current vehicle is a two-wheel drive mode, and when the driving mode of the current vehicle is a four-wheel drive mode, forcibly reducing the speed of the current vehicle until the speed of the current vehicle is consistent with the allowed switching speed. After the difference in speed limit is less than or equal to -5, respond to the switching command to execute the four-wheel drive mode. If the difference between the current vehicle speed and the speed limit that allows switching is less than or equal to 0, control the front-wheel drive system to connect with the front wheels of the vehicle. and enter feedback mode.
  • the front drive motor is selectively disconnected and connected to the front wheel of the vehicle through the front transmission half shaft, and the rear drive system and the front drive system are independently controlled, which improves the energy efficiency of new energy vehicles and reduces the cost of new energy vehicles.
  • the complexity of the energy vehicle configuration allows the front-wheel drive system and the rear-wheel drive system to be controlled independently, which solves the problem of poor drivability and controllability in the existing technology of new energy vehicles under electric drive non-torque vector control.
  • Figure 1 shows a schematic structural diagram of a first embodiment of a vehicle according to the present application
  • Figure 2 shows a flow chart of vehicle front-wheel drive control according to the present application
  • Figure 3 shows a flow chart of vehicle rear drive control according to the present application
  • Figure 4 shows a flow chart of a first embodiment of a vehicle control method according to the present application
  • FIG. 5 shows a flow chart of a second embodiment of a vehicle control method according to the present application.
  • FIG. 10 the above-mentioned drawings include the following reference signs: 10. Front-wheel drive system; 11. Vehicle front wheels; 12. Front-wheel drive motor; 20. Front transmission half shaft; 30. Rear-drive system; 31. Vehicle rear wheels; 32. Rear-drive motor; 40. Rear transmission half shaft; 50. Front reducer; 60. Rear reducer.
  • a vehicle As shown in FIGS. 1 to 3 , according to specific embodiments of the present application, a vehicle is provided.
  • the vehicle includes: a front drive system 10 and a rear drive system 30 .
  • the front drive system 10 includes a vehicle front wheel 11 and a front drive motor 12 , wherein the front drive motor 12 is selectively disconnected and connected to the vehicle front wheel 11 through a front transmission half shaft 20 .
  • the rear drive system 30 is controlled independently from the front drive system 10 .
  • the rear drive system 30 includes the rear wheels 31 of the vehicle and a rear drive motor 32 .
  • the rear drive motor 32 is constantly connected to the rear wheels 31 of the vehicle through the rear transmission half shaft 40 .
  • the front drive motor is selectively disconnected and connected to the front wheel of the vehicle through the front transmission half shaft, and the rear drive system and the front drive system are independently controlled, which improves the energy efficiency of the new energy vehicle. , reduces the complexity of the new energy vehicle configuration, can independently control the front drive system and the rear drive system, and solves the problem of poor drivability and controllability in the existing technology of new energy vehicle electric drive non-torque vector control.
  • each front wheel 11 of the vehicle is provided with a front drive motor 12.
  • Each rear wheel 31 of the vehicle is provided with a rear drive motor 32.
  • the front drive motor 12 is controlled independently, and the two rear drive motors 32 are controlled independently.
  • the structures and performance parameters of the two front motors are completely the same, but the control methods are different.
  • the structure and performance parameters of the two rear motors are exactly the same, but the control methods are different. This setting can independently control each front-wheel drive system or rear-wheel drive system, improving the driving controllability under electric drive non-torque vector control.
  • the output shafts of the two front drive motors 12 are arranged non-axially.
  • the two front motors are not coaxial, and the left and right torques are decoupled from the rotational speed. This setting can control each motor independently, improving the energy efficiency of the vehicle.
  • each motor and its nearest reducer form an electric drive system.
  • the new energy vehicle can realize the function switching between rear drive and front drive. This setting improves the energy efficiency of the vehicle, and the drivability and handling under electric drive non-torque vector control are also improved.
  • a vehicle control method is also provided.
  • the method is used to control the above-mentioned vehicle. As shown in Figure 5, the method includes the following steps:
  • Step S01 Receive a switching instruction, where the switching instruction is used to switch the driving mode of the vehicle.
  • the driving mode of the vehicle includes a four-wheel drive mode and a two-wheel drive mode;
  • Step S02 based on the current driving mode of the vehicle, determine the wheel speed information of the vehicle in the current driving mode;
  • Step S03 Determine whether to respond to the switching command based on wheel speed information.
  • the vehicle's driving mode is switched by receiving a switching instruction, and the vehicle's wheel speed information is determined based on the current vehicle driving mode. Based on the wheel speed information, it is determined whether to respond to the switching instruction, thereby improving the reliability of the switching control between the four-wheel drive mode and the two-wheel drive mode.
  • Figure 4 shows a flow chart of another specific embodiment of a vehicle control method according to the present application.
  • the method includes performing mode judgment based on signal input and executing corresponding actions. Specifically, mode judgment is performed based on the customer's mode switching signal, which can be divided into mode judgment for switching from four-wheel drive to two-wheel drive, or from two-wheel drive to four-wheel drive.
  • the specific process of action execution is as follows: define the current speed of the vehicle as TS, and the speed limit that allows switching is TA. When the current state is switching from four-wheel drive to two-wheel drive, if TS-TA>0, the vehicle speed is forcibly reduced until After TS-TA ⁇ -10, it re-enters the execution action mode.
  • TS-TA ⁇ it directly performs the front electric drive disconnection action, completes the switch from four-wheel drive to two-wheel drive action, and enters the feedback mode.
  • TS-TA>0 the vehicle speed will be forcibly reduced until TS-TA ⁇ -5 and then re-enter the execution action mode.
  • TS-TA ⁇ 0 proceed directly to the previous
  • the electric drive connection action is completed to complete the switching from two-wheel drive to four-wheel drive and enter the feedback mode.
  • the above-mentioned action execution process is continued. Set like this It can switch between four-wheel drive or two-wheel drive according to the current status, improving vehicle control and greatly improving the vehicle's energy efficiency.
  • the wheel speed information of the vehicle in the current driving mode determines whether to respond to the switching command based on the wheel speed information, including: when the driving mode of the current vehicle is the four-wheel drive mode, and the current vehicle
  • the speed of the current vehicle is forcibly reduced until the difference between the speed of the current vehicle and the speed limit that allows switching is less than or equal to -10, then the switch command is executed in response to the two-wheel drive model.
  • TS-TA>0 the vehicle speed is forcibly reduced until TS-TA ⁇ -10 and then re-enters the execution action mode.
  • This setting can effectively control the vehicle to switch from four-wheel drive to two-wheel drive according to the vehicle speed and actual conditions, ensuring efficient use of vehicle energy.
  • the front drive system 10 is controlled to be disconnected from the front wheels 11 of the vehicle, and enter the feedback mode, wherein the feedback mode includes determining whether the front drive motor 12 in the front drive system 10 has completed the state switching.
  • the feedback mode includes determining whether the front drive motor 12 in the front drive system 10 has completed the state switching.
  • entering the feedback mode includes: obtaining status information of the two front drive motors 12 in the front drive system 10; judging whether the two front drive motors 12 have completed state switching based on the status information. When it is determined that both front drive motors 12 have completed the state switch , maintain the current drive mode; if only one of the two front drive motors 12 completes the state switch, exit the current drive mode, maintain the initial drive mode, and respond to the switching command again to switch to the target drive mode; where, after re- In the process of responding to the switching command to switch to the target driving mode, the number of exits from the current driving mode within the preset time period is obtained. When the number of exits from the current driving mode meets the preset number of times, the switch is responded to after a first preset time interval.
  • the current driving mode is exited, the initial driving mode is maintained, and the switching command is re-responded to switch to the target driving mode; wherein, after re-responding to the switching command to switch to the target driving mode,
  • the mode process the number of exits from the current driving mode within a preset time period is obtained.
  • the switch command will be responded to after a second preset time interval.
  • the preset time is 30s
  • the second preset time is 5min. This setting ensures the monitoring of vehicle drive conversion, ensures the switching between four-wheel drive and two-wheel drive, improves the energy efficiency of the vehicle, and also improves the drivability and controllability under electric drive non-torque vector control.
  • the method includes: when the driving mode of the current vehicle is a two-wheel drive mode, and when the driving mode of the current vehicle is a four-wheel drive mode, forcibly reducing the speed of the current vehicle until the speed of the current vehicle is consistent with the allowed switching speed. After the difference in speed limit is less than or equal to -5, respond to the switching command to execute the four-wheel drive mode. If the difference between the current vehicle speed and the speed limit that allows switching is less than or equal to 0, control the front drive system 10 and the vehicle front wheels 11 Connect and enter feedback mode. In this embodiment, switching from two-wheel drive to four-wheel drive: if TS-TA>0, the vehicle speed is forcibly reduced until TS-TA ⁇ -5 and then re-enter execution. action mode. If TS-TA ⁇ 0, directly perform the front electric drive connection action and enter the feedback mode. This setting ensures the monitoring and control of vehicle driving, and can switch the vehicle from two-wheel drive to four-wheel drive according to actual conditions, improving the energy efficiency of the vehicle.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Abstract

本申请提供了一种车辆以及车辆的控制方法。车辆包括:前驱系统,前驱系统包括车辆前轮和前驱电机,其中,前驱电机通过前传动半轴与车辆前轮可选择断开和连接地设置;后驱系统,后驱系统与前驱系统独立地控制,后驱系统包括车辆后轮和后驱电机,后驱电机通过后传动半轴与车辆后轮保持常连接。本申请将前驱电机通过前传动半轴与车辆前轮可选择断开和连接地设置,可以单独地控制前驱系统与后驱系统,解决了现有技术中新能源汽车电驱非扭矩矢量控制下,驾驶性和操控性差的问题。

Description

车辆以及车辆的控制方法 技术领域
本申请涉及车辆技术领域,具体而言,涉及一种车辆以及车辆的控制方法,本申请要求于2022年9月21日提交至中国国家知识产权局、申请号为202211152050.2、发明名称为“车辆以及车辆的控制方法”的专利申请的优先权。
背景技术
驱动电机系统是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。现有的新能源汽车电驱控制方法主要是根据驾驶员意图发出的各种指令,来实时调整驱动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能,但是这些操作都需要人的指令才能完成,如果人没有及时发送对应的指令,很容易造成问题。
发明内容
本申请的主要目的在于提供一种车辆以及车辆的控制方法,以解决现有技术中新能源汽车电驱非扭矩矢量控制下,驾驶性和操控性差的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种车辆,包括:前驱系统,前驱系统包括车辆前轮和前驱电机,其中,前驱电机通过前传动半轴与车辆前轮可选择断开和连接地设置;后驱系统,后驱系统与前驱系统独立地控制,后驱系统包括车辆后轮和后驱电机,后驱电机通过后传动半轴与车辆后轮保持常连接。
进一步地,车辆前轮为两个,各车辆前轮对应设置有一个前驱电机,车辆后轮为两个,各车辆后轮对应设置有一个后驱电机,其中,两个前驱电机独立地控制,两个后驱电机独立地控制。
进一步地,两个前驱电机的输出轴不同轴地设置。
进一步地,各车辆前轮与对应的前驱电机之间均设置有一个前部减速器,各车辆后轮与对应的后驱电机之间均设置有一个后部减速器。
根据本申请的另一方面,提供了一种车辆的控制方法,方法用于控制上述车辆,方法包括以下步骤:接收切换指令,其中,切换指令用于切换车辆的驱动模式,车辆的驱动模式包括四驱模式、两驱模式;基于当前车辆的驱动模式,确定当前驱动模式下车辆的车轮转速信息;基于车轮转速信息确定是否响应切换指令。
进一步地,基于当前车辆的驱动模式,确定当前驱动模式下车辆的车轮转速信息,基于车轮转速信息确定是否响应切换指令,包括:在当前车辆的驱动模式为四驱模式的情况下, 且当前车辆的速度与允许切换的速度限制之差大于0的情况下,强制降低当前车辆的速度,直至当前车辆的速度与允许切换的速度限制之差小于或等于-10后,响应切换指令以执行两驱模式。
进一步地,在当前车辆的驱动模式为四驱模式的情况下,且当前车辆的速度与允许切换的速度限制之差小于或等于0的情况下,控制前驱系统与车辆前轮断开,并进入反馈模式,其中,反馈模式包括判断前驱系统中的前驱电机是否完成状态切换。
进一步地,进入反馈模式包括:获取前驱系统中两个前驱电机的状态信息;基于状态信息判断两个前驱电机是否完成状态切换,在确定两个前驱电机均完成状态切换的情况下,保持当前驱动模式;如果两个前驱电机中仅有一个前驱电机完成状态切换,则退出当前驱动模式,保持初始驱动模式,并重新响应切换指令以切换至目标驱动模式;其中,在重新响应切换指令以切换至目标驱动模式的过程中,获取预设时间段内退出当前驱动模式的次数,在退出当前驱动模式的次数满足预设次数的情况下,间隔第一预设时长再响应切换指令。
进一步地,如果两个前驱电机没有一个完成状态切换,则退出当前驱动模式,保持初始驱动模式,并重新响应切换指令以切换至目标驱动模式;其中,在重新响应切换指令以切换至目标驱动模式的过程中,获取预设时间段内退出当前驱动模式的次数,在退出当前驱动模式的次数满足预设次数的情况下,间隔第二预设时长后再响应切换指令。
进一步地,方法包括:在当前车辆的驱动模式为两驱模式的情况下,在当前车辆的驱动模式为四驱模式的情况下,强制降低当前车辆的速度,直至当前车辆的速度与允许切换的速度限制之差小于或等于-5后,响应切换指令以执行四驱模式,若当前车辆的速度与允许切换的速度限制之差小于或等于0的情况下,控制前驱系统与车辆前轮连接,并进入反馈模式。
应用本申请的技术方案,将前驱电机通过前传动半轴与车辆前轮可选择断开和连接地设置,并且后驱系统与前驱系统分别独立控制,提高了新能源汽车能量效率、降低了新能源汽车构型的复杂性、可以单独地控制前驱系统与后驱系统,解决了现有技术中新能源汽车电驱非扭矩矢量控制下,驾驶性和操控性差的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的一种车辆的第一实施例的结构示意图;
图2示出了根据本申请的一种车辆前驱控制的流程图;
图3示出了根据本申请的一种车辆后驱控制的流程图;
图4示出了根据本申请的一种车辆的控制方法的第一实施例的流程图;
图5示出了根据本申请的一种车辆的控制方法的第二实施例的流程图。
其中,上述附图包括以下附图标记:
10、前驱系统;11、车辆前轮;12、前驱电机;
20、前传动半轴;
30、后驱系统;31、车辆后轮;32、后驱电机;
40、后传动半轴;
50、前部减速器;
60、后部减速器。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图3所示,根据本申请的具体实施例,提供了一种车辆。
具体地,车辆包括:前驱系统10与后驱系统30。前驱系统10包括车辆前轮11和前驱电机12,其中,前驱电机12通过前传动半轴20与车辆前轮11可选择断开和连接地设置。后驱系统30与前驱系统10独立地控制,后驱系统30包括车辆后轮31和后驱电机32,后驱电机32通过后传动半轴40与车辆后轮31保持常连接。
本实施例中,如图1所示,将前驱电机通过前传动半轴与车辆前轮可选择断开和连接地设置,并且后驱系统与前驱系统分别独立控制,提高了新能源汽车能量效率、降低了新能源汽车构型的复杂性、可以单独地控制前驱系统与后驱系统,解决了现有技术中新能源汽车电驱非扭矩矢量控制下,驾驶性和操控性差的问题。
进一步地,车辆前轮11为两个,各车辆前轮11对应设置有一个前驱电机12,车辆后轮31为两个,各车辆后轮31对应设置有一个后驱电机32,其中,两个前驱电机12独立地控制,两个后驱电机32独立地控制。本实施例中,前部两个电机结构、性能参数完全一致,控制方法不同。后部两个电机结构、性能参数完全一致,控制方法不同。这样设置可以单独地操控各前驱系统或者后驱系统,提高了电驱非扭矩矢量控制下的驾驶性操控性。
具体地,两个前驱电机12的输出轴不同轴地设置。本实施例中前部两个电机不同轴,左右扭矩与转速解耦。这样设置可以单独控制各电机,提高了车辆的能量效率。
进一步地,各车辆前轮11与对应的前驱电机12之间均设置有一个前部减速器50,各车辆后轮31与对应的后驱电机32之间均设置有一个后部减速器60。本实施例中每个电机与距离其最近的减速器构成电驱系统。并且可以根据前部电驱的断开与连接状态,新能源汽车可以实现后驱与前驱的功能切换。这样设置提高了车辆的能量效率,电驱非扭矩矢量控制下驾驶性操控性也得到了提升。
在本申请的另一实施例中,还提供了一种车辆的控制方法,方法用于控制上述车辆,如图5所示,方法包括以下步骤:
步骤S01,接收切换指令,其中,切换指令用于切换车辆的驱动模式,车辆的驱动模式包括四驱模式、两驱模式;
步骤S02,基于当前车辆的驱动模式,确定当前驱动模式下车辆的车轮转速信息;
步骤S03,基于车轮转速信息确定是否响应切换指令。
在本实施例中,通过接收切换指令来切换车辆的驱动模式,再根据当前车辆驱动模式确定车辆的车轮转速信息,基于车轮转速信息确定是否响应切换指令,提高了四驱模式与两驱模式之间的切换控制的可靠性。
如图4所示为根据本申请的车辆的控制方法的另一个具体实施例的流程图,方法包括根据信号输入进行模式判断,并执行相应动作。具体地,根据客户的模式切换信号进行模式判断,可以分为四驱切换两驱、两驱切换四驱的模式判断。动作执行的具体过程如下:定义车辆当前的速度为TS,允许切换的速度限制为TA,在当前为由四驱切换为两驱的状态的情况下,若TS-TA>0,强制降低车速直到TS-TA≤-10后重新进入执行动作模式,若TS-TA≤0,直接进行前部电驱断开动作,完成四驱切换为两驱动作,进入反馈模式。在当前为由两驱切换为四驱的状态的情况下,若TS-TA>0,强制降低车速直到TS-TA≤-5后重新进入执行动作模式,若TS-TA≤0,直接进行前部电驱连接动作,完成两驱切换为四驱动作,进入反馈模式,在四驱切换为两驱、两驱切换为四驱的动作均完成后,继续执行上述的动作执行过程。这样设置 可根据当前状态进行四驱或者两驱的切换,提高对车辆的控制,使得车辆的能量效率也大幅度提高。
进一步地,基于当前车辆的驱动模式,确定当前驱动模式下车辆的车轮转速信息,基于车轮转速信息确定是否响应切换指令,包括:在当前车辆的驱动模式为四驱模式的情况下,且当前车辆的速度与允许切换的速度限制之差大于0的情况下,强制降低当前车辆的速度,直至当前车辆的速度与允许切换的速度限制之差小于或等于-10后,响应切换指令以执行两驱模式。本实施例中,当TS-TA>0,强制降低车速直到TS-TA≤-10后重新进入执行动作模式。这样设置可根据车辆速度与现实情况,可以有效地控制车辆进行四驱向两驱的切换,保证了车辆能量的效率利用。
进一步地,在当前车辆的驱动模式为四驱模式的情况下,且当前车辆的速度与允许切换的速度限制之差小于或等于0的情况下,控制前驱系统10与车辆前轮11断开,并进入反馈模式,其中,反馈模式包括判断前驱系统10中的前驱电机12是否完成状态切换。本实施例中,当TS-TA≤0,直接进行前部电驱断开动作,进入反馈模式。这样设置可根据车辆速度与现实情况,可以有效地控制车辆进行四驱向两驱的切换,保证了车辆能量的效率利用。
进一步地,进入反馈模式包括:获取前驱系统10中两个前驱电机12的状态信息;基于状态信息判断两个前驱电机12是否完成状态切换,在确定两个前驱电机12均完成状态切换的情况下,保持当前驱动模式;如果两个前驱电机12中仅有一个前驱电机12完成状态切换,则退出当前驱动模式,保持初始驱动模式,并重新响应切换指令以切换至目标驱动模式;其中,在重新响应切换指令以切换至目标驱动模式的过程中,获取预设时间段内退出当前驱动模式的次数,在退出当前驱动模式的次数满足预设次数的情况下,间隔第一预设时长再响应切换指令。本实施例中,若仅有一个前驱电驱均完成状态切换(包括四驱切换两驱、两驱切换四驱),则另一个前驱电驱也退出状态切换,保持原有状态,重新进入执行动作模式;如果30s内执行三次均退出则无法进行状态切换,等待5min之后可以再次请求。这样设置使得两个前驱电机可以单独控制,保证了车辆的能量利用效率,也提高了车辆的操控性。
进一步地,如果两个前驱电机12没有一个完成状态切换,则退出当前驱动模式,保持初始驱动模式,并重新响应切换指令以切换至目标驱动模式;其中,在重新响应切换指令以切换至目标驱动模式的过程中,获取预设时间段内退出当前驱动模式的次数,在退出当前驱动模式的次数满足预设次数的情况下,间隔第二预设时长后再响应切换指令。本实施例中预设时间为30s,第二预设时间为5min。这样设置保证了对车辆驱动转换的监控,确保了四驱与两驱的切换,提高了车辆能量效率的提高,也使得电驱非扭矩矢量控制下驾驶性和操控性得到提高。
进一步地,方法包括:在当前车辆的驱动模式为两驱模式的情况下,在当前车辆的驱动模式为四驱模式的情况下,强制降低当前车辆的速度,直至当前车辆的速度与允许切换的速度限制之差小于或等于-5后,响应切换指令以执行四驱模式,若当前车辆的速度与允许切换的速度限制之差小于或等于0的情况下,控制前驱系统10与车辆前轮11连接,并进入反馈模式。本实施例中,两驱切换四驱:若TS-TA>0,强制降低车速直到TS-TA≤-5后重新进入执行 动作模式。若TS-TA≤0,直接进行前部电驱连接动作,进入反馈模式。这样设置保证了对车辆驱动的监控与控制,可根据实际情况对车辆进行两驱向四驱的切换,提高了车辆的能量效率。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种车辆,其特征在于,包括:
    前驱系统(10),所述前驱系统(10)包括车辆前轮(11)和前驱电机(12),其中,所述前驱电机(12)通过前传动半轴(20)与所述车辆前轮(11)可选择断开和连接地设置;
    后驱系统(30),所述后驱系统(30)与所述前驱系统(10)独立地控制,所述后驱系统(30)包括车辆后轮(31)和后驱电机(32),所述后驱电机(32)通过后传动半轴(40)与所述车辆后轮(31)保持常连接。
  2. 根据权利要求1所述的车辆,其特征在于,所述车辆前轮(11)为两个,各所述车辆前轮(11)对应设置有一个所述前驱电机(12),所述车辆后轮(31)为两个,各所述车辆后轮(31)对应设置有一个所述后驱电机(32),其中,两个所述前驱电机(12)独立地控制,两个所述后驱电机(32)独立地控制。
  3. 根据权利要求2所述的车辆,其特征在于,两个所述前驱电机(12)的输出轴不同轴地设置。
  4. 根据权利要求2所述的车辆,其特征在于,各所述车辆前轮(11)与对应的所述前驱电机(12)之间均设置有一个前部减速器(50),各所述车辆后轮(31)与对应的所述后驱电机(32)之间均设置有一个后部减速器(60)。
  5. 一种车辆的控制方法,所述方法用于控制权利要求1至4中任一项所述车辆,其特征在于,所述方法包括以下步骤:
    接收切换指令,其中,所述切换指令用于切换车辆的驱动模式,所述车辆的驱动模式包括四驱模式、两驱模式;
    基于当前车辆的所述驱动模式,确定当前所述驱动模式下所述车辆的车轮转速信息;
    基于所述车轮转速信息确定是否响应所述切换指令。
  6. 根据权利要求5所述的方法,其特征在于,基于当前车辆的所述驱动模式,确定当前所述驱动模式下所述车辆的车轮转速信息,基于所述车轮转速信息确定是否响应所述切换指令,包括:
    在当前车辆的驱动模式为四驱模式的情况下,且当前车辆的速度与允许切换的速度限制之差大于0的情况下,强制降低当前车辆的速度,直至当前车辆的速度与允许切换的速度限制之差小于或等于-10后,响应所述切换指令以执行所述两驱模式。
  7. 根据权利要求6所述的方法,其特征在于,在当前车辆的驱动模式为四驱模式的情况下,且当前车辆的速度与允许切换的速度限制之差小于或等于0的情况下,控制前驱系统(10) 与车辆前轮(11)断开,并进入反馈模式,其中,所述反馈模式包括判断所述前驱系统(10)中的前驱电机(12)是否完成状态切换。
  8. 根据权利要求7所述的方法,其特征在于,进入所述反馈模式包括:
    获取所述前驱系统(10)中两个所述前驱电机(12)的状态信息;
    基于所述状态信息判断两个所述前驱电机(12)是否完成所述状态切换,在确定两个所述前驱电机(12)均完成所述状态切换的情况下,保持当前驱动模式;
    如果两个所述前驱电机(12)中仅有一个所述前驱电机(12)完成所述状态切换,则退出当前驱动模式,保持初始驱动模式,并重新响应所述切换指令以切换至目标驱动模式;
    其中,在重新响应所述切换指令以切换至目标驱动模式的过程中,获取预设时间段内退出当前驱动模式的次数,在退出当前驱动模式的次数满足预设次数的情况下,间隔第一预设时长再响应所述切换指令。
  9. 根据权利要求8所述的方法,其特征在于,
    如果两个所述前驱电机(12)没有一个完成所述状态切换,则退出当前驱动模式,保持初始驱动模式,并重新响应所述切换指令以切换至目标驱动模式;
    其中,在重新响应所述切换指令以切换至目标驱动模式的过程中,获取预设时间段内退出当前驱动模式的次数,在退出当前驱动模式的次数满足预设次数的情况下,间隔第二预设时长后再响应所述切换指令。
  10. 根据权利要求7所述的方法,其特征在于,所述方法包括:
    在当前车辆的驱动模式为两驱模式的情况下,在当前车辆的驱动模式为四驱模式的情况下,强制降低当前车辆的速度,直至当前车辆的速度与允许切换的速度限制之差小于或等于-5后,响应所述切换指令以执行所述四驱模式,若当前车辆的速度与允许切换的速度限制之差小于或等于0的情况下,控制所述前驱系统(10)与所述车辆前轮(11)连接,并进入所述反馈模式。
PCT/CN2023/092313 2022-09-21 2023-05-05 车辆以及车辆的控制方法 WO2024060631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211152050.2 2022-09-21
CN202211152050.2A CN115416662A (zh) 2022-09-21 2022-09-21 车辆以及车辆的控制方法

Publications (1)

Publication Number Publication Date
WO2024060631A1 true WO2024060631A1 (zh) 2024-03-28

Family

ID=84204108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092313 WO2024060631A1 (zh) 2022-09-21 2023-05-05 车辆以及车辆的控制方法

Country Status (2)

Country Link
CN (1) CN115416662A (zh)
WO (1) WO2024060631A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115416662A (zh) * 2022-09-21 2022-12-02 中国第一汽车股份有限公司 车辆以及车辆的控制方法
CN116638950A (zh) * 2023-06-15 2023-08-25 中国第一汽车股份有限公司 四驱动力系统、车辆及车辆的控制方法
CN116749743A (zh) * 2023-06-15 2023-09-15 中国第一汽车股份有限公司 四驱动力系统、车辆及车辆的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084223A (ja) * 2009-10-16 2011-04-28 Toyota Motor Corp 左右独立駆動車両におけるクラッチ制御装置
CN204055302U (zh) * 2014-01-30 2014-12-31 比亚迪股份有限公司 用于车辆的动力传动系统及具有其的车辆
CN205086666U (zh) * 2015-08-31 2016-03-16 北汽福田汽车股份有限公司 一种混合动力系统及混合动力车辆
CN108656938A (zh) * 2017-03-29 2018-10-16 郑州宇通客车股份有限公司 纯电动汽车及其动力驱动系统及其控制方法
WO2022077925A1 (zh) * 2020-10-16 2022-04-21 华为数字能源技术有限公司 一种车辆驱动系统及电动汽车
CN114537160A (zh) * 2022-03-11 2022-05-27 浙江极氪智能科技有限公司 电机驱动切换方法及装置
CN115416662A (zh) * 2022-09-21 2022-12-02 中国第一汽车股份有限公司 车辆以及车辆的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084223A (ja) * 2009-10-16 2011-04-28 Toyota Motor Corp 左右独立駆動車両におけるクラッチ制御装置
CN204055302U (zh) * 2014-01-30 2014-12-31 比亚迪股份有限公司 用于车辆的动力传动系统及具有其的车辆
CN205086666U (zh) * 2015-08-31 2016-03-16 北汽福田汽车股份有限公司 一种混合动力系统及混合动力车辆
CN108656938A (zh) * 2017-03-29 2018-10-16 郑州宇通客车股份有限公司 纯电动汽车及其动力驱动系统及其控制方法
WO2022077925A1 (zh) * 2020-10-16 2022-04-21 华为数字能源技术有限公司 一种车辆驱动系统及电动汽车
CN114537160A (zh) * 2022-03-11 2022-05-27 浙江极氪智能科技有限公司 电机驱动切换方法及装置
CN115416662A (zh) * 2022-09-21 2022-12-02 中国第一汽车股份有限公司 车辆以及车辆的控制方法

Also Published As

Publication number Publication date
CN115416662A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024060631A1 (zh) 车辆以及车辆的控制方法
CN112406497B (zh) 双电机的扭矩矢量控制系统、方法、动力总成及车辆
CN111746295B (zh) 一种电动汽车的分布式驱动控制方法及装置
CN107539165A (zh) 一种电动汽车控制方法、电机控制器及驱动系统
CN104044588B (zh) 基于车辆速度和道路坡度的牵引力控制的逐步化
EP4215396A1 (en) Four-wheel drive pure electric vehicle power system
WO2018205785A1 (zh) 一种控制方法、车架、动力驱动组件及车辆
CN212125282U (zh) 一种具有多种转向模式的无人驾驶汽车转向装置
CN102991333A (zh) 混合动力驱动总成及应用其的混合动力驱动汽车
WO2024017071A1 (zh) 混合动力车辆弹射起步的控制方法、控制装置、存储介质
CN110203068A (zh) 一种纯电动机场专用消防车动力系统及车辆
WO2024046083A1 (zh) 双电机混合动力系统及具有其的车辆
CN114802205A (zh) 用于车辆转弯半径减小的系统和方法
US20230347753A1 (en) Electrified vehicle one pedal drive transition control
WO2023138604A1 (zh) 混动车辆的扭矩控制方法、整车控制器、混动车辆
CN115723559A (zh) 五电驱扭矩矢量新能源汽车构型、电动车辆及控制方法
JP2008132898A (ja) エネルギー貯蔵式の複動カップリング動力分配装置及びシステム
CN114834265A (zh) 一种车辆驱动控制方法、装置、车辆及存储介质
CN111422251B (zh) 一种具有多种转向模式的无人驾驶汽车转向系统及其控制方法
CN212950131U (zh) 双电机无级变速行走驱动系统
CN112319478B (zh) 车辆驱动模式切换方法、装置及存储介质、电动商用车
CN214808393U (zh) 一种双功能玩具车
CN111688797A (zh) 电动助力转向控制方法和控制单元
US11685366B2 (en) Electrified vehicle performance mode with intentional wheel spin for tire heating
CN111071059B (zh) 一种电动汽车分时四驱控制系统