WO2023138604A1 - 混动车辆的扭矩控制方法、整车控制器、混动车辆 - Google Patents

混动车辆的扭矩控制方法、整车控制器、混动车辆 Download PDF

Info

Publication number
WO2023138604A1
WO2023138604A1 PCT/CN2023/072813 CN2023072813W WO2023138604A1 WO 2023138604 A1 WO2023138604 A1 WO 2023138604A1 CN 2023072813 W CN2023072813 W CN 2023072813W WO 2023138604 A1 WO2023138604 A1 WO 2023138604A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid vehicle
torque
motor
mode
state
Prior art date
Application number
PCT/CN2023/072813
Other languages
English (en)
French (fr)
Inventor
司文
田慧
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2023138604A1 publication Critical patent/WO2023138604A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application belongs to the technical field of vehicle control, and more specifically relates to a torque control method of a hybrid vehicle, a vehicle controller and the hybrid vehicle.
  • a hybrid vehicle refers to a hybrid vehicle.
  • the drive system of a hybrid vehicle consists of two or more power units that can operate independently.
  • Hybrid Electric Vehicle (Hybrid Electric Vehicle) is a typical hybrid vehicle.
  • the purpose of the present application is to provide a torque control method for a hybrid vehicle, a vehicle controller, and a hybrid vehicle, so as to realize torque control in various scenarios.
  • the first aspect of the present application provides a torque control method for a hybrid vehicle, the torque control method for a hybrid vehicle comprising: Real-time detection of the current gear of the hybrid vehicle and the vehicle status of the hybrid vehicle in the current gear; According to the state of the vehicle, determine the next operating mode of the hybrid vehicle in the current gear; According to the next operation mode, request the action of the clutch to the automatic transmission control unit (Transmission Control Unit, TCU) of the hybrid vehicle; and after the clutch action request is successful, according to the next operation mode, request output torque to the power transmission system of the hybrid vehicle; the output torque includes positive torque and negative torque.
  • TCU Transmission Control Unit
  • the vehicle state of the hybrid vehicle in the current gear includes the engine state of the hybrid vehicle in the current gear;
  • the judging the next operating mode of the hybrid vehicle in the current gear according to the state of the vehicle includes: When the state of the engine is the start state, it is determined that the next operation mode is the series mode; and when the state of the engine is the stop state, it is determined that the next operation mode is the pure electric rear drive mode.
  • the power transmission system includes a P4 motor;
  • the requesting an output torque to the power transmission system according to the next operation mode includes:
  • the next operation mode is the series mode, request the negative driving torque from the P4 motor, and request the generating torque from other power mechanisms in the power transmission system except the P4 motor; and when the next operation mode is the pure electric rear drive mode, request the negative driving torque from the P4 motor.
  • the vehicle state of the hybrid vehicle in the current gear includes the engine state and creep state of the hybrid vehicle in the current gear;
  • the judging the next operating mode of the hybrid vehicle under the current gear according to the state of the vehicle includes: When the state of the engine is the starting state and the creeping state is active creeping, it is judged that the next operation mode of the hybrid vehicle is the series mode; When the engine state is the start state and the creep state is the inactive creep state, it is judged that the next operating mode of the hybrid vehicle is the parallel mode; When the state of the engine is off state and the creep state is active creep, it is judged that the next operating mode of the hybrid vehicle is the pure electric rear drive mode;
  • the power transmission system includes a P2 motor, a P4 motor and an engine;
  • the requesting an output torque to the power transmission system according to the next operation mode includes: When the next operation mode is the series mode, request the generating torque from the P2 motor and the engine respectively, and request the forward drive torque from the P4 motor;
  • the next operation mode is the parallel mode, request the drive torque from the P2 motor and the engine respectively, and request the forward drive torque from the P4 motor;
  • the next operation mode is pure electric rear drive mode, request forward drive torque to P4 motor; and when the next operation mode is pure electric four-wheel drive mode, request drive torque to P2 motor, and request forward drive torque to P4 motor.
  • the requesting the TCU of the hybrid vehicle for an action of the clutch according to the next operating mode includes: When the next operating mode is the operating mode of the hybrid vehicle in R gear, P gear or N gear, request the TCU to open the clutch.
  • the requesting the state of the clutch to the TCU of the hybrid vehicle according to the next operating mode includes: When the next operating mode is the series mode of the hybrid vehicle under the D gear or the pure electric rear drive mode under the D gear, the TCU is requested to open the clutch; and when the next operating mode is the parallel mode of the hybrid vehicle under the D gear or the pure electric four-wheel drive mode under the D gear, the TCU is requested to close the clutch.
  • the determining the output torque of the power transmission system of the hybrid vehicle includes: An output torque of at least one powertrain or transmission mechanism in the powertrain is determined.
  • the P4 motor is arranged on the rear axle of the hybrid vehicle, and the power transmission system further includes a P2 motor and an engine arranged on the front axle of the hybrid vehicle, the P2 motor is arranged between the engine and an automatic transmission of the hybrid vehicle, and a k1k2 clutch is arranged inside the automatic transmission;
  • the requesting an output torque to the power transmission system according to the next operation mode includes: requesting the TCU to open the k1k2 clutch;
  • the next operating mode is the series mode, request negative driving torque from the P4 motor, and request generating torque from the engine and the P2 motor respectively; and when the next operating mode is pure electric rear drive mode, request negative driving torque from the P4 motor.
  • the P4 motor is arranged on the rear axle of the hybrid vehicle, the P2 motor and the engine are arranged on the front axle of the hybrid vehicle, the P2 motor is arranged between the engine and the automatic transmission of the hybrid vehicle, and a k1k2 clutch is arranged inside the automatic transmission;
  • the requesting an output torque to the power transmission system according to the next operation mode includes: When the next operating mode is the series mode, request the TCU to open the k1k2 clutch, request generating torque to the P2 motor and the engine, and request forward drive torque to the P4 motor;
  • the next operation mode is the parallel mode, request the TCU to close the k1k2 clutch, request the drive torque to the P2 motor and the engine respectively, and request the forward drive torque to the P4 motor;
  • the next operation mode is the pure electric rear drive mode, request the TCU to open the k1k2 clutch, and request the P4 motor for forward drive torque; and when the next operation mode is the
  • the second aspect of the present application also provides a vehicle controller, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a vehicle controller including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the steps of the torque control method for a hybrid vehicle described above are realized.
  • a third aspect of the present application further provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the above hybrid vehicle torque control method are realized.
  • the fourth aspect of the present application further provides a hybrid vehicle, including the vehicle controller described above.
  • the beneficial effects of the torque control method of the hybrid vehicle, the vehicle controller, and the hybrid vehicle provided by the present application are: Different from the technical solutions in the prior art that only support hybrid vehicles using reverse gears, the present application provides a torque control solution for hybrid vehicles.
  • the torque control scheme When the torque control scheme is executed, the gear position signal of the hybrid vehicle is first judged; on this basis, the next operating mode of the hybrid vehicle is determined in combination with the vehicle state of the hybrid vehicle, and then the clutch configuration is realized by requesting the action of the clutch, and finally the torque control is realized based on the next operating mode.
  • the torque control method provided by the present application can determine the next operating mode of the front and rear axles of the hybrid vehicle (for example, series mode, parallel mode, and pure electric mode) by judging the current gear state; then control the opening and closing of the clutch of the gearbox according to the next operating mode, and at the same time determine the request for output torque to the power transmission system (motor, engine) according to the next operating mode, and then control the working mode and torque of the motor and engine of the hybrid vehicle, thereby realizing the torque control of the hybrid vehicle in various scenarios (including reverse).
  • the next operating mode of the front and rear axles of the hybrid vehicle for example, series mode, parallel mode, and pure electric mode
  • the torque control method provided by this application only needs to determine whether the motor or the engine should generate driving power according to the gear position and the operation mode of the front and rear axles, and their respective torques; and these torques can be either positive driving torque or negative driving torque; on this basis, the power transmission system (including the motor and engine) of the hybrid vehicle can drive the vehicle forward or reverse.
  • the torque control method provided by the present application can support the reverse gear driving of a vehicle not equipped with a reverse gear; the application of the torque control method provided by the present application can save the mechanical structure of the reverse gear, thereby simplifying the structure of the gearbox and reducing the engine compartment space occupied by the gearbox; in addition, simplifying the structure of the gearbox can also reduce the cost of the gearbox, thereby reducing the cost of the vehicle.
  • FIG. 1 is a schematic flowchart of a torque control method for a hybrid vehicle provided in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a torque control method for a hybrid vehicle provided in another embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a power transmission system of a hybrid vehicle provided in an embodiment of the present application
  • 4 is a schematic flowchart of a torque control method for a hybrid vehicle provided in another embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a vehicle controller provided in an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a torque control method for a hybrid vehicle provided in an embodiment of the first aspect of the present application.
  • the execution body of the torque control method may be a vehicle controller VCU (Vehicle Control Unit).
  • VCU Vehicle Control Unit
  • the torque control method may include four steps from S101 to S104. The four steps are described in detail below.
  • S101 Real-time detection of the current gear of the hybrid vehicle and the vehicle state of the hybrid vehicle in the current gear.
  • the torque control method may further include: detecting whether the high-voltage power-on of the hybrid vehicle is completed. Correspondingly, if the hybrid vehicle has been powered on with high voltage, the current gear of the hybrid vehicle and the vehicle state of the hybrid vehicle in the current gear are detected in real time.
  • S102 According to the vehicle state of the hybrid vehicle in the current gear, determine the next operating mode of the hybrid vehicle in the current gear.
  • the operating modes of hybrid vehicles include but are not limited to series mode, parallel mode, pure electric mode, etc.
  • pure electric mode also includes pure electric rear drive mode and pure electric four-wheel drive mode according to different driving structures.
  • TCU Transmission Control Unit
  • the action of the clutch can be clutch opening or clutch closing.
  • the positive torque can drive the vehicle forward
  • the negative torque can drive the vehicle backward
  • requesting output torque from the power transmission system of the hybrid vehicle according to the next operating mode of the hybrid vehicle in the current gear may include the following steps: According to the next operating mode of the hybrid vehicle in the current gear, determine a power mechanism or a transmission mechanism that performs a driving function in the power transmission system and request an output torque from the power mechanism or a transmission mechanism that performs a driving function.
  • the torque control method shown in FIG. 1 provides a torque control solution for hybrid vehicles.
  • the gear position signal of the hybrid vehicle is first judged; on this basis, the next operating mode of the hybrid vehicle is determined in combination with the vehicle state of the hybrid vehicle, and then the clutch configuration is realized by requesting the action of the clutch, and finally the torque control is realized based on the next operating mode.
  • the torque control method provided by the present application can determine the next operating mode of the front and rear axles of the hybrid vehicle (for example, series mode, parallel mode, and pure electric mode) by judging the current gear state; then control the opening and closing of the clutch of the gearbox according to the next operating mode, and at the same time determine the request for output torque to the power transmission system (motor, engine) according to the next operating mode, and then control the working mode and torque of the motor and engine of the hybrid vehicle, thereby realizing the torque control of the hybrid vehicle in various scenarios (including reverse).
  • the next operating mode of the front and rear axles of the hybrid vehicle for example, series mode, parallel mode, and pure electric mode
  • the torque control method provided by this application only needs to determine whether the motor or the engine should generate driving power according to the gear position and the operation mode of the front and rear axles, and their respective torques; and these torques can be either positive driving torque or negative driving torque; on this basis, the power transmission system (including the motor and engine) of the hybrid vehicle can drive the vehicle forward or reverse.
  • the torque control method provided by the present application can support the reverse gear driving of a vehicle not equipped with a reverse gear; the application of the torque control method provided by the present application can save the mechanical structure of the reverse gear, thereby simplifying the structure of the gearbox and reducing the engine compartment space occupied by the gearbox; in addition, simplifying the structure of the gearbox can also reduce the cost of the gearbox, thereby reducing the cost of the vehicle.
  • the TCU Transmission Control Unit, automatic transmission control unit
  • the TCU is requested to open the clutch, and the TCU opens the clutch after responding.
  • the actual state of the clutch can be detected; after the completion of the action of the clutch is detected (that is, after the clutch is opened), torque is requested to the power transmission mechanism of the hybrid vehicle according to the next operating mode of the hybrid vehicle in the current gear.
  • the vehicle state of the hybrid vehicle at the current gear includes the engine state of the hybrid vehicle at the current gear. If the current gear position of the hybrid vehicle is the R gear, then judging the next operating mode of the hybrid vehicle according to the vehicle state of the hybrid vehicle, including the following steps: If the state of the engine of the hybrid vehicle is the start state, it is determined that the next operation mode of the hybrid vehicle is the series mode;
  • the power transmission system of the hybrid vehicle includes a P4 motor, as shown in FIG. 3 . If the current gear position of the hybrid vehicle is the R gear, then according to the next operating mode of the hybrid vehicle, request an output torque from the power transmission system of the hybrid vehicle, including the following steps: If the next operating mode of the hybrid vehicle is the series mode, request negative driving torque from the P4 motor, and request generating torque from other power mechanisms in the power transmission system except the P4 motor. If the next operating mode of the hybrid vehicle is the pure electric rear drive mode, the negative drive torque is requested from the P4 motor.
  • the P4 motor when the reverse gear is realized, the P4 motor is required to output a negative drive torque. That is to say, in this embodiment, the reverse gear running of the hybrid vehicle can be realized through the commutation function of the P4 electric motor (for example, switching from outputting positive torque to outputting negative torque). Moreover, it can be seen from the above description that in each mode under the R gear, the engine does not need to output driving torque, so as to ensure the safe switching from other gear positions to the R gear in any mode.
  • a hybrid vehicle can be a P2+P4 structure, and the power transmission system of the hybrid vehicle includes a front axle part and a rear axle part; wherein, the front axle part is provided with an engine connected in sequence, a k0 clutch, a P2 motor, and a dual-clutch automatic transmission (Dual Clutch Transmission, DCT) (wherein, a k1k2 clutch is provided in the DCT; taking FIG. 2 clutch); the rear axle is equipped with a P4 motor.
  • DCT Dual Clutch Transmission
  • the torque control method in the R gear can be specifically described as: judging the operating mode (that is, the next operating mode) that the hybrid vehicle needs to enter according to the state of the engine, and requesting the k1k2 clutch to be opened; after the k1k2 clutch is opened, if the next operating mode of the hybrid vehicle in the R gear is the series mode, request negative drive torque from the P4 motor, and request power generation from the engine and the P2 motor Torque; if the next operation mode of the hybrid vehicle under the R gear is the pure electric rear drive mode, only the negative drive torque is requested from the P4 motor.
  • the torque commutation of the P4 motor shown in Figure 2 means that under the condition of other gears (not reverse gear), the P4 motor outputs positive torque; while driving in reverse gear, the P4 motor can output negative torque through the reversing function of the P4 motor, thereby supporting reverse gear driving without a reverse gear.
  • the overall process of hybrid vehicle torque control can be as follows: judge the next operating mode of the hybrid vehicle according to the current engine state of the hybrid vehicle (that is, determine whether the operating mode of the hybrid vehicle in R gear is series mode or pure electric rear drive mode), and request the TCU to open the clutch.
  • the embodiment of the present application provides a reverse gear control scheme without the reverse gear; that is, firstly, the next operating mode of the hybrid vehicle in R gear is determined in combination with the vehicle state of the hybrid vehicle, and the clutch configuration is realized by requesting the action of the clutch; and then the reverse gear control is realized based on the next operating mode of the hybrid vehicle in R gear. That is to say, even if the gearbox of the hybrid vehicle is not equipped with a reverse gear, the embodiments of the present application can control the reverse gear of the hybrid vehicle by controlling the clutch action and the vehicle operation mode.
  • applying the solution provided by the embodiment of the present application can save the mechanical structure of the reverse gear, thereby simplifying the structure of the gearbox and reducing the space in the engine room occupied by the gearbox; in addition, simplifying the structure of the gearbox can also reduce the cost of the gearbox, thereby reducing the cost of the vehicle.
  • requesting the action of the clutch from the TCU of the hybrid vehicle may include the following steps: If the next operating mode is the series mode under the D gear (forward gear) or the pure electric rear drive mode under the D gear, then request the clutch to open to the TCU; if the next operating mode is the parallel mode under the D gear or the pure electric four-wheel drive mode under the D gear, then request the TCU to close the clutch.
  • the vehicle state of the hybrid vehicle at the current gear includes an engine state and a creep state of the hybrid vehicle at the current gear. If the current gear position of the hybrid vehicle is the D gear, then judging the next operating mode of the hybrid vehicle according to the vehicle state of the hybrid vehicle, including the following steps: If the engine state of the hybrid vehicle is the start state, and the creep state is active creep, then it is judged that the next operating mode of the hybrid vehicle is the series mode; If the engine state of the hybrid vehicle is the starting state and the creeping state is not activated creeping, then it is judged that the next operating mode of the hybrid vehicle is the parallel mode; If the engine state of the hybrid vehicle is the stop state, and the creep state is active creep, then it is judged that the next operating mode of the hybrid vehicle is the pure electric rear drive mode; If the engine state of the hybrid vehicle is the stop state, and the creep state is the inactive creep state, it is determined that the next operating mode of the hybrid vehicle is the pure electric four-wheel drive mode.
  • the current gear position is the D gear
  • the current engine state and creep state of the hybrid vehicle can be detected, and then the next operating mode of the hybrid vehicle can be determined according to the engine state and creep state; then based on the next operating mode of the hybrid vehicle, an output torque is requested to the power transmission system.
  • the judgment of the next operation mode is not limited to the engine state and creep state mentioned in this embodiment, and it can also be judged comprehensively based on various factors such as the driver's intention and the vehicle power, which is not limited here. That is to say, in this embodiment, the vehicle state of the hybrid vehicle in the current gear may include other factors such as the driver's intention and the vehicle power, in addition to the engine state and the creep state.
  • the P4 motor when the vehicle is in series mode, the P4 motor is requested for driving torque, and the power transmission mechanism other than the P4 motor is requested for generating torque in the power transmission system.
  • the vehicle When the vehicle is in parallel mode, drive torque is requested from both the P4 motor and other power transmission mechanisms in the power transmission system except the P4 motor.
  • the vehicle When the vehicle is in the pure electric rear drive mode, it requests the driving torque from the P4 motor, and requests the generating torque from other power transmission mechanisms in the power transmission system except the P4 motor and the engine.
  • the driving torque is requested from the P4 motor and other power transmission mechanisms in the power transmission system except the engine.
  • the power transmission system of the hybrid vehicle may further include a P2 motor and a P4 motor in addition to the engine. That is, when the hybrid vehicle has a P2+P4 architecture and the current gear is in the D gear, according to the next operating mode of the hybrid vehicle, the output torque is requested to the power transmission system, which can be more specifically described as: If the next operating mode of the hybrid vehicle is the series mode, the generator torque is requested from the P2 motor and the engine, and the forward drive torque is requested from the P4 motor.
  • the drive torque is requested from the P2 motor and the engine, and the forward drive torque is requested from the P4 motor.
  • the forward drive torque is requested from the P4 motor.
  • the P2 motor is requested for driving torque
  • the P4 motor is requested for forward driving torque
  • the VCU when the hybrid vehicle adopts the P2+P4 structure, and the current gear is the D gear, the following actions can be used for control:
  • the VCU When the vehicle enters the series mode, the VCU requests the k1k2 clutch to open, and controls the P4 motor to achieve creeping;
  • the VCU adjusts the speed of the P2 motor so that the speed of the input shaft of the k1k2 clutch is synchronized with the speed of the output shaft; after the speed is synchronized, the k1k2 clutch is requested to close, the front axle participates in the driving of the whole vehicle, and the front axle is allowed to output torque;
  • the VCU When the vehicle enters the pure electric rear drive mode, the VCU requests the k1k2 clutch to open, controls the P4 motor to achieve creep, and limits the torque output of the P2 motor (that is, the front axle is not allowed to output torque);
  • the VCU controls the P2 motor speed, and
  • the preset threshold may be 10km/h.
  • the judging conditions are not limited to the above-mentioned "current engine state, current creeping state” and the like; when actually implementing the scheme proposed in this embodiment, other judging conditions can also be considered comprehensively.
  • the VCU before entering the pure electric four-wheel drive mode, the VCU can also monitor the driver's intention (such as the pedal opening) and the vehicle status (such as vehicle speed, battery power, etc.) to determine whether to enter the pure electric four-wheel drive mode; if it does not enter the pure electric four-wheel drive mode, the VCU requests the k1k2 clutch to open and limit the torque output of the P2 motor; .
  • the following steps can be used to determine whether the next operating mode of the hybrid vehicle is the series mode or the parallel mode:
  • the vehicle speed is low (such as creeping state or the current vehicle speed is lower than the preset speed value)
  • the series mode that is, the next operation mode of the vehicle is the series mode
  • the parallel mode that is, the next operating mode of the vehicle is the parallel mode.
  • the power generation request may also be considered comprehensively.
  • the vehicle speed is low (such as creeping state or the current vehicle speed is less than the preset speed value) or the power generation request is large, it will enter the series mode; if the vehicle speed is high (such as the non-creeping state or the current vehicle speed is not less than the preset speed value) or there is a low speed and high torque request, then enter the parallel mode.
  • the aforementioned power generation request or low-speed high-torque request is issued by the driver.
  • the control priority of this step is lower than that of the aforementioned determination steps; that is, when the aforementioned determination steps conflict with this step, the aforementioned determination steps shall prevail.
  • the numerical value of the torque can be determined according to existing means, which will not be repeated in the present application.
  • next operating mode is the operating mode of the hybrid vehicle in P gear (parking gear) or N gear (neutral gear) (that is to say, the current gear is in P gear or N gear)
  • the TCU is requested to open the clutch.
  • the clutch can be directly requested to the TCU to open, and the TCU will open the clutch after responding.
  • the state of the vehicle is a parking state or a coasting state, the operating mode will not change, and there is no need to request torque from the power transmission system (that is, the torque requested to the power transmission system is zero).
  • the concept of torque control in each gear is: real-time detection of the current gear of the hybrid vehicle, and different processing according to different gears.
  • P gear or N gear just request the clutch to open directly to the TCU.
  • D gear or the R gear it is necessary to judge the next operating mode of the hybrid vehicle according to the corresponding conditions; and after determining the next operating mode, request the clutch action to the TCU and request the output torque to the power transmission system. That is to say, the present application can realize the torque control without the reverse gear by controlling the switching of the operation mode of the hybrid vehicle.
  • the second aspect of the present application provides a vehicle controller 500 , which includes: one or more processors 501 , one or more input devices 502 , one or more output devices 503 and one or more memory devices 504 .
  • the above-mentioned processor 501 , input device 502 , output device 503 and memory 504 realize mutual communication through a communication bus 505 .
  • the memory 504 is used to store computer programs including program instructions.
  • the processor 501 is used to execute program instructions stored in the memory 504 . Wherein, the processor 501 is configured to be able to call the above-mentioned program instructions, so as to execute the steps of the methods in the various embodiments of the present application.
  • the processor 501 may be a central processing unit (Central Processing Unit, CPU).
  • the processor 501 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate arrays (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the above-mentioned general-purpose processor may be a microprocessor or any other conventional processor.
  • the input device 502 may include a touch panel, a fingerprint sensor (for collecting user's fingerprint information and fingerprint direction information), a microphone, and the like.
  • Output devices 503 may include a display (LCD, etc.), speakers, and the like.
  • the memory 504 may include read-only memory and random-access memory, and provides instructions and data to the processor 501 .
  • a portion of memory 504 may also include non-volatile random access memory.
  • memory 504 may also store device type information.
  • the processor 501, the input device 502, and the output device 503 described in the embodiments of the present application can execute the method steps described in the various embodiments of the first aspect of the torque control method for a hybrid vehicle provided in the embodiments of the present application.
  • a computer-readable storage medium stores a computer program.
  • the computer program includes program instructions. When the program instructions are executed by a processor, all or part of the steps in the method provided by the above-mentioned embodiments are implemented. These steps can also be completed by controlling related hardware through a computer program.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • Computer-readable media may include: any entity or device capable of carrying computer program code, recording media, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media, etc. It should be noted that the content contained in the computer readable medium can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, computer readable media exclude electrical carrier signals and telecommunication signals under legislative and patent practice.
  • the computer-readable storage medium may be an internal storage unit of the foregoing vehicle controller, such as a hard disk or memory of the vehicle controller.
  • the computer-readable storage medium can also be an external storage device of the vehicle controller, such as a plug-in hard disk equipped on the vehicle controller, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card), etc.
  • the computer-readable storage medium may also include both an internal storage unit of the vehicle controller and an external storage device.
  • the computer-readable storage medium is used to store computer programs and other programs and data required by the vehicle controller.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • controller and method may be implemented in other ways.
  • the embodiments of the controller described above are illustrative only.
  • the division of units is only a logical function division, and there may be another division method in actual implementation.
  • several units or components may be combined or integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces or units, and may also be electrical, mechanical or other forms of connection.
  • Units described as separate components may or may not be physically separate.
  • Components shown as units may or may not be physical units. That is, the above-mentioned components can be located in one place, and can also be distributed to multiple network elements. Part or all of the units can be selected according to actual needs to achieve the purpose of the solutions provided by the various embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • a hybrid vehicle which includes the vehicle controller described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混动车辆的扭矩控制方法、整车控制器、计算机可读存储介质和混动车辆,控制方法包括:实时检测混动车辆的当前档位以及混动车辆在当前档位下的车辆状态;根据车辆状态判断混动车辆在当前档位下的下一运行模式;根据下一运行模式向混动车辆的自动变速箱控制单元TCU请求离合器的状态;在离合器状态请求成功后,根据下一运行模式向混动车辆的动力传动系统请求扭矩;所述扭矩包括正向扭矩和负向扭矩。

Description

混动车辆的扭矩控制方法、整车控制器、混动车辆
本专利申请要求于2022年1月20日提交的中国专利申请No.CN 202210066867.1的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请属于车辆控制技术领域,更具体地说,是涉及一种混动车辆的扭矩控制方法、整车控制器和混动车辆。
背景技术
混动车辆是指混合动力车辆(Hybrid Vehicle)。混动车辆的驱动系统由两个或多个能独立运行的动力单元组成。油电混合动力车辆(Hybrid Electric Vehicle)是一种典型的混动车辆。
目前,混动车辆配置的前桥变速箱多为有倒档齿轮的变速箱,以实现倒车,使车辆能够向后行驶。在此基础上,扭矩控制方案较为简单。然而,对于发动机舱的空间小的车辆,具有倒挡齿轮的变速箱会占用较多的空间。因此,为节省变速箱占用的轴向空间,部分车辆会选择不配置倒档齿轮。此时,如何实现各种场景(包括倒车)下的扭矩控制,成为了本领域技术人员亟需解决的问题。
技术问题
本申请的目的在于提供一种混动车辆的扭矩控制方法、整车控制器、混动车辆,以实现各种场景下的扭矩控制。
解决方案
为实现上述目的,本申请的第一方面提供了一种混动车辆的扭矩控制方法,所述混动车辆的扭矩控制方法包括:
实时检测混动车辆的当前档位、以及混动车辆在当前档位下的车辆状态;
根据所述车辆状态,判断混动车辆在当前档位下的下一运行模式;
根据所述下一运行模式,向所述混动车辆的自动变速箱控制单元(Transmission Control Unit,TCU)请求离合器的动作;和
在离合器动作请求成功后,根据所述下一运行模式,向所述混动车辆的动力传动系统请求输出扭矩;所述输出扭矩包括正向扭矩和负向扭矩。
在一种可能的实现方式中,所述混动车辆在当前档位下的车辆状态包括所述混动车辆在当前档位下的发动机状态;
当所述当前档位为R档时,所述根据所述车辆状态,判断所述混动车辆在当前档位下的下一运行模式,包括:
当所述发动机状态为启动状态时,确定所述下一运行模式为串联模式;和
当所述发动机状态为停机状态时,确定所述下一运行模式为纯电后驱模式。
在一种可能的实现方式中,所述动力传动系统包括P4电机;
当所述混动车辆的当前档位为R档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
当所述下一运行模式为串联模式时,向P4电机请求负向驱动扭矩,并向所述动力传动系统中除P4电机外的其他动力机构请求发电扭矩;和
当所述下一运行模式为纯电后驱模式时,向P4电机请求负向驱动扭矩。
在一种可能的实现方式中,所述混动车辆在当前档位下的车辆状态包括所述混动车辆在当前档位下的发动机状态和蠕行状态;
当所述混动车辆的当前档位为D档时,所述根据所述车辆状态,判断所述混动车辆在当前档位下的下一运行模式,包括:
当所述发动机状态为启动状态、所述蠕行状态为激活蠕行时,判断所述混动车辆的下一运行模式为串联模式;
当所述发动机状态为启动状态、所述蠕行状态为未激活蠕行时,判断所述混动车辆的下一运行模式为并联模式;
当所述发动机状态为停机状态、所述蠕行状态为激活蠕行时,判断所述混动车辆的下一运行模式为纯电后驱模式;和
当所述发动机状态为停机状态、所述蠕行状态为未激活蠕行时,判断所述混动车辆的下一运行模式为纯电四驱模式。
在一种可能的实现方式中,所述动力传动系统包括P2电机、P4电机和发动机;
当所述混动车辆的当前档位为D档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
当所述下一运行模式为串联模式时,分别向P2电机和发动机请求发电扭矩,向P4电机请求正向驱动扭矩;
当所述下一运行模式为并联模式时,分别向P2电机和发动机请求驱动扭矩,向P4电机请求正向驱动扭矩;
当所述下一运行模式为纯电后驱模式时,向P4电机请求正向驱动扭矩;和
当所述下一运行模式为纯电四驱模式时,向P2电机请求驱动扭矩,向P4电机请求正向驱动扭矩。
在一种可能的实现方式中,所述根据所述下一运行模式,向所述混动车辆的TCU请求离合器的动作,包括:
当所述下一运行模式为混动车辆在R档、P档或N档下的运行模式时,向TCU请求离合器打开。
在一种可能的实现方式中,所述根据所述下一运行模式,向所述混动车辆的TCU请求离合器的状态,包括:
当所述下一运行模式为混动车辆在D档下的串联模式或D档下的纯电后驱模式时,向TCU请求离合器打开;和
当所述下一运行模式为混动车辆在D档下的并联模式或D档下的纯电四驱模式时,向TCU请求离合器闭合。
在一种可能的实现方式中,在实时检测混动车辆的当前档位、以及混动车辆在当前档位下的车辆状态之前,检测混动车辆是否完成高压上电。
在一种可能的实现方式中,在所述根据所述下一运行模式,向所述混动车辆的TCU请求离合器的动作之后,检测所述离合器的实际状态。
在一种可能的实现方式中,所述确定所述混动车辆的动力传动系统的输出扭矩,包括:
确定所述动力传动系统中至少一个动力机构或者传动机构的输出扭矩。
在一种可能的实现方式中,所述P4电机布置在所述混动车辆的后桥,所述动力传动系统还包括布置在所述混动车辆的前桥的P2电机和发动机,所述P2电机布置在所述发动机和所述混动车辆的自动变速箱之间,所述自动变速箱的内部设置有k1k2离合器;
当所述混动车辆的当前档位为R档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
向所述TCU请求所述k1k2离合器打开;
当所述下一运行模式为串联模式时,向所述P4电机请求负向驱动扭矩,分别向所述发动机和所述P2电机请求发电扭矩;和
当所述下一运行模式为纯电后驱模式时,向所述P4电机请求负向驱动扭矩。
在一种可能的实现方式中,所述P4电机布置在所述混动车辆的后桥,所述P2电机和所述发动机布置在所述混动车辆的前桥,所述P2电机布置在所述发动机和所述混动车辆的自动变速箱之间,所述自动变速箱的内部设置有k1k2离合器;
当所述混动车辆的当前档位为D档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
当所述下一运行模式为串联模式时,向所述TCU请求所述k1k2离合器打开,分别向所述P2电机和所述发动机请求发电扭矩,向P4电机请求正向驱动扭矩;
当所述下一运行模式为并联模式时,向所述TCU请求所述k1k2离合器闭合,分别向P2电机和发动机请求驱动扭矩,向P4电机请求正向驱动扭矩;
当所述下一运行模式为纯电后驱模式时,向所述TCU请求所述k1k2离合器打开,向P4电机请求正向驱动扭矩;和
当所述下一运行模式为纯电四驱模式时,向所述TCU请求所述k1k2离合器闭合,向P2电机请求驱动扭矩,向P4电机请求正向驱动扭矩。
本申请的第二方面,还提供了一种整车控制器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以上所述的混动车辆的扭矩控制方法的步骤。
本申请的第三方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述的混动车辆扭矩控制方法的步骤。
本申请的第四方面,还提供了一种混动车辆,包括以上所述的整车控制器。
有益效果
本申请提供的混动车辆的扭矩控制方法、整车控制器、混动车辆的有益效果在于:
区别于现有技术仅支持混动车辆采用倒档齿轮的技术方案,本申请提供了一种混动车辆的扭矩控制方案。该扭矩控制方案在执行时,首先判断混动车辆的档位信号;在此基础上,结合混动车辆的车辆状态确定混动车辆的下一运行模式,再通过请求离合器的动作实现离合器的配置,最终基于下一运行模式实现扭矩控制。也就是说,本申请提供的扭矩控制方法,能够通过判断当前档位状态,确定混动车辆前后桥的下一运行模式(例如,串联模式、并联模式和纯电模式);然后依据下一运行模式控制变速箱的离合器的开闭,同时根据下一运行模式确定向动力传动系统(电机、发动机)请求输出扭矩,进而控制混动车辆的电机和发动机的工作模式及扭矩,以此实现了混动车辆在各种场景(包括倒车)下的扭矩控制。本申请提供的扭矩控制方法,只需要根据档位及前后桥的运行模式,即可确定产生驱动动力的应当是电机还是发动机,以及它们各自的扭矩;而这些扭矩既可以是正向驱动扭矩,也可以是负向驱动扭矩;在此基础上,混动车辆的动力传动系统(包括电机和发动机)即可驱动车辆前行或倒车。也就是说,本申请提供的扭矩控制方法,可支持不配置倒挡齿轮的车辆的倒档行驶;应用本申请提供的扭矩控制方法,可省掉倒档机械结构,从而简化变速箱结构,减小变速箱占用的发动机舱空间;另外,简化变速箱结构还能降低变速箱成本,进而降低车辆成本。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的混动车辆的扭矩控制方法的流程示意图;
图2为本申请另一实施方式提供的混动车辆的扭矩控制方法的流程示意图;
图3为本申请一实施方式提供的混动车辆的动力传动系统的结构示意图;
图4为本申请再一实施方式提供的混动车辆的扭矩控制方法的流程示意图;
图5为本申请一实施方式提供的整车控制器的结构示意图。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施方式,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本申请,并不用于限定本申请。
下面结合附图和具体实施方式对本申请作进一步详细的说明。
请参考图1,图1为本申请的第一方面的一个实施方式提供的混动车辆的扭矩控制方法的流程示意图。所述扭矩控制方法的执行主体可以为整车控制器VCU(Vehicle Control Unit)。如图1所示,所述扭矩控制方法可以包括S101至S104共四个步骤。下面分别对这四个步骤进行详细描述。
S101:实时检测混动车辆的当前档位、混动车辆在当前档位下的车辆状态。
本步骤中,在实时检测混动车辆的当前档位以及混动车辆在当前档位下的车辆状态之前,所述扭矩控制方法还可以包括:检测混动车辆是否完成高压上电。相应的,若混动车辆已完成高压上电,则实时检测混动车辆的当前档位以及混动车辆在当前档位下的车辆状态。
S102:根据混动车辆在当前档位下的车辆状态,判断混动车辆在当前档位下的下一运行模式。
混动车辆的运行模式包括但不限于串联模式、并联模式、纯电模式等;其中,纯电模式根据驱动结构的不同还包含纯电后驱模式和纯电四驱模式。
S103:根据混动车辆在当前档位下的下一运行模式,向混动车辆的自动变速箱控制单元(Transmission Control Unit,TCU)请求离合器的动作。
所述离合器的动作可以是离合器打开或离合器闭合。
S104:在离合器动作请求成功后,根据混动车辆在当前档位下的下一运行模式,向动力传动系统请求输出扭矩;其中,所述输出扭矩包括正向扭矩和负向扭矩。
本步骤中,所述正向扭矩可以驱动车辆向前行驶,所述负向扭矩可以驱动车辆向后行驶。
本步骤中,根据混动车辆在当前档位下的下一运行模式,向混动车辆的动力传动传动系统请求输出扭矩,可以包括以下步骤:
根据混动车辆在当前档位下的下一运行模式,确定动力传动系统中执行驱动功能的动力机构或传动机构并向执行驱动功能的所述动力机构或传动传动机构请求输出扭矩。
从以上描述可知,区别于现有技术仅支持混动车辆采用倒档齿轮的技术方案,图1所示的扭矩控制方法提供了一种混动车辆的扭矩控制方案。该扭矩控制方案在执行时,首先判断混动车辆的档位信号;在此基础上,结合混动车辆的车辆状态确定混动车辆的下一运行模式,再通过请求离合器的动作实现离合器的配置,最终基于下一运行模式实现扭矩控制。也就是说,本申请提供的扭矩控制方法,能够通过判断当前档位状态,确定混动车辆前后桥的下一运行模式(例如,串联模式、并联模式和纯电模式);然后依据下一运行模式控制变速箱的离合器的开闭,同时根据下一运行模式确定向动力传动系统(电机、发动机)请求输出扭矩,进而控制混动车辆的电机和发动机的工作模式及扭矩,以此实现了混动车辆在各种场景(包括倒车)下的扭矩控制。本申请提供的扭矩控制方法,只需要根据档位及前后桥的运行模式,即可确定产生驱动动力的应当是电机还是发动机,以及它们各自的扭矩;而这些扭矩既可以是正向驱动扭矩,也可以是负向驱动扭矩;在此基础上,混动车辆的动力传动系统(包括电机和发动机)即可驱动车辆前行或倒车。也就是说,本申请提供的扭矩控制方法,可支持不配置倒挡齿轮的车辆的倒档行驶;应用本申请提供的扭矩控制方法,可省掉倒档机械结构,从而简化变速箱结构,减小变速箱占用的发动机舱空间;另外,简化变速箱结构还能降低变速箱成本,进而降低车辆成本。
在一种可能的实施方式中,若下一运行模式为混动车辆在R档(即倒挡)下的运行模式(也即混动车辆的当前档位为R档时),则向TCU(Transmission Control Unit,自动变速箱控制单元)请求离合器打开。
在本实施方式中,若当前档位为R档(即倒档),则向TCU请求离合器打开,TCU响应后打开离合器。在此基础上,可检测离合器的实际状态;检测到离合器的动作完成后(也即离合器打开后),再根据混动车辆在当前档位下的下一运行模式向混动车辆的动力传动机构请求扭矩。
在一种可能的实施方式中,混动车辆在当前档位下的车辆状态包括混动车辆在当前档位下的发动机状态。若混动车辆的当前档位为R档,则根据混动车辆的车辆状态判断混动车辆的下一运行模式,包括以下步骤:
若混动车辆的发动机状态为启动状态,则确定混动车辆的下一运行模式为串联模式;若混动车辆的发动机状态为停机状态,则确定混动车辆的下一运行模式为纯电后驱模式。
在本实施方式中,当车辆的当前挡位为R档时,若发动机启动,则进入串联模式;若发动机未启动,则进入纯电后驱模式。
在一种可能的实施方式中,混动车辆的动力传动系统包括P4电机,如图3所示。若混动车辆的当前档位为R档,则根据混动车辆的下一运行模式,向混动车辆的动力传动系统请求输出扭矩,包括以下步骤:
若混动车辆的下一运行模式为串联模式,则向P4电机请求负向驱动扭矩、向动力传动系统中除P4电机外的其他动力机构请求发电扭矩。若混动车辆的下一运行模式为纯电后驱模式,则向P4电机请求负向驱动扭矩。
本实施方式中,在实现倒档行驶时,需P4电机输出负向驱动扭矩。也就是说,本实施方式可通过P4电机的换向功能(例如,从输出正向扭矩转换为输出负向扭矩)来实现混动车辆的倒档行驶。并且,由以上描述可知,R档下的各个模式中,发动机均不用输出驱动扭矩,以保证在任何模式下,其他档位到R档的安全切换。
在本实施方式中,动力传动系统中除P4电机外的其他动力机构包含发动机以及可能存在的其他电机。例如,可参考图3,作为本实施方式的一种具体实施例,混动车辆可以为P2+P4架构,混动车辆的动力传动系统包含前桥部分和后桥部分;其中,前桥部分设置有依次连接的发动机、k0离合器、P2电机、双离合自动变速箱(Dual Clutch Transmission,DCT)(其中,DCT内设置有k1k2离合器;以图3为例,本申请各个实施方式所声称的离合器指DCT内的k1k2离合器);后桥部分设置有P4电机。结合图3,本实施方式所描述的除P4电机外的其他动力机构包含发动机以及P2电机;在此基础上结合图2可知,R档下的扭矩控制方法可以具体描述为:根据发动机的状态判断混动车辆需进入的运行模式(也即下一运行模式),并请求k1k2离合器打开;在k1k2离合器打开后,若混动车辆在R档下的下一运行模式为串联模式,则向P4电机请求负向驱动扭矩,向发动机和P2电机请求发电扭矩;若混动车辆在R档下的下一运行模式为纯电后驱模式,则只向P4电机请求负向驱动扭矩。其中,图2所示的P4电机扭矩换向,指的是其他档位(非倒挡)条件下,P4电机输出的是正向扭矩;而倒档行驶时,可通过P4电机的换向功能,使P4电机输出负向扭矩,进而支持不配置倒挡齿轮时的倒档行驶。
综合上述,当前档位为R档时,混动车辆扭矩控制的整体流程可以为:根据混动车辆当前的发动机状态判断混动车辆的下一运行模式(也即判断混动车辆在R档下的运行模式为串联模式还是纯电后驱模式),并向TCU请求离合器打开,TCU响应后打开离合器;在检测到离合器被打开后,基于混动车辆的下一运行模式,向混动车辆的动力传动系统的各个动力机构请求扭矩。在此基础上可知,区别于现有技术中混动车辆采用倒档齿轮实现倒档控制的技术方案,本申请的实施方式提供了一种无需倒挡齿轮的倒档控制方案;即,首先结合混动车辆的车辆状态确定混动车辆在R档下的下一运行模式、并通过请求离合器的动作实现离合器的配置;然后基于混动车辆在R档下的下一运行模式实现倒档控制。也就是说,即使混动车辆的变速箱不配置倒挡齿轮,本申请的实施方式也可通过控制离合器动作和整车运行模式来进行混动车辆的倒档控制。因此,应用本申请的实施方式提供的方案,可省掉倒档机械结构,从而简化变速箱结构,减小变速箱占用的发动机舱空间;另外,简化变速箱结构还能降低变速箱成本,进而降低车辆成本。
在一种可能的实施方式中,根据下一运行模式,向混动车辆的TCU请求离合器的动作,可以包括以下步骤:
若下一运行模式为D档(前进挡)下的串联模式或D档下的纯电后驱模式,则向TCU请求离合器打开;若下一运行模式为D档下的并联模式或D档下的纯电四驱模式,则向TCU请求离合器闭合。
不同于其他档位,在D档时需要结合具体的运行模式来决定请求离合器如何动作。具体的,若无需前桥动力机构输出驱动扭矩(例如串联模式、纯电后驱模式),则向TCU请求离合器打开;若需要前桥动力机构输出驱动扭矩(例如并联模式、纯电四驱模式),则向TCU请求离合器闭合。
在一种可能的实施方式中,混动车辆在当前档位下的车辆状态包括混动车辆在当前档位下的发动机状态和蠕行状态。若混动车辆的当前档位为D档,则根据混动车辆的车辆状态判断混动车辆的下一运行模式,包括以下步骤:
若混动车辆的发动机状态为启动状态、蠕行状态为激活蠕行,则判断混动车辆的下一运行模式为串联模式;
若混动车辆的发动机状态为启动状态、蠕行状态为未激活蠕行,则判断混动车辆的下一运行模式为并联模式;
若混动车辆的发动机状态为停机状态、蠕行状态为激活蠕行,则判断混动车辆的下一运行模式为纯电后驱模式;
若混动车辆的发动机状态为停机状态、蠕行状态为未激活蠕行,则判断混动车辆的下一运行模式为纯电四驱模式。
在本实施方式中,若当前档位为D档,则可检测混动车辆当前的发动机状态和蠕行状态,进而根据发动机状态和蠕行状态确定混动车辆下一运行模式;然后基于混动车辆下一运行模式,向动力传动系统请求输出扭矩。其中需要指出的是,具体实施本方案时,在进行下一运行模式的判断时并不限于本实施方式所提及的发动机状态和蠕行状态,其也可综合驾驶员意图、车辆电量等各类因素综合判断,此处不做限定。也就是说,本实施方式中,混动车辆在当前档位下的车辆状态除了包括发动机状态和蠕行状态之外,还可以包括驾驶员意图和车辆电量等其他因素。
在本实施方式中,当车辆处于串联模式时,向P4电机请求驱动扭矩、向动力传动系统中除P4电机外的其他动力传动机构请求发电扭矩。当车辆处于并联模式时,向P4电机和动力传动系统中除P4电机外的其他动力传动机构均请求驱动扭矩。当车辆处于纯电后驱模式时,也即向P4电机请求驱动扭矩、向动力传动系统中除P4电机、发动机外的其他动力传动机构请求发电扭矩。当车辆处于纯电四驱模式时,向P4电机和动力传动系统中除发动机外的其他动力传动机构均请求驱动扭矩。其中,当前档位为D档时,无论车辆处于什么模式,向P4电机请求的均为正向驱动扭矩。
在本实施方式中,可一并参考图3和图4,混动车辆的动力传动系统除发动机外还可包括P2电机和P4电机。也即在混动车辆为P2+P4架构、当前档位为D档时,根据混动车辆的下一运行模式,向动力传动系统请求输出扭矩,可以更具体地描述为:
若混动车辆的下一运行模式为串联模式,则分别向P2电机和发动机请求发电扭矩、向P4电机请求正向驱动扭矩。
若混动车辆的下一运行模式为并联模式,则分别向P2电机和发动机请求驱动扭矩、向P4电机请求正向驱动扭矩。
若混动车辆的下一运行模式为纯电后驱模式,则向P4电机请求正向驱动扭矩。
若混动车辆的下一运行模式为纯电四驱模式,则向P2电机请求驱动扭矩、向P4电机请求正向驱动扭矩。
在此基础上,作为本实施方式的一个具体实施例,当混动车辆采用P2+P4架构,且当前挡位为D挡时,可以采用如下动作进行控制:
当车辆进入串联模式时,VCU请求k1k2离合器打开,控制P4电机实现蠕行;
当车辆进入并联模式时,VCU调节P2电机的转速,使得k1k2离合器输入轴与输出轴转速同步;转速同步后请求k1k2离合器闭合,前桥参与整车驱动,允许前桥输出扭矩;
当车辆进入纯电后驱模式时,VCU请求k1k2离合器打开,控制P4电机实现蠕行,并限制P2电机扭矩输出(即不允许前桥输出扭矩);
当车辆进入纯电四驱模式时,VCU控制P2电机转速,使k1k2离合器输入轴与输出轴转速同步后,请求k1k2离合器闭合,同时放开P2电机扭矩限制。
在本实施方式中,若混动车辆当前的车速大于预设阈值,则可判断混动车辆当前的蠕行状态为未激活蠕行;若混动车辆当前的车速不大于预设阈值,则可判断混动车辆当前的蠕行状态为激活蠕行。其中,预设阈值可为10km/h。
从以上描述可知,当混动车辆的当前挡位为D档且激活蠕行时,无论是哪个运行模式,均只有P4电机提供驱动扭矩。若驾驶员在混动车辆低速时(即混动车辆处于蠕行状态时),将混动车辆由D档切换至R档,只需将P4电机的扭矩换向即可,无需调整除P4电机外的其他动力机构。因此,从整体上看D档和R档时的扭矩控制方案,本实施方式提供的的方案,还可有效保证档位切换的平顺性。
请参考图4,在进行D档下各个运行模式的判断时,判断条件并不限于以上提到的“当前的发动机状态、当前的蠕行状态”等;实际实施本实施方式提出的方案时,还可综合考虑其他判断条件。例如,在进入纯电四驱模式之前,VCU还可监控驾驶员意图(如踏板开度)和整车状态(如车速、电池电量等),以判断是否进入纯电四驱模式;若不进入纯电四驱模式,则VCU请求k1k2离合器打开,并限制P2电机扭矩输出;若进入纯电四驱模式,则控制P2电机转速,使k1k2离合器的输入轴和输出轴转速同步后,请求k1k2离合器闭合,同时放开P2电机扭矩限制。
综合上述当前档位为D档或R档时的实施方式可知,当前的发动机状态为未停机状态时,混动车辆即进入纯电模式(纯电后驱模式或纯电四驱模式)。
在实际应用中,可通过以下步骤判断混动车辆下一运行模式是串联模式还是并联模式:
当前的发动机状态为启动状态时,若车速较低(例如蠕行状态或者当前车速小于预设的速度值),则进入串联模式,即车辆的下一运行模式为串联模式;
若车速较高(例如非蠕行状态或者当前车速不小于预设的速度值),则进入并联模式,即车辆的下一运行模式为并联模式。
当然,不局限于只考虑前述条件,也可综合考虑发电请求。例如,若车速较低(例如蠕行状态或者当前车速小于预设的速度值)或者发电请求大,则进入串联模式;若车速较高(例如非蠕行状态或者当前车速不小于预设的速度值)或者出现低速高扭矩请求,则进入并联模式。其中,前述发电请求或者低速高扭矩请求,由驾驶人员操作发出。需要注意的是,本步骤的控制优先级,低于前述各判断步骤的控制优先级;即,在前述各判断步骤与本步骤冲突时,以前述各判断步骤为准。
在本申请的各个实施方式中,扭矩的数值大小可根据现有的手段确定,本申请不再赘述。
在一种可能的实施方式中,若下一运行模式为混动车辆在P档(停车档)或N档(空档)下的运行模式(也就是说当前档位为P档或N档),则向TCU请求离合器打开。
在本实施方式中,若当前档位为P档或者N档,则可直接向TCU请求离合器打开,TCU响应后打开离合器。此时,车辆状态为停车状态或滑行状态,运行模式不会改变,也无需向动力传动系统请求扭矩(也即向动力传动系统请求的扭矩为零)。
综合上述各个实施方式可知,本申请中,各个档位下的扭矩控制的构思为:实时检测混动车辆的当前档位,根据不同的档位进行不同的处理。对于P档或者N档,直接向TCU请求离合器打开即可。对于D档或者R档,则需根据相应条件判断混动车辆的下一运行模式;并在确定下一运行模式后,向TCU请求离合器动作、向动力传动系统请求输出扭矩。也就是说,本申请可通过控制混动车辆运行模式的切换,实现无需倒档齿轮的扭矩控制。
请参考图5,本申请的第二方面提供了一种整车控制器500,其包括:一个或多个处理器501、一个或多个输入设备502、一个或多个输出设备503及一个或多个存储器504。上述处理器501、输入设备502、输出设备503及存储器504通过通信总线505实现相互间的通信。存储器504用于存储计算机程序,计算机程序包括程序指令。处理器501用于执行存储器504存储的程序指令。其中,处理器501被配置为能够调用上述程序指令,以执行本申请各个实施方式中的方法的步骤。应当理解,在本申请实施方式中,处理器501可以是中央处理单元(CentralProcessingUnit,CPU)。处理器501还可以是其他通用处理器、数字信号处理器(DigitalSignalProcessor,DSP)、专用集成电路(ApplicationSpecificIntegratedCircuit,ASIC)、现成可编程门阵列(Field-ProgrammableGateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。上述通用处理器可以是微处理器或者其它任何常规的处理器等。输入设备502可以包括触控板、指纹传感器(用于采集用户的指纹信息和指纹的方向信息)、麦克风等。输出设备503可以包括显示器(LCD等)、扬声器等。存储器504可以包括只读存储器和随机存取存储器,并向处理器501提供指令和数据。存储器504的一部分还可以包括非易失性随机存取存储器。例如,存储器504还可以存储设备类型的信息。具体实现中,本申请实施方式中所描述的处理器501、输入设备502、输出设备503可执行本申请实施方式提供的混动车辆的扭矩控制方法的第一方面的各个实施方式所描述的方法步骤。
在本申请的第三方面提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序包括程序指令,程序指令被处理器执行时实现上述实施方式提供的方法中的全部或部分步骤。这些步骤也可以通过计算机程序来控制相关的硬件完成。所述计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减。例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
计算机可读存储介质可以是前述整车控制器的内部存储单元,例如整车控制器的硬盘或内存。计算机可读存储介质也可以是整车控制器的外部存储设备,例如整车控制器上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,计算机可读存储介质还可以既包括整车控制器的内部存储单元,也包括外部存储设备。计算机可读存储介质用于存储计算机程序及整车控制器所需的其他程序和数据。计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以意识到,本申请公开的算法或步骤,能够以电子硬件、计算机软件或者二者的结合来实现。为了清楚地说明硬件和软件的可互换性,在上文已经按照功能,一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以针对每个特定的应用,使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述整车控制器的具体工作过程,可以参考前述方法实施方式中的对应过程,在此不再赘述。
在本申请所提供的几个实施方式中,应该理解,所公开的控制器和方法,可以通过其它的方式实现。例如,上述的控制器的实施方式仅仅是示意性的。例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的。作为单元显示的部件可以是或者也可以不是物理单元。即上述部件可以位于一个地方,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请各个实施方式所提供的方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,还可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请的第四方面,提供了一种混动车辆,其包括以上所述的整车控制器。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1.  一种混动车辆的扭矩控制方法,其特征在于,包括:
    实时检测混动车辆的当前档位、以及混动车辆在当前档位下的车辆状态;
    根据所述车辆状态,判断混动车辆在当前档位下的下一运行模式;
    根据所述下一运行模式,向所述混动车辆的自动变速箱控制单元(Transmission Control Unit,TCU)请求离合器的动作;和
    在离合器动作请求成功后,根据所述下一运行模式,向所述混动车辆的动力传动系统请求输出扭矩;所述输出扭矩包括正向扭矩和负向扭矩。
  2.  如权利要求1所述的混动车辆的扭矩控制方法,其特征在于,所述混动车辆在当前档位下的车辆状态包括所述混动车辆在当前档位下的发动机状态;
    当所述当前档位为R档时,所述根据所述车辆状态,判断所述混动车辆在当前档位下的下一运行模式,包括:
    当所述发动机状态为启动状态时,确定所述下一运行模式为串联模式;和
    当所述发动机状态为停机状态时,确定所述下一运行模式为纯电后驱模式。
  3.  如权利要求2所述的混动车辆的扭矩控制方法,其特征在于,所述动力传动系统包括P4电机;
    当所述混动车辆的当前档位为R档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
    当所述下一运行模式为串联模式时,向P4电机请求负向驱动扭矩,并向所述动力传动系统中除P4电机外的其他动力机构请求发电扭矩;和
    当所述下一运行模式为纯电后驱模式时,向P4电机请求负向驱动扭矩。
  4.  如权利要求1所述的混动车辆的扭矩控制方法,其特征在于,所述混动车辆在当前档位下的车辆状态包括所述混动车辆在当前档位下的发动机状态和蠕行状态;
    当所述混动车辆的当前档位为D档时,所述根据所述车辆状态,判断所述混动车辆在当前档位下的下一运行模式,包括:
    当所述发动机状态为启动状态、所述蠕行状态为激活蠕行时,判断所述混动车辆的下一运行模式为串联模式;
    当所述发动机状态为启动状态、所述蠕行状态为未激活蠕行时,判断所述混动车辆的下一运行模式为并联模式;
    当所述发动机状态为停机状态、所述蠕行状态为激活蠕行时,判断所述混动车辆的下一运行模式为纯电后驱模式;和
    当所述发动机状态为停机状态、所述蠕行状态为未激活蠕行时,判断所述混动车辆的下一运行模式为纯电四驱模式。
  5.  如权利要求4所述的混动车辆的扭矩控制方法,其特征在于,所述动力传动系统包括P2电机、P4电机和发动机;
    当所述混动车辆的当前档位为D档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
    当所述下一运行模式为串联模式时,分别向P2电机和发动机请求发电扭矩,向P4电机请求正向驱动扭矩;
    当所述下一运行模式为并联模式时,分别向P2电机和发动机请求驱动扭矩,向P4电机请求正向驱动扭矩;
    当所述下一运行模式为纯电后驱模式时,向P4电机请求正向驱动扭矩;和
    当所述下一运行模式为纯电四驱模式时,向P2电机请求驱动扭矩,向P4电机请求正向驱动扭矩。
  6.  如权利要求1至5任一项所述的混动车辆的扭矩控制方法,其特征在于,所述根据所述下一运行模式,向所述混动车辆的TCU请求离合器的动作,包括:
    当所述下一运行模式为混动车辆在R档、P档或N档下的运行模式时,向TCU请求离合器打开。
  7.  如权利要求4或5任一项所述的混动车辆的扭矩控制方法,其特征在于,所述根据所述下一运行模式,向所述混动车辆的TCU请求离合器的状态,包括:
    当所述下一运行模式为混动车辆在D档下的串联模式或D档下的纯电后驱模式时,向TCU请求离合器打开;和
    当所述下一运行模式为混动车辆在D档下的并联模式或D档下的纯电四驱模式时,向TCU请求离合器闭合。
  8.  如权利要求1所述的混动车辆的扭矩控制方法,其特征在于,在实时检测混动车辆的当前档位、以及混动车辆在当前档位下的车辆状态之前,检测混动车辆是否完成高压上电。
  9.  如权利要求1所述的混动车辆的扭矩控制方法,其特征在于,在所述根据所述下一运行模式,向所述混动车辆的TCU请求离合器的动作之后,检测所述离合器的实际状态。
  10.  如权利要求1所述的混动车辆的扭矩控制方法,其特征在于,所述确定所述混动车辆的动力传动系统的输出扭矩,包括:
    确定所述动力传动系统中至少一个动力机构或者传动机构的输出扭矩。
  11.  如权利要求3所述的混动车辆的扭矩控制方法,其特征在于,所述P4电机布置在所述混动车辆的后桥,所述动力传动系统还包括布置在所述混动车辆的前桥的P2电机和发动机,所述P2电机布置在所述发动机和所述混动车辆的自动变速箱之间,所述自动变速箱的内部设置有k1k2离合器;
    当所述混动车辆的当前档位为R档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
    向所述TCU请求所述k1k2离合器打开;
    当所述下一运行模式为串联模式时,向所述P4电机请求负向驱动扭矩,分别向所述发动机和所述P2电机请求发电扭矩;和
    当所述下一运行模式为纯电后驱模式时,向所述P4电机请求负向驱动扭矩。
  12.  如权利要求5所述的混动车辆的扭矩控制方法,其特征在于,所述P4电机布置在所述混动车辆的后桥,所述P2电机和所述发动机布置在所述混动车辆的前桥,所述P2电机布置在所述发动机和所述混动车辆的自动变速箱之间,所述自动变速箱的内部设置有k1k2离合器;
    当所述混动车辆的当前档位为D档时,所述根据所述下一运行模式,向所述动力传动系统请求输出扭矩,包括:
    当所述下一运行模式为串联模式时,向所述TCU请求所述k1k2离合器打开,分别向所述P2电机和所述发动机请求发电扭矩,向P4电机请求正向驱动扭矩;
    当所述下一运行模式为并联模式时,向所述TCU请求所述k1k2离合器闭合,分别向P2电机和发动机请求驱动扭矩,向P4电机请求正向驱动扭矩;
    当所述下一运行模式为纯电后驱模式时,向所述TCU请求所述k1k2离合器打开,向P4电机请求正向驱动扭矩;和
    当所述下一运行模式为纯电四驱模式时,向所述TCU请求所述k1k2离合器闭合,向P2电机请求驱动扭矩,向P4电机请求正向驱动扭矩。
  13.  一种整车控制器,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至12任一项所述方法的步骤。
  14.  一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至12任一项所述方法的步骤。
  15.  一种混动车辆,其特征在于,包括如权利要求13所述的整车控制器。
PCT/CN2023/072813 2022-01-20 2023-01-18 混动车辆的扭矩控制方法、整车控制器、混动车辆 WO2023138604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210066867.1 2022-01-20
CN202210066867.1A CN115123191A (zh) 2022-01-20 2022-01-20 混动车辆的扭矩控制方法、整车控制器、混动车辆

Publications (1)

Publication Number Publication Date
WO2023138604A1 true WO2023138604A1 (zh) 2023-07-27

Family

ID=83375364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072813 WO2023138604A1 (zh) 2022-01-20 2023-01-18 混动车辆的扭矩控制方法、整车控制器、混动车辆

Country Status (2)

Country Link
CN (1) CN115123191A (zh)
WO (1) WO2023138604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123191A (zh) * 2022-01-20 2022-09-30 长城汽车股份有限公司 混动车辆的扭矩控制方法、整车控制器、混动车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445043A (zh) * 2008-10-11 2009-06-03 比亚迪股份有限公司 一种混合动力驱动系统及其控制方法
US20100262348A1 (en) * 2009-04-08 2010-10-14 Ford Global Technologies, Llc System and method for controlling torque based on driver status
CN105599586A (zh) * 2016-02-05 2016-05-25 海博瑞德(北京)汽车技术有限公司 一种在变速箱输入轴增加驱动电机的bsg混合动力系统
CN113123913A (zh) * 2019-12-31 2021-07-16 比亚迪股份有限公司 混合动力车辆的发动机启动方法、装置、存储介质及车辆
CN115123191A (zh) * 2022-01-20 2022-09-30 长城汽车股份有限公司 混动车辆的扭矩控制方法、整车控制器、混动车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445043A (zh) * 2008-10-11 2009-06-03 比亚迪股份有限公司 一种混合动力驱动系统及其控制方法
US20100262348A1 (en) * 2009-04-08 2010-10-14 Ford Global Technologies, Llc System and method for controlling torque based on driver status
CN105599586A (zh) * 2016-02-05 2016-05-25 海博瑞德(北京)汽车技术有限公司 一种在变速箱输入轴增加驱动电机的bsg混合动力系统
CN113123913A (zh) * 2019-12-31 2021-07-16 比亚迪股份有限公司 混合动力车辆的发动机启动方法、装置、存储介质及车辆
CN115123191A (zh) * 2022-01-20 2022-09-30 长城汽车股份有限公司 混动车辆的扭矩控制方法、整车控制器、混动车辆

Also Published As

Publication number Publication date
CN115123191A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
JP5371200B2 (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
CN110949368B (zh) 混合动力车辆的控制方法、装置、存储介质及车辆
US9650033B2 (en) Vehicle, a hybrid power system thereof and a control method therefor
WO2023138604A1 (zh) 混动车辆的扭矩控制方法、整车控制器、混动车辆
CN109353330B (zh) 一种混合动力车辆、工作模式控制系统及其方法
JP2005098301A (ja) ハイブリッド自動車のエンジン運転停止を要求する方法及びシステム
JP2011250648A (ja) 電動車両のガタ詰め制御装置
JP5896078B2 (ja) 電動車両の変速制御装置
JP6642466B2 (ja) ハイブリッド車両の制御装置
WO2023169314A1 (zh) 四驱混动车辆控制方法、装置、车辆及存储介质
US20200172083A1 (en) Hybrid vehicle and driving control method therefor
WO2023131267A1 (zh) 变速箱发生齿对齿现象时的控制方法、装置及车辆
WO2023138608A1 (zh) 车辆起步控制方法、装置及车辆
JP2008253038A (ja) 車両用回生制動装置
JP2012131497A (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法
JP2007261415A (ja) ハイブリッド自動車の制御装置
JP2021187332A (ja) ハイブリッド車両の制御装置
KR20100057370A (ko) 하이브리드 차량의 크립 토크 제어방법
WO2023246945A1 (zh) 一种带有犬牙离合器的车辆控制方法和控制装置
JP2022086452A (ja) ハイブリッド車両の制御装置
WO2023000982A1 (zh) 一种电动汽车的动力系统、控制方法及电动汽车
EP4046882B1 (en) Method for controlling switching of motor torque output path of hybrid automobile
JP2005006395A (ja) ハイブリッド車両の発進駆動力制御装置
JP2007313959A (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP7108584B2 (ja) 車両制御装置及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742919

Country of ref document: EP

Kind code of ref document: A1