WO2024060589A1 - 一种掺硼金刚石电极及其制备方法、制备装置 - Google Patents

一种掺硼金刚石电极及其制备方法、制备装置 Download PDF

Info

Publication number
WO2024060589A1
WO2024060589A1 PCT/CN2023/087538 CN2023087538W WO2024060589A1 WO 2024060589 A1 WO2024060589 A1 WO 2024060589A1 CN 2023087538 W CN2023087538 W CN 2023087538W WO 2024060589 A1 WO2024060589 A1 WO 2024060589A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
solvent
weight ratio
containing solution
source
Prior art date
Application number
PCT/CN2023/087538
Other languages
English (en)
French (fr)
Inventor
王玉宝
徐金昌
赵小玻
王晓玲
曹延新
张敬群
张鑫维
刘明昭
潘信君
訾蓬
魏华阳
陈豆豆
Original Assignee
山东欣远新材料科技有限公司
中材人工晶体研究院(山东)有限公司
江西欣远新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东欣远新材料科技有限公司, 中材人工晶体研究院(山东)有限公司, 江西欣远新材料科技有限公司 filed Critical 山东欣远新材料科技有限公司
Publication of WO2024060589A1 publication Critical patent/WO2024060589A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4402Reduction of impurities in the source gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material

Definitions

  • the invention belongs to the field of boron-doped diamond electrodes, and specifically relates to a boron-doped diamond electrode and its preparation method and preparation device.
  • boron-doped diamond electrode can directly generate hydroxyl radicals and ozone (>80%) through electrolysis of water, and has extremely excellent disinfection and sewage treatment functions.
  • the existing method of preparing boron-doped diamond electrodes mainly uses chemical vapor deposition.
  • the preparation process is complex and involves the selection and pretreatment of base materials, the selection of boron doping methods, the optimization of CVD processes, etc. Each step of the process will affect the doping process. Functional effects and production safety of boron diamond electrodes.
  • boron doping methods mostly use organic boron (gaseous or liquid) as the boron source, which is easy to control, but has a certain degree of toxicity, and is flammable and explosive.
  • the present invention provides a boron-doped diamond electrode and its preparation method and preparation device.
  • Inorganic boron is used as the boron source to solve the problems of high cost, high toxicity and high pollution of organic boron, and the doping concentration is controllable. Good doping uniformity.
  • the preparation method of a boron-doped diamond electrode includes the following steps: mixing a boron source and a solvent to obtain a boron-containing solution; passing a carrier gas through the boron-containing solution to obtain a boron-containing gas; passing the boron-containing gas through into a chemical vapor deposition furnace for chemical vapor deposition; wherein the solvent includes a first solvent, and the first solvent is one or more of methanol, ethanol, and n-butanol; the boron source includes a first boron source and/or a second boron source, the first boron source is boric acid, and the second boron source is one or more of boron oxide, sodium borohydride, and sodium tetraborate.
  • the weight ratio of the boron source to the solvent is (30:70)-(45:55); when passing a carrier gas through the boron-containing solution, the temperature of the boron-containing solution is controlled. at 20-85°C.
  • the solvent also includes a second solvent
  • the second solvent is one or more of acetone, ethyl acetate, methyl acetate, n-hexane, cyclohexane, n-propyl acetate, isopropyl acetate, and toluene.
  • the boron source and the solvent are mixed to obtain a boron-containing solution
  • the following method is used: mix the first solvent and the second solvent and stir for 20-60 minutes at 20-70°C. Keep stirring and add the boron source. After the addition is completed, react at a constant temperature of 20-70°C for 30-60 minutes. Add the dispersant. Stir evenly to obtain a boron-containing solution; or, directly mix the boron source with the first solvent and the second solvent, stir for 50-90 minutes at 20-70°C, add dispersant and stabilizer, and stir for 40-75 minutes. A boron-containing solution can be obtained.
  • the boron-containing solution includes: a boron source and a solvent in a weight ratio of (30:70)-(45:55), wherein the boron source is boric acid and the solvent is ethanol; or, the weight ratio
  • the boron source and solvent are 35:65, wherein the boron source is boron oxide and sodium borohydride in a weight ratio of (10-15): (5-10), and the solvent is a boron oxide and sodium borohydride in a weight ratio of (10-25 ): (40-55) ethanol and acetone; or, a boron source and solvent in a weight ratio of 30:70, wherein the boron source is boron oxide in a weight ratio of (8-15): (5-10) and sodium borohydride, the solvent is methanol and ethyl acetate in a weight ratio of (30-35): (35-40); or a boron source and solvent in a weight ratio of 40:60, wherein the boron source It is a
  • boron source and a solvent in a weight ratio of 40:60, wherein the boron source is boron oxide and sodium tetraborate in a weight ratio of (15-30): (10-25), the The solvent is n-butanol, acetone and isopropyl butyrate in a weight ratio of (10-15):(20-30):(20-30); or a boron source and solvent in a weight ratio of 30:70, wherein , the boron source is sodium borohydride and sodium tetraborate in a weight ratio of (10-15): (15-20), and the solvent is a weight ratio of (10-25): (25-40): (10 -30) ethanol, methyl acetate and toluene; or, a boron source and solvent in a weight ratio of 40:60, wherein the boron source is hydroboration in a weight ratio of (20-30): (10-20) Sodium and sodium tetraborate,
  • the flow rate of the carrier gas into the boron-containing solution is controlled at 5-100 mL/min, and the pressure above the boron-containing solution is controlled at -0.1MPa ⁇ 0.5MPa; and/or , when the boron-containing gas is introduced into the chemical vapor deposition furnace, the flow rate of the boron-containing gas is controlled at 10-200 mL/min; and/or, before the boron-containing gas is introduced into the chemical vapor deposition furnace, the The boron-containing gas is dried to remove water in the boron-containing gas.
  • the invention also provides a boron-doped diamond prepared by the above method.
  • the invention also provides a device for preparing boron-doped diamond, which includes a first container, an air inlet device, and an air outlet device; the first container contains a boron-containing solution; the air inlet device includes a first air guide pipe, and the The first air guide tube is used to introduce the carrier gas into the first container, and the nozzle of the first air guide tube is located below the liquid level of the boron-containing solution; the gas outlet device includes a second air guide tube, and the second air guide tube is used to The boron-containing gas is directed out of the first container, and the nozzle of the second air conduit is not in contact with the boron-containing solution.
  • the first container is provided with a temperature control device, which includes a temperature sensor, a control system and a heating element; the temperature sensor is used to obtain the temperature of the boron-containing solution in the first container and send it to the control unit. System; the control system is used to control the heating element according to the received temperature of the boron-containing solution; the heating element is used to heat the boron-containing solution in the first container.
  • a temperature control device which includes a temperature sensor, a control system and a heating element; the temperature sensor is used to obtain the temperature of the boron-containing solution in the first container and send it to the control unit.
  • the control system is used to control the heating element according to the received temperature of the boron-containing solution; the heating element is used to heat the boron-containing solution in the first container.
  • the air intake device also includes a first flowmeter, which is used to control the flow rate of the carrier gas introduced into the first air duct, and a backflow prevention device is provided between the first flowmeter and the first air duct; and/or, the air outlet device also includes a second flowmeter, which is used to control the flow rate of the boron-containing gas discharged from the second air duct; and/or, the air outlet device also includes a drying device, which is used to remove water from the boron-containing gas discharged from the second air duct; and/or, it also includes a negative pressure gauge, which is connected to the first container through a third air duct, and the pipe mouth of the third air duct does not contact the boron-containing solution.
  • a first flowmeter which is used to control the flow rate of the carrier gas introduced into the first air duct, and a backflow prevention device is provided between the first flowmeter and the first air duct
  • the air outlet device also includes a second flowmeter, which is used to control the flow rate of the boro
  • the present invention has the following beneficial effects:
  • the present invention uses inorganic boron as the boron source for doped diamond electrodes to solve the problems of high cost, toxicity and pollution of organic boron.
  • the present invention changes the doping mode of inorganic boron from solid to gaseous state, thereby improving the problem of poor doping uniformity of solid boron sources.
  • the present invention controls the boron concentration in the boron-containing gas by selecting the boron source and solvent and controlling the temperature, thereby achieving controllability of the boron doping concentration and further achieving uniform boron doping.
  • Figure 1 is a schematic structural diagram of the preparation device in the present invention.
  • Figure 2 is a schematic structural diagram of the first container and the temperature control device in the present invention.
  • the present invention provides a method for preparing a boron-doped diamond electrode, comprising the following steps:
  • the solvent includes a first solvent
  • the first solvent is one or more of methanol, ethanol, and n-butanol.
  • the boron source includes a first boron source and/or a second boron source, the first boron source is boric acid, and the second boron source is one or more of boron oxide, sodium borohydride, and sodium tetraborate. .
  • the solvent when the boron source includes a second boron source, the solvent further includes a second solvent.
  • the second solvent is one or more of acetone, ethyl acetate, methyl acetate, n-hexane, cyclohexane, n-propyl acetate, isopropyl acetate, and toluene. Further, after research, the optimal solution listed in Examples 2-10 was obtained. It is worth noting that when the boron source is only boric acid, the solvent may also include a second solvent.
  • the boron source when the solvent also includes a second solvent, is mixed with the solvent to obtain a boron-containing solution, specifically by the following method: after mixing the first solvent and the second solvent, the boron source is mixed at 20 Stir at -70°C for 20-60 minutes, keep stirring and add the boron source. After the addition is completed, react at a constant temperature of 20-70°C for 30-60 minutes. Add the dispersant and stir evenly to obtain a boron-containing solution.
  • the dispersant is one or more of polyvinyl alcohol, polycarboxylate, polyacrylic acid derivatives, and polyethylene glycol.
  • the weight fraction of the dispersant in the boron-containing solution is 0.5-2%.
  • the boron source and the solvent are mixed to obtain a boron-containing solution, specifically through the following method: mixing the boron source with the first solvent and the second solvent Mix directly. After mixing, stir for 50-90 minutes at 20-70°C. Add dispersant and stabilizer and stir for 40-75 minutes to obtain a boron-containing solution.
  • the boron-containing solution prepared by this method is not easy to separate into layers, has a more uniform distribution of boron elements, and can be stored stably for a long time.
  • the dispersant is one or more of polyvinyl alcohol, polycarboxylate, polyacrylic acid derivatives, and polyethylene glycol, and the weight fraction of the dispersant in the boron-containing solution is 0.5-2%.
  • the stabilizer is one or more of aminopyridione, tribasic lead sulfate, and dibasic lead phosphite, and the weight fraction of the stabilizer in the boron-containing solution is 0.01-1%.
  • the carrier gas is one or more of hydrogen, methane, acetylene, and inert gases.
  • the flow rate of the carrier gas into the boron-containing solution is controlled at 5-100 mL/min; the pressure above the boron-containing solution is controlled at (-0.1MPa)-(0.5MPa).
  • the flow rate of the boron-containing gas is controlled at 10-200 mL/min.
  • the boron-containing gas Before the boron-containing gas is passed into the chemical vapor deposition furnace, the boron-containing gas is dried to remove water in the boron-containing gas, so as to avoid moisture in the air entering during the mixing process or device leakage and affecting the deposition. If the boron-containing gas contains water vapor, bringing the water vapor into the chemical vapor deposition furnace will easily cause oxidation and fracture of the hot wire during the deposition process.
  • the temperature is controlled at 900-2000°C and the pressure is controlled at 1100Pa-8000Pa.
  • the present invention also provides a boron-doped diamond electrode prepared by the above method.
  • the present invention also provides a preparation device for preparing boron-doped diamond electrodes using the above method, including a first container 2, a gas inlet device, and a gas outlet device.
  • the first container 2 contains boron-containing solution.
  • the first container 2 is preferably a wide-mouth bottle, and the volume of the boron solution contained in the first container 2 is no less than 1/3 of the total volume of the first container 2 .
  • the air inlet device includes a first air guide tube 14.
  • the first air guide tube 14 is used to introduce the carrier gas into the first container 2, and the mouth of the first air guide tube 14 is located below the liquid level of the boron-containing solution.
  • the mouth of the first air guide tube 14 extending into the first container 2 is close to the bottom of the first container 2 and does not contact the bottom of the first container 2 .
  • the first air guide tube 14 is an inverted U-shaped tube with uniform thickness, and the diameter of the tube opening is 5-8 cm.
  • the gas outlet device includes a second air guide tube 31, which is used to lead boron-containing gas out of the first container 2, and the mouth of the second air guide tube 31 is not in contact with the boron-containing solution.
  • the mouth of the second air guide tube 31 extending into the first container 2 is close to the top of the first container 2 .
  • the distance between the mouth of one end of the second air tube extending into the first container and the stopper of the jar i.e., the inner wall of the top of the first container
  • the second air guide tube 31 is an air guide tube with a uniform thickness, and the diameter of the tube opening is 5-8 cm.
  • the first container 2 is provided with a temperature control device, which includes a temperature sensor 201, a control system 202 and a heating element 203; the temperature sensor 201 is used to obtain the temperature of the boron-containing solution in the first container 2 and send it to the control system 202; the control system 202 is used to control the heating element 203 according to the received temperature of the boron-containing solution; the heating element 203 is used to heat the boron-containing solution in the first container 2.
  • the temperature control device also includes a heat-insulating layer 204 located outside the first container 2, and the heat-insulating layer 204 is made of a heat-insulating material.
  • the air inlet device also includes a first flow meter 11.
  • the first flow meter 11 is used to control the flow rate of the carrier gas introduced by the first air guide tube 14.
  • the second container 13 is preferably a jar.
  • One end of the fourth air guide tube 12 is connected to the first flow meter 11 , and the other end of the fourth air guide tube 12 extends into the second container 13 .
  • the fourth air conduit 12 is an air conduit of uniform thickness, with a mouth diameter of 3-6 cm, and the end of the mouth extending into the second container 13 is at a distance from the stopper of the jar (ie, the inner wall of the top of the second container 13 )2-3cm.
  • One end of the first air guide tube 14 also extends into the second container 13 (as mentioned above, the other end of the first air guide tube 14 extends into the first container 2), and the first air guide tube 14 extends into the second container 13.
  • the height of the pipe opening of 14 in the second container 13 is lower than the height of the pipe opening of the fourth air guide pipe 12 in the second container 13 to prevent the boron-containing solution from flowing back into the first flow meter 11 and causing component damage.
  • the opening of one end of the first air guide tube 14 extending into the second container 13 is 5-8 cm away from the bottom of the jar (ie, the inner wall of the bottom of the second container 13).
  • the second container 13 is also connected to a supply pipe 131 with a valve 132 to facilitate the supply of boron-containing solution to the preparation device.
  • the valve 132 is preferably a ball valve.
  • the diameter of the mouth of the supply pipe 131 is 5-8 cm.
  • the end of the pipe that extends into the second container 13 is 2 inches away from the stopper of the jar (i.e., the top inner wall of the second container 13). -3cm.
  • the second flow meter 32 is connected to the chemical vapor deposition furnace to evacuate the device system formed by the first container 2, the second container 13 and their connected air conduits; when the vacuum reaches the preset range (if the second The container 13 is connected with a negative pressure gauge 22.
  • the negative pressure gauge 22 displays (-5) to (-20))
  • the valve 132 is opened, and the boron-containing solution can enter the first container 2 under the action of atmospheric pressure.
  • the gas outlet device also includes a second flow meter 32 , which is used to control the flow rate of the boron-containing gas led out by the second air guide pipe 31 .
  • the gas outlet device also includes a drying device 33 , which is used to remove water in the boron-containing gas led out by the second air guide pipe 31 .
  • the preparation device also includes a negative pressure gauge 22.
  • the negative pressure gauge 22 is connected to the first container 2 through a third air conduit 21, and the mouth of the third air conduit 21 is not in contact with the boron-containing solution.
  • the third air conduit 21 is an air conduit of uniform thickness, with an opening of 5-8 cm, extending into the first container 2 and the stopper of the jar (i.e., the top inner wall of the first container 2) The distance is 2-3cm.
  • This embodiment provides a method for preparing a boron-doped diamond electrode, which includes the following steps:
  • the boron-containing solution also contains a dispersant with a weight fraction of 0.5-2%, and the dispersant is polyvinyl alcohol.
  • This embodiment also provides a boron-doped diamond electrode prepared by the above method.
  • This embodiment also provides a preparation device for preparing a boron-doped diamond electrode using the above method, including a first container 2, a gas inlet device, and a gas outlet device.
  • the first container 2 contains a boron-containing solution;
  • the air inlet device includes a first air guide 14, the first air guide 14 is used to introduce carrier gas into the first container 2, and the first air guide 14
  • the nozzle is located below the liquid level of the boron-containing solution;
  • the gas outlet device includes a second air guide tube 31, which is used to lead the boron-containing gas out of the first container 2, and the tube of the second air guide tube 31 The mouth should not come into contact with boron-containing solutions.
  • the first container 2 is provided with a temperature control device, which includes a temperature sensor 201, a control system 202 and a heating element 203; the temperature sensor 201 is used to obtain the temperature of the boron-containing solution in the first container 2.
  • the temperature is sent to the control system 202; the control system 202 is used to control the heating element 203 according to the received temperature of the boron-containing solution; the heating element 203 is used to heat the boron-containing solution in the first container 2.
  • the air inlet device also includes a first flow meter 11.
  • the first flow meter 11 is used to control the flow rate of the carrier gas introduced by the first air guide tube 14.
  • the gas outlet device also includes a second flow meter 32 , which is used to control the flow rate of the boron-containing gas led out by the second air guide pipe 31 .
  • the gas outlet device also includes a drying device 33 , which is used to remove water in the boron-containing gas led out by the second air guide pipe 31 .
  • the preparation device also includes a negative pressure gauge 22. The negative pressure gauge 22 is connected to the first container 2 through a third air conduit 21, and the mouth of the third air conduit 21 is not in contact with the boron-containing solution.
  • This embodiment provides a method for preparing a boron-doped diamond electrode, comprising the following steps:
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 35:65, wherein the boron source is boron oxide in a weight ratio of (10-15): (5-10) and sodium borohydride, and the solvent is ethanol (first solvent) and acetone (second solvent) in a weight ratio of (10-25): (40-55).
  • the following method can be used: mix the first solvent and the second solvent and stir at 20-70°C for 20-60 minutes. Keep stirring and add the boron source. After the addition is completed, React at a constant temperature of 20-70°C for 30-60 minutes, add dispersant and stir evenly to obtain a boron-containing solution.
  • the dispersant is polyvinyl alcohol, and the weight fraction of polyvinyl alcohol in the boron-containing solution is 0.5-2%.
  • the following method can be used: directly mix the boron source with the first solvent and the second solvent, stir at 20-70°C for 50-90 minutes, and add a dispersant and stabilizer. Stir for 40-75 minutes to obtain a boron-containing solution.
  • the dispersant is polyvinyl alcohol
  • the weight fraction of polyvinyl alcohol in the boron-containing solution is 0.5-2%
  • the stabilizer is aminopyridione, trisalt
  • the weight fraction of the stabilizer in the boron-containing solution is 0.01-1%.
  • This embodiment also provides a boron-doped diamond electrode prepared by the above method.
  • This embodiment also provides a preparation device for preparing a boron-doped diamond electrode using the above method, including a first container 2, a gas inlet device, and a gas outlet device.
  • the first container 2 contains a boron-containing solution;
  • the air inlet device includes a first air guide 14, the first air guide 14 is used to introduce carrier gas into the first container 2, and the first air guide 14
  • the nozzle is located below the liquid level of the boron-containing solution;
  • the gas outlet device includes a second air guide tube 31, which is used to lead the boron-containing gas out of the first container 2, and the tube of the second air guide tube 31 The mouth should not come into contact with boron-containing solutions.
  • the first container 2 is provided with a temperature control device, which includes a temperature sensor 201, a control system 202 and a heating element 203; the temperature sensor 201 is used to obtain the temperature of the boron-containing solution in the first container 2.
  • the temperature is sent to the control system 202; the control system 202 is used to control the heating element 203 according to the received temperature of the boron-containing solution; the heating element 203 is used to heat the boron-containing solution in the first container 2.
  • the air inlet device also includes a first flow meter 11.
  • the first flow meter 11 is used to control the flow rate of the carrier gas introduced by the first air guide tube 14.
  • the gas outlet device also includes a second flow meter 32 , which is used to control the flow rate of the boron-containing gas led out by the second air guide pipe 31 .
  • the gas outlet device also includes a drying device 33 , which is used to remove water in the boron-containing gas led out by the second air guide pipe 31 .
  • the preparation device also includes a negative pressure gauge 22. The negative pressure gauge 22 is connected to the first container 2 through a third air conduit 21, and the mouth of the third air conduit 21 is not in contact with the boron-containing solution.
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 30:70, wherein the boron source is boron oxide and sodium borohydride in a weight ratio of (8-15):(5-10), and the solvent is methanol (first solvent) and ethyl acetate (second solvent) in a weight ratio of (30-35):(35-40).
  • the boron source and solvent in the boron-containing solution have a weight ratio of 40:60, wherein the boron source has a weight ratio of (10-20): (15-25) Boron oxide and sodium borohydride, the solvent is n-butanol (the first solvent), n-hexane and cyclohexane (the first solvent) in a weight ratio of (5-8): (30-40): (20-30) two solvents).
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 35:65, wherein the boron source is in a weight ratio of (15-20): (10-15 ) boron oxide and sodium tetraborate, the solvent is ethanol (the first solvent), n-propyl acetate and toluene (the second solvent) in a weight ratio of (25-35): (8-10): (20-40) solvent).
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 30:70, wherein the boron source is in a weight ratio of (15-30): (10-25 ) of boron oxide and sodium tetraborate, the solvent is methanol (first solvent) and isopropyl acetate (second solvent) in a weight ratio of (25-40): (30-45).
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 40:60, wherein the boron source is in a weight ratio of (15-30): (10-25 ) of boron oxide and sodium tetraborate, the solvent is n-butanol (first solvent), acetone and isopropyl butyrate in a weight ratio of (10-15): (20-30): (20-30) (Second solvent).
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 30:70, wherein the boron source is sodium borohydride and sodium tetraborate in a weight ratio of (10-15): (15-20), and the solvent is ethanol (first solvent), methyl acetate and toluene (second solvent) in a weight ratio of (10-25): (25-40): (10-30).
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 40:60, wherein the boron source is in a weight ratio of (20-30): (10-20 ) of sodium borohydride and sodium tetraborate, the solvent is n-butanol (first solvent) and n-butyl acetate (second solvent) with a weight ratio of (20-40): (20-40).
  • the boron-containing solution contains a boron source and a solvent in a weight ratio of 45:55, wherein the boron source is in a weight ratio of (12-17): (12-17 ): (15-20) boron oxide, sodium borohydride and Sodium tetraborate, the solvent is methanol (first solvent), ethyl acetate and cyclohexane (second solvent) in a weight ratio of (10-20): (10-20): (10-20).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种掺硼金刚石电极及其制备方法、制备装置。所述的制备方法包括以下步骤:将硼源与溶剂混合,得到含硼溶液;将载气通过所述含硼溶液,得到含硼气体;将所述含硼气体通入化学气相沉积炉进行化学气相沉积;其中,所述溶剂包括第一溶剂,所述第一溶剂为甲醇、乙醇、正丁醇中的一种或多种;所述硼源包括第一硼源和/或第二硼源,所述第一硼源为硼酸,所述第二硼源为氧化硼、硼氢化钠、四硼酸钠中的一种或多种。本发明的制备方法成本低、毒害小、污染少,且便于控制硼掺杂浓度,硼掺杂均匀性好。

Description

一种掺硼金刚石电极及其制备方法、制备装置 技术领域
本发明属于掺硼金刚石电极领域,具体地涉及一种掺硼金刚石电极及其制备方法、制备装置。
背景技术
掺硼金刚石电极作为一种新型电化学电极,能够通过电解水直接产生羟基自由基和臭氧(>80%),具有极其优异的消杀、污水处理功能。
现有的制备掺硼金刚石电极的方法主要是采用化学气相沉积法,其制备工艺复杂,涉及基体材料选择及预处理,掺硼方式的选择,CVD工艺的优化等,每一步工艺都将影响掺硼金刚石电极的功能性效果及生产安全性。
目前,掺硼方式多采用有机硼(气态、液态)作为硼源,易于控制,但是具有一定的毒性,且易燃易爆。
发明内容
针对上述问题,本发明提供了一种掺硼金刚石电极及其制备方法和制备装置,以无机硼为硼源,解决有机硼成本高、毒害大、污染高的问题,且掺杂浓度可控,掺杂均匀性好。
本发明提供的掺硼金刚石电极的制备方法,包括以下步骤:将硼源与溶剂混合,得到含硼溶液;将载气通过所述含硼溶液,得到含硼气体;将所述含硼气体通入化学气相沉积炉进行化学气相沉积;其中,所述溶剂包括第一溶剂,所述第一溶剂为甲醇、乙醇、正丁醇中的一种或多种;所述硼源包括第一硼源和/或第二硼源,所述第一硼源为硼酸,所述第二硼源为氧化硼、硼氢化钠、四硼酸钠中的一种或多种。
优选的,配制含硼溶液时,所述硼源与溶剂的重量比为(30∶70)-(45∶55);将载气通过所述含硼溶液时,所述含硼溶液的温度控制在20-85℃。
优选的,当所述硼源包括第二硼源时,所述溶剂还包括第二溶剂,所述第二溶剂为丙酮、乙酸乙酯、乙酸甲酯、正己烷、环己烷、乙酸正丙酯、乙酸异丙酯、甲苯中的一种或多种。
优选的,当所述溶剂还包括第二溶剂时,将硼源与溶剂混合,得到含硼溶液, 具体通过以下方法:将第一溶剂和第二溶剂混合后在20-70℃下搅拌20-60min,保持搅拌状态加入硼源,加入完毕后在20-70℃恒温反应30-60min,加入分散剂搅拌均匀,即可得到含硼溶液;或,将硼源与第一溶剂、第二溶剂直接混合,混合后在20-70℃下搅拌50-90min,加入分散剂和稳定剂搅拌40-75min,即可得到含硼溶液。
优选的,所述含硼溶液中包括:重量比为(30∶70)-(45∶55)的硼源和溶剂,其中,所述硼源为硼酸,所述溶剂为乙醇;或,重量比为35∶65的硼源和溶剂,其中,所述硼源为重量比为(10-15)∶(5-10)的氧化硼和硼氢化钠,所述溶剂为重量比为(10-25)∶(40-55)的乙醇和丙酮;或,重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(8-15)∶(5-10)的氧化硼和硼氢化钠,所述溶剂为重量比为(30-35)∶(35-40)的甲醇和乙酸乙酯;或,重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(10-20)∶(15-25)的氧化硼和硼氢化钠,所述溶剂为重量比为(5-8)∶(30-40)∶(20-30)的正丁醇、正己烷和环己烷;或,重量比为35∶65的硼源和溶剂,其中,所述硼源为重量比为(15-20)∶(10-15)的氧化硼与四硼酸钠,所述溶剂为重量比为(25-35)∶(8-10)∶(20-40)的乙醇、乙酸正丙酯和甲苯;或,重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(15-30)∶(10-25)的氧化硼和四硼酸钠,所述溶剂为重量比为(25-40)∶(30-45)的甲醇和乙酸异丙酯;或,重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(15-30)∶(10-25)的氧化硼和四硼酸钠,所述溶剂为重量比为(10-15)∶(20-30)∶(20-30)的正丁醇、丙酮和丁酸异丙酯;或,重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(10-15)∶(15-20)的硼氢化钠和四硼酸钠,所述溶剂为重量比为(10-25)∶(25-40)∶(10-30)的乙醇、乙酸甲酯和甲苯;或,重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(20-30)∶(10-20)的硼氢化钠和四硼酸钠,所述溶剂为重量比为(20-40)∶(20-40)的正丁醇和乙酸正丁酯;或,重量比为45∶55的硼源和溶剂,其中,所述硼源为重量比为(12-17)∶(12-17)∶(15-20)的氧化硼、硼氢化钠和四硼酸钠,所述溶剂为重量比为(10-20)∶(10-20)∶(10-20)的甲醇、乙酸乙酯和环己烷。
优选的,将所述载气通过含硼溶液时,通入含硼溶液的载气流量控制在5-100mL/min,所述含硼溶液上方压强控制在-0.1MPa~0.5MPa;和/或,将所述含硼气体通入化学气相沉积炉时,所述含硼气体的流量控制在10-200mL/min;和/或,将所述含硼气体通入化学气相沉积炉前,对所述含硼气体进行干燥除去含硼气体中的水。
本发明还提供一种利用上述方法制备的掺硼金刚石。
本发明还提供一种掺硼金刚石的制备装置,包括第一容器、进气装置、出气装置;所述第一容器内盛有含硼溶液;所述进气装置包括第一导气管,所述第一导气管用于将载气导入第一容器内,且第一导气管的管口位于含硼溶液的液面以下;所述出气装置包括第二导气管,所述第二导气管用于将含硼气体导出第一容器,且第二导气管的管口不与含硼溶液接触。
优选的,所述第一容器设有控温装置,所述控温装置包括温度传感器、控制系统和加热元件;所述温度传感器用于获取第一容器内的含硼溶液的温度并发送至控制系统;所述控制系统用于根据接收的所述含硼溶液的温度控制加热元件;所述加热元件用于对第一容器内的含硼溶液进行加热。
优选的,所述进气装置还包括第一流量计,所述第一流量计用于控制第一导气管导入的载气流量,所述第一流量计与第一导气管之间设有防倒流装置;和/或,所述出气装置还包括第二流量计,所述第二流量计用于控制第二导气管导出的含硼气体流量;和/或,所述出气装置还包括干燥装置,所述干燥装置用于除去所述第二导气管导出的含硼气体中的水;和/或,还包括负压表,所述负压表通过第三导气管与第一容器连通,且第三导气管的管口不与含硼溶液接触。
与现有技术相比,本发明具有以下有益效果:
(1)本发明选用无机硼作为掺杂金刚石电极的硼源,解决有机硼成本高、毒害大、污染高的问题。
(2)本发明将无机硼的掺杂方式由固体转变为气态,改善固态硼源掺杂均匀性差的问题。
(3)本发明通过硼源和溶剂的选择以及控制温度等方式,控制含硼气体中的硼浓度,实现了硼掺杂浓度的可控性,进一步实现硼均匀掺杂。
附图说明
图1为本发明中制备装置的结构示意图;
图2为本发明中第一容器及控温装置的结构示意图。
11-第一流量计,12-第四导气管,13-第二容器,131-补给管,132-阀门,14-第一
导气管,2-第一容器,201-温度传感器,202-控制系统,203-加热元件,204-保温层,21-第三导气管,22-负压表,31-第二导气管,32-第二流量计,33-干燥装置。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实 施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
第一方面,本发明提供一种掺硼金刚石电极的制备方法,包括以下步骤:
(1)将重量比为(30∶70)-(45∶55)的硼源与溶剂混合,得到含硼溶液。
其中,所述溶剂包括第一溶剂,所述第一溶剂为甲醇、乙醇、正丁醇中的一种或多种。
所述硼源包括第一硼源和/或第二硼源,所述第一硼源为硼酸,所述第二硼源为氧化硼、硼氢化钠、四硼酸钠中的一种或多种。
作为本发明的一个优选方案,当所述硼源包括第二硼源时,所述溶剂还包括第二溶剂。所述第二溶剂为丙酮、乙酸乙酯、乙酸甲酯、正己烷、环己烷、乙酸正丙酯、乙酸异丙酯、甲苯中的一种或多种。进一步的,经研究得到实施例2-10所列的较优方案。值得注意的是,当硼源仅为硼酸时,溶剂也可以包括第二溶剂。
在本发明的一种优选方案中,当所述溶剂还包括第二溶剂时,将硼源与溶剂混合,得到含硼溶液,具体通过以下方法:将第一溶剂和第二溶剂混合后在20-70℃下搅拌20-60min,保持搅拌状态加入硼源,加入完毕后在20-70℃恒温反应30-60min,加入分散剂搅拌均匀,即可得到含硼溶液。这种配制方法操作简单,成本低,可满足中短时间保存使用。其中,所述分散剂为聚乙烯醇、聚羧酸盐、聚丙烯酸衍生物、聚乙二醇中的一种或多种。所述含硼溶液中分散剂的重量分数为0.5-2%。
在本发明的另一种优选方案中,当所述溶剂还包括第二溶剂时,将硼源与溶剂混合,得到含硼溶液,具体通过以下方法:将硼源与第一溶剂、第二溶剂直接混合,混合后在20-70℃下搅拌50-90min,加入分散剂和稳定剂搅拌40-75min,即可得到含硼溶液。这种方法配制的含硼溶液不易分层离析,硼元素分布更为均匀,可较长时间稳定保存。其中,所述分散剂为聚乙烯醇、聚羧酸盐、聚丙烯酸衍生物、聚乙二醇中的一种或多种,所述含硼溶液中分散剂的重量分数为0.5-2%。所述稳定剂为胺基嚓吮二酮、三盐基硫酸铅、二盐基亚磷酸铅中的一种或多种,所述含硼溶液中稳定剂的重量分数为0.01-1%。
(2)将所述含硼溶液的温度控制在20-85℃,将载气通过所述含硼溶液,即可得到含硼气体;将所述含硼气体通入化学气相沉积炉进行化学气相沉积,即可制备含硼金刚石电极。其中,所述载气为氢气、甲烷、乙炔、惰性气体中的一种或多种。
其中,将载气通过含硼溶液时,通入含硼溶液的载气流量控制在5~100mL/min;含硼溶液上方压强控制在(-0.1MPa)-(0.5MPa)。将所述含硼气体通入化学气相沉积炉时,所述含硼气体的流量控制在10-200mL/min。
将所述含硼气体通入化学气相沉积炉前,对所述含硼气体进行干燥除去所述含硼气体中的水,以免混合过程中或者装置漏气导致空气中水分进入对沉积造成影响。含硼气体中若带有水蒸气,将水蒸气带入化学气相沉积炉中容易造成沉积过程中热丝氧化断裂。
进行化学气相沉积时,温度控制在900-2000℃,压强控制在1100Pa-8000Pa。
第二方面,本发明还提供一种利用上述方法制备的掺硼金刚石电极。
第三方面,本发明还提供一种利用上述方法制备掺硼金刚石电极的制备装置,包括第一容器2、进气装置、出气装置。
所述第一容器2内盛有含硼溶液。优选的,所述第一容器2优选广口瓶,第一容器2内含硼溶液的体积不少于第一容器2总容积的1/3。
所述进气装置包括第一导气管14,所述第一导气管14用于将载气导入第一容器2内,且第一导气管14的管口位于含硼溶液的液面以下。优选的,第一导气管14伸入第一容器2内的管口靠近第一容器2底部,且不与第一容器2底部接触。比如,当第一容器2为广口瓶时,管口距离瓶底5-8cm即可。优选的,所述第一导气管14为粗细均匀的倒U形管,管口直径为5-8cm。
所述出气装置包括第二导气管31,所述第二导气管31用于将含硼气体导出第一容器2,且第二导气管31的管口不与含硼溶液接触。优选的,所述第二导气管31伸入第一容器2内的管口靠近第一容器2的顶部。比如,第二导气管伸入第一容器内的一端管口与广口瓶的瓶塞(即第一容器顶部的内壁)距离2-3cm即可。优选的,所述第二导气管31为粗细均匀的导气管,管口直径为5-8cm。
其中,所述第一容器2设有控温装置,所述控温装置包括温度传感器201、控制系统202和加热元件203;所述温度传感器201用于获取第一容器2内的含硼溶液的温度并发送至控制系统202;所述控制系统202用于根据接收的所述含硼溶液的温度控制加热元件203;所述加热元件203用于对第一容器2内的含硼溶液进行加热。所述控温装置还包括位于第一容器2外的保温层204,保温层204的材质为保温材料。
所述进气装置还包括第一流量计11,所述第一流量计11用于控制第一导气管14导入的载气流量,所述第一流量计11与第一导气管14之间设有防倒流装置。其 中,所述防倒流装置包括第二容器13和第四导气管12。第二容器13优选为广口瓶。所述第四导气管12的一端管口与第一流量计11连通,所述第四导气管12的另一端管口伸入第二容器13内。优选的,第四导气管12为粗细均匀的导气管,管口直径为3-6cm,伸入第二容器13内的一端管口距离广口瓶的瓶塞(即第二容器13顶部的内壁)2-3cm。所述第一导气管14的一端管口也伸入第二容器13内(如上所述,所述第一导气管14的另一端管口伸入第一容器2内),且第一导气管14在第二容器13内的管口高度低于第四导气管12在第二容器13内的管口高度,防止含硼溶液倒流入第一流量计11造成部件损坏。优选的,第一导气管14伸入第二容器13内的一端管口距离广口瓶的瓶底(即第二容器13底部内壁)5-8cm。
所述第二容器13还连接有带有阀门132的补给管131,便于向该制备装置中补给含硼溶液。所述阀门132优选球阀,所述补给管131的管口直径为5-8cm,伸入第二容器13内的一端管口距离广口瓶的瓶塞(即第二容器13的顶部内壁)2-3cm。具体的,当需要向第一容器2内补给含硼溶液时,保证阀门132为关闭状态,将补给管131的另一端插入含硼溶液中;关闭第一流量计11,打开第二流量计32,第二流量计32与化学气相沉积炉相连通,对第一容器2、第二容器13及其连接的导气管形成的装置体系进行抽真空;当抽真空到预设范围时(如果第二容器13上连接有负压表22,则当负压表22显示在(-5)~(-20)时),打开阀门132,含硼溶液即可在大气压作用下,进入第一容器2。
所述出气装置还包括第二流量计32,所述第二流量计32用于控制第二导气管31导出的含硼气体流量。所述出气装置还包括干燥装置33,所述干燥装置33用于除去所述第二导气管31导出的含硼气体中的水。
所述制备装置还包括负压表22,所述负压表22通过第三导气管21与第一容器2连通,且第三导气管21的管口不与含硼溶液接触。优选的,第三导气管21为粗细均匀的导气管,管口直接为5-8cm,伸入第一容器2内的一端管口与广口瓶的瓶塞(即第一容器2顶部内壁)距离2-3cm。
实施例1
本实施例提供一种掺硼金刚石电极的制备方法,包括以下步骤:
(1)将重量比为(30∶70)-(45∶55)的硼酸与乙醇混合,得到含硼溶液。本实施例作为一种优选方案,所述含硼溶液中还含有重量分数为0.5-2%的分散剂,所述分散剂为聚乙烯醇。
(2)将所述含硼溶液的温度控制在20-85℃,将载气通过所述含硼溶液,即可得到含硼气体。
(3)将所述含硼气体通入化学气相沉积炉进行化学气相沉积,即可制备含硼金刚石电极。
本实施例还提供一种利用上述方法制备的掺硼金刚石电极。
本实施例还提供一种利用上述方法制备掺硼金刚石电极的制备装置,包括第一容器2、进气装置、出气装置。所述第一容器2内盛有含硼溶液;所述进气装置包括第一导气管14,所述第一导气管14用于将载气导入第一容器2内,且第一导气管14的管口位于含硼溶液的液面以下;所述出气装置包括第二导气管31,所述第二导气管31用于将含硼气体导出第一容器2,且第二导气管31的管口不与含硼溶液接触。
其中,所述第一容器2设有控温装置,所述控温装置包括温度传感器201、控制系统202和加热元件203;所述温度传感器201用于获取第一容器2内的含硼溶液的温度并发送至控制系统202;所述控制系统202用于根据接收的所述含硼溶液的温度控制加热元件203;所述加热元件203用于对第一容器2内的含硼溶液进行加热。所述进气装置还包括第一流量计11,所述第一流量计11用于控制第一导气管14导入的载气流量,所述第一流量计11与第一导气管14之间设有防倒流装置。所述出气装置还包括第二流量计32,所述第二流量计32用于控制第二导气管31导出的含硼气体流量。所述出气装置还包括干燥装置33,所述干燥装置33用于除去所述第二导气管31导出的含硼气体中的水。所述制备装置还包括负压表22,所述负压表22通过第三导气管21与第一容器2连通,且第三导气管21的管口不与含硼溶液接触。
实施例2
本实施例提供一种掺硼金刚石电极的制备方法,包括以下步骤:
(1)将硼源与溶剂混合,得到含硼溶液。本实施例作为一种优选方案,含硼溶液中含有重量比为35∶65的硼源和溶剂,其中,所述硼源为重量比为(10-15)∶(5-10)的氧化硼和硼氢化钠,所述溶剂为重量比为(10-25)∶(40-55)的乙醇(第一溶剂)和丙酮(第二溶剂)。
若要制备可中短时间保存的含硼溶液,可通过以下方法:将第一溶剂和第二溶剂混合后在20-70℃下搅拌20-60min,保持搅拌状态加入硼源,加入完毕后在20-70℃恒温反应30-60min,加入分散剂搅拌均匀,即可得到含硼溶液。本实施例作为一种优选方案,所述分散剂为聚乙烯醇,所述含硼溶液中聚乙烯醇的重量分数为0.5-2%。
若要制备可长时间保存的含硼溶液,可通过以下方法:将硼源与第一溶剂、第二溶剂直接混合,混合后在20-70℃下搅拌50-90min,加入分散剂和稳定剂搅拌40-75min,即可得到含硼溶液。本实施例作为一种优选方案,所述分散剂为聚乙烯醇,所述含硼溶液中聚乙烯醇的重量分数为0.5-2%;所述稳定剂为胺基嚓吮二酮、三盐基硫酸铅、二盐基亚磷酸铅中的一种或多种,所述含硼溶液中稳定剂的重量分数为0.01-1%。
(2)将所述含硼溶液的温度控制在20-85℃,将载气通过所述含硼溶液,即可得到含硼气体。
(3)将所述含硼气体通入化学气相沉积炉进行化学气相沉积,即可制备含硼金刚石电极。
本实施例还提供一种利用上述方法制备的掺硼金刚石电极。
本实施例还提供一种利用上述方法制备掺硼金刚石电极的制备装置,包括第一容器2、进气装置、出气装置。所述第一容器2内盛有含硼溶液;所述进气装置包括第一导气管14,所述第一导气管14用于将载气导入第一容器2内,且第一导气管14的管口位于含硼溶液的液面以下;所述出气装置包括第二导气管31,所述第二导气管31用于将含硼气体导出第一容器2,且第二导气管31的管口不与含硼溶液接触。
其中,所述第一容器2设有控温装置,所述控温装置包括温度传感器201、控制系统202和加热元件203;所述温度传感器201用于获取第一容器2内的含硼溶液的温度并发送至控制系统202;所述控制系统202用于根据接收的所述含硼溶液的温度控制加热元件203;所述加热元件203用于对第一容器2内的含硼溶液进行加热。所述进气装置还包括第一流量计11,所述第一流量计11用于控制第一导气管14导入的载气流量,所述第一流量计11与第一导气管14之间设有防倒流装置。所述出气装置还包括第二流量计32,所述第二流量计32用于控制第二导气管31导出的含硼气体流量。所述出气装置还包括干燥装置33,所述干燥装置33用于除去所述第二导气管31导出的含硼气体中的水。所述制备装置还包括负压表22,所述负压表22通过第三导气管21与第一容器2连通,且第三导气管21的管口不与含硼溶液接触。
实施例3
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(8-15)∶(5-10)的氧化硼和硼氢化钠,所述溶剂为重量比为(30-35)∶(35-40)的甲醇(第一溶剂)和乙酸乙酯(第二溶剂)。
实施例4
本实施例与实施例2的不同之处在于,含硼溶液中重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(10-20)∶(15-25)的氧化硼和硼氢化钠,所述溶剂为重量比为(5-8)∶(30-40)∶(20-30)的正丁醇(第一溶剂)、正己烷和环己烷(第二溶剂)。
实施例5
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为35∶65的硼源和溶剂,其中,所述硼源为重量比为(15-20)∶(10-15)的氧化硼与四硼酸钠,所述溶剂为重量比为(25-35)∶(8-10)∶(20-40)的乙醇(第一溶剂)、乙酸正丙酯和甲苯(第二溶剂)。
实施例6
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(15-30)∶(10-25)的氧化硼和四硼酸钠,所述溶剂为重量比为(25-40)∶(30-45)的甲醇(第一溶剂)和乙酸异丙酯(第二溶剂)。
实施例7
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(15-30)∶(10-25)的氧化硼和四硼酸钠,所述溶剂为重量比为(10-15)∶(20-30)∶(20-30)的正丁醇(第一溶剂)、丙酮和丁酸异丙酯(第二溶剂)。
实施例8
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(10-15)∶(15-20)的硼氢化钠和四硼酸钠,所述溶剂为重量比为(10-25)∶(25-40)∶(10-30)的乙醇(第一溶剂)、乙酸甲酯和甲苯(第二溶剂)。
实施例9
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(20-30)∶(10-20)的硼氢化钠和四硼酸钠,所述溶剂为重量比为(20-40)∶(20-40)的正丁醇(第一溶剂)和乙酸正丁酯(第二溶剂)。
实施例10
本实施例与实施例2的不同之处在于,含硼溶液中含有重量比为45∶55的硼源和溶剂,其中,所述硼源为重量比为(12-17)∶(12-17)∶(15-20)的氧化硼、硼氢化钠和 四硼酸钠,所述溶剂为重量比为(10-20)∶(10-20)∶(10-20)的甲醇(第一溶剂)、乙酸乙酯和环己烷(第二溶剂)。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

  1. 一种掺硼金刚石电极的制备方法,其特征在于,包括以下步骤:
    将硼源与溶剂混合,得到含硼溶液;
    将载气通过所述含硼溶液,得到含硼气体;
    将所述含硼气体通入化学气相沉积炉进行化学气相沉积;
    其中,所述溶剂包括第一溶剂,所述第一溶剂为甲醇、乙醇、正丁醇中的一种或多种;
    所述硼源包括第一硼源和/或第二硼源,所述第一硼源为硼酸,所述第二硼源为氧化硼、硼氢化钠、四硼酸钠中的一种或多种。
  2. 根据权利要求1所述的制备方法,其特征在于,
    配制含硼溶液时,所述硼源与溶剂的重量比为(30∶70)-(45∶55);
    将载气通过所述含硼溶液时,所述含硼溶液的温度控制在20-85℃。
  3. 根据权利要求1所述的制备方法,其特征在于,当所述硼源包括第二硼源时,所述溶剂还包括第二溶剂,所述第二溶剂为丙酮、乙酸乙酯、乙酸甲酯、正己烷、环己烷、乙酸正丙酯、乙酸异丙酯、甲苯中的一种或多种。
  4. 根据权利要求3所述的制备方法,其特征在于,当所述溶剂还包括第二溶剂时,将硼源与溶剂混合,得到含硼溶液,具体通过以下方法:
    将第一溶剂和第二溶剂混合后在20-70℃下搅拌20-60min,保持搅拌状态加入硼源,加入完毕后在20-70℃恒温反应30-60min,加入分散剂搅拌均匀,即可得到含硼溶液;
    或,将硼源与第一溶剂、第二溶剂直接混合,混合后在20-70℃下搅拌50-90min,加入分散剂和稳定剂搅拌40-75min,即可得到含硼溶液。
  5. 根据权利要求3所述的制备方法,其特征在于,所述含硼溶液中包括:
    重量比为(30∶70)-(45∶55)的硼源和溶剂,其中,所述硼源为硼酸,所述溶剂为乙醇;
    或,重量比为35∶65的硼源和溶剂,其中,所述硼源为重量比为(10-15)∶(5-10)的氧化硼和硼氢化钠,所述溶剂为重量比为(10-25)∶(40-55)的乙醇和丙酮;
    或,重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(8-15)∶(5-10)的氧化硼和硼氢化钠,所述溶剂为重量比为(30-35)∶(35-40)的甲醇和乙酸乙酯;
    或,重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(10-20)∶(15-25) 的氧化硼和硼氢化钠,所述溶剂为重量比为(5-8)∶(30-40)∶(20-30)的正丁醇、正己烷和环己烷;
    或,重量比为35∶65的硼源和溶剂,其中,所述硼源为重量比为(15-20)∶(10-15)的氧化硼与四硼酸钠,所述溶剂为重量比为(25-35)∶(8-10)∶(20-40)的乙醇、乙酸正丙酯和甲苯;
    或,重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(15-30)∶(10-25)的氧化硼和四硼酸钠,所述溶剂为重量比为(25-40)∶(30-45)的甲醇和乙酸异丙酯;
    或,重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(15-30)∶(10-25)的氧化硼和四硼酸钠,所述溶剂为重量比为(10-15)∶(20-30)∶(20-30)的正丁醇、丙酮和丁酸异丙酯;
    或,重量比为30∶70的硼源和溶剂,其中,所述硼源为重量比为(10-15)∶(15-20)的硼氢化钠和四硼酸钠,所述溶剂为重量比为(10-25)∶(25-40)∶(10-30)的乙醇、乙酸甲酯和甲苯;
    或,重量比为40∶60的硼源和溶剂,其中,所述硼源为重量比为(20-30)∶(10-20)的硼氢化钠和四硼酸钠,所述溶剂为重量比为(20-40)∶(20-40)的正丁醇和乙酸正丁酯;
    或,重量比为45∶55的硼源和溶剂,其中,所述硼源为重量比为(12-17)∶(12-17)∶(15-20)的氧化硼、硼氢化钠和四硼酸钠,所述溶剂为重量比为(10-20)∶(10-20)∶(10-20)的甲醇、乙酸乙酯和环己烷。
  6. 根据权利要求1所述的制备方法,其特征在于,
    将所述载气通过含硼溶液时,通入含硼溶液的载气流量控制在5-100mL/min;所述含硼溶液上方压强控制在-0.1MPa~0.5MPa;
    和/或,将所述含硼气体通入化学气相沉积炉时,所述含硼气体的流量控制在10-200mL/min;
    和/或,将所述含硼气体通入化学气相沉积炉前,对所述含硼气体进行干燥除去含硼气体中的水。
  7. 一种掺硼金刚石电极,其特征在于,利用权利要求1-6中任一项所述的制备方法制得。
  8. 一种掺硼金刚石电极的制备装置,其特征在于,包括第一容器、进气装置、出气装置;
    所述第一容器内盛有含硼溶液;
    所述进气装置包括第一导气管,所述第一导气管用于将载气导入第一容器内,且第一导气管的管口位于含硼溶液的液面以下;
    所述出气装置包括第二导气管,所述第二导气管用于将含硼气体导出第一容器,且第二导气管的管口不与含硼溶液接触。
  9. 根据权利要求8所述的制备装置,其特征在于,所述第一容器设有控温装置,所述控温装置包括温度传感器、控制系统和加热元件;
    所述温度传感器用于获取第一容器内的含硼溶液的温度并发送至控制系统;
    所述控制系统用于根据接收的所述含硼溶液的温度控制加热元件;
    所述加热元件用于对第一容器内的含硼溶液进行加热。
  10. 根据权利要求8所述的制备装置,其特征在于,
    所述进气装置还包括第一流量计,所述第一流量计用于控制第一导气管导入的载气流量,所述第一流量计与第一导气管之间设有防倒流装置;
    和/或,所述出气装置还包括第二流量计,所述第二流量计用于控制第二导气管导出的含硼气体流量;
    和/或,所述出气装置还包括干燥装置,所述干燥装置用于除去所述第二导气管导出的含硼气体中的水;
    和/或,还包括负压表,所述负压表通过第三导气管与第一容器连通,且第三导气管的管口不与含硼溶液接触。
PCT/CN2023/087538 2022-09-21 2023-04-11 一种掺硼金刚石电极及其制备方法、制备装置 WO2024060589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211152909.XA CN115418622A (zh) 2022-09-21 2022-09-21 一种掺硼金刚石电极及其制备方法、制备装置
CN202211152909.X 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060589A1 true WO2024060589A1 (zh) 2024-03-28

Family

ID=84205066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087538 WO2024060589A1 (zh) 2022-09-21 2023-04-11 一种掺硼金刚石电极及其制备方法、制备装置

Country Status (2)

Country Link
CN (1) CN115418622A (zh)
WO (1) WO2024060589A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418622A (zh) * 2022-09-21 2022-12-02 山东欣远新材料科技有限公司 一种掺硼金刚石电极及其制备方法、制备装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476113A (zh) * 2009-01-22 2009-07-08 上海交通大学 化学气相沉积制备掺硼导电金刚石薄膜方法
JP2012188688A (ja) * 2011-03-09 2012-10-04 Yamaguchi Univ ダイヤモンドライクカーボン薄膜の製造方法及び該薄膜が金属基板上に形成された電極材料
CN103643219A (zh) * 2013-11-29 2014-03-19 吉林大学 一种以多孔钛为基体的掺硼金刚石薄膜电极的制备方法
CN105331948A (zh) * 2015-09-25 2016-02-17 北京科技大学 一种表面p型导电金刚石热沉材料的制备方法
CN115418622A (zh) * 2022-09-21 2022-12-02 山东欣远新材料科技有限公司 一种掺硼金刚石电极及其制备方法、制备装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735716A (zh) * 2003-05-26 2006-02-15 住友电气工业株式会社 金刚石涂敷的电极及其制备方法
CN102520042B (zh) * 2011-12-19 2014-01-08 天津理工大学 一种用于检测多巴胺的掺硼金刚石薄膜电极的制备方法
EP3712107A4 (en) * 2017-11-16 2021-08-18 Daicel Corporation ELECTRODE MATERIAL FOR CAPACITOR
JP6969743B2 (ja) * 2017-12-27 2021-11-24 旭ダイヤモンド工業株式会社 ダイヤモンド製造方法
TWI741719B (zh) * 2019-08-06 2021-10-01 日商日本輕金屬股份有限公司 硼氫化鈉的製造方法
CN111945131B (zh) * 2020-09-18 2021-08-06 上海征世科技股份有限公司 一种通过微波等离子体采用碳化硼制备金刚石的方法
CN112899644A (zh) * 2021-01-21 2021-06-04 山东欣远新材料科技有限公司 一种金刚石膜氧化硼掺杂方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476113A (zh) * 2009-01-22 2009-07-08 上海交通大学 化学气相沉积制备掺硼导电金刚石薄膜方法
JP2012188688A (ja) * 2011-03-09 2012-10-04 Yamaguchi Univ ダイヤモンドライクカーボン薄膜の製造方法及び該薄膜が金属基板上に形成された電極材料
CN103643219A (zh) * 2013-11-29 2014-03-19 吉林大学 一种以多孔钛为基体的掺硼金刚石薄膜电极的制备方法
CN105331948A (zh) * 2015-09-25 2016-02-17 北京科技大学 一种表面p型导电金刚石热沉材料的制备方法
CN115418622A (zh) * 2022-09-21 2022-12-02 山东欣远新材料科技有限公司 一种掺硼金刚石电极及其制备方法、制备装置

Also Published As

Publication number Publication date
CN115418622A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024060589A1 (zh) 一种掺硼金刚石电极及其制备方法、制备装置
RU2503744C2 (ru) Устройство и способ для реакторов осаждения (варианты)
TWI236705B (en) Method of and apparatus for manufacturing semiconductor device
US8017527B1 (en) Method and apparatus to reduce defects in liquid based PECVD films
CN103972451B (zh) 电池隔膜的表面改性处理方法
TW200302294A (en) CVD method and apparatus for forming insulating film containing silicon
CN107488837B (zh) 材料微观表面共型镀膜系统
CN105648422A (zh) 一种用于电极粉体材料包覆的气相原子层沉积装置及应用
CN103569998B (zh) 碳纳米管制备装置及方法
CN103332675B (zh) 基于石墨烯量子点化学气相沉积合成碳纳米管的方法
CN207294886U (zh) 管式炉及化学气相沉积装置
JP4728308B2 (ja) 水素分離膜および水素分離膜の製造方法
CN105399082A (zh) 制备石墨烯薄膜的化学气相沉积设备及方法
CN103482571A (zh) 一种氢化铍材料的制备方法及装置
US5352487A (en) Process for the formation of SiO2 films
CN109267037A (zh) 常压等离子体增强化学气相沉积方法及采用该方法的设备
CN213835530U (zh) 一种固态源瓶
CN210104072U (zh) 一种tma介质的供给系统
KR101543272B1 (ko) 기화기를 가지는 증착장치
CN210856329U (zh) 一种化学气相沉积系统及供气装置
CN210237770U (zh) 一种用于制备纳米材料的气相反应炉
CN110420650B (zh) 一种核壳结构Bi/BiOBr复合材料的制备方法
JP2005254161A (ja) 水素分離膜およびその製造方法
CN112899644A (zh) 一种金刚石膜氧化硼掺杂方法
CN207331056U (zh) 材料微观表面共型镀膜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866886

Country of ref document: EP

Kind code of ref document: A1