WO2024060104A1 - 云台、云台的控制方法、装置及存储介质 - Google Patents

云台、云台的控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2024060104A1
WO2024060104A1 PCT/CN2022/120372 CN2022120372W WO2024060104A1 WO 2024060104 A1 WO2024060104 A1 WO 2024060104A1 CN 2022120372 W CN2022120372 W CN 2022120372W WO 2024060104 A1 WO2024060104 A1 WO 2024060104A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
sensor
pan
tilt
freedom
Prior art date
Application number
PCT/CN2022/120372
Other languages
English (en)
French (fr)
Inventor
张洪记
谢文麟
陈传伟
曾德豪
楼致远
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/120372 priority Critical patent/WO2024060104A1/zh
Publication of WO2024060104A1 publication Critical patent/WO2024060104A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Definitions

  • the present application relates to the field of PTZ technology, and in particular to a PTZ, a PTZ control method, a device and a storage medium.
  • the pan/tilt generally refers to the equipment used to install or fix the load, and is used to support and stabilize the load. At the same time, the pan/tilt can rotate to adjust the direction of the load.
  • the load can be terminal equipment such as mobile phones, cameras and camcorders. Users can install terminal devices such as mobile phones on the gimbal to adjust the shooting angle and perform related shooting operations.
  • embodiments of the present application provide a PTZ, a PTZ control method, a device, and a storage medium, aiming to solve the problem of poor user experience during the use of the PTZ.
  • a pan/tilt which includes: a first component; a second component mechanically coupled to the first component; and a non-contact sensor disposed on the first component. and/or the second component; wherein the non-contact sensor is used to output a sensing signal, so that when the relative position of the first component and the second component changes, the pan/tilt can move according to the Sensing signals, perform corresponding control operations; the control operations include any of the following: power-on operation; power-off operation.
  • embodiments of the present application also provide a method for controlling a pan/tilt.
  • the pan/tilt includes a first component and a second component.
  • the first component is mechanically coupled to the second component.
  • the control method includes: acquiring a sensing signal of a non-contact sensor provided on the first component and/or the second component; performing a preset control operation according to the sensing signal, so that when the first component and the second component When the relative positions of the two components change, the cloud platform can perform corresponding responses; wherein the control operations include any of the following: power-on operation; power-off operation.
  • embodiments of the present application further provide a pan/tilt.
  • the pan/tilt includes a first component and a second component.
  • the first component is mechanically coupled to the second component.
  • the pan/tilt also includes a memory. and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and implement the method steps described in the second aspect when executing the computer program.
  • an embodiment of the present application also provides a control method for a gimbal, wherein the gimbal includes a base and an arm assembly, wherein the arm assembly is connected to the base for mounting a load; the arm assembly includes at least one arm, and the arm can rotate around at least one axial direction relative to the base to adjust the posture of the load; the method includes: obtaining the motion state of the base of the gimbal; when the gimbal is equipped with a load and the motion state of the base satisfies a first preset condition, entering a first shooting mode; the first preset condition includes that the posture of the base remains approximately unchanged; wherein, when the gimbal is in the first shooting mode, the target arm of the arm assembly does not stabilize the load, and the target arm can rotate from a first joint angle to a second joint angle with a first degree of freedom when subjected to an external force, and can remain at the second joint angle.
  • embodiments of the present application further provide a pan/tilt head.
  • the pan/tilt head includes a base and an axis arm assembly.
  • the axis arm assembly is connected to the base and is used to install a load;
  • the axis arm assembly includes at least An axis arm that can rotate around at least one axis relative to the base to adjust the attitude of the load;
  • the platform also includes a memory and a processor; the memory is used to store a computer program;
  • the processor is configured to execute the computer program and implement the method steps described in the fourth aspect when executing the computer program.
  • embodiments of the present application further provide a control device for a pan/tilt.
  • the pan/tilt includes a first component and a second component, and the first component is mechanically coupled to the second component;
  • the control device It includes a memory and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and implement the method steps described in the second aspect when executing the computer program.
  • embodiments of the present application also provide a control device for a pan/tilt.
  • the pan/tilt includes a base and an axis arm assembly.
  • the axis arm assembly is connected to the base and is used to install a load;
  • the axis arm The assembly includes at least one axis arm that can rotate about at least one axis relative to the base to adjust the attitude of the load;
  • the control device includes a memory and a processor; the memory is used to store a computer program ;
  • the processor is used to execute the computer program and when executing the computer program, implement the method steps described in the fourth aspect.
  • embodiments of the present application further provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the processor causes the processor to implement any of the instructions in the present application. The steps of the method for controlling a pan/tilt according to an embodiment.
  • Embodiments of the present application provide a pan-tilt, a pan-tilt control method, a device, and a storage medium.
  • the pan-tilt can be configured with a non-contact sensor on the first component or the second component.
  • the pan/tilt can perform corresponding power-on or power-off control operations based on the sensing signal output by the non-contact sensor.
  • the user can automatically power on and off the gimbal only by changing the relative positions of the first component and the second component, which improves the convenience of powering on and off the gimbal, that is, improves the user experience.
  • the gimbal can obtain the motion state of the base of the gimbal and enter the first shooting mode when the gimbal is loaded with a load and the motion state of the base remains roughly unchanged.
  • the target axis arm of the axis arm assembly can cancel the stabilization of the load to increase the adjustable angle range of the target axis arm.
  • the target axis arm can rotate from the first joint angle to the second joint angle when acted upon by an external force, and can be maintained at the second joint angle. This allows the user to rotate the target axis arm in a larger angle range to keep the load at a suitable shooting angle, which improves the user's degree of freedom when shooting with the gimbal, which improves the user experience.
  • Figure 1 is one of the structural schematic diagrams of a pan/tilt platform provided by an embodiment of the present application
  • Figure 2 is one of the partial structural perspective views of the pan/tilt provided by the embodiment of the present application.
  • Figure 3 is the second structural schematic diagram of a pan/tilt platform provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a pan/tilt component provided by an embodiment of the present application.
  • Figure 5 is the second partial structural perspective view of the pan/tilt provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the principle of a magnetic induction sensor provided by an embodiment of the present application.
  • Figure 7 is a partial enlarged view of Figure 2;
  • Figure 8 is the third structural schematic diagram of the pan/tilt provided by the embodiment of the present application.
  • Figure 9 is one of the flow charts of the cloud platform control method provided by the embodiment of the present application.
  • Figure 10 is the second flow chart of the PTZ control method provided by the embodiment of the present application.
  • Figure 11 is one of the schematic diagrams of the gimbal equipped with a load provided by the embodiment of the present application.
  • Figure 12 is the second schematic diagram of the gimbal equipped with a load provided by the embodiment of the present application.
  • Figure 13 is the third schematic diagram of the gimbal equipped with a load provided by the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a pan/tilt control device provided by an embodiment of the present application.
  • connection here includes any direct and indirect means of connection. Therefore, if a first device is connected to a second device, it means that the first device can be directly connected to the second device, or indirectly connected to the second device through other devices.
  • the PTZ generally refers to the support equipment used to install or fix the load.
  • the load can be terminal equipment such as mobile phones, cameras, and video cameras. Users can install mobile phones and other terminal devices on the gimbal to perform related shooting operations.
  • the user experience issues during use of the gimbal still need to be improved.
  • the gimbal has a foldable or deformable structure in some usage scenarios.
  • the user needs to power off the gimbal by pressing buttons to fold or deform it; after unfolding or deforming the gimbal, the gimbal needs to be folded or deformed. Power on by pressing the button etc. It can be seen that during the use of a foldable or deformable gimbal, it is cumbersome and inconvenient for users to power on and off the gimbal.
  • embodiments of the present application provide a PTZ, a PTZ control method, a device, and a storage medium, aiming to improve the user's convenience when powering on or off.
  • a pan/tilt platform including: a first component 10; a second component 20, mechanically coupled with the first component 10; and a non-contact sensor 30, disposed on the first component 10. component 10 or second component 20.
  • the non-contact sensor 30 is used to output a sensing signal, so that when the relative position of the first component 10 and the second component 20 changes, the pan/tilt can perform corresponding control operations based on the sensing signal.
  • the control operation includes either a power-on operation or a power-off operation.
  • the first component 10 and the second component 20 can be different components mechanically coupled to each other in the gimbal.
  • the structure, shape and functions implemented by the first component 10 and the second component 20 can be the same or different, and can be actually set according to the specific application scenario.
  • the pan/tilt may be a handheld pan/tilt
  • the first component 10 may include a load-carrying pan/tilt component 12
  • the second component 20 may include a holding member 21 having a holding handle.
  • the first component 10 and the second component 20 may also include axis arms corresponding to different axial directions in the platform.
  • the first component 10 may include an axis arm corresponding to the yaw axis
  • the second component 20 may include an axis arm corresponding to the roll axis, etc.
  • the platform may have a foldable or deformable structure
  • the first component 10 and the second component 20 may respectively include components connected to the foldable or deformable structure.
  • the first component 10 and the second component 20 are mechanically coupled, which can be understood to mean that there is a mechanical connection and/or a mechanical interaction between the first component 10 and the second component 20 .
  • Mechanical connections include but are not limited to rotational connections, movable connections, sliding connections and abutments, etc., which can be set according to actual needs.
  • the first component 10 and the second component 20 may interact through a mechanical connection. It should be understood that in some embodiments, there may not be a direct connection relationship between the first component 10 and the second component 20 , but may be connected through connectors so that there is a mutual mechanical interaction between the two components. This is not the case here. Again.
  • the non-contact sensor 30 can be understood as a sensor that has no contact with the object to be measured.
  • the non-contact sensor 30 includes but is not limited to a magnetic induction sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a visual sensor and a millimeter wave radar sensor.
  • the specific settings can be set according to the actual application scenario, and will not be listed here.
  • the non-contact sensor 30 in FIG. 2 is disposed on the second component 20 and can sense the first component 10 .
  • there may be two non-contact sensors 30 and they are respectively provided on the first component 10 and the second component 20 .
  • the induction signal in the embodiment of the present application can be an electrical signal, specifically a digital signal or an analog signal.
  • the sensing signal may indicate the relative position between the first component 10 and the second component 20, including but not limited to relative distance and relative angular displacement.
  • the sensing signal may also indicate the relative movement trend between the first component 10 and the second component 20 , such as relative speed or relative acceleration.
  • the pan/tilt may be equipped with a signal conditioning circuit, which amplifies, filters, and digital-to-analog conversion the sensing signal of the non-contact sensor 30 to finally output a signal for logical judgment.
  • the pan/tilt can determine whether the relative position of the first component 10 and the second component 20 has changed based on the sensing signal.
  • the pan/tilt can determine the relative position of the first component 10 and the second component 20 based on the sensing signal.
  • the pan/tilt can also perform control operations based on the sensing signal, so that when the relative position between the first component 10 and the second component 20 changes, the pan/tilt can respond accordingly. It should be understood that the pan/tilt can choose whether to perform corresponding control operations when the sensing signal indicates that the relative positions of the first component 10 and the second component 20 change.
  • the pan/tilt can be positioned when the relative position between the first component 10 and the second component 20 is a preset position, or in other words, the first component 10 and the second component 20 When the component 20 assumes a preset posture, corresponding control operations are performed.
  • the pan/tilt can also perform corresponding control operations based on the fact that the relative distance between the first component 10 and the second component 20 is smaller than the preset distance, and/or the relative angle is smaller than the preset angle.
  • changes in the relative positions of components in the first component 10 and components in the second component 20 can also be understood as changes in the relative positions between the first component 10 and the second component 20 .
  • the power-on operation can be understood as the power-on operation performed on at least some of the electrical components of the gimbal.
  • the power-on operation can control the battery of the gimbal or the external power supply can supply power to at least some of the electrical components of the gimbal. After performing the power-on operation, at least some of the electrical components of the gimbal remain powered on or powered.
  • the power-off operation may be a power-on operation of the gimbal.
  • a power-off operation can be understood as a power-off operation performed on at least some of the electrical components of the gimbal.
  • the power-off operation can control the battery of the gimbal or stop the external power supply from supplying power to at least some of the electrical components of the gimbal. After performing the power-off operation, at least some of the electrical components of the gimbal remain in a power-off state.
  • the power-off operation may be a shutdown operation of the gimbal.
  • the pan/tilt when performing a power-off operation, can continue to provide power to the non-contact sensor 30 to prevent the non-contact sensor 30 from being unable to output a sensing signal for causing the pan/tilt to perform a power-on operation due to power outage. .
  • the pan/tilt can be configured with a non-contact sensor 30 on the first component 10 and/or the second component 20, so that when the relative positions of the mechanically coupled first component 10 and the second component 20 change, The pan/tilt can perform corresponding power-on or power-off control operations based on the sensing signal output by the non-contact sensor 30 .
  • the user can automatically power on and off the gimbal only by changing the relative positions of the first component 10 and the second component 20 , which improves the convenience of powering on and off the gimbal, that is, improves the user experience.
  • a contact sensor for example, a pressure sensor is disposed between the first component 10 and the second component 20, and the contact between the pressure sensor and the first component 10 and the second component 20 is used to determine the relationship between the first component 10 and the second component 20. Whether the position of the second component 20 changes, there will often be a problem of a smaller sensing range. At the same time, the contact sensor frequently comes into contact with the measured object, which will cause mechanical loss and affect the service life of the gimbal.
  • the sensing range can be improved while avoiding the mechanical loss caused by the contact sensor (such as a pressure sensor) when it comes into contact with the object being measured, thereby increasing the service life of the pan/tilt head.
  • the contact sensor such as a pressure sensor
  • the first component 10 may include a first component 11 capable of rotating with a first degree of freedom and a second degree of freedom relative to the second component 20 .
  • the first degree of freedom corresponds to the preset first rotation range.
  • the first component 11 rotates with the second degree of freedom at any angle within the first rotation range of the first degree of freedom relative to the second component 20, so that the relative position of the first component 11 and the second component 20 changes.
  • the sensor signal changes, the sensor signal is used to cause the pan/tilt to perform control operations.
  • the first degree of freedom and the second degree of freedom can be understood as rotational degrees of freedom, or rotational degrees of freedom.
  • rotational degrees of freedom or rotational degrees of freedom.
  • the range of rotation of a robotic arm when it rotates around an axis when it rotates around an axis.
  • first component 11 rotates with the first degree of freedom, it is equivalent to the first component 11 rotating in the corresponding direction or axial direction with the first degree of freedom.
  • the first degree of freedom and the second degree of freedom may be degrees of freedom corresponding to rotation around different axes. It should be understood that the first degree of freedom may correspond to the axial direction of any axis component of the gimbal's pitch axis, roll axis, and yaw axis, and the second degree of freedom may not correspond to the axial direction of the axis component of the gimbal, but for other axes. In other words, the second degree of freedom may be a degree of freedom of rotation about an axis other than the axis corresponding to the first degree of freedom, that is, the first component 11 can rotate about at least two axes relative to the second component 20 .
  • the first rotation range corresponding to the first degree of freedom can be the rotation range caused by the mechanical limit, or the rotation range controlled by the motor algorithm, which is not further limited here.
  • the first component 11 rotates with the first degree of freedom to any angle within the first rotation range, the first component 11 can further rotate with the second degree of freedom, so that the relative position of the first component 11 and the second component 20 is changes occur.
  • the first component 11 can also further rotate with the first degree of freedom.
  • the first degree of freedom of the first component 11 may be the degree of freedom of rotation around the yaw axis direction, that is, the A direction as shown in the figure, and there is a preset third degree of freedom.
  • the platform may also include a folding mechanism 1213, which is connected to the first component 11, and the second degree of freedom may be direction B as shown in the figure.
  • the detection range of the non-contact sensor 30 may include a plane.
  • the non-contact sensor 30 may be a magnetic induction sensor, which cooperates with a magnet for detection. Since the magnetic field generated by the magnet includes at least one planar area, the non-contact sensor 30 can output a sensing signal when it is located in the magnetic field generated by the magnet.
  • the non-contact sensor 30 can be arranged in the second component 20 and has an annular detection range, and the axial direction corresponding to the annular detection range is the axial direction corresponding to the first degree of freedom, so that when the first component 11 is located in the annular detection range of the non-contact sensor 30, the non-contact sensor 30 can output a sensing signal.
  • the sensing signal is used to cause the pan/tilt to perform a control operation. It can be understood that the pan/tilt can choose whether to perform a control operation based on the sensing signal.
  • the first component 11 in the first component 10 of the pan/tilt can rotate with the second degree of freedom at any angle within the first rotation range of the first degree of freedom, so that the first component 11 and the second component The relative position between 20 changes.
  • the non-contact sensor 30 can output a sensing signal for causing the pan/tilt to perform corresponding control operations during this process, thereby reducing the user's risk of cloud movement during the process of causing the first component 11 to rotate with the first degree of freedom and the second degree of freedom. This improves the user experience when the power-on and off operations are accidentally triggered or not triggered.
  • this will allow users to control the gimbal to power on or off with greater freedom of rotation, further improving the user experience.
  • the first degree of freedom may be a degree of freedom of rotation about a roll axis, a degree of freedom of rotation about a pitch axis, or a degree of freedom of rotation about a yaw axis.
  • the specific settings can be made according to the axis sequence and structure of the gimbal.
  • the pan/tilt can be a handheld pan/tilt with a handle.
  • the first component 10 may include a pan/tilt assembly 12
  • the second component 20 may include a holding member 21
  • the pan/tilt assembly 12 is connected to the holding member 21 .
  • the pan/tilt assembly 12 may include a first component 11 .
  • the pan/tilt component 12 can be connected with the load for stabilizing the load.
  • the holding piece 21 can be held by the user.
  • the pan-tilt assembly 12 and the holding member 21 may be rotationally connected, so that the pan-tilt assembly 12 rotates relative to the holding member 21 to change the direction of the load when the user holds the holding member 21 .
  • the first component 10 may include the gimbal assembly 12 as shown in Figure 1, and the gimbal assembly 12 may include at least one axis assembly of a roll axis assembly, a pitch axis assembly, and a yaw axis assembly.
  • any axis assembly may include a motor and an axis arm connected to the motor, and the motor drives the axis arm to rotate.
  • the second component 20 may include a grip 21 as shown in Figure 1, which may specifically be a handle.
  • the grip 21 in the second component 20 is held by the user, and the gimbal assembly 12 in the first component 10 is used to connect the load, and the axis assembly included in the gimbal assembly 12 can rotate or displace relative to the grip 21 to change the direction of the load.
  • the first component 11 can be shown in Figure 3 and includes a partial axis arm of the yaw axis, a pitch axis motor, a pitch axis arm and a roll axis motor.
  • a partial axis arm of the yaw axis When the axis arm of the yaw axis rotates in the axial direction of the yaw axis, it drives the first component 11 to rotate in the axial direction of the yaw axis.
  • the first degree of freedom can be regarded as the axial rotation of the yaw axis. degrees of freedom.
  • the non-contact sensor 30 may be provided on the pan/tilt assembly 12 or the grip 21 .
  • the non-contact sensor 30 can be attached to the surface of any shaft arm in the gimbal assembly 12, or attached to the surface of the grip 21 to improve the sensing accuracy. In some embodiments, the non-contact sensor 30 can also be built into the shaft arm or grip 21 of the gimbal assembly 12 to improve the aesthetics and space utilization.
  • the position between the first component 11 and the second component 20 may change accordingly. Therefore, by arranging the first component 10 to include the pan/tilt component, the pan/tilt assembly to include the first component 11, and the second component 20 to include the holding member, it is possible for the user to change the first position of the pan/tilt component during use of the pan/tilt.
  • the position of the component 11 relative to the holding member makes powering on and off more convenient.
  • the pan/tilt head may include at least one shaft assembly.
  • the pan/tilt assembly 12 may include a first shaft assembly 121 connected to the holding member 21 and including a first driving member 1211 and a first shaft arm 1212 .
  • the first shaft arm 1212 is connected to the first driving member 1211 and can be driven by the first driving member 1211 to rotate around the first axis.
  • the first axis component 121 may be an axis component corresponding to a single-axis gimbal, or a component corresponding to any axis of a two-axis gimbal, or a component corresponding to any axis of a three-axis gimbal.
  • the first axial direction may be any of the yaw axis, pitch axis and roll axis of the gimbal to realize the rotation of the axis arm of the gimbal assembly 12 in the axial direction.
  • the first shaft assembly 121 may be connected with the grip 21 .
  • the first driving member 1211 may be connected to the holding member 21 and the first shaft arm 1212 respectively.
  • the first driving member 1211 can drive the first axis arm 1212 to rotate around the first axis, thereby changing the relative position between the holding member 21 and the first axis arm 1212.
  • the first driving component 1211 may be a motor.
  • the base of the motor can be fixedly connected to the holding member 21 , and the rotation output end of the motor can be fixedly connected to the first shaft arm 1212 to drive the first shaft arm 1212 to rotate around the first axis.
  • first degree of freedom may be a degree of freedom of rotation around the first axis.
  • the first component 11 may be connected to the first shaft arm, or include at least part of the first shaft arm.
  • the first component 11 in FIG. 4 includes part of the shaft arm of the first shaft arm 1212, so that when the first shaft arm 1212 rotates around the first axis, the first component 11 may rotate with the first shaft arm 1212 with a first degree of freedom.
  • the pan/tilt can have a folding mechanism 1213 and can be folded by the folding mechanism 1213 .
  • a folding mechanism 1213 may be provided on the first axis arm 1212 , and the folding mechanism 1213 can enable the first component 11 to rotate with a second degree of freedom.
  • the first axis arm 1212 can be folded through a folding mechanism 1213 . Since the first component 11 is connected to the first axis arm 1212 or includes at least part of the structure of the first axis arm 1212, during the process of the first axis arm 1212 being folded by the folding mechanism 1213, the first component 11 can be folded in the second direction. The degree of freedom of rotation is sensed by the non-contact sensor 30 .
  • the folding mechanism 1213 includes but is not limited to a rotating shaft mechanism, a hinge mechanism, a slide rail mechanism, etc. In some embodiments, the folding mechanism 1213 may be disposed in the middle of the first axis arm 1212 and connect the two parts of the first axis arm 1212 respectively.
  • the user when using a gimbal with a folding mechanism 1213, the user needs to unfold the gimbal and then turn it on by pressing the power button. After use, the user needs to fold the gimbal and turn it off by pressing the power button.
  • the process of rotating through the folding mechanism 1213 is regarded as the process of rotating with the second degree of freedom.
  • the non-contact sensor 30 can output a sensing signal for indicating the power on and off operation, thereby allowing the user to simply control the gimbal assembly. Fold or unfold to power on and off the gimbal, further improving the convenience of powering on and off the gimbal.
  • the first axis arm 1212 may include: a first sub-axis arm 12121, connected to the first driving member 1211; a second sub-axis arm 12122; and a folding mechanism 1213, which folds The mechanism 1213 is connected to the first sub-axis arm 12121 and to the second sub-axis arm 12122, so that the second sub-axis arm 12122 can rotate with the second degree of freedom.
  • the first component 11 includes a second sub-axis arm 12122.
  • the first component 11 can rotate with the first sub-shaft arm 12121 with a first degree of freedom, and at the same time, can rotate with a second degree of freedom through the folding mechanism 1213 .
  • pan/tilt component can be a two-axis pan/tilt or a three-axis pan/tilt.
  • the pan/tilt assembly 12 may further include: a second shaft assembly 122 connected to the first shaft assembly 121 and including a second driving member 1221 and a second shaft arm 1222 .
  • the second shaft arm 1222 is connected to the second driving member 1221 and can be driven by the second driving member 1221 to rotate around the second axis.
  • the third shaft assembly 123 is connected to the second shaft assembly 122 and includes a third driving member, and the third driving member can rotate around the third axis.
  • one end of the first shaft arm 1212 can be connected to the first driving member 1211, and the other end can be connected to the second driving member 1221.
  • One end of the second shaft arm 1222 can be connected to the second driving member 1221, and the other end can be connected to the second driving member 1221.
  • the third driving member can drive the load to rotate when rotating around the third axis.
  • the third driving member can be directly connected to the load, or can be connected to the load through an installation bracket, and can be set according to actual needs.
  • the second driving member and the third driving member are similar to the first driving member and may be motors, which will not be described again here.
  • the axis sequence and structural arrangement of the gimbal can be set according to actual conditions.
  • the first axis may be the yaw axis of the gimbal
  • the second axis may be the pitch axis of the gimbal
  • the third axis may be the roll axis of the gimbal.
  • the gimbal in FIG. 1 is a three-axis gimbal, and a first axis assembly 121 corresponding to the yaw axis, a second axis assembly 122 corresponding to the pitch axis, and a third axis assembly 123 corresponding to the roll axis are respectively arranged from the direction close to the handle to the direction away from the handle.
  • the number and type of non-contact sensors 30 can be set according to actual conditions.
  • the non-contact sensor 30 may include at least one of the following: an infrared sensor; a laser sensor; an ultrasonic sensor; a visual sensor; and a millimeter wave radar sensor.
  • the non-contact sensor 30 can sense the measured object in a non-contact manner and output a sensing signal.
  • the non-contact sensor 30 is an infrared, laser, ultrasonic or millimeter wave radar sensor, the sensor outputs a sensing signal according to the return time of the emitted light wave or sound wave;
  • the non-contact sensor 30 is a visual sensor, the visual sensor It can obtain the image data of the measured object and output the sensing signal.
  • the pan/tilt can determine the relative position to the measured object based on the output sensing signal.
  • the non-contact sensor 30 there may be a sensing element 40 paired therewith.
  • the pan/tilt can obtain the position of the sensing element 40 through the sensing signal of the non-contact sensor 30 to determine the position of the measured object.
  • Figure 5 is a partial structural perspective view of the pan/tilt.
  • the pan/tilt may also include a sensing component 40 , and the non-contact sensor 30 is configured to output a sensing signal according to changes in its relative position to the sensing component 40 .
  • the non-contact sensor 30 can be a magnetic induction sensor
  • the sensing element 40 can be a magnet, or at least partially made of magnetic material.
  • the magnetic induction sensor may output a sensing signal indicating the magnetic field strength of the sensing element 40 . Since the strength of the magnetic field is usually greater closer to the magnet, the pan/tilt can determine the relative position between the magnetic induction sensor and the sensing element 40 based on the induction signal. Through the cooperative detection of magnetic induction sensors and magnets, it can effectively prevent the gimbal from mistakenly triggering the power on and off operation or not triggering the power on and off operation during user operation, thereby improving the accuracy of the power on and off operation timing.
  • the type of magnetic induction sensor can be set according to actual needs.
  • the magnetic induction sensor may include a Hall sensor and/or anisotropic magnetoresistive (Anisotropic Magneto Resistance, AMR) sensor.
  • AMR anisotropic Magnetoresistive
  • the magnetic signal is converted into an electrical signal through a Hall element or a magnetoresistive element.
  • the non-contact sensor 30 can also be an infrared sensor, and the sensing element 40 can have a specific temperature. By detecting the sensing element 40 of a specific temperature, false triggering is avoided and sensing accuracy is improved.
  • the non-contact sensor 30 may be provided on one of the first component 10 and the second component 20
  • the sensing member 40 may be provided on the other of the first component 10 and the second component 20 .
  • the non-contact sensor 30 may be disposed on the holding member 21 , and the sensing member 40 may be disposed on the first component 11 , specifically, it may be located inside the first component 11 .
  • the non-contact sensor 30 can output a corresponding sensing signal, so that the pan/tilt tilts according to the The sensing signal performs corresponding control operations.
  • the non-contact sensor 30 may include an AMR sensor, and the pan/tilt Also included is a sensing element 40 made of magnetic material.
  • Figure 6 shows the sensing principle of the anisotropic magnetoresistive AMR sensor.
  • the external magnetic field lines of the magnet run from the N pole to the S pole.
  • the AMR sensor located at X or Y it can sense the magnetic field component in the horizontal direction of the magnet as shown in the figure. Therefore, when the sensing element 40 moves around the AMR sensor, the AMR sensor can sense the corresponding horizontal magnetic field component and output a sensing signal according to the magnetic field component.
  • the AMR sensor can be understood as a magnetic induction sensor in the plane/2D range.
  • an AMR sensor usually includes four magnetoresistive elements. After a magnetic field is applied, the resistance values of different magnetoresistive elements change differently, resulting in a potential difference and forming an induction signal.
  • the sensing element 40 may be completely made of magnetic material, or may be partly made of magnetic material.
  • the sensing member 40 may include a magnet disposed inside one of the first component 10 and the second component 20 .
  • the sensing element 40 can also be a part of the first component 10 or the second component 20 , that is, the first component 10 or the second component 20 can be partially made of magnetic materials.
  • the pan/tilt can perform corresponding control operations based on the size of the sensing signal.
  • the gimbal may further include a processor, and the processor may be used to perform at least one of the following: when the sensing signal is less than a first preset threshold, perform a power-on operation; when the sensing signal is greater than or equal to a second preset threshold, perform a power-off operation.
  • induction signals they are usually analog electrical signals, such as voltage values or current values.
  • the induction signal can indicate corresponding information through its amplitude.
  • the Hall sensor when the magnetic field intensity sensed by the Hall sensor is greater, the Hall voltage output by the Hall sensor is also greater, which means that the distance between the measured object and the Hall sensor is closer. Therefore, the PTZ can determine the size of the sensing signal through the processor, thereby determining the distance between the sensor and the object being measured.
  • the first component 11 in FIG. 3 can be folded or unfolded along the B direction relative to the grip 21.
  • the sensing signal is less than the first preset threshold, it indicates that the distance between the first component 11 and the grip 21 is greater than the first preset distance.
  • the processor of the gimbal can perform a power-on operation.
  • the sensing signal is greater than or equal to the second preset threshold, it indicates that the distance between the first component 11 and the grip 21 is less than or equal to the second preset distance, and the processor of the gimbal can perform a power-off operation.
  • the first preset threshold may be equal to the second preset threshold.
  • the processor of the gimbal can perform a power-on operation when the first component 11 and the grip 21 are in the state shown in FIG. 3 and the first component 11 moves further away from the grip 21 .
  • the processor of the pan/tilt can perform a power-off operation when the first component 11 and the holding member 21 are in the state shown in FIG. 3 , or when the first component 11 moves further closer to the holding member 21 .
  • the first preset threshold may also be smaller than the preset threshold. That is, when the power-on operation is performed, the distance between the first component 11 and the holding member is greater than the distance between the first component 11 and the holding member when the power-off operation is performed.
  • the gimbal can be provided with at least two non-contact sensors 30 to improve the accuracy of the timing of powering on and off.
  • the non-contact sensor 30 may include a first sensor 31 and a second sensor 32.
  • the first sensor 31 is disposed on the first component 11 or the second component 20, and the second sensor 32 is disposed on the first component 11 or the second component 20.
  • Second component 20 Second component 20.
  • the first sensor 31 is used to output a first induction signal
  • the second sensor 32 is used to output a second induction signal, so that the first component 11 is within a first rotation range of the first degree of freedom relative to the second component 20
  • the pan/tilt can perform control operations based on the first sensing signal and the second sensing signal.
  • the pan/tilt can combine the first sensing signal and the second sensing signal output by the first sensor 31 and the second sensor 32 to perform control operations, which not only expands the sensing range, but also improves the detection accuracy.
  • the pan/tilt can still detect it through the other sensor and perform corresponding control operations.
  • the reliability of the non-contact sensor 30 can also be improved.
  • the first sensor 31 and/or the second sensor 32 may also include magnetic induction sensors. Similar to the above embodiment, when the first sensor 31 and/or the second sensor 32 includes a magnetic induction sensor, the pan/tilt may also include a sensing member 40 made of magnetic material. The magnetic induction sensor is disposed on the pan/tilt assembly 12 and the holding member. In one of 21 , the sensing member 40 is provided on the other one of the pan-tilt assembly 12 and the holding member 21 . Wherein, the first sensor 31 and/or the second sensor 32 are used to output sensing signals according to changes in their relative positions with the sensing element 40 .
  • the first sensor 31 and the second sensor 32 can be provided in the same component or in different components. They can be set according to actual needs.
  • the pan/tilt can include a sensing component 40, and the first sensor 31 and the second sensor 32 can be used to detect the relative position to the same sensing component 40 and output the first sensing signal and the second sensing signal to save layout. space to avoid magnetic interference affecting the accuracy of detection.
  • the pan/tilt can also include two or more sensing components 40, and the first sensor 31 and the second sensor 32 can be used to detect the relative positions of different sensing components 40, specifically according to Set according to the actual situation.
  • the first sensor 31 and the second sensor 32 may include Hall sensors and/or AMR sensors.
  • the sensing principle of the AMR sensor it can be seen that for the magnetic induction sensor located at Z, since the magnet and the AMR sensor are located in the same vertical direction, the horizontal magnetic field component of the magnet at the AMR sensor is approximately zero. That is, the AMR sensor may have a sensing blind zone.
  • the sensing signal of the other sensor can be combined with the sensing signal of the other sensor to determine whether to perform the control operation in the sensing blind area of the AMR sensor, which improves the accuracy of the timing of powering on and off.
  • the first sensor 31 may include a Hall sensor
  • the second sensor 32 may include an AMR sensor. It can be known from the foregoing that when the second sensor 32 is an AMR sensor, when the first component 11 rotates relative to the holding member 21 , the magnet may be in the sensing blind zone of the second sensor 32 . At this time, the first sensor 31 may include a Hall sensor, which may sense the vertical component of the magnetic field generated by the magnet.
  • the first sensor 31 can still sense the vertical component of the magnetic field, thereby avoiding the situation where the sensing signal output by the second sensor 32 in the sensing blind area causes the gimbal to mistakenly trigger the up and down power operations, or fails to trigger the up and down power operations when the first component 11 rotates in the second degree of freedom at any angle of the first degree of freedom, thereby improving the accuracy of the timing of the up and down power operations.
  • both the first sensor 31 and the second sensor 32 may include AMR sensors. At this time, the first sensor 31 and the second sensor 32 may not be located in the same vertical direction, so that the sensing blind areas of the two sensors 40 do not overlap with each other, thereby improving detection accuracy.
  • the installation positions of the first sensor 31 and the second sensor 32 can be set according to actual needs.
  • the first sensor 31 and the second sensor 32 may both be disposed on the holding member 21 , and the sensing member 40 may be disposed on the pan/tilt assembly 12 .
  • the first sensor 31 and the second sensor 32 may both be disposed in the grip 21 .
  • the first sensor 31 and the second sensor 32 may be disposed on the same circuit board. In order to avoid the situation where one of the sensors cannot sense the sensing element 40 when the first sensor 31 and the second sensor 32 are far apart, so that the sensing of the sensing element 40 by the first sensor 31 and the second sensor 32 is more accurate, in some cases, the first sensor 31 may be disposed adjacent to the second sensor 32 .
  • the first sensor 31 and the second sensor 32 can output sensing signals during the folding process, and the pan/tilt can perform control operations based on the sensing signals.
  • the pan/tilt assembly 12 includes a first component 11 and a folding mechanism 1213 , and the first component 11 and the folding mechanism 1213 are connected.
  • the first component 11 can rotate with a second degree of freedom through the folding mechanism 1213, so that the end of the first component 11 away from the folding mechanism 1213 is close to or away from the grip 21.
  • the sensing element 40 can be disposed on the first component 11 .
  • the non-contact sensor 30 can be used to output a sensing signal according to the relative position change of the first component 11 and the grip 21 , so that when the first component 11 rotates with the second degree of freedom through the folding mechanism 1213 During the process, the PTZ can perform control operations based on the sensing signals.
  • the sensing element 40 can be disposed on the first component 11 . Since the first component 11 rotates with the second degree of freedom through the folding mechanism 1213, the end of the first component 11 away from the folding mechanism 1213 can be close to or away from the holding member 21, so that the first sensor 31 and the second sensor 32 can The first sensing signal and the second sensing signal are output according to the relative position change with the sensing element 40 .
  • Figure 8 is a state diagram of the first component 11 rotating to the first joint angle with the second degree of freedom through the folding mechanism 1213. At this time, the first component 11 is close to the holding member 21, And there is contact with the holding member 21, and the platform is in a completely folded state.
  • FIG. 1 is a state diagram in which the first component 11 rotates to the second joint angle with the second degree of freedom through the folding mechanism 1213. At this time, the end of the first component 11 is away from the holding member 21, and the platform is in an unfolded state.
  • FIG. 3 is a state diagram in which the first component 11 rotates to the third joint angle with the second degree of freedom through the folding mechanism 1213. At this time, the pan/tilt is in a partially expanded intermediate state.
  • the magnetic poles of the induction member 40 may be distributed along a first direction that is perpendicular to the extension direction of the first component 11 .
  • Figures 2 and 7 can be referred to together.
  • the induction element 40 is disposed in the first component 11 , and the distribution direction of the N pole and S pole of the induction element 40 is substantially perpendicular to the extension direction of the first component 11 . Since the external magnetic field generated by the magnet is emitted from the N pole to the S pole, the magnetic field intensity in the direction of distribution of the N pole and S pole changes significantly with distance. Therefore, during the rotation of the first component 11 with the second degree of freedom, the change in magnetic field intensity is more obvious and is easier to be detected by the magnetic induction sensor.
  • the sensing member 40 may be a bar magnet.
  • the first direction may also have a certain angle with the normal line of the extension direction of the first component 11 , and further settings may be made according to actual application scenarios.
  • both the first sensor 31 and the second sensor 32 are located on a side close to the first component 11 and facing toward Sensing element 40 is provided.
  • the first sensor 31 and the second sensor 32 are provided on the same circuit board, and the circuit board is located on the side of the holding member 21 close to the first component 11 , and the first sensor 31 and the second sensor 32 are disposed on the same circuit board.
  • the two sensors 32 are located on the side of the circuit board close to the first component 11 .
  • the distance between the first sensor 31 and the second sensor 32 and the sensing element 40 is relatively close, and they are located in a direction with a stronger magnetic field.
  • the output sensing signal has a larger amplitude, which is more conducive to the gimbal performing control operations based on the sensing signal.
  • the first sensor 31 and the second sensor 32 may be distributed along a second direction, and the second direction is perpendicular to the extension direction of the holding member 21 , that is, the C direction as shown in the figure. In this way, the first sensor 31 and the second sensor 32 can be located in different directions of the magnetic field generated by the sensing element 40, so that the sensing element 40 does not leave the sensing range of the two sensors during the movement of the sensing element 40.
  • the projection of the normal plane of the first sensor 31, the second sensor 32 and the sensing member 40 in the third direction can be roughly distributed along the second direction.
  • the second direction can be perpendicular to the extension direction of the grip 21, and can also be parallel to the extension direction of the grip 21.
  • the third direction is perpendicular to the first sensor 31 or the second sensor 32, and can be understood as the sensing direction of the first sensor 31 or the second sensor 32.
  • the first sensor 31 and the second sensor 32 are arranged on the same circuit board, it can be a direction perpendicular to the circuit board.
  • the first sensor 31 and the second sensor 32 can be located in a direction with a stronger magnetic field, and the amplitude of the output sensing signal is larger, which is more conducive to the pan/tilt performing control operations based on the sensing signal.
  • first sensor 31 and the second sensor 32 may also be respectively arranged on the left side and the lower side of the sensing element 40 in Fig. 10. Specifically, further arrangements may be made according to the actual spatial arrangement.
  • the first component 11 can still rotate with the first degree of freedom after the gimbal is folded, in some embodiments, when the first component 11 rotates with the second degree of freedom to the first joint angle through the folding mechanism 1213, the first component 11 can still rotate with the first degree of freedom.
  • the rotation of the component 11 in the first degree of freedom is limited.
  • the pan/tilt when the first component 11 rotates to the first joint angle, the pan/tilt can use its own structure to mechanically limit the first component 11, or it can algorithmically limit the first component 11 through the control algorithm of the motor.
  • the rotation of the first component 11 in the first degree of freedom is limited. It should be understood that the rotation of the first component 11 in the first degree of freedom is limited, which may mean that the first component 11 cannot rotate in the first degree of freedom, or can only rotate within a certain angle range.
  • the platform can limit the rotation of the first component 11 on the first degree of freedom through the cooperation of the locking groove 211 and the locking protrusion 12221.
  • one of the holding member 21 and the first component 11 is provided with a locking groove 211
  • the other is provided with a locking protrusion 12221 .
  • the holding member 21 may be provided with a locking slot 211
  • the first component 11 may be provided with a locking protrusion 12221 .
  • the first degree of freedom is the degree of freedom of rotation around the yaw axis.
  • the engaging protrusion 12221 is at least partially located in the slot 211 to prevent the first component 11 from rotating around the yaw axis and affecting the user's carrying ability. .
  • the first component 11 may also be provided with a locking groove
  • the holding member 21 may be provided with an engaging protrusion.
  • the pan/tilt can be mounted through the relative cooperation between the folded holding member 21 and the pan/tilt assembly 12 .
  • the holding member 21 blocks the third shaft assembly 123 to limit the rotation of the first component 11 in the first degree of freedom.
  • the projections of the normal planes of the sensing element 40 and the second sensor 32 in the third direction do not overlap, so as to ensure that when the second sensor 32 is an AMR sensor, when the gimbal is in a fully folded state, the second sensor 32 can sense the sensing element 40 and output a sensing signal.
  • the third direction can be a direction perpendicular to the second sensor.
  • the processor of the pan/tilt can perform the control operation in combination with the first sensing signal and the second sensing signal.
  • the processor of the gimbal can also perform at least one of the following:
  • a power-on operation is performed.
  • a power-off operation is performed.
  • the gimbal can perform a power-on operation when both the first sensing signal and the second sensing signal are less than a certain threshold, and perform a power-off operation when both are greater than or equal to a certain threshold. In this way, by combining two sensing signals to perform control operations, it is possible to reduce misoperations performed by the gimbal when only judging by the sensing signal of one sensor, and further improve the accuracy of the timing of power-on and power-off operations.
  • the third preset threshold and the fourth preset threshold may be the same or different.
  • the fifth preset threshold and the sixth preset threshold may be the same or different. Specific settings may be made according to the type and structure of the first sensor 31 and the second sensor 32 .
  • the third preset threshold may be equal to the fifth preset threshold, or may be smaller than the fifth preset threshold.
  • the fourth preset threshold may be equal to the sixth preset threshold, or may be smaller than the sixth preset threshold, which will not be described again here.
  • Embodiments of the present application also provide a method for controlling a gimbal, aiming to improve user convenience when powering on and off the gimbal.
  • FIG. 9 is a schematic flowchart of the steps of a cloud platform control method according to an embodiment of the present application. This method can be applied to a cloud platform. Specifically, it can be executed by the processor of the PTZ, or it can be executed by an external processor that is communicatively connected to the PTZ, which is not limited here.
  • the cloud platform includes a first component and a second component, the first component and the second component are mechanically coupled, and the method includes:
  • the control operation includes any of the following: power-on operation; power-off operation.
  • the structures of the first component 10 and the second component 20 can be configured with reference to the above-mentioned embodiment. To avoid repetition, they will not be described again here.
  • the specific implementation of the method steps of the embodiments of the present application reference may be made to the descriptions of the above embodiments, which will not be described again here.
  • the pan/tilt can be configured with a non-contact sensor on the first component and/or the second component.
  • the pan/tilt can respond to the non-contact sensor.
  • the sensing signal output by the contact sensor is used to perform corresponding power-on or power-off control operations. In this way, the user can automatically power on and off the gimbal only by changing the relative positions of the first component and the second component, which improves the user's convenience in powering on and off the gimbal.
  • a contact sensor for example, a pressure sensor is arranged between the first component and the second component, and the position of the first component and the second component is determined by using the contact of the pressure sensor with the first component and the second component. Whether it changes or not, there will often be a problem of smaller sensing range. At the same time, the contact sensor frequently comes into contact with the measured object, which will cause mechanical loss and affect the service life of the gimbal.
  • Sensing through non-contact sensors can increase the sensing range while avoiding the mechanical loss caused by contact sensors (such as pressure sensors) when in contact with the measured object, thereby extending the service life of the gimbal.
  • step 102 may include at least one of the following:
  • the first preset threshold may be smaller than the second preset threshold.
  • the non-contact sensor may include at least one of a magnetic induction sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a visual sensor, and a millimeter wave radar sensor.
  • the pan/tilt may also include a sensing element made of magnetic material.
  • the non-contact sensor may include a first sensor and a second sensor, the first sensor is disposed on the first component or the second component, and the second sensor is disposed on the first component or the second component.
  • the first sensor is used to output a first sensing signal
  • the second sensor is used to output a second sensing signal.
  • Step 102 may include:
  • step 1023 may include at least one of the following: performing a power-on operation when the first sensing signal is less than or equal to the third preset threshold, or the second sensing signal is less than the fourth preset threshold.
  • a power-down operation is performed.
  • the third preset threshold may be less than the fifth preset threshold, and/or the fourth preset threshold may be less than the sixth preset threshold.
  • the first sensor and/or the second sensor include a magnetic induction sensor, and the platform further includes a sensing element made of magnetic material.
  • Step 102 may include: performing a control operation according to the first sensing signal and/or the second sensing signal, so that when the relative position of the first sensor and/or the second sensor and the sensing element changes, the pan/tilt can perform corresponding the response to.
  • the first sensor includes a Hall sensor and the second sensor includes an anisotropic magnetoresistive AMR sensor.
  • the non-contact sensor when the gimbal performs a power-off operation, the non-contact sensor remains powered on.
  • the gimbal can be used with auxiliary equipment such as a tripod and loaded with a load for shooting. At this time, the position of the base of the gimbal remains roughly unchanged, allowing the load to obtain a fixed shooting angle.
  • the stability control logic of the gimbal in order to avoid the shaking of the base of the gimbal and the abnormal movement of the gimbal's axis arm, there is often a large margin between the three-axis controllable angle range of the gimbal and the actual joint angle limit.
  • the gimbal When the gimbal's axis arm exceeds the controllable angle range, the gimbal will control the motor rotation to return the axis arm to the controllable angle range. This will result in a smaller adjustable angle range for the gimbal's three axes. When the user needs to adjust to another shooting angle, the load may not be adjusted to the desired angle, which will result in a poor user experience.
  • embodiments of the present application also provide a gimbal control method, aiming to improve the user experience when using the gimbal to shoot at different fixed shooting angles.
  • Figure 10 is a schematic flow chart of the steps of the control method of the gimbal of an embodiment of the present application, and the method can be applied to the gimbal. Specifically, it can be executed by the processor of the gimbal, and it can also be executed by an external processor connected to the gimbal in communication, which is not limited here.
  • the gimbal includes a base and an arm assembly, and the arm assembly is connected to the base for mounting a load.
  • the arm assembly includes at least one arm, and the arm can rotate relative to the base around at least one axial direction to adjust the posture of the load.
  • the method includes:
  • the first preset condition includes that the posture of the base remains substantially unchanged.
  • the target axis arm of the axis arm assembly when the gimbal is in the first shooting mode, does not stabilize the load, and the target axis arm can rotate from the first joint angle to the first joint angle with the first degree of freedom when acted upon by an external force. the second joint angle, and can be maintained at the second joint angle.
  • the pan/tilt shown in Figures 11 to 12 is a three-axis handheld pan/tilt.
  • the base 50 of the pan/tilt can be a handle of the pan/tilt.
  • Axle arm assembly 60 may be connected to base 50 and used to carry load 70 .
  • the axis arm assembly 60 may include three-axis corresponding axis assemblies, such as the yaw axis assembly 61, the pitch axis assembly 62, and the roll axis assembly 63 as shown in FIG. 15 .
  • the shaft assembly corresponding to each axis may include a motor and a shaft arm, and the motor drives the shaft arm to rotate around the corresponding axial direction.
  • the method of the embodiment of the present application can be applied to a three-axis gimbal, a two-axis gimbal or a single-axis gimbal, and is not limited here.
  • step 201 the motion state of the base of the platform can be acquired through a sensor provided on the platform.
  • the pan/tilt may be provided with an inertial measurement unit (IMU) to obtain the movement speed and/or movement acceleration of the base of the pan/tilt based on the IMU.
  • IMU inertial measurement unit
  • the pan/tilt can also be equipped with an accelerometer, a tilt sensor, a vibration sensor or an angular displacement sensor, etc., and the motion state of the base of the pan/tilt is obtained by combining the sensing signals of one or more sensors.
  • the motion state of the base of the gimbal can also be obtained from a sensor outside the gimbal, for example, image data of the base of the gimbal is acquired through a visual sensor, and the base of the gimbal is determined based on the image data. state of motion.
  • the gimbal can continuously acquire the motion state of the base, or can acquire the motion state of the base within a preset time period, or the gimbal can also start to acquire the motion state of the base after receiving a specific input, which is not limited here.
  • step 202 when the gimbal is equipped with a load and the motion state of the base meets the first preset condition, since the first preset condition includes that the posture of the base remains roughly unchanged, it usually indicates that the user may be carrying a tripod, etc. Auxiliary fixation equipment that requires shooting at a fixed shooting angle. At this time, the gimbal can enter the first shooting mode to facilitate the user to shoot.
  • the posture of the base remains roughly unchanged, which can be understood as the change in the position and posture of the base within the preset time period does not exceed the preset range.
  • the first preset condition may include that the movement speed or movement acceleration of the pan/tilt base is substantially zero.
  • auxiliary fixing devices such as tripods to fix the gimbal
  • users often do not have high demand for stabilization of the gimbal. Therefore, in order to increase the target adjustable angle range of the axis arm assembly, you can control The target axis arm cancels stabilization of the load.
  • the target axis arm in order to facilitate the user to adjust the shooting angle of the load, when the target axis arm is subjected to external force, it can rotate from the first joint angle to the second joint angle, and can be maintained at the second joint angle.
  • the target axis arm is rotated by the external force, which can usually be understood as the process in which the target axis arm rotates in its corresponding axis direction along with the push-pull operation.
  • the target axis arm can rotate from the first joint angle to the second joint angle along with the external force, and can remain at the second joint angle after the external force disappears.
  • the target axis arm can rotate along with the push-pull operation, and remain at the current joint angle when the push-pull operation stops.
  • the user can adjust the shooting angle of the load by pushing and pulling the target axis arm.
  • the first shooting mode can be entered by obtaining the motion state of the base of the gimbal, and when the gimbal is equipped with a load and the motion state of the base remains roughly unchanged.
  • the target axis arm of the axis arm assembly can cancel the stabilization of the load to increase the adjustable angle range of the target axis arm.
  • the target axis arm can be rotated from the first joint angle to the second joint angle when subjected to an external force, and can be maintained at the second joint angle. This allows the user to rotate the target axis arm within a larger angle range to keep the load at a suitable shooting angle, thereby increasing the user's freedom in the process of shooting with the gimbal, that is, improving the user's experience.
  • the load in the embodiment of the present application may be a shooting device, which may specifically include a mobile phone, a camera, a video camera, etc., which will not be listed one by one here.
  • the target axis arm may include any axis arm in the axis arm assembly, such as a yaw axis arm, a pitch axis arm or a roll axis arm.
  • the gimbal can control one or more target axis arms of the axis arm assembly to cancel the stabilization of the load, or it can control all the axis arms of the axis arm assembly to cancel the stabilization of the load.
  • the specific settings can be set according to actual needs.
  • the first degree of freedom may include any one of a degree of freedom of rotation about a roll axis, a degree of freedom of rotation about a pitch axis, and a degree of freedom of rotation about a yaw axis.
  • the gimbal can switch modes between the first shooting mode and the stabilized shooting mode.
  • the method may further include:
  • the second preset condition may include that the motion state of the base of the pan/tilt does not meet the first preset condition, or the first information sent by the load is received, and the first information is used to indicate the pan/tilt. Exit the first shooting mode.
  • performing a mode switching operation may include: S2031, entering the second shooting mode. Among them, when the gimbal is in the second shooting mode, the target axis arm stabilizes the load.
  • the gimbal can exit the first shooting mode and switch to the second shooting mode for stabilization.
  • the gimbal can automatically switch to the second shooting mode when the motion state of the base of the gimbal does not meet the first preset condition, so as to avoid manual operation by the user.
  • the user can input the load so that the load sends the first information to the gimbal to instruct the gimbal to exit the first shooting mode. After receiving the first information, the gimbal can exit the first shooting mode and switch to the second shooting mode.
  • the gimbal may also have interactive controls or physical buttons for controlling shooting mode switching.
  • the user can also input the gimbal to cause the gimbal to exit the first shooting mode and enter the second shooting mode.
  • the specific settings can be made according to the actual application scenario.
  • the second shooting mode may be a stabilization mode of the gimbal.
  • the gimbal controls the target axis arm that has canceled the stabilization of the load in the first shooting mode to re-stabilize the load.
  • the target axis arm when the gimbal is in the second shooting mode, can rotate from the third joint angle to the fourth joint angle with the first degree of freedom when acted upon by an external force, and can remain at the fourth joint angle. joint angle.
  • the maximum rotation angle between the first joint angle and the second joint angle is greater than the maximum rotation angle between the third joint angle and the fourth joint angle.
  • the target shaft arm can also rotate within a controllable angle range along with the push-pull operation, and can maintain the current joint angle when the push-pull operation stops.
  • the target shaft arm can be adjusted within a larger angle range.
  • the target shaft arm stabilizes the load, so the angle range that the target shaft arm can adjust is smaller than the angle range that the target shaft arm can adjust in the first shooting mode.
  • the maximum rotation angle between the first joint angle and the second joint angle in the first shooting mode may be determined by the mechanical limit of the pan/tilt. That is, the target axis arm can rotate to a joint angle that conflicts with the mechanical limiting structure when an external force is applied, and can be maintained at the current joint angle when the external force stops.
  • the maximum rotation angle between the first joint angle and the second joint angle in the first shooting mode may also be a preset angle range.
  • the roll axis arm can usually only be maintained at the two joint angles of 0° or 90°, so as to Keep the load in horizontal or vertical position. At this time, the user cannot shoot at a shooting angle where the load is tilted in the direction of the roll axis.
  • the user can maintain the roll axis arm at joint angles other than 0° and 90°, such as shown in Figure 13, so that the load can be shot at more shooting angles, which also Improves the user’s freedom in shooting.
  • step 2031 may specifically include:
  • the gimbal can adjust the joint angle of at least one axis arm after the mode switch, so that the axis arm assembly returns to the preset posture.
  • the first posture corresponding to the second shooting mode may be a preset posture. Specifically, it may be a preset posture of the gimbal shipped from the factory, or a preset posture set by the user.
  • the first posture may be a zero posture when the joint angles of the axis arms of each axis are 0°, so that the user can adjust the axis arm assembly based on the zero posture.
  • the first posture may also be a historical posture previously stored by the gimbal, so that the user can shoot in the first posture, which is not limited here.
  • the joint angle of the target axis arm of the axis arm assembly can be within the controllable angle range in the stabilization mode to avoid the gimbal being unable to control the target axis arm in the second shooting mode.
  • the gimbal may have an idle mode. During the mode switching process, the gimbal may switch from the first shooting mode to the idle mode.
  • the second preset condition may include that the gimbal is not carrying a load.
  • step 203 may specifically include:
  • the target axis arm can rotate from the fifth joint angle to the sixth joint angle with the first degree of freedom when acted upon by an external force, and can be maintained at the sixth joint angle.
  • the pan/tilt shown in Figure 1 is in a state of not carrying a load. Specifically, sensors can be set to determine whether the pan/tilt carries a load, which will not be listed here.
  • the target axis arm When the gimbal is in unloaded mode, the target axis arm can also rotate from the fifth joint angle to the sixth joint angle with the first degree of freedom when external force is applied, and can remain at the sixth joint angle when the external force disappears. In this way, the user can adjust the posture of the axis arm assembly when the gimbal is unloaded to facilitate the user to install the load.
  • step 2032 may specifically include:
  • the axis arm assembly is controlled to remain in a second attitude.
  • the second attitude may be the attitude of the axis arm assembly before the pan/tilt switches from the first shooting mode to the unloaded mode.
  • the situation of switching from the first shooting mode to the no-load mode is usually when the user removes the load from the shaft arm assembly.
  • the gimbal can control the shaft arm assembly to maintain the second posture before entering the no-load mode, so that the user can install the load again.
  • the method may further include: S204, when controlling the pan/tilt to switch from the first shooting mode to the second shooting mode, adjusting the joint angle of at least one axis arm so that the axis arm assembly is in the third posture,
  • the third posture may be determined by the target posture information of the axis arm assembly when the pan/tilt is in the second shooting mode.
  • the target posture information may be information indicating the third posture corresponding to the axis arm assembly in the second shooting mode.
  • the target attitude information may be information obtained by the gimbal before entering the first shooting mode. Therefore, the gimbal can use the target attitude information to adjust the joint angle of at least one axis arm when switching from the first shooting mode to the second shooting mode again, so that the axis arm assembly is in the third attitude in the previous second shooting mode.
  • the target attitude information may include attitude angle information of at least one axis arm in the axis arm assembly.
  • the target posture information may also include at least one axis-arm joint angle information in the axis-arm assembly.
  • the target attitude information may include joint angle information or attitude angle information of the roll axis in the axis-arm assembly.
  • the gimbal can record the joint angle of the roll axis arm as the target attitude information before entering the first shooting mode.
  • the roll axis motor can control The roll axis arm rotates to the previously recorded joint angle.
  • the roll axis arm can usually only maintain two postures: 0° and 90°.
  • the attitude of the axis arm assembly 60 shown in Figure 11 is the third attitude
  • the joint angles of the roll axis arm, the pitch axis arm and the yaw axis arm are all is 0°.
  • the gimbal can obtain the target attitude information corresponding to the third attitude, specifically the joint angle information of the roll axis arm.
  • the attitude of the axis arm assembly 60 changes to the attitude shown in FIG. 13 .
  • the joint angle of the roll axis arm is not 0°.
  • the roll axis arm of the axis arm assembly 60 can be adjusted back to the joint angle as shown in FIG. 11 to facilitate the user to take vertical shots.
  • the joint angle of the roll axis arm in the third posture is 90°, that is, the load is set horizontally, then when switching from the first shooting mode to the second shooting mode, the roll axis The pivot arm can also be adjusted to 90° to facilitate horizontal shooting.
  • the gimbal can automatically adjust to the previously recorded third posture when switching from the first shooting mode to the second shooting mode, which avoids the need for the user to frequently adjust the posture of the axis arm assembly when switching shooting modes, and improves the user's ability to Convenience during shooting.
  • the gimbal may have a protection mode, and during the mode switching process, the gimbal may switch from the first shooting mode to the protection mode.
  • the second preset condition may include that the base is in a suspended state, and/or the shaft arm assembly is connected to the load, and the moment of inertia corresponding to the load is less than a preset threshold.
  • step 203 may specifically include: S2033, entering a protection mode. Wherein, when the gimbal is in the protection mode, the motor of the target shaft arm stops outputting torque.
  • the base of the gimbal When the base of the gimbal is a handle, the user holding the handle will bring resistance to the rotation of the handle. When the handle is in the air, the user's resistance to the handle will disappear. Based on this, the gimbal can determine whether the base is in a suspended state.
  • the gimbal can determine whether the base is in a suspended state by obtaining the moment of inertia of the base in the target axis and combining it with the rotation angular velocity of the rotation axis motor that drives the base to rotate.
  • the gimbal can also enter the protection mode when the load is too small or the load is not installed in place.
  • the motor of the target axis arm can stop outputting torque at this time.
  • the target axis arm can be in a state of releasing force at this time.
  • the axis arm assembly may be provided with an inertial measurement unit IMU.
  • Step 201 may specifically include: S2011. Obtain a sensing signal from the IMU. The sensing signal is used to indicate the motion state of the axis arm assembly. S2012. Determine the motion state of the base based on the sensing signal.
  • the inertial measurement unit can be provided at the axis arm assembly, specifically at the motor of the roll axis, and can be used to detect the motion state of each axis arm in the axis arm assembly.
  • the gimbal can determine the motion state of the base of the gimbal based on the motion state of the axis arm assembly. For example, in some embodiments, the gimbal can determine that the base of the gimbal is in motion when the sensing signal indicates that the axis arm of the axis arm assembly has motion acceleration but does not rotate around the axis, and can further determine that the gimbal The motion acceleration of the base. In this way, the gimbal can determine the motion state of the base through the IMU provided on the axis arm assembly, thereby avoiding the need to add sensors to the base, reducing the space occupied by the base, and saving costs.
  • step 201 may specifically include: S2013.
  • step 201 may specifically include: S2013.
  • the load Upon receiving the second information sent by the load, obtain the motion state of the base of the pan/tilt. Wherein, when the load receives an input for entering the first shooting mode, it sends the second information to the pan/tilt.
  • the second information may be information indicating the load instructing the pan/tilt to enter the first shooting mode.
  • the load Before the load sends the second information to the PTZ, the load can communicate with the PTZ. Specifically, in some embodiments, the user can establish a communication connection with the PTZ through the application program of the load, and instruct the load to execute the input to the interactive control indicating turning on the first shooting mode in the interactive interface of the application program. The PTZ sends the second information. After receiving the second information, the pan/tilt can further obtain the motion state of the base to determine whether to enter the first shooting mode.
  • the user can remotely control the gimbal to enter the first shooting mode by inputting the load, which improves the user's convenience when shooting.
  • the pan/tilt receives the second information, it then acquires the movement information of the base, which can avoid resource occupation caused by the pan/tilt continuing to obtain the movement information of the base.
  • the gimbal in order to reduce resource usage, can also obtain the motion information of the base after being connected to the tripod.
  • the specific settings can be set according to the actual application scenario.
  • the user can control the gimbal to perform corresponding shooting operations by inputting the gimbal when the gimbal is in the first shooting mode.
  • the method may further include:
  • the preset shooting operation may include at least one of the following: adjusting focal length; adjusting focus; shooting.
  • the first input may be a user's touch operation on a physical button on the gimbal.
  • the user can control the load to perform a shooting operation by clicking a shooting button provided on the gimbal.
  • the first input can also be the user's touch operation on other control structures on the gimbal.
  • the user can also control the load to adjust the shooting focus by adjusting the dial structure provided on the gimbal.
  • the first input may also be a touch and/or non-touch operation performed by the user on the virtual interactive control on the platform, which will not be listed here.
  • the pan/tilt can control the load to perform the corresponding preset shooting operation by sending instructions to the load to perform the preset shooting operation while being connected to the load through communication.
  • the user can control the load to perform the preset shooting operation through the first input to the gimbal in the first shooting mode, which improves the user's convenience when shooting.
  • the user can adjust the posture of the axis arm assembly by inputting the gimbal when the gimbal is in the first shooting mode.
  • the method may further include:
  • the fourth posture can be the preset posture of the gimbal when it leaves the factory, or it can be the posture preset by the user.
  • the fourth posture can be the zero posture when the joint angles of the axis arms of each axis are 0°.
  • the second input can control the axis arm assembly to "return to center" , so that the user can further adjust the posture of the axis arm assembly based on the zero posture.
  • the fourth posture may also be a historical posture previously stored by the gimbal, so that the user can shoot in the fourth posture, which is not limited here.
  • the user can adjust the axis arm component of the gimbal to the preset fourth posture through the second input, which can facilitate the user to further adjust the posture of the axis arm component based on the fourth posture, or facilitate the user to shoot based on the fourth posture. Improved user convenience when shooting.
  • Embodiments of the present application also provide a pan/tilt.
  • the pan/tilt includes a base and an axis arm assembly.
  • the axis arm assembly is connected to the base and is used to install a load.
  • the axis arm assembly includes at least one axis arm, and the axis arm can rotate around at least one axis relative to the base. Axial rotation to adjust the attitude of the load;
  • the PTZ also includes a memory and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and implement the steps of the PTZ control method provided by the above embodiments when executing the computer program.
  • FIG. 14 is a schematic structural block diagram of a pan/tilt control device provided by an embodiment of the present application.
  • the control device is applied to the aforementioned pan-tilt.
  • the control device can be integrated into the aforementioned pan-tilt, or can be set up independently from the pan-tilt and communicate with it.
  • the aforementioned control method of the pan-tilt can also be applied to the control device.
  • the control device 1400 includes a processor 1401 and a memory 1402.
  • the processor 1401 and the memory 1402 are connected through a bus 1403.
  • the bus 1403 is, for example, an I2C (Inter-integrated Circuit) bus.
  • the processor 1401 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP), etc.
  • the memory 1402 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk or a mobile hard disk, etc.
  • the processor 1401 is used to run the computer program stored in the memory 1402, and implement the following steps when executing the computer program:
  • the control operation includes any of the following: power-on operation; power-off operation.
  • the processor 1401 is used to run a computer program stored in the memory 1402, and implement the following steps when executing the computer program:
  • the first shooting mode is entered; the first preset condition includes that the posture of the base remains substantially unchanged.
  • the target axis arm of the axis arm assembly does not stabilize the load, and the target axis arm can rotate from the first joint angle to the first joint angle with the first degree of freedom when acted upon by an external force. the second joint angle, and can be maintained at the second joint angle.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions.
  • the processor executes the program instructions to implement the above-mentioned embodiments.
  • the steps of the PTZ control method are also provided.
  • the computer-readable storage medium may be an internal storage unit of the pan-tilt device described in any of the aforementioned embodiments, such as a hard disk or memory of the pan-tilt device.
  • the computer-readable storage medium may also be an external storage device of the pan-tilt device, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card, a flash card, etc., provided on the pan-tilt device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台、云台的控制方法、装置及存储介质,所述云台包括:第一组件;第二组件,与所述第一组件机械耦合;非接触式传感器,设置于所述第一组件和/或所述第二组件;其中,所述非接触式传感器用于输出感应信号,以使得当所述第一组件和第二组件的相对位置发生变化时,所述云台能够根据所述感应信号,执行相应的控制操作;所述控制操作包括以下任一项:上电操作;下电操作。该云台可以提升云台在使用过程中的用户体验。

Description

云台、云台的控制方法、装置及存储介质 技术领域
本申请涉及云台技术领域,尤其涉及一种云台、云台的控制方法、装置及存储介质。
背景技术
云台,一般指用于安装或固定负载的设备,用于对负载进行支撑和稳定。同时,云台可以进行转动,以调整负载的朝向。负载可以为手机、照相机和摄像机等终端设备。用户可以通过将手机等终端设备安装于云台上,以调整拍摄视角和执行相关的拍摄操作。
目前,针对云台在使用过程中的用户体验问题,仍然有待提升。
发明内容
基于此,本申请实施例提供了一种云台、云台的控制方法、装置及存储介质,旨在解决云台在使用过程中的用户体验不佳的问题。
第一方面,本申请实施例提供了一种云台,所述云台包括:第一组件;第二组件,与所述第一组件机械耦合;非接触式传感器,设置于所述第一组件和/或所述第二组件;其中,所述非接触式传感器用于输出感应信号,以使得当所述第一组件和第二组件的相对位置发生变化时,所述云台能够根据所述感应信号,执行相应的控制操作;所述控制操作包括以下任一项:上电操作;下电操作。
第二方面,本申请实施例还提供了一种云台的控制方法,所述云台包括第一组件和第二组件,所述第一组件与所述第二组件机械耦合,所述控制方法包括:获取设置于第一组件和/或设置于第二组件的上的非接触式传感器的感应信号;根据所述感应信号,执行预设的控制操作,以使得当所述第一组件和第二组件的相对位置发生变化时,所述云台能够执行相应的响应;其中,所述控制操作包括以下任一项:上电操作;下电操作。
第三方面,本申请实施例还提供了一种云台,所述云台包括第一组件和第二组件,所述第一组件与所述第二组件机械耦合;所述云台还包括存储器和处理器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如第二方面所述的方法步骤。
第四方面,本申请实施例还提供了一种云台的控制方法,所述云台包括基部和轴臂组件,所述轴臂组件与所述基部连接,用于安装负载;所述轴臂组件包括至少一个轴臂,所述轴臂能够相对所述基部绕至少一个轴向转动,以调整所述负载的姿态;所述方法包括:获取所述云台的基部的运动状态;在所述云台搭载负载,且所述基部的运动状态满足第一预设条件的情况下,进入第 一拍摄模式;所述第一预设条件包括所述基部的位姿大致保持不变;其中,在所述云台处于所述第一拍摄模式的情况下,所述轴臂组件的目标轴臂未对所述负载进行增稳,且所述目标轴臂能够在受到外力作用时以第一自由度由第一关节角转动至第二关节角,并能够保持于所述第二关节角。
第五方面,本申请实施例还提供了一种云台,所述云台包括基部和轴臂组件,所述轴臂组件与所述基部连接,用于安装负载;所述轴臂组件包括至少一个轴臂,所述轴臂能够相对所述基部绕至少一个轴向转动,以调整所述负载的姿态;所述云台还包括存储器和处理器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如第四方面所述的方法步骤。
第六方面,本申请实施例还提供了一种云台的控制装置,所述云台包括第一组件和第二组件,所述第一组件与所述第二组件机械耦合;所述控制装置包括存储器和处理器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如第二方面所述的方法步骤。
第七方面,本申请实施例还提供了一种云台的控制装置,所述云台包括基部和轴臂组件,所述轴臂组件与所述基部连接,用于安装负载;所述轴臂组件包括至少一个轴臂,所述轴臂能够相对所述基部绕至少一个轴向转动,以调整所述负载的姿态;所述控制装置包括存储器和处理器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如第四方面所述的方法步骤。
第八方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现本申请说明书任一实施例所述的云台的控制方法的步骤。
本申请实施例提供了一种云台、云台的控制方法、装置及存储介质,其中,云台可以通过在第一组件或第二组件上设置非接触式传感器,在机械耦合的第一组件和第二组件的相对位置发生变化时,云台可以根据非接触式传感器输出的感应信号,来执行相应的上电或下电的控制操作。这样,用户可以仅通过改变第一组件和第二组件的相对位置自动实现云台的上下电操作,提升了用户进行上下电操作时的便捷性,即提升了用户的使用体验。
云台可以通过获取云台的基部的运动状态,并在云台搭载负载,且基部运动状态大致保持不变的情况下,进入第一拍摄模式。在第一拍摄模式下,轴臂组件的目标轴臂可以取消对负载进行增稳,以提升目标轴臂可调节的角度范围。同时,目标轴臂能够在受到外力作用时由第一关节角转动至第二关节角,并能够保持于第二关节角。这使得用户可以在较大的角度范围转动目标轴臂,以使得负载保持在合适的拍摄角度,提升了用户在利用云台进行拍摄过程中的自由度,即提升了用户的使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的云台的结构示意图之一;
图2是本申请实施例提供的云台的局部结构透视图之一;
图3是本申请实施例提供的云台的结构示意图之二;
图4是本申请实施例提供的云台组件的结构示意图;
图5是本申请实施例提供的云台的局部结构透视图之二;
图6是本申请实施例提供的磁感应传感器原理示意图;
图7是图2的局部放大图;
图8是本申请实施例提供的云台的结构示意图之三;
图9是本申请实施例提供的云台的控制方法的流程图之一;
图10是本申请实施例提供的云台的控制方法的流程图之二;
图11是本申请实施例提供的云台搭载负载后的示意图之一;
图12是本申请实施例提供的云台搭载负载后的示意图之二;
图13是本申请实施例提供的云台搭载负载后的示意图之三;
图14是本申请实施例提供的云台的控制装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。
此外,“连接”一词在此包含任何直接及间接的连接手段。因此,若文中描述一第一装置连接于一第二装置,则代表所述第一装置可直接连接于所述第二装置,或通过其它装置间接地连接 至所述第二装置。
应当理解,本文中使用的术语“及/或、和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A1及/或B1,可以表示:单独存在A1,同时存在A1和B1,单独存在B1这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
云台,一般指用于安装或固定负载的支撑设备,负载可以为手机、照相机和摄像机等终端设备。用户可以通过将手机等终端设备安装于云台上,以执行相关的拍摄操作。
目前,针对云台在使用过程中的用户体验问题,仍然有待提升。例如,为提升便携性,在一些使用场景中云台具有可折叠或变形结构,用户需要通过按键等方式下电后,对云台进行折叠或变形;在展开或对云台进行变形后,通过按键等方式上电。可见,在可折叠或变形的云台的使用过程中,用户在对云台进行上下电操作时的操作较为繁琐不便。
为解决上述问题,本申请实施例提供了一种云台、云台的控制方法、装置及存储介质,旨在提升用户上电或下电操作时的便捷性。
参照图1至图8,本申请实施例提供了一种云台,包括:第一组件10;第二组件20,与第一组件10机械耦合;以及,非接触式传感器30,设置于第一组件10或第二组件20。其中,非接触式传感器30用于输出感应信号,以使得当第一组件10和第二组件20的相对位置发生变化时,云台能够根据感应信号,执行相应的控制操作。控制操作包括上电操作和下电操作中的任一项。
本申请实施例中,第一组件10和第二组件20,可以为云台中相互机械耦合的不同组件。第一组件10和第二组件20的结构、形状和所实现的功能可以相同,也可以不同,可以根据具体的应用场景进行实际设置。
例如,参照图1,在一些实施例中,云台可以为手持云台,第一组件10可以包括承载负载的云台组件12,第二组件20可以包括具有握持手柄的握持件21。在一些实施例中,第一组件10和第二组件20也可以包括云台中不同轴向对应的轴臂。举例而言,第一组件10可以包括偏航轴对应的轴臂,第二组件20可以包括横滚轴对应的轴臂等。在一些实施例中,云台可以具备可折叠或变形的结构,第一组件10和第二组件20可以分别包括与可折叠或变形的结构连接的组件。
第一组件10与第二组件20机械耦合,可以理解为第一组件10和第二组件20之间存在机械连接和/或存在机械相互作用。机械连接,包括但不限于转动连接、活动连接、滑动连接和抵接等,具体可以根据实际需要进行设置。
第一组件10和第二组件20可以通过机械连接相互作用。应理解,在一些实施例中,第一组 件10和第二组件20之间也可以不存在直接连接关系,而通过连接件进行连接,以使二者之间存在相互的机械作用,在此不再赘述。
本申请实施例中,非接触式传感器30可以理解为与被测物体之间不存在接触的传感器。其中,非接触式传感器30包括但不限于磁感应传感器、红外传感器、激光传感器、超声波传感器、视觉传感器和毫米波雷达传感器,具体可以根据实际的应用场景进行设置,在此不再一一列举。
参照图2,图2中非接触式传感器30设置于第二组件20,并可以对第一组件10进行感应。当然,在一些实施例中,非接触式传感器30也可以为两个,并分别设置于第一组件10和第二组件20。
通常地,本申请实施例中的感应信号可以为电信号,具体可以为数字信号或者模拟信号。感应信号可以指示第一组件10和第二组件20之间的相对位置,包括但不限于相对距离和相对角位移等。当然,在一些实施例中,感应信号也可以指示第一组件10和第二组件20之间的相对运动趋势,例如,相对速度或者相对加速度等。
应理解的是,在一些实施例中,云台可以具备信号调节电路,通过对非接触式传感器30的感应信号进行放大、滤波以及数模转换等调节,最终输出用于逻辑判断的信号。云台可以根据感应信号,判断第一组件10和第二组件20的相对位置是否发生改变。或者,云台可以根据感应信号,确定第一组件10和第二组件20的相对位置。
本申请实施例中,云台还可以根据感应信号,执行控制操作,以在第一组件10和第二组件20之间的相对位置发生改变的情况下,云台可以进行相应的响应。应理解,云台可以选择在感应信号指示第一组件10和第二组件20的相对位置发生改变的情况下,是否执行相应的控制操作。
举例而言,参照图1,在一些实施例中,云台可以在第一组件10和第二组件20之间的相对位置为预设位置的情况下,或者说,第一组件10和第二组件20呈现预设姿态的情况下,执行相应的控制操作。在一些实施例中,云台也可以根据第一组件10和第二组件20之间的相对距离小于预设距离,和/或,相对夹角小于预设夹角时,执行相应的控制操作。
需要说明的是,在一些实施例中,第一组件10中的部件与第二组件20的部件的相对位置改变,也可以理解为第一组件10和第二组件20之间的相对位置改变。
本申请实施例中,上电操作,可以理解为对云台至少部分电气元件执行的上电操作。上电操作可以为云台控制电池或者外部电源为云台至少部分电气元件供电。在执行上电操作后,云台的至少部分电气元件保持上电或供电状态。一些实施例中,下电操作可以为对云台的开机操作。
相似地,下电操作,可以理解为对云台至少部分电气元件执行的下电操作。下电操作可以为云台控制电池或者外部电源停止为云台至少部分电气元件供电。在执行下电操作后,云台的至少部分电气元件保持掉电状态。一些实施例中,下电操作可以为对云台的关机操作。
可以理解的是,在执行下电操作时,云台可以继续对非接触式传感器30进行供电,以避免非接触式传感器30因掉电而无法输出用于使得云台执行上电操作的感应信号。
本申请实施例中,云台可以通过在第一组件10和/或第二组件20上设置非接触式传感器30,在机械耦合的第一组件10和第二组件20的相对位置发生变化时,云台可以根据非接触式传感器30输出的感应信号,来执行相应的上电或下电的控制操作。这样,用户可以仅通过改变第一组件10和第二组件20的相对位置自动实现云台的上下电操作,提升了用户进行上下电操作时的便捷性,即提升了用户的使用体验。
进一步地,若使用接触式传感器,例如将压力传感器设置于第一组件10和第二组件20之间,利用压力传感器与第一组件10和第二组件20的接触,来确定第一组件10和第二组件20的位置是否改变,这往往会存在感应范围较小的问题。同时,接触式传感器频繁与被测物体接触,会造成机械损耗,影响云台的使用寿命。
通过非接触式传感器30进行感应,可以在提升感应范围的同时,避免接触式传感器(如压力传感器),在与被测物体接触时带来的机械损耗,提升云台的使用寿命。
可选地,参照图3,在一些实施例中,第一组件10可以包括第一部件11,第一部件11能够相对于第二组件20以第一自由度和第二自由度转动。第一自由度对应预设的第一旋转范围。其中,在第一部件11相对于第二组件20在第一自由度的第一旋转范围内的任意一个角度以第二自由度转动,以使得第一部件11与第二组件20的相对位置发生变化,并使得感应信号发生变化时,感应信号用于使得云台执行控制操作。
第一自由度和第二自由度,可以理解为转动自由度,或者旋转自由度。例如,机械臂绕莱一轴向转动时的可转动范围。换句话说,在第一部件11以第一自由度转动时,相当于第一部件11以第一自由度对应方向或轴向转动。
而第一自由度和第二自由度,可以为绕不同轴向转动所对应的自由度。应理解,第一自由度可以对应云台的俯仰轴、横滚轴和偏航轴的任一轴组件的轴向,而第二自由度可以不与云台的轴组件的轴向对应,而为其他轴向。换句话说,第二自由度可以为绕除第一自由度对应的轴向以外的轴向转动的自由度,即第一部件11能够相对于第二组件20,绕至少两个轴向转动。
第一自由度对应的第一旋转范围,可以为机械限位所导致的旋转范围,可以为电机算法控制的旋转范围,在此不作进一步的限定。在第一部件11以第一自由度转动至第一旋转范围内的任一角度时,第一部件11可以进一步以第二自由度转动,以使得第一部件11与第二组件20的相对位置发生变化。相应地,第一部件11在以第二自由度转动的过程中,也可以进一步以第一自由度转动。
示例性地,可以继续参照图3,图3中,第一部件11的第一自由度可以为绕偏航轴方向转动的自由度,即如图所示的A方向,其存在预设的第一旋转范围。云台还可以包括折叠机构1213,折叠机构1213与第一部件11连接,第二自由度可以为如图所示的B方向。在第一部件11在第一自由度对应的第一旋转范围的任一角度下时,可以通过折叠机构1213以第二自由度转动。
此种情况下,为了避免第一部件11在第一自由度对应的第一旋转范围的某些角度以第二自由 度转动时脱离非接触式传感器30的感应范围,导致未触发上下电操作,或者误触发上下电操作。非接触式传感器30的检测范围可以包括一个平面。例如,在一些实施例中,非接触式传感器30可以为磁感应传感器,配合磁体进行检测。由于磁体产生的磁场包括了至少一个平面区域,因而非接触式传感器30在位于磁体产生的磁场中时,能够输出感应信号。在一些实施例中,非接触式传感器30可以设置于第二组件20,并具有环形检测范围,环形检测范围对应的轴向即为第一自由度对应的轴向,因而第一部件11在位于非接触式传感器30的环形检测范围时,非接触式传感器30能够输出感应信号。
需要说明的是,感应信号用于使得云台执行控制操作,可以理解为云台可以根据感应信号,选择是否执行控制操作。
这样,云台的第一组件10中的第一部件11可以在第一自由度的第一转动范围的任意一个角度下,能够以第二自由度转动,以使得第一部件11与第二组件20之间的相对位置发生改变。非接触式传感器30能够在该过程中输出用于使得云台执行相应的控制操作的感应信号,减少了用户在使得第一部件11以第一自由度和第二自由度转动的过程中,云台误触发上下电操作,或未触发上下电操作的情况,提升了用户的使用体验。
同时,这将允许用户在更大的转动自由度下控制云台执行上电或下电操作,进一步提升了用户的使用体验。
应理解,第一自由度可以为绕横滚轴转动的自由度、绕俯仰轴转动的自由度或者绕偏航轴转动的自由度。具体可以根据云台的轴序和结构进行设置。
可选地,云台可以为具有手柄的手持云台。
参照图1和图3,在一些实施例中,第一组件10可以包括云台组件12,第二组件20可以包括握持件21,云台组件12与握持件21连接。其中,云台组件12可以包括第一部件11。其中,云台组件12可以与负载连接,用于对负载进行增稳。握持件21可以供用户握持。云台组件12和握持件21之间可以转动连接,以使得云台组件12相对于握持件21发生转动,以在用户握持握持件21时,改变负载的朝向。
示例性地,可以继续参照图1,其中,第一组件10可以包括如图1所示的云台组件12,云台组件12可以包括横滚轴组件、俯仰轴组件和偏航轴组件中的至少一个轴组件等。其中,任一轴组件可以包括电机以及与电机相连的轴臂,由电机驱动轴臂转动。第二组件20可以包括如图1所示的握持件21,具体可以为手柄。在用户使用云台的过程中,第二组件20中握持件21由用户握持,第一组件10中云台组件12用于连接负载,云台组件12中包含的轴组件可相对于握持件21发生相对转动或位移,以改变负载的朝向。
第一部件11可以如图3所示,包括了偏航轴的部分轴臂、俯仰轴电机、俯仰轴轴臂和横滚轴电机。偏航轴的轴臂在绕偏航轴的轴向转动时,即带动了第一部件11绕偏航轴的轴向转动,此时第一自由度即可以为绕偏航轴轴向转动的自由度。
可选地,非接触式传感器30可以设置于云台组件12或握持件21。
具体地,在一些实施例中,非接触式传感器30可以贴覆于云台组件12中任一轴臂的表面,或者贴覆于握持件21的表面,以提升感应精度。在一些实施例中,非接触式传感器30也可以内置于云台组件12的轴臂或者握持件21,以提升美观度和空间利用度。
由于用户在使用云台的过程中,往往需要握持握持件,并对云台组件进行转动,在此过程中,第一部件11和第二组件20之间的位置可能产生相应的变化。因此,通过设置第一组件10包括云台组件,云台组件包括第一部件11,第二组件20包括握持件,可以使得用户在使用云台的过程中,通过改变云台组件的第一部件11相对于握持件的位置,更加便捷地实现上下电操作。
可选地,云台可以包括至少一个轴组件。
参照图4,在一些实施例中,云台组件12可以包括第一轴组件121,第一轴组件121与握持件21连接,包括第一驱动件1211和第一轴臂1212。第一轴臂1212与第一驱动件1211连接,并能够经第一驱动件1211驱动,绕第一轴向转动。
其中,第一轴组件121,可以为单轴云台对应的轴组件,或者为两轴云台中对应任一轴的组件,或者为三轴云台中对应任一轴的组件。第一轴向可以为云台偏航轴、俯仰轴和横滚轴的任一轴向,以实现云台组件12在轴向上轴臂的转动。
第一轴组件121可以与握持件21连接。具体地,可以一并参照图1和图4,第一驱动件1211可以分别与握持件21和第一轴臂1212连接。第一驱动件1211可以驱动第一轴臂1212绕第一轴向转动,从而改变握持件21与第一轴臂1212之间的相对位置。第一驱动件1211,可以为电机。电机的基座可以与握持件21固定连接,电机的转动输出端可以与第一轴臂1212固定连接,以带动第一轴臂1212绕第一轴向转动。
进一步地,第一自由度可以为绕第一轴向转动的自由度。
在一些实施例中,第一部件11可以与第一轴臂连接,或者包括至少部分第一轴臂。具体地,可以一并参照图3至图4,图4中第一部件11包括了第一轴臂1212的部分轴臂,从而第一轴臂1212在绕第一轴向转动时,第一部件11可以随着第一轴臂1212以第一自由度转动。
可选地,云台可以具有折叠机构1213,并可以通过折叠机构1213进行折叠。
参照图3,在一些实施例中,第一轴臂1212上可以设置有折叠机构1213,折叠机构1213能够使得第一部件11以第二自由度转动。
其中,第一轴臂1212可以通过折叠机构1213折叠。由于第一部件11与第一轴臂1212连接,或者包括了第一轴臂1212的至少部分结构,因而在第一轴臂1212通过折叠机构1213折叠的过程中,第一部件11可以以第二自由度转动,以被非接触式传感器30感应。折叠机构1213,包括但不限于转轴机构、铰链机构和滑轨机构等。在一些实施例中,折叠机构1213可以设置于第一轴臂1212中部,并分别连接第一轴臂1212的两个部分。
通常而言,具有折叠机构1213的云台在使用过程中,用户需要将云台展开后,通过电源键开 机进行使用,使用结束后将云台折叠,通过电源键关机。将通过折叠机构1213转动的过程作为以第二自由度转动的过程,非接触式传感器30可以在该过程中输出用于指示上下电操作的感应信号,从而使得用户能够仅通过对云台组件的折叠或展开,实现云台的上下电操作,进一步提升了用户上下电操作的便捷性。
具体地,参照图4,在一些实施例中,第一轴臂1212可以包括:第一子轴臂12121,与第一驱动件1211连接;第二子轴臂12122;以及,折叠机构1213,折叠机构1213与第一子轴臂12121连接,且与第二子轴臂12122连接,以使得第二子轴臂12122能够以第二自由度转动。其中,第一部件11包括第二子轴臂12122。
第一驱动件1211驱动第一子轴臂12121转动时,第一部件11可以随着第一子轴臂12121以第一自由度转动,并同时可以通过折叠机构1213,以第二自由度转动。
进一步地,云台组件可以为两轴云台或者三轴云台。
参照图4,在一些实施例中,云台组件12还可以包括:第二轴组件122,与第一轴组件121连接,包括第二驱动件1221和第二轴臂1222。第二轴臂1222与第二驱动件1221连接,并能够经第二驱动件1221驱动,绕第二轴向转动。和/或,第三轴组件123,与第二轴组件122连接,包括第三驱动件,第三驱动件能够绕第三轴向转动。
图4中,第一轴臂1212的一端可以与第一驱动件1211连接,另一端可以与第二驱动件1221连接,第二轴臂1222的一端可以与第二驱动件1221连接,另一端可以与第三驱动件连接。第三驱动件可以在绕第三轴向转动时,带动负载转动。其中,第三驱动件可以直接与负载连接,也可以通过安装支架与负载连接,具体可以根据实际需要进行设置。
第二驱动件和第三驱动件与第一驱动件类似,可以为电机,在此不再赘述。
本申请实施例中,云台的轴序和结构布置可以根据实际情况进行设置。
在一些实施例中,第一轴向可以为云台的偏航轴轴向,第二轴向可以为云台的俯仰轴轴向,第三轴向可以为云台的横滚轴轴向。可以继续参照图1,图1中云台为三轴云台,由靠近手柄至远离手柄的方向分别设置有偏航轴对应的第一轴组件121、俯仰轴对应的第二轴组件122和横滚轴对应的第三轴组件123。
本申请实施例中,非接触式传感器30的数量和类型可以根据实际情况进行设置。
在一些实施例中,非接触式传感器30可以包括以下至少一种:红外传感器;激光传感器;超声波传感器;视觉传感器;以及,毫米波雷达传感器。
非接触式传感器30可以通过非接触的方式对被测物体进行感应,并输出感应信号。示例性地,当非接触式传感器30为红外、激光,超声波或毫米波雷达传感器时,传感器根据发射的光波或声波的返回时间输出感应信号;当非接触式传感器30为视觉传感器时,视觉传感器可以获取被测物体的图像数据并输出感应信号。云台可以根据输出的感应信号确定与被测物体之间的相对位置。
对于非接触式传感器30而言,其可以存在与之配对的感应件40。云台可以通过非接触式传 感器30的感应信号获取感应件40的位置,来确定被测物体的位置。
参照图5,图5为云台的局部结构透视图。在一些实施例中,云台还可以包括感应件40,非接触式传感器30用于根据其与感应件40的相对位置变化,输出感应信号。
举例而言,一些实施例中,非接触式传感器30可以为磁感应传感器,感应件40可以为磁体,或者至少部分由磁性材料制成。磁感应传感器可以输出指示感应件40的磁场强度的感应信号。由于越靠近磁体的位置磁场强度通常越大,因此云台可以根据感应信号确定磁感应传感器和感应件40之间的相对位置。通过磁感应传感器和磁体配合检测,可以有效地避免用户操作时,云台误触发上下电操作,或者未触发上下电操作的情况,提升上下电操作时机的准确度。
磁感应传感器的类型可以根据实际需要进行设置。在一些实施例中,磁感应传感器可以包括霍尔传感器和/或各向异性磁阻(Anisotropic Magneto Resistance,AMR)传感器。通过霍尔元件或者磁阻元件,将磁信号转化为电信号。
当然,在其他可选的实施例中,非接触式传感器30也可以为红外传感器,感应件40可以具备特定温度。通过检测特定温度的感应件40来避免误触发,提升感应精度。
可选地,非接触式传感器30可以设置于第一组件10和第二组件20的其中一者,感应件40可以设置于第一组件10和第二组件20的另一者。
参照图5,在一些实施例中,非接触式传感器30可以设置于握持件21,感应件40可以设置于第一部件11,具体可以位于第一部件11内部。第一部件11在以第一自由度相对于握持件21转动,或者以第二自由度相对于握持件21转动时,非接触式传感器30可以输出相应的感应信号,以使得云台根据感应信号执行相应的控制操作。
由于第一部件11能够以至少两个自由度转动,活动范围较大,为避免脱离非接触式传感器30的感应范围,在一些实施例中,非接触式传感器30可以包括AMR传感器,且云台还包括由磁性材料制备的感应件40。
参照图6,图6示出了各向异性磁阻AMR传感器的感应原理。磁体的外部磁感线由N极向S极。对于设置于X处或Y处的AMR传感器而言,其可以感应如图所示的磁体水平方向的磁场分量。因而在感应件40环绕AMR传感器的四周运动的过程中,AMR传感器均可以感应到相应的水平磁场分量,并根据该磁场分量输出感应信号。换句话说,AMR传感器可以理解为平面/2D范围内的磁感应传感器。
具体而言,AMR传感器通常包括四个磁阻元件,在施加磁场后,不同的磁阻元件的电阻值变化不同,从而导致电位差异,形成感应信号。
应理解,感应件40可以完全由磁性材料制备,也可以部分由磁性材料制备。在一些实施例中,感应件40可以包括设于第一组件10和第二组件20中的一个的内部的磁体。当然,在其他可选的实施例中,感应件40也可以为第一组件10或第二组件20的一个部分,也即第一组件10或第二组件20可以部分由磁性材料制备。
可选地,云台可以根据感应信号的大小,执行相应的控制操作。
在一些实施例中,云台还可以包括处理器,处理器可以用于执行以下至少一项:在感应信号小于第一预设阈值的情况下,执行上电操作。在感应信号大于或等于第二预设阈值的情况下,执行下电操作。
对于感应信号而言,其通常为模拟电信号,例如电压值或者电流值等。感应信号可以通过其幅值大小,指示相应的信息。以霍尔传感器为例,霍尔传感器在感应到的磁场强度越大时,其输出的霍尔电压也越大,这代表了被测物体与霍尔传感器之间的距离越近。因此,云台可以通过处理器判断感应信号的大小,从而确定传感器与被测物体之间的距离。
示例性地,参照图3,图3中的第一部件11可以相对于握持件21沿B方向折叠或展开。感应信号小于第一预设阈值的情况下,表示第一部件11和握持件21之间的距离大于第一预设距离。此时云台的处理器可以执行上电操作。相应地,感应信号大于或等于第二预设阈值的情况下,表示第一部件11和握持件21之间的距离小于或等于第二预设距离,此时云台的处理器可以执行下电操作。
第一预设阈值可以等于第二预设阈值。当两者相等时,云台的处理器可以在第一部件11和握持件21处于如图3所示的状态,且第一部件11进一步远离握持件21运动时,执行上电操作。云台的处理器可以在第一部件11和握持件21处于如图3所示的状态,或者第一部件11进一步靠近握持件21运动时,执行下电操作。
在一些实施例中,为了避免用户在转动第一部件11时误触发上下电,第一预设阈值也可以小于预设阈值。也即,在执行上电操作时,第一部件11与握持件之间的距离大于在执行下电操作时,第一部件11与握持件之间的距离。
可选地,云台可以通过设置至少两个非接触式传感器30,提升上下电操作时机的准确性。
参照图7,图7为图2的局部放大图。在一些实施例中,非接触式传感器30可以包括第一传感器31和第二传感器32,第一传感器31设置于第一部件11或第二组件20,第二传感器32设置于第一部件11或第二组件20。其中,第一传感器31用于输出第一感应信号,第二传感器32用于输出第二感应信号,以使得在第一部件11相对于第二组件20在第一自由度的第一旋转范围内的任意一个角度并以第二自由度转动时,云台能够根据第一感应信号和第二感应信号,执行控制操作。
这样,云台可以结合第一传感器31和第二传感器32输出的第一感应信号和第二感应信号,执行控制操作,在扩大了感应范围的同时,提升了检测的精度。
此外,在第一传感器31和第二传感器32中任一传感器故障时,云台仍可以通过另一传感器进行检测,并执行相应的控制操作。通过设置两个传感器,也可以提升非接触式传感器30的可靠性。
当然,在一些实施例中,第一传感器31和/或第二传感器32也可以包括磁感应传感器。与上 述实施例类似地,当第一传感器31和/或第二传感器32包括磁感应传感器时,云台还可以包括由磁性材料制备的感应件40,磁感应传感器设置于云台组件12和握持件21的其中一者,感应件40设置于云台组件12和握持件21的另一者。其中,第一传感器31和/或第二传感器32用于根据其与感应件40的相对位置变化,输出感应信号。
本申请实施例中,第一传感器31和第二传感器32可以设置于同一组件,也可以设置于不同组件,具体可以根据实际需要进行设置。
其中,云台可以包括一个感应件40,第一传感器31和第二传感器32可以用于检测与同一感应件40之间的相对位置,并输出第一感应信号和第二感应信号,以节约布置空间,避免磁干扰影响检测的精确度。
当然,在其他可选的实施例中,云台也可以包括两个或多个感应件40,第一传感器31和第二传感器32可以用于检测与不同感应件40的相对位置,具体可以根据实际情况进行设置。
在一些实施例中,第一传感器31和第二传感器32可以包括霍尔传感器和/或AMR传感器。
可以继续参照图7,根据AMR传感器的感应原理可知,对于设置于Z处的磁感应传感器,由于磁体与AMR传感器位于同一竖直方向,磁体在AMR传感器处的水平磁场分量大致为零。也即,AMR传感器可能存在感应盲区。
此时,通过设置两个传感器,可以在AMR传感器的感应盲区,结合另一传感器的感应信号判断是否执行控制操作,提升了执行上下电操作时机的准确性。
具体地,在一些实施例中,第一传感器31可以包括霍尔传感器,第二传感器32可以包括AMR传感器。由前述内容可知,第二传感器32为AMR传感器时,在第一部件11相对于握持件21转动时,磁体可能处于第二传感器32的感应盲区。此时,第一传感器31可以包括霍尔传感器,霍尔传感器可以感应磁体产生的磁场的竖直分量。
在第二传感器32无法感应到磁体产生的磁场的水平分量时,第一传感器31仍可以感应到磁场的竖直方向的分量,避免了在第一部件11在第一自由度的任一角度下以第二自由度转动时,第二传感器32在感应盲区时输出的感应信号导致云台误触发上下电操作,或者未触发上下电操作的情况,提升了上下电操作时机的准确性。
当然,在其他可选的实施例中,第一传感器31和第二传感器32可以均包括AMR传感器。此时,第一传感器31和第二传感器32可以不位于同一竖直方向,从而可以使得两者对感应件40的感应盲区互不重合,以提升检测的精度。
本申请实施例中,第一传感器31与第二传感器32的设置位置可以根据实际需要进行设置。一并参照图2、图5和图7,在一些实施例中,第一传感器31与第二传感器32可以均设置于握持件21,而感应件40可以设置于云台组件12。
进一步地,为提升云台美观度和空间利用度,在一些实施例中,第一传感器31与第二传感器32可以均设置于握持件21内。
进一步地,参照图7,在一些实施例中,第一传感器31与第二传感器32可以设置于同一电路板。为了避免第一传感器31与第二传感器32相距较远时,其中一个传感器无法感应到感应件40的情况,以使得第一传感器31和第二传感器32对感应件40的感应更加准确,在一些实施例中,第一传感器31可以与第二传感器32相邻设置。
与上述实施例类似地,对于可折叠的云台,第一传感器31和第二传感器32可以在折叠过程中输出感应信号,云台可以根据感应信号执行控制操作。
参照图3至图4,在一些实施例中,云台组件12包括第一部件11和折叠机构1213,第一部件11和折叠机构1213连接。其中,第一部件11能够通过折叠机构1213以第二自由度转动,以使得第一部件11远离折叠机构1213的端部靠近或远离握持件21。感应件40可以设置于第一部件11。
由上述实施例可知,非接触式传感器30可以用于根据第一部件11与握持件21的相对位置变化,输出感应信号,从而在第一部件11通过折叠机构1213以第二自由度转动的过程中,云台能够根据感应信号,执行控制操作。
在本申请实施例中,感应件40可以设置于第一部件11。由于第一部件11通过折叠机构1213以第二自由度转动的过程中,第一部件11远离折叠机构1213的端部可以靠近或远离握持件21,从而第一传感器31和第二传感器32可以根据与感应件40的相对位置变化输出第一感应信号和第二感应信号。
一并参照图1、图3和图8,图8为第一部件11通过折叠机构1213以第二自由度转动至第一关节角的状态图,此时第一部件11贴近握持件21,且与握持件21之间存在接触,云台处于完全折叠状态。图1为第一部件11通过折叠机构1213以第二自由度转动至第二关节角的状态图,此时第一部件11的端部远离握持件21,云台处于展开状态。图3为第一部件11通过折叠机构1213以第二自由度转动至第三关节角的状态图,此时云台处于部分展开的中间状态。
在一些实施例中,感应件40的磁极可以沿第一方向分布,第一方向垂直于第一部件11的延伸方向。可以一并参照图2和图7。图2和图7中,感应件40设置于第一部件11内,且感应件40的N极和S极的分布方向大致垂直于第一部件11的延伸方向。由于磁体产生的外部磁场由N极发出至S极,在N极和S极分布的方向上的磁场强度随距离的变化较为明显。因而,在第一部件11以第二自由度转动的过程中,磁场强度的变化更明显,更易于被磁感应传感器检测到。具体地,感应件40可以为条形磁铁。
当然,在其他可选的实施例中,第一方向也可以与第一部件11延伸方向的法线存在一定夹角,具体可以根据实际的应用场景进行进一步的设置。
在一些实施例中,在第一部件11通过折叠机构1213以第二自由度转动至第一关节角时,第一传感器31与第二传感器32均位于靠近第一部件11的一侧,且朝向感应件40设置。
参照图5,在一些实施例中,第一传感器31和第二传感器32设置于同一电路板,且电路板 位于握持件21中靠近第一部件11的一侧,且第一传感器31和第二传感器32位于电路板靠近第一部件11的一侧。
这样,在第一部件11通过折叠机构1213以第二自由度转动至第一关节角时,第一传感器31和第二传感器32与感应件40之间的距离较近,位于磁场较强的方位,以此输出的感应信号幅值较大,更有利于云台基于感应信号执行控制操作。
参照图7,在一些实施例中,第一传感器31与第二传感器32可以沿第二方向分布,第二方向垂直于握持件21的延伸方向,即如图所示的C方向。这样,可以使得第一传感器31和第二传感器32分别位于感应件40所产生磁场的不同方位,以在感应件40运动过程中不脱离两个传感器的感应范围。
当云台处于完全折叠状态,即在第一部件11通过折叠机构1213以第二自由度转动至第一关节角时,第一传感器31和第二传感器32与感应件40在第三方向的法平面的投影可以大致沿第二方向分布。其中,第二方向可以垂直于握持件21延伸方向,也可以平行于握持件21的延伸方向。第三方向垂直于第一传感器31或第二传感器32,可以理解为第一传感器31或第二传感器32的感应方向。在第一传感器31和第二传感器32设置于同一电路板时,即可以为垂直于电路板的方向。
这样,第一传感器31和第二传感器32可以位于磁场较强的方位,输出的感应信号幅值较大,更有利于云台根据感应信号执行控制操作。
当然,在其他可选的实施例中,第一传感器31和第二传感器32也可以分别设置于图10中感应件40的左侧和下侧。具体可以根据实际的空间布置进行进一步的设置。
为了避免云台折叠后,第一部件11仍可以以第一自由度转动,在一些实施例中,在第一部件11通过折叠机构1213以第二自由度转动至第一关节角时,第一部件11在第一自由度的转动受限。
其中,在第一部件11转动至第一关节角时,云台可以利用自身结构对第一部件11进行机械限位,也可以通过对电机的控制算法对第一部件11进行算法限位,以使得第一部件11在第一自由度的转动受限。应理解,第一部件11在第一自由度的转动受限,可以是指第一部件11在第一自由度上不能发生转动,或者仅能在一定的角度范围内发生转动。
进一步地,云台可以通过卡槽211和卡合凸起12221的配合,限制第一部件11在第一自由度上的转动。在一些实施例中,握持件21和第一部件11的其中一者设置有卡槽211,另一者设置有卡合凸起12221。在第一部件11转动至第一位置时,卡合凸起12221与卡槽211配合,以使得第一部件11无法以第一自由度转动。
参照图8,握持件21上可以设置有卡槽211,第一部件11上可以设置有卡合凸起12221。此时第一自由度为绕偏航轴转动的自由度,云台完全折叠后,卡合凸起12221至少部分位于卡槽211内,以避免第一部件11绕偏航轴转动,影响用户携带。
当然,在其他可选的实施例中,第一部件11上也可以设置有卡槽,握持件21上可以设置有 卡合凸起。或者,在一些实施例中,云台可以通过折叠后的握持件21与云台组件12之间的相对配合。例如,通过握持件21对第三轴组件123的阻挡,以限制第一部件11在第一自由度的转动。
进一步地,参照图7,在一些实施例中,在卡合凸起12221与卡槽211配合时,感应件40和第二传感器32在第三方向的法平面的投影不重合,以确保第二传感器32为AMR传感器时,在云台处于完全折叠状态时,第二传感器32能够感应到感应件40,并输出感应信号。此时,第三方向可以为垂直于第二传感器的方向。
在非接触式传感器30包括第一传感器31和第二传感器32的情况下,云台的处理器可以结合第一感应信号和第二感应信号来执行控制操作。
在一些实施例中,云台的处理器还可以执行以下至少一项:
在第一感应信号小于第三预设阈值,或第二感应信号小于第四预设阈值的情况下,执行上电操作。在第一感应信号大于或等于第五预设阈值,且第二感应信号大于或等于第六预设阈值的情况下,执行下电操作。
云台可以在第一感应信号和第二感应信号均小于一定阈值时,执行上电操作,在两者均大于或等于一定阈值时,执行下电操作。这样,通过结合两个感应信号执行控制操作,能够减少仅通过一个传感器的感应信号进行判断时云台执行的误操作,进一步提升上下电操作时机的准确性。
应理解,第三预设阈值和第四预设阈值可以相同,也可以不同。第五预设阈值和第六预设阈值可以相同,也可以不同。具体可以根据第一传感器31和第二传感器32的类型和结构进行具体设置。第三预设阈值可以等于第五预设阈值,也可以小于第五预设阈值。第四预设阈值可以等于第六预设阈值,也可以小于第六预设阈值,在此不再赘述。
本申请实施例还提供一种云台的控制方法,旨在提升用户对云台上下电操作时的便捷性。参照图9,图9是本申请实施例云台的控制方法的步骤示意流程图,该方法可以应用于云台。具体可以由云台的处理器执行,也可以为与云台通信连接的外部处理器执行,在此不作限定。
其中,云台包括第一组件和第二组件,第一组件与第二组件机械耦合,该方法包括:
S101、获取设置于第一组件和/或设置于第二组件的上的非接触式传感器的感应信号。
S102、根据感应信号,执行预设的控制操作,以使得当第一组件和第二组件的相对位置发生变化时,云台能够执行相应的响应。其中,控制操作包括以下任一项:上电操作;下电操作。
参照图1至图8,本申请实施例中,第一组件10和第二组件20的结构可以参照上述实施例进行设置,为避免重复,在此不再赘述。本申请实施例的方法步骤的具体实现,可以参照上述实施例的表述,在此不再赘述。
本申请实施例中,云台可以通过在第一组件和/或第二组件上设置非接触式传感器,在机械耦合的第一组件和第二组件的相对位置发生变化时,云台可以根据非接触式传感器输出的感应信号,来执行相应的上电或下电的控制操作。这样,用户可以仅通过改变第一组件和第二组件的相对位置自动实现云台的上下电操作,提升了用户进行上下电操作时的便捷性。
进一步地,若使用接触式传感器,例如将压力传感器设置于第一组件和第二组件之间,利用压力传感器与第一组件和第二组件的接触,来确定第一组件和第二组件的位置是否改变,这往往会存在感应范围较小的问题。同时,接触式传感器频繁与被测物体接触,会造成机械损耗,影响云台的使用寿命。
通过非接触式传感器进行感应,可以在提升感应范围的同时,避免接触式传感器(如压力传感器),在与被测物体接触时带来的机械损耗,提升云台的使用寿命。
在一些实施例中,步骤102,可以包括以下至少一项:
S1021、在感应信号小于或等于第一预设阈值的情况下,执行上电操作。
S1022、在感应信号大于或等于第二预设阈值的情况下,执行下电操作。
在一些实施例中,第一预设阈值可以小于第二预设阈值。
在一些实施例中,非接触式传感器可以包括磁感应传感器、红外传感器、激光传感器、超声波传感器、视觉传感器和毫米波雷达传感器中的至少一种。
其中,在非接触式传感器包括磁感应传感器时,云台还可以包括由磁性材料制备的感应件。
在一些实施例中,非接触式传感器可以包括第一传感器和第二传感器,第一传感器设置于第一组件或第二组件,第二传感器设置于第一组件或第二组件。第一传感器用于输出第一感应信号,第二传感器用于输出第二感应信号。步骤102,可以包括:
S1023、根据第一感应信号和/或第二感应信号,执行控制操作。
在一些实施例中,步骤1023,可以包括以下至少一项:在第一感应信号小于或等于第三预设阈值,或第二感应信号小于第四预设阈值的情况下,执行上电操作。在第一感应信号大于或等于第五预设阈值,且第二感应信号大于或等于第六预设阈值的情况下,执行下电操作。
在一些实施例中,第三预设阈值可以小于第五预设阈值,和/或,第四预设阈值可以小于第六预设阈值。
在一些实施例中,第一传感器和/或第二传感器包括磁感应传感器,云台还包括由磁性材料制备的感应件。步骤102,可以包括:根据第一感应信号和/或第二感应信号,执行控制操作,以使得当第一传感器和/或第二传感器与感应件的相对位置发生变化时,云台能够执行相应的响应。
在一些实施例中,第一传感器包括霍尔传感器,第二传感器包括各向异性磁阻AMR传感器。
在一些实施例中,在云台执行下电操作的情况下,非接触式传感器保持上电状态。
上述实施例的具体实现方式,均可以参照如前云台实施例的相关表述,为避免重复,在此不再赘述。
在用户需要通过固定拍摄角度进行拍摄的场景中,云台可以配合三脚架等辅助设备,并搭载负载进行拍摄,此时云台的基部的位姿大致保持不变,以使得负载获得固定的拍摄角度。而由云台的增稳控制逻辑可知,为避免云台基部晃动而引起云台轴臂异动,云台的三轴可控角度范围往往与实际关节角限位之间存在较大裕量。在云台轴臂超出可控角度范围时,云台会控制电机转动, 使得轴臂回到可控角度范围,这将导致云台的三轴可调整的角度范围较小。当用户需要调整至另一拍摄角度时,可能无法将负载调整到所需的角度,这将导致用户的使用体验不佳。
有鉴于此,本申请实施例还提供了一种云台的控制方法,旨在提升用户在利用云台在不同的固定拍摄角度下拍摄时的使用体验。
参照图10,图10是本申请实施例云台的控制方法的步骤示意流程图,该方法可以应用于云台。具体可以由云台的处理器执行,也可以为与云台通信连接的外部处理器执行,在此不作限定。其中,云台包括基部和轴臂组件,轴臂组件与基部连接,用于安装负载。轴臂组件包括至少一个轴臂,轴臂能够相对基部绕至少一个轴向转动,以调整负载的姿态。
该方法包括:
S201、获取云台的基部的运动状态。
S202、在云台搭载负载,且基部的运动状态满足第一预设条件的情况下,进入第一拍摄模式;第一预设条件包括基部的位姿大致保持不变。
其中,在云台处于第一拍摄模式的情况下,轴臂组件的目标轴臂未对负载进行增稳,且目标轴臂能够在受到外力作用时以第一自由度由第一关节角转动至第二关节角,并能够保持于第二关节角。
参照图11至图12,图11至图12所示的云台为三轴手持云台。其中,云台的基部50可以为云台的手柄。轴臂组件60可以与基部50连接,并且用于搭载负载70。具体地,轴臂组件60可以包括三轴对应的轴组件,如图15所示的偏航轴轴组件61、俯仰轴轴组件62和横滚轴轴组件63。每一轴对应的轴组件可以包括电机和轴臂,通过电机驱动轴臂绕对应的轴向进行转动。
应理解,本申请实施例的方法可以应用于三轴云台,也可以应用于两轴云台或者单轴云台,在此不作限定。
步骤201中,可以通过设置于云台的传感器获取云台的基部的运动状态。
具体地,在一些实施例中,云台可以设置有(Inertial Measurement Unit,IMU)惯性测量单元,基于IMU获取云台基部的运动速度和/或运动加速度。在一些实施例中,云台也可以设置有加速度计、倾斜传感器、振动传感器或者角位移传感器等,结合一个或多个传感器的感应信号,获取云台的基部的运动状态。当然,在其他可选的实施例中,也可以从云台外部的传感器获取云台的基部的运动状态,例如,通过视觉传感器获取云台的基部的图像数据,基于图像数据确定云台的基部的运动状态。应理解,云台可以持续获取基部的运动状态,也可以在预设时间段内获取基部的运动状态,或者云台也可以在接收到特定输入后开始获取基部的运动状态,在此不作限定。
步骤202中,在云台搭载负载,且基部的运动状态满足第一预设条件的情况下,由于第一预设条件包括基部的位姿大致保持不变,因而通常表明用户可能搭载了三脚架等辅助固定设备,需要在固定拍摄角度下进行拍摄。此时,云台可以进入第一拍摄模式,以便于用户进行拍摄。
基部的位姿大致保持不变,可以理解为基部的位置和姿态在预设时间段的变化不超出预设范 围。具体地,在一些实施例中,第一预设条件可以包括云台基部的运动速度或运动加速度大致为0。
此种情况下,由于通常存在三脚架等辅助固定设备对云台进行固定,用户往往对云台的增稳的需求不高,因而为了提升轴臂组件的目标轴臂可调节的角度范围,可以控制目标轴臂取消对负载进行增稳。同时,为了便于用户调节负载的拍摄角度,在目标轴臂受到外力时能够由第一关节角转动至第二关节角,并可以保持于第二关节角。
其中,目标轴臂受到外力转动,通常可以理解为目标轴臂随着推拉操作,在其对应的轴向上转动的过程。目标轴臂可以在随着外力由第一关节角转动至第二关节角,并可以在外力消失后保持于第二关节角。换句话说,目标轴臂可以随着推拉操作进行转动,并在推拉操作停止时保持于当前所处的关节角。用户可以通过对目标轴臂的推拉操作,调节负载的拍摄角度。
本申请实施例中,可以通过获取云台的基部的运动状态,并在云台搭载负载,且基部运动状态大致保持不变的情况下,进入第一拍摄模式。在第一拍摄模式下,轴臂组件的目标轴臂可以取消对负载进行增稳,以提升目标轴臂可调节的角度范围。同时,目标轴臂能够在受到外力作用时由第一关节角转动至第二关节角,并能够保持于第二关节角。这使得用户可以在较大的角度范围转动目标轴臂,以使得负载保持在合适的拍摄角度,提升了用户在利用云台进行拍摄过程中的自由度,即提升了用户的使用体验。
本申请实施例中的负载,可以为拍摄装置,具体可以包括手机、相机或摄像机等,在此不再一一列举。
应理解,目标轴臂可以包括轴臂组件中任一轴臂,例如偏航轴轴臂、俯仰轴轴臂或者横滚轴轴臂。云台可以控制轴臂组件的其中一个或多个目标轴臂取消对负载进行增稳,也可以控制轴臂组件的所有轴臂取消对负载进行增稳,具体可以根据实际需要进行设置。
相应地,第一自由度可以包括绕横滚轴转动的自由度、绕俯仰轴转动的自由度和绕偏航轴转动的自由度中的任一项。
由于云台存在运动状态下对应的增稳拍摄模式,因而云台可以在第一拍摄模式和增稳拍摄模式之间进行模式切换。在一些实施例中,该方法还可以包括:
S203、在云台处于第一拍摄模式的情况下,若云台满足第二预设条件,执行模式切换操作。
具体地,在一些实施例中,第二预设条件可以包括云台的基部的运动状态不满足第一预设条件,或者,接收到负载发送的第一信息,第一信息用于指示云台退出第一拍摄模式。
步骤203中,执行模式切换操作可以相应包括:S2031、进入第二拍摄模式。其中,在云台处于第二拍摄模式的情况下,目标轴臂对负载进行增稳。
若云台处于第一拍摄模式的情况下,云台的基部的运动状态发生变化,云台可以退出第一拍摄模式,并切换至用于增稳的第二拍摄模式。例如,在一些实施例中,用户将云台从三脚架等辅助固定设备取下,或者用户移动三脚架等辅助固定设备时,云台可以在云台基部的运动状态不满 足第一预设条件的情况下,自动切换至第二拍摄模式,以避免用户进行手动操作。在一些实施例中,用户可以通过对负载的输入,以使得负载向云台发送指示云台退出第一拍摄模式的第一信息。云台可以在接收到第一信息后,退出第一拍摄模式,并切换至第二拍摄模式。
当然,在其他可选的实施例中,云台也可以具有控制拍摄模式切换的交互控件或者实体按键。用户也可以通过对云台的输入,使得云台退出第一拍摄模式,并进入第二拍摄模式,具体可以根据实际的应用场景进行设置。
应理解,第二拍摄模式可以为云台的增稳模式,在第二拍摄模式下,云台控制第一拍摄模式中对负载取消增稳的目标轴臂重新对负载进行增稳。
在一些实施例中,在云台处于第二拍摄模式的情况下,目标轴臂能够在受到外力作用时以第一自由度由第三关节角转动至第四关节角,并能够保持于第四关节角。其中,第一关节角与第二关节角之间的最大转动角度大于第三关节角与第四关节角之间的最大转动角度。
在第二拍摄模式下,目标轴臂也可以在可控的角度范围内,随着推拉操作转动,并可以在推拉操作停止时保持于当前关节角。而由前述内容可知,由于第一拍摄模式取消了目标轴臂对负载的增稳,因此目标轴臂可以在较大的角度范围内进行调节。而第二拍摄模式中目标轴臂对负载进行增稳,因此目标轴臂可以调节的角度范围小于第一拍摄模式中目标轴臂可以调节的角度范围。
进一步地,在一些实施例中,第一拍摄模式中第一关节角和第二关节角之间的最大转动角度可以由云台的机械限位确定。也即,目标轴臂可以受外力作用时转动至与机械限位结构抵触的关节角,并在外力作用停止时保持于当前关节角。当然,在其他可选的实施例中,第一拍摄模式中第一关节角和第二关节角之间的最大转动角度也可以为预先设置的角度范围。
需要说明的是,参照图11,在目标轴臂包括横滚轴轴臂的情况下,第二拍摄模式中横滚轴轴臂通常仅能保持在0°或90°这两个关节角,以使得负载保持横拍或竖拍状态。此时,用户无法以负载在横滚轴方向倾斜的拍摄角度进行拍摄。通过进入第一拍摄模式,用户可以使得横滚轴轴臂可以保持于除0°和90°之外的关节角,例如图13所示,以使得负载可以在更多拍摄角度进行拍摄,这也提升了用户拍摄的自由度。
在一些实施例中,步骤2031,具体可以包括:
调整至少一个轴臂的关节角,以使轴臂组件处于预设的第一姿态。
在进行模式切换时,由于可能涉及到云台控制策略的改变,为便于控制,云台可以在模式切换后,调整至少一个轴臂的关节角,以使得轴臂组件回到预设姿态。
第二拍摄模式对应的第一姿态,可以为预设姿态,具体可以为云台出厂的预设姿态,或者由用户设定的预设姿态。例如,参照图11,在一些实施例中,第一姿态可以每一轴的轴臂的关节角均为0°时的零位姿态,以便于用户基于零位姿态调整轴臂组件。在一些实施例中,第一姿态也可以为云台此前存储的历史姿态,以便于用户在第一姿态下进行拍摄,在此不作限定。
应理解,在第一姿态下,轴臂组件的目标轴臂的关节角可以处于增稳模式下可控的角度范围 内,以避免在第二拍摄模式下云台无法对目标轴臂进行控制。
通过在进入第二拍摄模式时,将轴臂组件调整至预设的第一姿态,可以减少因不同拍摄模式下控制策略不同,而导致轴臂组件发生异动的情况。同时,回到预设的第一姿态,也便于用户在第二拍摄模式下进行拍摄。
可选地,云台可以具有空载模式,在执行模式切换的过程中,云台可以由第一拍摄模式切换至空载模式。在一些实施例中,第二预设条件可以包括云台未搭载负载。
相应地,步骤203,具体可以包括:
S2032、进入空载模式。其中,在云台处于空载模式的情况下,目标轴臂能够在受到外力作用时以第一自由度由第五关节角转动至第六关节角,并能够保持于第六关节角。
可以参照图1,图1所示的云台即处于未搭载负载的状态,具体可以通过设置传感器来确定云台是否搭载负载,在此不再一一列举。
云台在处于空载模式时,目标轴臂也能够实现在受到外力作用时以第一自由度由第五关节角转动至第六关节角,并能够在外力消失时保持于第六关节角。这样,用户可以在云台空载的状态下调整轴臂组件的姿态,以便于用户安装负载。
进一步地,在一些实施例中,步骤2032,具体可以包括:
控制轴臂组件保持于第二姿态,第二姿态可以为云台由第一拍摄模式切换至空载模式之前,轴臂组件所处的姿态。
由第一拍摄模式切换至空载模式的情况,通常为用户将负载从轴臂组件上取下的情况。在该情况下,云台可以控制轴臂组件保持于进入空载模式之前的第二姿态,以便于用户再次安装负载。
在一些实施例中,该方法还可以包括:S204、当控制云台由第一拍摄模式切换至第二拍摄模式时,调整至少一个轴臂的关节角,以使轴臂组件处于第三姿态,第三姿态可以通过轴臂组件在云台处于所述第二拍摄模式时的目标姿态信息确定。
应理解,步骤204中,目标姿态信息可以为在第二拍摄模式下,指示轴臂组件对应的第三姿态的信息。具体地,目标姿态信息可以为云台在进入第一拍摄模式之前获取的信息。从而云台可以在由第一拍摄模式重新切换至第二拍摄模式时,利用目标姿态信息调整至少一个轴臂的关节角,使得轴臂组件处于此前第二拍摄模式下的第三姿态。
在一些实施例中,目标姿态信息可以包括轴臂组件中至少一个轴臂的姿态角信息。在一些实施例中,目标姿态信息也可以包括轴臂组件中至少一个轴臂关节角信息。
具体而言,目标姿态信息可以包括轴臂组件中横滚轴的关节角信息或者姿态角信息。在一些实施例中,云台可以在进入第一拍摄模式之前记录横滚轴轴臂的关节角作为目标姿态信息,在由第一拍摄模式切换至第二拍摄模式时,横滚轴电机可以控制横滚轴轴臂转动至之前记录的关节角。
第二拍摄模式下,横滚轴轴臂通常仅能保持于0°和90°两个姿态。示例性地,参照图11和图13,若图11所示的轴臂组件60的姿态为第三姿态,此时横滚轴轴臂、俯仰轴轴臂和偏航轴轴 臂的关节角均为0°,此时云台可以获取第三姿态对应的目标姿态信息,具体为横滚轴轴臂的关节角信息。而在进入第一拍摄模式后,轴臂组件60的姿态改变至如图13所示的姿态,此时横滚轴轴臂的关节角不为0°。则当控制云台重新由第一拍摄模式切换至第二拍摄模式时,轴臂组件60的横滚轴轴臂可以调整回如图11所示的关节角,以便于用户进行竖拍。当然,在其他可选的实施例中,若第三姿态中横滚轴轴臂的关节角为90°,即负载处于横向设置,则由第一拍摄模式切换至第二拍摄模式时,横滚轴轴臂也可以调整至90°,以便于用户进行横拍。
这样,云台可以在由第一拍摄模式切换至第二拍摄模式时,自动调整到此前记录的第三姿态,避免了用户在切换拍摄模式时需要频繁调整轴臂组件的姿态,提升了用户在拍摄过程中的便捷性。
可选地,云台可以具有保护模式,在执行模式切换的过程中,云台可以由第一拍摄模式切换至保护模式。
在一些实施例中,第二预设条件可以包括基部处于悬空状态,和/或,轴臂组件与负载连接,且负载对应的转动惯量小于预设阈值。相应地,步骤203,具体可以包括:S2033、进入保护模式。其中,在云台处于保护模式的情况下,目标轴臂的电机停止输出转矩。
在云台的基部为手柄的情况下,握持手柄的用户会给手柄的转动带来阻力。而当手柄处于悬空状态时,用户对手柄的阻力将消失。基于此,云台可以确定基部是否处于悬空状态。
具体地,在一些实施例中,云台可以通过获取基部在目标轴向的转动惯量,并结合带动基部转动的转动轴电机的转动角速度,来确定基部是否处于悬空状态。当然,在一些实施例中,云台也可以在负载过小或者负载未安装到位的情况下,进入保护模式。
在基部悬空的状态下,为避免基部被电机带动而进行非预期的晃动,此时目标轴臂的电机可以停止输出转矩。换句话说,此时目标轴臂可以处于泄力的状态。
在一些实施例中,轴臂组件可以设置有惯性测量单元IMU,步骤201,具体可以包括:S2011、获取IMU的感应信号,感应信号用于指示轴臂组件的运动状态。S2012、基于感应信号,确定基部的运动状态。惯性测量单元可以设置于轴臂组件,具体可以设置于横滚轴的电机处,可以用于检测轴臂组件中各个轴臂的运动状态。
由于云台的基部与轴臂组件存在连接关系,因而云台可以根据轴臂组件的运动状态,确定云台的基部的运动状态。举例而言,在一些实施例中,云台可以在感应信号指示轴臂组件的轴臂存在运动加速度,而未绕轴向转动时,确定云台的基部处于运动状态,并可以进一步确定云台的基部的运动加速度。这样,云台可以通过设置于轴臂组件的IMU确定基部的运动状态,从而可以避免在基部增设传感器,减少了对基部的空间占用,节约了成本。
可选地,云台可以通过与负载的通信,选择是否进入第一拍摄模式。在一些实施例中,步骤201,具体可以包括:S2013、在接收到负载发送的第二信息的情况下,获取云台的基部的运动状态。其中,负载在接收到用于进入第一拍摄模式的输入的情况下,向云台发送第二信息。
第二信息可以为负载指示云台进入第一拍摄模式的信息。在负载向云台发送第二信息之前, 负载可以与云台进行通信连接。具体地,在一些实施例中,用户可以通过负载的应用程序与云台建立通信连接,并通过在应用程序的交互界面中,对指示开启第一拍摄模式的交互控件执行的输入,指示负载向云台发送第二信息。云台在接收到第二信息后,即可以进一步获取基部的运动状态,以判断是否进入第一拍摄模式。
这样,用户可以通过对负载的输入,远程控制云台进入第一拍摄模式,提升了用户拍摄时的便捷性。同时,在云台接收到第二信息后,再获取基部的运动信息,可以避免云台持续获取基部的运动信息而导致的资源占用。在其他可选的实施例中,为减少资源占用,云台也可以在与三脚架连接之后,再获取基部的运动信息,具体可以根据实际的应用场景进行设置。
可选地,用户可以在云台处于第一拍摄模式的情况下,通过对云台的输入,控制云台执行相应的拍摄操作。在一些实施例中,在步骤202之后,该方法还可以包括:
S205、接收第一输入。
S206、响应于第一输入,控制负载执行预设拍摄操作。
预设拍摄操作可以包括以下至少一项:调整焦距;调整焦点;拍摄。
其中,第一输入可以为用户对云台上实体按键的触控操作,例如,用户可以通过单击云台上设置的拍摄按键,控制负载执行拍摄操作。第一输入也可以为用户对云台上其他控制结构的触控操作,例如,用户也可以通过调节云台上设置的拨轮结构,来控制负载调整拍摄焦距等。当然,第一输入也可以为用户对云台上的虚拟交互控件执行的触控和/或非触控操作,在此不再一一列举。
应理解,云台可以在与负载通信连接的情况下,通过向负载发送执行预设拍摄操作的指令,来控制负载执行相应的预设拍摄操作。这样,用户可以在第一拍摄模式下,通过对云台的第一输入,控制负载执行预设拍摄操作,提升了用户拍摄时的便捷性。
可选地,用户可以在云台处于第一拍摄模式的情况下,通过对云台的输入,调整轴臂组件的姿态。在一些实施例中,步骤202之后,该方法还可以包括:
S207、接收第二输入。
S208、响应于第二输入,调整至少一个轴臂的关节角,以使轴臂组件处于预设的第四姿态。其中,第二输入与前述的第一输入类似,为避免重复,在此不再赘述。
第四姿态,可以为云台出厂时的预设姿态,也可以为用户预设的姿态。例如,参照图11,在一些实施例中,第四姿态可以每一轴的轴臂的关节角均为0°时的零位姿态,此时第二输入即可以控制轴臂组件“回中”,以便于用户基于零位姿态进一步调整轴臂组件的姿态。在一些实施例中,第四姿态也可以为云台此前存储的历史姿态,以便于用户在第四姿态下进行拍摄,在此不作限定。
这样,用户可以通过第二输入,使得云台的轴臂组件调整至预设的第四姿态,能够便于用户基于第四姿态进一步调整轴臂组件的姿态,或者便于用户基于第四姿态进行拍摄,提升了用户拍摄时的便捷性。
本申请实施例还提供了一种云台,云台包括基部和轴臂组件,轴臂组件与基部连接,用于安 装负载;轴臂组件包括至少一个轴臂,轴臂能够相对基部绕至少一个轴向转动,以调整负载的姿态;
云台还包括存储器和处理器;存储器,用于存储计算机程序;处理器,用于执行计算机程序并在执行计算机程序时,实现上述实施例提供云台的控制方法的步骤。
请参阅图14,图14是本申请实施例提供的一种云台的控制装置的结构示意性框图。该控制装置应用于前述的云台,其中,该控制装置可以集成于前述的云台,也可以与云台独立设置,并通信连接,前述的云台的控制方法也可以应用于该控制装置。
如图14所示,该控制装置1400包括处理器1401及存储器1402,处理器1401、存储器1402通过总线1403连接,该总线1403比如为I2C(Inter-integrated Circuit)总线。具体地,处理器1401可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。具体地,存储器1402可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器1401用于运行存储在存储器1402中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取设置于第一组件和/或设置于第二组件的上的非接触式传感器的感应信号。根据感应信号,执行预设的控制操作,以使得当第一组件和第二组件的相对位置发生变化时,云台能够执行相应的响应。其中,控制操作包括以下任一项:上电操作;下电操作。
或者,处理器1401用于运行存储在存储器1402中的计算机程序,并在执行计算机程序时实现如下步骤:
获取云台的基部的运动状态。在云台搭载负载,且基部的运动状态满足第一预设条件的情况下,进入第一拍摄模式;第一预设条件包括基部的位姿大致保持不变。其中,在云台处于第一拍摄模式的情况下,轴臂组件的目标轴臂未对负载进行增稳,且目标轴臂能够在受到外力作用时以第一自由度由第一关节角转动至第二关节角,并能够保持于第二关节角。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的云台的控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的云台的内部存储单元,例如云台的硬盘或内存。所述计算机可读存储介质也可以是云台的外部存储设备,例如云台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (62)

  1. 一种云台,其特征在于,包括:
    第一组件;
    第二组件,与所述第一组件机械耦合;以及,
    非接触式传感器,设置于所述第一组件和/或所述第二组件;
    其中,所述非接触式传感器用于输出感应信号,以使得当所述第一组件和第二组件的相对位置发生变化时,所述云台能够根据所述感应信号,执行相应的控制操作;
    所述控制操作包括以下任一项:
    上电操作;下电操作。
  2. 根据权利要求1所述的云台,其特征在于,所述第一组件包括第一部件,所述第一部件能够相对于所述第二组件以第一自由度和第二自由度转动;所述第一自由度对应预设的第一旋转范围,其中,
    在所述第一部件相对于所述第二组件在第一自由度的第一旋转范围内的任意一个角度并以第二自由度转动,以使得所述第一部件与所述第二组件的相对位置发生变化,并使得所述感应信号发生变化时,所述感应信号用于使得云台执行所述控制操作。
  3. 根据权利要求2所述的云台,其特征在于,所述第一自由度包括以下任一项:
    绕横滚轴转动的自由度;
    绕俯仰轴转动的自由度;
    绕偏航轴转动的自由度。
  4. 根据权利要求2所述的云台,其特征在于,所述第一组件包括云台组件,所述第一部件为部分所述云台组件;
    其中,所述云台组件包括至少一个轴组件,各个所述轴组件分别用于驱动所述云台的负载绕对应的轴向转动,以实现所述负载的姿态调节。
  5. 根据权利要求4所述的云台,其特征在于,所述第一自由度为绕其中一个所述轴向转动的自由度,所述第二自由度为绕除所述第一自由度对应的轴向以外的轴向转动的自由度。
  6. 根据权利要求5所述的云台,其特征在于,所述第二组件包括握持件;
    所述云台组件包括:
    第一轴组件,与所述握持件连接,包括第一驱动件和第一轴臂;所述第一轴臂与所述第一驱动件连接,并能够经所述第一驱动件驱动,绕第一轴向转动;其中,
    所述第一部件与所述第一轴臂连接,或者,包括至少部分所述第一轴臂。
  7. 根据权利要求6所述的云台,其特征在于,所述第一自由度为绕所述第一轴向转动的自由度。
  8. 根据权利要求6所述的云台,其特征在于,所述第一轴臂上设置有折叠机构,所述折叠机构能够使得所述第一部件以所述第二自由度转动。
  9. 根据权利要求8所述的云台,其特征在于,所述第一轴臂包括:
    第一子轴臂,与所述第一驱动件连接;
    第二子轴臂,所述第一部件包括所述第二子轴臂;
    所述折叠机构,所述折叠机构与所述第一子轴臂连接,且与所述第二子轴臂连接,以使得所述第二子轴臂能够以第二自由度转动。
  10. 根据权利要求6-9中任一所述的云台,其特征在于,所述云台组件还包括:
    第二轴组件,与所述第一轴组件连接,包括第二驱动件和第二轴臂;所述第二轴臂与所述第二驱动件连接,并能够经所述第二驱动件驱动,绕第二轴向转动;和/或,
    第三轴组件,与所述第二轴组件连接,包括第三驱动件,所述第三驱动件能够绕第三轴向转动。
  11. 根据权利要求10所述的云台,其特征在于,所述第一轴向为偏航轴轴向,所述第二轴向为俯仰轴轴向,所述第三轴向为横滚轴轴向。
  12. 根据权利要求2-9中任一项所述的云台,其特征在于,所述非接触式传感器包括第一传感器和第二传感器,所述第一传感器设置于所述第一部件或所述第二组件,所述第二传感器设置于所述第一部件或所述第二组件;其中,
    所述第一传感器用于输出第一感应信号,所述第二传感器用于输出第二感应信号,以使得在所述第一部件相对于所述第二组件在第一自由度的第一旋转范围内的任意一个角度并以第二自由度转动时,所述云台能够根据所述第一感应信号和所述第二感应信号,执行所述控制操作。
  13. 根据权利要求12所述的云台,其特征在于,所述第一传感器和所述第二传感器中的至少一者包括各向异性磁阻AMR传感器,且所述云台还包括由磁性材料制备的感应件。
  14. 根据权利要求1所述的云台,其特征在于,所述云台还包括处理器,所述处理器用于执行以下至少一项:
    在所述感应信号小于第一预设阈值的情况下,执行上电操作;
    在所述感应信号大于或等于第二预设阈值的情况下,执行下电操作。
  15. 根据权利要求14所述的云台,其特征在于,所述第一预设阈值小于所述第二预设阈值。
  16. 根据权利要求1所述的云台,其特征在于,所述非接触式传感器包括第一传感器和第二传感器,所述第一传感器设置于所述第一组件或所述第二组件,所述第二传感器设置于所述第一组件或所述第二组件;其中,
    所述第一传感器用于输出第一感应信号,所述第二传感器用于输出第二感应信号,以使得所述第一组件与所述第二组件的相对位置发生变化时,所述云台能够根据所述第一感应信号和/或所述第二感应信号,执行所述控制操作。
  17. 根据权利要求16所述的云台,其特征在于,所述云台还包括处理器,所述处理器用于执行以下至少一项:
    在所述第一感应信号小于第三预设阈值,或所述第二感应信号小于第四预设阈值的情况下,执行上电操作;
    在所述第一感应信号大于或等于第五预设阈值,且所述第二感应信号大于或等于第六预设阈值的情况下,执行下电操作。
  18. 根据权利要求16所述的云台,其特征在于,所述第一传感器与所述第二传感器的类型不同。
  19. 根据权利要求16所述的云台,其特征在于,所述第一传感器与所述第二传感器设置于同一电路板。
  20. 根据权利要求16所述的云台,其特征在于,所述第一传感器与所述第二传感器均设于所述第一组件,或者,所述第一传感器与所述第二传感器均设于所述第二组件。
  21. 根据权利要求1、14-20中任一项所述的云台,其特征在于,所述云台还包括感应件,所述非接触式传感器设置于所述第一组件和所述第二组件的其中一者,所述感应件设置于所述第一组件和所述第二组件的另一者;其中,
    所述非接触式传感器用于根据其与所述感应件的相对位置变化,输出所述感应信号。
  22. 根据权利要求21所述的云台,其特征在于,所述感应件的数量与所述非接触式传感器的数量能够不同。
  23. 根据权利要求21所述的云台,其特征在于,所述非接触式传感器包括磁感应传感器,所述感应件至少部分由磁性材料制备。
  24. 根据权利要求23所述的云台,其特征在于,所述磁感应传感器包括霍尔传感器和/或各向异性磁阻AMR传感器。
  25. 根据权利要求23所述的云台,其特征在于,所述感应件至少为所述第一组件和所述第二组件中的一个的一部分,或者,所述感应件包括设于所述第一组件和所述第二组件中的一个的内部的磁体。
  26. 根据权利要求23所述的云台,其特征在于,在所述非接触式传感器包括第一传感器与第二传感器的情况下,所述感应件设置于所述第一组件,所述第一传感器与所述第二传感器均设置于所述第二组件;
    其中,所述第一组件包括云台组件,所述第二组件包括握持件,所述云台组件与所述握持件连接。
  27. 根据权利要求26所述的云台,其特征在于,所述云台组件包括第一部件和折叠机构,所述第一部件和所述折叠机构连接;其中,
    所述第一部件能够通过所述折叠机构以第二自由度转动,以使得所述第一部件远离折叠机构 的端部靠近或远离所述握持件;所述感应件设置于所述第一部件。
  28. 根据权利要求27所述的云台,其特征在于,所述感应件的磁极沿第一方向分布,所述第一方向垂直于所述第一部件的延伸方向。
  29. 根据权利要求26所述的云台,其特征在于,所述第一传感器包括霍尔传感器,所述第二传感器包括各向异性磁阻AMR传感器。
  30. 根据权利要求26所述的云台,其特征在于,所述第一传感器与所述第二传感器沿第二方向分布,所述第二方向垂直于所述握持件的延伸方向。
  31. 根据权利要求27所述的云台,其特征在于,在所述第一部件通过所述折叠机构以所述第二自由度转动至第一关节角时,所述第一部件在第一自由度的转动受限。
  32. 根据权利要求31所述的云台,其特征在于,所述握持件和所述第一部件的其中一者设置有卡槽,另一者设置有卡合凸起;其中,
    在所述第一部件以所述第二自由度转动至所述第一关节角时,所述卡合凸起与所述卡槽配合。
  33. 根据权利要求32所述的云台,其特征在于,在所述卡合凸起与所述卡槽配合时,所述感应件和所述第二传感器在第三方向的法平面的投影不重合,所述第三方向垂直于所述第二传感器。
  34. 根据权利要求33所述的云台,其特征在于,在所述第一部件通过所述折叠机构以所述第二自由度转动至第一关节角时,所述第一传感器与所述第二传感器均位于靠近所述第一部件的一侧,且朝向所述感应件设置。
  35. 根据权利要求1、14-20中任一项所述的云台,其特征在于,所述非接触式传感器包括以下至少一种:
    红外传感器;激光传感器;超声波传感器;视觉传感器;毫米波雷达传感器。
  36. 一种云台的控制方法,其特征在于,所述云台包括第一组件和第二组件,所述第一组件与所述第二组件机械耦合,所述方法包括:
    获取设置于第一组件和/或设置于第二组件的上的非接触式传感器的感应信号;
    根据所述感应信号,执行预设的控制操作,以使得当所述第一组件和第二组件的相对位置发生变化时,所述云台能够执行相应的响应;
    其中,所述控制操作包括以下任一项:
    上电操作;下电操作。
  37. 根据权利要求36所述的方法,其特征在于,所述根据所述感应信号,执行控制操作,包括以下至少一项:
    在所述感应信号小于或等于第一预设阈值的情况下,执行上电操作;
    在所述感应信号大于或等于第二预设阈值的情况下,执行下电操作。
  38. 根据权利要求37所述的方法,其特征在于,所述第一预设阈值小于所述第二预设阈值。
  39. 根据权利要求36-38中任一项所述的方法,其特征在于,所述非接触式传感器包括以下至 少一种:
    磁感应传感器;红外传感器;激光传感器;超声波传感器;视觉传感器;毫米波雷达传感器。
  40. 根据权利要求36所述的方法,其特征在于,所述非接触式传感器包括第一传感器和第二传感器,所述第一传感器设置于所述第一组件或所述第二组件,所述第二传感器设置于所述第一组件或所述第二组件;所述第一传感器用于输出第一感应信号,所述第二传感器用于输出第二感应信号;
    所述根据所述感应信号,执行预设的控制操作,包括:
    根据所述第一感应信号和/或所述第二感应信号,执行所述控制操作。
  41. 根据权利要求40所述的方法,其特征在于,所述根据所述第一感应信号和/或所述第二感应信号,执行所述控制操作,包括以下至少一项:
    在所述第一感应信号小于或等于第三预设阈值,或所述第二感应信号小于第四预设阈值的情况下,执行上电操作;
    在所述第一感应信号大于或等于第五预设阈值,且所述第二感应信号大于或等于第六预设阈值的情况下,执行下电操作。
  42. 根据权利要求41所述的方法,其特征在于,所述第三预设阈值小于所述第五预设阈值;和/或,
    所述第四预设阈值小于所述第六预设阈值。
  43. 根据权利要求40所述的方法,其特征在于,所述第一传感器和/或所述第二传感器包括磁感应传感器,所述云台还包括由磁性材料制备的感应件;
    所述根据所述感应信号,执行预设的控制操作,以使得当所述第一组件和第二组件的相对位置发生变化时,所述云台能够执行相应的响应,包括:
    根据所述第一感应信号和/或所述第二感应信号,执行所述控制操作,以使得当所述第一传感器和/或所述第二传感器与所述感应件的相对位置发生变化时,所述云台能够执行相应的响应。
  44. 根据权利要求40-43中任一项所述的方法,其特征在于,所述第一传感器包括霍尔传感器,所述第二传感器包括各向异性磁阻AMR传感器。
  45. 根据权利要求36所述的方法,其特征在于,在所述云台执行下电操作的情况下,所述非接触式传感器保持上电状态。
  46. 一种云台的控制方法,其特征在于,所述云台包括基部和轴臂组件,所述轴臂组件与所述基部连接,用于安装负载;所述轴臂组件包括至少一个轴臂,所述轴臂能够相对所述基部绕至少一个轴向转动,以调整所述负载的姿态;
    所述方法包括:
    获取所述云台的基部的运动状态;
    在所述云台搭载负载,且所述基部的运动状态满足第一预设条件的情况下,进入第一拍摄模 式;所述第一预设条件包括所述基部的位姿大致保持不变;
    其中,在所述云台处于所述第一拍摄模式的情况下,所述轴臂组件的目标轴臂未对所述负载进行增稳,且所述目标轴臂能够在受到外力作用时以第一自由度由第一关节角转动至第二关节角,并能够保持于所述第二关节角。
  47. 根据权利要求46所述的方法,其特征在于,所述方法还包括:
    在所述云台处于所述第一拍摄模式的情况下,若所述云台满足第二预设条件,执行模式切换操作。
  48. 根据权利要求47所述的方法,其特征在于,所述第二预设条件包括所述云台的基部的运动状态不满足所述第一预设条件,或者,接收到所述负载发送的第一信息,所述第一信息用于指示所述云台退出所述第一拍摄模式;
    所述执行模式切换操作,包括:
    进入第二拍摄模式;其中,
    在所述云台处于所述第二拍摄模式的情况下,所述目标轴臂对所述负载进行增稳。
  49. 根据权利要求48所述的方法,其特征在于,在所述云台处于所述第二拍摄模式的情况下,所述目标轴臂能够在受到外力作用时以所述第一自由度由第三关节角转动至第四关节角,并能够保持于所述第四关节角;
    其中,所述第一关节角与所述第二关节角之间的最大转动角度大于所述第三关节角与所述第四关节角之间的最大转动角度。
  50. 根据权利要求48所述的方法,其特征在于,所述进入第二拍摄模式,包括:
    调整至少一个所述轴臂的关节角,以使所述轴臂组件处于预设的第一姿态。
  51. 根据权利要求47所述的方法,其特征在于,所述第二预设条件包括所述云台未搭载负载;所述执行模式切换操作,包括:
    进入空载模式;其中,
    在所述云台处于所述空载模式的情况下,所述目标轴臂能够在受到外力作用时以所述第一自由度由第五关节角转动至第六关节角,并能够保持于所述第六关节角。
  52. 根据权利要求51所述的方法,其特征在于,所述进入空载模式,包括:
    控制所述轴臂组件保持于第二姿态,所述第二姿态为所述云台由所述第一拍摄模式切换至所述空载模式之前,所述轴臂组件的姿态。
  53. 根据权利要求46所述的方法,其特征在于,所述方法还包括:
    当控制所述云台由第一拍摄模式切换至第二拍摄模式时,调整至少一个所述轴臂的关节角,以使所述轴臂组件处于第三姿态,所述第三姿态通过所述轴臂组件在所述云台处于所述第二拍摄模式时的目标姿态信息确定。
  54. 根据权利要求46-53中任一项所述的方法,其特征在于,所述第一自由度包括以下任一项:
    绕横滚轴转动的自由度;
    绕俯仰轴转动的自由度;
    绕偏航轴转动的自由度。
  55. 根据权利要求48-52中任一项所述的方法,其特征在于,所述第二预设条件包括所述基部处于悬空状态,和/或,所述轴臂组件与负载连接,且所述负载对应的转动惯量小于预设阈值;所述执行模式切换操作,包括:
    进入保护模式;其中,
    在所述云台处于所述保护模式的情况下,所述目标轴臂的电机停止输出转矩。
  56. 根据权利要求46所述的方法,其特征在于,所述轴臂组件设置有惯性测量单元IMU,所述获取所述云台的基部的运动状态,包括:
    获取所述IMU的感应信号,所述感应信号用于指示所述轴臂组件的运动状态;
    基于所述感应信号,确定所述基部的运动状态。
  57. 根据权利要求46-53中任一项所述的方法,其特征在于,所述获取所述云台的基部的运动状态,包括:
    在接收到所述负载发送的第二信息的情况下,获取所述云台的基部的运动状态;其中,
    所述负载在接收到用于进入所述第一拍摄模式的输入的情况下,向所述云台发送所述第二信息。
  58. 根据权利要求46-53中任一项所述的方法,其特征在于,所述进入第一拍摄模式之后,所述方法还包括:
    接收第一输入;
    响应于所述第一输入,控制所述负载执行预设拍摄操作;
    所述预设拍摄操作包括以下至少一项:
    调整焦距;调整焦点;拍摄。
  59. 根据权利要求46-53中任一项所述的方法,其特征在于,所述进入第一拍摄模式之后,所述方法还包括:
    接收第二输入;
    响应于所述第二输入,调整至少一个所述轴臂的关节角,以使所述轴臂组件处于预设的第四姿态。
  60. 一种云台,其特征在于,包括基部和轴臂组件,所述轴臂组件与所述基部连接,用于安装负载;所述轴臂组件包括至少一个轴臂,所述轴臂能够相对所述基部绕至少一个轴向转动,以调整所述负载的姿态;
    所述云台还包括存储器和处理器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如权利要求46-59中任一项所述的方法步骤。
  61. 一种云台的控制装置,其特征在于,所述云台包括第一组件和第二组件,所述第一组件与所述第二组件机械耦合;所述控制装置包括存储器和处理器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,如权利要求36-45中任一项所述的方法步骤。
  62. 一种云台的控制装置,其特征在于,所述云台包括第一组件和第二组件,所述第一组件与所述第二组件机械耦合;所述控制装置包括存储器和处理器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,如权利要求46-59中任一项所述的方法步骤。
PCT/CN2022/120372 2022-09-21 2022-09-21 云台、云台的控制方法、装置及存储介质 WO2024060104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120372 WO2024060104A1 (zh) 2022-09-21 2022-09-21 云台、云台的控制方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120372 WO2024060104A1 (zh) 2022-09-21 2022-09-21 云台、云台的控制方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024060104A1 true WO2024060104A1 (zh) 2024-03-28

Family

ID=90453595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120372 WO2024060104A1 (zh) 2022-09-21 2022-09-21 云台、云台的控制方法、装置及存储介质

Country Status (1)

Country Link
WO (1) WO2024060104A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205655080U (zh) * 2016-05-04 2016-10-19 广东欧珀移动通信有限公司 自拍杆以及具有其的自拍系统
CN106708091A (zh) * 2016-12-26 2017-05-24 昊翔电能运动科技(昆山)有限公司 一种避障装置
WO2019148394A1 (zh) * 2018-01-31 2019-08-08 深圳市大疆创新科技有限公司 云台的控制方法及装置、云台、拍摄设备、可读存储介质
CN110621927A (zh) * 2018-03-27 2019-12-27 深圳市大疆创新科技有限公司 增稳程度调节方法、设备及存储介质
CN211667425U (zh) * 2019-12-02 2020-10-13 深圳市浩瀚卓越科技有限公司 云台
CN113124304A (zh) * 2021-03-31 2021-07-16 桂林智神信息技术股份有限公司 一种带竖向减震机构的稳定器手持部及手持稳定器
CN114502870A (zh) * 2020-10-15 2022-05-13 深圳市大疆创新科技有限公司 云台及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205655080U (zh) * 2016-05-04 2016-10-19 广东欧珀移动通信有限公司 自拍杆以及具有其的自拍系统
CN106708091A (zh) * 2016-12-26 2017-05-24 昊翔电能运动科技(昆山)有限公司 一种避障装置
WO2019148394A1 (zh) * 2018-01-31 2019-08-08 深圳市大疆创新科技有限公司 云台的控制方法及装置、云台、拍摄设备、可读存储介质
CN110621927A (zh) * 2018-03-27 2019-12-27 深圳市大疆创新科技有限公司 增稳程度调节方法、设备及存储介质
CN211667425U (zh) * 2019-12-02 2020-10-13 深圳市浩瀚卓越科技有限公司 云台
CN114502870A (zh) * 2020-10-15 2022-05-13 深圳市大疆创新科技有限公司 云台及其控制方法
CN113124304A (zh) * 2021-03-31 2021-07-16 桂林智神信息技术股份有限公司 一种带竖向减震机构的稳定器手持部及手持稳定器

Similar Documents

Publication Publication Date Title
US11732835B2 (en) Gimbal and gimbal control method
US9903533B2 (en) Triaxial stabilizer for mobile phone
JP7354202B2 (ja) ハンドヘルドジンバル
US20210164613A1 (en) Control method for handheld gimbal, handheld gimbal, and image acquisition device
US20090257741A1 (en) Stabilizer Device for Optical Equipment
WO2022141459A1 (zh) 云台及其调平方法和控制方法、调平电机和云台组件
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
KR101951666B1 (ko) 촬영용 드론 및 그 제어 방법
WO2024060104A1 (zh) 云台、云台的控制方法、装置及存储介质
US9933764B2 (en) Rotating shaft device with variable torsion, electronic device and control method thereof
WO2021026762A1 (zh) 手持云台
JP3530677B2 (ja) 画像入力装置
TWI502316B (zh) 電子裝置
WO2022041260A1 (zh) 用于云台的控制装置和手持云台
WO2022027579A1 (zh) 云台的检测方法、增稳云台、可移动平台和存储介质
WO2018148908A1 (zh) 云台系统和拍摄设备
WO2021196212A1 (zh) 可移动平台及其控制方法、惯性传感器电路
WO2019196337A1 (zh) 云台控制装置及云台系统
US20140085491A1 (en) Imaging device and cradle
US20220266450A1 (en) Control method, gimbal, mobile platform system, and computer-readable storage medium
WO2022261959A1 (zh) 调平方法和云台
CN212572784U (zh) 一种摄像头光学防抖测试系统
WO2022000291A1 (zh) 云台控制方法、云台组件、装置、可移动平台和存储介质
US20240114232A1 (en) Photographing device and system, carrier apparatus, control system, and expansion component
WO2023035195A1 (zh) 手持云台、手持云台的控制方法、控制装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959114

Country of ref document: EP

Kind code of ref document: A1