WO2021196212A1 - 可移动平台及其控制方法、惯性传感器电路 - Google Patents
可移动平台及其控制方法、惯性传感器电路 Download PDFInfo
- Publication number
- WO2021196212A1 WO2021196212A1 PCT/CN2020/083316 CN2020083316W WO2021196212A1 WO 2021196212 A1 WO2021196212 A1 WO 2021196212A1 CN 2020083316 W CN2020083316 W CN 2020083316W WO 2021196212 A1 WO2021196212 A1 WO 2021196212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power supply
- supply circuit
- processor
- inertial sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
Definitions
- This specification relates to the field of sensor technology, in particular to a movable platform and its control method, and an inertial sensor circuit.
- more and more mobile platforms are equipped with inertial sensors such as gyroscopes, and perform preset tasks based on the data detected by the inertial sensors, such as moving and maintaining stability.
- inertial sensors such as gyroscopes
- the inertial sensor may be abnormal, causing the movable platform to be unable to reliably perform preset tasks.
- this specification provides a movable platform, its control method, and an inertial sensor circuit, which can reset the inertial sensor to return to normal when it is abnormal.
- this specification provides a movable platform equipped with a processor, an inertial sensor, and a power supply circuit for supplying power to the inertial sensor;
- the processor outputs a power-off control signal to the power supply circuit according to the state of the inertial sensor, so that the power supply circuit stops supplying power to the inertial sensor;
- the processor outputs a power-on control signal to the power supply circuit, so that the power supply circuit supplies power to the inertial sensor.
- this specification provides a control method for a movable platform equipped with a processor, an inertial sensor, and a power supply circuit for supplying power to the inertial sensor;
- the method includes:
- the processor outputs a power-off control signal to the power supply circuit according to the state of the inertial sensor, so that the power supply circuit stops supplying power to the inertial sensor;
- the processor outputs a power-on control signal to the power supply circuit, so that the power supply circuit supplies power to the inertial sensor.
- this specification provides an inertial sensor circuit, the circuit including a processor, an inertial sensor, and a power supply circuit for supplying power to the inertial sensor;
- the processor outputs a power-off control signal to the power supply circuit according to the state of the inertial sensor, so that the power supply circuit stops supplying power to the inertial sensor;
- the processor outputs a power-on control signal to the power supply circuit, so that the power supply circuit supplies power to the inertial sensor.
- the embodiments of this specification provide a movable platform and its control method, and an inertial sensor circuit.
- the processor controls the power supply circuit to stop supplying power to the inertial sensor according to the state of the inertial sensor, and restores the power supply to the inertial sensor after the inertial sensor is powered off.
- the power supply can reset the inertial sensor to return to normal when the inertial sensor is abnormal. For example, it can prevent the movable platform from being unable to perform the preset task normally when the inertial sensor is abnormal.
- Fig. 1 is a schematic block diagram of a movable platform provided by an embodiment of the present specification
- Figure 2 is a schematic diagram of a scenario where a mobile platform carries load equipment
- FIG. 3 is a schematic circuit diagram of an embodiment of the power supply circuit in FIG. 1;
- FIG. 4 is a schematic block diagram of an implementation manner of the movable platform in FIG. 1;
- FIG. 5 is a schematic flowchart of a control method provided by an embodiment of this specification.
- Fig. 6 is a schematic block diagram of an inertial sensor circuit according to an embodiment of the present specification.
- Inertial sensor circuit 210, processor; 220, inertial sensor; 230, power supply circuit.
- FIG. 1 is a schematic structural diagram of a movable platform 100 according to an embodiment of this specification.
- the movable platform 100 includes at least one of the following: a cloud platform, an unmanned aerial vehicle, an unmanned vehicle, or an unmanned boat.
- the movable platform 100 can carry a load device, and the load device includes, for example, an imaging device and/or a non-imaging device.
- the imaging device includes at least one of a video camera, a camera, a thermal imager, and a mobile phone with a camera
- the non-imaging device includes but is not limited to at least one of a microphone, a speaker, a manipulator, and a transmitting component (projecting projectiles or light, etc.).
- a pan/tilt, unmanned aerial vehicle, unmanned vehicle or unmanned boat can provide support for load equipment, for example, it can drive imaging equipment and/or non-imaging equipment to move, and can also enhance imaging equipment and/or non-imaging equipment. The stability of imaging equipment.
- the pan/tilt may be adapted to be installed or connected to a movable object, such as motorized and non-motorized vehicles or boats, robots, human or animal bodies and the like.
- a movable object such as motorized and non-motorized vehicles or boats, robots, human or animal bodies and the like.
- the pan-tilt can be installed on an unmanned aerial vehicle, unmanned vehicle or unmanned boat through an installation base.
- the movable platform 100 is equipped with an inertial sensor 120.
- the inertial sensor 120 is used to detect or obtain state information associated with the load device.
- the state information may include speed, direction, posture, gravity, acceleration, position, and/or other physical states of the load device.
- the status information may include the angular velocity, and/or linear velocity, and/or acceleration, direction, or inclination of the load device.
- the inertial sensor 120 includes at least one of a gyroscope, an acceleration sensor, and an inertial measurement unit (IMU).
- a gyroscope for detecting obstacles in the environment
- an acceleration sensor for detecting obstacles in the environment
- an inertial measurement unit IMU
- the load device 10 such as the camera 11 and the transmitting component 12 are mounted on the pan/tilt 20, and the pan/tilt 20 is mounted on the unmanned vehicle 30.
- the pan/tilt 20 includes a bearing part 21 that can fix the load device 10 to prevent the load device 10 from loosening.
- the inertial sensor 120 may, for example, be arranged on the carrying part 21 to obtain the posture information of the carrying part 21 and then the posture information of the load device 10.
- the pan/tilt head 20 is, for example, a three-axis pan/tilt or a two-axis pan/tilt.
- the movable platform 100 is equipped with one or more processors 110.
- the processor 110 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor 110 (Digital Signal Processor, DSP), or the like.
- MCU micro-controller unit
- CPU central processing unit
- DSP Digital Signal Processor
- the processor 110 may obtain sensor data from the inertial sensor 120.
- the inertial sensor 120 is connected to the processor 110 through a serial peripheral interface (Serial Peripheral Interface, SPI), etc., and the processor 110 obtains sensor data from the serial peripheral interface or the like.
- SPI Serial Peripheral Interface
- the sensor data includes, for example, status information associated with the load device 10.
- the sensor data may include speed, direction, posture, gravity, acceleration, position, and/or other physical states of the load device 10.
- the sensor data may include the angular velocity, and/or linear velocity, and/or acceleration, direction, or inclination angle of the load device 10.
- the inertial sensor 120 is used to obtain state information about at least one of the pitch axis, roll axis, and yaw axis of the load device 10, and the roll axis intersects the load device 10.
- the pan/tilt 20 has a preset initial state, and the attitude of the load device 10 detected by the inertial sensor 120 may be used as the current attitude of the pan/tilt 20.
- one or more processors 110 may work individually or together to calculate the posture information according to the state information, and perform preset tasks according to the posture information, such as controlling the motor action of the movable platform 100 to make the load device 10 Rotate around at least one of the pitch axis, roll axis, or yaw axis.
- the pan/tilt 20 may calculate the driving amount of the driver (which may be a motor) at at least one rotation axis of the pan/tilt 20 according to the difference between the current attitude of the pan/tilt 20 and the initial attitude of the pan/tilt 20, and the driving amount refers to the driver.
- the angle at which the drive shaft rotates Taking a three-axis gimbal as an example, the rotation axis motors at the roll axis, yaw axis and pitch axis of the gimbal 20 drive each rotation axis to rotate a certain angle according to the calculated driving amount, and the gimbal 20 will change from the current
- the posture is rotated to an intermediate posture between the current posture and the initial posture.
- the intermediate posture here can be any posture in the current posture and the initial posture change range.
- the pan/tilt head 20 can smoothly follow the initial posture, avoiding problems such as camera shake, unclear imaging, and damage to the driver caused by the rigid follow-up movement of the Selfie lever.
- the mobile platform 100 is equipped with a power circuit 130, and the power circuit 130 can supply power to the inertial sensor 120.
- the processor 110 may output a power-off control signal to the power circuit 130 according to the state of the inertial sensor 120, so that the power circuit 130 stops supplying power to the inertial sensor 120.
- the processor 110 may determine whether the inertial sensor 120 is normal.
- the inertial sensor 120 when the angle of rotation of one or more rotating shafts of the pan/tilt head 20 is abnormal, such as when the pan/tilt head 20 rotates randomly, it can be determined that the inertial sensor 120 is abnormal. For example, if the driving amount of the driver at a certain rotating shaft changes abnormally, such as suddenly becoming very large and/or suddenly becoming very small, it can be determined that the inertial sensor 120 is abnormal.
- the inertial sensor 120 may not work normally due to program errors, electromagnetic interference and other reasons.
- the inertial sensor 120 may be disturbed and enter the sleep state, causing the processor 110 to obtain incorrect sensor data or fail to receive sensor data, for example, causing the motor of the movable platform 100 to not behave as expected. Action, making the movement of the load equipment abnormal.
- determining whether the inertial sensor 120 is normal by the processor 110 includes: the processor 110 determines whether the sensor data is normal; if it is determined that the sensor data is abnormal, the processor 110 determines that the inertial sensor 120 is abnormal.
- the processor 110 determines that the sensor data is abnormal. For example, a range of normal sensor data is pre-stored. If the sensor data obtained by the processor 110 from the inertial sensor 120 is not within the range at a certain moment, it is determined that the sensor data is abnormal.
- the processor 110 determines that the sensor data is abnormal. For example, the processor 110 calculates the difference of sensor data at different moments, and if the difference exceeds a preset difference threshold, it is determined that the sensor data is abnormal.
- the processor 110 determining whether the inertial sensor 120 is normal includes: if the sensor data of the inertial sensor 120 is not obtained for a preset period of time, the processor 110 determines that the inertial sensor 120 is abnormal. At this time, it can be determined that the communication between the processor 110 and the inertial sensor 120 is abnormal, for example, the inertial sensor 120 does not send sensor data to the processor 110 on time.
- the processor 110 determining whether the inertial sensor 120 is normal includes: if the error information of the inertial sensor 120 is obtained, the processor 110 determines that the inertial sensor 120 is abnormal.
- the inertial sensor 120 may detect its own state, and when abnormality is detected, send error information to the processor 110; the processor 110 may determine that the inertial sensor 120 is abnormal according to the error information of the inertial sensor 120.
- the processor 110 sends the power source
- the circuit 130 outputs a power-off control signal to stop the power supply circuit 130 from supplying power to the inertial sensor 120; and when the power supply circuit 130 stops supplying power, the processor 110 outputs a power-on control signal to the power supply circuit 130, so that the power supply circuit 130 supplies power to the inertial sensor. 120 power supply.
- the inertial sensor 120 By powering off the inertial sensor 120, turning off the inertial sensor 120, and then restoring the power supply to the inertial sensor 120 to reset the inertial sensor 120, the inertial sensor 120 can be restored to normal, such as jumping out of a sleep state.
- the power supply circuit 130 can be turned on or off in a controlled manner, and supplies power to the connected load, such as the inertial sensor 120, when it is turned on.
- the power supply circuit 130 may include a controlled switching element, such as at least one of a triode, MOSFET, IGBT, and a relay.
- the processor 110 controls the turning on or off of the power supply circuit 130 by controlling the on or off of the controlled switching element. .
- a control pin of the processor 110 is connected to the power circuit 130 for controlling the power circuit 130 to turn on or off.
- the IO pin of the processor 110 is connected to the controlled switching element of the power circuit 130.
- the power-off control signal and the power-on control signal may be level signals.
- the power-off control signal when the power-off control signal is at a high level, the power-on control signal is at a low level; or when the power-off control signal is at a low level, the power-on control signal is at a high level.
- the power-off control signal and the power-on control signal can also be preset signal commands, such as 8-bit, 16-bit, or 32-bit digital signals.
- the power supply circuit 130 also supplies power to the processor 110.
- the voltage output side of the power supply circuit 130 is connected to the power supply pin of the processor 110.
- the power supply circuit 130 may include one or more voltage output terminals, and the inertial sensor 120 and the processor 110 may be connected to the same voltage output terminal or to different voltage output terminals.
- the power supply circuit 130 when the processor 110 outputs a power-off control signal to the power supply circuit 130, the power supply circuit 130 is caused to stop supplying power to the processor 110.
- the power circuit 130 when the processor 110 outputs a power-on control signal to the power circuit 130, the power circuit 130 is caused to supply power to the processor 110.
- the power supply circuit 130 when the inertial sensor 120 is powered off, the power supply circuit 130 also cuts off the power supply to the processor 110; when the power supply circuit 130 restores the power supply to the inertial sensor 120, the power supply to the processor 110 is also restored, so that the processor 110 is also Power-on reset.
- the processor 110 performs a self-check on the movable platform 100 after power-on and reset, for example, restores the load device carried by the movable platform 100 to an initialized posture, so as to subsequently perform a preset task according to the sensor data of the inertial sensor 120 .
- the processor 110 can control the drivers of each rotating shaft, so that the pan/tilt head 20 returns to the preset initial state.
- the pan/tilt head 20 is provided with an angle sensor at at least one rotation axis, which is used to obtain the initial time of the rotation axis and the joint angle at the current time as the initial posture and current posture of the pan/tilt head 20.
- the processor 110 can control the driver of each rotating shaft so that the joint angle of each rotating shaft returns to a preset angle, so that the pan/tilt head 20 can return to a preset initial state.
- the processor 110 may determine the current posture of the pan/tilt head 20 according to the sensor data of the inertial sensor 120.
- the processor 110 can control the power supply circuit 130 to disconnect the power supply to the inertial sensor 120 and the processor 110 itself. Therefore, the processor 110 can restart suicide, which can solve the inertial sensor 120 abnormality.
- the problem caused by the abnormal movement of the movable platform 100 for example, solves the problem that the movable platform 100 does not reset.
- the processor 110 can control its own power-off reset by itself, and does not require additional main control chip control, which is more advantageous in terms of cost.
- the processor 110 outputs a power-on control signal to the power circuit 130 when the power is off.
- the processor 110 controls the power supply circuit 130 to cut off the power supply to the processor 110 itself, and the processor 110 outputs a power-on control signal to the power supply circuit 130 after the processor 110 is powered off.
- the processor 110 outputs a low level to the power supply circuit 130 when the power is off, so that the power supply circuit 130 supplies power to the inertial sensor 120 and the processor 110 according to the low level.
- the IO pin of the processor 110 is connected to the power circuit 130 for controlling the power circuit 130 to turn on or off.
- the IO pin outputs a low level, so that the power supply circuit 130 is turned on again, and the power supply to the processor 110 and the inertial sensor 120 is restored.
- the IO pin connected to the power circuit 130 outputs a low level to maintain the power supply of the power circuit 130.
- the processor 110 outputting a power-off control signal to the power supply circuit 130 includes: the processor 110 outputs a high level to the power supply circuit 130.
- the processor 110 when the processor 110 is powered by the power circuit 130 and determines that the inertial sensor 120 is abnormal, the IO pin connected to the power circuit 130 outputs a high level, so that the power circuit 130 is powered off.
- the power supply circuit 130 includes a level conversion circuit 131 and a power supply circuit 132.
- the level conversion circuit 131 includes an input terminal and an output terminal.
- the input terminal is connected to the processor 110.
- the output terminal outputs a high level.
- the power supply circuit 132 includes an enable terminal and an electric energy output terminal.
- the enable terminal is connected to the output terminal of the level conversion circuit 131. When the level of the enable terminal is high, the electric energy output terminal supplies power.
- the power supply circuit 132 includes a power supply chip U7 and its peripheral circuits.
- the power supply chip U7 is, for example, an MP2233 chip. Feedback etc.
- the input terminal of the level conversion circuit 131 is connected to the pin PW_CTRL of the processor 110, and the output terminal of the level conversion circuit 131 is connected to the enable terminal of the power supply circuit 132, such as the enable terminal of the power supply chip U7. Energy end EN/SYNC.
- the pin PW_CTRL of the processor 110 outputs a low level
- the output terminal of the level conversion circuit 131 outputs a high level to enable the power supply circuit 132
- the power supply circuit 132 has a voltage output.
- the pin PW_CTRL of the processor 110 when the pin PW_CTRL of the processor 110 outputs a high level, the output terminal of the level conversion circuit 131 outputs a low level, and the power supply circuit 132 is not enabled and has no voltage output.
- the power supply circuit 130 includes a power input terminal VBAT, which can obtain power from the battery of the movable platform 100; and the level conversion circuit 131 is connected to the power input terminal.
- the level conversion circuit 131 obtains a 12V voltage from the battery of the mobile platform 100 through the power input terminal VBAT, and the level conversion circuit 131 converts the 12V voltage into a 3.6V or 3.3V voltage and supplies the processor 110 and Inertial sensor 120.
- the output terminal VCC_3V6 of the power supply circuit 130 outputs a voltage of 3.6V to the processor 110 and the inertial sensor 120.
- the level conversion circuit 131 includes a controlled switching element Q7.
- the controlled switching element includes at least one of a triode, a MOSFET, an IGBT, and a relay.
- the controlled switching element Q7 includes a controlled terminal and two connection terminals controlled to be turned on or off by the controlled terminal. Specifically, when the controlled switching element Q7 includes a triode, the controlled end is the base of the triode, and the two connecting ends are the collector and the emitter of the triode, respectively.
- the controlled end of the controlled switching element Q7 is connected to the processor 110, one of the two connection ends is connected to a low level, the other is connected to the enable end of the power supply circuit 132 and the power input end is connected through a pull-up resistor R813. VBAT.
- the controlled end of the controlled switching element is connected to the processor 110 through a resistor R197, the controlled end of the controlled switching element is also grounded through a resistor R198, and the enable end of the power supply circuit 132 passes through A capacitor C137 is grounded to improve the accuracy of the control of the controlled switching element Q7 by the processor 110.
- the pin PW_CTRL of the processor 110 when the pin PW_CTRL of the processor 110 outputs a low level, the two connection terminals of the controlled switching element Q7 are turned off, and the voltage of the power input terminal VBAT sets the enable terminal of the power supply circuit 132 to High level to enable the power supply circuit 132, and the power supply circuit 132 has a voltage output.
- the pin PW_CTRL of the processor 110 when the pin PW_CTRL of the processor 110 outputs a high level, the two connecting ends of the controlled switching element Q7 are turned on, and the enable end of the power supply circuit 132 is grounded through the turned on controlled switching element Q7 and set to At low level, the power supply circuit 132 is not enabled and there is no voltage output.
- the level conversion circuit 131 can convert the low level of the processor 110 when the power is off to a high level, and the high level can enable the power supply circuit 132 to restore the power supply to the processor 110. Therefore, there is no need for an additional main control chip to control the power supply circuit 132 to restore power to the processor 110 when the processor 110 is powered off.
- the power supply circuit 132 includes several voltage conversion circuits 1321 and/or several voltage stabilizing circuits 1322.
- the voltage conversion circuit 1321 includes, for example, a direct current chopper (DC/DC), and the voltage stabilizing circuit 1322 includes, for example, a low dropout regulator (LDO).
- DC/DC direct current chopper
- LDO low dropout regulator
- the voltage conversion circuit 1321 may convert the 12V voltage of the battery into 3.6V, and the voltage stabilization circuit 1322 may stabilize the 3.6V voltage to 3.3V to supply the processor 110 and the inertial sensor 120.
- the specific structure of the power supply circuit 132 may be adaptively adjusted according to the voltage supplied by the battery, the working voltage of the processor 110 and the inertial sensor 120.
- the power supply circuit 132 may include one or more voltage conversion circuits 1321, may include one or more voltage stabilizing circuits 1322, or include several cascaded voltage conversion circuits 1321 and voltage stabilizing circuits 1322.
- At least one of the plurality of voltage conversion circuits 1321 and/or the plurality of voltage stabilizing circuits 1322 includes an enable terminal.
- the voltage conversion circuit 1321 includes an enable terminal, and the enable terminal is connected to the processor 110 through a level conversion circuit 131.
- the processor 110 and the inertial sensor 120 are powered off; when the voltage conversion circuit 1321 is supplying power, the processor 110 and the inertial sensor 120 are powered on.
- the mobile platform controls the power supply circuit to stop the power supply to the inertial sensor through the processor according to the state of the inertial sensor, and restores the power supply to the inertial sensor after the inertial sensor is powered off, so that the inertial sensor can recover when the inertial sensor is abnormal.
- Normal to prevent the movable platform from being unable to perform the preset tasks normally when the inertial sensor is abnormal. For example, it can solve the problem of abnormal movement of the movable platform caused by the abnormal inertial sensor, such as solving the problem that the inertial sensor does not reset.
- FIG. 5 is a schematic flowchart of a control method provided by an embodiment of this specification.
- the control method can be applied to a movable platform to reset the inertial sensor when the inertial sensor is abnormal.
- the movable platform includes at least one of the following: a cloud platform, an unmanned aerial vehicle, an unmanned vehicle, or an unmanned boat.
- the movable platform is equipped with a processor, an inertial sensor, and a power supply circuit for supplying power to the inertial sensor.
- the inertial sensor includes at least one of a gyroscope, an acceleration sensor, and an inertial measurement unit.
- control method of the embodiment of this specification includes step S110 to step S120.
- the processor does output a power-off control signal to the power circuit according to the state of the inertial sensor, so that the power circuit stops supplying power to the inertial sensor.
- the processor outputs a power-on control signal to the power supply circuit, so that the power supply circuit supplies power to the inertial sensor.
- the method further includes: the processor acquiring sensor data from the inertial sensor.
- the processor outputting a power-off control signal to the power supply circuit according to the state of the inertial sensor includes:
- the processor determines whether the sensor data is normal
- the processor If it is determined that the sensor data is abnormal, the processor outputs a power-off control signal to the power supply circuit.
- determining whether the sensor data is normal by the processor includes: if the sensor data is not a normal value, determining that the sensor data is abnormal; and/or
- the processor outputting a power-off control signal to the power supply circuit according to the state of the inertial sensor includes:
- the processor If the sensor data of the inertial sensor is not obtained for a preset period of time, the processor outputs a power-off control signal to the power supply circuit.
- the processor outputting a power-off control signal to the power supply circuit according to the state of the inertial sensor includes:
- the processor If the error information of the inertial sensor is acquired, the processor outputs a power-off control signal to the power supply circuit.
- the power supply circuit also supplies power to the processor.
- the power supply circuit when the processor outputs a power-off control signal to the power supply circuit, the power supply circuit is caused to stop supplying power to the processor.
- the power supply circuit when the processor outputs a power-on control signal to the power supply circuit, the power supply circuit is caused to supply power to the processor.
- the processor outputs a power-on control signal to the power supply circuit when power is off.
- the processor outputs a low level to the power supply circuit when the power is off, so that the power supply circuit supplies power to the inertial sensor and the processor according to the low level.
- the processor outputting a power-off control signal to the power supply circuit includes: the processor outputting a high level to the power supply circuit.
- the power supply circuit 130 includes a level conversion circuit 131 and a power supply circuit 132.
- the level conversion circuit 131 includes an input terminal and an output terminal.
- the input terminal is connected to the processor 110.
- the output terminal outputs a high level.
- the power supply circuit 132 includes an enable terminal and an electric energy output terminal.
- the enable terminal is connected to the output terminal of the level conversion circuit 131. When the level of the enable terminal is high, the electric energy output terminal supplies power.
- the power supply circuit 130 includes a power input terminal VBAT, which can obtain power from the battery of the movable platform 100; and the level conversion circuit 131 is connected to the power input terminal.
- the level conversion circuit 131 includes a controlled switching element Q7.
- the controlled switching element includes at least one of a triode, a MOSFET, an IGBT, and a relay.
- the controlled switching element Q7 includes a controlled terminal and two connection terminals controlled to be turned on or off by the controlled terminal. Specifically, when the controlled switching element Q7 includes a triode, the controlled end is the base of the triode, and the two connecting ends are the collector and the emitter of the triode, respectively.
- the controlled end of the controlled switching element Q7 is connected to the processor 110, one of the two connection ends is connected to a low level, the other is connected to the enable end of the power supply circuit 132 and the power input end is connected through a pull-up resistor R813. VBAT.
- the controlled end of the controlled switching element is connected to the processor 110 through a resistor R197, the controlled end of the controlled switching element is also grounded through a resistor R198, and the enable end of the power supply circuit 132 passes through A capacitor C137 is grounded to improve the accuracy of the control of the controlled switching element Q7 by the processor 110.
- the pin PW_CTRL of the processor 110 when the pin PW_CTRL of the processor 110 outputs a low level, the two connection terminals of the controlled switching element Q7 are turned off, and the voltage of the power input terminal VBAT sets the enable terminal of the power supply circuit 132 to High level to enable the power supply circuit 132, and the power supply circuit 132 has a voltage output.
- the pin PW_CTRL of the processor 110 when the pin PW_CTRL of the processor 110 outputs a high level, the two connecting ends of the controlled switching element Q7 are turned on, and the enable end of the power supply circuit 132 is grounded through the turned on controlled switching element Q7 and set to At low level, the power supply circuit 132 is not enabled and there is no voltage output.
- the level conversion circuit 131 can convert the low level of the processor 110 when the power is off to a high level, and the high level can enable the power supply circuit 132 to restore the power supply to the processor 110. Therefore, there is no need for an additional main control chip to control the power supply circuit 132 to restore power to the processor 110 when the processor 110 is powered off.
- the power supply circuit 132 includes several voltage conversion circuits 1321 and/or several voltage stabilizing circuits 1322.
- the voltage conversion circuit 1321 includes, for example, a direct current chopper (DC/DC), and the voltage stabilizing circuit 1322 includes, for example, a low dropout regulator (LDO).
- DC/DC direct current chopper
- LDO low dropout regulator
- the voltage conversion circuit 1321 may convert the 12V voltage of the battery into 3.6V, and the voltage stabilization circuit 1322 may stabilize the 3.6V voltage to 3.3V to supply the processor 110 and the inertial sensor 120.
- the specific structure of the power supply circuit 132 may be adaptively adjusted according to the voltage supplied by the battery, the working voltage of the processor 110 and the inertial sensor 120.
- the power supply circuit 132 may include one or more voltage conversion circuits 1321, may include one or more voltage stabilizing circuits 1322, or include several cascaded voltage conversion circuits 1321 and voltage stabilizing circuits 1322.
- At least one of the plurality of voltage conversion circuits 1321 and/or the plurality of voltage stabilizing circuits 1322 includes an enable terminal.
- the voltage conversion circuit 1321 includes an enable terminal, and the enable terminal is connected to the processor 110 through a level conversion circuit 131.
- the processor 110 and the inertial sensor 120 are powered off; when the voltage conversion circuit 1321 is supplying power, the processor 110 and the inertial sensor 120 are powered on.
- the processor controls the power supply circuit to stop the power supply to the inertial sensor according to the state of the inertial sensor, and restores the power supply to the inertial sensor after the inertial sensor is powered off, so that the inertial sensor can be restored to normal when the inertial sensor is abnormal.
- the processor can solve the problem of abnormal movement of the movable platform caused by the abnormal inertial sensor, such as solving the problem of not resetting when the inertial sensor is abnormal.
- FIG. 6 is a schematic block diagram of an inertial sensor circuit according to an embodiment of this specification.
- the inertial sensor circuit can be applied to electronic devices including inertial sensors, including but not limited to the aforementioned movable platform.
- the inertial sensor 220 circuit 200 includes a processor 210, an inertial sensor 220, and a power supply circuit 230 for supplying power to the inertial sensor 220.
- the processor 210 outputs a power-off control signal to the power circuit 230 according to the state of the inertial sensor 220, so that the power circuit 230 stops supplying power to the inertial sensor 220; and the processor 210 outputs a power-on control signal to the power circuit 230 to make The power supply circuit 230 supplies power to the inertial sensor 220.
- the processor 210 obtains sensor data from the inertial sensor 220.
- the inertial sensor 220 includes at least one of a gyroscope, an acceleration sensor, and an inertial measurement unit.
- the processor 210 determines whether the sensor data is normal
- the processor 210 If it is determined that the sensor data is abnormal, the processor 210 outputs a power-off control signal to the power circuit 230.
- the processor 210 determines whether the sensor data is normal, including:
- the processor 210 if the processor 210 does not obtain the sensor data of the inertial sensor 220 for a preset period of time, the processor 210 outputs a power-off control signal to the power supply circuit 230.
- the processor 210 if the processor 210 obtains the error information of the inertial sensor 220, the processor 210 outputs a power-off control signal to the power circuit 230.
- the power supply circuit 230 also supplies power to the processor 210.
- the power circuit 230 is caused to stop supplying power to the processor 210;
- the power circuit 230 is enabled to supply power to the processor 210.
- the processor 210 outputs a power-on control signal to the power circuit 230 when the power is off.
- the processor 210 outputs a low level to the power circuit 230 when the power is off, so that the power circuit 230 supplies power to the inertial sensor 220 and the processor 210 according to the low level.
- the processor 210 outputting a power-off control signal to the power supply circuit 230 includes: the processor 210 outputs a high level to the power supply circuit 230.
- the processor controls the power supply circuit to stop the power supply to the inertial sensor according to the state of the inertial sensor, and restores the power supply to the inertial sensor after the inertial sensor is powered off, so that the inertial sensor can recover when the inertial sensor is abnormal. normal.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Power Sources (AREA)
Abstract
本说明书公开了可移动平台及其控制方法、惯性传感器电路,可移动平台搭载处理器(110)、惯性传感器(120)以及向惯性传感器供电的电源电路(130);处理器(110)确定惯性传感器(120)是否正常;若不正常,处理器(110)向电源电路(130)输出断电控制信号,以使电源电路(130)停止供电;处理器向电源电路(130)输出上电控制信号,以使电源电路(130)向惯性传感器(120)供电。
Description
本说明书涉及传感器技术领域,尤其涉及一种可移动平台及其控制方法、惯性传感器电路。
目前,越来越多的可移动平台搭载陀螺仪等惯性传感器,根据惯性传感器检测的数据执行预设任务,例如运动、保持稳定等。
但是在一些恶劣的电磁环境中,例如在进行电磁兼容性(EMC)认证测试时,惯性传感器可能会发生异常,导致可移动平台不能可靠的执行预设任务。
发明内容
基于此,本说明书提供了一种可移动平台及其控制方法、惯性传感器电路,可以使得惯性传感器在异常时复位以恢复正常。
第一方面,本说明书提供了一种可移动平台,所述可移动平台搭载处理器、惯性传感器,以及向所述惯性传感器供电的电源电路;
所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电;
所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述惯性传感器供电。
第二方面,本说明书提供了一种控制方法,用于可移动平台,所述可移动平台搭载处理器、惯性传感器,以及向所述惯性传感器供电的电源电路;
所述方法包括:
所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电;
所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述 惯性传感器供电。
第三方面,本说明书提供了一种惯性传感器电路,所述电路包括处理器、惯性传感器,以及向所述惯性传感器供电的电源电路;
所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电;
所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述惯性传感器供电。
本说明书实施例提供了一种可移动平台及其控制方法、惯性传感器电路,通过处理器根据惯性传感器的状态控制电源电路停止向惯性传感器供电,以及在惯性传感器断电后再恢复对惯性传感器的供电,可以使得惯性传感器在异常时复位以恢复正常,例如可以防止可移动平台在惯性传感器异常时无法正常执行预设任务。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书的公开内容。
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本说明书一实施例提供的一种可移动平台的示意性框图;
图2是可移动平台搭载负载设备的场景示意图;
图3是图1中电源电路的一实施方式的电路示意图;
图4是图1中可移动平台一实施方式的示意性框图;
图5是本说明书一实施例提供的一种控制方法的流程示意图;
图6是本说明书一实施例提供的一种惯性传感器电路的示意性框图。
附图标记:100、可移动平台;110、处理器;120、惯性传感器;130、电源电路;131、电平转换电路;132、供电电路;1321、电压转换电路;1322、稳压电路;
10、负载设备;11、相机;12、发射组件;20、云台;21、承载部;30、无人驾驶车辆;
200、惯性传感器电路;210、处理器;220、惯性传感器;230、电源电路。
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本说明书的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本说明书一实施例提供的一种可移动平台100的结构示意图。
示例性的,可移动平台100包括以下至少一种:云台、无人飞行器、无人驾驶车辆或无人驾驶船艇。
在一些实施方式中,可移动平台100能够搭载负载设备,负载设备例如包括成像设备和/或非成像设备。其中,成像设备包括摄像机、照相机、热成像仪、带摄像头的手机中至少一种,非成像设备包括但不限于麦克风、扬声器、机械手、发射组件(发射弹丸或光线等)中的至少一种。
示例性的,云台、无人飞行器、无人驾驶车辆或无人驾驶船艇可为负载设备提供支撑,例如可以带动成像设备和/或非成像设备运动,还可以增强成像设备和/或非成像设备的稳定性。
在一些实施例中,云台可适于安装或连接到一可移动物体,如机动和非机动车辆或船只、机器人、人体或动物体等类似物。例如,云台可通过一安装基座安装到一无人飞行器、无人驾驶车辆或无人驾驶船艇上。
示例性的,如图1所示,可移动平台100搭载惯性传感器120。惯性传感 器120用于检测或获取与负载设备相关联的状态信息。状态信息可以包括速度、方向、姿态、重力、加速度、位置和/或负载设备的其他的物理状态。例如,状态信息可包括负载设备的角速度、和/或线性的速度、和/或加速度、方向或倾角等。
示例性的,惯性传感器120包括陀螺仪、加速度传感器、惯性测量单元(Inertial measurement unit,IMU)中的至少一种。
示例性的,如图2所示,负载设备10,如相机11和发射组件12搭载于云台20上,云台20搭载于无人驾驶车辆30上。云台20包括承载部21,承载部21能够固定住负载设备10,防止负载设备10出现松动的情况。惯性传感器120例如可以设置在承载部21上,以获取承载部21的姿态信息进而获取负载设备10的姿态信息。云台20例如为三轴云台或两轴云台。
具体的,如图1所示,可移动平台100搭载一个或多个处理器110。处理器110可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器110(Digital Signal Processor,DSP)等。
示例性的,处理器110可以从惯性传感器120获取传感器数据。例如,惯性传感器120通过串行外设接口(Serial Peripheral Interface,SPI)等连接处理器110,处理器110从串行外设接口等获取传感器数据。
传感器数据例如包括与负载设备10相关联的状态信息。传感器数据可以包括速度、方向、姿态、重力、加速度、位置和/或负载设备10的其他的物理状态。例如,传感器数据可包括负载设备10的角速度、和/或线性的速度、和/或加速度、方向或倾角等。
在一些实施方式中,惯性传感器120用于获取关于负载设备10的俯仰轴、横滚轴和航向轴中至少一个轴的状态信息,横滚轴与负载设备10相交。
示例性的,云台20具有预设的初始状态,根据惯性传感器120检测的负载设备10的姿态可以作为云台20的当前姿态。
示例性的,一个或多个处理器110可以单独或共同的工作,以实现根据状态信息计算姿态信息,并根据姿态信息执行预设任务,例如控制可移动平台100的电机动作以使负载设备10绕俯仰轴、横滚轴或航向轴中的至少一个轴转动。
示例性的,云台20可以根据云台20的当前姿态和云台20的初始姿态的姿 态差,计算云台20的至少一个转轴处的驱动器(可以为电机)的驱动量,驱动量指驱动器驱动转轴转动的角度。以三轴云台为例,云台20的三个轴横滚轴、偏航轴和俯仰轴处的转轴电机分别按照计算得到的驱动量驱动各个转轴转动一定的角度后,云台20将由当前姿态转动至当前姿态和初始姿态之间的中间姿态。这里的中间姿态可以是当前姿态和初始姿态变化范围中的任一个姿态。由此,云台20可以平滑地跟随初始姿态,避免例如自拍杆式的刚性跟随运动而导致的负载设备10,如相机拍摄抖动、成像不清、损坏驱动器的问题。
具体的,如图1所示,可移动平台100搭载电源电路130,电源电路130可以向惯性传感器120供电。
具体的,处理器110可以根据惯性传感器120的状态向电源电路130输出断电控制信号,以使电源电路130停止向惯性传感器120供电。
在一些实施方式中,处理器110可以确定惯性传感器120是否正常。
示例性的,当云台20的一个或多个转轴转动的角度异常时,如云台20乱转时,可以确定惯性传感器120不正常。例如,某一转轴处的驱动器的驱动量异常变化,如突然变得很大和/或突然变得很小时,可以确定惯性传感器120不正常。
示例性的,惯性传感器120可能会因为程序出错、受到电磁干扰等原因不正常工作。例如在电磁兼容性测试时,惯性传感器120有可能被干扰进入睡眠状态,引起处理器110获取到错误的传感器数据或者不能接收到传感器数据,例如会使可移动平台100的电机不按期望的方式动作,使得使负载设备的运动失常。
示例性的,处理器110确定惯性传感器120是否正常,包括:处理器110确定传感器数据是否正常;若确定传感器数据不正常,处理器110确定惯性传感器120不正常。
例如,若传感器数据不是常态值,处理器110确定传感器数据不正常。比如,预先存储有传感器数据正常的数值范围,若某一时刻处理器110从惯性传感器120获取的传感器数据不在该数值范围内,则确定传感器数据不正常。
例如,若传感器数据的波动情况不正常,处理器110确定传感器数据不正常。比如,处理器110计算不同时刻的传感器数据的差值,如果该差值超过了预设的差值阈值,则确定传感器数据不正常。
示例性的,处理器110确定惯性传感器120是否正常,包括:若持续预设时长未获取到惯性传感器120的传感器数据,处理器110确定惯性传感器120不正常。此时可以判定处理器110与惯性传感器120之间的通信异常,例如惯性传感器120没有按时向处理器110发送传感器数据。
示例性的,处理器110确定惯性传感器120是否正常,包括:若获取惯性传感器120的报错信息,处理器110确定惯性传感器120不正常。例如,惯性传感器120可以检测自身的状态,当检测到不正常时,向处理器110发送报错信息;处理器110可以根据惯性传感器120的报错信息确定惯性传感器120不正常。
具体的,若确定惯性传感器120不正常,例如若确定传感器数据不正常、若持续预设时长未获取到惯性传感器120的传感器数据、或者若获取惯性传感器120的报错信息,则处理器110向电源电路130输出断电控制信号,以使电源电路130停止向惯性传感器120供电;以及在电源电路130停止供电时,处理器110向电源电路130输出上电控制信号,以使电源电路130向惯性传感器120供电。
通过对惯性传感器120断电,关闭惯性传感器120,之后恢复对惯性传感器120的供电以使惯性传感器120上电复位,可以使得惯性传感器120恢复正常,例如跳出睡眠状态。
示例性的,电源电路130能够受控开启或关闭,在开启时向连接的负载,如惯性传感器120供电。例如,电源电路130可以包括受控开关元件,如三极管、MOSFET、IGBT、继电器中的至少一种,处理器110通过控制受控开关元件的导通或关断实现控制电源电路130的开启或关闭。
示例性的,处理器110的一个控制引脚连接电源电路130,用于控制电源电路130的开启或关闭。例如,处理器110的IO引脚连接电源电路130的受控开关元件。
示例性的,断电控制信号、上电控制信号可以为电平信号。例如断电控制信号为高电平时,上电控制信号为低电平;或者断电控制信号为低电平时,上电控制信号为高电平。当然断电控制信号、上电控制信号也可以为预先设置的信号指令,如8位、16位或32位的数字信号等。
在一些实施方式中,如图1所示,电源电路130还向处理器110供电。例 如,电源电路130的电压输出侧连接处理器110的供电引脚。
具体的,电源电路130可以包括一个或多个电压输出端,惯性传感器120、处理器110可以连接同一个电压输出端或连接不同的电压输出端。
在一些实施方式中,处理器110向电源电路130输出断电控制信号时,使电源电路130停止向处理器110供电。示例性的,处理器110向电源电路130输出上电控制信号时,使电源电路130向处理器110供电。
具体的,在对惯性传感器120断电时,也切断电源电路130向处理器110的供电;电源电路130恢复对惯性传感器120的供电时,也恢复向处理器110的供电,从而处理器110也上电复位。
示例性的,处理器110在上电复位后,对可移动平台100进行自检,例如将可移动平台100搭载的负载设备恢复初始化的姿态,以便后续根据惯性传感器120的传感器数据执行预设任务。
示例性的,处理器110在上电复位后,可以控制各转轴的驱动器,使得云台20回到预设的初始状态。
示例性的,云台20在至少一个转轴处设有角度传感器,用于获取转轴的初始时刻和当前时刻的关节角作为云台20的初始姿态和当前姿态。具体的,处理器110在上电复位后,可以控制各转轴的驱动器,以使各转轴的关节角回到预设的角度,从而云台20能够回到预设的初始状态。
之后,处理器110可以根据惯性传感器120的传感器数据确定云台20的当前姿态。
可以理解的,处理器110可以在惯性传感器120不正常时,控制电源电路130断开对惯性传感器120和处理器110自身的供电,因此处理器110可以自杀式重启,可以解决惯性传感器120不正常引起的可移动平台100动作异常的问题,例如解决乱甩不复位的问题。处理器110能够自己控制自己的断电复位,不需要额外的主控芯片控制,成本上更有优势。
在一些实施方式中,处理器110在断电时向电源电路130输出上电控制信号。
具体的,处理器110在惯性传感器120不正常时,控制电源电路130断开对处理器110自身的供电,处理器110断电后向电源电路130输出上电控制信号。
示例性的,处理器110在断电时向电源电路130输出低电平,以使电源电路130根据该低电平向惯性传感器120和处理器110供电。
例如,处理器110的IO引脚连接电源电路130,用于控制电源电路130的开启或关闭。在处理器110断电时,该IO引脚输出低电平,使得电源电路130重新开启,恢复对处理器110和惯性传感器120的供电。
示例性的,处理器110在有电源电路130供电且未确定惯性传感器120不正常时,连接电源电路130的IO引脚输出低电平,以维持电源电路130供电。
示例性的,处理器110向电源电路130输出断电控制信号,包括:处理器110向电源电路130输出高电平。例如,处理器110在有电源电路130供电且确定惯性传感器120不正常时,连接电源电路130的IO引脚输出高电平,使得电源电路130断电。
在一些实施方式中,如图3所示,电源电路130包括电平转换电路131和供电电路132。
其中,电平转换电路131包括输入端和输出端,输入端连接处理器110,输入端的电平为低电平时,输出端输出高电平。具体的,供电电路132包括使能端和电能输出端,使能端连接电平转换电路131的输出端,使能端的电平为高电平时,电能输出端供电。
示例性的,如图3所示,供电电路132包括电源芯片U7及其外围电路,电源芯片U7例如为MP2233芯片,外围电路例如可以包括若干电容、电阻、电感,可以用于滤波、稳压、反馈等。
示例性的,如图3所示,电平转换电路131的输入端连接处理器110的引脚PW_CTRL,电平转换电路131的输出端连接供电电路132的使能端,如电源芯片U7的使能端EN/SYNC。当处理器110的引脚PW_CTRL输出低电平时,电平转换电路131的输出端输出高电平,以使能供电电路132,供电电路132有电压输出。
示例性的,当处理器110的引脚PW_CTRL输出高电平时,电平转换电路131的输出端输出低电平,供电电路132不使能而没有电压输出。
在一些实施方式中,如图3所示,电源电路130包括电能输入端VBAT,电能输入端VBAT能够从可移动平台100的电池获取电能;电平转换电路131连接电能输入端。示例性的,电平转换电路131通过电能输入端VBAT从可移动平台 100的电池获取12V的电压,电平转换电路131将该12V的电压转换为3.6V或3.3V的电压供给处理器110和惯性传感器120。例如,电源电路130的输出端VCC_3V6输出3.6V的电压供给处理器110和惯性传感器120。
在一些实施方式中,如图3所示,电平转换电路131包括受控开关元件Q7。
示例性的,受控开关元件包括三极管、MOSFET、IGBT、继电器中的至少一种。
受控开关元件Q7包括受控端,和由受控端控制导通或关断的两个连接端。具体的,当受控开关元件Q7包括三极管时,受控端为三极管的基极,两个连接端分别为三极管的集电极和发射极。
具体的,受控开关元件Q7的受控端连接处理器110,两个连接端中的一个连接低电平,另一个连接供电电路132的使能端同时通过一上拉电阻R813连接电能输入端VBAT。
示例性的,如图3所示,受控开关元件的受控端通过一电阻R197连接处理器110,受控开关元件的受控端还通过一电阻R198接地,供电电路132的使能端通过一电容C137接地,以提高处理器110对受控开关元件Q7控制的准确性。
具体的,当处理器110的引脚PW_CTRL输出低电平时,受控开关元件Q7的两个连接端关断,电能输入端VBAT的电压通过上拉电阻R813将供电电路132的使能端置为高电平,以使能供电电路132,供电电路132有电压输出。
示例性的,当处理器110的引脚PW_CTRL输出高电平时,受控开关元件Q7的两个连接端导通,供电电路132的使能端通过导通的受控开关元件Q7接地而置为低电平,供电电路132不使能而没有电压输出。
通过电平转换电路131,可以将处理器110在断电时的低电平转换为高电平,该高电平可以使能供电电路132,以使供电电路132恢复对处理器110的供电,因此可以不需要额外的主控芯片在处理器110断电时控制供电电路132恢复对处理器110的供电。
在一些实施方式中,如图4所示,供电电路132包括若干电压转换电路1321和/或若干稳压电路1322。电压转换电路1321例如包括直流斩波(DC/DC)器,稳压电路1322例如包括低压差线性稳压器(low dropout regulator,LDO)。
示例性的,电压转换电路1321可以将电池的12V电压转换为3.6V,稳压电路1322可以将3.6V的电压稳压至3.3V,以供给处理器110和惯性传感器120。
具体的,供电电路132的具体结构可以根据电池供电的电压、处理器110、惯性传感器120工作的电压进行适应性调整。例如供电电路132可以包括一个或多个电压转换电路1321,可以包括一个或多个稳压电路1322,或者包括若干级联的电压转换电路1321和稳压电路1322。
示例性的,若干电压转换电路1321和/或若干稳压电路1322中的至少一个包括使能端。如图4所示,电压转换电路1321包括使能端,该使能端通过电平转换电路131连接至处理器110。电压转换电路1321停止供电时,处理器110和惯性传感器120断电;电压转换电路1321进行供电时,处理器110和惯性传感器120上电。
本说明书实施例提供的可移动平台,通过处理器根据惯性传感器的状态控制电源电路停止向惯性传感器供电,以及在惯性传感器断电后再恢复对惯性传感器的供电,可以使得惯性传感器在异常时恢复正常,防止可移动平台在惯性传感器异常时无法正常执行预设任务,例如可以解决惯性传感器不正常引起的可移动平台动作异常的问题,例如解决乱甩不复位的问题。
请结合前述实施例参阅图5,图5是本说明书一实施例提供的一种控制方法的流程示意图。所述控制方法可以应用在可移动平台中,用于在惯性传感器不正常时复位惯性传感器等过程。
示例性的,可移动平台包括以下至少一种:云台、无人飞行器、无人驾驶车辆或无人驾驶船艇。
示例性的,如图1所示,所述可移动平台搭载处理器、惯性传感器,以及向所述惯性传感器供电的电源电路。
示例性的,所述惯性传感器包括陀螺仪、加速度传感器、惯性测量单元中的至少一种。
如图5所示,本说明书实施例的控制方法包括步骤S110至步骤S120。
S110、所述处理器确根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电。
S120、所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述惯性传感器供电。
在一些实施方式中,所述方法还包括:所述处理器从所述惯性传感器获取传感器数据。
所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:
所述处理器确定所述传感器数据是否正常;
若确定所述传感器数据不正常,所述处理器向所述电源电路输出断电控制信号。
示例性的,所述处理器确定所述传感器数据是否正常,包括:若所述传感器数据不是常态值,确定所述传感器数据不正常;和/或
若所述传感器数据的波动情况不正常,确定所述传感器数据不正常。
示例性的,
所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:
若持续预设时长未获取到所述惯性传感器的传感器数据,所述处理器向所述电源电路输出断电控制信号。
示例性的,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:
若获取所述惯性传感器的报错信息,所述处理器向所述电源电路输出断电控制信号。
在一些实施方式中,所述电源电路还向所述处理器供电。
示例性的,所述处理器向所述电源电路输出断电控制信号时,使所述电源电路停止向所述处理器供电。
示例性的,所述处理器向所述电源电路输出上电控制信号时,使所述电源电路向所述处理器供电。
在一些实施方式中,所述处理器在断电时向所述电源电路输出上电控制信号。
示例性的,处理器在断电时向所述电源电路输出低电平,以使电源电路根据该低电平向所述惯性传感器和处理器供电。
示例性的,所述处理器向所述电源电路输出断电控制信号,包括:所述处理器向所述电源电路输出高电平。
在一些实施方式中,如图3所示,电源电路130包括电平转换电路131和供电电路132。
其中,电平转换电路131包括输入端和输出端,输入端连接处理器110,输入端的电平为低电平时,输出端输出高电平。具体的,供电电路132包括使能端和电能输出端,使能端连接电平转换电路131的输出端,使能端的电平为高电平时,电能输出端供电。
在一些实施方式中,如图3所示,电源电路130包括电能输入端VBAT,电能输入端VBAT能够从可移动平台100的电池获取电能;电平转换电路131连接电能输入端。
在一些实施方式中,如图3所示,电平转换电路131包括受控开关元件Q7。
示例性的,受控开关元件包括三极管、MOSFET、IGBT、继电器中的至少一种。
受控开关元件Q7包括受控端,和由受控端控制导通或关断的两个连接端。具体的,当受控开关元件Q7包括三极管时,受控端为三极管的基极,两个连接端分别为三极管的集电极和发射极。
具体的,受控开关元件Q7的受控端连接处理器110,两个连接端中的一个连接低电平,另一个连接供电电路132的使能端同时通过一上拉电阻R813连接电能输入端VBAT。
示例性的,如图3所示,受控开关元件的受控端通过一电阻R197连接处理器110,受控开关元件的受控端还通过一电阻R198接地,供电电路132的使能端通过一电容C137接地,以提高处理器110对受控开关元件Q7控制的准确性。
具体的,当处理器110的引脚PW_CTRL输出低电平时,受控开关元件Q7的两个连接端关断,电能输入端VBAT的电压通过上拉电阻R813将供电电路132的使能端置为高电平,以使能供电电路132,供电电路132有电压输出。
示例性的,当处理器110的引脚PW_CTRL输出高电平时,受控开关元件Q7的两个连接端导通,供电电路132的使能端通过导通的受控开关元件Q7接地而置为低电平,供电电路132不使能而没有电压输出。
通过电平转换电路131,可以将处理器110在断电时的低电平转换为高电平,该高电平可以使能供电电路132,以使供电电路132恢复对处理器110的供电,因此可以不需要额外的主控芯片在处理器110断电时控制供电电路132恢复对处理器110的供电。
在一些实施方式中,如图4所示,供电电路132包括若干电压转换电路1321 和/或若干稳压电路1322。电压转换电路1321例如包括直流斩波(DC/DC)器,稳压电路1322例如包括低压差线性稳压器(low dropout regulator,LDO)。
示例性的,电压转换电路1321可以将电池的12V电压转换为3.6V,稳压电路1322可以将3.6V的电压稳压至3.3V,以供给处理器110和惯性传感器120。
具体的,供电电路132的具体结构可以根据电池供电的电压、处理器110、惯性传感器120工作的电压进行适应性调整。例如供电电路132可以包括一个或多个电压转换电路1321,可以包括一个或多个稳压电路1322,或者包括若干级联的电压转换电路1321和稳压电路1322。
示例性的,若干电压转换电路1321和/或若干稳压电路1322中的至少一个包括使能端。如图4所示,电压转换电路1321包括使能端,该使能端通过电平转换电路131连接至处理器110。电压转换电路1321停止供电时,处理器110和惯性传感器120断电;电压转换电路1321进行供电时,处理器110和惯性传感器120上电。
本说明书实施例提供的控制方法的具体原理和实现方式均与前述实施例的可移动平台类似,此处不再赘述。
本说明书实施例提供的控制方法,通过处理器根据惯性传感器的状态控制电源电路停止向惯性传感器供电,以及在惯性传感器断电后再恢复对惯性传感器的供电,可以使得惯性传感器在异常时恢复正常,防止可移动平台在惯性传感器异常时无法正常执行预设任务,例如可以解决惯性传感器不正常引起的可移动平台动作异常的问题,例如解决乱甩不复位的问题。
请结合前述实施例参阅图6,图6是本说明书一实施例提供的一种惯性传感器电路的示意性框图。
具体的,惯性传感器电路可以应用于包括惯性传感器的电子设备,包括但不限于前述的可移动平台。
如图6所示,惯性传感器220电路200包括处理器210、惯性传感器220,以及向惯性传感器220供电的电源电路230。
具体的,处理器210根据惯性传感器220的状态向电源电路230输出断电控制信号,以使电源电路230停止向惯性传感器220供电;以及处理器210向电源电路230输出上电控制信号,以使电源电路230向惯性传感器220供电。
示例性的,处理器210从惯性传感器220获取传感器数据。
示例性的,惯性传感器220包括陀螺仪、加速度传感器、惯性测量单元中的至少一种。
示例性的,处理器210确定传感器数据是否正常;
若确定传感器数据不正常,处理器210向电源电路230输出断电控制信号。
示例性的,处理器210确定传感器数据是否正常,包括:
若传感器数据不是常态值,确定传感器数据不正常;和/或
若传感器数据的波动情况不正常,确定传感器数据不正常。
示例性的,处理器210若持续预设时长未获取到惯性传感器220的传感器数据,处理器210向电源电路230输出断电控制信号。
示例性的,处理器210若获取惯性传感器220的报错信息,处理器210向电源电路230输出断电控制信号。
在一些实施方式中,电源电路230还向处理器210供电。
示例性的,处理器210向电源电路230输出断电控制信号时,使电源电路230停止向处理器210供电;
处理器210向电源电路230输出上电控制信号时,使电源电路230向处理器210供电。
示例性的,处理器210在断电时向电源电路230输出上电控制信号。
在一些实施方式中,处理器210在断电时向电源电路230输出低电平,以使电源电路230根据该低电平向惯性传感器220和处理器210供电。
示例性的,处理器210向电源电路230输出断电控制信号,包括:处理器210向电源电路230输出高电平。
本说明书实施例提供的惯性传感器电路的具体原理和实现方式均与前述实施例的可移动平台类似,此处不再赘述。
本说明书实施例提供的惯性传感器电路,通过处理器根据惯性传感器的状态控制电源电路停止向惯性传感器供电,以及在惯性传感器断电后再恢复对惯性传感器的供电,可以使得惯性传感器在异常时恢复正常。
应当理解,在此本说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本说明书。
还应当理解,在本说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组 合。
以上所述,仅为本说明书的具体实施方式,但本说明书的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本说明书揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本说明书的保护范围之内。因此,本说明书的保护范围应以权利要求的保护范围为准。
Claims (51)
- 一种可移动平台,其特征在于,所述可移动平台搭载处理器、惯性传感器,以及向所述惯性传感器供电的电源电路;所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电;所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述惯性传感器供电。
- 根据权利要求1所述的可移动平台,其特征在于,所述处理器从所述惯性传感器获取传感器数据。
- 根据权利要求2所述的可移动平台,其特征在于,所述惯性传感器包括陀螺仪、加速度传感器、惯性测量单元中的至少一种。
- 根据权利要求2所述的可移动平台,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:所述处理器确定所述传感器数据是否正常;若确定所述传感器数据不正常,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求4所述的可移动平台,其特征在于,所述处理器确定所述传感器数据是否正常,包括:若所述传感器数据不是常态值,确定所述传感器数据不正常;和/或若所述传感器数据的波动情况不正常,确定所述传感器数据不正常。
- 根据权利要求2所述的可移动平台,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:若持续预设时长未获取到所述惯性传感器的传感器数据,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求2所述的可移动平台,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:若获取所述惯性传感器的报错信息,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求1-7中任一项所述的可移动平台,其特征在于,所述电源电路还向所述处理器供电。
- 根据权利要求8所述的可移动平台,其特征在于,所述处理器向所述电源电路输出断电控制信号时,使所述电源电路停止向所述处理器供电;所述处理器向所述电源电路输出上电控制信号时,使所述电源电路向所述处理器供电。
- 根据权利要求9所述的可移动平台,其特征在于,所述处理器在断电时向所述电源电路输出上电控制信号。
- 根据权利要求10所述的可移动平台,其特征在于,处理器在断电时向所述电源电路输出低电平。
- 根据权利要求11所述的可移动平台,其特征在于,所述处理器向所述电源电路输出断电控制信号,包括:所述处理器向所述电源电路输出高电平。
- 根据权利要求11或12所述的可移动平台,其特征在于,所述电源电路包括:电平转换电路,包括输入端和输出端,所述输入端连接所述处理器,所述输入端的电平为低电平时,所述输出端输出高电平;供电电路,包括使能端和电能输出端,所述使能端连接所述电平转换电路的输出端,所述使能端的电平为高电平时,所述电能输出端供电。
- 根据权利要求13所述的可移动平台,其特征在于,所述电源电路包括电能输入端,所述电能输入端能够从所述可移动平台的电池获取电能;所述电平转换电路连接所述电能输入端。
- 根据权利要求14所述的可移动平台,其特征在于,所述电平转换电路包括受控开关元件,所述受控开关元件包括受控端,和由所述受控端控制导通或关断的两个连接端;其中,所述受控端连接所述处理器,所述两个连接端中的一个连接低电平,另一个连接所述使能端同时通过一上拉电阻连接所述电能输入端。
- 根据权利要求15所述的可移动平台,其特征在于,所述受控开关元件包括三极管、MOSFET、IGBT、继电器中的至少一种。
- 根据权利要求13所述的可移动平台,其特征在于,所述供电电路包括 若干电压转换电路和/或若干稳压电路。
- 根据权利要求17所述的可移动平台,其特征在于,所述若干电压转换电路和/或若干稳压电路中的至少一个包括所述使能端。
- 根据权利要求1-7中任一项所述的可移动平台,其特征在于,所述可移动平台包括以下至少一种:云台、无人飞行器、无人驾驶车辆或无人驾驶船艇。
- 一种控制方法,其特征在于,用于可移动平台,所述可移动平台搭载处理器、惯性传感器,以及向所述惯性传感器供电的电源电路;所述方法包括:所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电;所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述惯性传感器供电。
- 根据权利要求20所述的方法,其特征在于,所述方法还包括:所述处理器从所述惯性传感器获取传感器数据。
- 根据权利要求21所述的方法,其特征在于,所述惯性传感器包括陀螺仪、加速度传感器、惯性测量单元中的至少一种。
- 根据权利要求21所述的方法,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:所述处理器确定所述传感器数据是否正常;若确定所述传感器数据不正常,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求23所述的方法,其特征在于,所述处理器确定所述传感器数据是否正常,包括:若所述传感器数据不是常态值,确定所述传感器数据不正常;和/或若所述传感器数据的波动情况不正常,确定所述传感器数据不正常。
- 根据权利要求21所述的方法,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:若持续预设时长未获取到所述惯性传感器的传感器数据,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求21所述的方法,其特征在于,所述处理器根据所述惯性 传感器的状态向所述电源电路输出断电控制信号,包括:若获取所述惯性传感器的报错信息,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求20-26中任一项所述的方法,其特征在于,所述电源电路还向所述处理器供电。
- 根据权利要求27所述的方法,其特征在于,所述处理器向所述电源电路输出断电控制信号时,使所述电源电路停止向所述处理器供电;所述处理器向所述电源电路输出上电控制信号时,使所述电源电路向所述处理器供电。
- 根据权利要求28所述的方法,其特征在于,所述处理器在断电时向所述电源电路输出上电控制信号。
- 根据权利要求29所述的方法,其特征在于,处理器在断电时向所述电源电路输出低电平。
- 根据权利要求30所述的方法,其特征在于,所述处理器向所述电源电路输出断电控制信号,包括:所述处理器向所述电源电路输出高电平。
- 根据权利要求30或31所述的方法,其特征在于,所述电源电路包括:电平转换电路,包括输入端和输出端,所述输入端连接所述处理器,所述输入端的电平为低电平时,所述输出端输出高电平;供电电路,包括使能端和电能输出端,所述使能端连接所述电平转换电路的输出端,所述使能端的电平为高电平时,所述电能输出端供电。
- 根据权利要求32所述的方法,其特征在于,所述电源电路包括电能输入端,所述电能输入端能够从所述可移动平台的电池获取电能;所述电平转换电路连接所述电能输入端。
- 根据权利要求33所述的方法,其特征在于,所述电平转换电路包括受控开关元件,所述受控开关元件包括受控端,和由所述受控端控制导通或关断的两个连接端;其中,所述受控端连接所述处理器,所述两个连接端中的一个连接低电平,另一个连接所述使能端同时通过一上拉电阻连接所述电能输入端。
- 根据权利要求34所述的方法,其特征在于,所述受控开关元件包括三 极管、MOSFET、IGBT、继电器中的至少一种。
- 根据权利要求32所述的方法,其特征在于,所述供电电路包括若干电压转换电路和/或若干稳压电路。
- 根据权利要求36所述的方法,其特征在于,所述若干电压转换电路和/或若干稳压电路中的至少一个包括所述使能端。
- 根据权利要求20-26中任一项所述的方法,其特征在于,所述可移动平台包括以下至少一种:云台、无人飞行器、无人驾驶车辆或无人驾驶船艇。
- 一种惯性传感器电路,其特征在于,所述电路包括处理器、惯性传感器,以及向所述惯性传感器供电的电源电路;所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,以使所述电源电路停止向所述惯性传感器供电;所述处理器向所述电源电路输出上电控制信号,以使所述电源电路向所述惯性传感器供电。
- 根据权利要求39所述的惯性传感器电路,其特征在于,所述处理器从所述惯性传感器获取传感器数据。
- 根据权利要求40所述的惯性传感器电路,其特征在于,所述惯性传感器包括陀螺仪、加速度传感器、惯性测量单元中的至少一种。
- 根据权利要求40所述的惯性传感器电路,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:所述处理器确定所述传感器数据是否正常;若确定所述传感器数据不正常,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求42所述的惯性传感器电路,其特征在于,所述处理器确定所述传感器数据是否正常,包括:若所述传感器数据不是常态值,确定所述传感器数据不正常;和/或若所述传感器数据的波动情况不正常,确定所述传感器数据不正常。
- 根据权利要求40所述的惯性传感器电路,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:若持续预设时长未获取到所述惯性传感器的传感器数据,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求40所述的惯性传感器电路,其特征在于,所述处理器根据所述惯性传感器的状态向所述电源电路输出断电控制信号,包括:若获取所述惯性传感器的报错信息,所述处理器向所述电源电路输出断电控制信号。
- 根据权利要求39-45中任一项所述的惯性传感器电路,其特征在于,所述电源电路还向所述处理器供电。
- 根据权利要求46所述的惯性传感器电路,其特征在于,所述处理器向所述电源电路输出断电控制信号时,使所述电源电路停止向所述处理器供电;所述处理器向所述电源电路输出上电控制信号时,使所述电源电路向所述处理器供电。
- 根据权利要求47所述的惯性传感器电路,其特征在于,所述处理器在断电时向所述电源电路输出上电控制信号。
- 根据权利要求48所述的惯性传感器电路,其特征在于,处理器在断电时向所述电源电路输出低电平。
- 根据权利要求49所述的惯性传感器电路,其特征在于,所述处理器向所述电源电路输出断电控制信号,包括:所述处理器向所述电源电路输出高电平。
- 根据权利要求49或50所述的惯性传感器电路,其特征在于,所述电源电路包括:电平转换电路,包括输入端和输出端,所述输入端连接所述处理器,所述输入端的电平为低电平时,所述输出端输出高电平;供电电路,包括使能端和电能输出端,所述使能端连接所述电平转换电路的输出端,所述使能端的电平为高电平时,所述电能输出端供电。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/083316 WO2021196212A1 (zh) | 2020-04-03 | 2020-04-03 | 可移动平台及其控制方法、惯性传感器电路 |
CN202080005315.9A CN112771457A (zh) | 2020-04-03 | 2020-04-03 | 可移动平台及其控制方法、惯性传感器电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/083316 WO2021196212A1 (zh) | 2020-04-03 | 2020-04-03 | 可移动平台及其控制方法、惯性传感器电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021196212A1 true WO2021196212A1 (zh) | 2021-10-07 |
Family
ID=75699543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/083316 WO2021196212A1 (zh) | 2020-04-03 | 2020-04-03 | 可移动平台及其控制方法、惯性传感器电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112771457A (zh) |
WO (1) | WO2021196212A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114356065A (zh) * | 2021-12-29 | 2022-04-15 | 浙江华锐捷技术有限公司 | 控制主控模块上电的系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130200826A1 (en) * | 2012-02-07 | 2013-08-08 | Denso Corporation | Motor control apparatus |
CN108829542A (zh) * | 2018-06-20 | 2018-11-16 | Oppo广东移动通信有限公司 | 移动终端及其控制方法、存储介质 |
CN110622090A (zh) * | 2018-06-05 | 2019-12-27 | 深圳市大疆创新科技有限公司 | 云台及其校准方法、无人机和计算设备 |
CN110875590A (zh) * | 2018-08-31 | 2020-03-10 | 北京小米移动软件有限公司 | 传感器芯片的静电防护电路、方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105979100B (zh) * | 2016-06-30 | 2019-02-15 | 维沃移动通信有限公司 | 一种恢复惯性传感器工作状态的方法及移动终端 |
CN206417213U (zh) * | 2016-12-30 | 2017-08-18 | 深圳市大疆灵眸科技有限公司 | 云台和无人飞行器 |
WO2018120059A1 (zh) * | 2016-12-30 | 2018-07-05 | 深圳市大疆灵眸科技有限公司 | 用于云台的控制方法、控制系统、云台和无人飞行器 |
CN207472269U (zh) * | 2017-09-21 | 2018-06-08 | 中国科学院长春光学精密机械与物理研究所 | 惯性测量系统、云台驱动控制装置及航拍器 |
-
2020
- 2020-04-03 CN CN202080005315.9A patent/CN112771457A/zh active Pending
- 2020-04-03 WO PCT/CN2020/083316 patent/WO2021196212A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130200826A1 (en) * | 2012-02-07 | 2013-08-08 | Denso Corporation | Motor control apparatus |
CN110622090A (zh) * | 2018-06-05 | 2019-12-27 | 深圳市大疆创新科技有限公司 | 云台及其校准方法、无人机和计算设备 |
CN108829542A (zh) * | 2018-06-20 | 2018-11-16 | Oppo广东移动通信有限公司 | 移动终端及其控制方法、存储介质 |
CN110875590A (zh) * | 2018-08-31 | 2020-03-10 | 北京小米移动软件有限公司 | 传感器芯片的静电防护电路、方法及装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114356065A (zh) * | 2021-12-29 | 2022-04-15 | 浙江华锐捷技术有限公司 | 控制主控模块上电的系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112771457A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210157217A1 (en) | Gimbal control method, gimbal control apparatus, and gimbal | |
US11592138B2 (en) | Gimbal, control method thereof, and UAV | |
US20200271269A1 (en) | Method of controlling gimbal, gimbal, and unmanned aerial vehicle | |
WO2019223271A1 (zh) | 飞行器偏航角修正方法、装置及飞行器 | |
Rafiq et al. | Development of a simple and low-cost smartphone gimbal with MPU-6050 sensor | |
US11156905B2 (en) | Control method for gimbal, controller, and gimbal | |
WO2016078056A1 (en) | Addressing method for functional modules of a movable object | |
EP3118508B1 (en) | Control method for pan tilt and control system of pan tilt | |
WO2019227347A1 (zh) | 云台的控制方法、云台、拍摄设备及可读存储介质 | |
WO2020042064A1 (zh) | 云台的控制方法与装置、云台系统和无人机 | |
CN108780321B (zh) | 用于设备姿态调整的方法、设备、系统和计算机可读存储介质 | |
WO2018191964A1 (zh) | 云台的控制方法以及云台 | |
WO2021196212A1 (zh) | 可移动平台及其控制方法、惯性传感器电路 | |
US20210083617A1 (en) | Gimbal and motor control method and device | |
WO2021037047A1 (zh) | 一种飞行器的偏航角修正方法、装置及飞行器 | |
WO2020042159A1 (zh) | 一种云台的转动控制方法、装置及控制设备、移动平台 | |
WO2020107292A1 (zh) | 云台的控制方法、云台、移动平台和计算机可读存储介质 | |
WO2019119455A1 (zh) | 一种云台校准方法及云台设备 | |
WO2017166080A1 (zh) | 执行状态指示方法、装置及无人机 | |
WO2018191971A1 (zh) | 一种云台的控制方法以及云台 | |
CN114667255A (zh) | 用于确定无人机中异常安装的螺旋桨的方法和设备 | |
WO2020000423A1 (zh) | 云台的控制方法、云台、飞行器和计算机可读存储介质 | |
US20210147205A1 (en) | Movable platform and control method thereof | |
WO2020087354A1 (zh) | 竖向增稳机构及其控制方法以及可移动设备 | |
WO2021223169A1 (zh) | 无人机的动力输出检测方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20929567 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20929567 Country of ref document: EP Kind code of ref document: A1 |