WO2024058144A1 - 半導体装置および実装基板 - Google Patents

半導体装置および実装基板 Download PDF

Info

Publication number
WO2024058144A1
WO2024058144A1 PCT/JP2023/033097 JP2023033097W WO2024058144A1 WO 2024058144 A1 WO2024058144 A1 WO 2024058144A1 JP 2023033097 W JP2023033097 W JP 2023033097W WO 2024058144 A1 WO2024058144 A1 WO 2024058144A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring electrode
semiconductor device
wiring
layer
protective film
Prior art date
Application number
PCT/JP2023/033097
Other languages
English (en)
French (fr)
Inventor
光章 坂本
正生 浜崎
亮一 網師本
弘 吉田
隆 油井
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2024058144A1 publication Critical patent/WO2024058144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a semiconductor device and a mounting board on which the semiconductor device is mounted.
  • an object of the present disclosure is to provide a semiconductor device and the like having a structure suitable for a mounting method in which the semiconductor device is mounted by being embedded in a mounting board.
  • a semiconductor device is a chip size package type semiconductor device that can be mounted face-up, and includes a semiconductor layer, a vertical MOS (Metal Oxide Semiconductor) transistor formed in the semiconductor layer, and , a protective film that covers the upper surface of the vertical MOS transistor, the first opening exposing the source electrode of the vertical MOS transistor to the outside of the protective film, and the gate electrode of the vertical MOS transistor.
  • a vertical MOS Metal Oxide Semiconductor
  • a first wiring electrode connected to the source electrode is coated without a gap, and a portion of the gate electrode that is mainly made of copper and is exposed to the outside of the protective film in the second opening is covered without a gap.
  • a second wiring electrode connected to the gate electrode, the semiconductor device has a rectangular shape when the semiconductor layer is viewed from above, and the first wiring electrode has a second wiring electrode connected to the gate electrode when the semiconductor layer is viewed from above.
  • a first peripheral structure in which the source electrode, the protective film, and the first wiring electrode are laminated in this order is formed in the peripheral part, and the uppermost layer of the first peripheral structure is the first peripheral structure.
  • a second outer periphery, which is a wiring electrode, and the gate electrode, the protective film, and the second wiring electrode are laminated in this order on the outer peripheral portion of the second wiring electrode in plan view of the semiconductor layer.
  • the uppermost layer of the second outer peripheral structure is the second wiring electrode, and the first wiring electrode exposed portion, which is the upper surface of the first wiring electrode, is exposed to the outside of the semiconductor device.
  • the second wiring electrode exposed portion which is the upper surface of the second wiring electrode, is exposed to the outside of the semiconductor device, and the first outer peripheral structure is located at the top of the first wiring electrode exposed portion. , protrudes above the upper surface of a portion not included in the first outer circumferential structure, and the second outer circumferential structure is not included in the second outer circumferential structure of the second wiring electrode exposed portion.
  • the uppermost position of the semiconductor device is located in the first outer peripheral structure and/or the second outer peripheral structure, and in a plan view of the semiconductor layer, the uppermost position of the semiconductor device is located above the upper surface of the semiconductor layer.
  • the area of the electrode exposed portion is larger than the area of the first opening, and the area of the second wiring electrode exposed portion is larger than the area of the second opening in a plan view of the semiconductor layer.
  • the area of the semiconductor layer in plan view is S [mm 2 ]
  • the thickness from the bottom surface of the semiconductor layer to the top surface of the protective film is h [mm]
  • h/S ⁇ 0 the thickness from the bottom surface of the semiconductor layer to the top surface of the protective film
  • a semiconductor device is a chip size package type semiconductor device that can be mounted face-up, and includes a semiconductor layer, a vertical MOS (Metal Oxide Semiconductor) transistor formed in the semiconductor layer, , a protective film that covers the upper surface of the vertical MOS transistor, the first opening exposing the source electrode of the vertical MOS transistor to the outside of the protective film, and the gate electrode of the vertical MOS transistor.
  • a vertical MOS Metal Oxide Semiconductor
  • a first wiring electrode connected to the source electrode is coated without a gap, and a portion of the gate electrode that is mainly made of copper and is exposed to the outside of the protective film in the second opening is covered without a gap.
  • a second wiring electrode connected to the gate electrode, the semiconductor device has a rectangular shape in a plan view of the semiconductor layer, and the protective film has a first protective film layer and a second wiring electrode connected to the gate electrode.
  • It has a multilayer structure consisting of a plurality of protective film layers including a second protective film layer located above the first protective film layer, and the outer peripheral portion of the first wiring electrode in a plan view of the semiconductor layer.
  • a first peripheral structure is formed in which the source electrode, the first protective film layer, the first wiring electrode, and the second protective film layer are stacked in this order, and the first peripheral structure
  • the uppermost layer of is the second protective film layer, and the gate electrode, the first protective film layer and the second
  • a second peripheral structure is formed in which a wiring electrode and the second protective film layer are laminated in this order, and the uppermost layer of the second peripheral structure is the second protective film layer, and the second protective film layer is the uppermost layer of the second peripheral structure.
  • a first wiring electrode exposed portion which is a portion of the upper surface of the first wiring electrode that is not included in the first outer peripheral structure, is exposed to the outside of the semiconductor device, and is a portion of the upper surface of the second wiring electrode that is not included in the first outer peripheral structure.
  • the second wiring electrode exposed portion which is a portion not included in the second outer circumferential structure, is exposed to the outside of the semiconductor device, and the first outer circumferential structure is a portion that is not included in the first wiring electrode exposed portion.
  • the second outer peripheral structure projects above the upper surface of the second wiring electrode exposed portion, and the uppermost position of the semiconductor device is located above the first outer peripheral structure and/or the second outer peripheral structure.
  • the thickness of the second protective film layer in the first outer peripheral structure is present in the second outer peripheral structure, and the thickness of the first wiring electrode in the first outer peripheral structure is the first thickness. is a second thickness, the second thickness is greater than half of the first thickness and less than or equal to the first thickness, and in a plan view of the semiconductor layer, the second thickness is greater than half the first thickness and less than or equal to the first thickness.
  • the area of the first wiring electrode exposed portion is larger than the area of the first opening, and in a plan view of the semiconductor layer, the area of the second wiring electrode exposed portion is larger than the area of the second opening. larger than
  • a mounting board is a mounting board in which a first wiring layer, an interlayer insulating layer, and a second wiring layer are stacked in this order, and the mounting board is face-up in the interlayer insulating layer.
  • the semiconductor device mounted in One or more first connection wirings extending in the direction, and the upper surface of the first wiring electrode is the upper surface of the first wiring electrode when viewed from above of the semiconductor layer.
  • the one or more first connection wirings are connected at a portion that does not overlap with the outer peripheral structure.
  • a mounting board is a mounting board in which a first wiring layer, an interlayer insulating layer, and a second wiring layer are stacked in this order, and the mounting board is face-up in the interlayer insulating layer.
  • a semiconductor device having a semiconductor layer mounted on the semiconductor device, the semiconductor device having a first wiring electrode on an upper surface, a first wiring formed in the second wiring layer, and the first wiring. and one or more first connection wirings extending in a direction perpendicular to the mounting board and connecting the upper surface of the first wiring electrode to the upper surface of the first wiring electrode.
  • a first outer circumferential structure is formed in an outer circumferential portion of the semiconductor layer in plan view, and the first outer circumferential structure is formed in the first outer circumferential portion of the upper surface of the first wiring electrode in plan view of the semiconductor layer.
  • the uppermost position of the semiconductor device protrudes above a portion that does not overlap with the outer peripheral structure, and the first wiring electrode is located at least on the upper surface of the first wiring electrode.
  • a portion that does not overlap with the first outer peripheral structure is exposed to the outside of the semiconductor device, and the one or more first connection wirings are connected to the upper surface of the first wiring electrode. is connected at a portion of the upper surface of the first wiring electrode of the semiconductor device that does not overlap with the first outer peripheral structure in a plan view of the semiconductor layer.
  • a semiconductor device or the like that has a structure suitable for a mounting method in which the device is mounted by being embedded in a mounting board.
  • FIG. 1 is a plan view showing an example of the structure of a semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 4 is a captured image of a part of the top surface of the semiconductor device according to the first embodiment, captured from diagonally above.
  • FIG. 5 is an enlarged cross-sectional view showing the structure of the first outer peripheral structure according to the first embodiment.
  • FIG. 6 is a schematic diagram showing the relationship between the resistance of the semiconductor device according to the first embodiment and the shape and Si thickness of the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view of the semiconductor device and the first outer peripheral structure according to the first embodiment, schematically showing an example of how the semiconductor device according to the first embodiment is deformed by the heat treatment process.
  • FIG. 8 is a plan view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 9 is a cross-sectional view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 10 is a plan view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 11 is a cross-sectional view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 12 is a plan view showing an example of the structure of the semiconductor device according to the first embodiment.
  • FIG. 13 is a plan view showing an example of the structure of the semiconductor device according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing an example of the structure of the semiconductor device according to the second embodiment.
  • FIG. 15 is an enlarged sectional view showing the structure of the first outer peripheral structure according to the second embodiment.
  • FIG. 16 is a plan view showing an example of the structure of the mounting board according to the third embodiment.
  • FIG. 17 is a cross-sectional view showing an example of the structure of the mounting board according to the third embodiment.
  • FIG. 18 is an enlarged plan view showing an example of the structure of the mounting board according to the third embodiment.
  • the inventors are developing a semiconductor device including a vertical MOS transistor.
  • the inventors thought that if the semiconductor device could be embedded and mounted inside the mounting board, it would be possible to save space on the mounting board.
  • the inventors decided to develop a semiconductor device including a vertical MOS transistor that is resin-sealed in a mounting board and mounted face-up.
  • the inventors realized that there is a semiconductor device that has a structure suitable for a mounting method in which it is mounted by being embedded in a mounting board.
  • the inventors provided a protrusion on the top surface of the semiconductor device that bites into the resin enclosing the semiconductor device, so that the protrusion serves as an anchor to fix the position of the semiconductor device within the resin, and as a result, the mounting We have obtained the knowledge that it is possible to suppress resin peeling on the board and stabilize the position of the semiconductor device inside the mounting board.
  • a protrusion reflecting the protrusion on the top surface of the semiconductor device is also formed on the top surface of the resin solidified after encapsulating the semiconductor device. Ta.
  • the protrusions formed on the top surface of this resin as a guideline when processing the mounting board, the inventors were able to process the mounting board with more precision than when these protrusions did not exist. We have learned that this is possible.
  • a semiconductor device is a chip size package type semiconductor device that can be mounted face-up, and includes a semiconductor layer, a vertical MOS (Metal Oxide Semiconductor) transistor formed in the semiconductor layer, and , a protective film that covers the upper surface of the vertical MOS transistor, the first opening exposing the source electrode of the vertical MOS transistor to the outside of the protective film, and the gate electrode of the vertical MOS transistor.
  • a vertical MOS Metal Oxide Semiconductor
  • a first wiring electrode connected to the source electrode is coated without a gap, and a portion of the gate electrode that is mainly made of copper and is exposed to the outside of the protective film in the second opening is covered without a gap.
  • a second wiring electrode connected to the gate electrode, the semiconductor device has a rectangular shape when the semiconductor layer is viewed from above, and the first wiring electrode has a second wiring electrode connected to the gate electrode when the semiconductor layer is viewed from above.
  • a first peripheral structure in which the source electrode, the protective film, and the first wiring electrode are laminated in this order is formed in the peripheral part, and the uppermost layer of the first peripheral structure is the first peripheral structure.
  • a second outer periphery, which is a wiring electrode, and the gate electrode, the protective film, and the second wiring electrode are laminated in this order on the outer peripheral portion of the second wiring electrode in plan view of the semiconductor layer.
  • the uppermost layer of the second outer peripheral structure is the second wiring electrode, and the first wiring electrode exposed portion, which is the upper surface of the first wiring electrode, is exposed to the outside of the semiconductor device.
  • the second wiring electrode exposed portion which is the upper surface of the second wiring electrode, is exposed to the outside of the semiconductor device, and the first outer peripheral structure is located at the top of the first wiring electrode exposed portion. , protrudes above the upper surface of a portion not included in the first outer circumferential structure, and the second outer circumferential structure is not included in the second outer circumferential structure of the second wiring electrode exposed portion.
  • the uppermost position of the semiconductor device is located in the first outer peripheral structure and/or the second outer peripheral structure, and in a plan view of the semiconductor layer, the uppermost position of the semiconductor device is located above the upper surface of the semiconductor layer.
  • the area of the electrode exposed portion is larger than the area of the first opening, and the area of the second wiring electrode exposed portion is larger than the area of the second opening in a plan view of the semiconductor layer.
  • the area of the semiconductor layer in plan view is S [mm 2 ]
  • the thickness from the bottom surface of the semiconductor layer to the top surface of the protective film is h [mm]
  • h/S ⁇ 0 the thickness from the bottom surface of the semiconductor layer to the top surface of the protective film
  • the semiconductor device having the above configuration, when the semiconductor device is resin-sealed in a mounting board and mounted face-up, the first outer peripheral structure and the second outer peripheral structure dig into the resin on the upper surface of the semiconductor device. .
  • the first outer peripheral structure and the second outer peripheral structure that bite into the resin serve as anchors to fix the position of the semiconductor device within the resin, and as a result, the resin peeling on the mounting board is suppressed, and the mounting board Stabilization of the position of the semiconductor device inside is realized.
  • protrusions reflecting the first outer peripheral structure and the second outer peripheral structure are formed on the upper surface of the resin solidified after encapsulating the semiconductor device.
  • the protrusion corresponding to the first outer peripheral structure formed on the top surface of the resin is used as a guideline.
  • the structure corresponds to the second outer peripheral structure that is formed on the upper surface of the resin.
  • the semiconductor device having the above structure provides a semiconductor device having a structure suitable for a mounting method in which the semiconductor device is embedded in a mounting board.
  • the invention further includes a metal layer formed in contact with the lower surface of the semiconductor layer, the thickness of the metal layer being thicker than the maximum thickness of the first wiring electrode, and the first wiring electrode , a wall surface having an inversely tapered shape toward the outside of the first wiring electrode in a cross-sectional view of the semiconductor layer is provided at an outer peripheral portion of the semiconductor layer in a plan view, and the wall surface is in contact with the protective film. You may not.
  • the protective film has a tapered region tapered toward the first opening in a cross-sectional view in a portion around the first opening in a plan view of the semiconductor layer.
  • the wall surface may be located inside the tapered region.
  • a semiconductor device is a chip size package type semiconductor device that can be mounted face-up, and includes a semiconductor layer, a vertical MOS (Metal Oxide Semiconductor) transistor formed in the semiconductor layer, , a protective film that covers the upper surface of the vertical MOS transistor, the first opening exposing the source electrode of the vertical MOS transistor to the outside of the protective film, and the gate electrode of the vertical MOS transistor.
  • a vertical MOS Metal Oxide Semiconductor
  • a first wiring electrode connected to the source electrode is coated without a gap, and a portion of the gate electrode that is mainly made of copper and is exposed to the outside of the protective film in the second opening is covered without a gap.
  • a second wiring electrode connected to the gate electrode, the semiconductor device has a rectangular shape in a plan view of the semiconductor layer, and the protective film has a first protective film layer and a second wiring electrode connected to the gate electrode.
  • It has a multilayer structure consisting of a plurality of protective film layers including a second protective film layer located above the first protective film layer, and the outer peripheral portion of the first wiring electrode in a plan view of the semiconductor layer.
  • a first peripheral structure is formed in which the source electrode, the first protective film layer, the first wiring electrode, and the second protective film layer are stacked in this order, and the first peripheral structure
  • the uppermost layer of is the second protective film layer, and the gate electrode, the first protective film layer and the second
  • a second peripheral structure is formed in which a wiring electrode and the second protective film layer are laminated in this order, and the uppermost layer of the second peripheral structure is the second protective film layer, and the second protective film layer is the uppermost layer of the second peripheral structure.
  • a first wiring electrode exposed portion which is a portion of the upper surface of the first wiring electrode that is not included in the first outer peripheral structure, is exposed to the outside of the semiconductor device, and is a portion of the upper surface of the second wiring electrode that is not included in the first outer peripheral structure.
  • the second wiring electrode exposed portion which is a portion not included in the second outer circumferential structure, is exposed to the outside of the semiconductor device, and the first outer circumferential structure is a portion that is not included in the first wiring electrode exposed portion.
  • the second outer peripheral structure projects above the upper surface of the second wiring electrode exposed portion, and the uppermost position of the semiconductor device is located above the first outer peripheral structure and/or the second outer peripheral structure.
  • the thickness of the second protective film layer in the first outer peripheral structure is present in the second outer peripheral structure, and the thickness of the first wiring electrode in the first outer peripheral structure is the first thickness. is a second thickness, the second thickness is greater than half of the first thickness and less than or equal to the first thickness, and in a plan view of the semiconductor layer, the second thickness is greater than half the first thickness and less than or equal to the first thickness.
  • the area of the first wiring electrode exposed portion is larger than the area of the first opening, and in a plan view of the semiconductor layer, the area of the second wiring electrode exposed portion is larger than the area of the second opening. larger than
  • the semiconductor device having the above configuration, when the semiconductor device is resin-sealed in a mounting board and mounted face-up, the first outer peripheral structure and the second outer peripheral structure dig into the resin on the upper surface of the semiconductor device. .
  • the first outer peripheral structure and the second outer peripheral structure that bite into the resin serve as anchors to fix the position of the semiconductor device within the resin, and as a result, the resin peeling on the mounting board is suppressed, and the mounting board Stabilization of the position of the semiconductor device inside is realized.
  • protrusions reflecting the first outer peripheral structure and the second outer peripheral structure are formed on the upper surface of the resin solidified after encapsulating the semiconductor device.
  • the protrusion corresponding to the first outer peripheral structure formed on the top surface of the resin is used as a guideline.
  • the structure corresponds to the second outer peripheral structure that is formed on the upper surface of the resin.
  • the semiconductor device having the above structure provides a semiconductor device having a structure suitable for a mounting method in which the semiconductor device is embedded in a mounting board.
  • the minimum width of a portion of the second protective film layer that overlaps with the first wiring electrode in a plan view of the semiconductor layer is a minimum width of a portion of the second protective film layer that overlaps with the first wiring electrode in a plan view of the semiconductor layer.
  • the thickness of the second protective film layer is larger than the thickness of a portion that does not overlap with the first wiring electrode or the second wiring electrode, and the portion of the second protective film layer that overlaps with the second wiring electrode in a plan view of the semiconductor layer.
  • the minimum width may be larger than the thickness of a portion of the second protective film layer that does not overlap with the first wiring electrode or the second wiring electrode in a plan view of the semiconductor layer.
  • the height of the first outer peripheral structure based on the upper surface of the first wiring electrode exposed portion is 50% or more of the thickness of the first wiring electrode in the first opening
  • the height of the second outer peripheral structure based on the upper surface of the exposed second wiring electrode may be 50% or more of the thickness of the second wiring electrode in the second opening.
  • a first occupancy rate which is an occupancy rate of the area of the first opening in the planar view of the semiconductor layer with respect to the area of the source electrode in the planar view, may be 0.5 or more and less than 1.0. .
  • the first occupancy is 0.9 or more and less than 1.0, and is expressed by P1/M1, where P1 is an area of the first wiring electrode exposed portion in a plan view of the semiconductor layer.
  • the second occupancy rate which is the occupancy rate of the area of the first wiring electrode exposed portion in the planar view of the semiconductor layer to the area of the source electrode in the planar view of the semiconductor layer, is 0.9 or more and 1. It may be 1 or less.
  • a third occupancy rate which is the occupancy rate of the area of the second wiring electrode exposed portion in a plan view of the semiconductor layer with respect to the area of the second opening in the plan view of the semiconductor layer, is 1. It may be 27 or more.
  • the shape of the first wiring electrode and the shape of the second wiring electrode are line symmetrical with respect to a center line as an axis of symmetry, and the center line is the axis of symmetry of the semiconductor layer.
  • the device may be bisected in area.
  • a mounting board is a mounting board in which a first wiring layer, an interlayer insulating layer, and a second wiring layer are stacked in this order, and the mounting board is face-up in the interlayer insulating layer.
  • the semiconductor device which is mounted in one or more first connection wirings extending in a direction perpendicular to the mounting board, the top surface of the first wiring electrode being the top surface of the semiconductor
  • the one or more first connection wirings are connected to the first outer circumferential structure in a portion that does not overlap in a plan view of the layer.
  • the first outer peripheral structure and the second outer peripheral structure cut into the material forming the interlayer insulating layer on the upper surface of the semiconductor device.
  • the first outer circumferential structure and the second outer circumferential structure that cut into the material forming the interlayer insulating layer serve as anchors to fix the position of the semiconductor device within the interlayer insulating layer, and as a result, the interlayer It is possible to suppress peeling of the insulating layer and stabilize the position of the semiconductor device inside the mounting board.
  • the material forming the interlayer insulating layer is a resin
  • the first outer peripheral structure and the second outer peripheral structure are formed on the upper surface of the resin solidified after encapsulating the semiconductor device, that is, on the upper surface of the interlayer insulating layer.
  • a reflective protrusion is formed.
  • the first outer peripheral structure formed on the upper surface of the interlayer insulating layer By using the corresponding protrusion as a guideline and drilling a hole inside this protrusion, it is possible to connect the exposed portion of the first wiring electrode from the top surface of the interlayer insulating layer with more precision than when this protrusion does not exist. It is possible to perform processing to make a hole that can be reached.
  • a second hole is formed on the upper surface of the interlayer insulating layer.
  • the mounting board having the above configuration provides a mounting board on which a semiconductor device having a structure suitable for a mounting method in which the semiconductor device is mounted by being embedded in the mounting board is provided.
  • a second wiring formed in the second wiring layer and a second wiring extending in a direction perpendicular to the mounting board connecting the second wiring and the upper surface of the second wiring electrode are further provided.
  • the upper surface of the second wiring electrode is a connection wiring at a portion of the upper surface of the second wiring electrode that does not overlap with the second outer peripheral structure in a plan view of the semiconductor layer.
  • the cross section of the connection wiring perpendicular to the direction in which the second connection wiring extends is circular, and the cross section of at least one of the one or more first connection wirings is larger than the cross section of the second connection wiring. may also be large.
  • a mounting board is a mounting board in which a first wiring layer, an interlayer insulating layer, and a second wiring layer are stacked in this order, and the mounting board is face-up in the interlayer insulating layer.
  • a semiconductor device having a semiconductor layer mounted on the semiconductor device, the semiconductor device having a first wiring electrode on an upper surface, a first wiring formed in the second wiring layer, and the first wiring. and one or more first connection wirings extending in a direction perpendicular to the mounting board and connecting the upper surface of the first wiring electrode to the upper surface of the first wiring electrode.
  • a first outer circumferential structure is formed in an outer circumferential portion of the semiconductor layer in plan view, and the first outer circumferential structure is formed in the first outer circumferential portion of the upper surface of the first wiring electrode in plan view of the semiconductor layer.
  • the uppermost position of the semiconductor device protrudes above a portion that does not overlap with the outer peripheral structure, and the first wiring electrode is located at least on the upper surface of the first wiring electrode.
  • a portion that does not overlap with the first outer peripheral structure is exposed to the outside of the semiconductor device, and the one or more first connection wirings are connected to the upper surface of the first wiring electrode. is connected at a portion of the upper surface of the first wiring electrode of the semiconductor device that does not overlap with the first outer peripheral structure in a plan view of the semiconductor layer.
  • the first outer peripheral structure bites into the material forming the interlayer insulating layer on the upper surface of the semiconductor device.
  • the first outer peripheral structure that bites into the material forming the interlayer insulating layer serves as an anchor to fix the position of the semiconductor device within the interlayer insulating layer, and as a result, the peeling of the interlayer insulating layer on the mounting board is suppressed. Furthermore, the position of the semiconductor device within the mounting board is stabilized.
  • the material forming the interlayer insulating layer is, for example, resin
  • a protrusion reflecting the first outer peripheral structure is formed on the upper surface of the resin solidified after encapsulating the semiconductor device, that is, on the upper surface of the interlayer insulating layer.
  • the first outer peripheral structure formed on the upper surface of the interlayer insulating layer By using the corresponding protrusion as a guideline and drilling a hole inside this protrusion, it is possible to connect the exposed portion of the first wiring electrode from the top surface of the interlayer insulating layer with more precision than when this protrusion does not exist. It is possible to perform processing to make a hole that can be reached.
  • the mounting board having the above configuration provides a mounting board on which a semiconductor device having a structure suitable for a mounting method in which the semiconductor device is mounted by being embedded in the mounting board is provided.
  • the one or more first connection wirings may be plural.
  • the height from the lowest position of the upper surface of the first wiring electrode to the uppermost position of the semiconductor device is greater than the height of the one or more first connections in the direction perpendicular to the mounting board. It may be 15% or more of the length of the wiring.
  • the number of the first wiring electrodes is plural, the one or more first connection wirings are in a one-to-one correspondence with each of the plurality of first wiring electrodes, and the number of the first connection wirings is a plurality of the first wiring electrodes.
  • Each of the one connection wiring is connected to the first wiring by one first wiring electrode of the plurality of first wiring electrodes, which corresponds to the first connection wiring on a one-to-one basis.
  • the cross sections of each of the plurality of first connection wirings perpendicular to the direction in which each of the plurality of first connection wirings extends may be equal to each other.
  • the mounting board has a shape having a longitudinal direction
  • the semiconductor device has a shape having a longitudinal direction
  • the longitudinal direction of the mounting board and the The longitudinal directions may be perpendicular to each other.
  • the electronic component further includes an electronic component disposed above the interlayer insulating layer, the electronic component has a shape having a longitudinal direction in a plan view of the mounting board, and the semiconductor device has a shape having a longitudinal direction.
  • the electronic component may at least partially overlap the semiconductor device, and the longitudinal direction of the electronic component and the longitudinal direction of the semiconductor device may be orthogonal to each other.
  • Embodiment 1 A semiconductor device according to Embodiment 1 will be described below.
  • This semiconductor device is a chip size package type semiconductor device that can be mounted face-up, and has a structure suitable for a mounting method in which it is mounted by being embedded in a mounting board.
  • the semiconductor device according to the first embodiment is a chip size package (CSP) in which N (N is an integer of 1 or more) vertical MOS (Metal Oxide Semiconductor) transistors and which can be mounted face-up. ) type semiconductor device.
  • the N vertical MOS transistors are so-called trench MOSFETs (Field Effect Transistors).
  • N is 2, but N is not necessarily limited to 2, and N may be 1 or may be 3 or more.
  • FIG. 1 is a plan view showing an example of the structure of a semiconductor device 1 according to the first embodiment.
  • the semiconductor device 1 has a rectangular shape in a plan view of the semiconductor device 1 (that is, in a plan view of a semiconductor layer 40 described later).
  • FIG. 2 and 3 are cross-sectional views showing an example of the structure of the semiconductor device 1.
  • 2 shows a cross section taken along line II in FIG. 1
  • FIG. 3 shows a cross section taken along line II-II in FIG.
  • the semiconductor device 1 includes a metal layer 30, a semiconductor layer 40, an oxide film 34, a protective film 35, and a first vertical MOS transistor formed in the semiconductor layer 40.
  • a second vertical MOS transistor 20 formed in the semiconductor layer 40, a first source electrode 13 functioning as a source electrode of the first vertical MOS transistor 10, and a first vertical MOS transistor
  • a first gate electrode 19 functions as a gate electrode of the second vertical MOS transistor 20
  • a second source electrode 23 functions as a source electrode of the second vertical MOS transistor 20
  • a gate electrode of the second vertical MOS transistor 20 a second gate electrode 29 connected to the first source electrode 13, a second wiring electrode 52 connected to the first gate electrode 19, a second source electrode 23 and a fourth wiring electrode 54 connected to the second gate electrode 29.
  • the semiconductor device 1 will be described as including the metal layer 30, but the semiconductor device 1 does not necessarily have to be limited to the configuration including the metal layer 30.
  • the first source electrode 13, the first gate electrode 19, the second source electrode 23, and the second gate electrode 29 are shown as if visually recognized by broken lines. Although shown in the figure, these components cannot actually be directly viewed from outside the semiconductor device 1.
  • the semiconductor layer 40 is configured by laminating the semiconductor substrate 32 and the low concentration impurity layer 33.
  • the semiconductor substrate 32 is disposed on the lower surface side of the semiconductor layer 40 and is made of silicon containing impurities of the first conductivity type.
  • the low concentration impurity layer 33 is disposed on the upper surface side of the semiconductor layer 40 , is formed in contact with the semiconductor substrate 32 , and contains a first conductivity type impurity having a lower concentration than the first conductivity type impurity concentration of the semiconductor substrate 32 .
  • the low concentration impurity layer 33 may be formed on the semiconductor substrate 32 by epitaxial growth, for example.
  • the oxide film 34 is disposed on the upper surface of the semiconductor layer 40 and is formed in contact with the low concentration impurity layer 33.
  • the protective film 35 is a protective film that covers the upper surface of the first vertical MOS transistor 10 and the upper surface of the second vertical MOS transistor 20, and does not expose the first source electrode 13 to the outside of the protective film 35.
  • the protective film 35 covers the upper surface of the first vertical MOS transistor 10 and the upper surface of the second vertical MOS transistor 20, it means that the semiconductor layer 40 is covered with the semiconductor layer 40 excluding the opening when viewed from above.
  • substantially the entire surface of the semiconductor device 1 refers to the outer periphery that slightly remains on the four sides of the semiconductor device 1 after dicing, out of the area of the wafer secured as a dicing margin when dicing and cutting the semiconductor device 1 from the wafer.
  • the opening of the protective film 35 in the present disclosure refers to a shape in which the entire length of the outer periphery of the opening is closed by the protective film 35 when the semiconductor layer 40 is viewed from above. Therefore, in a plan view of the semiconductor layer 40, a shape in which a part of the outer periphery overlaps with the outer periphery area where the oxide film 34 is exceptionally exposed on the upper surface of the semiconductor device 1 is the protective film 35 referred to in the present disclosure. This does not apply to openings.
  • the protective film 35 will be described as having one first opening 61 that exposes the first source electrode 13 to the outside of the protective film 35; A plurality of openings may be provided to expose one source electrode 13 to the outside of the protective film 35.
  • the protective film 35 is described as having one second opening 62 as an opening that exposes the first gate electrode 19 to the outside of the protective film 35; may have a plurality of openings for exposing the first gate electrode 19 to the outside of the protective film 35.
  • the protective film 35 will be described as having one third opening 63 that exposes the second source electrode 23 to the outside of the protective film 35; A plurality of openings may be provided to expose the second source electrode 23 to the outside of the protective film 35.
  • the protective film 35 is described as having one fourth opening 64 as an opening that exposes the second gate electrode 29 to the outside of the protective film 35. may have a plurality of openings for exposing the second gate electrode 29 to the outside of the protective film 35.
  • the protective film 35 may have a single layer structure or a multilayer structure in which a plurality of layers are laminated.
  • the protective film 35 has a multilayer structure (here, The explanation will be given assuming that it has a two-layer structure.
  • the first protective film layer 35A may be made of silicon nitride, and has a thickness of, for example, 0.3 ⁇ m.
  • the second protective film layer 35B may be made of polyimide, and has a thickness of, for example, 8 ⁇ m.
  • the metal layer 30 is formed in contact with the lower surface of the semiconductor substrate 32, and may be made of silver, copper, nickel, or an alloy thereof, or a metal with good conductivity that can function as an electrode. It may be made of materials. Note that the metal layer 30 may contain a trace amount of an element other than metal that is mixed as an impurity in the manufacturing process of the metal material.
  • a first body region 18 containing an impurity of a second conductivity type different from the first conductivity type is formed in a region of the low concentration impurity layer 33 where the first vertical MOS transistor 10 is formed.
  • a first source region 14 containing impurities of a first conductivity type, a first gate conductor 15, and a first gate insulating film 16 are formed in the first body region 18.
  • the first source electrode 13 is connected to the first source region 14 and the first body region 18 through the opening in the oxide film 34.
  • the first source electrode 13 may be made of a metal material including one or more of aluminum, copper, gold, and silver, as an example and not limited to the material.
  • the first wiring electrode 12 is connected to the first source electrode 13 and covers the exposed portion of the first source electrode 13 to the outside of the protective film 35 in the first opening 61 without a gap. As a result, corrosion of the first source electrode 13 by substances outside the semiconductor device 1 is suppressed.
  • the first wiring electrode 12 has copper as its main component, and is formed by plating, as a non-limiting example.
  • the thickness of the first wiring electrode 12 is, for example, 10 ⁇ m.
  • the protective film 35 has one or more openings other than the first opening 61 that expose the first source electrode 13 to the outside of the protective film 35, the semiconductor device 1 , a wiring electrode similar to the first wiring electrode 12 is provided for each of the one or more openings.
  • the first gate electrode 19 is electrically connected to the first gate conductor 15.
  • the first gate electrode 19 may be made of a metal material including any one or more of aluminum, copper, gold, and silver, as a non-limiting example.
  • the second wiring electrode 52 is connected to the first gate electrode 19 and covers the exposed portion of the first gate electrode 19 to the outside of the protective film 35 in the second opening 62 without a gap. Thereby, corrosion of the first gate electrode 19 by substances outside the semiconductor device 1 is suppressed.
  • the second wiring electrode 52 has copper as its main component, and is formed by plating, as an example and not limited thereto.
  • the thickness of the second wiring electrode 52 is, for example, 10 ⁇ m.
  • the protective film 35 has one or more openings other than the second opening 62 that expose the first gate electrode 19 to the outside of the protective film 35, the semiconductor device 1 , a wiring electrode similar to the second wiring electrode 52 is provided for each of the one or more openings.
  • a second body region 28 containing impurities of a second conductivity type different from the first conductivity type is formed in the region of the low concentration impurity layer 33 where the second vertical MOS transistor 20 is formed.
  • a second source region 24 containing impurities of a first conductivity type, a second gate conductor 25, and a second gate insulating film 26 are formed in the second body region 28.
  • the second source electrode 23 is connected to the second source region 24 and the second body region 28 through the opening in the oxide film 34.
  • the second source electrode 23 may be made of a metal material containing any one or more of aluminum, copper, gold, and silver, as a non-limiting example.
  • the third wiring electrode 22 is connected to the second source electrode 23 and covers the exposed portion of the second source electrode 23 to the outside of the protective film 35 in the third opening 63 without a gap. Thereby, corrosion of the second source electrode 23 by substances outside the semiconductor device 1 is suppressed.
  • the third wiring electrode 22 has copper as its main component, and is formed by plating, as a non-limiting example.
  • the thickness of the third wiring electrode 22 is, for example, 10 ⁇ m.
  • the protective film 35 has one or more openings other than the third opening 63 that expose the second source electrode 23 to the outside of the protective film 35, the semiconductor device 1 , a wiring electrode similar to the third wiring electrode 22 is provided for each of the one or more openings.
  • the second gate electrode 29 is electrically connected to the second gate conductor 25.
  • the second gate electrode 29 may be made of a metal material including any one or more of aluminum, copper, gold, and silver, as an example and not limited thereto.
  • the fourth wiring electrode 54 is connected to the second gate electrode 29 and covers the exposed portion of the second gate electrode 29 to the outside of the protective film 35 in the fourth opening 64 without a gap. Thereby, corrosion of the second gate electrode 29 by substances outside the semiconductor device 1 is suppressed.
  • the fourth wiring electrode 54 has copper as its main component, and is formed by plating, as an example and not limited thereto.
  • the thickness of the fourth wiring electrode 54 is, for example, 10 ⁇ m.
  • the protective film 35 has one or more openings other than the fourth opening 64 that expose the second gate electrode 29 to the outside of the protective film 35, the semiconductor device 1 , a wiring electrode similar to the fourth wiring electrode 54 is provided for each of the one or more openings.
  • the maximum thickness of the first wiring electrode 12, the maximum thickness of the second wiring electrode 52, the maximum thickness of the third wiring electrode 22, and the maximum thickness of the fourth wiring electrode 54 are The thickness is thinner than that of the metal layer 30. That is, the thickness of the metal layer 30 is the maximum thickness of the first wiring electrode 12, the maximum thickness of the second wiring electrode 52, the maximum thickness of the third wiring electrode 22, and the maximum thickness of the fourth wiring electrode 52. It is thicker than the maximum thickness of the wiring electrode 54.
  • the first conductivity type is N type and the second conductivity type is P type
  • the first source region 14, second source region 24, semiconductor substrate 32, and low concentration impurity layer 33 are
  • the first body region 18 and the second body region 28 may be an N-type semiconductor, and the first body region 18 and the second body region 28 may be a P-type semiconductor.
  • the first conductivity type is P type
  • the second conductivity type is N type
  • 33 is a P-type semiconductor
  • the first body region 18 and the second body region 28 may be N-type semiconductors.
  • the first vertical MOS transistor 10 and the second vertical MOS transistor 20 are so-called N-channel transistors in which the first conductivity type is N type and the second conductivity type is P type. It will be explained as follows.
  • the first vertical MOS transistor 10 and the second vertical MOS transistor 20 are the same, the first source electrode 13 and the second source electrode 23 are the same, and the first vertical MOS transistor 10 and the second vertical MOS transistor 20 are the same.
  • the first gate electrode 19 and the second gate electrode 29 are the same, the first wiring electrode 12 and the third wiring electrode 22 are the same, and the second wiring electrode 52 and the fourth wiring electrode 54 are the same. will be explained assuming that they are the same.
  • the first vertical MOS transistor 10 and the second vertical MOS transistor 20 will be described as a representative example, and the first source electrode 13 and the second vertical MOS transistor 20 will be described.
  • the second source electrode 23 the first source electrode 13 will be explained as a representative of these, and the first gate electrode 19 and the second gate electrode 29 will be explained as a representative of these.
  • 19 will be explained
  • the first wiring electrode 12 and the third wiring electrode 22 will be explained as a representative example
  • the second wiring electrode 52 and the fourth wiring electrode 54 will be explained.
  • the second wiring electrode 52 will be described as a representative of these.
  • the top surface of the first wiring electrode 12 is exposed to the outside of the semiconductor device 1
  • the top surface of the second wiring electrode 52 is exposed to the outside of the semiconductor device 1.
  • a portion of the upper surface of the first wiring electrode 12 that is exposed to the outside of the semiconductor device 1 is defined as a first wiring electrode exposed portion 71.
  • a portion of the upper surface of the second wiring electrode 52 that is exposed to the outside of the semiconductor device 1 is defined as a second wiring electrode exposed portion 72.
  • the first wiring electrode exposed portion 71 is the upper surface of the first wiring electrode 12
  • the second wiring electrode exposed portion 72 is the upper surface of the second wiring electrode 52. be.
  • the first wiring electrode exposed portion 71 which is the top surface of the first wiring electrode 12, is exposed to the outside of the semiconductor device 1
  • the second wiring electrode exposed portion 71 which is the top surface of the second wiring electrode 52, is exposed to the outside of the semiconductor device 1.
  • the wiring electrode exposed portion 72 is exposed to the outside of the semiconductor device 1 .
  • the area of the first wiring electrode exposed portion 71 is larger than the area of the first opening 61
  • the area of the second wiring electrode is larger than the area of the second opening 62.
  • the first source electrode 13, the protective film 35, and the first wiring electrode 12 are formed on the outer peripheral portion of the first wiring electrode 12 in a plan view of the semiconductor layer 40.
  • a first peripheral structure 101 is formed by laminating layers in this order, and a first gate electrode 19, a protective film 35, and a second wiring are formed on the peripheral part of the second wiring electrode 52 in a plan view of the semiconductor layer 40.
  • a second outer peripheral structure 102 is formed in which the electrodes 52 are stacked in this order.
  • the top layer of the first peripheral structure 101 is the first wiring electrode 12
  • the top layer of the second peripheral structure 102 is the second wiring electrode 52.
  • the first outer peripheral structure 101 protrudes above the upper surface of the portion of the first wiring electrode exposed portion 71 that is not included in the first outer peripheral structure 101.
  • the second outer circumferential structure 102 protrudes above the upper surface of the portion of the second wiring electrode exposed portion 72 that is not included in the second outer circumferential structure 102, and the uppermost position of the semiconductor device 1 is located above the first outer circumferential structure 102. It exists in the outer peripheral structure 101 and/or the second outer peripheral structure 102.
  • FIG. 4 is a captured image of a portion of the upper surface of the semiconductor device 1 near the second wiring electrode 52 taken from diagonally above the semiconductor device 1.
  • a second outer circumferential structure 102 is formed on the outer circumferential portion of the second wiring electrode 52 in a plan view of the semiconductor layer 40, the second outer circumferential structure 102 protruding upward from the upper surface of the portion not included in the second outer circumferential structure 102. You can see what is happening.
  • FIG. 5 is an enlarged cross-sectional view showing the structure of the first outer peripheral structure 101.
  • the second outer peripheral structure 102 will be described as being the same as the first outer peripheral structure 101 with the first source electrode 13 replaced with the first gate electrode 19.
  • the first wiring electrode 12 has a reverse tapered shape toward the outside of the first wiring electrode 12 in a cross-sectional view of the semiconductor layer 40 at the outer peripheral portion of the semiconductor layer 40 in a plan view. It has a first wall surface 201 that does not come into contact with the protective film 35 .
  • the protective film 35 is provided around the first opening 61 in a plan view of the semiconductor layer 40 and toward the first opening 61 in a cross-sectional view of the semiconductor layer 40. It has a first tapered region 202 that is tapered.
  • the first wall surface 201 is located inside the first tapered region 202.
  • the second wiring electrode 52 has a second wall surface that is inversely tapered toward the outside of the second wiring electrode 52 in a cross-sectional view of the semiconductor layer 40 at the outer peripheral portion of the semiconductor layer 40 in a plan view. It has a second wall surface that does not come into contact with the protective film 35.
  • the protective film 35 is placed around the second opening 62 in a plan view of the semiconductor layer 40 and has a tapered shape toward the second opening 62 in a cross-sectional view of the semiconductor layer 40. It has a second tapered region.
  • the second wall surface is located inside the second tapered region.
  • the first outer peripheral structure 101 and the second outer peripheral structure 102 that bite into the resin serve as anchors to fix the position of the semiconductor device 1 within the resin, and as a result, the resin peeling on the mounting board is suppressed, and , stabilization of the position of the semiconductor device 1 inside the mounting board is realized.
  • protrusions reflecting the first outer circumferential structure 101 and the second outer circumferential structure 102 are formed on the upper surface of the resin solidified after encapsulating the semiconductor device 1.
  • a protrusion corresponding to the first outer peripheral structure 101 is formed on the upper surface of the resin.
  • a hole that reaches the first wiring electrode exposed portion 71 from the upper surface of the resin can be made more accurately than in the case where this protrusion does not exist. Can be processed.
  • the second outer peripheral structure 102 formed on the upper surface of the resin is processed.
  • the second wiring electrode exposed portion 72 can be reached from the upper surface of the resin with more precision than when this protrusion does not exist. Can be used to make holes.
  • the semiconductor device 1 having the above configuration provides a semiconductor device having a structure suitable for a mounting method in which the semiconductor device is mounted by being embedded in a mounting board.
  • the area of the first wiring electrode exposed portion 71 is larger than the area of the first opening 61
  • the area of the second wiring electrode exposed portion 72 is larger than the area of the second wiring electrode exposed portion 72.
  • the area of the opening 62 is larger than that of the opening 62 .
  • the area of the first wiring electrode exposed portion 71 is not larger than the area of the first opening 61
  • the area of the second wiring electrode exposed portion 72 is not larger than the area of the second wiring electrode exposed portion 72.
  • the semiconductor device 1 When mounting the semiconductor device 1 by embedding it in a mounting board, the semiconductor device 1 may receive stress and impact from the mounting board.
  • the thickness from the bottom surface of the semiconductor layer 40 to the top surface of the protective film 35 (hereinafter also referred to as "Si thickness") with respect to the area of the semiconductor device 1 in plan view of the semiconductor layer 40 (hereinafter also referred to as “chip area”) is If it is too small, sufficient resistance of the semiconductor device 1 to the stress and impact received from these mounting boards cannot be obtained.
  • the inventors conducted experiments and studies on the relationship between the resistance of the semiconductor device 1 to stress and impact received from the mounting board, the shape of the semiconductor device 1 in plan view of the semiconductor layer 40, and the Si thickness. As a result, the inventors found that when the shape of the semiconductor device 1 in plan view of the semiconductor layer 40 is 2 [mm] x 2 [mm], if the Si thickness is 0.1 mm or more, the semiconductor device 1 is It was found that sufficient resistance to stress and impact from the mounting board can be obtained.
  • the inventors further experimented and studied, and when the shape of the semiconductor device 1 in plan view of the semiconductor layer 40 is made smaller than 2 [mm] x 2 [mm], The knowledge that even if the Si thickness h [mm] is reduced in proportion to the chip area S [mm 2 ], the semiconductor device 1 can obtain sufficient resistance to stress and impact received from the mounting board, and When the shape of the semiconductor device 1 in plan view of the layer 40 is made larger than 2 [mm] x 2 [mm], the Si thickness h [mm] is increased in proportion to the chip area S [mm 2 ]. It has been found that if this is done, the semiconductor device 1 can obtain sufficient resistance to stress and impact received from the mounting board.
  • FIG. 6 shows the relationship between the resistance of the semiconductor device 1 to stress and impact received from the mounting board, the shape of the semiconductor layer 40 in a plan view, and the Si thickness, which the inventors obtained through experiments and studies.
  • FIG. 6 shows the relationship between the resistance of the semiconductor device 1 to stress and impact received from the mounting board, the shape of the semiconductor layer 40 in a plan view, and the Si thickness, which the inventors obtained through experiments and studies.
  • the semiconductor device 1 will receive a Provides sufficient resistance to stress and impact.
  • FIG. 7 schematically shows an example of how the semiconductor device 1 is deformed due to the heat treatment process during resin sealing when the semiconductor device 1 is resin-sealed in a mounting board and mounted face-up.
  • 2 is a cross-sectional view of the semiconductor device 1 and the first outer peripheral structure 101.
  • the semiconductor device 1 has the maximum thickness of the first wiring electrode 12, the maximum thickness of the second wiring electrode 52, the maximum thickness of the third wiring electrode 22, and , the metal layer 30 is thicker than the maximum thickness of the fourth wiring electrode 54.
  • the metal for example, silver, copper, nickel, or an alloy thereof
  • the semiconductor containing impurities for example, silicon doped with impurities
  • the temperature of the semiconductor device 1 also rises during the heat treatment for curing the resin that is performed when the semiconductor device 1 is resin-sealed within the mounting board.
  • No. 1 a warpage occurs with the back surface being convex.
  • the inclination of the first wall surface 201 of the first outer peripheral structure 101 which has an inversely tapered shape, is greater than that before the heat treatment, as shown in FIGS. 7(a) and (b). , will change to the upper side of the semiconductor device 1.
  • the inclination of the first wall surface 201 of the first outer peripheral structure 101 which has an inversely tapered shape, is determined by the inclination of the semiconductor device 1 during the process in which the temperature of the resin and the semiconductor device 1 is cooled after the heat treatment is completed.
  • the shape changes from the upper side of the semiconductor device 1 to the lower side. Due to this change, the first outer circumferential structure 101 bites into the resin more firmly than in a configuration that does not have the first wall surface 201 having an inverted tapered shape.
  • the first outer circumferential structure 101 has the first wall surface 201 having an inversely tapered shape, so that the first outer peripheral structure 101 has a higher internal resistance within the resin than a structure that does not have the first wall surface 201. serves as an anchor to more firmly fix the position of the semiconductor device 1 in the mounting board, and as a result, further suppression of resin peeling on the mounting board and further stabilization of the position of the semiconductor device 1 inside the mounting board are realized.
  • the second outer peripheral structure 102 has the second wall surface having an inversely tapered shape, so that the second outer peripheral structure 102 has a second wall surface that has a reverse tapered shape. , serves as an anchor to more firmly fix the position of the semiconductor device 1 within the resin, and as a result, further suppresses peeling of the resin on the mounting board and further stabilizes the position of the semiconductor device 1 inside the mounting board. be done.
  • the first wall surface 201 is located inside the first tapered region 202 in a plan view of the semiconductor layer 40.
  • the first outer peripheral structure 101 is more firmly attached to the resin than a configuration in which the first wall surface 201 is not located inside the first tapered region 202. It will bite.
  • the first outer peripheral structure 101 has the first wall surface 201 located inside the first tapered region 202 when the semiconductor layer 40 is viewed from above. 40, compared to a configuration in which the first wall surface 201 is not located inside the first tapered region 202, the first wall surface 201 serves as an anchor to more firmly fix the position of the semiconductor device 1 within the resin. As a result, further suppression of resin peeling on the mounting board and further stabilization of the position of the semiconductor device 1 inside the mounting board are realized.
  • the second outer peripheral structure 102 has a second wall surface located inside the second tapered region when the semiconductor layer 40 is viewed from above.
  • the second wall surface acts as an anchor to more firmly fix the position of the semiconductor device 1 within the resin compared to a configuration in which the second wall surface is not located inside the second tapered region;
  • first wall surface 201 and the second wall surface having an inversely tapered shape have a reversely tapered shape around the outer periphery of the first wiring electrode 12 and the second wiring electrode 52 in a plan view of the semiconductor layer 40.
  • only a portion along the outer periphery may have an inverted tapered shape.
  • the inverted tapered shape should be provided in a portion that matches the direction in which the semiconductor device 1 is warped the most. is preferred.
  • the semiconductor device 1 is a rectangle with a longitudinal direction
  • the warp in the longitudinal direction is the largest warp, so the semiconductor
  • a reverse taper shape is provided in a portion including a position orthogonal to the longitudinal direction of the device 1.
  • FIG. 8 shows a case where, in a plan view of the semiconductor layer 40, the area of the first source electrode 13 is M1, the area of the first opening 61 is S1, and the area of the first wiring electrode exposed portion 71 is P1.
  • S1/M1 where the ratio of the area of the first opening 61 to the area of the first source electrode 13 is 0.5 or more and less than 1.0 (hereinafter also referred to as "first case").
  • FIG. 2 is a plan view of the semiconductor device 1 in FIG.
  • the first wiring electrode exposed portion 71 is not illustrated in FIG. 8 and FIG. 10 described later, the area P1 of the first wiring electrode exposed portion 71 in a plan view of the semiconductor layer 40 is In FIG. 10, which will be described later, the area corresponds to the area of the first wiring electrode 12.
  • FIG. 9 is a cross-sectional view of the semiconductor device 1 in the first case, showing a cross section taken along III-III in FIG.
  • FIG. 10 shows that the ratio of the area of the first opening 61 to the area of the first source electrode 13, represented by S1/M1, is 0.9 or more and less than 1.0, and is represented by P1/M1.
  • the plane of the semiconductor device 1 in the case where the area occupation ratio of the first wiring electrode exposed portion 71 to the area of the first source electrode 13 is 0.5 or more (hereinafter also referred to as "second case") It is a diagram.
  • FIG. 11 is a cross-sectional view of the semiconductor device 1 in the second case, showing a cross section taken along IV-IV in FIG.
  • S1/M1 is set to 0. It is preferable to set it to 5 or more, that is, it is preferable that S1/M1 is 0.5 or more and less than 1.0.
  • S1/M1 is preferably less than 1.0 is that when the area S1 of the first opening 61 is larger than the area M1 of the first source electrode 13 in a plan view of the semiconductor layer 30, This is because the first opening 61 opens to a region of the oxide film 34 that is not covered with the first source electrode 13.
  • S1/M1 is 0. More preferably, the ratio is .9 or more and less than 1.0, and P1/M1 is 0.9 or more and 1.1 or less. This is intended to increase the exposure of the first source electrode 13 to the outside as much as possible in order to reduce the on-resistance of the semiconductor device 1 and to improve the heat dissipation characteristics of the semiconductor device 1.
  • the area of the first gate electrode 19 is M2
  • the area of the second opening 62 is S2
  • the exposed area of the second wiring electrode 72 In the case where the area of ing.
  • the occupation ratio of the area of the second wiring electrode exposed portion 72 to the area of the first gate electrode 19, represented by P2/M2, is 0.9 or more and 1.1 It is valid that:
  • the area P2 of the wiring electrode exposed portion 72 is preferably larger than the area S2 of the second opening 62 in a plan view of the semiconductor layer 40.
  • the second opening 62 is often circular in plan view of the semiconductor layer 40.
  • the semiconductor layer 40 is rectangular in plan view.
  • the second wiring electrode exposed portion 72 in the plan view of the semiconductor layer 40 is made rectangular.
  • the shape of the rectangular second wiring electrode exposed portion 72, which is larger than S2 is a square circumscribing the circular second opening 62.
  • the area of the square circumscribing the circle is 1.27 times the area of the circle.
  • the ratio of the area of the second wiring electrode exposed portion 72 to the area of the second opening 62, represented by P2/S2, is preferably 1.27 or more.
  • the first wiring electrode exposed portion 71 is well connected to the external wiring of the semiconductor device 1 through a hole made in the resin sealing the semiconductor device 1, and the second wiring electrode exposed portion 72 is connected well to the external wiring of the semiconductor device 1.
  • the area of the second wiring electrode 52 is as large as possible, and that the shape of the first wiring electrode 12 and the shape of the second wiring electrode 52 are equal.
  • FIG. 12 is a plan view showing an example of the structure of the semiconductor device 1 in which the first wiring electrode 12 and the second wiring electrode 52 realize the above-mentioned desired shape.
  • the shape of the first wiring electrode 12 and the shape of the second wiring electrode 52 are symmetrical with respect to the center line as the axis of symmetry.
  • the semiconductor device 1 By forming the semiconductor device 1 into a shape that divides the semiconductor device 1 into two in terms of area, the semiconductor device 1 achieves the above-mentioned preferred shape.
  • the protective film 35 included in the semiconductor device 1 has been described as having a single layer structure or a multilayer structure. It is essential that the protective film 35 included in the semiconductor device according to No. 2 has a multilayer structure. Therefore, in the following description, the protective film 35 included in the semiconductor device according to the second embodiment has a multilayer structure (herein, a two-layer structure) in which the first protective film layer 35A and the second protective film layer 35B are laminated. ).
  • FIG. 13 is a plan view showing an example of the structure of a semiconductor device 1A according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing an example of the structure of the semiconductor device 1A, and shows a cross section taken along the line VV in FIG.
  • the first outer structure 101 is changed from the semiconductor device 1 according to the first embodiment to the first outer structure 101A according to the second embodiment, and
  • the outer circumferential structure 102 is changed to a second outer circumferential structure 102A according to the second embodiment.
  • a first source electrode 13 and a first protective film layer are provided on the outer peripheral portion of the first wiring electrode 12 in a plan view of the semiconductor layer 40.
  • 35A, the first wiring electrode 12, and the second protective film layer 35B are stacked in this order to form a first outer peripheral structure 101A.
  • a second outer peripheral structure 102A is formed in the portion where the first gate electrode 19, the first protective film layer 35A, the second wiring electrode 52, and the second protective film layer 35B are laminated in this order. .
  • the top layer of the first peripheral structure 101A is the second protective film layer 35B
  • the top layer of the second peripheral structure 102A is the second protective film layer 35B.
  • the entire top surface of the first wiring electrode 12 is exposed to the outside of the semiconductor device 1, and the entire top surface of the second wiring electrode 52 is exposed to the outside of the semiconductor device 1.
  • a portion of the upper surface of the first wiring electrode 12 that is not included in the first outer peripheral structure 101A is exposed to the outside of the semiconductor device 1A.
  • a portion of the upper surface of the second wiring electrode 52 that is not included in the second outer peripheral structure 102A is exposed to the outside of the semiconductor device 1A.
  • the portion of the upper surface of the first wiring electrode 12 exposed to the outside of the semiconductor device 1A is defined as the first wiring electrode exposed portion 71
  • the portion of the upper surface of the second wiring electrode 52 is defined as the first wiring electrode exposed portion 71
  • the portion exposed to the outside of the semiconductor device 1A is defined as a second wiring electrode exposed portion 72.
  • the first wiring electrode exposed portion 71 is a portion of the upper surface of the first wiring electrode 12 that is not included in the first outer peripheral structure 101A
  • the electrode exposed portion 72 is a portion of the upper surface of the second wiring electrode 52 that is not included in the second outer peripheral structure 102A.
  • the first wiring electrode exposed portion 71 which is a portion of the upper surface of the first wiring electrode 12 that is not included in the first outer peripheral structure 101A, is exposed to the outside of the semiconductor device 1A.
  • the exposed second wiring electrode exposed portion 72 which is a portion of the upper surface of the second wiring electrode 52 that is not included in the second outer peripheral structure 102A, is exposed to the outside of the semiconductor device 1A.
  • the area of the first wiring electrode exposed portion 71 is larger than the area of the first opening 61 in a plan view of the semiconductor layer 40.
  • the area of the second wiring electrode exposed portion 72 is larger than the area of the second opening 62.
  • the first outer peripheral structure 101A protrudes above the upper surface of the first wiring electrode exposed portion 71
  • the second outer peripheral structure 102A protrudes above the upper surface of the second wiring electrode exposed portion 72.
  • the uppermost position of the semiconductor device 1A is located in the first outer peripheral structure 101A and/or the second outer peripheral structure 102A.
  • the thickness of the first wiring electrode 12 in the first outer peripheral structure 101A is adjusted to the first thickness.
  • the second thickness is preferably equal to or less than the first thickness.
  • the second protective film layer 35B will uniformly cover the first wiring electrode 12, so the first outer peripheral structure 101A This is because it becomes difficult to form.
  • the thickness of the second interconnect electrode 52 in the second outer circumferential structure 102A is Assuming that the thickness of the second protective film layer 35B in the second outer peripheral structure 102A is the fourth thickness, the fourth thickness is preferably equal to or less than the third thickness.
  • the inventors discovered that when the semiconductor device 1A is resin-sealed in a mounting board and mounted face-up, the first outer peripheral structure 101A and the second outer peripheral structure 102A are sufficiently penetrated into the resin.
  • the height of the first outer circumferential structure 101A based on the top surface of the first wiring electrode exposed portion 71 and the second outer circumferential structure based on the top surface of the second wiring electrode exposed portion 72 required for We repeated experiments and studies regarding the height of 102A.
  • the inventors found that the height of the first outer peripheral structure 101A with respect to the upper surface of the first wiring electrode exposed portion 71 is equal to the thickness of the first wiring electrode 12 in the first opening 61.
  • the first outer circumferential structure 101A and the second outer circumferential structure 102A sufficiently digging into the resin means that the first outer circumferential structure 101A and the second outer circumferential structure 102A biting into the resin are the semiconductor device 1A inside the resin. It means to dig in to the extent that it acts as an anchor to fix the position of the
  • the inventors have found that in order to strengthen the first outer peripheral structure 101A's bite into the resin, if the amount of bite is 10% or more relative to the thickness of the resin, it will be stable and strong. This method was found to be effective in obtaining a strong anchor effect.
  • the thickness of the first wiring electrode 12 must have a sufficient margin in the process of making holes in the resin by laser processing, etc., which will be performed later. , it is required that the thickness be approximately 1/3 or more of the thickness of the resin sealed directly above.
  • the desired amount of bite (the height of the first outer peripheral structure 101A based on the upper surface of the first wiring electrode exposed part 71 and the height of the second outer peripheral structure 101A based on the upper surface of the second wiring electrode exposed part 72),
  • the height of the structure 102A is at least 30% or more of the thickness of the first wiring electrode 12, in the present disclosure, in order to obtain a more stable and strong anchor effect, the height of the first wiring electrode 12A is at least 30% of the thickness of the first wiring electrode 12. It was decided that the thickness should be 50% or more of the thickness of
  • the inventors also found that the height of the first outer peripheral structure 101A with respect to the upper surface of the first wiring electrode exposed portion 71 is 50% of the thickness of the first wiring electrode 12 in the first opening 61. %, and the height of the second outer peripheral structure 102A based on the upper surface of the second wiring electrode exposed portion 72 is 50% of the thickness of the second wiring electrode 52 in the second opening 62.
  • protrusions reflecting the first outer peripheral structure 101A and the second outer peripheral structure 102A are formed on the upper surface of the resin solidified after encapsulating the semiconductor device 1A.
  • the second thickness is greater than half the first thickness and less than or equal to the first thickness
  • the fourth thickness is The thickness should be greater than half of the third thickness and less than or equal to the third thickness.
  • the second protective film layer 35B is usually formed of viscous polyimide. Therefore, when forming the second protective film layer 35B on a portion having a structure with a step such as the first outer peripheral structure 101A and the second outer peripheral structure 102A, the polyimide on the upper side of the step As a result, the second protective film layer 35B having a desired shape may not be formed.
  • the inventors discovered that the second outer peripheral structure can suppress the polyimide on the upper side of the step from flowing to the lower side of the step.
  • the shape of the protective film layer 35B and the shapes of the first outer circumferential structure 101A and the second outer circumferential structure 102A were repeated regarding the shape of the protective film layer 35B and the shapes of the first outer circumferential structure 101A and the second outer circumferential structure 102A.
  • the inventors found that the minimum width of the portion of the second protective film layer 35B that overlaps with the first wiring electrode 12 in a plan view of the semiconductor layer 40 is If the thickness of the semiconductor layer 40 is larger than the thickness of the portion that does not overlap with the first wiring electrode 12 or the second wiring electrode 52 in plan view, the polyimide on the upper side of the step will be removed when forming the first outer peripheral structure 101A. and the minimum width of the portion of the second protective film layer 35B that overlaps with the second wiring electrode 52 in a plan view of the semiconductor layer 40.
  • the second outer peripheral structure 102A is larger than the thickness of the portion of the second protective film layer 35B that does not overlap with the first wiring electrode 12 or the second wiring electrode 52 in a plan view of the semiconductor layer 40, the second outer peripheral structure 102A is It has been found that during formation, polyimide on the upper side of the step can be prevented from flowing to the lower side of the step.
  • the minimum width of the portion of the semiconductor layer 40 that overlaps with the first wiring electrode 12 in a plan view of the semiconductor layer 40 of the second protective film layer 35B is The thickness of the semiconductor layer 40 is larger than the thickness of the portion that does not overlap with the first wiring electrode 12 or the second wiring electrode 52 in a plan view of the semiconductor layer 40 in a plan view of the second protective film layer 35B.
  • the minimum width of the portion that overlaps with the electrode 52 is larger than the thickness of the portion of the second protective film layer 35B that does not overlap with the first wiring electrode 12 or the second wiring electrode 52 in a plan view of the semiconductor layer 40. I decided to become one.
  • the semiconductor device 1A having the above configuration when the semiconductor device 1A is resin-sealed in a mounting board and mounted face-up, as in the case of the semiconductor device 1 according to the first embodiment, the upper surface of the semiconductor device 1A In this case, the first outer circumferential structure 101A and the second outer circumferential structure 102A bite into the resin.
  • the first outer peripheral structure 101A and the second outer peripheral structure 102A that bite into the resin serve as anchors to fix the position of the semiconductor device 1A within the resin, and as a result, the resin peeling on the mounting board is suppressed, and , the position of the semiconductor device 1A inside the mounting board is stabilized.
  • protrusions reflecting the first outer peripheral structure 101A and the second outer peripheral structure 102A are formed on the upper surface of the resin solidified after encapsulating the semiconductor device 1A. It is formed.
  • a protrusion corresponding to the first outer peripheral structure 101A is formed on the upper surface of the resin.
  • a hole that reaches the first wiring electrode exposed portion 71 from the upper surface of the resin can be made more accurately than in the case where this protrusion does not exist. Can be processed.
  • the second outer peripheral structure 102A formed on the upper surface of the resin is By using the corresponding protrusion as a guideline and drilling a hole inside this protrusion, the second wiring electrode exposed portion 72 can be reached from the upper surface of the resin with more precision than when this protrusion does not exist. Can be used to make holes.
  • a semiconductor device having a structure suitable for a mounting method in which it is mounted by being embedded in a mounting board is provided. .
  • the area of the first wiring electrode exposed portion 71 is larger than the area of the first opening 61
  • the area of the second wiring electrode exposed portion 72 is larger than the area of the second wiring electrode exposed portion 72.
  • the area of the opening 62 is larger than that of the opening 62 .
  • the area of the first wiring electrode exposed portion 71 is not larger than the area of the first opening 61 in a plan view of the semiconductor layer 40.
  • the area of the second wiring electrode exposed portion 72 is not larger than the area of the second opening 62, compared to the case where the area of the second wiring electrode exposed portion 72 is not larger than the area of the second opening 62; Furthermore, the degree of freedom in machining a hole that reaches the first wiring electrode exposed portion 71 from the upper surface of the resin can be increased.
  • S1/M1 is preferably set to 0.5 or more, that is, S1/M1 is set to 0.5 or more and 1. It is preferably less than 0, and more specifically, in the semiconductor device 1A, S1/M1 is 0.9 or more and less than 1.0, and P1/M1 is 0.9 or more and 1.1 or less. It is more preferable.
  • P2/M2 is 0.9 or more and 1.1 or less.
  • P2/S2 is preferably 1.27 or more.
  • the shape of the first wiring electrode 12 and the shape of the second wiring electrode 52 are different from each other in a plan view of the semiconductor layer 40.
  • the semiconductor device 1A has line symmetry with the center line as the axis of symmetry, and the center line bisects the semiconductor device 1A in area.
  • the external wiring of the semiconductor device 1A is well connected to the external wiring of the semiconductor device 1A through a hole made in the resin that seals the semiconductor device 1A, and the second wiring electrode exposed portion 72 is connected to the external wiring of the semiconductor device 1A through a hole made in the resin that seals the semiconductor device 1A.
  • a shape suitable for good connection with external wiring of the semiconductor device 1A is realized.
  • the protective film 35 has been described as having a two-layer structure in which two layers, the first protective film layer 35A and the second protective film layer 35B, are laminated. may have a multilayer structure in which three or more layers are laminated.
  • FIG. 15 is an enlarged cross-sectional view showing an example of the structure of the first outer peripheral structure 101A when the protective film 35 has a three-layer structure.
  • the protective film 35 has a three-layer structure, in addition to the first protective film layer 35A and the second protective film layer 35B, the first protective film layer 35A and A third protective film layer 35C sandwiched between a second protective film layer 35B and a third protective film layer 35C may be stacked.
  • Embodiment 2 may not hold true if the thickness of the first wiring electrode 12 and the second wiring electrode 52 is excessively thinner than 10 ⁇ m. There are certain things you need to be aware of.
  • the semiconductor device 1 according to the first embodiment or the semiconductor device 1A according to the second embodiment, or the semiconductor device 1 or the semiconductor device 1A, the first wiring electrode 12, the second wiring electrode 52, and the protection A mounting board according to a third embodiment in which a semiconductor device (hereinafter also referred to as a "semiconductor device for mounting") having the same structure as the film 35 is mounted face-up within an interlayer insulating film will be described.
  • the semiconductor device mounted on the mounting board according to the third embodiment is described as the semiconductor device 1, but the semiconductor device mounted on the mounting board according to the third embodiment is the semiconductor device 1A.
  • FIG. 16 is a plan view showing an example of the structure of the mounting board 70 according to the third embodiment.
  • the mounting board 70 has a shape having a longitudinal direction.
  • the X-axis direction in FIG. 16 is the longitudinal direction of the mounting board 70.
  • FIG. 17 is a cross-sectional view showing an example of the structure of the mounting board 70.
  • FIG. 17 shows a cross section taken along VI-VI in FIG. 16.
  • the mounting board 70 includes a first wiring layer 76, an interlayer insulating film 78, and a second wiring layer 77. 78 and the second wiring layer 77 are stacked in this order.
  • the mounting board 70 is described here as having two wiring layers, a first wiring layer 76 and a second wiring layer 77, the mounting board 70 has two wiring layers as wiring layers. There is no need to limit the structure to include two wiring layers, the first wiring layer 76 and the second wiring layer 77.
  • the mounting board 70 may include one or more additional wiring layers below the first wiring layer 76 and/or above the second wiring layer 77. It doesn't matter if there is.
  • the mounting board 70 further includes the semiconductor device 1, the electronic component 81, and one or more first connection wires 91 (here, the first connection wire 91A in FIGS. 16 and 17) in the interlayer insulating film 78.
  • first connection wires 91 here, the first connection wire 91A in FIGS. 16 and 17
  • An electronic component 82 and an electronic component 83 are provided on the second wiring layer 77 .
  • the description will be made assuming that the semiconductor device 1 is a rectangle with a longitudinal direction, and the electronic component 83 is a rectangle with a longitudinal direction.
  • the Y-axis direction in FIG. 16 is the longitudinal direction of the semiconductor device 1
  • the X-axis direction in FIG. 16 is the longitudinal direction of the electronic component 83.
  • a semiconductor device 1 an electronic component 81, one or more first connection wirings 91, a second connection wiring 92, a first wiring electrode 12, a second wiring electrode 52, Although these components are illustrated with broken lines as if they can be visually recognized, in reality, these components cannot be visually recognized from the outside of the mounting board 70.
  • the first wiring layer 76 and the second wiring layer 77 form wiring for electrically connecting components mounted on the mounting board 70 and/or components external to the mounting board 70, respectively. This is a layer for
  • the interlayer insulating film 78 is an insulating film sandwiched between the first wiring layer 76 and the second wiring layer 77.
  • the interlayer insulating film 78 will be described as being made of resin.
  • the semiconductor device 1 is mounted face-up within the interlayer insulating film 78. At this time, the semiconductor device 1 is arranged in the longitudinal direction of the semiconductor device 1 (here, the Y-axis direction in FIG. 16) and the longitudinal direction of the mounting substrate 70 (here, the Y-axis direction in FIG. 16) in a plan view of the mounting substrate 70. (X-axis direction) are orthogonal to each other.
  • the electronic component 81 is mounted within the interlayer insulating film 78, and the electronic component 82 is mounted on the second wiring layer 77.
  • the electronic component 83 is mounted on the second wiring layer 77. At this time, in a plan view of the mounting board 70, the electronic component 83 at least partially overlaps the semiconductor device 1, and the longitudinal direction of the electronic component 83 (here, the X-axis direction in FIG. 16) and the semiconductor device 1 (in this case, the Y-axis direction in FIG. 16) are mounted in directions perpendicular to each other.
  • the first wiring 96 is formed in the second wiring layer 77 and is made of, for example, copper, silver, or an alloy thereof.
  • the second wiring 97 is formed in the second wiring layer 77 and is made of, for example, copper, silver, or an alloy thereof.
  • Each of the one or more first connection wirings 91 connects the first wiring 96 and the upper surface of the first wiring electrode 12 of the semiconductor device 1 in a direction perpendicular to the mounting board 70 (here, in FIG. , the Z-axis direction in FIG. 17), and is made of copper.
  • Each of the one or more first connection wirings 91 is such that the upper surface of the first wiring electrode 12 does not overlap with the first outer peripheral structure 101 in a plan view of the semiconductor layer 40 among the first wiring electrodes 12. Connect at parts.
  • each of the one or more first connection wirings 91 is formed by applying interlayer insulation to the interlayer insulating film 78 by, for example, laser processing.
  • a hole is formed extending from the upper surface of the film 78 to the upper surface of the first wiring electrode 12, and the hole is filled with copper.
  • Each of the one or more first connection wirings 91 has a circular cross section perpendicular to the direction in which each of the one or more first connection wirings 91 extends.
  • first connection wires 91 are described here as four, first connection wires 91A to first connection wires 91D, it is not necessarily limited to four. There may be one, or a plurality of numbers other than four.
  • first connection wirings 91 If there are a plurality of one or more first connection wirings 91, even if one of the plurality of first connection wirings 91 is disconnected, the other one or more first connection wirings 91 can connect the first wiring The connection between the electrode 12 and the first wiring 96 can be maintained.
  • the resistance value of the one or more first connection wirings 91 can be reduced compared to the case where there is only one first connection wiring 91, and , it is possible to realize highly efficient heat dissipation through one or more first connection wirings 91.
  • the second connection wiring 92 connects the second wiring 97 and the upper surface of the second wiring electrode 52 of the semiconductor device 1 in a direction perpendicular to the mounting board 70 (Z-axis direction in FIGS. 16 and 17).
  • the wiring extends to the wire and is made of copper.
  • the second connection wiring 92 is connected to the upper surface of the second wiring electrode 52 at a portion of the second wiring electrode 52 that does not overlap with the second outer peripheral structure 102 in a plan view of the semiconductor layer 40.
  • the second connection wiring 92 is formed from the upper surface of the interlayer insulating film 78 by, for example, laser processing. A hole reaching the upper surface of the second wiring electrode 52 is formed, and the hole is filled with copper.
  • the cross section of at least one of the one or more first connection wires 91 may be larger than the cross section of a second connection wire 92 described later. This is because in the first vertical MOS transistor 10, the current flowing through the first source electrode 13 is larger than the current flowing through the first gate electrode 19.
  • FIG. 18 shows the structure of the mounting board 70 when the semiconductor device 1 has a plurality of first wiring electrodes 12 (here, there are six first wiring electrodes 12A to 12F). It is an enlarged plan view showing an example.
  • the first connection wiring 91E to the first connection wiring 91J), the second connection wiring 92, etc. are illustrated as if they can be visually recognized by broken lines, but in reality, these configurations are The elements cannot be visually recognized from outside the mounting board 70.
  • each of the plurality of first connection wirings 91 is connected to the first connection wiring 91 by one of the plurality of first wiring electrodes 12, which corresponds to the first connection wiring 91 on a one-to-one basis. Connect to wiring 96.
  • each of the plurality of first connection wirings 91 perpendicular to the direction in which each of the plurality of first connection wirings 91 extends may be equal to each other.
  • the semiconductor device 1 is a semiconductor device having a structure suitable for a mounting method in which the semiconductor device 1 is embedded in the mounting substrate 70 and mounted.
  • the mounting board 70 having the above configuration provides a mounting board on which the semiconductor device 1 having a structure suitable for a mounting method in which the semiconductor device 1 is mounted by being embedded in the mounting board 70 is provided.
  • the semiconductor device mounted on the mounting board 70 is the semiconductor device 1A or a semiconductor device for mounting.
  • the mounting substrate 70 has a shape having a longitudinal direction
  • the semiconductor device 1 has a shape having a longitudinal direction
  • the longitudinal direction of the mounting substrate 70 and the longitudinal direction of the semiconductor device 1 are perpendicular to each other.
  • the electronic component 83 which at least partially overlaps with the semiconductor device 1, has a shape having a longitudinal direction, and the semiconductor device 1 has a shape having a longitudinal direction, and the electronic component 83 has a shape having a longitudinal direction.
  • the longitudinal direction of the component 83 and the longitudinal direction of the semiconductor device 1 are orthogonal to each other.
  • the height from the lowest position of the upper surface of the first wiring electrode 12 to the uppermost position of the semiconductor device 1 is 1 or more in the direction orthogonal to the mounting board 70.
  • the length may be 15% or more of the length of the first connection wiring 91.
  • the length of the first connection wiring 91 is equivalent to the thickness of the resin sealed directly above the semiconductor device 1.
  • the height from the lowest position of the upper surface of the first wiring electrode 12 to the uppermost position of the semiconductor device 1 is the amount of penetration into the resin, and in the present disclosure, the height of the first wiring electrode It is assumed that 50% of the thickness of 12 is secured.
  • a protrusion reflecting the first outer peripheral structure 101 is formed on the upper surface of the interlayer insulating film 78, and in the process of forming the first connection wiring 91, an interlayer When forming a hole extending from the upper surface of the insulating film 78 to the upper surface of the first wiring electrode 12, a sufficient margin for the thickness of the first wiring electrode 12 can be secured.
  • the present disclosure can be widely used in semiconductor devices, mounting boards, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置(1)は、半導体層(40)と、半導体層(40)内に形成された縦型MOSトランジスタ(10)と、保護膜(35)と、縦型MOSトランジスタ(10)のソース電極(13)に接続された第1の配線電極(12)と、縦型MOSトランジスタ(10)のゲート電極(19)に接続された第2の配線電極(52)とを備え、半導体層(40)の平面視における第1の配線電極(12)の外周部分に、ソース電極(13)と保護膜(35)と第1の配線電極(12)とがこの順に積層された、半導体装置(1)の上方に突出する第1の外周構造(101)が形成され、半導体層(40)の平面視における第2の配線電極(52)の外周部分に、ゲート電極(19)と保護膜(35)と第2の配線電極(52)とがこの順に積層された、半導体装置(1)の上方に突出する第2の外周構造(102)が形成される。

Description

半導体装置および実装基板
 本開示は、半導体装置、および、半導体装置を実装する実装基板に関する。
 従来、半導体装置が知られている(例えば、特許文献1参照)。
特開2019-169579号公報
 近年、半導体装置を実装する実装基板の省スペース化を実現するために、半導体装置を実装基板内部に埋め込んで実装する実装方法が提案されている。
 そこで、本開示は、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置等を提供することを目的とする。
 本開示の一態様に係る半導体装置は、フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、半導体層と、前記半導体層内に形成された縦型MOS(Metal Oxide Semiconductor)トランジスタと、前記縦型MOSトランジスタの上面を被覆する保護膜であって、前記縦型MOSトランジスタのソース電極を前記保護膜の外部に露出させる第1の開口部と、前記縦型MOSトランジスタのゲート電極を前記保護膜の外部に露出させる第2の開口部と、を有する前記保護膜と、銅を主成分とし、前記第1の開口部における前記ソース電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ソース電極に接続された第1の配線電極と、銅を主成分とし、前記第2の開口部における前記ゲート電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ゲート電極に接続された第2の配線電極と、を備え、前記半導体層の平面視において、前記半導体装置は矩形であり、前記第1の配線電極の、前記半導体層の平面視における外周部分に、前記ソース電極と前記保護膜と前記第1の配線電極とがこの順で積層された第1の外周構造が形成され、前記第1の外周構造の最上層は、前記第1の配線電極であり、前記第2の配線電極の、前記半導体層の平面視における外周部分に、前記ゲート電極と前記保護膜と前記第2の配線電極とがこの順で積層された第2の外周構造が形成され、前記第2の外周構造の最上層は、前記第2の配線電極であり、前記第1の配線電極の上面である第1の配線電極露出部は、前記半導体装置の外部に露出し、前記第2の配線電極の上面である第2の配線電極露出部は、前記半導体装置の外部に露出し、前記第1の外周構造は、前記第1の配線電極露出部のうちの、前記第1の外周構造に含まれない部分の上面よりも上方に突出し、前記第2の外周構造は、前記第2の配線電極露出部のうちの、前記第2の外周構造に含まれない部分の上面よりも上方に突出し、前記半導体装置の最上方位置は、前記第1の外周構造または/および前記第2の外周構造に存在し、前記半導体層の平面視において、前記第1の配線電極露出部の面積は、前記第1の開口部の面積よりも大きく、前記半導体層の平面視において、前記第2の配線電極露出部の面積は、前記第2の開口部の面積よりも大きく、前記半導体層の平面視における前記半導体層の面積をS[mm]とし、前記半導体層の下面から前記保護膜の上面までの厚さをh[mm]とすると、h/S≧0.025の関係が成立する。
 本開示の一態様に係る半導体装置は、フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、半導体層と、前記半導体層内に形成された縦型MOS(Metal Oxide Semiconductor)トランジスタと、前記縦型MOSトランジスタの上面を被覆する保護膜であって、前記縦型MOSトランジスタのソース電極を前記保護膜の外部に露出させる第1の開口部と、前記縦型MOSトランジスタのゲート電極を前記保護膜の外部に露出させる第2の開口部と、を有する前記保護膜と、銅を主成分とし、前記第1の開口部における前記ソース電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ソース電極に接続された第1の配線電極と、銅を主成分とし、前記第2の開口部における前記ゲート電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ゲート電極に接続された第2の配線電極と、を備え、前記半導体層の平面視において、前記半導体装置は矩形であり、前記保護膜は、第1の保護膜層と、前記第1の保護膜層よりも上方に位置する第2の保護膜層とを含む複数の保護膜層からなる多層構造であり、前記第1の配線電極の、前記半導体層の平面視における外周部分に、前記ソース電極と前記第1の保護膜層と前記第1の配線電極と前記第2の保護膜層とがこの順で積層された第1の外周構造が形成され、前記第1の外周構造の最上層は、前記第2の保護膜層であり、前記第2の配線電極の、前記半導体層の平面視における外周部分に、前記ゲート電極と前記第1の保護膜層と前記第2の配線電極と前記第2の保護膜層とがこの順で積層された第2の外周構造が形成され、前記第2の外周構造の最上層は、前記第2の保護膜層であり、前記第1の配線電極の上面のうちの、前記第1の外周構造に含まれない部分である第1の配線電極露出部は、前記半導体装置の外部に露出し、前記第2の配線電極の上面のうちの、前記第2の外周構造に含まれない部分である第2の配線電極露出部は、前記半導体装置の外部に露出し、前記第1の外周構造は、前記第1の配線電極露出部の上面よりも上方に突出し、前記第2の外周構造は、前記第2の配線電極露出部の上面よりも上方に突出し、前記半導体装置の最上方位置は、前記第1の外周構造または/および前記第2の外周構造に存在し、前記第1の外周構造における前記第1の配線電極の厚さを第1の厚さとして、前記第1の外周構造における前記第2の保護膜層の厚さを第2の厚さとすると、前記第2の厚さは、前記第1の厚さの半分より大きく、かつ、前記第1の厚さ以下であり、前記半導体層の平面視において、前記第1の配線電極露出部の面積は、前記第1の開口部の面積よりも大きく、前記半導体層の平面視において、前記第2の配線電極露出部の面積は、前記第2の開口部の面積よりも大きい。
 本開示の一態様に係る実装基板は、第1の配線層と、層間絶縁層と、第2の配線層とがこの順で積層された実装基板であって、前記層間絶縁層内にフェイスアップで実装された上記半導体装置と、前記第2の配線層に形成された第1の配線と、前記第1の配線と前記第1の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する1以上の第1の接続配線であって、前記第1の配線電極の上面とは、前記第1の配線電極の上面のうち、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において接続する前記1以上の第1の接続配線と、を備える。
 本開示の一態様に係る実装基板は、第1の配線層と、層間絶縁層と、第2の配線層とがこの順で積層された実装基板であって、前記層間絶縁層内にフェイスアップで実装された、半導体層を有する半導体装置であって、上面に第1の配線電極を有する前記半導体装置と、前記第2の配線層に形成された第1の配線と、前記第1の配線と前記第1の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する1以上の第1の接続配線とを備え、前記半導体装置は、前記第1の配線電極の、前記半導体層の平面視における外周部分に第1の外周構造が形成され、前記第1の外周構造は、前記第1の配線電極の上面のうちの、前記半導体層の平面視において、前記第1の外周構造に重ならない部分よりも上方に突出し、前記半導体装置の最上方位置は、前記第1の外周構造に存在し、前記第1の配線電極は、少なくとも、前記第1の配線電極の上面のうちの、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において前記半導体装置の外部に露出し、前記1以上の第1の接続配線は、前記第1の配線電極の上面とは、前記半導体装置の前記第1の配線電極の上面のうち、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において接続する。
 本開示の一態様に係る半導体装置等によると、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置等が提供される。
図1は、実施の形態1に係る半導体装置の構造の一例を示す平面図である。 図2は、実施の形態1に係る半導体装置の構造の一例を示す断面図である。 図3は、実施の形態1に係る半導体装置の構造の一例を示す断面図である。 図4は、実施の形態1に係る半導体装置の上面の一部を、斜め上方から撮像した撮像画像である。 図5は、実施の形態1に係る第1の外周構造の構造を示す拡大断面図である。 図6は、実施の形態1に係る半導体装置の耐性と、実施の形態1に係る半導体装置の形状およびSi厚との関係を示す模式図である。 図7は、熱処理工程により、実施の形態1に係る半導体装置が変形する様子の一例を模式的に示す、実施の形態1に係る半導体装置および第1の外周構造の断面図である。 図8は、実施の形態1に係る半導体装置の構造の一例を示す平面図である。 図9は、実施の形態1に係る半導体装置の構造の一例を示す断面図である。 図10は、実施の形態1に係る半導体装置の構造の一例を示す平面図である。 図11は、実施の形態1に係る半導体装置の構造の一例を示す断面図である。 図12は、実施の形態1に係る半導体装置の構造の一例を示す平面図である。 図13は、実施の形態2に係る半導体装置の構造の一例を示す平面図である。 図14は、実施の形態2に係る半導体装置の構造の一例を示す断面図である。 図15は、実施の形態2に係る第1の外周構造の構造を示す拡大断面図である。 図16は、実施の形態3に係る実装基板の構造の一例を示す平面図である。 図17は、実施の形態3に係る実装基板の構造の一例を示す断面図である。 図18は、実施の形態3に係る実装基板の構造の一例を示す拡大平面図である。
 (本開示の一態様を得るに至った経緯)
 発明者らは、縦型MOSトランジスタを備える半導体装置の開発を行っている。
 一方で、近年、半導体装置を実装する実装基板の省スペース化が要望されている。
 この要望に対して、発明者らは、半導体装置を実装基板内部に埋め込んで実装することができれば、実装基板の省スペース化を実現できるのではないかと考えた。
 そこで、発明者らは、この考えに基づいて、実装基板内に樹脂封止されてフェイスアップで実装される、縦型MOSトランジスタを備える半導体装置の開発を行うこととした。
 発明者らは、この開発を通じて、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置が存在することに気が付いた。
 すなわち、発明者らは、半導体装置の上面に、半導体装置を封入する樹脂に食い込む突起を設けることで、この突起が樹脂内における半導体装置の位置を固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれの抑制、および、実装基板内部における半導体装置の位置の安定化を実現できるという知見を得た。
 さらに、発明者らは、半導体装置の上面に突起が存在する場合、半導体装置を封入した後に固形化した樹脂の上面にも、半導体装置の上面の突起を反映した突起が形成されることを見出した。そして、発明者らは、この樹脂の上面に形成された突起を、実装基板を加工する際のガイドラインとして利用することで、この突起が存在しない場合に比べて、実装基板をより精度よく加工することが可能になるという知見を得た。
 そこで、発明者らは、これら知見に基づいて、さらに、実験、検討を重ねた。その結果、発明者らは、下記本開示に係る半導体装置等に想到した。
 本開示の一態様に係る半導体装置は、フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、半導体層と、前記半導体層内に形成された縦型MOS(Metal Oxide Semiconductor)トランジスタと、前記縦型MOSトランジスタの上面を被覆する保護膜であって、前記縦型MOSトランジスタのソース電極を前記保護膜の外部に露出させる第1の開口部と、前記縦型MOSトランジスタのゲート電極を前記保護膜の外部に露出させる第2の開口部と、を有する前記保護膜と、銅を主成分とし、前記第1の開口部における前記ソース電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ソース電極に接続された第1の配線電極と、銅を主成分とし、前記第2の開口部における前記ゲート電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ゲート電極に接続された第2の配線電極と、を備え、前記半導体層の平面視において、前記半導体装置は矩形であり、前記第1の配線電極の、前記半導体層の平面視における外周部分に、前記ソース電極と前記保護膜と前記第1の配線電極とがこの順で積層された第1の外周構造が形成され、前記第1の外周構造の最上層は、前記第1の配線電極であり、前記第2の配線電極の、前記半導体層の平面視における外周部分に、前記ゲート電極と前記保護膜と前記第2の配線電極とがこの順で積層された第2の外周構造が形成され、前記第2の外周構造の最上層は、前記第2の配線電極であり、前記第1の配線電極の上面である第1の配線電極露出部は、前記半導体装置の外部に露出し、前記第2の配線電極の上面である第2の配線電極露出部は、前記半導体装置の外部に露出し、前記第1の外周構造は、前記第1の配線電極露出部のうちの、前記第1の外周構造に含まれない部分の上面よりも上方に突出し、前記第2の外周構造は、前記第2の配線電極露出部のうちの、前記第2の外周構造に含まれない部分の上面よりも上方に突出し、前記半導体装置の最上方位置は、前記第1の外周構造または/および前記第2の外周構造に存在し、前記半導体層の平面視において、前記第1の配線電極露出部の面積は、前記第1の開口部の面積よりも大きく、前記半導体層の平面視において、前記第2の配線電極露出部の面積は、前記第2の開口部の面積よりも大きく、前記半導体層の平面視における前記半導体層の面積をS[mm]とし、前記半導体層の下面から前記保護膜の上面までの厚さをh[mm]とすると、h/S≧0.025の関係が成立する。
 上記構成の半導体装置によると、この半導体装置を実装基板内に樹脂封止されてフェイスアップで実装する場合、半導体装置の上面において、第1の外周構造および第2の外周構造が、樹脂に食い込む。
 このため、樹脂に食い込む第1の外周構造および第2の外周構造が、樹脂内における半導体装置の位置を固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれの抑制、および、実装基板内部における半導体装置の位置の安定化が実現される。
 また、半導体装置を封入した後に固形化した樹脂の上面に、第1の外周構造および第2の外周構造を反映した突起が形成される。
 このため、樹脂に対して、樹脂の上面から第1の配線電極露出部に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第1の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第1の配線電極露出部に到達する穴を空ける加工を行うことができる。
 さらには、同様に、樹脂に対して、樹脂の上面から第2の配線電極露出部に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第2の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第2の配線電極露出部に到達する穴を空ける加工を行うことができる。
 このように、上記構成の半導体装置によると、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置が提供される。
 また、さらに、前記半導体層の下面に接触して形成された金属層を備え、前記金属層の厚さは、前記第1の配線電極の最大の厚さよりも厚く、前記第1の配線電極は、前記半導体層の平面視における外周部分に、前記半導体層の断面視において、前記第1の配線電極の外側に向かって逆テーパ形状となる壁面を有し、前記壁面は、前記保護膜と接触しないとしてもよい。
 また、前記保護膜は、前記半導体層の平面視における前記第1の開口部の周囲の部分に、前記断面視において、前記第1の開口部に向かってテーパ形状となるテーパ形状領域を有し、前記半導体層の平面視において、前記壁面は、前記テーパ形状領域の内部に位置するとしてもよい。
 本開示の一態様に係る半導体装置は、フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、半導体層と、前記半導体層内に形成された縦型MOS(Metal Oxide Semiconductor)トランジスタと、前記縦型MOSトランジスタの上面を被覆する保護膜であって、前記縦型MOSトランジスタのソース電極を前記保護膜の外部に露出させる第1の開口部と、前記縦型MOSトランジスタのゲート電極を前記保護膜の外部に露出させる第2の開口部と、を有する前記保護膜と、銅を主成分とし、前記第1の開口部における前記ソース電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ソース電極に接続された第1の配線電極と、銅を主成分とし、前記第2の開口部における前記ゲート電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ゲート電極に接続された第2の配線電極と、を備え、前記半導体層の平面視において、前記半導体装置は矩形であり、前記保護膜は、第1の保護膜層と、前記第1の保護膜層よりも上方に位置する第2の保護膜層とを含む複数の保護膜層からなる多層構造であり、前記第1の配線電極の、前記半導体層の平面視における外周部分に、前記ソース電極と前記第1の保護膜層と前記第1の配線電極と前記第2の保護膜層とがこの順で積層された第1の外周構造が形成され、前記第1の外周構造の最上層は、前記第2の保護膜層であり、前記第2の配線電極の、前記半導体層の平面視における外周部分に、前記ゲート電極と前記第1の保護膜層と前記第2の配線電極と前記第2の保護膜層とがこの順で積層された第2の外周構造が形成され、前記第2の外周構造の最上層は、前記第2の保護膜層であり、前記第1の配線電極の上面のうちの、前記第1の外周構造に含まれない部分である第1の配線電極露出部は、前記半導体装置の外部に露出し、前記第2の配線電極の上面のうちの、前記第2の外周構造に含まれない部分である第2の配線電極露出部は、前記半導体装置の外部に露出し、前記第1の外周構造は、前記第1の配線電極露出部の上面よりも上方に突出し、前記第2の外周構造は、前記第2の配線電極露出部の上面よりも上方に突出し、前記半導体装置の最上方位置は、前記第1の外周構造または/および前記第2の外周構造に存在し、前記第1の外周構造における前記第1の配線電極の厚さを第1の厚さとして、前記第1の外周構造における前記第2の保護膜層の厚さを第2の厚さとすると、前記第2の厚さは、前記第1の厚さの半分より大きく、かつ、前記第1の厚さ以下であり、前記半導体層の平面視において、前記第1の配線電極露出部の面積は、前記第1の開口部の面積よりも大きく、前記半導体層の平面視において、前記第2の配線電極露出部の面積は、前記第2の開口部の面積よりも大きい。
 上記構成の半導体装置によると、この半導体装置を実装基板内に樹脂封止されてフェイスアップで実装する場合、半導体装置の上面において、第1の外周構造および第2の外周構造が、樹脂に食い込む。
 このため、樹脂に食い込む第1の外周構造および第2の外周構造が、樹脂内における半導体装置の位置を固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれの抑制、および、実装基板内部における半導体装置の位置の安定化が実現される。
 また、半導体装置を封入した後に固形化した樹脂の上面に、第1の外周構造および第2の外周構造を反映した突起が形成される。
 このため、樹脂に対して、樹脂の上面から第1の配線電極露出部に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第1の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第1の配線電極露出部に到達する穴を空ける加工を行うことができる。
 さらには、同様に、樹脂に対して、樹脂の上面から第2の配線電極露出部に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第2の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第2の配線電極露出部に到達する穴を空ける加工を行うことができる。
 このように、上記構成の半導体装置によると、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置が提供される。
 また、前記第2の保護膜層のうち、前記半導体層の平面視において前記第1の配線電極と重なる部分の最小の幅は、前記第2の保護膜層のうち、前記半導体層の平面視において前記第1の配線電極または前記第2の配線電極と重ならない部分の厚さよりも大きく、前記第2の保護膜層のうち、前記半導体層の平面視において前記第2の配線電極と重なる部分の最小の幅は、前記第2の保護膜層のうち、前記半導体層の平面視において前記第1の配線電極または前記第2の配線電極と重ならない部分の厚さよりも大きいとしてもよい。
 また、前記第1の配線電極露出部の上面を基準とする前記第1の外周構造の高さは、前記第1の開口部における前記第1の配線電極の厚さの50%以上であり、前記第2の配線電極露出部の上面を基準とする前記第2の外周構造の高さは、前記第2の開口部における前記第2の配線電極の厚さの50%以上であるとしてもよい。
 また、前記半導体層の平面視における前記ソース電極の面積をM1とし、前記半導体層の平面視における前記第1の開口部の面積をS1とする場合において、S1/M1により示される、前記半導体層の平面視における前記ソース電極の面積に対する前記半導体層の平面視における前記第1の開口部の面積の占有率である第1の占有率は、0.5以上1.0未満であるとしてもよい。
 また、前記第1の占有率は、0.9以上1.0未満であり、前記半導体層の平面視における前記第1の配線電極露出部の面積をP1とする場合において、P1/M1により示される、前記半導体層の平面視における前記ソース電極の面積に対する前記半導体層の平面視における前記第1の配線電極露出部の面積の占有率である第2の占有率は、0.9以上1.1以下であるとしてもよい。
 また、前記半導体層の平面視における前記第2の開口部の面積をS2とし、前記半導体層の平面視における前記第2の配線電極露出部の面積をP2とする場合において、P2/S2により示される、前記半導体層の平面視における前記第2の開口部の面積に対する、前記半導体層の平面視における前記第2の配線電極露出部の面積の占有率である第3の占有率は、1.27以上であるとしてもよい。
 また、前記半導体層の平面視において、前記第1の配線電極の形状と、前記第2の配線電極の形状とは、中央線を対称軸とする線対称であり、前記中央線は、前記半導体装置を面積において二等分するとしてもよい。
 本開示の一態様に係る実装基板は、第1の配線層と、層間絶縁層と、第2の配線層とがこの順で積層された実装基板であって、前記層間絶縁層内にフェイスアップで実装された、請求項1または請求項4に記載の半導体装置と、前記第2の配線層に形成された第1の配線と、前記第1の配線と前記第1の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する1以上の第1の接続配線であって、前記第1の配線電極の上面とは、前記第1の配線電極の上面のうち、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において接続する前記1以上の第1の接続配線と、を備える。
 上記構成の実装基板によると、半導体装置の上面において、第1の外周構造および第2の外周構造が、層間絶縁層を形成する物質に食い込む。
 このため、層間絶縁層を形成する物質に食い込む第1の外周構造および第2の外周構造が、層間絶縁層内における半導体装置の位置を固定するアンカーの役目を果たし、その結果、実装基板における層間絶縁層剥がれの抑制、および、実装基板内部における半導体装置の位置の安定化が実現される。
 また、層間絶縁層を形成する物質が例えば樹脂の場合、半導体装置を封入した後に固形化した樹脂の上面に、すなわち、層間絶縁層の上面に、第1の外周構造および第2の外周構造を反映した突起が形成される。
 このため、層間絶縁層に対して、層間絶縁層の上面から第1の配線電極露出部に到達する穴を空ける加工を行う場合に、層間絶縁層の上面に形成される、第1の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、層間絶縁層の上面から第1の配線電極露出部に到達する穴を空ける加工を行うことができる。
 さらには、同様に、層間絶縁層に対して、層間絶縁層の上面から第2の配線電極露出部に到達する穴を空ける加工を行う場合に、層間絶縁層の上面に形成される、第2の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、層間絶縁層の上面から第2の配線電極露出部に到達する穴を空ける加工を行うことができる。
 このように、上記構成の実装基板によると、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置を実装する実装基板が提供される。
 また、さらに、前記第2の配線層に形成された第2の配線と、前記第2の配線と前記第2の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する第2の接続配線であって、前記第2の配線電極の上面とは、前記第2の配線電極の上面のうち、前記半導体層の平面視において、前記第2の外周構造に重ならない部分において接続する第2の接続配線と、を備え、前記1以上の第1の接続配線のそれぞれの、前記1以上の第1の接続配線のそれぞれが延伸する方向に直交する断面、および、前記第2の接続配線の、前記第2の接続配線が延伸する方向に直交する断面は円形であり、前記1以上の第1の接続配線のうちの少なくとも1つの断面は、前記第2の接続配線の断面よりも大きいとしてもよい。
 本開示の一態様に係る実装基板は、第1の配線層と、層間絶縁層と、第2の配線層とがこの順で積層された実装基板であって、前記層間絶縁層内にフェイスアップで実装された、半導体層を有する半導体装置であって、上面に第1の配線電極を有する前記半導体装置と、前記第2の配線層に形成された第1の配線と、前記第1の配線と前記第1の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する1以上の第1の接続配線とを備え、前記半導体装置は、前記第1の配線電極の、前記半導体層の平面視における外周部分に第1の外周構造が形成され、前記第1の外周構造は、前記第1の配線電極の上面のうちの、前記半導体層の平面視において、前記第1の外周構造に重ならない部分よりも上方に突出し、前記半導体装置の最上方位置は、前記第1の外周構造に存在し、前記第1の配線電極は、少なくとも、前記第1の配線電極の上面のうちの、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において前記半導体装置の外部に露出し、前記1以上の第1の接続配線は、前記第1の配線電極の上面とは、前記半導体装置の前記第1の配線電極の上面のうち、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において接続する。
 上記構成の実装基板によると、半導体装置の上面において、第1の外周構造が、層間絶縁層を形成する物質に食い込む。
 このため、層間絶縁層を形成する物質に食い込む第1の外周構造が、層間絶縁層内における半導体装置の位置を固定するアンカーの役目を果たし、その結果、実装基板における層間絶縁層剥がれの抑制、および、実装基板内部における半導体装置の位置の安定化が実現される。
 また、層間絶縁層を形成する物質が例えば樹脂の場合、半導体装置を封入した後に固形化した樹脂の上面に、すなわち、層間絶縁層の上面に、第1の外周構造を反映した突起が形成される。
 このため、層間絶縁層に対して、層間絶縁層の上面から第1の配線電極露出部に到達する穴を空ける加工を行う場合に、層間絶縁層の上面に形成される、第1の外周構造に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、層間絶縁層の上面から第1の配線電極露出部に到達する穴を空ける加工を行うことができる。
 このように、上記構成の実装基板によると、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置を実装する実装基板が提供される。
 また、前記1以上の第1の接続配線は、複数であるとしてもよい。
 また、前記第1の配線電極の上面のうちの最も低い位置を基準とする、前記半導体装置の最上方位置までの高さは、前記実装基板に直交する方向における前記1以上の第1の接続配線の長さの15%以上であるとしてもよい。
 また、前記第1の配線電極は、複数であり、前記1以上の第1の接続配線は、前記複数の第1の配線電極のそれぞれと1対1で対応する複数であり、前記複数の第1の接続配線のそれぞれは、当該第1の接続配線に1対1で対応する、前記複数の第1の配線電極のうちの1の第1の配線電極により、前記第1の配線に接続され、前記複数の第1の接続配線のそれぞれの、前記複数の第1の接続配線のそれぞれが延伸する方向に直交する断面は、互いに等しいとしてもよい。
 また、前記実装基板の平面視において、前記実装基板は、長手方向を有する形状であり、前記半導体装置は、長手方向を有する形状であり、前記実装基板の前記長手方向と、前記半導体装置の前記長手方向とは、互いに直交するとしてもよい。
 また、さらに、前記層間絶縁層よりも上方に配置された電子部品を備え、前記実装基板の平面視において、前記電子部品は、長手方向を有する形状であり、前記半導体装置は、長手方向を有する形状であり、前記電子部品は、少なくとも一部が前記半導体装置と重なり、前記電子部品の前記長手方向と、前記半導体装置の前記長手方向とは、互いに直交するとしてもよい。
 以下、本開示の一態様に係る半導体装置等の具体例について、図面を参照しながら説明する。ここで示す実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、構成要素、構成要素の配置および接続形態、ならびに、ステップ(工程)およびステップの順序等は、一例であって本開示を限定する趣旨ではない。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 (実施の形態1)
 以下、実施の形態1に係る半導体装置について説明する。この半導体装置は、フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置である。
 <構造>
 以下、実施の形態1に係る半導体装置の構造について説明する。実施の形態1に係る半導体装置は、N(Nは1以上の整数)個の縦型MOS(Metal Oxide Semiconductor)トランジスタが形成された、フェイスアップ実装が可能なチップサイズパッケージ(Chip Size Package:CSP)型の半導体デバイスである。上記N個の縦型MOSトランジスタは、いわゆる、トレンチ型MOSFET(Field Effect Transistor)である。
 本開示においては、Nは2であるとして説明をするが、Nは必ずしも2に限定される必要はなく、Nは1であってもよいし、3以上であってもよい。
 図1は、実施の形態1に係る半導体装置1の構造の一例を示す平面図である。図1に示すように、半導体装置1は、半導体装置1の平面視において(すなわち、後述する半導体層40の平面視において)矩形である。
 図2、図3は、半導体装置1の構造の一例を示す断面図である。図2は、図1のI-Iにおける切断面を示し、図3は、図1のII-IIにおける切断面を示す。
 図1~図3に示すように、半導体装置1は、金属層30と、半導体層40と、酸化膜34と、保護膜35と、半導体層40内に形成された第1の縦型MOSトランジスタ10と、半導体層40内に形成された第2の縦型MOSトランジスタ20と、第1の縦型MOSトランジスタ10のソース電極として機能する第1のソース電極13と、第1の縦型MOSトランジスタ10のゲート電極として機能する第1のゲート電極19と、第2の縦型MOSトランジスタ20のソース電極として機能する第2のソース電極23と、第2の縦型MOSトランジスタ20のゲート電極として機能する第2のゲート電極29と、第1のソース電極13に接続された第1の配線電極12と、第1のゲート電極19に接続された第2の配線電極52と、第2のソース電極23に接続された第3の配線電極22と、第2のゲート電極29に接続された第4の配線電極54とを備える。
 本開示においては、半導体装置1は、金属層30を備えるとして説明をするが、半導体装置1は、必ずしも金属層30を備える構成に限定される必要はない。
 なお、図1において、第1のソース電極13と、第1のゲート電極19と、第2のソース電極23と、第2のゲート電極29とを、破線によりあたかも視認することが出来るかの如く図示しているが、実際にはこれらの構成要素を半導体装置1の外部から直接視認することはできない。
 半導体層40は、半導体基板32と低濃度不純物層33とが積層されて構成される。
 ここで、半導体層40の平面視における半導体層40の面積をS[mm]とし、半導体層40の下面から保護膜35の上面までの厚さをh[mm]とすると、h/S≧0.025の関係が成立する。
 半導体基板32は、半導体層40の下面側に配置され、第1導電型の不純物を含むシリコンからなる。
 低濃度不純物層33は、半導体層40の上面側に配置され、半導体基板32に接触して形成され、半導体基板32の第1導電型の不純物の濃度より低い濃度の第1導電型の不純物を含む。低濃度不純物層33は、例えば、エピタキシャル成長により半導体基板32上に形成されてもよい。
 酸化膜34は、半導体層40の上面に配置され、低濃度不純物層33に接触して形成される。
 保護膜35は、第1の縦型MOSトランジスタ10の上面、および、第2の縦型MOSトランジスタ20の上面を被覆する保護膜であって、第1のソース電極13を保護膜35の外部に露出させる第1の開口部61と、第1のゲート電極19を保護膜35の外部に露出させる第2の開口部62と、第2のソース電極23を保護膜35の外部に露出させる第3の開口部63と、第2のゲート電極29を保護膜35の外部に露出させる第4の開口部64とを有する。
 ここで、保護膜35が、第1の縦型MOSトランジスタ10の上面、および、第2の縦型MOSトランジスタ20の上面を被覆するとは、半導体層40の平面視において、開口部を除く半導体装置1のほぼ全面で保護膜35が製膜されている状態のことをいう。ここで、半導体装置1のほぼ全面とは、半導体装置1をウェーハからダイシングして切り出す際のダイシングマージンとして確保されたウェーハの領域のうち、ダイシング後の半導体装置1の四辺にわずかに残った外周領域を除く、半導体装置1の全面のことをいう。このため、この外周領域では、例外的に酸化膜34が半導体装置1の上面に露出している。
 また、本開示でいう保護膜35の開口部とは、半導体層40の平面視において、開口部の外周の全長が保護膜35で閉じている形状のことをいう。このため、半導体層40の平面視において、外周の一部が、上記例外的に酸化膜34が半導体装置1の上面に露出している外周領域と重複する形状は、本開示でいう保護膜35の開口部には該当しない。
 本開示においては、保護膜35は、第1のソース電極13を保護膜35の外部に露出させる開口部として、1つの第1の開口部61を有するとして説明するが、保護膜35は、第1のソース電極13を保護膜35の外部に露出させる開口部として複数の開口部を有するとしてもよい。
 同様に、本開示においては、保護膜35は、第1のゲート電極19を保護膜35の外部に露出させる開口部として、1つの第2の開口部62を有するとして説明するが、保護膜35は、第1のゲート電極19を保護膜35の外部に露出させる開口部として複数の開口部を有するとしてもよい。
 本開示においては、保護膜35は、第2のソース電極23を保護膜35の外部に露出させる開口部として、1つの第3の開口部63を有するとして説明するが、保護膜35は、第2のソース電極23を保護膜35の外部に露出させる開口部として複数の開口部を有するとしてもよい。
 同様に、本開示においては、保護膜35は、第2のゲート電極29を保護膜35の外部に露出させる開口部として、1つの第4の開口部64を有するとして説明するが、保護膜35は、第2のゲート電極29を保護膜35の外部に露出させる開口部として複数の開口部を有するとしてもよい。
 なお、保護膜35は、単層構造であってもよいし、複数の層が積層された多層構造であってもよい。本開示においては、保護膜35は、第1の保護膜層35Aと、第1の保護膜層35Aよりも上方に位置する第2の保護膜層35Bとが積層された多層構造(ここでは、2層構造)であるとして説明する。
 第1の保護膜層35Aは、限定されない一例として、窒化珪素で構成されてもよく、例えば、その膜厚は、0.3μmである。
 第2の保護膜層35Bは、限定されない一例として、ポリイミドで構成されてもよく、例えば、その膜厚は、8μmである。
 金属層30は、半導体基板32の下面に接触して形成され、銀、銅、ニッケル、または、これらの合金からなってもよいし、電極として機能することが可能な、導電率の良好な金属材料からなってもよい。なお、金属層30には、金属材料の製造工程において不純物として混入する金属以外の元素が微量に含まれていてもよい。
 低濃度不純物層33の、第1の縦型MOSトランジスタ10が形成される領域には、第1導電型と異なる第2導電型の不純物を含む第1のボディ領域18が形成される。第1のボディ領域18には、第1導電型の不純物を含む第1のソース領域14、第1のゲート導体15、および第1のゲート絶縁膜16が形成される。
 第1のソース電極13は、酸化膜34の開口を通して、第1のソース領域14および第1のボディ領域18に接続される。
 第1のソース電極13は、限定されない一例として、アルミニウム、銅、金、銀のうちのいずれか1つ以上を含む金属材料で構成されてもよい。
 第1の配線電極12は、第1のソース電極13に接続され、第1の開口部61における第1のソース電極13の、保護膜35の外部への露出部分を隙間なく被覆する。これにより、第1のソース電極13は、半導体装置1の外部の物質による腐食が抑制される。
 第1の配線電極12は、銅を主成分とし、限定されない一例として、メッキにより形成される。第1の配線電極12は、例えば、その厚さは、10μmである。
 なお、保護膜35が、第1の開口部61以外にも、第1のソース電極13を保護膜35の外部に露出させる1以上の開口部を有している場合には、半導体装置1は、それら1以上の開口部のそれぞれについて、第1の配線電極12と同様の配線電極を備えることとなる。
 第1のゲート電極19は、第1のゲート導体15と電気的に接続される。
 第1のゲート電極19は、限定されない一例として、アルミニウム、銅、金、銀のうちのいずれか1つ以上を含む金属材料で構成されてもよい。
 第2の配線電極52は、第1のゲート電極19に接続され、第2の開口部62における第1のゲート電極19の、保護膜35の外部への露出部分を隙間なく被覆する。これにより、第1のゲート電極19は、半導体装置1の外部の物質による腐食が抑制される。
 第2の配線電極52は、銅を主成分とし、限定されない一例として、メッキにより形成される。第2の配線電極52は、例えば、その厚さは、10μmである。
 なお、保護膜35が、第2の開口部62以外にも、第1のゲート電極19を保護膜35の外部に露出させる1以上の開口部を有している場合には、半導体装置1は、それら1以上の開口部のそれぞれについて、第2の配線電極52と同様の配線電極を備えることとなる。
 低濃度不純物層33の、第2の縦型MOSトランジスタ20が形成される領域には、第1導電型と異なる第2導電型の不純物を含む第2のボディ領域28が形成される。第2のボディ領域28には、第1導電型の不純物を含む第2のソース領域24、第2のゲート導体25、および第2のゲート絶縁膜26が形成される。
 第2のソース電極23は、酸化膜34の開口を通して、第2のソース領域24および第2のボディ領域28に接続される。
 第2のソース電極23は、限定されない一例として、アルミニウム、銅、金、銀のうちのいずれか1つ以上を含む金属材料で構成されてもよい。
 第3の配線電極22は、第2のソース電極23に接続され、第3の開口部63における第2のソース電極23の、保護膜35の外部への露出部分を隙間なく被覆する。これにより、第2のソース電極23は、半導体装置1の外部の物質による腐食が抑制される。
 第3の配線電極22は、銅を主成分とし、限定されない一例として、メッキにより形成される。第3の配線電極22は、例えば、その厚さは、10μmである。
 なお、保護膜35が、第3の開口部63以外にも、第2のソース電極23を保護膜35の外部に露出させる1以上の開口部を有している場合には、半導体装置1は、それら1以上の開口部のそれぞれについて、第3の配線電極22と同様の配線電極を備えることとなる。
 第2のゲート電極29は、第2のゲート導体25と電気的に接続される。
 第2のゲート電極29は、限定されない一例として、アルミニウム、銅、金、銀のうちのいずれか1つ以上を含む金属材料で構成されてもよい。
 第4の配線電極54は、第2のゲート電極29に接続され、第4の開口部64における第2のゲート電極29の、保護膜35の外部への露出部分を隙間なく被覆する。これにより、第2のゲート電極29は、半導体装置1の外部の物質による腐食が抑制される。
 第4の配線電極54は、銅を主成分とし、限定されない一例として、メッキにより形成される。第4の配線電極54は、例えば、その厚さは、10μmである。
 なお、保護膜35が、第4の開口部64以外にも、第2のゲート電極29を保護膜35の外部に露出させる1以上の開口部を有している場合には、半導体装置1は、それら1以上の開口部のそれぞれについて、第4の配線電極54と同様の配線電極を備えることとなる。
 ここで、第1の配線電極12の最大の厚さ、第2の配線電極52の最大の厚さ、第3の配線電極22の最大の厚さ、および、第4の配線電極54の最大の厚さは、金属層30の厚さよりも薄い。すなわち、金属層30の厚さは、第1の配線電極12の最大の厚さ、第2の配線電極52の最大の厚さ、第3の配線電極22の最大の厚さ、および、第4の配線電極54の最大の厚さよりも厚い。
 半導体装置1において、例えば、第1導電型をN型、第2導電型をP型として、第1のソース領域14、第2のソース領域24、半導体基板32、および、低濃度不純物層33はN型半導体であり、かつ、第1のボディ領域18、および、第2のボディ領域28はP型半導体であってもよい。
 また、半導体装置1において、例えば、第1導電型をP型、第2導電型をN型として、第1のソース領域14、第2のソース領域24、半導体基板32、および、低濃度不純物層33はP型半導体であり、かつ、第1のボディ領域18、および、第2のボディ領域28はN型半導体であってもよい。
 本開示においては、第1の縦型MOSトランジスタ10と第2の縦型MOSトランジスタ20とが、第1導電型をN型、第2導電型をP型とした、いわゆるNチャネル型トランジスタであるとして説明する。
 また、本開示においては、第1の縦型MOSトランジスタ10と第2の縦型MOSトランジスタ20とが同様であり、第1のソース電極13と第2のソース電極23とが同様であり、第1のゲート電極19と第2のゲート電極29とが同様であり、第1の配線電極12と第3の配線電極22とが同様であり、第2の配線電極52と第4の配線電極54とが同様であるとして説明する。
 このため、以下では、第1の縦型MOSトランジスタ10と第2の縦型MOSトランジスタ20とについて、これらを代表して第1の縦型MOSトランジスタ10について説明し、第1のソース電極13と第2のソース電極23とについて、これらを代表して第1のソース電極13について説明し、第1のゲート電極19と第2のゲート電極29とについて、これらを代表して第1のゲート電極19について説明し、第1の配線電極12と第3の配線電極22とについて、これらを代表して第1の配線電極12について説明し、第2の配線電極52と第4の配線電極54とについて、これらを代表して第2の配線電極52について説明する。
 図2、図3に示すように、第1の配線電極12の上面は、半導体装置1の外部に露出し、第2の配線電極52の上面は、半導体装置1の外部に露出する。
 本開示において、第1の配線電極12の上面のうち、半導体装置1(実施の形態2においては、後述の半導体装置1A)の外部に露出する部分を第1の配線電極露出部71と定義し、第2の配線電極52の上面のうち、半導体装置1(実施の形態2においては、後述の半導体装置1A)の外部に露出する部分を第2の配線電極露出部72と定義する。
 このため、実施の形態1においては、第1の配線電極露出部71は、第1の配線電極12の上面であり、第2の配線電極露出部72は、第2の配線電極52の上面である。
 すなわち、実施の形態1においては、第1の配線電極12の上面である第1の配線電極露出部71は、半導体装置1の外部に露出し、第2の配線電極52の上面である第2の配線電極露出部72は、半導体装置1の外部に露出する。
 ここで、図1~図3に示すように、半導体層40の平面視において、第1の配線電極露出部71の面積は、第1の開口部61の面積よりも大きく、第2の配線電極露出部72の面積は、第2の開口部62の面積よりも大きい。
 また、図2、図3に示すように、第1の配線電極12の、半導体層40の平面視における外周部分に、第1のソース電極13と保護膜35と第1の配線電極12とがこの順で積層された第1の外周構造101が形成され、第2の配線電極52の、半導体層40の平面視における外周部分に、第1のゲート電極19と保護膜35と第2の配線電極52とがこの順で積層された第2の外周構造102が形成される。
 ここで、第1の外周構造101の最上層は、第1の配線電極12であり、第2の外周構造102の最上層は、第2の配線電極52である。
 図2、図3に示すように、第1の外周構造101は、第1の配線電極露出部71のうちの、第1の外周構造101に含まれない部分の上面よりも上方に突出し、第2の外周構造102は、第2の配線電極露出部72のうちの、第2の外周構造102に含まれない部分の上面よりも上方に突出し、半導体装置1の最上方位置は、第1の外周構造101、または/および、第2の外周構造102に存在する。
 図4は、半導体装置1の上面のうち、第2の配線電極52近傍の部分を、半導体装置1の斜め上方から撮像した撮像画像である。
 図4から、第2の配線電極52の、半導体層40の平面視における外周部分に、第2の外周構造102に含まれない部分の上面よりも上方に突出する第2の外周構造102が形成されている様子が見て取れる。
 図5は、第1の外周構造101の構造を示す拡大断面図である。
 本開示においては、第2の外周構造102は、第1の外周構造101に対して、第1のソース電極13を第1のゲート電極19に読み替えたものと同様であるとして説明する。
 このため、以下では、第1の外周構造101と第2の外周構造102とについて、図5を用いて説明する。
 図5に示すように、第1の配線電極12は、半導体層40の平面視における外周部分に、半導体層40の断面視において、第1の配線電極12の外側に向かって逆テーパ形状となる第1の壁面201であって、保護膜35と接触しない第1の壁面201を有する。
 また、図5に示すように、保護膜35は、半導体層40の平面視における第1の開口部61の周囲の部分に、半導体層40の断面視において、第1の開口部61に向かってテーパ形状となる第1のテーパ形状領域202を有する。
 ここで、図5に示すように、半導体層40の平面視において、第1の壁面201は、第1のテーパ形状領域202の内部に位置する。
 同様に、第2の配線電極52は、半導体層40の平面視における外周部分に、半導体層40の断面視において、第2の配線電極52の外側に向かって逆テーパ形状となる第2の壁面であって、保護膜35と接触しない第2の壁面を有する。
 また、同様に、保護膜35は、半導体層40の平面視における第2の開口部62の周囲の部分に、半導体層40の断面視に置いて、第2の開口部62に向かってテーパ形状となる第2のテーパ形状領域を有する。
 ここで、同様に、半導体層40の平面視において、第2の壁面は、第2のテーパ形状領域の内部に位置する。
 <考察>
 上記構成の半導体装置1によると、この半導体装置1を実装基板内に樹脂封止されてフェイスアップで実装する場合、半導体装置1の上面において、第1の外周構造101および第2の外周構造102が、樹脂に食い込む。
 このため、樹脂に食い込む第1の外周構造101および第2の外周構造102が、樹脂内における半導体装置1の位置を固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれの抑制、および、実装基板内部における半導体装置1の位置の安定化が実現される。
 また、半導体装置1を封入した後に固形化した樹脂の上面に、第1の外周構造101および第2の外周構造102を反映した突起が形成される。
 このため、樹脂に対して、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第1の外周構造101に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工を行うことができる。
 さらには、同様に、樹脂に対して、樹脂の上面から第2の配線電極露出部72に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第2の外周構造102に対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第2の配線電極露出部72に到達する穴を空ける加工を行うことができる。
 このように、上記構成の半導体装置1によると、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置が提供される。
 上述した通り、半導体層40の平面視において、第1の配線電極露出部71の面積は、第1の開口部61の面積よりも大きく、第2の配線電極露出部72の面積は、第2の開口部62の面積よりも大きい。
 これにより、半導体層40の平面視において、第1の配線電極露出部71の面積は、第1の開口部61の面積よりも大きくなく、第2の配線電極露出部72の面積は、第2の開口部62の面積よりも大きくない場合に比べて、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工、および、樹脂の上面から第2の配線電極露出部72に到達する穴を空ける加工の自由度を高めることができる。
 半導体装置1を実装基板に埋め込んで実装する場合、半導体装置1は、実装基板から応力、衝撃を受けることがある。半導体層40の平面視における半導体装置1の面積(以下、「チップ面積」とも称する)に対する、半導体層40の下面から保護膜35の上面までの厚さ(以下、「Si厚」とも称する)が過度に小さいと、これら実装基板から受ける応力、衝撃に対する半導体装置1の十分な耐性が得られない。
 発明者らは、実装基板から受ける応力、衝撃に対する半導体装置1の耐性と、半導体層40の平面視における半導体装置1の形状およびSi厚との関係について、実験、検討を行った。その結果、発明者らは、半導体層40の平面視における半導体装置1の形状が、2[mm]×2[mm]の場合に、Si厚が0.1mm以上であれば、半導体装置1は、実装基板から受ける応力、衝撃に対する十分な耐性を得られるとの知見を得た。
 発明者らは、この知見を基に、さらに、実験、検討を重ね、半導体層40の平面視における半導体装置1の形状を、2[mm]×2[mm]よりも小さくする場合には、チップ面積S[mm]に比例して、Si厚h[mm]を薄くしても、半導体装置1は、実装基板から受ける応力、衝撃に対する十分な耐性を得られるとの知見、および、半導体層40の平面視における半導体装置1の形状を、2[mm]×2[mm]よりも大きくする場合には、チップ面積S[mm]に比例して、Si厚h[mm]を厚くすれば、半導体装置1は、実装基板から受ける応力、衝撃に対する十分な耐性を得られるとの知見を得た。
 図6は、発明者らが実験、検討を通じて得られた、実装基板から受ける応力、衝撃に対する半導体装置1の耐性と、半導体層40の平面視における半導体装置1の形状およびSi厚との関係を示す模式図である。
 図6に示すように、チップ面積をS[mm]とし、Si厚を[mm]とすると、h/S≧0.025の関係が成立する範囲において、半導体装置1は、実装基板から受ける応力、衝撃に対する十分な耐性を得られる。
 図7は、半導体装置1が実装基板内に樹脂封止されてフェイスアップで実装される場合における樹脂封止の際の熱処理工程により、半導体装置1が変形する様子の一例を模式的に示す、半導体装置1および第1の外周構造101の断面図である。
 上述した通り、半導体装置1は、裏面側に、第1の配線電極12の最大の厚さ、第2の配線電極52の最大の厚さ、第3の配線電極22の最大の厚さ、および、第4の配線電極54の最大の厚さよりも厚い金属層30を備える。一般に、金属層30を構成する金属(例えば、銀、銅、ニッケル、または、これらの合金)は、半導体層40を構成する、不純物を含む半導体(例えば、不純物がドーピングされたシリコン)よりも、熱膨張率が大きい。
 このため、図7の(b)に図示するように、半導体装置1を実装基板内に樹脂封止する際に行う樹脂を硬化させるための熱処理時には半導体装置1の温度も上昇するため、半導体装置1には、裏面を凸とする反りが生じる。これにより、熱処理時における、第1の外周構造101の、逆テーパ形状となる第1の壁面201の傾きは、図7の(a)および(b)に図示されるように、熱処理前よりも、半導体装置1の上方側に変化することとなる。
 その後、熱処理が終了して、樹脂および半導体装置1の温度が冷却されると(常温に回帰すると)、図7の(c)に図示するように、半導体装置1に生じていた裏面を凸とする反りが緩和される。これにより、冷却後における、第1の外周構造101の、逆テーパ形状となる第1の壁面201の傾きは、図7の(b)および(c)に図示されるように、熱処理時よりも、半導体装置1の下方側に変化することとなる。
 このように、第1の外周構造101の、逆テーパ形状となる第1の壁面201の傾きは、熱処理が終了して、樹脂および半導体装置1の温度が冷却される過程において、半導体装置1の反りの緩和に伴って、半導体装置1の上方側から下方側へと変化することとなる。この変化により、第1の外周構造101は、逆テーパ形状となる第1の壁面201を有さない構成に比べて、より強固に樹脂へ食い込むこととなる。
 したがって、上記構成の半導体装置1によると、第1の外周構造101は、逆テーパ形状となる第1の壁面201を有することで、第1の壁面201を有さない構成に比べて、樹脂内における半導体装置1の位置をより強固に固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれのさらなる抑制、および、実装基板内部における半導体装置1の位置のさらなる安定化が実現される。
 また、同様の理由により、上記構成の半導体装置1によると、第2の外周構造102は、逆テーパ形状となる第2の壁面を有することで、第2の壁面を有さない構成に比べて、樹脂内における半導体装置1の位置をより強固に固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれのさらなる抑制、および、実装基板内部における半導体装置1の位置のさらなる安定化が実現される。
 さらには、上述した通り、半導体層40の平面視において、第1の壁面201は、第1のテーパ形状領域202の内部に位置する。
 これにより、上記構成の半導体装置1によると、第1の外周構造101は、第1の壁面201が、第1のテーパ形状領域202の内部に位置しない構成に比べて、より強固に樹脂へと食い込むこととなる。
 したがって、上記構成の半導体装置1によると、第1の外周構造101は、半導体層40の平面視において、第1の壁面201が第1のテーパ形状領域202の内部に位置することで、半導体層40の平面視において、第1の壁面201が第1のテーパ形状領域202の内部に位置しない構成に比べて、樹脂内における半導体装置1の位置をより強固に固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれのさらなる抑制、および、実装基板内部における半導体装置1の位置のさらなる安定化が実現される。
 また、同様の理由により、上記構成の半導体装置1によると、第2の外周構造102は、半導体層40の平面視において、第2の壁面が第2のテーパ形状領域の内部に位置することで、半導体層40の平面視において、第2の壁面が第2のテーパ形状領域の内部に位置しない構成に比べて、樹脂内における半導体装置1の位置をより強固に固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれのさらなる抑制、および、実装基板内部における半導体装置1の位置のさらなる安定化が実現される。
 ところで、逆テーパ形状となる第1の壁面201および第2の壁面は、半導体層40の平面視において、第1の配線電極12および第2の配線電極52の外周に沿ってぐるりと逆テーパ形状となっていてもよいが、外周に沿って一部だけが逆テーパ形状となっていてもよい。
 第1の壁面201および第2の壁面を、外周に沿って一部だけを逆テーパ形状とする場合には、半導体装置1の反りが最も大きくなる方向と整合する部分に逆テーパ形状を設けることが好ましい。例えば、半導体層40の平面視において、半導体装置1が長手方向を有する長方形である場合には、長手方向における反りが最も大きな反りとなるので、第1の壁面201および第2の壁面の、半導体装置1の長手方向と直交する位置を含む部分に逆テーパ形状が設けられることが好ましい。
 図8は、半導体層40の平面視において、第1のソース電極13の面積をM1、第1の開口部61の面積をS1、第1の配線電極露出部71の面積をP1とする場合において、S1/M1により示される、第1のソース電極13の面積に対する第1の開口部61の面積の占有率が、0.5以上1.0未満の場合(以下、「第1の場合」とも称する)における、半導体装置1の平面図である。なお、図8および後述の図10には、第1の配線電極露出部71が図示されていないが、半導体層40の平面視における第1の配線電極露出部71の面積P1は、図8および後述の図10においては、第1の配線電極12の面積と一致する。
 図9は、第1の場合における半導体装置1の断面図であって、図8におけるIII-IIIにおける切断面を示す。
 図10は、S1/M1により示される、第1のソース電極13の面積に対する第1の開口部61の面積の占有率が、0.9以上1.0未満であり、P1/M1により示される、第1のソース電極13の面積に対する第1の配線電極露出部71の面積の占有率が0.5以上である場合(以下、「第2の場合」とも称する)における、半導体装置1の平面図である。
 図11は、第2の場合における半導体装置1の断面図であって、図10におけるIV-IVにおける切断面を示す。
 一般に、はんだ等の接合材を用いてフェイスダウンで実装する半導体装置は、接合材のボイド等による実装不良の発生を抑制するために、常識的には、S1/M1は、0.5未満である。
 これに対して、本開示に係る半導体装置1は、はんだ等の接合材を用いずにフェイスアップで実装するために、接合材のボイド等による実装不良の発生を心配する必要がない。このため、半導体装置1のオン抵抗の低減、および、半導体装置1の放熱特性の向上の観点から、図8、図9に示す例のように、半導体装置1において、S1/M1は、0.5以上にすることが好ましい、すなわち、S1/M1は、0.5以上1.0未満であることが好ましい。
 S1/M1が1.0未満であることが好ましいとする理由は、半導体層30の平面視において、第1の開口部61の面積S1が第1のソース電極13の面積M1よりも大きいと、第1の開口部61により、第1のソース電極13で被覆されていない酸化膜34の領域まで開口されてしまうためである。
 半導体装置1のオン抵抗の低減、および、半導体装置1の放熱特性の向上の観点から、さらに言えば、図10、図11に示す例のように、半導体装置1において、S1/M1は、0.9以上1.0未満であり、かつ、P1/M1は、0.9以上1.1以下であることがより好ましい。これは、半導体装置1のオン抵抗の低減、および、半導体装置1の放熱特性のために、可能な限り第1のソース電極13の外部への露出を大きくする意図である。
 なお、図10、図11に示す例では、半導体層40の平面視において、第1のゲート電極19の面積をM2、第2の開口部62の面積をS2、第2の配線電極露出部72の面積をP2とする場合において、P2/M2により示される、第1のゲート電極19の面積に対する第2の配線電極露出部72の面積の占有率は、0.9以上1.1以下となっている。
 図10、図11に示す例のように、P2/M2により示される、第1のゲート電極19の面積に対する第2の配線電極露出部72の面積の占有率が、0.9以上1.1以下であることは有効である。
 第2の配線電極露出部72を、半導体装置1を封止する樹脂に空けた穴を介して半導体装置1の外部配線と良好に接続させるためには、半導体層40の平面視における、第2の配線電極露出部72の面積P2は、半導体層40の平面視における、第2の開口部62の面積S2よりも大きいことが好ましい。
 一般に、第2の開口部62は、半導体層40の平面視において円形であることが多い。これに対して、上述した通り、半導体装置1は、半導体層40の平面視において矩形である。
 このため、M2をS2よりも拡大する際には、半導体層40の平面視における第2の配線電極露出部72は矩形にすることが好ましい。この場合、半導体層40の平面視において、S2よりも大きくなる、矩形である第2の配線電極露出部72の形状は、円形である第2の開口部62に外接する正方形である。ここで、円に外接する正方形は、円の面積の1.27倍である。
 これらのことから、P2/S2により示される、第2の開口部62の面積に対する、第2の配線電極露出部72の面積の占有率は、1.27以上であることが好ましいと言える。
 また、第1の配線電極露出部71を、半導体装置1を封止する樹脂に空けた穴を介して半導体装置1の外部配線と良好に接続させ、かつ、第2の配線電極露出部72を、半導体装置1を封止する樹脂に空けた穴を介して半導体装置1の外部配線と良好に接続させるためには、半導体層40の平面視において、第1の配線電極12の面積と、第2の配線電極52の面積とができるだけ広く、かつ、第1の配線電極12の形状と、第2の配線電極52の形状とが等しいことが好ましい。
 図12は、第1の配線電極12と第2の配線電極52とが、上記望ましい形状を実現している半導体装置1の構造の一例を示す平面図である。
 図12に示すように、半導体層40の平面視において、第1の配線電極12の形状と、第2の配線電極52の形状とを、中央線を対称軸とする線対称とし、中央線が、半導体装置1を面積において二等分する形状とすることで、半導体装置1は、上記好ましい形状が実現される。
 (実施の形態2)
 以下、実施の形態1に係る半導体装置1から、第1の外周構造101が実施の形態2に係る第1の外周構造に変更され、第2の外周構造102が実施の形態2に係る第2の外周構造に変更されて構成される実施の形態2に係る半導体装置について説明する。
 ここでは、実施の形態2に係る半導体装置について、半導体装置1と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1との相違点を中心に説明する。
 なお、実施の形態1において、半導体装置1が備える保護膜35は、単層構造であってもよいし、多層構造であってもよいとして説明したが、実施の形態2においては、実施の形態2に係る半導体装置が備える保護膜35は、多層構造であることが必須である。このため、以下では、実施の形態2に係る半導体装置が備える保護膜35は、第1の保護膜層35Aと第2の保護膜層35Bとが積層された多層構造(ここでは、2層構造)であるとして説明する。
 <構造>
 図13は、実施の形態2に係る半導体装置1Aの構造の一例を示す平面図である。
 図14は、半導体装置1Aの構造の一例を示す断面図であって、図14におけるV-Vにおける切断面を示す。
 図13、14に示すように、半導体装置1Aは、実施の形態1に係る半導体装置1から、第1の外周構造101が実施の形態2に係る第1の外周構造101Aに変更され、第2の外周構造102が実施の形態2に係る第2の外周構造102Aに変更されて構成される。
 より具体的には、図14に示すように、半導体装置1Aにおいて、第1の配線電極12の、半導体層40の平面視における外周部分に、第1のソース電極13と第1の保護膜層35Aと第1の配線電極12と第2の保護膜層35Bとがこの順で積層された第1の外周構造101Aが形成され、第2の配線電極52の、半導体層40の平面視における外周部分に、第1のゲート電極19と第1の保護膜層35Aと第2の配線電極52と第2の保護膜層35Bとがこの順で積層された第2の外周構造102Aが形成される。
 ここで、第1の外周構造101Aの最上層は、第2の保護膜層35Bであり、第2の外周構造102Aの最上層は、第2の保護膜層35Bである。
 上記の変更に伴い、実施の形態1に係る半導体装置1においては、第1の配線電極12の上面全体が半導体装置1の外部に露出し、第2の配線電極52の上面全体が半導体装置1の外部に露出していたのに対して、半導体装置1Aにおいては、第1の配線電極12の上面のうちの、第1の外周構造101Aに含まれない部分が半導体装置1Aの外部に露出し、第2の配線電極52の上面のうちの、第2の外周構造102Aに含まれない部分が半導体装置1Aの外部に露出することとなる。
 上述した通り、本開示において、第1の配線電極12の上面のうち、半導体装置1Aの外部に露出する部分を第1の配線電極露出部71と定義し、第2の配線電極52の上面のうち、半導体装置1Aの外部に露出する部分を第2の配線電極露出部72と定義する。
 このため、実施の形態2においては、第1の配線電極露出部71は、第1の配線電極12の上面のうちの、第1の外周構造101Aに含まれない部分であり、第2の配線電極露出部72は、第2の配線電極52の上面のうちの、第2の外周構造102Aに含まれない部分である。
 すなわち、実施の形態2においては、第1の配線電極12の上面のうちの、第1の外周構造101Aに含まれない部分である第1の配線電極露出部71は、半導体装置1Aの外部に露出し、第2の配線電極52の上面のうちの、第2の外周構造102Aに含まれない部分である第2の配線電極露出部72は、半導体装置1Aの外部に露出する。
 なお、半導体装置1Aにおいても、実施の形態1に係る半導体装置1と同様に、半導体層40の平面視において、第1の配線電極露出部71の面積は、第1の開口部61の面積よりも大きく、第2の配線電極露出部72の面積は、第2の開口部62の面積よりも大きい。
 図14に示すように、第1の外周構造101Aは、第1の配線電極露出部71の上面よりも上方に突出し、第2の外周構造102Aは、第2の配線電極露出部72の上面よりも上方に突出し、半導体装置1Aの最上方位置は、第1の外周構造101A、または/および、第2の外周構造102Aに存在する。
 ここで、第1の外周構造101Aを第1の配線電極露出部71の上面よりも上方に突出させるためには、第1の外周構造101Aにおける第1の配線電極12の厚さを第1の厚さとして、第1の外周構造101Aにおける第2の保護膜層35Bの厚さを第2の厚さとすると、第2の厚さは、第1の厚さ以下であることが望ましい。
 これは、仮に第2の厚さが第1の厚さを上回ると、第2の保護膜層35Bは、第1の配線電極12を一様に被覆してしまうため、第1の外周構造101Aが形成されにくくなるからである。
 第2の厚さが第1の厚さよりも大きくなればなるほど、第2の保護膜層35Bが第1の配線電極12を一様に被覆する傾向が強まる。このため、少なくとも、第2の厚さは第1の厚さ以下であることが望ましい。
 同様に、第2の外周構造102Aを第2の配線電極露出部72の上面よりも上方に突出させるためには、前記第2の外周構造102Aにおける第2の配線電極52の厚さを第3の厚さとして、前記第2の外周構造102Aにおける第2の保護膜層35Bの厚さを第4の厚さとすると、第4の厚さは、第3の厚さ以下であることが望ましい。
 一方で、発明者らは、半導体装置1Aを実装基板内に樹脂封止されてフェイスアップで実装する場合において、第1の外周構造101Aおよび第2の外周構造102Aを、樹脂に十分食い込ませるために必要となる、第1の配線電極露出部71の上面を基準とする第1の外周構造101Aの高さ、および、第2の配線電極露出部72の上面を基準とする第2の外周構造102Aの高さについて、実験、検討を繰り返した。その結果、発明者らは、第1の配線電極露出部71の上面を基準とする第1の外周構造101Aの高さが、第1の開口部61における第1の配線電極12の厚さの50%であり、第2の配線電極露出部72の上面を基準とする第2の外周構造102Aの高さが、第2の開口部62における第2の配線電極52の厚さの50%であれば、第1の外周構造101Aおよび第2の外周構造102Aを、樹脂に十分食い込ませることができるとの知見を得た。
 ここで、第1の外周構造101Aおよび第2の外周構造102Aを、樹脂に十分食い込ませるとは、樹脂に食い込む第1の外周構造101Aおよび第2の外周構造102Aが、樹脂内における半導体装置1Aの位置を固定するアンカーの役目を果たす程度に食い込ませることを意味する。
 すなわち、発明者らは、実験、検討を通じて、第1の外周構造101Aによる樹脂への食い込みを強めるためには、樹脂の厚さに対して10%以上の食い込み量があると、安定して強固なアンカー効果を得る上で効果的であることがわかった。
 後述するが、第1の配線電極12の厚さは、後に行うレーザ加工等による樹脂への穴空け工程において十分なマージンを有していなければならないため、第1の配線電極12の厚さは、直上に封止される樹脂の厚さのおよそ1/3以上とすることが求められる。
 したがって、望ましい食い込み量(第1の配線電極露出部71の上面を基準とする第1の外周構造101Aの高さ、および、第2の配線電極露出部72の上面を基準とする第2の外周構造102Aの高さ)は、少なくとも第1の配線電極12の厚さの30%以上となるが、本開示においては、さらに安定して強固なアンカー効果を得るために、第1の配線電極12の厚さの50%以上とすることとした。
 また、発明者らは、第1の配線電極露出部71の上面を基準とする第1の外周構造101Aの高さが、第1の開口部61における第1の配線電極12の厚さの50%であり、第2の配線電極露出部72の上面を基準とする第2の外周構造102Aの高さが、第2の開口部62における第2の配線電極52の厚さの50%であれば、半導体装置1Aを封入した後に固形化した樹脂の上面に、第1の外周構造101Aおよび第2の外周構造102Aを反映した突起が形成されるとの知見を得た。
 このため、発明者らは、半導体装置1Aに対して、第2の厚さは、第1の厚さの半分より大きく、かつ、第1の厚さ以下であり、第4の厚さは、第3の厚さの半分より大きく、かつ、第3の厚さ以下であることとした。
 ところで、第2の保護膜層35Bは、通常、粘性のあるポリイミドで形成される。このため、第1の外周構造101Aおよび第2の外周構造102Aのような段差のある構造を有する部分に第2の保護膜層35Bを形成しようとする場合に、段差の上部側のポリイミドが段差の下部側へ流れてしまうことにより、所望の形状の第2の保護膜層35Bが形成されないことがある。
 このため、発明者らは、第1の外周構造101Aおよび第2の外周構造102Aを形成するにあたって、段差の上部側のポリイミドが段差の下部側へ流れてしまうことを抑制することができる第2の保護膜層35Bの形状と、第1の外周構造101Aおよび第2の外周構造102Aの形状とについて、実験、検討を繰り返した。その結果、発明者らは、第2の保護膜層35Bのうち、半導体層40の平面視において第1の配線電極12と重なる部分の最小の幅が、第2の保護膜層35Bのうち、半導体層40の平面視において第1の配線電極12または第2の配線電極52と重ならない部分の厚さよりも大きければ、第1の外周構造101Aを形成するにあたって、段差の上部側のポリイミドが段差の下部側へ流れてしまうことを抑制することができるとの知見、および、第2の保護膜層35Bのうち、半導体層40の平面視において第2の配線電極52と重なる部分の最小の幅が、第2の保護膜層35Bのうち、半導体層40の平面視において第1の配線電極12または第2の配線電極52と重ならない部分の厚さよりも大きければ、第2の外周構造102Aを形成するにあたって、段差の上部側のポリイミドが段差の下部側へ流れてしまうことを抑制することができるとの知見を得た。
 このため、発明者らは、半導体装置1Aに対して、半導体層40の平面視において第1の配線電極12と重なる部分の最小の幅が、第2の保護膜層35Bのうち、半導体層40の平面視において第1の配線電極12または第2の配線電極52と重ならない部分の厚さよりも大きく、かつ、第2の保護膜層35Bのうち、半導体層40の平面視において第2の配線電極52と重なる部分の最小の幅が、第2の保護膜層35Bのうち、半導体層40の平面視において第1の配線電極12または第2の配線電極52と重ならない部分の厚さよりも大きくなることとした。
 <考察>
 上記構成の半導体装置1Aによると、実施の形態1に係る半導体装置1の場合と同様に、この半導体装置1Aを実装基板内に樹脂封止されてフェイスアップで実装する場合、半導体装置1Aの上面において、第1の外周構造101Aおよび第2の外周構造102Aが、樹脂に食い込む。
 このため、樹脂に食い込む第1の外周構造101Aおよび第2の外周構造102Aが、樹脂内における半導体装置1Aの位置を固定するアンカーの役目を果たし、その結果、実装基板における樹脂剥がれの抑制、および、実装基板内部における半導体装置1Aの位置の安定化が実現される。
 また、実施の形態1に係る半導体装置1の場合と同様に、半導体装置1Aを封入した後に固形化した樹脂の上面に、第1の外周構造101Aおよび第2の外周構造102Aを反映した突起が形成される。
 このため、樹脂に対して、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第1の外周構造101Aに対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工を行うことができる。
 さらには、同様に、樹脂に対して、樹脂の上面から第2の配線電極露出部72に到達する穴を空ける加工を行う場合に、樹脂の上面に形成される、第2の外周構造102Aに対応する突起をガイドラインとして、この突起の内側に穴を空ける加工を行うことで、この突起が存在しない場合に比べて、より精度よく、樹脂の上面から第2の配線電極露出部72に到達する穴を空ける加工を行うことができる。
 このように、上記構成の半導体装置1Aによると、実施の形態1に係る半導体装置1の場合と同様に、実装基板に埋め込んで実装される実装方法に適した構造を有する半導体装置が提供される。
 上述した通り、半導体層40の平面視において、第1の配線電極露出部71の面積は、第1の開口部61の面積よりも大きく、第2の配線電極露出部72の面積は、第2の開口部62の面積よりも大きい。
 これにより、実施の形態1に係る半導体装置1の場合と同様に、半導体層40の平面視において、第1の配線電極露出部71の面積は、第1の開口部61の面積よりも大きくなく、第2の配線電極露出部72の面積は、第2の開口部62の面積よりも大きくない場合に比べて、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工、および、樹脂の上面から第1の配線電極露出部71に到達する穴を空ける加工の自由度を高めることができる。
 また、実施の形態1に係る半導体装置1の場合と同様に、半導体装置1Aにおいて、S1/M1は、0.5以上にすることが好ましい、すなわち、S1/M1は、0.5以上1.0未満であることが好ましく、さらに言えば、半導体装置1Aにおいて、S1/M1は、0.9以上1.0未満であり、かつ、P1/M1は、0.9以上1.1以下であることがより好ましい。
 また、実施の形態1に係る半導体装置1の場合と同様に、半導体装置1Aにおいて、P2/M2は、0.9以上1.1以下であることは有効である。
 また、実施の形態1に係る半導体装置1の場合と同様に、半導体装置1Aにおいて、P2/S2は、1.27以上が好ましいと言える。
 また、実施の形態1に係る半導体装置1の場合と同様に、半導体装置1Aにおいて、半導体層40の平面視において、第1の配線電極12の形状と、第2の配線電極52の形状とを、中央線を対称軸とする線対称とし、中央線が、半導体装置1Aを面積において二等分する形状とすることで、半導体装置1Aは、第1の配線電極露出部71を、半導体装置1Aを封止する樹脂に空けた穴を介して半導体装置1Aの外部配線と良好に接続させ、かつ、第2の配線電極露出部72を、半導体装置1Aを封止する樹脂に空けた穴を介して半導体装置1Aの外部配線と良好に接続させる上で好ましい形状が実現される。
 なお、実施の形態2において、保護膜35は、第1の保護膜層35Aと第2の保護膜層35Bとの2つの層が積層された2層構造であるとして説明したが、保護膜35は、3つ以上の層が積層された多層構造であっても構わない。
 図15は、保護膜35が3層構造である場合における、第1の外周構造101Aの構造の一例を示す拡大断面図である。
 図15に示すように、保護膜35が3層構造である場合には、第1の保護膜層35Aと第2の保護膜層35Bとに加えて、さらに、第1の保護膜層35Aと第2の保護膜層35Bとに挟まれた第3の保護膜層35Cとが積層されて構成されるとしてもよい。
 なお、実施の形態2における<考察>の項目で論じたロジックは、第1の配線電極12および第2の配線電極52の厚さが10μmよりも過度に薄い場合には、成立しない可能性があることに注意する必要がある。
 (実施の形態3)
 以下、実施の形態1に係る半導体装置1または実施の形態2に係る半導体装置1A、もしくは、半導体装置1または半導体装置1Aと、第1の配線電極12、第2の配線電極52、および、保護膜35の構成が同様である半導体装置(以下、「実装用半導体装置」とも称する)が層間絶縁膜内にフェイスアップで実装された、実施の形態3に係る実装基板について説明する。
 ここでは、実施の形態3に係る実装基板について、半導体装置1の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略する。
 なお、実施の形態3においては、実施の形態3に係る実装基板が実装する半導体装置が半導体装置1であるとして説明するが、実施の形態3に係る実装基板が実装する半導体装置が半導体装置1Aである場合、および、実装用半導体装置である場合も同様である。
 図16は、実施の形態3に係る実装基板70の構造の一例を示す平面図である。図16に示すように、実装基板70は、長手方向を有する形状である。ここでは、図16中のX軸方向が、実装基板70の長手方向となっている。
 図17は、実装基板70の構造の一例を示す断面図である。図17は、図16のVI-VIにおける切断面を示す。
 図16、図17に示すように、実装基板70は、第1の配線層76と、層間絶縁膜78と、第2の配線層77とを備え、第1の配線層76と、層間絶縁膜78と、第2の配線層77とが、この順で積層されて構成される。
 なお、ここでは、実装基板70は、配線層として、第1の配線層76と第2の配線層77との2つの配線層を備えるとして説明するが、実装基板70は、配線層として、第1の配線層76と第2の配線層77との2つの配線層を備える構成に限定される必要はない。
 他の構成例として、実装基板70は、例えば、第1の配線層76よりも下層側、または/および、第2の配線層77よりも上層側に、さらなる1以上の配線層を備える構成であっても構わない。
 実装基板70は、さらに、層間絶縁膜78内に、半導体装置1と、電子部品81と、1以上の第1の接続配線91(ここでは、図16、図17中の第1の接続配線91A~第1の接続配線91Dの4つ第1の接続配線91)と、第2の接続配線92とを備え、第2の配線層77内に、第1の配線96と、第2の配線97とを備え、第2の配線層77上に、電子部品82と、電子部品83とを備える。
 ここでは、半導体装置1は、長手方向を有する矩形であり、電子部品83は、長手方向を有する矩形であるとして説明する。ここでは、図16中のY軸方向が半導体装置1の長手方向であり、図16中のX軸方向が電子部品83の長手方向となっている。
 なお、図16において、半導体装置1と、電子部品81と、1以上の第1の接続配線91と、第2の接続配線92と、第1の配線電極12と、第2の配線電極52とを、破線によりあたかも視認することが出来るかの如く図示しているが、実際には、これらの構成要素を実装基板70の外部から視認することはできない。
 第1の配線層76と第2の配線層77とは、それぞれ、実装基板70に実装された部品、または/および、実装基板70の外部の部品間を電気的に接続するための配線を形成するための層である。
 層間絶縁膜78は、第1の配線層76と第2の配線層77との間に挟まれた絶縁膜である。ここでは、層間絶縁膜78は、樹脂からなるとして説明する。
 半導体装置1は、層間絶縁膜78内にフェイスアップで実装される。この際、半導体装置1は、実装基板70の平面視において、半導体装置1の長手方向(ここでは、図16中のY軸方向)と、実装基板70の長手方向(ここでは、図16中のX軸方向)とが互いに直交する向きに実装される。
 電子部品81は、層間絶縁膜78内に実装され、電子部品82は、第2の配線層77上に実装される。
 電子部品83は、第2の配線層77上に実装される。この際、電子部品83は、実装基板70の平面視において、少なくとも一部が半導体装置1と重なり、かつ、電子部品83の長手方向(ここでは、図16中のX軸方向)と、半導体装置1の長手方向(ここでは、図16中のY軸方向)とが互いに直交する向きに実装される。
 第1の配線96は、第2の配線層77内に形成された、例えば、銅、銀、または、これらの合金からなる配線である。
 第2の配線97は、第2の配線層77内に形成された、例えば、銅、銀、または、これらの合金からなる配線である。
 1以上の第1の接続配線91のそれぞれは、第1の配線96と、半導体装置1の第1の配線電極12の上面とを接続する、実装基板70に直交する方向(ここでは、図16、図17のZ軸方向)に延伸する配線であって、銅からなる。
 1以上の第1の接続配線91のそれぞれは、第1の配線電極12の上面とは、第1の配線電極12のうち、半導体層40の平面視において、第1の外周構造101に重ならない部分において接続する。
 1以上の第1の接続配線91のそれぞれは、例えば、層間絶縁膜78内に半導体装置1がフェイスアップで実装された後において、層間絶縁膜78に対して、例えば、レーザ加工により、層間絶縁膜78の上面から第1の配線電極12の上面にまで達する穴が形成され、その穴に銅が充填されることで形成される。
 1以上の第1の接続配線91のそれぞれの、1以上の第1の接続配線91のそれぞれが延伸する方向に直交する断面は円形である。
 なお、ここでは、1以上の第1の接続配線91は、第1の接続配線91A~第1の接続配線91Dの4つであるとして説明しているが、必ずしも4つに限定される必要はなく、1つであってもよいし、4つ以外の複数であってもよい。
 1以上の第1の接続配線91が複数であれば、複数の第1の接続配線91のうちの1つが断線したとしても、他の1以上の第1の接続配線91により、第1の配線電極12と第1の配線96との接続を維持することが出来る。
 また、1以上の第1の接続配線91が複数であれば、1以上の第1の接続配線91が1つの場合に比べて、1以上の第1の接続配線91における抵抗値の低減、および、1以上の第1の接続配線91を介してなされる放熱の高効率化を実現することができる。
 第2の接続配線92は、第2の配線97と、半導体装置1の第2の配線電極52の上面とを接続する、実装基板70に直交する方向(図16、図17のZ軸方向)に延伸する配線であって、銅からなる。
 第2の接続配線92は、第2の配線電極52の上面とは、第2の配線電極52のうち、半導体層40の平面視において、第2の外周構造102に重ならない部分において接続する。
 第2の接続配線92は、例えば、層間絶縁膜78内に半導体装置1がフェイスアップで実装された後において、層間絶縁膜78に対して、例えば、レーザ加工により、層間絶縁膜78の上面から第2の配線電極52の上面にまで達する穴が形成され、その穴に銅が充填されることで形成される。
 なお、1以上の第1の接続配線91のうちの少なくとも1つの断面は、後述する第2の接続配線92の断面よりも大きくてもよい。これは、第1の縦型MOSトランジスタ10において、第1のソース電極13に流れる電流の方が、第1のゲート電極19に流れる電流よりも大きいからである。
 図18は、半導体装置1が備える第1の配線電極12が複数である(ここでは、第1の配線電極12A~第1の配線電極12Fの6つである)場合における、実装基板70の構造の一例を示す拡大平面図である。
 なお、図18において、半導体装置1、第1の配線電極12(ここでは、第1の配線電極12A~第1の配線電極12F)、第2の配線電極52、第1の接続配線91(ここでは、第1の接続配線91E~第1の接続配線91J)、第2の接続配線92等を、破線によりあたかも視認することが出来るかの如く図示しているが、実際には、これらの構成要素を実装基板70の外部から視認することができない。
 図18に示すように、半導体装置1が備える第1の配線電極12が複数である場合には、1以上の第1の接続配線91は、複数の第1の配線電極12のそれぞれと1対1で対応する複数である。この場合、複数の第1の接続配線91のそれぞれは、当該第1の接続配線91に1対1で対応する、複数の第1の配線電極12のうちの1の配線電極により、第1の配線96に接続する。
 この際、複数の第1の接続配線91のそれぞれの、複数の第1の接続配線91のそれぞれが延伸する方向に直交する断面は、互いに等しいとしてもよい。
 これにより、実装基板70の製造を、比較的容易なものとすることができる。
 <考察>
 実施の形態1において説明した通り、半導体装置1は、実装基板70に埋め込んで実装される実装方法に適した構造を有する半導体装置である。
 このため、上記構成の実装基板70によると、実装基板70に埋め込んで実装される実装方法に適した構造を有する半導体装置1を実装する実装基板が提供される。
 なお、実装基板70が実装する半導体装置が、半導体装置1Aである場合、実装用半導体装置である場合も同様である。
 上述した通り、実装基板70の平面視において、実装基板70は、長手方向を有する形状であり、半導体装置1は、長手方向を有する形状であり、実装基板70の長手方向と、半導体装置1の長手方向とは、互いに直交する。
 これにより、実装基板70の製造過程における熱処理時に生じる、実装基板70の反りと、半導体装置1の反りとが互いに助長し合うことが抑制される。
 また、上述した通り、実装基板70の平面視において、少なくとも一部が半導体装置1と重なる電子部品83は、長手方向を有する形状であり、半導体装置1は、長手方向を有する形状であり、電子部品83の長手方向と、半導体装置1の長手方向とは、互いに直交する。
 これにより、実装基板70の製造過程における熱処理時に生じる、電子部品83の反りと、半導体装置1の反りとが互いに助長し合うことが抑制される。
 なお、実装基板70において、第1の配線電極12の上面のうちの最も低い位置を基準とする、半導体装置1の最上方位置までの高さは、実装基板70に直交する方向における、1以上の第1の接続配線91の長さの15%以上であるとしてもよい。
 第1の接続配線91の長さは、半導体装置1の直上に封止される樹脂の厚さと同等である。
 第1の配線電極12の上面のうちの最も低い位置を基準とする、半導体装置1の最上方位置までの高さは、樹脂への食い込み量であり、本開示においては、第1の配線電極12の厚さの50%を確保することを想定する。
 先に説明した通り、第1の配線電極12の厚さは、樹脂の厚さの1/3以上であるため、食い込み量は、樹脂の厚さの1/3×0.5(50%)=1/6≒0.15、すなわち、15%以上あれば、十分なアンカー効果を得られることとなる。
 これにより、層間絶縁膜78の上面に、第1の外周構造101を反映した突起が形成されると共に、第1の接続配線91の形成過程において、実装基板70に対して行うレーザ加工により、層間絶縁膜78の上面から第1の配線電極12の上面にまで達する穴を形成する際における、第1の配線電極12の厚さのマージンを十分に確保することができる。
 (補足)
 以上、本開示の一態様に係る半導体装置、および、実装基板について、実施の形態1~実施の形態3に基づいて説明したが、本開示は、これら実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形をこれら実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の1つまたは複数の態様の範囲内に含まれてもよい。
 本開示は、半導体装置、および、実装基板等に広く利用可能である。
 1、1A 半導体装置
 10 第1の縦型MOSトランジスタ
 12、12A、12B、12C、12D、12E、12F 第1の配線電極
 13 第1のソース電極
 14 第1のソース領域
 15 第1のゲート導体
 16 第1のゲート絶縁膜
 18 第1のボディ領域
 19 第1のゲート電極
 20 第2の縦型MOSトランジスタ
 22 第3の配線電極
 23 第2のソース電極
 24 第2のソース領域
 25 第2のゲート導体
 26 第2のゲート絶縁膜
 28 第2のボディ領域
 29 第2のゲート電極
 30 金属層
 32 半導体基板
 33 低濃度不純物層
 34 酸化膜
 35 保護膜
 35A 第1の保護膜層
 35B 第2の保護膜層
 35C 第3の保護膜層
 40 半導体層
 52 第2の配線電極
 54 第4の配線電極
 61 第1の開口部
 62 第2の開口部
 63 第3の開口部
 64 第4の開口部
 70 実装基板
 71 第1の配線電極露出部
 72 第2の配線電極露出部
 76 第1の配線層
 77 第2の配線層
 78 層間絶縁膜
 81、82、83 電子部品
 91、91A、91B、91C、91D、91E、91F、91G、91H、91I、91J 第1の接続配線
 92 第2の接続配線
 96 第1の配線
 97 第2の配線
 101、101A 第1の外周構造
 102、102A 第2の外周構造
 201 第1の壁面
 202 第1のテーパ形状領域

Claims (18)

  1.  フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、
     半導体層と、
     前記半導体層内に形成された縦型MOS(Metal Oxide Semiconductor)トランジスタと、
     前記縦型MOSトランジスタの上面を被覆する保護膜であって、前記縦型MOSトランジスタのソース電極を前記保護膜の外部に露出させる第1の開口部と、前記縦型MOSトランジスタのゲート電極を前記保護膜の外部に露出させる第2の開口部と、を有する前記保護膜と、
     銅を主成分とし、前記第1の開口部における前記ソース電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ソース電極に接続された第1の配線電極と、
     銅を主成分とし、前記第2の開口部における前記ゲート電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ゲート電極に接続された第2の配線電極と、を備え、
     前記半導体層の平面視において、前記半導体装置は矩形であり、
     前記第1の配線電極の、前記半導体層の平面視における外周部分に、前記ソース電極と前記保護膜と前記第1の配線電極とがこの順で積層された第1の外周構造が形成され、
     前記第1の外周構造の最上層は、前記第1の配線電極であり、
     前記第2の配線電極の、前記半導体層の平面視における外周部分に、前記ゲート電極と前記保護膜と前記第2の配線電極とがこの順で積層された第2の外周構造が形成され、
     前記第2の外周構造の最上層は、前記第2の配線電極であり、
     前記第1の配線電極の上面である第1の配線電極露出部は、前記半導体装置の外部に露出し、
     前記第2の配線電極の上面である第2の配線電極露出部は、前記半導体装置の外部に露出し、
     前記第1の外周構造は、前記第1の配線電極露出部のうちの、前記第1の外周構造に含まれない部分の上面よりも上方に突出し、
     前記第2の外周構造は、前記第2の配線電極露出部のうちの、前記第2の外周構造に含まれない部分の上面よりも上方に突出し、
     前記半導体装置の最上方位置は、前記第1の外周構造または/および前記第2の外周構造に存在し、
     前記半導体層の平面視において、前記第1の配線電極露出部の面積は、前記第1の開口部の面積よりも大きく、
     前記半導体層の平面視において、前記第2の配線電極露出部の面積は、前記第2の開口部の面積よりも大きく、
     前記半導体層の平面視における前記半導体層の面積をS[mm]とし、前記半導体層の下面から前記保護膜の上面までの厚さをh[mm]とすると、h/S≧0.025の関係が成立する
     半導体装置。
  2.  さらに、前記半導体層の下面に接触して形成された金属層を備え、
     前記金属層の厚さは、前記第1の配線電極の最大の厚さよりも厚く、
     前記第1の配線電極は、前記半導体層の平面視における外周部分に、前記半導体層の断面視において、前記第1の配線電極の外側に向かって逆テーパ形状となる壁面を有し、
     前記壁面は、前記保護膜と接触しない
     請求項1に記載の半導体装置。
  3.  前記保護膜は、前記半導体層の平面視における前記第1の開口部の周囲の部分に、前記断面視において、前記第1の開口部に向かってテーパ形状となるテーパ形状領域を有し、
     前記半導体層の平面視において、前記壁面は、前記テーパ形状領域の内部に位置する
     請求項2に記載の半導体装置。
  4.  フェイスアップ実装が可能なチップサイズパッケージ型の半導体装置であって、
     半導体層と、
     前記半導体層内に形成された縦型MOS(Metal Oxide Semiconductor)トランジスタと、
     前記縦型MOSトランジスタの上面を被覆する保護膜であって、前記縦型MOSトランジスタのソース電極を前記保護膜の外部に露出させる第1の開口部と、前記縦型MOSトランジスタのゲート電極を前記保護膜の外部に露出させる第2の開口部と、を有する前記保護膜と、
     銅を主成分とし、前記第1の開口部における前記ソース電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ソース電極に接続された第1の配線電極と、
     銅を主成分とし、前記第2の開口部における前記ゲート電極の、前記保護膜の外部への露出部分を隙間なく被覆する、前記ゲート電極に接続された第2の配線電極と、を備え、
     前記半導体層の平面視において、前記半導体装置は矩形であり、
     前記保護膜は、第1の保護膜層と、前記第1の保護膜層よりも上方に位置する第2の保護膜層とを含む複数の保護膜層からなる多層構造であり、
     前記第1の配線電極の、前記半導体層の平面視における外周部分に、前記ソース電極と前記第1の保護膜層と前記第1の配線電極と前記第2の保護膜層とがこの順で積層された第1の外周構造が形成され、
     前記第1の外周構造の最上層は、前記第2の保護膜層であり、
     前記第2の配線電極の、前記半導体層の平面視における外周部分に、前記ゲート電極と前記第1の保護膜層と前記第2の配線電極と前記第2の保護膜層とがこの順で積層された第2の外周構造が形成され、
     前記第2の外周構造の最上層は、前記第2の保護膜層であり、
     前記第1の配線電極の上面のうちの、前記第1の外周構造に含まれない部分である第1の配線電極露出部は、前記半導体装置の外部に露出し、
     前記第2の配線電極の上面のうちの、前記第2の外周構造に含まれない部分である第2の配線電極露出部は、前記半導体装置の外部に露出し、
     前記第1の外周構造は、前記第1の配線電極露出部の上面よりも上方に突出し、
     前記第2の外周構造は、前記第2の配線電極露出部の上面よりも上方に突出し、
     前記半導体装置の最上方位置は、前記第1の外周構造または/および前記第2の外周構造に存在し、
     前記第1の外周構造における前記第1の配線電極の厚さを第1の厚さとして、前記第1の外周構造における前記第2の保護膜層の厚さを第2の厚さとすると、
     前記第2の厚さは、前記第1の厚さの半分より大きく、かつ、前記第1の厚さ以下であり、
     前記半導体層の平面視において、前記第1の配線電極露出部の面積は、前記第1の開口部の面積よりも大きく、
     前記半導体層の平面視において、前記第2の配線電極露出部の面積は、前記第2の開口部の面積よりも大きい
     半導体装置。
  5.  前記第2の保護膜層のうち、前記半導体層の平面視において前記第1の配線電極と重なる部分の最小の幅は、前記第2の保護膜層のうち、前記半導体層の平面視において前記第1の配線電極または前記第2の配線電極と重ならない部分の厚さよりも大きく、
     前記第2の保護膜層のうち、前記半導体層の平面視において前記第2の配線電極と重なる部分の最小の幅は、前記第2の保護膜層のうち、前記半導体層の平面視において前記第1の配線電極または前記第2の配線電極と重ならない部分の厚さよりも大きい
     請求項4に記載の半導体装置。
  6.  前記第1の配線電極露出部の上面を基準とする前記第1の外周構造の高さは、前記第1の開口部における前記第1の配線電極の厚さの50%以上であり、
     前記第2の配線電極露出部の上面を基準とする前記第2の外周構造の高さは、前記第2の開口部における前記第2の配線電極の厚さの50%以上である
     請求項4に記載の半導体装置。
  7.  前記半導体層の平面視における前記ソース電極の面積をM1とし、前記半導体層の平面視における前記第1の開口部の面積をS1とする場合において、
     S1/M1により示される、前記半導体層の平面視における前記ソース電極の面積に対する前記半導体層の平面視における前記第1の開口部の面積の占有率である第1の占有率は、0.5以上1.0未満である
     請求項1または請求項4に記載の半導体装置。
  8.  前記第1の占有率は、0.9以上1.0未満であり、
     前記半導体層の平面視における前記第1の配線電極露出部の面積をP1とする場合において、
     P1/M1により示される、前記半導体層の平面視における前記ソース電極の面積に対する前記半導体層の平面視における前記第1の配線電極露出部の面積の占有率である第2の占有率は、0.9以上1.1以下である
     請求項7に記載の半導体装置。
  9.  前記半導体層の平面視における前記第2の開口部の面積をS2とし、前記半導体層の平面視における前記第2の配線電極露出部の面積をP2とする場合において、
     P2/S2により示される、前記半導体層の平面視における前記第2の開口部の面積に対する、前記半導体層の平面視における前記第2の配線電極露出部の面積の占有率である第3の占有率は、1.27以上である
     請求項1または請求項4に記載の半導体装置。
  10.  前記半導体層の平面視において、
     前記第1の配線電極の形状と、前記第2の配線電極の形状とは、中央線を対称軸とする線対称であり、
     前記中央線は、前記半導体装置を面積において二等分する
     請求項9に記載の半導体装置。
  11.  第1の配線層と、層間絶縁層と、第2の配線層とがこの順で積層された実装基板であって、
     前記層間絶縁層内にフェイスアップで実装された、請求項1または請求項4に記載の半導体装置と、
     前記第2の配線層に形成された第1の配線と、
     前記第1の配線と前記第1の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する1以上の第1の接続配線であって、前記第1の配線電極の上面とは、前記第1の配線電極の上面のうち、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において接続する前記1以上の第1の接続配線と、を備える
     実装基板。
  12.  さらに、
     前記第2の配線層に形成された第2の配線と、
     前記第2の配線と前記第2の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する第2の接続配線であって、前記第2の配線電極の上面とは、前記第2の配線電極の上面のうち、前記半導体層の平面視において、前記第2の外周構造に重ならない部分において接続する第2の接続配線と、を備え、
     前記1以上の第1の接続配線のそれぞれの、前記1以上の第1の接続配線のそれぞれが延伸する方向に直交する断面、および、前記第2の接続配線の、前記第2の接続配線が延伸する方向に直交する断面は円形であり、
     前記1以上の第1の接続配線のうちの少なくとも1つの断面は、前記第2の接続配線の断面よりも大きい
     請求項11に記載の実装基板。
  13.  第1の配線層と、層間絶縁層と、第2の配線層とがこの順で積層された実装基板であって、
     前記層間絶縁層内にフェイスアップで実装された、半導体層を有する半導体装置であって、上面に第1の配線電極を有する前記半導体装置と、
     前記第2の配線層に形成された第1の配線と、
     前記第1の配線と前記第1の配線電極の上面とを接続する、前記実装基板に直交する方向に延伸する1以上の第1の接続配線とを備え、
     前記半導体装置は、前記第1の配線電極の、前記半導体層の平面視における外周部分に第1の外周構造が形成され、
     前記第1の外周構造は、前記第1の配線電極の上面のうちの、前記半導体層の平面視において、前記第1の外周構造に重ならない部分よりも上方に突出し、
     前記半導体装置の最上方位置は、前記第1の外周構造に存在し、
     前記第1の配線電極は、少なくとも、前記第1の配線電極の上面のうちの、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において前記半導体装置の外部に露出し、
     前記1以上の第1の接続配線は、前記第1の配線電極の上面とは、前記半導体装置の前記第1の配線電極の上面のうち、前記半導体層の平面視において、前記第1の外周構造に重ならない部分において接続する
     実装基板。
  14.  前記1以上の第1の接続配線は、複数である
     請求項11または請求項13に記載の実装基板。
  15.  前記第1の配線電極の上面のうちの最も低い位置を基準とする、前記半導体装置の最上方位置までの高さは、前記実装基板に直交する方向における前記1以上の第1の接続配線の長さの15%以上である
     請求項11または請求項13に記載の実装基板。
  16.  前記第1の配線電極は、複数であり、
     前記1以上の第1の接続配線は、前記複数の第1の配線電極のそれぞれと1対1で対応する複数であり、
     前記複数の第1の接続配線のそれぞれは、当該第1の接続配線に1対1で対応する、前記複数の第1の配線電極のうちの1の第1の配線電極により、前記第1の配線に接続され、
     前記複数の第1の接続配線のそれぞれの、前記複数の第1の接続配線のそれぞれが延伸する方向に直交する断面は、互いに等しい
     請求項11または請求項13に記載の実装基板。
  17.  前記実装基板の平面視において、
     前記実装基板は、長手方向を有する形状であり、
     前記半導体装置は、長手方向を有する形状であり、
     前記実装基板の前記長手方向と、前記半導体装置の前記長手方向とは、互いに直交する
     請求項11または請求項13に記載の実装基板。
  18.  さらに、前記層間絶縁層よりも上方に配置された電子部品を備え、
     前記実装基板の平面視において、
     前記電子部品は、長手方向を有する形状であり、
     前記半導体装置は、長手方向を有する形状であり、
     前記電子部品は、少なくとも一部が前記半導体装置と重なり、
     前記電子部品の前記長手方向と、前記半導体装置の前記長手方向とは、互いに直交する
     請求項11または請求項13に記載の実装基板。
PCT/JP2023/033097 2022-09-16 2023-09-11 半導体装置および実装基板 WO2024058144A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263407306P 2022-09-16 2022-09-16
US63/407,306 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058144A1 true WO2024058144A1 (ja) 2024-03-21

Family

ID=90275039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033097 WO2024058144A1 (ja) 2022-09-16 2023-09-11 半導体装置および実装基板

Country Status (1)

Country Link
WO (1) WO2024058144A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097999A (ja) * 2008-10-14 2010-04-30 Fuji Electric Systems Co Ltd 半導体装置及び半導体装置の製造方法
JP2014132636A (ja) * 2012-12-04 2014-07-17 Denso Corp 半導体装置およびその製造方法
WO2014115561A1 (ja) * 2013-01-25 2014-07-31 富士電機株式会社 半導体装置
WO2017002368A1 (ja) * 2015-07-01 2017-01-05 パナソニックIpマネジメント株式会社 半導体装置
JP2018137393A (ja) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 半導体装置の製造方法
WO2019116481A1 (ja) * 2017-12-14 2019-06-20 新電元工業株式会社 ワイドギャップ半導体装置
JP2019169579A (ja) * 2018-03-23 2019-10-03 株式会社東芝 半導体装置及びその製造方法
JP2020053593A (ja) * 2018-09-27 2020-04-02 Tdk株式会社 Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097999A (ja) * 2008-10-14 2010-04-30 Fuji Electric Systems Co Ltd 半導体装置及び半導体装置の製造方法
JP2014132636A (ja) * 2012-12-04 2014-07-17 Denso Corp 半導体装置およびその製造方法
WO2014115561A1 (ja) * 2013-01-25 2014-07-31 富士電機株式会社 半導体装置
WO2017002368A1 (ja) * 2015-07-01 2017-01-05 パナソニックIpマネジメント株式会社 半導体装置
JP2018137393A (ja) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 半導体装置の製造方法
WO2019116481A1 (ja) * 2017-12-14 2019-06-20 新電元工業株式会社 ワイドギャップ半導体装置
JP2019169579A (ja) * 2018-03-23 2019-10-03 株式会社東芝 半導体装置及びその製造方法
JP2020053593A (ja) * 2018-09-27 2020-04-02 Tdk株式会社 Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置

Similar Documents

Publication Publication Date Title
US7816183B2 (en) Method of making a multi-layered semiconductor device
US10157878B2 (en) Semiconductor device and electronic device
US7221055B2 (en) System and method for die attach using a backside heat spreader
US20160049315A1 (en) Semiconductor device and manufacturing method thereof
US7692297B2 (en) Semiconductor device, semiconductor device module and method of manufacturing the semiconductor device
JP2017201659A (ja) 電子部品およびその製造方法
JP2008016514A (ja) 半導体装置の製造方法および半導体装置
US20100140801A1 (en) Device
JP2023054250A (ja) 半導体装置
US11961816B2 (en) Semiconductor chip and semiconductor device including a copper pillar and an intermediate layer and a concave portion formed at one end surface of the copper pillar
JP6301763B2 (ja) 半導体装置、および半導体装置の製造方法
TWI627689B (zh) 半導體裝置
US20240014159A1 (en) Semiconductor device
WO2024058144A1 (ja) 半導体装置および実装基板
JP6836418B2 (ja) 半導体装置
JP5356647B2 (ja) 実装基板及び電子装置
JP2006005101A (ja) 半導体装置
JP4620994B2 (ja) 半導体装置
US20190259687A1 (en) Semiconductor device
JPH03108338A (ja) 半導体集積回路装置
WO2023189930A1 (ja) 半導体素子および半導体装置
US20230245992A1 (en) Integrated circuit chip package that does not utilize a leadframe
JP7319075B2 (ja) 半導体装置および半導体パッケージ
JP2004335776A (ja) 半導体装置
JP2007184654A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865497

Country of ref document: EP

Kind code of ref document: A1