WO2024058115A1 - 導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物 - Google Patents

導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物 Download PDF

Info

Publication number
WO2024058115A1
WO2024058115A1 PCT/JP2023/033030 JP2023033030W WO2024058115A1 WO 2024058115 A1 WO2024058115 A1 WO 2024058115A1 JP 2023033030 W JP2023033030 W JP 2023033030W WO 2024058115 A1 WO2024058115 A1 WO 2024058115A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
base material
manufacturing
particle size
producing
Prior art date
Application number
PCT/JP2023/033030
Other languages
English (en)
French (fr)
Inventor
孝之 小川
剛 柴田
Original Assignee
サトーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サトーホールディングス株式会社 filed Critical サトーホールディングス株式会社
Publication of WO2024058115A1 publication Critical patent/WO2024058115A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present invention relates to a method for manufacturing a conductive substrate, a method for manufacturing an electronic device, a method for manufacturing an electromagnetic shielding film, a method for manufacturing a planar heating element, and a conductive composition.
  • a copper fine particle dispersion liquid having copper fine particles (copper nanoparticles) having a median diameter of about 40 nm, a dispersion medium, and a dispersing agent is prepared on a glass base. It is described that a conductive film was formed by spin coating on a material to form a coating film and then baking it.
  • Patent Document 3 discloses that a conductive ink composition containing (A) an oxycarboxylic acid, (B) a nitrogen-containing compound, (C) copper particles, and (D) a dispersion medium is coated on a base material. It is described that a conductive layer is formed by applying a conductive layer to a substrate to form a coating film, and processing the coating film.
  • Patent No. 6181608 Japanese Patent Application Publication No. 2021-044308 Japanese Patent Application Publication No. 2017-191723
  • the specific resistance of the conductive film be as small as possible. Moreover, it is more preferable that a conductive film with a low specific resistance can be manufactured by a simple and not very complicated process.
  • One of the objects of the present invention is to provide a method for manufacturing a conductive base material that can form a conductive film with low specific resistance.
  • D 50 is 0.6 to 50 ⁇ m.
  • (b) (D 90 ⁇ D 50 )/D 50 is 0.55 to 3.0.
  • 2. A method for producing a conductive base material according to A method for producing a conductive base material, wherein the base material has flexibility. 3. 1. or 2. A method for producing a conductive base material according to In the conductive film forming step, the coating layer is heated and pressurized. 4. 1. ⁇ 3. A method for producing a conductive base material according to any one of A method for producing a conductive base material that further satisfies the following (c). (c) (D 50 ⁇ D 10 )/D 50 is 0.4 to 0.8. 5. 1. ⁇ 4.
  • the conductive film forming step is a method for manufacturing a conductive base material, including a roll press step in which the base material provided with the coating layer is conveyed between two opposing rolls.
  • 9. 8 A method for producing a conductive base material according to In the roll pressing step, the roll that the coating layer contacts among the two rolls is not heated or is heated to 400° C. or lower. 10. 8. or 9.
  • a method for producing a conductive base material according to any one of The conductive film forming step includes placing the base material provided with the coating layer on a flat plate or the flat surface of a table having a flat surface, and applying at least pressure to the coating layer from above using a roll.
  • a method for producing a conductive base material according to any one of The conductive film forming step includes the first flat surface of a first pressing member having a first flat surface and the second flat surface of a second pressing member having a second flat surface.
  • a method for producing a conductive substrate the method comprising the step of sandwiching a substrate provided with a coating layer. 13. 1. ⁇ 12.
  • a method for manufacturing an electronic device comprising manufacturing an electronic device using a conductive base material obtained by the method for manufacturing a conductive base material according to any one of the above. 15. 14.
  • An electrically conductive composition containing electrically conductive particles which is used for forming a conductive film by coating on a substrate to form a coating layer, and applying at least pressure to the coating layer, the composition comprising: A conductive composition in which the conductive particles satisfy the following conditions. (conditions) In the volume-based cumulative particle size distribution curve obtained when the conductive particles are measured for particle size by a laser diffraction scattering method, the particle size at which the cumulative frequency is 50% is D50 , and the particle size at which the cumulative frequency is 10% is When D 10 and the particle diameter at which the cumulative frequency is 90% are D 90 , the following (a) and (b) are satisfied. (a) D 50 is 0.6 to 50 ⁇ m.
  • (b) (D 90 ⁇ D 50 )/D 50 is 0.55 to 3.0. 19. 18.
  • (c) (D 50 ⁇ D 10 )/D 50 is 0.4 to 0.8. 20. 18. or 19.
  • FIG. 3 is a diagram for explaining a conductive film forming process.
  • FIG. 3 is a diagram for explaining a conductive film forming process.
  • FIG. 3 is a diagram for explaining a conductive film forming process. It is a figure for showing the specific aspect of the roughening process in the screen mesh used in the Example.
  • the method for manufacturing the conductive base material of this embodiment is as follows: A coating step of coating a conductive composition containing conductive particles on a base material to form a coating layer; a conductive film forming step of forming a conductive film by at least pressurizing the coating layer; including. Each step will be specifically described below with reference to the drawings.
  • a conductive composition containing conductive particles is coated on the base material 1 (at least one surface of the base material 1) to provide a coating layer 3.
  • the conductive particles included in the conductive composition satisfy the following conditions.
  • conditions In the volume-based cumulative particle size distribution curve obtained when the particle size of conductive particles is measured by a laser diffraction scattering method, the particle size at which the cumulative frequency is 50% is D50 , and the particle size at which the cumulative frequency is 10% is D. 10 , when the particle diameter at which the cumulative frequency is 90% is D90 , the following (a) and (b) are satisfied.
  • D 50 is 0.6 to 50 ⁇ m.
  • (b) (D 90 ⁇ D 50 )/D 50 is 0.55 to 3.0.
  • the coating layer 3 becomes a conductive film when at least pressure is applied.
  • the conductive particles included in the conductive composition satisfy the above (conditions)
  • the specific resistance of the conductive film can be reduced. The reason for this can be explained as follows. To be sure, the following description includes speculation, and the present invention is not to be construed as being limited by the following description.
  • a conductive composition containing conductive particles is applied onto a base material to form a coating layer, and the coating layer is heated, pressurized, etc. to form a conductive base material having a conductive film.
  • nano-sized conductive particles were often used. This is because when the size of the conductive particles is about 100 nm or less, there is an effect of promoting sintering. Specifically, when the size of the conductive particles is about 100 nm or less, the free energy of the entire system increases due to the increase in surface area, and the conductive particles tend to sinter together in order to lower the free energy. This can be explained based on physical chemistry theory.
  • the present inventors decided to use conductive particles with a diameter on the order of submicrons to microns instead of nano-sized conductive particles.
  • conductive particles having a particle diameter D 50 of 0.6 to 50 ⁇ m at which the cumulative frequency is 50% in the volume-based cumulative particle diameter distribution curve obtained when particle diameter is measured by laser diffraction scattering method are used. I decided to use it.
  • conductive particles with diameters on the order of submicrons to microns also have the advantage of being cheaper and easier to obtain than nano-sized particles.
  • D 50 is 0.6 to 50 ⁇ m
  • (D 90 - D 50 )/D 50 is 0.55 to 3.0.
  • D 50 is preferably 0.6 to 30 ⁇ m, more preferably 0.7 to 20 ⁇ m, even more preferably 0.7 to 15 ⁇ m.
  • (D 90 ⁇ D 50 )/D 50 is preferably 0.55 to 2.5, more preferably 0.55 to 2.
  • (c) (D 50 ⁇ D 10 )/D 50 is 0.4 to 0.8, more preferably 0.4 to 0.7, even more preferably 0.5 to 0.7.
  • D 95 when the particle diameter at which the cumulative frequency is 95% is defined as D 95 in a volume-based cumulative particle diameter distribution curve obtained when the particle diameter of the conductive particles is measured by a laser diffraction scattering method, D 95 is preferably 1.5 to 100 ⁇ m, more preferably 1.5 to 50 ⁇ m, and even more preferably 1.5 to 30 ⁇ m.
  • D50 is 0.6 to 50 ⁇ m
  • "gaps" are likely to occur between the conductive particles, and as a result, there is a concern that the resistance of the conductive film will increase.
  • the value of D50 etc. of a certain conductive particle is determined based on the curve. It is sufficient to find a value such as 50 . If a value such as D50 is provided by the purchaser, that value may be used. On the other hand, if the value of D50 etc. cannot be determined as described above, the particle size of the conductive particles is measured by a laser diffraction scattering method to obtain a volume-based cumulative particle size distribution curve. Measurements are usually performed wet.
  • examples of the dispersion medium include water containing a surfactant and isopropanol (an appropriate dispersion medium is selected in consideration of the state of the surface treatment agent of the conductive particles, etc.).
  • An example of a measuring device is the SALD series (SALD-2300, etc.) manufactured by Shimadzu Corporation. When using the SALD series as an apparatus, it is preferable to use an attached ultrasonic unit to generate ultrasonic waves and measure the particle size while circulating the dispersion medium.
  • the conductive particles contain at least one element selected from the group consisting of silver and copper.
  • the conductive particles preferably include at least one selected from the group consisting of particles containing silver as a main component and particles containing copper as a main component.
  • the expression "contains silver as a main component” means that the ratio of silver element in all constituent elements in the particles is preferably 50 mol% or more, more preferably 75 mol% or more, still more preferably 90 mol% or more, Particularly preferably, it is 95 mol% or more.
  • the expression "contains copper as a main component” means that the ratio of the copper element in all the constituent elements in the particles is preferably 50 mol% or more, more preferably 75 mol% or more, even more preferably 90 mol% or more, Particularly preferably, it is 95 mol% or more.
  • the conductive particles may contain elements other than silver and copper as long as the desired conductivity is achieved. Examples of elements other than silver and copper include gold, aluminum, platinum, palladium, iridium, tungsten, nickel, tantalum, lead, and zinc.
  • the conductive particles may contain two or more elements.
  • conductive particles whose surfaces are plated with silver are preferably used in this embodiment.
  • Silver-coated copper particles are particles whose main component is copper, and the surface of the copper particles is plated with, for example, up to 35% by mass of silver based on the total mass of the particles.
  • Conductive particles that can be used in this embodiment can be purchased from DOWA Electronics, Fukuda Metal Foil and Powder Industries, etc., for example. Incidentally, in order to adjust and optimize the values of (a), (b), (c), etc., two or more different conductive particles may be mixed and used.
  • the ratio of conductive particles in the conductive composition is preferably large.
  • the ratio of the conductive particles in the total non-volatile components of the conductive composition is preferably 95% by mass or more, more preferably 97% by mass or more, even more preferably 98% by mass or more, particularly preferably 99% by mass. % or more.
  • the conductive composition may contain other than conductive particles
  • the conductive composition used in the coating process contains at least conductive particles that satisfy the above-mentioned specific particle size distribution. It may contain components other than sexual particles.
  • the conductive composition can include a solvent.
  • Solvents typically include organic solvents.
  • the type of solvent is not particularly limited. Any solvent may be used as long as it does not substantially alter each component in the conductive composition.
  • the amount of the solvent used may be adjusted as appropriate depending on the method of applying the conductive composition.
  • the amount of the solvent used is, for example, 3 to 30% by weight, preferably 5 to 25% by weight, and more preferably 10 to 20% by weight, based on the entire conductive composition.
  • the conductive composition may or may not contain a binder from the viewpoint of adhesion to the base material 1, applicability, printability, and the like.
  • a binder the type of binder is not particularly limited, but preferred examples include polyvinylpyrrolidone, polyester, epoxy resin, (meth)acrylic resin, polyvinyl acetal, cellulose resin (such as ethyl cellulose), and phenol resin.
  • the amount of the binder in the total nonvolatile components of the conductive composition is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 2% by mass or less, Particularly preferably, it is 1% by mass or less.
  • the lower limit of the amount of binder may be zero.
  • the amount of the binder is preferably 1% by mass or more based on the total nonvolatile components of the conductive composition. More preferably, the content is 2% by mass or more. That is, from the viewpoint of the balance of various performances, the amount of the binder is preferably 1 to 5% by mass, more preferably 2 to 5% by mass, based on the total nonvolatile components of the conductive composition.
  • the conductive composition may or may not contain various additive components in conventional ink compositions and conductive pastes.
  • the base material 1 is usually in the shape of a film, sheet, or plate. From the viewpoint of industrial productivity, the shape of the base material 1 is preferably any one of these shapes.
  • the base material 1 preferably has flexibility. By employing the base material 1 having flexibility, a flexible printed circuit board (FPC) can be manufactured. Further, the flexible base material 1 also has the advantage that it is easy to form a conductive film by a roll press process in the conductive film formation process described below. To be sure, the base material 1 may be a rigid base material that does not have flexibility.
  • the base material 1 is at least one selected from the group consisting of polyesters such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate), polyolefins such as polyethylene and polypropylene, polyimide, and paper. It is preferable that there be.
  • the paper may be coated paper (paper whose surface is coated with a coating agent) or ordinary paper that is not coated paper.
  • the base material 1 is not limited to PET or the like, and a general resin film can be used. As will be described later, in this embodiment, a conductive film with sufficiently low specific resistance can be obtained without heating or even with heating at a relatively low temperature in the conductive film forming step.
  • the base material 1 with low heat resistance such as polyester, polyolefin, paper, etc. can also be suitably used as the base material. Further, when a highly heat-resistant base material 1 such as polyimide is used, specific resistance can be further reduced by heating at a high temperature in the conductive film forming step.
  • the method of coating the conductive composition is not particularly limited.
  • the conductive composition may be applied to the entire surface of the base material, or may be applied to only a part of the surface of the base material.
  • coating can be performed using a device such as a blade coater, air knife coater, doctor coater, roll coater, bar coater (rod coater), or curtain coater.
  • various printing methods such as screen printing, gravure printing, letterpress printing, planographic printing (offset printing), and inkjet printing can be applied.
  • the "pattern" of application is preferably designed appropriately depending on the use of the finally obtained conductive film.
  • a process is performed in which, for example, a film with holes cut out is placed on the base material 1, the conductive composition is applied thereon, and then the film is removed. You can.
  • the material of the screen mesh when employing the screen printing method can be synthetic fibers such as polyester, or metal fibers such as stainless steel. From the viewpoint of durability and compatibility with conductive particles, the material of the screen mesh is preferably a metal fiber such as stainless steel.
  • benefits can be obtained by using an appropriate screen mesh. Advantages include suppression of bleeding when coating is performed continuously by screen printing, reduction of surface roughness of the coating layer 3, and the like.
  • the screen mesh is preferably roughened. It is thought that this makes it easier for the solvent component in the conductive composition to fit into the screen mesh, reducing the frictional force when the conductive composition passes through the screen mesh. Even when screen printing is performed continuously, it can be expected that the coating amount will be stabilized and the unevenness of the pattern surface will be reduced.
  • the roughening treatment is preferably performed on a screen mesh made of metal fibers such as stainless steel.
  • the screen mesh is subjected to liquid repellent treatment.
  • a screen mesh to which a material that reduces surface free energy, such as a fluorine-containing material (such as a fluororesin) or a silicon-containing material (silicone-based material), is attached to the surface.
  • a material that reduces surface free energy such as a fluorine-containing material (such as a fluororesin) or a silicon-containing material (silicone-based material
  • a material that reduces surface free energy such as a fluorine-containing material (such as a fluororesin) or a silicon-containing material (silicone-based material)
  • the conductive composition containing conductive particles satisfying the above-mentioned (a) and (b) in this embodiment can be subjected to roughening treatment and/or liquid-repellent treatment as described above. Goes well with screen mesh. Although the details are unknown, for example, some characteristics such as the fluidity of a conductive composition containing conductive particles having a specific particle size distribution are different from those of a screen mesh subjected to roughening treatment and/or liquid repellent treatment. There may be a match.
  • the thickness of the coating layer 3 (dry thickness when the conductive composition contains a solvent) is preferably 5 to 100 ⁇ m. , more preferably 10 to 50 ⁇ m.
  • the conductive composition contains a solvent
  • the conditions of the heat treatment are not particularly limited as long as the solvent is sufficiently dried, but from the viewpoint of sufficiently drying the solvent and suppressing deterioration of the conductive particles due to excessive heating, the temperature of the heat treatment is preferably 50 to 150 ° C. , more preferably 80 to 120°C.
  • the heat treatment time is preferably 1 to 60 minutes, more preferably 3 to 30 minutes.
  • the heat treatment for drying the solvent can be performed by applying hot air to the coating layer 3.
  • the heat treatment may be performed by other methods.
  • FIG. 2 schematically shows a case where a roll press is employed as the pressurizing means.
  • a roll press is employed as the pressing means
  • the base material 1 provided with the coating layer 3 is sandwiched between two opposing rolls 10A and 10B in the conductive film forming step.
  • the sandwiched base material 1 is conveyed from the left direction to the right direction in FIG. 2 by the force of rotation of the rolls 10A and 10B (indicated by arrows in FIG. 2).
  • a pressure of 10 MPa or more is applied to the base material 1 provided with the coating layer 3.
  • This pressure is more preferably 10 to 5000 MPa, still more preferably 20 to 300 MPa, particularly preferably 30 to 250 MPa.
  • the pressure is 10 MPa or more, the resistivity of the resulting conductive film can be further reduced.
  • the pressure is set to 5000 MPa or less, damage to the base material 1 and the coating layer 3 can be suppressed.
  • the strength of the base material 1 is sufficient, the specific resistance of the conductive film can be further reduced by increasing the pressure.
  • the heating temperature may be appropriately set depending on the heat resistance of the base material 1, the type of conductive particles used, and the like.
  • the heating temperature may be 50 to 200°C, for example, while taking into account the heat resistance temperature of the base material used. It is preferable to set a temperature within the range of 70 to 180°C, more preferably 70 to 150°C, particularly preferably 80 to 125°C, at which the base material does not substantially soften, melt, or carbonize.
  • the heating time is short, heating at a higher temperature (for example, up to about 400° C.) may be allowed.
  • the heating temperature can be 50 to 400°C. That is, when heating the coating layer 3, the temperature is preferably adjusted appropriately to 400° C. or lower.
  • the heating time can also be appropriately set depending on the heat resistance of the base material 1, the type of conductive particles used, and the like.
  • the heating time is, for example, 0.01 to 1 second, preferably 0.04 to 0.6 seconds.
  • the term "heating time” refers to the time during which the coating layer 3 is heated while being in contact with the roll and being pressurized.
  • the coating layer 3 is pressed while being heated, so at least the roll 10A on the side closer to the coating layer 3 out of the two rolls is heated.
  • the heating temperature of the roll 10A can be appropriately set at 400° C. or lower depending on the heat resistance of the base material 1, the type of conductive particles used, and the like.
  • the heating time can be adjusted by changing the rotational speed (i.e., conveyance speed) of roll 10A and roll 10B.
  • the conveying speed may be adjusted as appropriate, for example, between 0.1 and 10 m/min, taking into consideration securing sufficient heating and pressurizing time, mass productivity, and the like. Further, in order to achieve uniform heating and shorten the heating time, not only the roll 10A but also the roll 10B may be heated.
  • the roll 10A does not need to be heated, and the roll 10B does not need to be heated either.
  • the conductive film forming step includes a roll pressing step
  • the roll 10A may not be heated, and the roll 10B may not be heated either.
  • particles containing silver as a main component are used as the conductive particles, it is easy to obtain a conductive film with sufficiently low resistivity even by applying pressure alone.
  • the rolls 10A and 10B may be rotated while a resin film is sandwiched between the coating layer 3 and the roll 10A.
  • a resin film is sandwiched between the coating layer 3 and the roll 10A.
  • the pressure applied to the coating layer 3 is appropriately dispersed, so it tends to be easier to obtain a conductive film that is more homogeneous and has a constant performance.
  • the material of the resin film sandwiched between the coating layer 3 and the roll 10A is not particularly limited. In terms of heat resistance and durability, polyimide films and the like can be preferably used.
  • the roll press process was explained as a specific method of the conductive film forming process, but as long as sufficient pressure (and heat in some cases) is applied to the coating layer 3, the roll press can be used.
  • the conductive film forming step may be performed by other methods. However, in consideration of ease of mass production, the conductive film forming step preferably includes a roll pressing step.
  • the base material 1 provided with the coating layer 3 is placed on the flat surface 20A of the table 20 having a flat surface, and the coating layer is deposited from above using the roll 12.
  • the method may include a step of pressurizing at least 3.
  • the table 20 having a flat surface may be a flat plate instead of a table as long as appropriate pressure can be applied. In short, it is sufficient that the base material 1 is placed on a flat surface and that appropriate pressure can be applied with the rolls 12.
  • the conductive film forming step is performed by pressing a first pressing member 31 having a first flat surface 31A and a second pressing member 31 having a second flat surface 32A.
  • the second flat surface 32A of the member 32 may include a step of sandwiching the base material 1 provided with the coating layer 3.
  • An example of an apparatus preferably used for carrying out such a step is a press apparatus "CYPF-400" manufactured by Shinto Kogyo Co., Ltd., for example.
  • An electronic device can be manufactured using the conductive base material obtained through the above coating step and conductive film forming step. For example, by appropriately designing the coating "pattern" in the coating process, a base material with a conductive film (circuit pattern) that can function as a circuit can be manufactured, and this base material can be combined with other electronic devices. This allows electronic devices to be manufactured.
  • the electronic device including the conductive base material obtained by the method for manufacturing a conductive base material of this embodiment is naturally not limited to these.
  • - Sensor For example, the conductive base material obtained by the method for manufacturing a conductive base material of this embodiment can be applied to a conductive member/circuit in a sensor such as a pressure-sensitive sensor or a vital sensor.
  • - Solar cell For example, the conductive base material obtained by the method for manufacturing a conductive base material of this embodiment can be applied to current collection wiring of a solar cell.
  • ⁇ Membrane switch A membrane switch is a thin sheet-like switch with circuits and contacts printed on film and pasted on top of each other.
  • the method for manufacturing a conductive base material of this embodiment can be applied to form the circuits and contacts.
  • - Touch sensor/touch panel For example, the method for manufacturing a conductive base material of this embodiment can be applied to form lead wiring in a touch sensor/touch panel. Furthermore, it is also possible to apply the method for manufacturing a conductive base material of this embodiment to form a transparent electrode in a touch sensor/touch panel.
  • ⁇ Flexible base material Conventionally, a circuit is formed by first coating the entire surface of a flexible film with a metal film, and then using chemicals to remove unnecessary parts of the metal film. Instead of such a conventional method, it is conceivable to form a circuit using the method for manufacturing a conductive base material of this embodiment.
  • a particularly preferred electronic device is an RF tag. That is, in order to manufacture a conductive circuit such as an antenna part in an RF tag, the method for manufacturing a conductive base material of this embodiment is preferably used.
  • the specific structure of the RF tag reference can be made to, for example, Japanese Patent Application Publication No. 2003-332714, Japanese Patent Application Publication No. 2020-46834, and the like.
  • the electromagnetic shielding film As an application other than electronic devices, it is possible to manufacture an electromagnetic shielding film by the method for manufacturing a conductive base material of this embodiment. Specifically, in the coating process, the electromagnetic shielding film can be manufactured by using a pattern (such as a mesh pattern) unique to the electromagnetic shielding film as a pattern when applying the conductive composition.
  • a pattern such as a mesh pattern
  • a planar heating element is one in which electrical wiring is provided on a base material and generates heat by passing an electric current through the wiring.
  • Specific examples of the sheet heating element include sheet heating elements for use in anti-fogging and cold weather protection, such as on the rear windows of passenger cars.
  • ⁇ Conductive composition> The embodiments of the present invention have been described above, focusing on the "methods" of the method of manufacturing a conductive base material and the method of manufacturing an electronic device. Alternatively, embodiments of the present invention can also be viewed as electrically conductive compositions. That is, the following conductive compositions are preferably used for forming a conductive film with low specific resistance. ⁇ A conductive composition containing conductive particles that is used for forming a conductive film by coating on a substrate to form a coating layer, and applying at least pressure to the coating layer, A conductive composition in which the conductive particles satisfy the following conditions.
  • Embodiments of the present invention will be described in detail based on Examples and Comparative Examples. It should be noted that the present invention is not limited only to the embodiments. In the following, the index notation may be indicated by the symbol "E". For example, 1.3. E-06 means 1.3 ⁇ 10 ⁇ 6 .
  • Examples and comparative examples> (Preparation of conductive particles) Conductive particles having the particle size distribution shown in Table 1 were prepared. In Table 1, the units of D 50 , D 10 , D 90 and D 95 are ⁇ m. These conductive particles were purchased from DOWA Electronics or Fukuda Metal Foil and Powder Industries. For example, "Copper 4" in Table 1 is a conductive particle that can be purchased as product number "EFC-09LML” manufactured by Fukuda Metal Foil and Powder Industry Co., Ltd.
  • a coating step and a conductive film forming step were performed according to the following procedure to produce a conductive base material provided with a conductive film.
  • a coating film (solid film) with a size of 15 mm x 5 mm was formed on a base material using a conductive composition. Specifically, first, 3M Scotch tape was pasted onto the base material to provide a "hollowed out part" with a size of 15 mm x 5 mm. Then, the conductive composition was squeezed onto the hollowed out part using a squeegee to fill the hollowed out part with the conductive composition. Then the scotch tape was removed. The thickness of the coating film at this time was about 40 ⁇ m.
  • a polyimide film was used as the base material.
  • the substrate provided with the coating film was placed in a hot air circulation type atmospheric oven and heated at 100° C. for 15 minutes. This dried the solvent.
  • the above pressure is a value determined by the following calculation. - Based on roll width: 165 mm and contact width between rolls: 1 mm, the area to which pressure is applied was set to 165 mm 2 . ⁇ The pressurization was 20kN. ⁇ Since a force of 20 kN was applied to an area of 165 mm 2 , the pressure was calculated as 121 MPa by calculating 20 kN ⁇ 165 mm 2 .
  • conductive particles having (a) D 50 of 0.6 to 50 ⁇ m and (b) (D 90 ⁇ D 50 )/D 50 of 0.55 to 3.0 are By using the conductive composition containing the above, it was possible to manufacture a conductive base material including a conductive film with low specific resistance. Moreover, such a conductive base material could be manufactured by a relatively simple process of roll pressing a base material provided with a coating layer while heating it. Incidentally, the reason why the results of the comparative example were poor can be interpreted to be that because the grain size of the comparative copper was too small, the number of grain boundaries between conductive particles per unit volume was greater than that of the example. (The presence of grain boundaries can cause increased resistance).
  • a conductive composition was prepared by uniformly stirring each component shown in Table 4 below (the numerical unit is "parts by mass") using a planetary stirrer.
  • the polyvinylpyrrolidone binder one manufactured by Nippon Shokubai Co., Ltd. was used.
  • a conductive film was provided in the same manner as above (coating step and conductive film forming step), and specific resistance was calculated in the same manner as above (measurement of specific resistance).
  • step (3) in (coating process and conductive film forming process) in the above ⁇ Example and Comparative Example> was performed using an apparatus that combines a "flat surface and a roll" as shown in FIG.
  • a conductive film was formed in the same manner as in the example.
  • the temperature was room temperature, and the pressure was approximately the same as 121 MPa in the example.
  • the conductive composition the conductive composition "Silver 1" shown in Table 2 was used.
  • step (3) in (coating step and conductive film forming step) in the above ⁇ Examples and Comparative Examples> was performed using an apparatus equipped with "a pair of pressing members having a flat surface" as shown in FIG.
  • a conductive film was formed in the same manner as in the example except for the following steps. At this time, the temperature was room temperature, and the pressure was approximately the same as 121 MPa in the example. Further, as the conductive composition, the conductive composition "Silver 1" shown in Table 2 was used. In these two additional examples as well, conductive films having specific resistance values on the order of 10 ⁇ 5 ⁇ cm were obtained.
  • a conductive film was formed in the same manner as in the example using "Copper 2" in Table 2 above, except that the applied pressure was changed from 121 MPa to 242 MPa.
  • the specific resistance of the resulting conductive film was 5.8 ⁇ 10 ⁇ 6 .
  • a conductive film was formed in the same manner as in the example using "Copper 1" in Table 3 above, except that the applied pressure was changed from 121 MPa to 242 MPa.
  • the specific resistance of the obtained conductive film was 2.2 ⁇ 10 ⁇ 5 . As described above, even when the applied pressure was changed, a conductive film with low specific resistance could be formed.
  • ⁇ Screen mesh 2 Same as screen mesh 1 except that no roughening treatment was applied and no liquid repellent treatment was applied.
  • Squeegee Urethane squeegee, hardness 80° - Conductive composition A conductive composition containing copper 2 shown in Table 1 and having a viscosity adjusted to 70 Pa ⁇ s was used. The viscosity was measured using an E-type viscometer manufactured by Toki Sangyo Co., Ltd.
  • Print conditions printing pressure 0.18 MPa, back pressure 0.12 MPa, speed 50 mm/sec, clearance 2.0 mm.
  • a conductive base material provided with a conductive film was produced in the same manner as described above (coating process and conductive film forming process), except that the coating process was performed by a screen printing method using screen mesh 1 under the above conditions.
  • (1) of the above (coating process and conductive film forming process) was performed by the screen printing method using screen mesh 1, but from (2) onwards, a conductive base material with a conductive film was formed using the same procedure. Manufactured.
  • Rz was less than 30 ⁇ m
  • Rz was 30 ⁇ m or more.
  • the surface roughness of the pattern is often not a particular problem depending on the use of the conductive base material, but when the pattern is used as an antenna, it is preferable that the surface roughness be small due to the so-called skin effect. It is thought that by using an appropriate screen mesh, it is possible to form a coating layer with smaller surface roughness, and in turn, it is possible to form a conductive film with smaller surface roughness. It is considered that a conductive base material provided with such a conductive film can be preferably used as an antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

基材上に、導電性粒子を含有する導電性組成物を塗布して塗布層を設ける塗布工程と、塗布層を少なくとも加圧して導電膜を形成する導電膜形成工程と、を含む導電性基材の製造方法。ここで、導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。(a)D50が0.6~50μmである。(b)(D90-D50)/D50が0.55~3.0である。

Description

導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物
 本発明は、導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物に関する。
 基材上に導電性粒子を含有する導電性組成物を塗布して塗布層を設け、その塗布層を加熱・加圧等して、導電膜を備える導電性基材を形成する技術が知られている。
 一例として、特許文献1の実施例には、平均一次粒径7nmの銀微粒子を、水/エチレングリコールに分散させたものを、PETフィルムに塗布して塗膜とし、その塗膜を150℃で加熱・加圧したこと、そしてこのような工程により導電層を形成したこと、が記載されている。
 別の例として、特許文献2の実施例には、メジアン径が約40nmの銅微粒子(銅ナノ粒子)と、分散媒と、分散剤とを有する銅微粒子分散液(銅ナノインク)を、ガラス基材上にスピンコートして塗膜とし、その後焼成することで導電膜を形成したこと、が記載されている。
 さらに別の例として、特許文献3には、(A)オキシカルボン酸、(B)含窒素化合物、(C)銅粒子、及び(D)分散媒を含有する導電性インク組成物を基材上に塗布して塗布膜とし、その塗布膜を処理して導電性層を形成することが記載されている。
特許第6181608号公報 特開2021-044308号公報 特開2017-191723号公報
 導電性粒子を含有する導電性組成物を用いて導電膜を形成する際には、導電膜の比抵抗ができるだけ小さくなることが好ましい。また、比抵抗が小さい導電膜が、簡便で、さほど複雑ではないプロセスにより製造可能であることがより好ましい。
 本発明はこのような事情に鑑みてなされたものである。本発明は、比抵抗が小さい導電膜を形成可能な導電性基材の製造方法を提供することを目的の1つとする。
 本発明者らは、以下に提供される発明を完成させ、上記課題を解決した。
1.
 基材上に、導電性粒子を含有する導電性組成物を塗布して塗布層を設ける塗布工程と、
 前記塗布層を少なくとも加圧して導電膜を形成する導電膜形成工程と、
を含み、
 前記導電性粒子が、以下の条件を満たす、導電性基材の製造方法。
(条件)
 前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。
(a)D50が0.6~50μmである。
(b)(D90-D50)/D50が0.55~3.0である。
2.
 1.に記載の導電性基材の製造方法であって、
 前記基材は可撓性を有する、導電性基材の製造方法。
3.
 1.または2.に記載の導電性基材の製造方法であって、
 前記導電膜形成工程では、前記塗布層を加熱しながら加圧する、導電性基材の製造方法。
4.
 1.~3.のいずれか1つに記載の導電性基材の製造方法であって、
 さらに以下の(c)を満たす、導電性基材の製造方法。
 (c)(D50-D10)/D50が0.4~0.8である。
5.
 1.~4.のいずれか1つに記載の導電性基材の製造方法であって、
 前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が95%となる粒子径をD95としたとき、D95が1.5~100μmである、導電性基材の製造方法。
6.
 1.~5.のいずれか1つに記載の導電性基材の製造方法であって、
 前記導電性組成物の全不揮発成分中のバインダーの量は5質量%以下である、導電性基材の製造方法。
7.
 1.~6.のいずれか1つに記載の導電性基材の製造方法であって、
 前記基材は、ポリエステル、ポリオレフィン、ポリイミドおよび紙からなる群より選択される少なくともいずれかである、導電性基材の製造方法。
8.
 1.~7.のいずれか1つに記載の導電性基材の製造方法であって、
 前記導電膜形成工程は、前記塗布層が設けられた基材を、対向する2本のロールの間を搬送させるロールプレス工程を含む、導電性基材の製造方法。
9.
 8.に記載の導電性基材の製造方法であって、
 前記ロールプレス工程において、前記2本のロールのうち前記塗布層が接触するロールは、加熱されていないか、または400℃以下に加熱されている、導電性基材の製造方法。
10.
 8.または9.に記載の導電性基材の製造方法であって、
 前記ロールプレス工程において、前記塗布層が設けられた基材には10MPa以上の圧力が加えられる、導電性基材の製造方法。
11.
 1.~7.のいずれか1つに記載の導電性基材の製造方法であって、
 前記導電膜形成工程は、前記塗布層が設けられた基材を、平板上または平坦面を有する台の前記平坦面上に置き、その上からロールを用いて前記塗布層を少なくとも加圧する工程を含む、導電性基材の製造方法。
12.
 1.~7.のいずれか1つに記載の導電性基材の製造方法であって、
 前記導電膜形成工程は、第1の平坦面を有する第1の押圧部材の前記第1の平坦面と、第2の平坦面を有する第2の押圧部材の前記第2の平坦面と、により、塗布層が設けられた基材を挟む工程を含む、導電性基材の製造方法。
13.
 1.~12.のいずれか1つに記載の導電性基材の製造方法であって、
 前記導電膜はパターン構造を有する、導電性基材の製造方法。
14.
 1.~13.のいずれか1つに記載の導電性基材の製造方法により得られた導電性基材を用いて電子デバイスを製造する、電子デバイスの製造方法。
15.
 14.に記載の電子デバイスの製造方法であって、
 前記電子デバイスが、RFタグである、電子デバイスの製造方法。
16.
 1.~13.のいずれか1つに記載の導電性基材の製造方法により得られた導電性基材を用いて電磁波シールドフィルムを製造する、電磁波シールドフィルムの製造方法。
17.
 1.~13.のいずれか1つに記載の導電性基材の製造方法により得られた導電性基材を用いて面状発熱体を製造する、面状発熱体の製造方法。
18.
 基材上に塗布して塗布層とし、前記塗布層を少なくとも加圧して導電膜を形成する用途に用いられる、導電性粒子を含有する導電性組成物であって、
 前記導電性粒子が、以下の条件を満たす、導電性組成物。
(条件)
 前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。
(a)D50が0.6~50μmである。
(b)(D90-D50)/D50が0.55~3.0である。
19.
 18.に記載の導電性組成物であって、
 前記導電性粒子が、さらに以下の(c)を満たす、導電性組成物。
 (c)(D50-D10)/D50が0.4~0.8である。
20.
 18.または19.に記載の導電性組成物であって、
 前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が95%となる粒子径をD95としたとき、D95が1.5~100μmである、導電性組成物。
21.
 18.~20.のいずれか1つに記載の導電性組成物であって、
 全不揮発成分中のバインダーの量が5質量%以下である、導電性組成物。
 本発明によれば、比抵抗が小さい導電膜を形成可能である。
塗布工程について説明するための図である。 導電膜形成工程について説明するための図である。 導電膜形成工程について説明するための図である。 導電膜形成工程について説明するための図である。 実施例で用いたスクリーンメッシュにおける粗化処理の具体的態様を示すための図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、(i)同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合や、(ii)特に図2以降において、図1と同様の構成要素に改めては符号を付さない場合がある。
 すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
<導電性基材の製造方法>
 本実施形態の導電性基材の製造方法は、
 基材上に、導電性粒子を含有する導電性組成物を塗布して塗布層を設ける塗布工程と、
 塗布層を少なくとも加圧して導電膜を形成する導電膜形成工程と、
を含む。
 以下、図面を参照しつつ、各工程について具体的に説明する。
(図1:塗布工程)
 塗布工程においては、基材1の上(基材1の少なくとも片面の表面)に、導電性粒子を含有する導電性組成物を塗布して、塗布層3を設ける。
 このとき、導電性組成物が含む導電性粒子は、以下の条件を満たす。
(条件)
 導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。
(a)D50が0.6~50μmである。
(b)(D90-D50)/D50が0.55~3.0である。
 塗布層3は、後述のように、少なくとも加圧されることで導電膜となる。導電性組成物が含む導電性粒子が上記(条件)を満たすことにより、導電膜の比抵抗を小さくすることができる。この理由は以下のように説明することができる。念のため述べておくと、以下説明は推測を含み、また、以下説明により本発明は限定的に解釈されない。
 基材上に導電性粒子を含有する導電性組成物を塗布して塗布層を設け、その塗布層を加熱・加圧等して、導電膜を備える導電性基材を形成する従来技術においては、ナノサイズの導電性粒子を用いることが多かった。これは、導電性粒子の大きさが約100nm以下となると、焼結促進効果があるためである。具体的には、導電性粒子の大きさが約100nm以下となると、表面積の増加によって系全体の自由エネルギーは高くなり、その自由エネルギーを下げるために導電性粒子同士が焼結しやすくなる。このことは物理化学の理論に基づき説明可能である。
 しかし、ナノサイズの金属粒子を用いると、単位体積あたりの導電性粒子間の粒界の数が非常に多くなる傾向がある。粒界の存在は抵抗を大きくする原因となってしまう。
 そこで、本発明者らは、ナノサイズの導電性粒子ではなく、サブミクロン~ミクロンオーダーの径の導電性粒子を用いることにした。具体的には、レーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径D50が0.6~50μmである導電性粒子を用いることとした。ちなみに、サブミクロン~ミクロンオーダーの径の導電性粒子には、ナノサイズの粒子よりも安価で入手しやすいというメリットもある。
 しかしながら、導電性粒子中の粗大粒子の比率が大きい場合には、D50が0.6~50μmであったとしても、導電性粒子間に「すき間」が生じやすくなり、その結果、導電膜の抵抗が大きくなってしまう懸念がある。そこで、本実施形態においては、D50だけでなく、D50を基準とした「相対的な」D90の大きさと言える(D90-D50)/D50の値が、3.0以下であるようにした。
 ちなみに、(D90-D50)/D50の値の下限値である0.6は、工業的に入手容易な導電性粒子の粒子径分布を鑑みて設定した値である。
 以下、塗布工程についてより具体的に説明する。
・導電性粒子の粒子径分布について
 前述のように、導電性粒子については、D50が0.6~50μmであり、(D90-D50)/D50が0.55~3.0であればよい。
 D50は、好ましくは0.6~30μm、より好ましくは0.7~20μm、さらに好ましくは0.7~15μmである。
 (D90-D50)/D50は、好ましくは0.55~2.5、より好ましくは0.55~2である。
 導電性粒子については、さらに以下の(c)を満たすことが好ましい。
 (c)(D50-D10)/D50が0.4~0.8、より好ましくは0.4~0.7、さらに好ましくは0.5~0.7である。
 導電性粒子を含む塗布膜を少なくとも加圧して得られる導電膜の導電性の向上のためには、塗布膜中の導電性粒子の密度を高めることが好ましい。このための方法として、粒子径が相対的に大きい粒子の「すき間」に、粒子径が相対的に小さい粒子が適量存在するように、導電性粒子の粒子径分布を調整・最適化することが考えられる。上記(c)は、粒子径が中央値D50付近にある粒子よりも、粒子径が相対的に小さい粒子が、導電性粒子中に適量存在していることに対応していると解釈することができる。
 また、サブミクロンサイズの導電性粒子が「ある程度の量」含まれることで、ある程度の焼結促進効果が働くとも考えられる。
 別観点として、導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が95%となる粒子径をD95としたとき、D95は好ましくは1.5~100μm、より好ましくは1.5~50μm、さらに好ましくは1.5~30μmである。
 前述のように、導電性粒子中の粗大粒子の比率が大きい場合には、D50が0.6~50μmであったとしても、導電性粒子間に「すき間」が生じやすくなり、その結果、導電膜の抵抗が大きくなってしまう懸念がある。このため、本実施形態においては(D90-D50)/D50の値が3.0以下であることを必須としているが、加えて、D95が大きすぎない値であることにより、導電性粒子間の「すき間」が一層生じにくくなり、結果、得られる導電膜の比抵抗がより小さくなると考えられる。
 ある導電性粒子のD50等の値は、その導電性粒子が購入品であり、購入元からその導電性粒子の体積基準累積粒子径分布曲線が提供される場合には、その曲線に基づきD50等の値を求めればよい。購入元からD50等の値そのものが提供される場合にはその値を採用してもよい。
 一方、上記のようにしてD50等の値を知ることができない場合には、導電性粒子をレーザー回折散乱法により粒子径測定して、体積基準累積粒子径分布曲線を求める。測定は通常湿式で行う。この際、分散媒としては、界面活性剤を含む水やイソプロパノールが挙げられる(導電性粒子の表面処理剤状態などを考慮して適切な分散媒を選択する)。測定装置の例としては株式会社島津製作所のSALDシリーズ(SALD-2300など)を挙げることができる。装置としてSALDシリーズを用いる場合には、付属の超音波ユニットを用いて、超音波を発生させながら、分散媒を循環させつつ粒子径を測定することが好ましい。
・導電性粒子の化学組成
 入手容易性および良好な導電性の観点から、導電性粒子は、銀および銅からなる群より選ばれる少なくともいずれかの元素を含むことが好ましい。
 具体的には、導電性粒子は、銀を主成分とする粒子、および、銅を主成分とする粒子からなる群より選ばれる少なくともいずれかを含むことが好ましい。ここで、「銀を主成分とする」との表現は、粒子中の全構成元素中の銀元素の比率が、好ましくは50mol%以上、より好ましくは75mol%以上、さらに好ましくは90mol%以上、特に好ましくは95mol%以上であることをいう。同様に、「銅を主成分とする」との表現は、粒子中の全構成元素中の銅元素の比率が、好ましくは50mol%以上、より好ましくは75mol%以上、さらに好ましくは90mol%以上、特に好ましくは95mol%以上であることをいう。
 念のため述べておくと、所望の導電性が得られる限り、導電性粒子は、銀および銅以外の元素を含んでもよい。銀および銅以外の元素としては、金、アルミニウム、白金、パラジウム、イリジウム、タングステン、ニッケル、タンタル、鉛、亜鉛等を挙げることができる。
 導電性粒子は、2以上の元素を含んでもよい。例えば、銅粒子の表面に銀めっきがされている導電性粒子(銀コート銅粒子)などは本実施形態で好ましく用いられる。銀コート銅粒子は、銅を主成分とする粒子であり、例えば粒子の全質量を基準として最大35質量%までの量の銀が、銅粒子の表面にめっきされている。
・導電性粒子の入手法
 本実施形態で使用可能な導電性粒子は、例えば、DOWAエレクトロニクス社、福田金属箔粉工業社などから購入可能である。
 ちなみに、上記(a)、(b)、(c)などの値の調整・最適化のため、2以上の異なる導電性粒子を混合して用いてもよい。
・導電性組成物中の導電性粒子の比率
 導電膜の比抵抗を一層小さくする観点から、導電性組成物中の導電性粒子の比率は大きいことが好ましい。具体的には、導電性組成物の全不揮発成分中の導電性粒子の比率は、好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは98質量%以上、特に好ましくは99質量%以上である。
・導電性粒子以外に、導電性組成物が含むことができる成分
 塗布工程において用いられる導電性組成物は、上述の特定の粒子径分布を満たす導電性粒子を少なくとも含有するが、このような導電性粒子以外の成分を含んでいてもよい。
 導電性組成物は、溶剤を含むことができる。導電性組成物が溶剤を含むことにより、導電性組成物の基材への塗布性が向上する。溶剤は、典型的には有機溶剤を含む。
 溶剤の種類は特に限定されない。溶剤は、導電性組成物中の各成分を実質的に変質させないものであればよい。
 溶剤の使用量は、導電性組成物の塗布方法などに応じて適宜調整すればよい。溶剤の使用量は、導電性組成物の全体中、例えば3~30質量%、好ましくは5~25質量%、さらに好ましくは10~20質量%である。
 導電性組成物は、基材1との密着性、塗布性、印刷性などの観点で、バインダーを含んでもよいし、含まなくてもよい。
 バインダーを用いる場合、バインダーの種類は特に限定されないが、ポリビニルピロリドン、ポリエステル、エポキシ樹脂、(メタ)アクリル系樹脂、ポリビニルアセタール、セルロース系樹脂(例えばエチルセルロースなど)、フェノール樹脂などを好ましく挙げることができる。
 導電膜の導電性を特に高める観点からは、導電性組成物の全不揮発成分中のバインダーの量は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下である。バインダーの量の下限は0であってもよい。ただし、バインダーを用いることにより密着性向上などの効果を積極的に得ようとする場合には、バインダーの量は、導電性組成物の全不揮発成分中、1質量%以上とすることが好ましく、2質量%以上とすることがより好ましい。すなわち、諸性能のバランスの観点からは、バインダーの量は、導電性組成物の全不揮発成分中、好ましくは1~5質量%、より好ましくは2~5質量%である。
 導電性組成物は、その他、従来のインク組成物や導電性ペーストにおける各種添加成分を含んでもよいし、含まなくてもよい。
・基材1
 基材1は、通常、フィルム状、シート状または板状である。工業的な生産性の観点から、基材1の形状はこれらのいずれかが好ましい。
 基材1は、好ましくは可撓性を有する。可撓性を有する基材1を採用することで、フレキシブル基板(FPC)を製造することができる。
 また、可撓性を有する基材1は、後掲の導電膜形成工程において、ロールプレス工程による導電膜形成を行いやすいというメリットも有する。
 念のため述べておくと、基材1は、可撓性を有しないリジッドな基材であってもよい。
 コストや最終用途を考慮し、基材1は、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)などのポリエステル、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリイミドおよび紙からなる群より選択される少なくともいずれかであることが好ましい。ここで、紙は、コート紙(紙表面がコート剤でコーティングされた紙)であってもよいし、コート紙ではない通常の紙であってもよい。また、基材1としては、PETなどに限らず、一般の樹脂フィルムを採用することができる。
 後述するように、本実施形態においては、導電膜形成工程において、加熱なし、または比較的低温の加熱においても、十分に比抵抗が小さい導電膜を得ることができる。よって、ポリエステル、ポリオレフィン、紙などの、低耐熱性の基材1も、基材として好適に用いることができる。また、ポリイミドなどの高耐熱性の基材1を用いた場合、導電膜形成工程において高温の加熱を行うことで、比抵抗を一層小さくすることができる。
・塗布方法
 導電性組成物の塗布方法は、特に限定されない。
 導電性組成物は、基材の一面の全体に塗布されてもよいし、基材の一面の一部にのみ塗布されてもよい。前者の場合、ブレードコーター、エアナイフコーター、ドクターコーター、ロールコーター、バーコーター(ロッドコーター)、カーテンコーターなどの装置を用いて塗布を行うことができる。後者の場合、各種の印刷法、例えばスクリーン印刷法、グラビア印刷法、凸版印刷法、平板印刷法(オフセット印刷法)、インクジェット法など適用することができる。塗布の「パターン」を適切に設計することで、回路として働くことができる導電膜(回路パターン)や、電磁波シールド能を有するメッシュパターンなどの、パターン構造を備えた基材を製造することができる。導電性組成物を基材の一面の一部にのみ塗布する場合、塗布の「パターン」は、最終的に得られる導電膜の用途に応じて適切に設計されることが好ましい。
 所望の場所以外に導電性組成物が塗布されないように、例えば孔をくりぬいたフィルムを基材1の上に置き、その上から導電性組成物を塗布し、その後フィルムを除去するという工程を行ってもよい。
 塗布方法としてスクリーン印刷法を採用する場合について補足しておく。
 スクリーン印刷法を採用する場合のスクリーンメッシュの材質は、ポリエステルなどの合成繊維、ステンレス等の金属繊維であることができる。耐久性や、導電性粒子との相性などの観点で、スクリーンメッシュの材質はステンレス等の金属繊維であることが好ましい。
 スクリーン印刷法を採用する場合、適切なスクリーンメッシュを用いることで、メリットを得ることができる。メリットとしては、連続してスクリーン印刷法による塗布を行う場合の滲みの抑制、塗布層3の表面粗さの低減、などが挙げられる。
 一例として、スクリーンメッシュは粗化処理されていることが好ましい。これにより、スクリーンメッシュに導電性組成物中の溶剤成分が馴染みやすくなり、スクリーンメッシュを導電性組成物が通過する際の摩擦力が低減されると考えられる。そして、連続してスクリーン印刷を行う場合にも、塗布量の安定化や、パターン表面の凹凸の低減などを期待できる。
 粗化処理は、好ましくは、ステンレス等の金属繊維製のスクリーンメッシュに対して施される。
 別の例として、スクリーンメッシュには撥液処理が施されていることが好ましい。具体的には、フッ素含有材料(フッ素樹脂など)、ケイ素含有材料(シリコーン系材料)などの、表面自由エネルギーを小さくする材料が表面に付着したスクリーンメッシュを用いることが好ましい。このようなスクリーンメッシュを用いることで、パターンを形成する際の滲みを抑制することができる。つまり、微細なパターンを形成しやすくなる。また、パターン表面の凹凸の低減も期待することができる。
 スクリーン印刷に撥液処理を施すための材料は、例えば株式会社ムラカミや株式会社ソノコムなどから販売されている。
 本発明者の知見の限り、本実施形態における、前述の(a)および(b)を満たす導電性粒子を含有する導電性組成物は、上記のような、粗化処理および/または撥液処理が施されたスクリーンメッシュとの相性がよい。詳細は不明であるが、例えば、特定の粒径分布を有する導電性粒子を含む導電性組成物の流動性などの何らかの特性が、粗化処理および/または撥液処理が施されたスクリーンメッシュとマッチしている可能性がある。
 導電膜としたときの十分な導電性を得る観点と、塗布のしやすさの観点から、塗布層3の厚み(導電性組成物が溶剤を含む場合は乾燥厚み)は、好ましくは5~100μm、より好ましくは10~50μmである。
 特に導電性組成物が溶剤を含む場合、溶剤を乾燥させるための加熱処理を行うことが好ましい。加熱処理の条件は、溶剤が十分に乾燥する限り特に限定されないが、溶剤の十分な乾燥と、過度な加熱による導電性粒子の変質抑制の観点から、加熱処理の温度は好ましくは50~150℃、より好ましくは80~120℃である。加熱処理の時間は好ましくは1~60分、より好ましくは3~30分である。
 溶剤を乾燥させるための加熱処理は、具体的には、塗布層3に対して熱風を当てることで行うことができる。もちろんこれ以外の方法で加熱処理を行ってもよい。
(図2:導電膜形成工程)
 導電膜形成工程においては、塗布層3を少なくとも加圧して導電膜を形成する。図2は、加圧手段としてロールプレスを採用した場合を模式的に示している。
 加圧手段としてロールプレスを採用した場合、導電膜形成工程において、塗布層3が設けられた基材1は、対向する2本のロール10Aおよび10Bによって挟持される。挟持された基材1は、ロール10Aおよび10Bの回転(図2中に矢印で示す)の力などにより、図2の左方向から右方向に搬送される。
 ロールプレス工程において、塗布層3が設けられた基材1には10MPa以上の圧力が加えられることが好ましい。この圧力は、より好ましくは10~5000MPa、さらに好ましくは20~300MPa、特に好ましくは30~250MPaである。圧力が10MPa以上であることにより、得られる導電膜の比抵抗を一層小さくすることができる。また、圧力が5000MPa以下であることにより、基材1や塗布層3の損傷を抑えることができる。ちなみに、基材1の強度が十分であれば、圧力を大きくして、導電膜の比抵抗を一層小さくすることができる。
 導電膜形成工程では、塗布層3を加熱しながら加圧することが好ましい。
 塗布層3を加熱する場合、加熱の温度は、基材1の耐熱性や、用いる導電性粒子の種類などに応じて適宜設定すればよい。例えば、基材1が、ポリエステル、ポリオレフィン、紙などの、低耐熱性の素材で構成されている場合には、加熱温度は、使用する基材の耐熱温度を考慮しつつ、例えば50~200℃、より好ましくは70~180℃、さらに好ましくは70~150℃、特に好ましくは80~125℃の範囲内で、基材が実質的に軟化、融解、炭化などしない温度を設定することが好ましい。ただし、加熱時間が短い場合には、これより高い温度(例えば最大400℃程度)での加熱が許容される場合もある。
 一方、基材1が、ポリイミドなどの高耐熱性素材で構成されている場合には、加熱温度は50~400℃とすることができる。すなわち、塗布層3を加熱する場合、その温度は400℃以下で適宜調整することが好ましい。
 加熱の時間も、基材1の耐熱性や、用いる導電性粒子の種類などに応じて適宜設定することができる。加熱時間は、例えば0.01~1秒、好ましくは0.04~0.6秒である。ちなみに、「加熱の時間」とは、導電膜形成工程においてロールプレスを採用した場合には、塗布層3がロールと接触して加圧されつつ加熱されている時間のことである。一例として、対向して回転する2つのロールが接触する幅を1mm、2本のロール間を基材が通過する速度をvとすると、加熱時間(加圧されている時間と等しい)は、v=0.1m/分では0.59秒、v=1.5m/分では0.04秒、v=1.0m/分では0.06秒、v=5.0m/分では0.012秒となる。
 導電膜形成工程においてロールプレスを採用した場合には、塗布層3を加熱しながら加圧するため、2本のロールのうち、少なくとも塗布層3に近い側のロール10Aは、加熱されていることが好ましい。ロール10Aの加熱温度は、上記説明のとおり、基材1の耐熱性や、用いる導電性粒子の種類などに応じて、400℃以下で適宜設定することができる。また、加熱の時間は、ロール10Aおよびロール10Bの回転速度(すなわち搬送速度)を変えることで調整することができる。搬送速度は、例えば0.1~10m/分の間で、十分な加熱加圧時間の確保や、量産性などを考慮して適宜調整すればよい。
 また、均一な加熱や、加熱時間の短縮のため、ロール10Aだけでなくロール10Bも加熱されていてもよい。
 一方、十分に比抵抗が小さい導電膜が得られるならば、ロール10Aは加熱されていなくてもよいし、ロール10Bも加熱されていなくてもよい。
 つまり、十分に比抵抗が小さい導電膜が得られるならば、導電膜形成工程で塗布層3を加熱しなくてもよい。具体的には、導電膜形成工程がロールプレス工程を含む場合には、ロール10Aは加熱されていなくてもよいし、ロール10Bも加熱されていなくてもよい。特に導電性粒子として銀を主成分とする粒子を用いる場合、加圧のみによっても十分に比抵抗が小さい導電膜を得やすい。
 図2においては不図示であるが、ロールプレス工程においては、例えば塗布層3とロール10Aとの間に樹脂フィルムを挟みながら、ロール10Aおよびロール10Bを回転させてもよい。塗布層3とロール10Aとの間に樹脂フィルムが介在することで、塗布層3が剥がれてロール10Aに付着することを抑えることができる。また、塗布層3とロール10Aとの間に樹脂フィルムが介在することで、塗布層3にかかる圧力が適切に分散されるため、より均質で一定の性能の導電膜を得やすくなる傾向がある。
 塗布層3とロール10Aとの間に挟む樹脂フィルムの素材は特に限定されない。耐熱性や耐久性の点では、ポリイミドフィルム等を好ましく用いることができる。
 念のため述べておくと、上記では、導電膜形成工程の具体的方法として、ロールプレス工程を説明したが、塗布層3に十分な圧力(および場合によっては熱)が加えられる限り、ロールプレス以外の方法により導電膜形成工程を実施してもよい。ただし、大量生産のしやすさを考慮すると、導電膜形成工程は、ロールプレス工程を含むことが好ましい。
 以下、念のため、ロールプレス工程以外の、導電膜形成工程に適用可能な工程について説明しておく。
 導電膜形成工程は、図3に示されるように、塗布層3が設けられた基材1を、平坦面を有する台20の平坦面20A上に置き、その上からロール12を用いて塗布層3を少なくとも加圧する工程を含んでもよい。なお、適切な加圧が可能である限り、平坦面を有する台20は、台ではなく平板であってもよい。要は基材1が平坦面上に置かれ、ロール12で適切な加圧ができればよい。
 導電膜形成工程は、図4に示されるように、第1の平坦面31Aを有する第1の押圧部材31の、第1の平坦面31Aと、第2の平坦面32Aを有する第2の押圧部材32の第2の平坦面32Aと、により、塗布層3が設けられた基材1を挟む工程を含んでもよい。このような工程の実施に好ましく用いられる装置として、例えば新東工業株式会社製のプレス装置「CYPF-400」などを挙げることができる。
<電子デバイスの製造方法>
 上記の塗布工程および導電膜形成工程を経て得られた導電性基材を用いて、電子デバイスを製造することができる。例えば、塗布工程において塗布の「パターン」を適切に設計することで、回路として働くことができる導電膜(回路パターン)を備えた基材を製造し、この基材と他の電子素子とを組み合わせることで電子デバイスを製造することができる。
 ここで、「電子デバイス」の例をいくつか記載するが、本実施形態の導電性基材の製造方法で得られた導電性基材を含む電子デバイスは、当然、これらのみに限定されない。
・センサー:例えば感圧センサー、バイタルセンサー等のセンサー中の、導電性部材/回路について、本実施形態の導電性基材の製造方法で得られた導電性基材を適用することができる。
・太陽電池:例えば太陽電池の集電配線について、本実施形態の導電性基材の製造方法で得られた導電性基材を適用することができる。
・メンブレンスイッチ:メンブレンスイッチとは、薄いシート状のスイッチでフィルムに回路と接点を印刷して貼り重ねたものである。これの回路や接点を形成するために、本実施形態の導電性基材の製造方法を適用することができる。
・タッチセンサー・タッチパネル:例えばタッチセンサー・タッチパネルにおける引き出し配線を形成するために、本実施形態の導電性基材の製造方法を適用することができる。また、タッチセンサー・タッチパネルにおける透明電極を形成するために、本実施形態の導電性基材の製造方法を適用することも考えられる。
・フレキシブル基材:従来は、まず可撓性フィルムの全面に金属膜をコーティングし、その後、薬剤を使って金属膜の不要な部分を取り除くことで回路を形成している。このような従来の方法の代わりに、本実施形態の導電性基材の製造方法で回路を形成することが考えられる。
 特に、従来は導電ペーストを用いて回路を形成していた電子デバイスにおいて、回路形成を本実施形態の導電性基材の製造方法を利用することで、回路の比抵抗が小さくなり、電子デバイスの性能向上を期待することができる。
 とりわけ好ましい電子デバイスとしては、RFタグを挙げることができる。すなわち、RFタグにおけるアンテナ部等の導電回路を製造するために、本実施形態の導電性基材の製造方法は好ましく用いられる。
 RFタグの具体的構造については、例えば特開2003-332714号公報、特開2020-46834号公報などを参考にすることができる。
<電磁波シールドフィルムの製造方法>
 電子デバイスとは別の応用として、本実施形態の導電性基材の製造方法により、電磁波シールドフィルムを製造することが考えられる。具体的には、塗布工程において、導電性組成物を塗布する際のパターンを、電磁波シールドフィルム特有のパターン(メッシュパターンなど)とすることで、電磁波シールドフィルムを製造することができる。
<面状発熱体の製造方法>
 さらに別の応用として、本実施形態の導電性基材の製造方法により、面状発熱体を製造することが考えられる。面状発熱体とは、基材上に電気配線が設けられ、その配線に電流を流すことで発熱するもののことをいう。面状発熱体の具体例としては、例えば乗用車のリアガラスなど、防曇や防寒のための面状発熱体を挙げることができる。
<導電性組成物>
 上記では、導電性基材の製造方法および電子デバイスの製造方法という「方法」に焦点を当てて本発明の実施形態について説明した。これとは別に、本発明の実施形態は、導電性組成物として捉えることもできる。
 すなわち、以下の導電性組成物は、比抵抗が小さい導電膜の形成に好ましく用いられる。
「基材上に塗布して塗布層とし、前記塗布層を少なくとも加圧して導電膜を形成する用途に用いられる、導電性粒子を含有する導電性組成物であって、
 上記導電性粒子が、以下の条件を満たす、導電性組成物。
(条件)
 上記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。
(a)D50が0.6~50μmである。
(b)(D90-D50)/D50が0.55~3.0である。」
 上記組成物の具体的態様については、<導電性基材の製造方法>の項で説明済みである。よって改めての説明は省略する。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
 以下において、指数表記を記号「E」で示す場合がある。例えば、1.3.E-06とは、1.3×10-6を意味する。
<実施例および比較例>
(導電性粒子の準備)
 表1に示される粒径分布を有する導電性粒子を準備した。表1中、D50、D10、D90およびD95の単位は、μmである。
 これら導電性粒子は、DOWAエレクトロニクス社または福田金属箔粉工業社から購入した。例えば、表1の「銅4」は、福田金属箔粉工業社製の品番「EFC-09LML」として購入可能な導電性粒子である。
Figure JPOXMLDOC01-appb-T000001
 表1において、D50などの粒径分布に関する値は、購入先から提供された情報に基づく。
(導電性組成物の調製)
 上記導電性粒子(銅1~銅4、銀1、銀2および比較用銅のいずれか1種)77質量部と、有機溶剤23質量部とを、遊星式攪拌機を用いて攪拌した。これにより均一なペースト状の導電性組成物を得た。
(塗布工程および導電膜形成工程)
 以下手順により塗布工程および導電膜形成工程を行い、導電膜を備える導電性基材を製造した。
(1)導電性組成物を用いて、基材上に、15mm×5mmの大きさの塗布膜(ベタ膜)を形成した。具体的には、まず、基材上にスリーエム社のスコッチテープを貼って15mm×5mmの大きさの「くりぬき部」を設けた。そして、そのくりぬき部の上で、スキージーを用いて導電性組成物をスキージングして、くりぬき部に導電性組成物を充填した。その後、スコッチテープを剥がした。このときの塗布膜の厚みは40μm程度であった。
 基材としては、ポリイミドフィルムを用いた。
(2)塗布膜を設けた基材を、熱風循環式大気オーブンに入れ、100℃で15分間加熱した。これにより溶剤を乾燥させた。
(3)溶剤が乾燥した塗布膜を、基材と一緒に、荷重調節式のロールプレス機(テスター産業社製、大まかな構造は図2に模式的に示されるとおり)を用いて、以下条件でロールプレスした。
 ・ロール10Aの温度:200℃に加熱
 ・圧力:121MPa
 ・搬送速度:0.1m/分
 ちなみに、上記の圧力については、以下の計算により求めた値である。
・ロール幅:165mm、ロール間の接触幅:1mmに基づき、圧力がかかる面積は165mmとした。
・加圧は20kNとした。
・165mmの領域に20kNの力がかかったことから、20kN÷165mmの計算により、圧力:121MPaと算出。
(比抵抗の測定)
 上記で得られた導電膜について、4端子抵抗測定器で抵抗値を測定し、また、膜厚計で膜厚を測定した。測定された抵抗値および膜厚から、比抵抗を算出した。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1および表2より、(a)D50が0.6~50μmであり、かつ、(b)(D90-D50)/D50が0.55~3.0である導電性粒子を含む導電性組成物を用いることで、比抵抗が小さい導電膜を備える導電性基材を製造することができた。また、このような導電性基材は、塗布層が設けられた基材を加熱しながらロールプレスするという比較的簡便なプロセスにより製造することができた。
 ちなみに、比較例の結果が悪かった原因は、比較用銅は粒径が小さすぎるために、単位体積あたりの導電性粒子間の粒界の数が実施例に比べて多くなったためと解釈することができる(粒界の存在は抵抗を大きくする原因となりうる)。
(塗布工程および導電膜形成工程:基材および加熱温度変更)
 基材を、ポリイミドフィルムから、低耐熱性のPETフィルムに変更し、ロール10Aの温度を、200℃ではなく100℃に変更した以外は、上記(塗布工程および導電膜形成工程)と同様にして導電性基材を製造した。導電性組成物としては、下表に示す導電性粒子77質量部と有機溶剤23質量部とを遊星式攪拌機を用いて攪拌して均一なペースト状としたものを用いた。
 得られた導電性基材について、上記(比抵抗の測定)と同様にして、比抵抗を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるとおり、ロールプレスにおける加熱温度が100℃という比較的低温であっても、比抵抗の値が10-5~10-6程度のオーダーの導電膜を得ることができた。
 表2の比較例においては、ロールプレスにおける加熱温度が200℃であっても、比抵抗の値が10-4程度のオーダーにとどまっていることを踏まえると、ロールプレスにおける加熱温度が100℃という比較的低温において「比抵抗の値が10-5~10-6程度のオーダーの導電膜を得ることができた」ということは、本実施形態の導電性基材の製造方法の有用性を示している。
 ちなみに、上記評価において、基材のPETフィルムに、熱による変形や変質は見当たらなかった。
<追加例>
(バインダー使用による密着性向上)
 バインダー使用による、導電膜の基材への密着性向上効果を検証するための追加の実験を行った。
 具体的には、まず、後掲の表4に示す各成分-数値の単位は「質量部」である-を、遊星式攪拌機を用いて均一に攪拌することで導電性組成物を調製した。バインダーであるポリビニルピロリドンについては、日本触媒社製のものを用いた。
 調製した導電性組成物を用い、上記(塗布工程および導電膜形成工程)と同様にして導電膜を設け、また、上記(比抵抗の測定)と同様にして比抵抗を算出した。
 また、市販のニチバン社製セロテープ(登録商標)を導電膜上に貼り、その後、基材表面を基準として垂直な方向に素早くセロテープを剥がしたときに、導電膜が剥がれるか剥がれないかを評価した。導電膜が剥がれなかった場合を「良い」、導電膜がはがれてしまった場合を「悪い」とした。
導電性組成物の組成および評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるとおり、バインダーを比較的少量用いることで、比抵抗が小さな導電膜を得つつ、導電膜の基材への密着性を向上させることができた。
(特に、バインダー量が比較的多い追加例3と、バインダー量が比較的少ない追加例1および2の比抵抗の値を確認されたい。)
(加圧方法の変更例)
 上記<実施例および比較例>の(塗布工程および導電膜形成工程)における(3)の工程を、図3に示されるような「平坦面とロール」を組み合わせた装置で行った以外は、実施例と同様にして導電膜を形成した。このとき、温度は室温で、加圧については実施例の121MPaと同程度となるようにした。また、導電性組成物としては表2の「銀1」の導電性組成物を用いた。
 また、上記<実施例および比較例>の(塗布工程および導電膜形成工程)における(3)の工程を、図4に示されるように「一対の、平坦面を有する押圧部材」を備える装置で行った以外は、実施例と同様にして導電膜を形成した。このとき、温度は室温で、加圧については実施例の121MPaと同程度となるようにした。また、導電性組成物としては表2の「銀1」の導電性組成物を用いた。
 これら2つの追加例においても、10-5Ω・cm程度のオーダーの比抵抗値を有する導電膜が得られた。
(加圧力の変更例)
 加圧の圧力を121MPaから242MPaに変更した以外は、上記表2の「銅2」を用いた実施例と同様にして導電膜を形成した。得られた導電膜の比抵抗は5.8×10-6であった。
 また、加圧の圧力を121MPaから242MPaに変更した以外は、上記表3の「銅1」を用いた実施例と同様にして導電膜を形成した。得られた導電膜の比抵抗は2.2×10-5であった。
 以上、加圧力を変更した場合においても比抵抗が小さい導電膜を形成することができた。
(塗布工程においてスクリーン印刷法を採用した例)
 上記実施例では、基材上の「くりぬき部」に、スキージを用いて導電性組成物をスキージングして、塗布膜を設けた。
 これとは別に、塗布工程においてスクリーン印刷法を採用した例についても記しておく。
 まず、スクリーン印刷の諸条件について記載する。
・スクリーン印刷機
 マイクロ・テック社製 LABTOP 38
・スクリーンメッシュ1
 メッシュ材質:SUS(ステンレス)、325メッシュ、線径:16μm、乳剤厚:28μm、バイアス:22.5°
 スクリーンメッシュ1には、粗化処理および撥液処理が施されていた。粗化処理の具体的態様は、図5の「粗化処理あり」の画像を参照されたい(図5は、スクリーンメッシュの一部を拡大した図である)。また、撥液処理は、スクリーンメッシュの供給元によれば、トルエン:ブタノール=9:1の混合溶剤を滴下した際の接触角が60°程度となるように、スクリーンメッシュの表面に、有機溶剤をはじく性質を有する物質をコーティングするなどして行われた。
・スクリーンメッシュ2
 粗化処理が施されず、撥液処理も施されなかった以外は、スクリーンメッシュ1と同じ
・スキージ
 ウレタンスキージ、硬度80°
・導電性組成物
 表1の銅2を含み、粘度が70Pa・sに調整された導電性組成物を使用した。なお、粘度は、東機産業社製E型粘度計を用い、治具3°×R9.7、回転数10rpm、25℃の条件で測定した。
・印刷条件
 印圧0.18MPa、背圧0.12MPa、スピード50mm/秒、クリアランス2.0mmで実施
 塗布工程を、スクリーンメッシュ1を用いた上記条件でのスクリーン印刷法で行った以外は、上記(塗布工程および導電膜形成工程)と同様にして、導電膜を備える導電性基材を製造した。つまり、上記(塗布工程および導電膜形成工程)の(1)は、スクリーンメッシュ1を用いたスクリーン印刷法により行ったが、(2)以降は同様の手順により導電膜を備える導電性基材を製造した。この実施例を「スクリーン印刷実施例1」とする。
 また、塗布工程を、スクリーンメッシュ2を用いた上記条件でのスクリーン印刷法で行った以外は、上記(塗布工程および導電膜形成工程)と同様にして、導電膜を備える導電性基材を製造した。つまり、上記(塗布工程および導電膜形成工程)の(1)は、スクリーンメッシュ2を用いたスクリーン印刷法により行ったが、(2)以降は同様の手順により導電膜を備える導電性基材を製造した。この実施例を「スクリーン印刷実施例2」とする。
 スクリーン印刷実施例1および2の両方において、得られた導電膜の比抵抗は、表2の実施例と同程度の水準であった。
 なお、スクリーン印刷で用いるスクリーンメッシュの違いによる性能の差を把握するために、以下の評価も行った。
・連続印刷性の評価
 スクリーン印刷を連続的に10回行った。そして、10回目に得られたパターンをマイクロスコープにて観察した。
 スクリーン印刷実施例2においては、やや滲みが見られた。これに対し、スクリーン印刷実施例1においては、滲みは見られなかった。これは、スクリーン印刷実施例1では、用いたスクリーンメッシュの裏側(基材側)に、導電性組成物が濡れ広がることが抑えられたためと推測される。
・パターンの表面粗さの評価
 スクリーン印刷後に熱風循環式大気オーブンで100℃にて15分間加熱した後のパターンの表面の表面粗さ(Rz)を、共焦点レーザー顕微鏡にてを計測した。
 スクリーン印刷実施例1においては、Rzは30μm未満であったが、スクリーン印刷実施例2においては、Rzは30μm以上であった。
 パターンの表面粗さは、導電性基材の用途によっては特に問題とならないことも多いが、パターンをアンテナとして使用する場合には、いわゆる表皮効果のために表面粗さは小さいことが好ましい。適切なスクリーンメッシュを用いることで、表面粗さがより小さい塗布層を形成することができ、ひいては表面粗さがより小さい導電膜を形成することができると考えられる。このような導電膜を備える導電性基材は、アンテナとして好ましく使用可能と考えられる。
 この出願は、2022年9月16日に出願された日本出願特願2022-148049号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   基材
3   塗布層
10A ロール
10B ロール
12  ロール
20  平坦面を有する台
20A 平坦面
31  第1の押圧部材
31A 第1の平坦面
32  第2の押圧部材
32A 第2の平坦面

Claims (21)

  1.  基材上に、導電性粒子を含有する導電性組成物を塗布して塗布層を設ける塗布工程と、
     前記塗布層を少なくとも加圧して導電膜を形成する導電膜形成工程と、
    を含み、
     前記導電性粒子が、以下の条件を満たす、導電性基材の製造方法。
    (条件)
     前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。
    (a)D50が0.6~50μmである。
    (b)(D90-D50)/D50が0.55~3.0である。
  2.  請求項1に記載の導電性基材の製造方法であって、
     前記基材は可撓性を有する、導電性基材の製造方法。
  3.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電膜形成工程では、前記塗布層を加熱しながら加圧する、導電性基材の製造方法。
  4.  請求項1または2に記載の導電性基材の製造方法であって、
     さらに以下の(c)を満たす、導電性基材の製造方法。
     (c)(D50-D10)/D50が0.4~0.8である。
  5.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が95%となる粒子径をD95としたとき、D95が1.5~100μmである、導電性基材の製造方法。
  6.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電性組成物の全不揮発成分中のバインダーの量は5質量%以下である、導電性基材の製造方法。
  7.  請求項1または2に記載の導電性基材の製造方法であって、
     前記基材は、ポリエステル、ポリオレフィン、ポリイミドおよび紙からなる群より選択される少なくともいずれかである、導電性基材の製造方法。
  8.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電膜形成工程は、前記塗布層が設けられた基材を、対向する2本のロールの間を搬送させるロールプレス工程を含む、導電性基材の製造方法。
  9.  請求項8に記載の導電性基材の製造方法であって、
     前記ロールプレス工程において、前記2本のロールのうち前記塗布層が接触するロールは、加熱されていないか、または400℃以下に加熱されている、導電性基材の製造方法。
  10.  請求項8に記載の導電性基材の製造方法であって、
     前記ロールプレス工程において、前記塗布層が設けられた基材には10MPa以上の圧力が加えられる、導電性基材の製造方法。
  11.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電膜形成工程は、前記塗布層が設けられた基材を、平板上または平坦面を有する台の前記平坦面上に置き、その上からロールを用いて前記塗布層を少なくとも加圧する工程を含む、導電性基材の製造方法。
  12.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電膜形成工程は、第1の平坦面を有する第1の押圧部材の前記第1の平坦面と、第2の平坦面を有する第2の押圧部材の前記第2の平坦面と、により、塗布層が設けられた基材を挟む工程を含む、導電性基材の製造方法。
  13.  請求項1または2に記載の導電性基材の製造方法であって、
     前記導電膜はパターン構造を有する、導電性基材の製造方法。
  14.  請求項1または2に記載の導電性基材の製造方法により得られた導電性基材を用いて電子デバイスを製造する、電子デバイスの製造方法。
  15.  請求項14に記載の電子デバイスの製造方法であって、
     前記電子デバイスが、RFタグである、電子デバイスの製造方法。
  16.  請求項1または2に記載の導電性基材の製造方法により得られた導電性基材を用いて電磁波シールドフィルムを製造する、電磁波シールドフィルムの製造方法。
  17.  請求項1または2に記載の導電性基材の製造方法により得られた導電性基材を用いて面状発熱体を製造する、面状発熱体の製造方法。
  18.  基材上に塗布して塗布層とし、前記塗布層を少なくとも加圧して導電膜を形成する用途に用いられる、導電性粒子を含有する導電性組成物であって、
     前記導電性粒子が、以下の条件を満たす、導電性組成物。
    (条件)
     前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が50%となる粒子径をD50、累積頻度が10%となる粒子径をD10、累積頻度が90%となる粒子径をD90としたとき、以下の(a)および(b)を満たす。
    (a)D50が0.6~50μmである。
    (b)(D90-D50)/D50が0.55~3.0である。
  19.  請求項18に記載の導電性組成物であって、
     前記導電性粒子が、さらに以下の(c)を満たす、導電性組成物。
     (c)(D50-D10)/D50が0.4~0.8である。
  20.  請求項18または19に記載の導電性組成物であって、
     前記導電性粒子をレーザー回折散乱法により粒子径測定したときに得られる体積基準累積粒子径分布曲線において、累積頻度が95%となる粒子径をD95としたとき、D95が1.5~100μmである、導電性組成物。
  21.  請求項18または19に記載の導電性組成物であって、
     全不揮発成分中のバインダーの量が5質量%以下である、導電性組成物。
PCT/JP2023/033030 2022-09-16 2023-09-11 導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物 WO2024058115A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022148049 2022-09-16
JP2022-148049 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058115A1 true WO2024058115A1 (ja) 2024-03-21

Family

ID=90275063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033030 WO2024058115A1 (ja) 2022-09-16 2023-09-11 導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物

Country Status (2)

Country Link
JP (1) JP2024043509A (ja)
WO (1) WO2024058115A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134914A (ja) * 2011-12-27 2013-07-08 Taiyo Holdings Co Ltd 導電性組成物、これを用いた配線基板の製造方法および配線基板
JP2019189680A (ja) * 2018-04-19 2019-10-31 東洋インキScホールディングス株式会社 成形フィルム用導電性組成物、成形フィルム、成形体およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134914A (ja) * 2011-12-27 2013-07-08 Taiyo Holdings Co Ltd 導電性組成物、これを用いた配線基板の製造方法および配線基板
JP2019189680A (ja) * 2018-04-19 2019-10-31 東洋インキScホールディングス株式会社 成形フィルム用導電性組成物、成形フィルム、成形体およびその製造方法

Also Published As

Publication number Publication date
JP2024043509A (ja) 2024-03-29

Similar Documents

Publication Publication Date Title
EP3028126B1 (en) Bonding electronic components to patterned nanowire transparent conductors
JP5452443B2 (ja) 導体パターン形成基材
JP5093302B2 (ja) 電磁波シールド材、及びその製造方法
JP4737348B2 (ja) 透明導電層パターンの形成方法
CN110022640B (zh) 电磁波屏蔽膜
TWI569700B (zh) 導電性圖案生成方法
JP2009049136A (ja) 配線基板、配線パターン形成方法および配線基板の製造方法
JP2004111822A (ja) 透光性電磁波シールド部材の製造方法
JP2010257690A (ja) パターン電極の製造方法及びパターン電極
WO2024058115A1 (ja) 導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法、面状発熱体の製造方法および導電性組成物
JP5775438B2 (ja) 銀微粒子分散液
JP2013202911A (ja) 透明導電層付き基体の製造方法
JP2016135562A (ja) 積層体、それを用いた導電性基材の製造方法、電子デバイスの製造方法、および転写具
KR100978099B1 (ko) 그라비어 프린팅용 전도성 페이스트 조성물
WO2024070661A1 (ja) 導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法および面状発熱体の製造方法
WO2024058112A1 (ja) 導電性基材の製造方法、電子デバイスの製造方法、電磁波シールドフィルムの製造方法および面状発熱体の製造方法
JP2019151117A (ja) 積層体、それを用いた導電性基材の製造方法、電子デバイスの製造方法、および転写具
JP7084038B6 (ja) 導電性ペースト、導電性膜、及び電子部品
JP5402139B2 (ja) アンテナパターン及びアンテナパターンの製造方法
JP2011071375A (ja) 電磁波シールド材
JP2020061486A (ja) 電磁波シールドフィルムおよびその製造方法、ならびに電磁波シールドフィルム付きプリント配線板
KR101869326B1 (ko) 나노 금속파우더를 이용한 직접 접촉방식의 전도성 점착테이프 및 이의 제작방법
JP6849131B2 (ja) 積層体、それを用いた導電性基材の製造方法、電子デバイスの製造方法、および転写具
JP5917912B2 (ja) 銀導電膜およびその製造方法
JP2022113988A (ja) 微細パターンの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865468

Country of ref document: EP

Kind code of ref document: A1