WO2024052196A1 - Array für eine mikrofluidische vorrichtung, mikrofluidische vorrichtung und verfahren zu ihrem betrieb. - Google Patents

Array für eine mikrofluidische vorrichtung, mikrofluidische vorrichtung und verfahren zu ihrem betrieb. Download PDF

Info

Publication number
WO2024052196A1
WO2024052196A1 PCT/EP2023/073864 EP2023073864W WO2024052196A1 WO 2024052196 A1 WO2024052196 A1 WO 2024052196A1 EP 2023073864 W EP2023073864 W EP 2023073864W WO 2024052196 A1 WO2024052196 A1 WO 2024052196A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
channels
microfluidic device
depth
depressions
Prior art date
Application number
PCT/EP2023/073864
Other languages
English (en)
French (fr)
Inventor
Anja Lippert
Aaron Doerr
Julian Kassel
Ronny Leonhardt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2024052196A1 publication Critical patent/WO2024052196A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces

Definitions

  • the present invention relates to an array for a microfluidic device. Furthermore, the present invention relates to a microfluidic device which has the array. The present device also relates to a method for operating the microfluidic device.
  • Microfluidic analysis systems also known as lab-on-chip systems, allow automated processing of chemical or biological substances for medical diagnostics. For this purpose, they often have an array that has several wells with dried reagents in front of them. The array is flushed with a reaction liquid and the depressions, also known as wells, are filled in this way. The depressions can then be insulated from each other using a sealing liquid. This is described, for example, in DE 10 2018 204 624 A1.
  • the array for a microfluidic device consists in particular of silicon. It has a first side with several depressions in which Reagents are arranged.
  • the depressions can, for example, form bag-shaped or cylindrical recesses on the first side and can preferably be arranged in several, in particular parallel, rows on the first side.
  • This first side is intended to be washed over by a reaction liquid in the microfluidic device. It is therefore arranged as the top side in the microfluidic device.
  • a second side, which is opposite the first side, is arranged as a bottom and can be glued to a substrate of the microfluidic device.
  • the first side has several parallel linear channels. These channels are intended to be arranged in the microfluidic device parallel to a flow direction of a fluid, in particular parallel to a flow direction of the reaction mixture.
  • the wells must be filled in a reproducible and controlled manner. This is the only way to ensure that chemical reactions in the wells take place reproducibly and with sufficient yield.
  • the progression of an interface between air and a reaction mixture on the array is crucial for filling the wells. This progression is significantly influenced by geometric dimensional deviations and local surface properties of the array as well as properties of the flow to the array. These can lead to unforeseen fluctuations in the movement of the interface and thus indirectly to fluctuations in the reaction yield of the chemical reactions in the wells. For example, there could be increased wetting along the central axis of the array and/or increased lateral wetting, which creates the risk of air pockets in adjacent corners of the array chamber and incomplete wetting of the array. The parallel linear channels even out the array wetting and prevent cross flows.
  • the targeted flow guidance using the channels makes the wetting of the array more robust against fluctuations in the flow and the chamber geometry.
  • a certain level of uniformity in the array wetting can be achieved using linear channels that only extend over part of the length of the first side.
  • the channels preferably extend over the entire length of the first side in order to enable the best possible flow guidance.
  • the length of the first side is understood to mean the dimension of the long side of the first side along which the linear channels extend.
  • a depth of the channels is preferably at least 10 pm. At a shallower depth, only a weak intervention in the fluid flow could be achieved.
  • the depth of the channels is a maximum of 10% of a depth of the depressions. At a greater depth there would be a risk that the main flow of the reaction mixture would be negatively influenced, which would have a negative impact on the filling of the wells.
  • a width of the channels preferably corresponds at most to their depth, particularly preferably exactly to their depth.
  • a rectangular channel cross section is therefore designed in particular as a square channel cross section and a triangular channel cross section is designed in particular in the form of an equilateral triangle.
  • the width of the channels means their dimension orthogonal to the length of the first side, with the width being measured at the highest point of the channels. For ducts with a triangular or semicircular cross-section, the width is measured at their largest dimension.
  • the width of a channel with a semicircular cross section is equal to the diameter of the semicircle. If the channels were too wide, their hydraulic radius would be greatly increased and the capillary pressure that could be generated by the channels would be reduced.
  • the wells of the array preferably have a depth of at least 100 pm. In an array with shallower wells, the depth of the channels and the depth of the wells can become so close that this has a negative impact on the main flow of the fluid
  • the channels are intended to even out the wetting of the entire array surface and not to specifically direct a reaction liquid into the wells as supply lines. It is therefore preferred that the depressions are arranged between the channels and preferably none of the channels open into one of the depressions. A channel particularly preferably runs between two rows of depressions.
  • the microfluidic device has at least one array chamber in which the array is arranged such that the channels run parallel to a flow direction of a fluid, in particular a reaction mixture.
  • the array chamber can in particular be an analysis chamber which has a transparent window above the first side of the array through which the contents of the wells can be analyzed using optical methods.
  • the microfluidic device can be a cartridge that is intended to be inserted into a microfluidic analysis system. Reagents are stored in such a cartridge and a sample liquid is introduced into the cartridge. After carrying out chemical reactions and analyzing the reaction result, the cartridge can be disposed of as a disposable item, while other components of the analysis device, such as an optical sensor, are reused.
  • the microfluidic device is set up to carry out an amplification reaction, such as a PCR reaction or an rlTA reaction.
  • the setup is carried out by pre-storing the reagents required for the amplification reaction.
  • a fluid in the array chamber is guided over the array parallel to the channels.
  • Fig. 1 shows a top view of the first side of an array according to an exemplary embodiment of the invention.
  • Fig. 2 shows a cross-sectional view of a section of an array according to an exemplary embodiment of the invention.
  • FIG 3 shows a cross section of a channel of an array according to an exemplary embodiment of the invention.
  • FIG. 4 shows a cross section of a channel of an array according to another embodiment of the invention.
  • FIG. 5a shows an isometric view of an array chamber of a microfluidic device according to an exemplary embodiment of the invention.
  • Fig. 5b shows another isometric view of the array chamber of a microfluidic device according to Fig. 5a.
  • an array 10 is designed as a silicon array. This has a length L of 10 mm. The width of the array 10 corresponds to its length L. Twelve channels 12 extend parallel to one another on a first side 11 of the array 10 along the longitudinal direction of the array 10. The distance between two adjacent channels 12 is 0.7 mm each. In addition to the channels 12, depressions 13, not shown in FIG. 1, are arranged on the first side 11 in which dried reagents are stored. The reagents are, for example, embedded in a mixture of polyacrylamide and trehalose, which is covered with a reagent-free mixture of polyacrylamide and trehalose. This is again covered with agarose. Fig.
  • the channel 12 shows a channel 12 and a recess 13 side by side.
  • the channel 12 has a square cross section and its depth t of 25 pm corresponds to its width b.
  • the depth T of the depression 13 is 350 pm.
  • the depression 13 can be designed as a cylindrical recess with a rectangular or square cross section (as shown).
  • the channels 12 have a cross section in the shape of an equilateral triangle. Its width b of 25 pm corresponds to the length of one side of the triangle. They have a depth t of 20.
  • the channels 12 have a semicircular cross section. Its width b of 25 pm corresponds to the diameter of the semicircle and its depth t of 12.5 pm corresponds to the radius of the semicircle.
  • An array 10 according to one of the above-described exemplary embodiments of the invention can be used in an array chamber 20 of a microfluidic device according to an exemplary embodiment of the invention. This is shown in Figures 5a and 5b. To illustrate the effect of the channels 12, an array 10 is shown, on whose first side 11, which faces upwards in the array chamber 20, four of the twelve channels 12 have been omitted. A fluid 30, which is a reaction mixture for an amplification reaction, flows over the first side 11 of the array 10 in the direction of an outlet 21 of the array chamber 20. The channels 12 are arranged parallel to the flow direction of this fluid 30. An interface 31 between the fluid 30 and air contained in the array chamber 20 advances along the longitudinal direction of the array 10 in the array chamber 20.
  • the interface 31, where the first side 11 of the array 10 has the channels 12 is orthogonal to the longitudinal direction of the channels 12 advances. In this area, uniform wetting of the first side 11 of the array 10 is achieved. This causes the recesses 13, not shown, to be filled evenly.
  • the equalization of the interface 31 is based on the fact that the channels generate a capillary pressure or Laplace pressure, which causes the interface 31 to advance if the resulting velocity is greater than the global velocity of the fluid 30.
  • the capillary pressure is inversely proportional to the hydraulic radius of the channels 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Die Erfindung betrifft ein Array (10) für eine mikrofluidische Vorrichtung, aufweisend eine erste Seite (11) mit mehreren Vertiefungen, in welchen Reagenzien angeordnet sind. Die erste Seite (11) weist mehrere parallele lineare Kanäle (12) auf. Die mikrofluidische Vorrichtung weist mindestens eine Arraykammer (20) auf, in der das Array (10) so angeordnet ist, dass die Kanäle (12) parallel zu einer Strömungsrichtung eines Fluids (30) verlaufen. Beim Betreiben der mikrofluidischen Vorrichtung wird ein Fluid in der Arraykammer parallel zu den Kanälen über das Array geführt.

Description

Beschreibung
Titel
Array für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb.
Die vorliegende Erfindung betrifft ein Array für eine mikrofluidische Vorrichtung. Weiterhin betrifft die vorliegende Erfindung eine mikrofluidische Vorrichtung, welche das Array aufweist. Außerdem betrifft die vorliegende Vorrichtung ein Verfahren zum Betreiben der mikrofluidischen Vorrichtung.
Stand der Technik
Mikrofluidische Analysesysteme, die auch als Lab-on-Chip-Systeme bezeichnet werden, erlauben ein automatisiertes Prozessieren chemischer oder biologischer Substanzen für die medizinische Diagnostik. Sie weisen hierzu häufig ein Array auf, das mehrere Vertiefungen mit vorgelagerten eingetrockneten Reagenzien aufweist. Das Array wird mit einer Reaktionsflüssigkeit bespült und die Vertiefungen, die auch als Wells bezeichnet werden, auf diese Weise befüllt. Anschließend können die Vertiefungen mittels einer Versiegelungsflüssigkeit gegeneinander isoliert werden. Dies wird beispielsweise in der DE 10 2018 204 624 A1 beschrieben.
Nach dem Einbringen der Versiegelungsflüssigkeit laufen in den Vertiefungen Reaktionen zwischen dem Reaktionsgemisch und den dort vorgelagerten Reagenzien ab.
Offenbarung der Erfindung
Das Array für eine mikrofluidische Vorrichtung besteht insbesondere aus Silizium. Es weist eine erste Seite mit mehreren Vertiefungen auf, in welchen Reagenzien angeordnet sind. Die Vertiefungen können beispielsweise sackförmige oder zylinderförmige Ausnehmungen auf der ersten Seite bilden und vorzugsweise in mehreren, insbesondere parallelen Reihen auf der ersten Seite angeordnet sein. Diese erste Seite ist dazu vorgesehen, um in der mikrofluidischen Vorrichtung von einer Reaktionsflüssigkeit überspült zu werden. Sie wird deshalb in der mikrofluidischen Vorrichtung als Oberseite angeordnet. Eine zweite Seite, die der ersten Seite gegenüberliegt, wird als Unterseite angeordnet und kann mit einem Substrat der mikrofluidischen Vorrichtung verklebt werden.
Es ist vorgesehen, dass die erste Seite mehrere parallele lineare Kanäle aufweist. Diese Kanäle sind dazu vorgesehen, um in der mikrofluidischen Vorrichtung parallel zu einer Strömungsrichtung eines Fluids, insbesondere parallel zu einer Strömungsrichtung des Reaktionsgemischs, angeordnet zu werden.
Die Befüllung der Vertiefungen muss auf reproduzierbare und kontrollierte Weise erfolgen. Nur so ist sichergestellt, dass chemische Reaktionen in den Vertiefungen reproduzierbar und mit hinreichender Ausbeute ablaufen. Entscheidend für die Befüllung der Vertiefungen ist das Fortschreiten einer Grenzfläche zwischen Luft und einem Reaktionsgemisch auf dem Array. Dieses Fortschreiten wird maßgeblich von geometrischen Maßabweichungen und lokalen Oberflächeneigenschaften des Arrays sowie von Eigenschaften der Anströmung des Arrays beeinflusst. Diese können zu unvorhergesehenen Schwankungen in der Bewegung der Grenzfläche und somit indirekt zu Schwankungen in der Reaktionsausbeute der chemischen Reaktionen in den Vertiefungen führen. So könnte es beispielsweise zu einer verstärkten Benetzung entlang der Mittelachse des Arrays und/oder zu einer verstärkten seitlichen Benetzung kommen, wodurch die Gefahr von Lufteinschlüssen in angrenzenden Ecken der Arraykammer sowie einer unvollständigen Benetzung des Arrays besteht. Die parallelen linearen Kanäle bewirken eine Vergleichmäßigung der Arraybenetzung und verhindern Querströmungen. Die gezielte Strömungsführung mittels der Kanäle macht die Benetzung des Arrays also robuster gegenüber Schwankungen in der Anströmung und der Kammergeometrie. Grundsätzlich kann eine gewisse Vergleichmäßigung der Arraybenetzung schon durch lineare Kanäle erreicht werden, welche sich nur über einen Teil der Länge der ersten Seite erstrecken. Vorzugsweise erstrecken sich die Kanäle jedoch über die gesamte Länge der ersten Seite, um so eine bestmögliche Strömungsführung zu ermöglichen. Unter der Länge der ersten Seite wird dabei die Abmessung der Längsseite der ersten Seite verstanden, entlang der sich die linearen Kanäle erstrecken.
Es hat sich gezeigt, dass für die Strömungsführung eines Fluids ein rechteckiger, dreieckiger oder halbkreisförmiger Querschnitt der Kanäle besonders vorteilhaft ist.
Eine Tiefe der Kanäle beträgt vorzugsweise mindestens 10 pm. Bei einer geringeren Tiefe könnte nur noch ein schwacher Eingriff in die Fluidströmung erreicht werden.
Weiterhin ist es bevorzugt, dass die Tiefe der Kanäle maximal 10 % einer Tiefe der Vertiefungen beträgt. Bei einer größeren Tiefe bestände das Risiko, dass die Hauptströmung des Reaktionsgemischs negativ beeinflusst wird, was einen negativen Einfluss auf die Befüllung der Vertiefungen hätte.
Eine Breite der Kanäle entspricht bevorzugt maximal ihrer Tiefe, besonders bevorzugt genau ihrer Tiefe. Ein rechteckiger Kanalquerschnitt ist daher insbesondere als quadratischer Kanalquerschnitt ausgeführt und ein dreieckiger Kanalquerschnitt ist insbesondere in der Form eines gleichseitigen Dreiecks ausgeführt. Unter der Breite der Kanäle wird dabei ihre Abmessung orthogonal zur Länge der ersten Seite verstanden, wobei die Breite am höchsten Punkt der Kanäle gemessen wird. Bei Kanälen mit dreieckigem oder halbkreisförmigem Querschnitt erfolgt die Breitenmessung also an ihrer größten Abmessung. Die Breite eines Kanals mit halbkreisförmigem Querschnitt entspricht dem Durchmesser des Halbkreises. Eine zu große Breite der Kanäle würde ihren hydraulischen Radius stark erhöhen und damit einen mittels der Kanäle erzeugbaren Kapillardruck senken. Die Vertiefungen des Arrays weisen vorzugsweise eine Tiefe von mindestens 100 pm auf. Bei einem Array mit flacheren Vertiefungen können sich die Tiefe der Kanäle und die Tiefe der Vertiefungen so stark annähern, dass dies einen negativen Einfluss auf die Hauptströmung des Fluids hat
Die Kanäle sind dazu vorgesehen, um die Benetzung der gesamten Arrayoberfläche zu vergleichmäßigen und nicht, um eine Reaktionsflüssigkeit als Zuleitungen gezielt in die Vertiefungen hineinzuleiten. Daher ist es bevorzugt, dass die Vertiefungen zwischen den Kanälen angeordnet sind und vorzugsweise keiner der Kanäle in einer der Vertiefungen mündet. Besonders bevorzugt verläuft jeweils zwischen zwei Reihen von Vertiefungen ein Kanal.
Die mikrofluidische Vorrichtung weist mindestens eine Arraykammer auf, in der das Array so angeordnet ist, dass die Kanäle parallel zu einer Strömungsrichtung eines Fluids, insbesondere eines Reaktionsgemischs verlaufen. Bei der Arraykammer kann es sich insbesondere um eine Analysenkammer handeln, die oberhalb der ersten Seite des Arrays ein transparentes Fenster aufweist, durch welches die Inhalte der Vertiefungen mittels optischer Methoden analysiert werden können.
Insbesondere kann die mikrofluidische Vorrichtung eine Kartusche sein, die dazu vorgesehen ist, um in ein mikrofluidisches Analysesystem eingesetzt zu werden. In einer solchen Kartusche sind Reagenzien vorgelagert und eine Probenflüssigkeit wird in die Kartusche eingeführt. Nach Durchführung chemischer Reaktionen und einer Analyse des Reaktionsergebnisses kann die Kartusche als Einmalartikel entsorgt werden, während andere Komponenten der Analysevorrichtung, wie beispielsweise ein optischer Sensor, wiederverwendet werden.
Insbesondere ist die mikrofluidische Vorrichtung zur Durchführung einer Amplifikationsreaktion, wie beispielsweise einer PCR-Reaktion oder einer rlTA- Reaktion eingerichtet. Die Einrichtung erfolgt durch das Vorlagern von für die Amplifikationsreaktion benötigten Reagenzien. In dem Verfahren zum Betreiben der mikrofluidischen Vorrichtung wird ein Fluid in der Arraykammer parallel zu den Kanälen über das Array geführt.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Fig. 1 zeigt eine Aufsicht auf die erste Seite eines Arrays gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 2 zeigt eine Querschnittsansicht eines Ausschnitts eines Arrays gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 3 zeigt einen Querschnitt eines Kanals eines Arrays gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 4 zeigt einen Querschnitt eines Kanals eines Arrays gemäß einem anderen Ausführungsbeispiel der Erfindung.
Fig. 5a zeigt eine isometrische Ansicht einer Arraykammer einer mikrofluidischen Vorrichtung gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 5b zeigt eine andere isometrische Ansicht der Arraykammer einer mikrofluidischen Vorrichtung gemäß Fig. 5a.
Ausführungsbeispiele der Erfindung
In einem ersten Ausführungsbeispiel der Erfindung ist ein Array 10 als Silizium- Array ausgeführt. Dieses weist eine Länge L von 10 mm auf. Die Breite des Arrays 10 entspricht seiner Länge L. Zwölf Kanäle 12 erstrecken sich parallel zueinander auf einer ersten Seite 11 des Arrays 10 entlang der Längsrichtung des Arrays 10. Der Abstand zwischen zwei benachbarten Kanälen 12 beträgt jeweils 0,7 mm. Zusätzlich zu den Kanälen 12 sind auf der ersten Seite 11 in Fig. 1 nicht dargestellte Vertiefungen 13 angeordnet, in denen eingetrocknete Reagenzien vorgelagert sind. Die Reagenzien sind beispielsweise in ein Gemisch aus Polyacrylamid und Trehalose eingebettet, welches mit einem reagenzeienfreien Gemisch aus Polyacrylamid und Trehalose überschichtet ist. Dieses ist wiederum mit Agarose überschichtet. Fig. 2 zeigt nebeneinander einen Kanal 12 und eine Vertiefung 13. Der Kanal 12 weist einen quadratischen Querschnitt auf und seine Tiefe t von 25 pm entspricht seiner Breite b. Die Tiefe T der Vertiefung 13 beträgt 350 pm. Die Vertiefung 13 kann dabei als zylinderförmige Ausnehmung mit rechteckigem oder quadratischem Querschnitt (wie dargestellt) ausgestaltet sein.
In einem zweiten Ausführungsbeispiel der Erfindung weisen die Kanäle 12 einen Querschnitt in der Form eines gleichseitigen Dreiecks auf. Ihre Breite b von 25 pm entspricht der Länge einer Seite des Dreiecks. Sie weisen eine Tiefe t von 20 auf.
In einem dritten Ausführungsbeispiel der Erfindung weisen die Kanäle 12 einen halbkreisförmigen Querschnitt auf. Ihre Breite b von 25 pm entspricht dem Durchmesser des Halbkreises und ihre Tiefe t von 12,5 pm entspricht dem Radius des Halbkreises.
Ein Array 10 gemäß einem der voranstehend beschriebenen Ausführungsbeispiele der Erfindung kann in einer Arraykammer 20 einer mikrofluidischen Vorrichtung gemäß einem Ausführungsbeispiel der Erfindung eingesetzt werden. Diese ist in den Fig. 5a und 5b dargestellt. Zur Veranschaulichung des Effekts der Kanäle 12 ist ein Array 10 dargestellt, auf dessen erster Seite 11 , die in der Arraykammer 20 nach oben gewandt ist, vier der zwölf Kanäle 12 weggelassen wurden. Ein Fluid 30, bei dem es sich um ein Reaktionsgemisch für eine Amplifikationsreaktion handelt, überströmt die erste Seite 11 des Arrays 10 in Richtung eines Auslasses 21 der Arraykammer 20. Die Kanäle 12 sind parallel zur Strömungsrichtung dieses Fluids 30 angeordnet. Eine Grenzfläche 31 zwischen dem Fluid 30 und in der Arraykammer 20 enthaltener Luft schreitet entlang der Längsrichtung des Arrays 10 in der Arraykammer 20 voran. Dabei ist erkennbar, dass die Grenzfläche 31 dort, wo die erste Seite 11 des Arrays 10 die Kanäle 12 aufweist, orthogonal zur Längsrichtung der Kanäle 12 voranschreitet. In diesem Bereich wird eine gleichmäßige Benetzung der ersten Seite 11 des Arrays 10 erreicht. Dies bewirkt ein gleichmäßiges Befüllen der nicht dargestellten Vertiefungen 13.
Die Vergleichmäßigung der Grenzfläche 31 beruht, darauf, dass die Kanäle einen Kapillardruck bzw. Laplace-Druck erzeugen, welcher die Grenzfläche 31 voraneilen lässt, wenn die sich daraus ergebende Geschwindigkeit größer als die globale Geschwindigkeit des Fluids 30 ist. Der Kapillardruck ist umgekehrt proportional zum hydraulischen Radius der Kanäle 12.
In dem Randbereich der ersten Seite 11 , in welchem keine Kanäle 12 angeordnet sind, ist hingegen eine unregelmäßige Form der Grenzfläche zu beobachten. Mit dem Beginn des Bereiches ohne Kanäle 12 weicht die Grenzfläche 31 zunächst zurück und eilt dann zum Rand des Arrays 10 hin wieder voraus. In diesem Bereich kann also keine gleichmäßige Befüllung der Vertiefungen 13 erreicht werden. Die Form der Grenzfläche wurde mittels einer Strömungssimulation berechnet, welche die Überlegenheit einer mit Kanälen 12 versehenen ersten Seite 11 des Arrays 10 gegenüber einer unmodifizierten ersten Seite 11 zeigt.

Claims

Ansprüche
1 . Array (10) für eine mikrofluidische Vorrichtung, aufweisend eine erste Seite
(11) mit mehreren Vertiefungen (13), in welchen Reagenzien angeordnet sind, dadurch gekennzeichnet, dass die erste Seite (11) mehrere parallele lineare Kanäle (12) aufweist.
2. Array (10) nach Anspruch 1 , dadurch gekennzeichnet, dass sich die Kanäle
(12) über eine gesamte Länge (L) der ersten Seite (11) erstrecken.
3. Array (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kanäle (12) einen rechteckigen, dreieckigen oder halbkreisförmigen Querschnitt aufweisen.
4. Array (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Tiefe (t) der Kanäle (12) mindestens 10 pm beträgt.
5. Array (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Tiefe (t) der Kanäle (12) maximal 10 % einer Tiefe (T) der Vertiefungen
(13) beträgt.
6. Array (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Breite (b) der Kanäle (12) maximal ihrer Tiefe (t) entspricht.
7. Array (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Vertiefungen (13) eine Tiefe (T) von mindestens 100 pm aufweisen.
8. Array (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Vertiefungen (13) zwischen den Kanälen (12) angeordnet sind, wobei insbesondere jeweils zwischen zwei Reihen von Vertiefungen (13) ein Kanal (12) verläuft.
9. Mikrofluidische Vorrichtung, aufweisend mindestens eine Arraykammer (20), in der ein Array (10) nach einem der Ansprüche 1 bis 8 so angeordnet ist, dass die Kanäle (12) parallel zu einer Strömungsrichtung eines Fluids (30) verlaufen. Verfahren zum Betreiben einer mikrofluidischen Vorrichtung nach Anspruch 9, worin ein Fluid (30) in der Arraykammer (20) parallel zu den Kanälen (12) über das Array (10) geführt wird.
PCT/EP2023/073864 2022-09-09 2023-08-31 Array für eine mikrofluidische vorrichtung, mikrofluidische vorrichtung und verfahren zu ihrem betrieb. WO2024052196A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022209417.4A DE102022209417A1 (de) 2022-09-09 2022-09-09 Array für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb
DE102022209417.4 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024052196A1 true WO2024052196A1 (de) 2024-03-14

Family

ID=88068830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/073864 WO2024052196A1 (de) 2022-09-09 2023-08-31 Array für eine mikrofluidische vorrichtung, mikrofluidische vorrichtung und verfahren zu ihrem betrieb.

Country Status (2)

Country Link
DE (1) DE102022209417A1 (de)
WO (1) WO2024052196A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235406B1 (en) * 1996-04-03 2007-06-26 Applera Corporation Nucleic acid analysis device
CN102395421A (zh) * 2009-01-30 2012-03-28 莱顿大学 用于流体操控的相位导引件式样
US20150273469A1 (en) * 2003-09-19 2015-10-01 Applied Biosystems, Llc High Density Plate Filler
DE102018204624A1 (de) 2018-03-27 2019-10-02 Robert Bosch Gmbh Verfahren und mikrofluidische Vorrichtung zur Aliquotierung einer Probenflüssigkeit unter Verwendung einer Versiegelungsflüssigkeit, Verfahren zum Herstellen einer mikrofluidischen Vorrichtung und mikrofluidisches System

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241099B3 (de) 2002-09-02 2004-06-03 Siemens Ag Reaktor zur Beaufschlagung einer Trägerplatte mit einer Probe
DE10326607A1 (de) 2003-06-13 2005-01-05 Steag Microparts Gmbh Vorrichtung zum Handhaben von Flüssigkeiten
GB201705982D0 (en) 2017-04-13 2017-05-31 Univ Strathclyde Microfluid device
CN112871227B (zh) 2021-01-07 2022-10-11 中国科学院青岛生物能源与过程研究所 基于光热效应进行微量液滴操控的微流控芯片及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235406B1 (en) * 1996-04-03 2007-06-26 Applera Corporation Nucleic acid analysis device
US20150273469A1 (en) * 2003-09-19 2015-10-01 Applied Biosystems, Llc High Density Plate Filler
CN102395421A (zh) * 2009-01-30 2012-03-28 莱顿大学 用于流体操控的相位导引件式样
DE102018204624A1 (de) 2018-03-27 2019-10-02 Robert Bosch Gmbh Verfahren und mikrofluidische Vorrichtung zur Aliquotierung einer Probenflüssigkeit unter Verwendung einer Versiegelungsflüssigkeit, Verfahren zum Herstellen einer mikrofluidischen Vorrichtung und mikrofluidisches System

Also Published As

Publication number Publication date
DE102022209417A1 (de) 2024-03-14

Similar Documents

Publication Publication Date Title
DE60119513T2 (de) Vorrichtung und verfahren zum einspritzen von flüssigkeiten
EP1270073B1 (de) Mikrofluid-System mit Regler
EP1253977B1 (de) Verfahren und vorrichtung zur abführung suspendierter mikropartikel aus einem fluidischen mikrosystem
DE1947195A1 (de) Verfahren und Vorrichtung zur Absonderung eines Trennmediums aus dem Strom eines segmentierten Hauptmediums
DE112017000632T5 (de) Vertikaler Mikrofluidik-Sondenkopf mit Öffnungen für eine großmaßstäbliche Oberflächenbearbeitung
CH701558A2 (de) Vorrichtung und Verfahren zum Mischen und Austauschen von Fluiden.
DE2913331C2 (de) Extraktionssäule
WO1999056878A1 (de) Vorrichtung für den transport von flüssigkeiten entlang vorgegebener leitwege
WO2024052196A1 (de) Array für eine mikrofluidische vorrichtung, mikrofluidische vorrichtung und verfahren zu ihrem betrieb.
DE102015218177B4 (de) Isolation und Anreicherung magnetisch markierter Zellen im Durchfluss
DE102005061629B4 (de) Vorrichtung und Verfahren zum Transport und zur Bildung von Kompartimenten
EP2322276B1 (de) Vorrichtung zur Durchführung von Tests, insbesondere von molekularbiologischen Tests
DE102022209416B3 (de) Mikrofluidische Vorrichtung
DE112017005675T5 (de) System zum Durchführen chemischer, biologischer und/oder medizinischer Prozesse
DE10115474A1 (de) Mikrofluidkanalstruktur und Verfahren zur Herstellung einer derartigen Mikrofluidkanalstruktur
DE102022209421A1 (de) Array für eine mikrofluidische Vorrichtung
DE3539922A1 (de) Verfahren zum betrieb eines mikroskopiergeraets
WO2024052283A1 (de) Mikrofluidische vorrichtung und verfahren zu ihrem betrieb
WO2024052362A1 (de) Array für eine mikrofluidische vorrichtung, mikrofluidische vorrichtung und verfahren zu ihrem betrieb.
EP1397483B1 (de) Mikrofluidsystem
DE102022209419A1 (de) Mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb
DE102022202864A1 (de) Mikrofluidische Vorrichtung und Verfahren zum Betreiben einer mikrofluidischen Vorrichtung
DE102022210371A1 (de) Mikrofluidische Kartusche, mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb
EP1508373A2 (de) Probenträger mit Flüssigkeitskanal
DE102022209415A1 (de) Mikrofluidisches Ventil und mikrofluidische Vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23771779

Country of ref document: EP

Kind code of ref document: A1