WO2024051213A1 - 含三嗪化合物、有机电致发光器件和电子装置 - Google Patents

含三嗪化合物、有机电致发光器件和电子装置 Download PDF

Info

Publication number
WO2024051213A1
WO2024051213A1 PCT/CN2023/095902 CN2023095902W WO2024051213A1 WO 2024051213 A1 WO2024051213 A1 WO 2024051213A1 CN 2023095902 W CN2023095902 W CN 2023095902W WO 2024051213 A1 WO2024051213 A1 WO 2024051213A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
triazine
Prior art date
Application number
PCT/CN2023/095902
Other languages
English (en)
French (fr)
Inventor
徐先彬
杨雷
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2024051213A1 publication Critical patent/WO2024051213A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present application relates to the technical field of organic electroluminescent materials, and in particular to a triazine-containing compound, organic electroluminescent devices and electronic devices.
  • Organic electroluminescent devices such as organic light-emitting diodes (OLEDs), generally include a cathode and an anode disposed opposite each other, and a functional layer disposed between the cathode and anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an organic light-emitting layer, a hole transport layer, an electron transport layer, etc.
  • the purpose of this application is to provide a triazine compound, an organic electroluminescent device and an electronic device to improve the performance of the organic electroluminescent device.
  • a triazine-containing compound having a structure shown in Formula I:
  • L 1 , L 2 and L 3 are the same or different, and are each independently selected from single bonds, substituted or unsubstituted arylene groups with 6 to 30 carbon atoms, substituted or unsubstituted arylene groups with 3 to 30 carbon atoms.
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups with 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3 to 30 carbon atoms, and groups The group consisting of A, and at least one of Ar 1 and Ar 2 is selected from the group A;
  • Each R 4 is independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 10 carbon atoms, and deuterated alkyl group with 1 to 10 carbon atoms.
  • alkoxy group with 1 to 10 carbon atoms alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 carbon atoms
  • n 4 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13;
  • the group A has the structure shown in formula II:
  • X is selected from O, S, N, N(Ar), C(R) or C(R 2 R 3 );
  • Ar is selected from the group consisting of a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • R, R 2 and R 3 are the same or different, and are each independently selected from an alkyl group with 1 to 10 carbon atoms, a haloalkyl group with 1 to 10 carbon atoms, and a deuterated alkyl group with 1 to 10 carbon atoms. group, an aryl group with 6 to 20 carbon atoms, a deuterated aryl group with 6 to 20 carbon atoms, or a heteroaryl group with 3 to 30 carbon atoms, or the carbon atoms to which R 2 and R 3 are connected. Together they form a saturated or unsaturated 3 to 15-membered ring;
  • Each R 1 is independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 10 carbon atoms, and deuterated alkyl group with 1 to 10 carbon atoms.
  • alkoxy group with 1 to 10 carbon atoms alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 carbon atoms
  • alkoxy group with 1 to 10 carbon atoms alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 carbon atoms
  • n 1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 or 8;
  • the substituents in L 1 , L 2 , L 3 , Ar, Ar 1 , Ar 2 , R 1 and R 4 are the same or different, and are each independently selected from deuterium, cyano group, halogen group, carbon number 1 ⁇ 10 alkyl group, halogenated alkyl group with 1 to 10 carbon atoms, deuterated alkyl group with 1 to 10 carbon atoms, alkoxy group with 1 to 10 carbon atoms, 1 to 10 carbon atoms Alkylthio group, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, aryl group with 6 to 20 carbon atoms, heteroaryl group with 3 to 20 carbon atoms or carbon number Cycloalkyl group with 3 to 10 members; optionally, any two adjacent substituents can form a saturated or unsaturated 3 to 15 membered ring.
  • the triazine-containing compound provided by this application is based on [5]spirene As the mother core, it is connected to the triazine substituted by the dibenzo five-membered ring. [5] Helix and the dibenzo five-membered ring both have large conjugation planes and rigidity. The triazine has excellent electron transport properties; After the 5]spirene is connected to the dibenzo five-membered ring-substituted triazine, on the one hand, the dibenzo5-membered ring-substituted triazine has better electron transmission characteristics and can be combined with the rigid [5]spirene.
  • the first and fifth benzene rings at the end of [5] helix are in different planes due to the steric hindrance effect of hydrogen atoms, thus forming multiple different clips within the molecule.
  • the angular spatial plane can effectively inhibit the accumulation between molecules and improve the film-forming properties of the material.
  • an organic electroluminescent device includes an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the function The layer contains the triazine-containing compound described above.
  • an electronic device includes the above-mentioned organic electroluminescent device.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application, in which 100 represents the anode, 200 represents the cathode, 300 represents the functional layer, 310 represents the hole injection layer, 321 represents the first hole transport layer, 322 Indicates the second hole transport layer, 330 indicates the organic light-emitting layer, 340 indicates the electron transport layer, and 350 indicates the electron injection layer.
  • Figure 2 is a schematic structural diagram of an electronic device according to a specific embodiment of the present application, in which 400 represents the electronic device.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • this application provides a triazine-containing compound having a structure shown in formula I:
  • L 1 , L 2 and L 3 are the same or different, and are each independently selected from single bonds, substituted or unsubstituted arylene groups with 6 to 30 carbon atoms, substituted or unsubstituted arylene groups with 3 to 30 carbon atoms.
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups with 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3 to 30 carbon atoms, and groups The group consisting of A, and at least one of Ar 1 and Ar 2 is selected from the group A;
  • Each R 4 is independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 10 carbon atoms, and deuterated alkyl group with 1 to 10 carbon atoms.
  • alkoxy group with 1 to 10 carbon atoms alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 carbon atoms
  • n 4 refers to the number of substituent R 4 , and n 4 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13; when n 4 When greater than 1, each substituent R 4 is the same or different;
  • the group A has the structure shown in formula II:
  • X is selected from O, S, N, N(Ar), C(R) or C(R 2 R 3 );
  • Ar is selected from the group consisting of a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • R, R 2 and R 3 are the same or different, and are each independently selected from an alkyl group with 1 to 10 carbon atoms, a haloalkyl group with 1 to 10 carbon atoms, and a deuterated alkyl group with 1 to 10 carbon atoms. group, an aryl group with 6 to 20 carbon atoms, a deuterated aryl group with 6 to 20 carbon atoms, or a heteroaryl group with 3 to 30 carbon atoms, or the carbon atoms to which R 2 and R 3 are connected. Together they form a saturated or unsaturated 3 to 15-membered ring;
  • Each R 1 is independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 10 carbon atoms, and deuterated alkyl group with 1 to 10 carbon atoms.
  • alkoxy group with 1 to 10 carbon atoms alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 carbon atoms
  • alkoxy group with 1 to 10 carbon atoms alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 carbon atoms
  • n 1 refers to the number of substituents R 1 , n 1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 or 8; when n 1 is greater than 1, each substituent R 1 is the same or different;
  • the substituents in L 1 , L 2 , L 3 , Ar, Ar 1 , Ar 2 , R 1 and R 4 are the same or different, and are each independently selected from deuterium, cyano group, halogen group, carbon number 1 ⁇ 10 alkyl group, halogenated alkyl group with 1 to 10 carbon atoms, deuterated alkyl group with 1 to 10 carbon atoms, alkoxy group with 1 to 10 carbon atoms, 1 to 10 carbon atoms Alkylthio group, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, aryl group with 6 to 20 carbon atoms, heteroaryl group with 3 to 20 carbon atoms or carbon number Cycloalkyl group with 3 to 10 members; optionally, any two adjacent substituents can form a saturated or unsaturated 3 to 15 membered ring.
  • R 2 and R 3 together with the carbon atoms to which they are connected form a saturated or unsaturated 3-15-membered ring means that R 2 and R 3 can be connected to each other to form a ring. They can also exist independently of each other; when they form a ring, the ring can be a 5-membered ring, like It can also be a 6-membered ring such as It can also be a 13-membered ring such as Other ring-forming types are not listed here.
  • the triazine-containing compound provided by this application uses [5]spirene as the mother core and is connected to a triazine substituted by a dibenzo five-membered ring. Both [5]spirene and the dibenzofive-membered ring have larger conjugated planes.
  • triazines have excellent electron transport properties; after connecting [5]spirene and dibenzo five-membered ring-substituted triazine, on the one hand, the dibenzo five-membered ring-substituted triazine has better electron transport Characteristics, combined with rigid [5] helicene, can further improve the electron mobility of the material; on the other hand, the first and fifth benzene rings at the end of [5] helicene due to the steric hindrance effect of hydrogen atoms, Being in different planes, thereby forming spatial planes with multiple different angles within the molecules, which can effectively inhibit the accumulation between molecules and improve the film-forming properties of the material.
  • the triazine-containing compound of the present application When the triazine-containing compound of the present application is used as the electron transport host material in the mixed host material, the balance of carriers in the light-emitting layer can be improved, the carrier utilization rate can be increased, the recombination area of the carriers can be broadened, and thus the carriers can be significantly improved. device efficiency and lifetime.
  • each... is independently selected from” and “... each is independently selected from” and “... is each independently selected from” are interchangeable, and should be understood in a broad sense. It can mean that in different groups, the specific options expressed by the same symbols do not affect each other, or it can also mean that in the same group, the specific options expressed by the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3
  • each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine.
  • Formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R can be the same or different, and the options of each R” do not affect each other;
  • Formula Q-2 indicates that there are q substituents R” on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent Rc can be, for example, deuterium, halogen group, cyano group, heteroaryl group, aryl group, trialkylsilyl group, triphenylsilyl group, alkyl group, haloalkyl group, cycloalkyl group, deuterated group Phenyl etc.
  • the number of substitutions can be one or more.
  • plural refers to more than 2, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or more.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the sum of the number of carbon atoms of the functional group and all substituents on it.
  • the number of carbon atoms in L 1 , L 2 , L 3 , R, R 1 , R 2 , R 3 , R 4 , Ar 1 and Ar 2 refers to the number of all carbon atoms in the group. .
  • Ar 1 is selected from a substituted aryl group with 10 carbon atoms, then all carbon atoms of the aryl group and its substituents are 10.
  • Ar 1 is a 9,9-dimethylfluorenyl group, then Ar 1 is a substituted fluorenyl group with 15 carbon atoms, and the number of ring carbon atoms of Ar 1 is 13.
  • hetero means that a functional group includes at least 1 heteroatom such as B, N, O, S, Si, Se or P and the remaining atoms are carbon and hydrogen.
  • Unsubstituted alkyl groups may be "saturated alkyl groups" without any double or triple bonds.
  • the "ring” in this application includes saturated rings and unsaturated rings; saturated rings are saturated aliphatic rings, and unsaturated rings are partially unsaturated rings such as cyclohexene or aromatic rings such as aromatic rings and heteroaromatic rings.
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered ring.
  • a saturated or unsaturated 3- to 15-membered ring refers to a cyclic group with 3 to 15 ring atoms. Examples of 3- to 15-membered rings include cyclopentane, cyclohexane, fluorene ring, and benzene ring.
  • the hydrogen atoms in the compound structure of the present application include various isotope atoms of the hydrogen element, such as hydrogen (H), deuterium (D) or tritium (T).
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group.
  • the aryl group can be a single-ring aryl group, a fused-ring aryl group, or two or more single-ring aryl groups conjugated through a carbon-carbon bond.
  • Ring aryl groups monocyclic aryl groups conjugated through carbon-carbon bonds and fused-ring aryl groups, two or more fused-ring aryl groups conjugated through carbon-carbon bonds.
  • the fused-ring aryl group may include, for example, bicyclic fused aryl groups (such as naphthyl), tricyclic fused aryl groups (such as phenanthrenyl, fluorenyl, anthracenyl), etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups include, but are not limited to, phenyl, naphthyl, fluorenyl, spirobifluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, triphenylene, perylene, benzo[9,10 ]phenanthrenyl, pyrenyl, benzofluoranthene, Key et al.
  • the arylene group refers to a bivalent group formed by the aryl group further losing one or more hydrogen atoms.
  • terphenyl includes
  • the number of carbon atoms of the substituted or unsubstituted aryl group can be 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms. 25 substituted or unsubstituted aryl group.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group with a carbon number of 6 to 18. In other embodiments, the substituted or unsubstituted aryl group is The aryl group is a substituted or unsubstituted aryl group with 6 to 15 carbon atoms.
  • the fluorenyl group can be substituted by one or more substituents.
  • the substituted fluorenyl group can be: But it is not limited to this.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5 or 6 heteroatoms in the ring.
  • the heteroatoms can be B, O, N, P, Si, One or more of Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyridyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thiophenyl
  • the heteroarylene group refers to a bivalent or multivalent group formed by the heteroaryl group further losing one or more hydrogen atoms.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group can be selected from 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 , 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30.
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group with a total carbon number of 3 to 30.
  • the substituted or unsubstituted heteroaryl group has a total carbon number of A substituted or unsubstituted heteroaryl group having 5 to 18 atoms.
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group having a total carbon number of 5 to 12 carbon atoms.
  • the substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group substituted by deuterium atoms, halogen groups, -CN, aryl groups, heteroaryl groups, trialkylsilyl groups, alkyl groups, etc. , cycloalkyl, haloalkyl and other groups substituted.
  • the alkyl group having 1 to 10 carbon atoms may include a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • Specific examples of the alkyl group include, but are not limited to, methyl, ethyl, n-propyl, Isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, etc.
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • trialkylsilyl include, but are not limited to, trimethylsilyl, triethylsilyl, etc.
  • haloalkyl groups include, but are not limited to, trifluoromethyl.
  • the number of carbon atoms of the cycloalkyl group having 3 to 10 carbon atoms may be, for example, 3, 4, 5, 6, 7, 8 or 10.
  • cycloalkyl Specific examples include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • the number of carbon atoms of the deuterated alkyl group having 1 to 10 carbon atoms is, for example, 1, 2, 3, 4, 5, 6, 7, 8 or 10.
  • Specific examples of deuterated alkyl groups include, but are not limited to, trideuterated methyl.
  • the number of carbon atoms of the haloalkyl group having 1 to 10 carbon atoms is, for example, 1, 2, 3, 4, 5, 6, 7, 8 or 10.
  • Specific examples of haloalkyl groups include, but are not limited to, trifluoromethyl.
  • the single bond extending from the ring system involved in the connecting key is not located. It means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1) ⁇ Any possible connection method shown in formula (f-10):
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring,
  • the meaning it represents includes any possible connection method shown in formula (X'-1) to formula (X'-4):
  • a non-positioned substituent in this application refers to a substituent connected through a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R' represented by the formula (Y) is connected to the quinoline ring through a non-positioned bond, and its meaning includes formula (Y-1) ⁇ Any possible connection method shown in formula (Y-7):
  • the triazine-containing compound is selected from the structures shown in Formula I-1 to Formula I-7:
  • the group A is selected from the group consisting of structures shown in Formula II-1 to Formula II-2:
  • X 1 is selected from O, S, N (Ar) or C (R 2 R 3 ), n 1 is 0, 1, 2, 3, 4, 5, 6 or 7, Ar,
  • R 1 , R 2 and R 3 are the same as those of Formula II;
  • X 2 is selected from N or C(R), n 1 is 0, 1, 2, 3, 4, 5, 6, 7 or 8, and the definitions of R and R 1 are the same as in Formula II.
  • the group A is selected from the group consisting of the structures shown in Formula II-3 to Formula II-5:
  • X 1 is selected from O, S, N (Ar) or C (R 2 R 3 ), n 1 is 0, 1, 2 or 3, and Ar, R 1 , R 2 and R 3 are limited Same formula II;
  • X 2 is selected from O, S, N (Ar) or C (R 2 R 3 ), n 1 is 0, 1, 2, 3, 4, 5 or 6, Ar, R, R 1 , R 2 and R 3 have the same limitations as Formula II;
  • X 2 is selected from N or C(R), n 1 is 0, 1, 2, 3, 4, 5, 6, 7 or 8, and the definitions of R and R 1 are the same as in Formula II.
  • the group A is selected from the group consisting of:
  • Ar is selected from an aryl group with 6 to 18 carbon atoms, a deuterated aryl group with 6 to 12 carbon atoms, or a heteroaryl group with 5 to 12 carbon atoms;
  • R, R 2 and R 3 are the same or different, and are each independently selected from an alkyl group with 1 to 4 carbon atoms, a haloalkyl group with 1 to 4 carbon atoms, and a deuterated alkyl group with 1 to 4 carbon atoms. group, an aryl group with 6 to 12 carbon atoms, a deuterated aryl group with 6 to 12 carbon atoms, or a heteroaryl group with 5 to 12 carbon atoms, or the carbon to which R 2 and R 3 are jointly connected.
  • the atoms together form the fluorene ring.
  • each R 1 is independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 4 carbon atoms, haloalkyl group with 1 to 4 carbon atoms, and alkyl group with 1 to 4 carbon atoms.
  • n 1 is selected from 0, 1, 2, 3, 4, 5, 6, 7 or 8.
  • the substituents in R 1 are each independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 4 carbon atoms, haloalkyl group with 1 to 4 carbon atoms, and Deuterated alkyl group with 1 to 4 carbon atoms, alkoxy group with 1 to 4 carbon atoms, alkylthio group with 1 to 4 carbon atoms, trialkylsilyl group with 3 to 8 carbon atoms, triphenyl group Silicon group, aryl group having 6 to 12 carbon atoms, and heteroaryl group having 5 to 12 carbon atoms.
  • the group A is selected from the group consisting of groups represented by the following formulas A1 to A9:
  • each R 1 is independently selected from deuterium, cyano group, fluorine, alkyl group with 1 to 4 carbon atoms, haloalkyl group with 1 to 4 carbon atoms, carbon atoms.
  • the substituents in R 1 are each independently selected from deuterium, fluorine, cyano, alkyl with 1-4 carbon atoms, deuterated alkyl with 1-4 carbon atoms, carbon atoms Alkoxy group with 1 to 4 carbon atoms, alkylthio group with 1 to 4 carbon atoms, trialkylsilyl group with 3 to 8 carbon atoms, fluoroalkyl group with 1 to 4 carbon atoms, carbon Aryl group with 6-12 atoms or heteroaryl group with 5-12 carbon atoms.
  • each R 1 and R 4 are independently selected from an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, and a deuterated alkyl group having 1 to 4 carbon atoms.
  • the number of carbon atoms is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 , 29 or 30 substituted or unsubstituted aryl groups, with carbon atoms of 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20 , 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted heteroaryl.
  • each R 1 and R 4 are independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, methyl, ethyl, iso Propyl, tert-butyl, trideuteratedmethyl, phenyl, naphthyl, pyridyl, dibenzofuranyl, dibenzothienyl or carbazolyl.
  • each R 1 and R 4 are independently selected from deuterium, cyano, fluorine, alkyl with 1 to 4 carbon atoms, haloalkyl with 1 to 4 carbon atoms, 1 to 4 carbon atoms. ⁇ 4 deuterated alkyl group, alkoxy group with 1 to 4 carbon atoms, alkylthio group with 1 to 4 carbon atoms, trialkylsilyl group with 3 to 8 carbon atoms, carbon number of A substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and a substituted or unsubstituted heteroaryl group having 5 to 18 carbon atoms.
  • R 1 and R 4 are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, methyl, ethyl, isopropyl , tert-butyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted Substituted phenanthrenyl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyrenyl, substituted or unsubstituted triphenylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothiophene group, substituted or un
  • the substituents in R 1 and R 4 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trideuterated methyl, cyclopentyl, cyclopentyl, Hexyl, phenyl, naphthyl, biphenyl, pyridyl, dibenzofuranyl, dibenzothienyl or trimethylsilyl.
  • R 1 and R 4 are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, methyl, ethyl, isopropyl, tert-butyl group or a group consisting of:
  • each R is independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, methyl, ethyl, isopropyl, tert-butyl group or the following groups:
  • each R1 is independently selected from deuterium, fluorine, cyano, trimethylsilyl, trideuteratedmethyl, trifluoromethyl, methyl, ethyl, isopropyl, tert-butyl or the following groups:
  • R, R 2 and R 3 are each independently selected from an alkyl group with 1 to 6 carbon atoms, a haloalkyl group with 1 to 6 carbon atoms, and a deuterated alkyl group with 1 to 6 carbon atoms.
  • Ar is selected from an aryl group having 6 to 16 carbon atoms, a deuterated aryl group having 6 to 16 carbon atoms, or a heteroaryl group having 3 to 15 carbon atoms.
  • R, R 2 and R 3 are each independently selected from methyl, ethyl, isopropyl, tert-butyl, phenyl, biphenyl, naphthyl, deuterated phenyl, deuterated naphthyl or Deuterated biphenyl.
  • Ar is selected from phenyl, biphenyl, naphthyl, deuterated phenyl, deuterated naphthyl or deuterated biphenyl.
  • group A is selected from the group consisting of:
  • L 1 , L 2 and L 3 are each independently selected from single bonds with carbon atoms of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted arylene groups with carbon atoms of 3, 4, 5, 6, 7, 8 , 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted subbasins Aryl.
  • L 1 , L 2 and L 3 are the same or different, and each is independently selected from the group consisting of single bonds and substitutions with 6 to 18 carbon atoms. Or an unsubstituted arylene group, a substituted or unsubstituted heteroarylene group having 3 to 18 carbon atoms.
  • the substituents in L 1 , L 2 and L 3 are the same or different, and are each independently selected from deuterium, fluorine, cyano group, alkyl group with 1-4 carbon atoms, 3-4 carbon atoms. 8 trialkylsilyl group, fluoroalkyl group with 1 to 4 carbon atoms, aryl group with 6 to 12 carbon atoms or heteroaryl group with 5 to 12 carbon atoms.
  • L 1 , L 2 and L 3 are selected from single bonds, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted Substituted fluorenylene, substituted or unsubstituted phenanthrylene, substituted or unsubstituted anthracene, substituted or unsubstituted dibenzothienylene, substituted or unsubstituted dibenzofurylene, substituted or A group consisting of unsubstituted carbazolylene groups, or a subunit group formed by connecting two or three of the above subunits through a single bond, such as a phenylene group and a naphthylene group formed by connecting through a single bond.
  • a subunit group such as a subunit group formed by connecting a phenylene group and a biphenylene group through a single bond.
  • the substituents in L 1 , L 2 and L 3 are the same or different, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trifluoromethyl base, trideuterated methyl, trimethylsilyl, phenyl, naphthyl or pyridyl.
  • L 1 , L 2 and L 3 are the same or different, and each is independently selected from a single bond or a substituted or unsubstituted group Q, and the unsubstituted group Q is selected from the following groups: group of:
  • the substituents in the above-mentioned substituted group Q are the same or different, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trifluoromethyl, and trideuterated methyl. base, trimethylsilyl, phenyl, naphthyl or pyridyl.
  • L is selected from a single bond or the following groups:
  • L 2 and L 3 are each independently selected from a single bond or the following groups:
  • one of Ar 1 and Ar 2 is group A, and the other is selected from the group consisting of 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 carbon atoms. , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted aryl group, the number of carbon atoms is 3, 4, 5, 6 , 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or not Substituted heteroaryl or group A.
  • one of Ar 1 and Ar 2 is group A, and the other is selected from a substituted or unsubstituted aryl group with 6 to 25 carbon atoms, and a substituted or unsubstituted aryl group with 5 to 18 carbon atoms.
  • Ar 1 is group A
  • Ar 2 is selected from a substituted or unsubstituted aryl group with 6 to 25 carbon atoms, and a substituted or unsubstituted heteroaryl group with 5 to 18 carbon atoms. and group A.
  • both Ar 1 and Ar 2 are group A.
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, fluorine, cyano, alkyl with 1-4 carbon atoms, deuterated alkyl with 1-4 carbon atoms, carbon Alkoxy group with 1 to 4 atoms, alkylthio group with 1 to 4 carbon atoms, trialkylsilyl group with 3 to 8 carbon atoms, fluoroalkyl group with 1 to 4 carbon atoms, An aryl group having 6 to 12 carbon atoms or a heteroaryl group having 5 to 12 carbon atoms.
  • Ar 1 is group A and Ar 2 is selected from the group consisting of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 carbon atoms. , 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted aryl groups with carbon atoms of 3, 4, 5, 6, 7, 8, 9, 10, 12 , 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted heteroaryl.
  • Ar 1 is group A
  • Ar 2 is selected from a substituted or unsubstituted group T
  • the unsubstituted group T is selected from the group consisting of:
  • the substituted group T has one or more substituents, and each substituent is independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, methyl, Ethyl, isopropyl, tert-butyl, phenyl, naphthyl, pyridyl, dibenzofuranyl, dibenzothienyl or carbazolyl, and when the number of substituents in group W is greater than 1 , each substituent is the same or different.
  • Ar 2 is selected from the group consisting of:
  • the triazine-containing compound is selected from the group consisting of the following compounds:
  • a second aspect of the present application provides an organic electroluminescent device.
  • the organic electroluminescent device includes an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer includes the above Contains triazine compounds to improve the voltage characteristics, efficiency characteristics and lifetime characteristics of organic electroluminescent devices.
  • the triazine-containing compound provided in this application can be used to form at least one organic film layer in the functional layer.
  • the functional layer includes an organic light-emitting layer, and the organic light-emitting layer includes the triazine-containing compound.
  • the organic light-emitting layer It can be composed of the triazine-containing compound provided by this application, or it can be composed of the triazine-containing compound provided by this application and other materials.
  • the organic electroluminescent device is as shown in Figure 1.
  • the organic electroluminescent device may include an anode 100, a hole injection layer 310, a first hole transport layer 321, a first hole transport layer 321, and a first hole injection layer 310, which are stacked in sequence.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO) ; combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy) Thiophene] (PEDT), polypyrrole and polyaniline, but are not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is included.
  • the hole transport layer may include one or more hole transport materials.
  • the hole transport layer material may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. Specifically, it may be selected From the compounds shown below or any combination thereof:
  • the first hole transport layer 321 may be composed of ⁇ -NPD.
  • second hole transport layer 322 is composed of HT-2.
  • a hole injection layer 310 is further provided between the anode 100 and the first hole transport layer 321 to enhance the ability to inject holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the material of the hole injection layer 310 is, for example, selected from the following compounds or any combination thereof:
  • hole injection layer 310 is composed of PD and ⁇ -NPD.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to The host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic light-emitting layer 330 may include metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials.
  • the host material includes the triazine-containing compound of the present application.
  • the host material of the organic light-emitting layer 330 includes at least one of the above-mentioned compounds 1 to 324 of the present application.
  • the host material also contains RH-P.
  • the guest material of the organic light-emitting layer 330 can be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative or other materials, which is not specified in this application. limit. Guest materials are also called doping materials or dopants. According to the type of luminescence, it can be divided into fluorescent dopants and phosphorescent dopants. Specific examples of the phosphorescent dopant include, but are not limited to:
  • the organic electroluminescent device is a red organic electroluminescent device.
  • the host material of the organic light-emitting layer 330 includes the triazine-containing compound of the present application.
  • the guest material is, for example, RD-1.
  • the organic electroluminescent device is a green organic electroluminescent device.
  • the host material of the organic light-emitting layer 330 includes the triazine-containing compound of the present application.
  • the guest material may be fac-Ir(ppy) 3 , for example.
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the electron transport materials may be selected from, but are not limited to, BTB, LiQ, benzimidazole derivatives, Oxidazole derivatives, quinoxaline derivatives or other electron transport materials are not specifically limited in this application.
  • the materials of the electron transport layer 340 include but are not limited to the following compounds:
  • the electron transport layer 340 may be composed of ET-1 and LiQ, or composed of ET-2 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode containing magnesium and silver is included as the cathode.
  • an electron injection layer 350 is also provided between the cathode 200 and the electron transport layer 340 to enhance the ability of injecting electrons into the electron transport layer 340.
  • the electron injection layer 350 may include an inorganic material such as an alkali metal sulfide or an alkali metal halide, or may include a complex of an alkali metal and an organic substance.
  • the electron injection layer 350 may include ytterbium (Yb).
  • a third aspect of the present application provides an electronic device, including the organic electroluminescent device described in the second aspect of the present application.
  • the electronic device provided is an electronic device 400 , which includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • the nitrogen-containing compounds of the present application can be prepared by the methods described in the present application. Unless there is further explanation, the meaning of the substituent symbols in this application is the same as that of the substituent symbols in Chemical Formula I. Those skilled in the art will recognize that the chemical reactions described herein can be suitably used to prepare many other triazine-containing compounds of the present application, and other methods for preparing the triazine-containing compounds of the present application are contemplated. within the scope of the invention.
  • those skilled in the art can synthesize other triazine-containing compounds of this application by referring to or appropriately modifying the preparation methods provided in this application. For example, they can use appropriate protecting groups and other methods other than those described in this application. Known reagents, modified reaction conditions, etc.
  • temperatures are in degrees Celsius unless otherwise stated.
  • Some reagents were purchased from commercial suppliers such as Aldrich Chemical Company, Arco Chemical Company and Alfa Chemical Company, etc. Unless otherwise stated, these reagents were used without further purification.
  • Some conventional reagents were purchased from Shantou Xilong Chemical Factory, Guangdong Guanghua Chemical Reagent Factory, Guangzhou Chemical Reagent Factory, Tianjin Haoyuyu Chemical Co., Ltd., Tianjin Fuchen Chemical Reagent Factory, Wuhan Xinhuayuan Technology Development Co., Ltd., Qingdao Tenglong Chemical Reagent Co., Ltd. and Qingdao Marine Chemical Plant.
  • toluene is obtained by reflux drying with metallic sodium.
  • n-hexane is dried with anhydrous sodium sulfate before use.
  • the following reactions are generally carried out under positive pressure of nitrogen or argon, or a drying tube is placed on an anhydrous solvent; the reaction bottles are plugged with appropriate rubber stoppers, and the substrate is injected into the reaction bottle through a syringe. Glassware is dried.
  • 1 H NMR spectra were recorded using a Bruker 400MHz or 600MHz nuclear magnetic resonance spectrometer.
  • 1 H NMR spectrum uses CDCl 3 , CD 2 Cl 2 , D 2 O, DMSO-d 6 , CD 3 OD or acetone-d 6 as solvent (in ppm), and uses TMS (0ppm) or chloroform (7.26ppm) as a reference standard.
  • the measurement conditions for low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column model: Zorbax SB-C18, 2.1 ⁇ 30mm, 3.5 micron, 6min, flow rate 0.6mL/min.
  • Mobile phase 5 %-95% (acetonitrile containing 0.1% formic acid) in (H 2 O containing 0.1% formic acid), using electrospray ionization (ESI) at 210nm/254nm, with UV detection.
  • ESI electrospray ionization
  • RM-1 CAS: 1427675-68-0, 13.41g, 50mmol
  • 1-iodo-3-bromonaphthalene 16.64g, 50mmol
  • tetrakis(triphenyl) in sequence to a 500mL three-necked flask.
  • Phosphine) palladium (0.58g, 0.5mmol
  • tetrabutylammonium bromide (1.61g, 5mmol
  • anhydrous sodium carbonate (10.6g, 100mmol
  • toluene 140mL
  • absolute ethanol 35mL
  • deionized water 35 mL
  • RM-2 (CAS: 221683-78-9, 26.17g, 60mmol), phenylboronic acid (6.10g, 50mmol), and tetrakis(triphenylphosphine)palladium (0.58g) to a 500mL three-necked flask in sequence.
  • 0.5mmol tetrabutylammonium bromide (1.61g, 5mmol)
  • anhydrous sodium carbonate (10.6g, 100mmol
  • toluene 140mL
  • deionized water 35mL
  • the reactant D shown in Table 4 was used instead of phenylboronic acid to synthesize Sub-c6 and Sub-c7.
  • the reactant E shown in Table 5 was used instead of Sub-c1 to synthesize Sub-d2 to Sub-d9.
  • RM-3 (CAS: 2173555-96-7, 18.69g, 50mmol), 3-chlorophenylboronic acid (8.60g, 55mmol), tetrakis (triphenylphosphine) palladium ( 0.58g, 0.5mmol), tetrabutylammonium bromide (1.61g, 5mmol), anhydrous potassium carbonate (13.82g, 100mmol), toluene (180mL), tetrahydrofuran (45mL) and deionized water (45mL), start stirring And heating, the temperature was raised to reflux for 16 hours. After the system was cooled to room temperature, it was extracted with dichloromethane (100 mL ⁇ 3 times).
  • the organic phase was dried over anhydrous magnesium sulfate, filtered, and the solvent was evaporated under reduced pressure to obtain a crude product.
  • the crude product was purified by silica gel column chromatography using dichloromethane/n-heptane as the mobile phase to obtain a white solid (17.77g, yield 79%).
  • the reactant H shown in Table 7 was used to replace RM-3, and the reactant J was used to replace 3-chlorophenylboronic acid to synthesize Sub-f2 to Sub-f20.
  • An embodiment of the present invention also provides an organic electroluminescent device, including an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer includes the above-mentioned organic compound of the present invention.
  • Example 1 Red organic electroluminescent device
  • UV ozone and O 2 :N 2 plasma are used for surface treatment to increase the work function of the anode.
  • Organic solvents can also be used to clean the surface of the ITO substrate to remove impurities and oil stains on the surface of the ITO substrate.
  • PD: ⁇ -NPD was co-evaporated at a evaporation rate ratio of 2%:98% to form a thickness of hole injection layer (HIL), and then vacuum evaporate ⁇ -NPD on the hole injection layer to form a thickness of the first hole transport layer.
  • HIL hole injection layer
  • Compound HT-2 is vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • compound 1:RH-P:RD-1 was co-evaporated at a evaporation rate ratio of 49%:49%:2% to form a layer with a thickness of red light emitting layer (EML).
  • EML red light emitting layer
  • compound ET-1 and LiQ are mixed at a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), Yb is evaporated on the electron transport layer to form a thickness of
  • ETL Thick electron transport layer
  • Yb is evaporated on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • the vacuum evaporation thickness on the above cathode is The CP-1 forms the capping layer (CPL), thereby completing the fabrication of red organic electroluminescent devices.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the light-emitting layer, Compound 3 to Compound 311 in Table 10 below were used instead of Compound 1 in Example 1.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the light-emitting layer, Compound A, Compound B, Compound C, and Compound D were used instead of Compound 1 in Example 1.
  • the red organic electroluminescent devices prepared in Examples 1-58 and Comparative Examples 1-4 were tested for performance. Specifically, the IVL performance of the device was tested under the condition of 10mA/ cm2 . The T95 device life was at 20mA/ cm2 . The test was carried out under the conditions, and the test results are shown in Table 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本申请属于有机电致发光技术领域,涉及一种含三嗪化合物及使用其的有机电致发光器件和电子装置,该含三嗪化合物具有如式I所示的结构,将该含三嗪化合物用于有机电致发光器件中,能够改善有机电致发光器件的性能。

Description

含三嗪化合物、有机电致发光器件和电子装置
相关申请的交叉引用
本申请要求于2022年9月7日递交的申请号为CN202211089391.X的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光材料技术领域,尤其涉及一种含三嗪化合物、有机电致发光器件和电子装置。
背景技术
有机电致发光器件,例如有机发光二极管(OLED),通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括有机发光层、空穴传输层、电子传输层等。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
现有的有机电致发光器件中,最主要的问题为寿命和效率,随着显示器的大面积化,驱动电压也随之提高,发光效率及电流效率也需要提高,因此,有必要继续研发新型的材料,以进一步提高有机电致发光器件的性能。
发明内容
本申请的目的在于提供一种含三嗪化合物、有机电致发光器件和电子装置,以改善有机电致发光器件的性能。
为实现上述发明目的,本申请采用如下技术方案:
根据本申请的第一个方面,提供一种含三嗪化合物,具有式I所示的结构:
式I中,
L1、L2和L3相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基所组成的组;
Ar1和Ar2相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、基团A所组成的组,且Ar1和Ar2中至少有一个选自基团A;
各R4独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~10的环烷基所组成的组;
n4选自0、1、2、3、4、5、6、7、8、9、10、11、12或13;
所述基团A具有式II所示结构:
X选自O、S、N、N(Ar)、C(R)或C(R2R3);
Ar选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基所组成的组;
R、R2和R3相同或不同,且各自独立地选自碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基或碳原子数为3~30的杂芳基,或者R2和R3与它们连接的碳原子一起构成饱和或不饱和的3~15元环;
各R1独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~10的环烷基;
n1选自0、1、2、3、4、5、6、7或8;
L1、L2、L3、Ar、Ar1、Ar2、R1和R4中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基或碳原子数为3~10的环烷基;任选地,任意两个相邻的取代基可以形成饱和或不饱和的3~15元环。
本申请提供的含三嗪化合物以[5]螺烯为母核,连接二苯并五元环取代的三嗪,[5]螺烯和二苯并五元环均具有较大的共轭平面和刚性,三嗪具有优异的电子传输性能;将[5]螺烯和二苯并五元环取代的三嗪连接后,一方面二苯并五元环取代的三嗪具有较好的电子传输特性,与刚性的[5]螺烯相结合,可进一步提高材料的电子迁移率;另一方面,[5]螺烯末端的第1和第5两个苯环由于氢原子的位阻效应,处于不同平面,进而在分子内形成具有多个不同夹角的空间平面,可有效抑制分子之间的堆积,改善材料的成膜性。将本申请含三嗪化合物作为发光层主体材料时,可以改善发光层中载流子的平衡,提高载流子利用率,拓宽载流子的复合区域,进而显著提高器件的效率和寿命。
根据本申请的第二个方面,提供一种有机电致发光器件,有机电致发光器件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含三嗪化合物。
根据本申请的第三个方面,提供一种电子装置,所述电子装置包括有上述的有机电致发光器件。
附图说明
图1是本申请一种实施方式的有机电致发光器件的结构示意图,其中100表示阳极、200表示阴极、300表示功能层、310表示空穴注入层、321表示第一空穴传输层、322表示第二空穴传输层、330表示有机发光层、340表示电子传输层、350表示电子注入层。
图2是本申请一种具体实施方式的电子装置的结构示意图,其中400表示电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
第一方面,本申请提供一种含三嗪化合物,具有式I所示的结构:
式I中,
L1、L2和L3相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基所组成的组;
Ar1和Ar2相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、基团A所组成的组,且Ar1和Ar2中至少有一个选自基团A;
各R4独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~10的环烷基所组成的组;
本申请中,n4是指取代基R4的数量,n4选自0、1、2、3、4、5、6、7、8、9、10、11、12或13;当n4大于1时,各取代基R4相同或不同;
所述基团A具有式II所示结构:
X选自O、S、N、N(Ar)、C(R)或C(R2R3);
Ar选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基所组成的组;
R、R2和R3相同或不同,且各自独立地选自碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基或碳原子数为3~30的杂芳基,或者R2和R3与它们连接的碳原子一起构成饱和或不饱和的3~15元环;
各R1独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~10的环烷基;
本申请中,n1是指取代基R1的数量,n1选自0、1、2、3、4、5、6、7或8;当n1大于1时,各取代基R1相同或不同;
L1、L2、L3、Ar、Ar1、Ar2、R1和R4中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基或碳原子数为3~10的环烷基;任选地,任意两个相邻的取代基可以形成饱和或不饱和的3~15元环。
举例而言,本申请中,“R2和R3与它们连接的碳原子一起构成饱和或不饱和的3~15元环”的意思是R2和R3可以相互连接形成一个环,二者也可以相互独立存在;当它们形成环时,该环可以是5元环, 如也可以是6元环如还可以是13元环如其他成环类型此处不再一一列举。
本申请提供的含三嗪化合物以[5]螺烯为母核,连接二苯并五元环取代的三嗪,[5]螺烯和二苯并五元环均具有较大的共轭平面和刚性,三嗪具有优异的电子传输性能;将[5]螺烯和二苯并五元环取代的三嗪连接后,一方面二苯并五元环取代的三嗪具有较好的电子传输特性,与刚性的[5]螺烯相结合,可进一步提高材料的电子迁移率;另一方面,[5]螺烯末端的第1和第5两个苯环由于氢原子的位阻效应,处于不同平面,进而在分子内形成具有多个不同夹角的空间平面,可有效抑制分子之间的堆积,改善材料的成膜性。将本申请含三嗪化合物作为混合型主体材料中的电子传输型主体材料时,可以改善发光层中载流子的平衡,提高载流子利用率,拓宽载流子的复合区域,进而显著提高器件的效率和寿命。
本申请中,所采用的描述方式“各……独立地选自”与“……分别独立地选自”和“……各自独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。举例来讲,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、杂芳基、芳基、三烷基硅基、三苯基硅基、烷基、卤代烷基、环烷基、氘代苯基等。取代的个数可以是1个或多个。
本申请中,“多个”是指2个以上,例如2个、3个、4个、5个、6个、7个、8个、9个、10个或更多个。
本申请中,取代或未取代的官能团的碳原子数,指的是该官能团及其上的全部取代基的所有碳原子数之和。
本申请中,L1、L2、L3、R、R1、R2、R3、R4、Ar1和Ar2中的碳原子数,指的是该基团中的所有碳原子数。举例而言,若Ar1选自取代的碳原子数为10的芳基,则芳基及其上的取代基的所有碳原子数为10。再举例而言,若Ar1为9,9-二甲基芴基,则Ar1为取代的碳原子数为15的芴基,Ar1的成环碳原子数为13。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、N、O、S、Si、Se或P等杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。
本申请中的“环”包含饱和环、不饱和环;饱和环即饱和脂肪族环,不饱和环,即部分不饱和环,如环己烯或芳香环,如芳环和杂芳环。
在本申请中,n个原子形成的环体系,即为n元环。例如,苯基为6元环。饱和或不饱和的3~15元环就是指具有3~15个环原子的环状基团。3~15元环例如为环戊烷、环己烷、芴环、苯环等。
本申请化合物结构中的氢原子,包括氢元素的各种同位素原子,例如氢(H)、氘(D)或氚(T)。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例包括但不限于,苯基、萘基、芴基、螺二芴基、蒽基、菲基、联苯基、三联苯基、三亚苯基、苝基、苯并[9,10]菲基、芘基、苯并荧蒽基、基等。
本申请中,涉及的亚芳基是指芳基进一步失去一个或多个氢原子所形成的二价基团。
本申请中,三联苯基包括
本申请中,取代或未取代的芳基(亚芳基)的碳原子数可以为6、8、10、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30。在一些实施方式中,取代或未取代的芳基是碳原子数为6~30的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~25的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~18的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~15的取代或未取代的芳基。
本申请中,芴基可以被1个或多个取代基取代,在上述芴基被取代的情况下,取代的芴基可以为:但并不限定于此。
在本申请中,杂芳基是指环中包含1、2、3、4、5或6个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的一种或多种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个或多个氢原子所形成的二价或多价基团。
本申请中,取代或未取代的杂芳基(亚杂芳基)的碳原子数可以选自3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、20、21、22、23、24、25、26、27、28、29或30。在一些实施方式中,取代或未取代的杂芳基是总碳原子数为3~30的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是总碳原子数为5~18的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是总碳原子数为5~12的取代或未取代的杂芳基。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10个,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
本申请中,卤代烷基的具体实例包括但不限于,三氟甲基。
本申请中,碳原子数为3~10的环烷基的碳原子数例如可以为3、4、5、6、7、8或10。环烷基的 具体实例包括但不限于,环戊基、环己基、金刚烷基。
本申请中,碳原子数为1~10的氘代烷基的碳原子数例如为1、2、3、4、5、6、7、8或10。氘代烷基的具体实例包括但不限于,三氘代甲基。
本申请中,碳原子数为1~10的卤代烷基的碳原子数例如为1、2、3、4、5、6、7、8或10。卤代烷基的具体实例包括但不限于,三氟甲基。
在本申请中,是指与其他基团相互连接的化学键。
本申请中,不定位连接键涉及的从环体系中伸出的单键其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式:
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式:
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式:
可选地,所述含三嗪化合物选自式I-1至式I-7所示结构:
其中,式I-1至式I-7所示结构中,R4、L1、L2、L3、Ar1、Ar2、n4的限定同式I。
在一些实施方式中,所述基团A选自式II-1至式II-2所示结构组成的组:
其中,式II-1中,X1选自O、S、N(Ar)或C(R2R3),n1为0、1、2、3、4、5、6或7,Ar、R1、R2和R3的限定同式II;
式II-2中,X2选自N或C(R),n1为0、1、2、3、4、5、6、7或8,R和R1的限定同式II。
可选地,所述基团A选自式II-3至式II-5所示结构组成的组:
式II-3中,X1选自O、S、N(Ar)或C(R2R3),n1为0、1、2或3,Ar、R1、R2和R3的限定同式II;
式II-4中,X2选自O、S、N(Ar)或C(R2R3),n1为0、1、2、3、4、5或6,Ar、R、R1、R2和R3的限定同式II;
式II-5中,X2选自N或C(R),n1为0、1、2、3、4、5、6、7或8,R和R1的限定同式II。
在一些实施方式中,所述基团A选自如下基团组成的组:
可选地,Ar选自碳原子数为6~18的芳基、碳原子数为6~12的氘代芳基或碳原子数为5~12的杂芳基;
R、R2和R3相同或不同,且各自独立地选自碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为6~12的芳基、碳原子数为6~12的氘代芳基或碳原子数为5~12的杂芳基,或者R2和R3与它们共同连接的碳原子一起构成芴环。
可选地,各R1独立地选自氘、氰基、卤素基团、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、三苯基硅基、碳原子数为6~18的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基;
n1选自0、1、2、3、4、5、6、7或8。
可选地,R1中的取代基各自独立地选自氘、氰基、卤素基团、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、三苯基硅基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基。
在一些实施方式中,所述基团A选自如下式A1至式A9表示的基团组成的组:

上述式A1至式A9中,R1、n1的限定同式I。
可选地,上述式A1至式A9中,各R1独立地选自氘、氰基、氟、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、碳原子数为6~18的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基。
可选地,所述R1中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3-8的三烷基硅基、碳原子数为1-4的氟代烷基、碳原子数为6-12的芳基或碳原子数为5-12的杂芳基。
在一些实施方式中,各R1和R4独立地选自碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的芳基,碳原子数为3、4、5、6、7、8、9、10、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的杂芳基。
可选地,各R1和R4中的取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基、三氘代甲基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基。
在一些实施方式中,各R1和R4独立地选自氘、氰基、氟、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、碳原子数为6~18的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基。
在一些实施方式中,R1和R4各自独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的芘基、取代或未取代的三亚苯基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基。
可选地,R1和R4中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、环戊基、环己基、苯基、萘基、联苯基、吡啶基、二苯并呋喃基、二苯并噻吩基或三甲基硅基。
优选地,R1和R4各自独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基或如下基团组成的组:

在一些实施方式中,各R4独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基或以下基团:
在一些实施方式中,各R1独立地选自氘、氟、氰基、三甲基硅基、三氘代甲基、三氟甲基、甲基、乙基、异丙基、叔丁基或以下基团:
在一些实施方式中,R、R2和R3各自独立地选自碳原子数为1~6的烷基、碳原子数为1~6的卤代烷基、碳原子数为1~6的氘代烷基、碳原子数为6~16的芳基、碳原子数为6~16的氘代芳基或碳原子数为3~15的杂芳基。
可选地,Ar选自碳原子数为6~16的芳基、碳原子数为6~16的氘代芳基或碳原子数为3~15的杂芳基。
可选地,R、R2和R3各自独立地选自甲基、乙基、异丙基、叔丁基、苯基、联苯基、萘基、氘代苯基、氘代萘基或氘代联苯基。
可选地Ar选自苯基、联苯基、萘基、氘代苯基、氘代萘基或氘代联苯基。
在一些实施方式中,基团A选自以下基团构成的组:
在一些实施方式中,L1、L2和L3各自独立地选自单键,碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的亚芳基,碳原子数为3、4、5、6、7、8、9、10、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的亚杂芳基。
在一些实施方式中,L1、L2和L3相同或不同,且各自独立地选自单键、碳原子数为6~18的取代 或未取代的亚芳基、碳原子数为3~18的取代或未取代的亚杂芳基。
可选地,L1、L2和L3中的取代基相同或不同,且各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为3-8的三烷基硅基、碳原子数为1-4的氟代烷基、碳原子数为6-12的芳基或碳原子数为5-12的杂芳基。
在一些实施方式中,L1、L2和L3选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚咔唑基所组成的组,或者为上述亚基中两者或三者通过单键连接所形成的亚基基团,例如亚苯基和亚萘基通过单键连接所形成的亚基基团,再如亚苯基和亚联苯基通过单键连接所形成的亚基基团。
可选地,L1、L2和L3中的取代基相同或不同,且各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基或吡啶基。
在一些实施方式中,L1、L2和L3相同或不同,且各自独立地选自单键或者取代或未取代的基团Q,所述未取代的基团Q选自如下基团组成的组:
上述取代的基团Q中的取代基相同或不同,且各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基或吡啶基。
在一些实施方式中,L1选自单键或以下基团:
在一些实施方式中,L2和L3各自独立地选自单键或以下基团:

在一些实施方式中,所述Ar1和Ar2中的一者为基团A,另一者选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的芳基,碳原子数为3、4、5、6、7、8、9、10、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的杂芳基或者基团A所组成的组。
在一些实施方式中,所述Ar1和Ar2中的一者为基团A,另一者选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基和基团A所组成的组。
进一步可选地,所述Ar1为基团A,Ar2选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基和基团A所组成的组。
进一步可选地,所述Ar1和Ar2都是基团A。
可选地,Ar1和Ar2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3-8的三烷基硅基、碳原子数为1-4的氟代烷基、碳原子数为6-12的芳基或碳原子数为5-12的杂芳基。
在一些实施方式中,Ar1为基团A,Ar2选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的芳基,碳原子数为3、4、5、6、7、8、9、10、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的杂芳基。
在一些实施方式中,Ar1为基团A,Ar2选自取代或未取代的基团T,未取代的基团T选自如下基团组成的组:
取代的基团T中具有一个或两个以上取代基,各取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基,且当基团W中的取代基个数大于1时,各取代基相同或不同。
可选地,Ar2选自如下基团组成的组:

可选地,选自如下基团组成的组:
可选地,选自以下基团组成的组:

进一步可选地,选自如下基团组成的组:
可选地,所述含三嗪化合物选自如下化合物所组成的组:








本申请第二方面提供一种有机电致发光器件,有机电致发光器件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含三嗪化合物,以改善有机电致发光器件的电压特性、效率特性和寿命特性。
可选地,本申请所提供的含三嗪化合物可以用于形成功能层中的至少一个有机膜层。
可选地,所述功能层包括有机发光层,所述有机发光层包括所述含三嗪化合物。其中,有机发光层 既可以由本申请所提供的含三嗪化合物组成,也可以由本申请所提供的含三嗪化合物和其他材料共同组成。
按照一种具体的实施方式,所述有机电致发光器件如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、空穴注入层310、第一空穴传输层321、第二空穴传输层(也称空穴辅助层)322、有机发光层330、电子传输层340、电子注入层350和阴极200。
本申请中,阳极100包括阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料的具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
本申请中,空穴传输层可以包括一种或者多种空穴传输材料,空穴传输层材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,具体可以选自如下所示的化合物或者其任意组合:
在一种实施方式中,第一空穴传输层321可由α-NPD组成。
在一种实施方式中,第二空穴传输层322由HT-2组成。
可选地,在阳极100和第一空穴传输层321之间还设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。所述空穴注入层310的材料例如选自如下化合物或者其任意组合:

在一种实施方式中,空穴注入层310由PD和α-NPD组成。
本申请中,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以包含金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料。可选地,所述主体材料包含本申请的含三嗪化合物,进一步可选地,所述有机发光层330的主体材料包含本申请上述化合物1~化合物324中的至少一种。可选地,所述主体材料还包含RH-P。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。客体材料又称为掺杂材料或掺杂剂。按发光类型可以分为荧光掺杂剂和磷光掺杂剂。所述磷光掺杂剂的具体实例包括但不限于:

在本申请的一种实施方式中,所述有机电致发光器件为红色有机电致发光器件。在一种更具体的实施方式中,有机发光层330的主体材料包含本申请的含三嗪化合物。客体材料例如为RD-1。
在本申请的一种实施方式中,所述有机电致发光器件为绿色有机电致发光器件。在一种更具体的实施方式中,有机发光层330的主体材料包含本申请的含三嗪化合物。客体材料例如可以为fac-Ir(ppy)3
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,BTB、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对比不作特殊限定。所述电子传输层340的材料包含但不限于以下化合物:
在本申请的一种实施方式中,电子传输层340可以由ET-1和LiQ组成,或者由ET-2和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。可选地,包括包含镁和银的金属电极作为阴极。
可选地,在阴极200和电子传输层340之间还设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层350可以包括镱(Yb)。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的有机电致发光器件。
按照一种实施方式,如图2所示,所提供的电子装置为电子装置400,其包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
合成例
下面的合成例和实施例用于进一步举例说明和解释本申请的内容。
一般地,本申请的含氮化合物可以通过本申请所描述的方法制备得到。除非有进一步的说明,本申请中取代基符号的含义与化学式I中的取代基符号的含义相同。所属领域的专业人员将认识到:本申请所描述的化学反应可以用来合适地制备许多本申请的其他含三嗪化合物,且用于制备本申请的含三嗪化合物的其它方法都被认为是在本发明的范围之内。
举例而言,本领域技术人员可以通过参考或适当地修改本申请提供的制备方法而合成出本申请的其他含三嗪化合物,例如可以借助适当的保护基团、利用本申请描述之外的其他已知试剂、修改反应条件等。
下面所描述的合成例中,除非另有声明,否则温度均为摄氏度。部分试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company and Alfa Chemical Company等,除非另有声明,这些试剂使用时都没有经过进一步纯化。部分常规试剂购买自汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂。其中,甲苯是经过金属钠回流干燥得到。正己烷是经无水硫酸钠事先干燥使用。
除非另有声明,以下反应一般是在氮气或氩气正压下进行的,或者在无水溶剂上套一干燥管;反应瓶都塞上合适的橡皮塞,底物通过注射器注入反应瓶中。玻璃器皿都是干燥过的。
1H NMR谱使用Bruker 400MHz或600MHz核磁共振谱仪记录。1H NMR谱以CDCl3、CD2Cl2、D2O、DMSO-d6、CD3OD或丙酮-d6为溶剂(以ppm为单位),用TMS(0ppm)或氯仿(7.26ppm)作为参照标准。当出现多重峰的时候,将使用下面的缩写:s(singlet,单峰)、d(doublet,双峰)、t(triplet,三重峰)、m(multiplet,多重峰)、br(broadened,宽峰)、dd(doublet of doublets,双二重峰)、ddd(doublet of doublet of doublets,双重双二重峰)、dddd(doublet of doublet of doublet of doublets,双双双二重峰)、dt(doublet of triplets,双三重峰)、tt(triplet of triplets,三三重峰)。偶合常数J,用赫兹(Hz)表示。低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲酸的乙腈)在(含0.1%甲酸的H2O)中的比例),采用电喷雾电离(ESI),210nm/254nm下,用UV检测。
Sub-a1的合成:
氮气氛围下,向500mL三口瓶中,依次加入RM-1(CAS:1427675-68-0,13.41g,50mmol),1-碘-3-溴萘(16.64g,50mmol),四(三苯基膦)钯(0.58g,0.5mmol),四丁基溴化铵(1.61g,5mmol),无水碳酸钠(10.6g,100mmol),甲苯(140mL),无水乙醇(35mL)和去离子水(35mL),开启搅拌和加热,升温至回流反应16h。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(13.31g,收率62%)。
参照Sub-a1的合成,使用表1中所示的反应物A替代1-碘-3-溴萘,合成Sub-a2至Sub-a4。
表1:Sub-a2至Sub-a4的合成

Sub-b1的合成:
氮气氛围下,向500mL三口瓶中依次加入Sub-a1(21.47g,50mmol),四丁基氟化铵(1.0M四氢呋喃溶液,150mL)和去离子水(150mL),室温搅拌反应2小时;二氯甲烷萃取(50mL×3次),合并有机相并用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(15.72g;收率88%)。
参照Sub-b1的合成,使用表2中所示的反应物B替代Sub-a1,合成Sub-b2至Sub-b4。
表2:Sub-b2至Sub-b4的合成
Sub-c1的合成:
氮气氛围下,向500mL三口瓶中依次加入Sub-b1(17.86g,50mmol),二氯化铂(0.916g,0.66g,2.5mmol)和甲苯(180mL),升温至回流,搅拌反应24小时;待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(13.93g;收率78%)。
参照Sub-c1使用表3中所示的反应物C替代Sub-b1,合成Sub-c2至Sub-c4。
表3:Sub-c2至Sub-c4的合成
Sub-c5的合成:
氮气氛围下,向500mL三口瓶中,依次加入RM-2(CAS:221683-78-9,26.17g,60mmol),苯硼酸(6.10g,50mmol),四(三苯基膦)钯(0.58g,0.5mmol),四丁基溴化铵(1.61g,5mmol),无水碳酸钠(10.6g,100mmol),甲苯(140mL)和去离子水(35mL),开启搅拌和加热,升温至回流反应16h。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(11.70g,收率54%)。
参照Sub-c5使用表4中所示的反应物D替代苯硼酸,合成Sub-c6和Sub-c7。
表4:Sub-c6和Sub-c7的合成

Sub-d1的合成:
氮气氛围下,向500mL三口瓶中加入Sub-c1(25.0g,70mmol)和四氢呋喃(干燥,250mL);将体系降温至-78℃,滴加正丁基锂溶液(2.0M正己烷溶液,38.5mL,77mmol),滴加完毕后保温(-78℃)搅拌1小时;保持-78℃,滴加硼酸三甲酯(10.91g,105mmol),滴加完毕后继续保温(-78℃)1小时,然后让体系自然升温至室温;向反应液中滴加稀盐酸(2M,58mL),搅拌30分钟;二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品;粗品用正庚烷打浆,过滤得到白色固体产物Sub-d1(13.98g,收率62%)。
参照Sub-d1使用表5中所示的反应物E替代Sub-c1,合成Sub-d2至Sub-d9。
表5:Sub-d2至Sub-d9的合成

Sub-e1的合成:
氮气氛围下,向500mL三口瓶中依次加入2-(1,1’-苯基-2基)-4,6-二氯-1,3,5-三嗪(22.66g,75mmol),N-苯基-3-咔唑硼酸(14.35g,50mmol),四(三苯基膦)钯(0.58g,0.5mmol),四丁基溴化铵(1.61g,5mmol),无水碳酸钾(13.82g,100mmol),甲苯(220mL)和去离子水(55mL),开启搅拌和加热,升温至65℃-70℃反应16小时。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),有机相用无水硫酸镁干燥后,过滤后减压蒸馏除去溶剂,得粗品。粗品用甲苯重结晶后得到白色固体Sub-e1(14.25g,收率56%)。
参照Sub-e1使用表6中所示的反应物F替代2-(1,1’-苯基-2基)-4,6-二氯-1,3,5-三嗪,反应物G替代N-苯基-3-咔唑硼酸,合成Sub-e2至Sub-e19。
表6:Sub-e2至Sub-e19的合成


Sub-f1的合成:
氮气氛围下,向500mL三口瓶中依次加入RM-3(CAS:2173555-96-7,18.69g,50mmol),3-氯苯硼酸(8.60g,55mmol),四(三苯基膦)钯(0.58g,0.5mmol),四丁基溴化铵(1.61g,5mmol),无水碳酸钾(13.82g,100mmol),甲苯(180mL),四氢呋喃(45mL)和去离子水(45mL),开启搅拌和加热,升温至回流反应16小时。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),有机相用无水硫酸镁干燥后,过滤后减压蒸馏除去溶剂,得粗品。用二氯甲烷/正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(17.77g,收率79%)。
参照Sub-f1使用表7中所示的反应物H替代RM-3,反应物J替代3-氯苯硼酸,合成Sub-f2至Sub-f20。
表7:Sub-f2至Sub-f20的合成


化合物1的合成:
氮气氛围下,向500mL三口瓶中依次加入Sub-d5(17.72g,55mmol),RM-4(CAS:2142681-84-1,17.89g,50mmol),四(三苯基膦)钯(0.58g,0.5mmol),四丁基溴化铵(1.61g,5mmol),无水碳酸钾(13.82g,100mmol),甲苯(180mL),四氢呋喃(45mL)和去离子水(45mL),开启搅拌和加热,升温至回流反应16小时。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),有机相用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用二氯甲烷/正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(24.58g,收率82%,m/z=600.2[M+H]+)。
参照化合物1的合成,使用表8中所示的反应物K替代Sub-d5,反应物L替代RM-4,合成表8中的本申请化合物。
表8:本申请化合物的合成





部分化合物的核磁数据如下:
化合物116的合成:
氮气氛围下,向500mL三口瓶中依次加入Sub-f1(22.49g,50mmol),Sub-d1(17.72g,55mmol),醋酸钯(0.12,0.5mmol),(2-二环己基膦-2',4',6'三异丙基联苯)(XPhos,0.47g,1.0mmol),无水碳酸钾(13.82g,100mmol),四氢呋喃(220mL)和去离子水(55mL),开启搅拌和加热,升温至回流反应16小时。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),有机相用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用二氯甲烷/正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(25.94g,收率75%,m/z=692.2[M+H]+)。
参照化合物116的合成,使用表9中所示的反应物M替代Sub-f1,反应物N替代Sub-d1,合成表9中的本申请化合物。
表9:本申请化合物的合成



化合物188核磁数据如下:
1H-NMR(400MHz,Methylene-Chloride-D2)δppm 8.91(s 1H),8.85(d,2H),8.64(d,1H),8.39(d,1H),8.35(d,1H),8.25(d,1H),8.07(d,1H),7.98(d,1H),7.95-7.55(m,18H),7.52-7.44(m,2H),7.38-7.33(m,2H)。
化合物274的合成:
氮气氛围下,向100mL三口瓶加入化合物188(18.15g,25mmol)和200mL苯-D6,升温至60℃后向其中添加三氟甲磺酸(22.51g,150mmol),继续升温至沸腾搅拌反应24小时。待反应体系冷却至室温后,向其中添加50mL重水,搅拌10分钟后加入饱和K3PO4水溶液中和反应液。用二氯甲烷萃取有机层(50mL×3次),合并有机相用无水硫酸钠干燥,过滤后减压蒸馏除去溶剂,得粗品。使用正庚烷/二氯甲烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体(12.68g,收率67%,m/z=757.4[M+H]+)。
器件实施例
本发明实施方式还提供了一种有机电致发光器件,包括阳极、阴极以及介于阳极和阴极之间的有机层,有机层包括本发明的上述有机化合物。下面,通过实施例对本发明的有机电致发光器件进行详细说明。但是,下述实施例仅是本发明的示例,而非限定本发明。
实施例1:红色有机电致发光器件
先通过以下过程进行阳极预处理:在厚度依次为的ITO/Ag/ITO基板上,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,也可采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的杂质及油污。
在实验基板(阳极)上,将PD:α-NPD以2%:98%的蒸镀速率比例进行共同蒸镀,形成厚度为 的空穴注入层(HIL),然后在空穴注入层上真空蒸镀α-NPD,形成厚度为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物HT-2,形成厚度为的第二空穴传输层。
接着,在第二空穴传输层上,将化合物1:RH-P:RD-1以49%:49%:2%的蒸镀速率比例进行共同蒸镀,形成厚度为的红光发光层(EML)。
在发光层上,将化合物ET-1和LiQ以1:1的重量比进行混合并蒸镀形成厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上真空蒸镀厚度为的CP-1形成覆盖层(CPL),从而完成红色有机电致发光器件的制造。
实施例2~58
利用与实施例1相同的方法制备有机电致发光器件,不同之处仅在于在制作发光层时,以下表10中的化合物3~化合物311代替实施例1中的化合物1。
比较例1~4
利用与实施例1相同的方法制备有机电致发光器件,不同之处仅在于在制作发光层时,分别以化合物A、化合物B、化合物C、化合物D代替实施例1中的化合物1。
其中,在制备各实施例及比较例时,所用的化合物结构如下:
对实施例1-58和比较例1-4制备所得的红色有机电致发光器件进行性能测试,具体在10mA/cm2的条件下测试了器件的IVL性能,T95器件寿命在20mA/cm2的条件下进行测试,测试结果见表10。
表10


参考上表10可知,通过比较各实施例1~58与比较例1~4制备的有机电致发光器件的性能,将本发明含三嗪化合物用做红色有机电致发光器件的主体材料时,有机电致发光器件的发光效率至少提高14.3%,寿命至少提高了12.8%。
以上结合附图详细描述了本发明的优选方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (15)

  1. 一种含三嗪化合物,具有式I所示的结构:
    式I中,
    L1、L2和L3相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基所组成的组;
    Ar1和Ar2相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基和基团A所组成的组,且Ar1和Ar2中至少有一个选自基团A;
    各R4独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基和碳原子数为3~10的环烷基所组成的组;
    n4选自0、1、2、3、4、5、6、7、8、9、10、11、12或13;
    所述基团A具有式II所示结构:
    X选自O、S、N、N(Ar)、C(R)或C(R2R3);
    Ar选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基所组成的组;
    R、R2和R3相同或不同,且各自独立地选自碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基或碳原子数为3~30的杂芳基所组成的组,或者R2和R3与它们共同连接的碳原子一起构成饱和或不饱和的3~15元环;
    各R1独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基、碳原子数为3~10的环烷基;
    n1选自0、1、2、3、4、5、6、7或8;
    L1、L2、L3、Ar、Ar1、Ar2、R1和R4中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基或碳原子数为3~10的环烷基;任选地,任意两个相邻的取代基可以形成饱和或不饱和的3~15元环。
  2. 根据权利要求1所述的含三嗪化合物,其特征在于,所述化合物选自以下式I-1至式I-7所示结构:
    式I-1至式I-7所示结构中,R4、L1、L2、L3、Ar1、Ar2、n4的限定同式I。
  3. 根据权利要求1或2所述的含三嗪化合物,其特征在于,基团A选自如下基团所组成的组:
    可选地,Ar选自碳原子数为6~18的芳基、碳原子数为6~12的氘代芳基或碳原子数为5~12的杂芳基;
    R、R2和R3相同或不同,且各自独立地选自碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为6~12的芳基、碳原子数为6~12的氘代芳基或碳原子数为5~12的杂芳基,或者R2和R3与它们共同连接的碳原子一起构成芴环;
    可选地,各R1独立地选自氘、氰基、卤素基团、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、三苯基硅基、碳原子数为6~18的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基;
    n1选自0、1、2、3、4、5、6、7或8;
    可选地,R1中的取代基各自独立地选自氘、氰基、卤素基团、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、三苯基硅基、碳原子数为6~12的芳基或碳原子数为5~12的杂芳基。
  4. 根据权利要求1或2所述的含三嗪化合物,其特征在于,R、R2和R3各自独立地选自甲基、乙基、异丙基、叔丁基、三氘代甲基、苯基、联苯基、萘基、氘代苯基、氘代萘基或氘代联苯基;
    可选地Ar选自苯基、联苯基、萘基、氘代苯基、氘代萘基或氘代联苯基。
  5. 根据权利要求1或2所述的含三嗪化合物,其特征在于,基团A选自如下式A1至式A9表示的基团:
    上述式A1至式A9中,各R1独立地选自氘、氰基、氟、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3~8的三烷基硅基、碳原子数为6~18的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基;
    可选地,所述R1中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3-8的三烷基硅基、碳原子数为1-4的氟代烷基、碳原子数为6-12的芳基或碳原子数为5-12的杂芳基。
  6. 根据权利要求1或2所述的含三嗪化合物,其特征在于,R1和R4各自独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的芘基、取代或未取代的三亚苯基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基;
    可选地,R1和R4中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、环戊基、环己基、苯基、萘基、联苯基、吡啶基、二苯并呋喃基、二苯并噻吩基或三甲基硅基。
  7. 根据权利要求1或2所述的含三嗪化合物,其特征在于,各R1和R4分别独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基或如下基团所组成的组:
  8. 根据权利要求1或2所述的含三嗪化合物,其特征在于,L1、L2和L3各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚咔唑基所组成的组,或者为上述亚基中两者或三者通过单键连接所形成的亚基基团;
    可选地,L1、L2和L3中的取代基相同或不同,且各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基或吡啶基。
  9. 根据权利要求1或2所述的含三嗪化合物,其特征在于,Ar1和Ar2中的一者为基团A,另一者选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基或者基团A;
    可选地,Ar1和Ar2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为3-8的三烷基硅基、碳原子数为1-4的氟代烷基、碳原子数为6-12的芳基或碳原子数为5-12的杂芳基。
  10. 根据权利要求1或2所述的含三嗪化合物,其特征在于,Ar1为基团A,Ar2选自取代或未取代的基团T,未取代的基团T选自如下基团所组成的组:

    取代的基团T中具有一个或两个以上取代基,各取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、环戊基、环己基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基,且当基团W中的取代基个数大于1时,各取代基相同或不同。
  11. 根据权利要求1或2所述的含三嗪化合物,其特征在于,基团A选自如下基团组成的组:
  12. 根据权利要求1或2所述的含三嗪化合物,其特征在于,选自以下基团组成的组:

  13. 根据权利要求1所述的含三嗪化合物,其特征在于,所述含三嗪化合物选自如下化合物组成的组:








  14. 有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含权利要求1-13中任一项所述的含三嗪化合物;可选地,所述功能层包含有机发光层,所述有机发光层包括所述含三嗪化合物。
  15. 电子装置,包括权利要求14所述的有机电致发光器件。
PCT/CN2023/095902 2022-09-07 2023-05-23 含三嗪化合物、有机电致发光器件和电子装置 WO2024051213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211089391.X 2022-09-07
CN202211089391.XA CN117700399A (zh) 2022-09-07 2022-09-07 含三嗪化合物、有机电致发光器件和电子装置

Publications (1)

Publication Number Publication Date
WO2024051213A1 true WO2024051213A1 (zh) 2024-03-14

Family

ID=90142941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095902 WO2024051213A1 (zh) 2022-09-07 2023-05-23 含三嗪化合物、有机电致发光器件和电子装置

Country Status (2)

Country Link
CN (1) CN117700399A (zh)
WO (1) WO2024051213A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102408A (zh) * 2013-03-26 2015-11-25 株式会社东进世美肯 新型苯并菲衍生物化合物及使用其的有机发光元件
CN110240547A (zh) * 2019-06-26 2019-09-17 北京诚志永华显示科技有限公司 有机化合物及其在制备有机电致发光元件中的应用
CN113402508A (zh) * 2020-03-17 2021-09-17 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光装置
CN113493422A (zh) * 2020-03-20 2021-10-12 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、包含其的有机电致发光材料、以及有机电致发光装置
CN114075172A (zh) * 2020-08-11 2022-02-22 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置
CN114181095A (zh) * 2021-12-22 2022-03-15 上海八亿时空先进材料有限公司 芳基胺化合物以及包含它们的有机电致发光元件
CN114573520A (zh) * 2020-12-01 2022-06-03 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、包含其的多种主体材料和有机电致发光装置
CN114835626A (zh) * 2021-02-02 2022-08-02 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102408A (zh) * 2013-03-26 2015-11-25 株式会社东进世美肯 新型苯并菲衍生物化合物及使用其的有机发光元件
CN110240547A (zh) * 2019-06-26 2019-09-17 北京诚志永华显示科技有限公司 有机化合物及其在制备有机电致发光元件中的应用
CN113402508A (zh) * 2020-03-17 2021-09-17 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光装置
CN113493422A (zh) * 2020-03-20 2021-10-12 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、包含其的有机电致发光材料、以及有机电致发光装置
CN114075172A (zh) * 2020-08-11 2022-02-22 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置
CN114573520A (zh) * 2020-12-01 2022-06-03 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、包含其的多种主体材料和有机电致发光装置
CN114835626A (zh) * 2021-02-02 2022-08-02 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置
CN114181095A (zh) * 2021-12-22 2022-03-15 上海八亿时空先进材料有限公司 芳基胺化合物以及包含它们的有机电致发光元件

Also Published As

Publication number Publication date
CN117700399A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2022016898A1 (zh) 化合物、有机电致发光器件及电子装置
WO2021135181A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN114133332B (zh) 有机化合物、电子元件及电子装置
CN113511996B (zh) 有机电致发光材料、电子元件及电子装置
CN114456174B (zh) 含氮化合物及包含其的电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN109336782B (zh) 一种芴类衍生物及其有机电致发光器件
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN113214280B (zh) 有机化合物及包含其的电子器件和电子装置
WO2021120838A1 (zh) 有机化合物、电子器件及电子装置
WO2024164548A1 (zh) 有机化合物、有机电致发光器件及电子装置
WO2024164534A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN117069701A (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
CN114149443B (zh) 含氮化合物、电子元件和电子装置
WO2021174967A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024051213A1 (zh) 含三嗪化合物、有机电致发光器件和电子装置
CN113788847A (zh) 有机化合物及使用其的电子元件和电子装置
WO2024041060A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2024131166A1 (zh) 含氮化合物及有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861917

Country of ref document: EP

Kind code of ref document: A1