WO2024050749A1 - 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料 - Google Patents

聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料 Download PDF

Info

Publication number
WO2024050749A1
WO2024050749A1 PCT/CN2022/117759 CN2022117759W WO2024050749A1 WO 2024050749 A1 WO2024050749 A1 WO 2024050749A1 CN 2022117759 W CN2022117759 W CN 2022117759W WO 2024050749 A1 WO2024050749 A1 WO 2024050749A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradation
polyurethane
autocatalytic
polyurethane material
polyol
Prior art date
Application number
PCT/CN2022/117759
Other languages
English (en)
French (fr)
Inventor
陈耀煌
陈俊安
林彤谚
许智凯
Original Assignee
上纬创新育成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上纬创新育成股份有限公司 filed Critical 上纬创新育成股份有限公司
Priority to PCT/CN2022/117759 priority Critical patent/WO2024050749A1/zh
Publication of WO2024050749A1 publication Critical patent/WO2024050749A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a method for the degradation of polyurethane materials, in particular to a method for the autocatalytic directional degradation of polyurethane materials, the polyols and polyurethane materials prepared thereby.
  • polyurethane materials can be naturally degraded by sunlight and water vapor in the environment, their degradation rate is slow and takes a long time, which still causes environmental harm. , and most of the key raw materials of polyurethane materials come from petrochemical raw materials, so it is impossible to recycle waste polyurethane materials, and it will inevitably cause excessive waste of petrochemical resources.
  • the current recycling and reuse methods of waste polyurethane materials include energy recovery method, physical recovery method or chemical recovery method.
  • the energy recovery method is to directly incinerate the waste polyurethane materials and directly recover the heat energy. However, this is only an excessive method and will not be used for excessive consumption. There is no positive improvement in petrochemical resources.
  • the physical recycling method distinguishes waste polyurethane materials into thermoplastic polyurethane and thermosetting polyurethane. Thermoplastic polyurethane can be reprocessed through heat treatment (hot pressure bonding, extrusion molding) before use, and thermosetting polyurethane can be reused through Crushing, the particle size of the material is reduced, and used as a filler for new polyurethane materials or other materials.
  • the chemical recycling method is to degrade waste polyurethane materials into polyol resins through light cracking, pyrolysis, aminolysis, alkaline hydrolysis, hydrolysis and alcoholysis and then recycle them.
  • One object of the present invention is to provide a method for autocatalytic directional degradation of polyurethane materials and the polyols prepared therefrom, which uses an alcoholamine compound to thermally decompose polyurethane materials, and the resulting polyols include polyols with a urea structure.
  • Another object of the present invention is to provide a polyurethane material, which uses the polyol product after degrading the polyurethane material in the synthesis of the polyurethane material to achieve the purpose of recycling.
  • One embodiment of the present invention provides a method for autocatalytic directional degradation of polyurethane materials, which includes a crushing step, a mixing step, a degradation step, and a high-temperature decompression step.
  • the crushing step is to crush the polyurethane material to form multiple polyurethane particles.
  • the mixing step is to mix the polyurethane particles and the alcoholamine compound to form a degradation system, and the alcoholamine compound has a structure shown in formula (I) or formula (II):
  • R is an alkylene group having 2 to 6 carbon atoms or its structural isomer, phenyl group and its derivatives.
  • the degradation step is to degrade the degradation body at the reaction temperature to obtain an intermediate product.
  • the high temperature and pressure reduction step is to remove the alcohol amine compound from the intermediate product at reaction temperature and reaction pressure to obtain polyol.
  • the polyurethane material is obtained through a polymerization reaction, and the reaction monomers of the polymerization reaction may include isocyanate components and isocyanate reactive components.
  • the isocyanate component may include aromatic diisocyanate, aliphatic diisocyanate, aromatic diisocyanate derivatives, aliphatic diisocyanate derivatives, polymethylene polyphenyl isocyanates or mixtures thereof.
  • the isocyanate-reactive component may include polyester polyols, polyether polyols, small molecule polyfunctional compounds, or mixtures thereof.
  • the particle size of the polyurethane particles may be 2 mm to 5 mm.
  • the mass ratio of polyurethane particles to alcoholamine compounds can be 1:0.9 to 1:3.
  • the reaction temperature may be 110°C to 160°C.
  • the degradation body in the degradation step, is maintained at the reaction temperature for a degradation time, and the degradation time can be 30 minutes to 6 hours.
  • the reaction pressure can be from 1 mbar to 1000 mbar.
  • the liquefaction rate of the polyurethane material after completion of degradation can be 100%.
  • Another embodiment of the present invention provides a polyol, which is prepared by the method of autocatalytic directional degradation of polyurethane material as mentioned above.
  • Another embodiment of the present invention provides a polyurethane material, which is obtained by reacting the aforementioned polyol and isocyanate.
  • the method for autocatalytic directional degradation of polyurethane materials of the present invention mainly uses alcoholamine compounds with active hydrogen on the amine group to heat to dissolve the polyurethane materials to obtain polyols, and does not require any purification and washing actions. It only needs to be processed through The filtering and drying actions can be used as polyols in polyurethane materials, allowing polyurethane materials to be recycled and become environmentally friendly materials.
  • FIG. 1 is a flow chart illustrating a method for autocatalytic directional degradation of polyurethane materials according to an embodiment of the present invention.
  • Figure 2 shows the infrared spectrum of the degraded polyol.
  • Figure 3 shows the infrared spectrum of the degraded polyol after it is dissolved in water and dried.
  • the compound structure is sometimes represented by a skeleton formula. This representation can omit carbon atoms, hydrogen atoms, and carbon-hydrogen bonds. If there is a functional group clearly drawn in the structural formula, the one shown shall prevail.
  • the alcoholamine compound has a structure represented by formula (I)". For simplicity and smoothness, it is sometimes expressed as an alcoholamine compound represented by formula (I) or alcoholamine compound (I). Other compounds or group representations and so on.
  • FIG. 1 is a step flow chart illustrating a method 100 for autocatalytic directional degradation of polyurethane materials according to an embodiment of the present invention.
  • the method 100 for autocatalytic directional degradation of polyurethane material includes step 110 , step 120 , step 130 and step 140 .
  • Step 110 is a crushing step, which is to crush the polyurethane material to form a plurality of polyurethane particles, where the particle size of the polyurethane particles may be 2 mm to 5 mm.
  • the polyurethane material of the present invention is obtained through a polymerization reaction, and the reaction monomers of the polymerization reaction include isocyanate components and isocyanate reactive components.
  • the isocyanate component may include aromatic diisocyanates, aliphatic diisocyanates, aromatic diisocyanate derivatives, aliphatic diisocyanate derivatives, polymethylene polyphenyl isocyanate, or mixtures thereof.
  • the aromatic diisocyanate can be, but is not limited to, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), terephthalene diisocyanate (PPDI), phenylene diisocyanate One or a mixture of more than one of methyl diisocyanate (XDI), dimethyldiphenyl diisocyanate (TODI), and dimethyldiphenylmethane diisocyanate (DMMDI);
  • the aliphatic diisocyanate can be But not limited to isophorone isocyanate (IPDI), hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (H 12 MDI), 1,4 cyclohexane diisocyanate (CHDI), trimethyl- One or a mixture of more than one of 1,6-hexamethylene diisocyanate
  • the isocyanate-reactive component may include polyester polyols, polyether polyols, small molecule polyfunctional compounds, or mixtures thereof.
  • the polyester polyol may be, but is not limited to, adipic acid being one or more of polyester polyol, aromatic polyester polyol, polycaprolactone diol, and polycarbonate diol.
  • the polyether polyol can be, but is not limited to, one or a mixture of more than one of polyoxypropylene polyol, polyoxyethylene polyol, and polytetrahydrofuran polyol;
  • the small molecule multifunctional compound can be It is, but is not limited to, one or a mixture of more than one type of glycols, polyols, alcoholamines, and diamine compounds.
  • the glycol may be, but is not limited to, ethylene glycol, 1,4-butanediol, diethylene glycol, triethylene glycol, 1,2-propanediol, neopentyl glycol, Methylpropanediol, 1,6-hexanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, butylethylpropanediol, diethylpentanediol, 3-methyl-1,5- Pentylene glycol, 1,3-butanediol, 1,2-butanediol, 2,3-butanediol, trimethylpentanediol, cyclohexanediol or 1,4-dihydroxymethylcyclohexane alkane; the polyol can be but is not limited to trimethylolpropane, glycerol, trimethylolethane, 1, 1,2-
  • Step 120 is a mixing step, which is to mix polyurethane particles and alcohol amine compounds to form a degradation system, and the alcohol amine compounds have a structure shown in formula (I) or formula (II):
  • R is an alkylene group having 2 to 6 carbon atoms or its structural isomer, phenyl group and its derivatives.
  • the present invention uses an alcoholamine compound with active hydrogen on the amine group as the degradation solution. It is a single-component degradation solution without adding any solvent or additive, and the mass ratio of polyurethane particles to the alcoholamine compound is Can be 1:0.9 to 1:3.
  • Step 130 is a degradation step, which involves degrading the degradation system at a reaction temperature to obtain an intermediate product, where the reaction temperature may be 110°C to 160°C.
  • the degradation body can maintain the degradation time at the reaction temperature, which can be 30 minutes to 6 hours, and the liquefaction rate of the polyurethane material after completion of degradation can be 100%.
  • Step 140 is a high-temperature decompression step, which is to remove the alcoholamine compound from the intermediate product at reaction temperature and reaction pressure to obtain polyol, where the reaction pressure can be 1 mbar to 1000 mbar.
  • the intermediate product can remove excess alcoholamine compounds at a temperature of 110°C to 160°C and a pressure of 1mbar to 1000mbar. After cooling down, The degraded polyol can be obtained, and the alcoholamine compound removed by high temperature and reduced pressure can be repeatedly used as the degradation liquid of the polyurethane material.
  • the method 100 for the autocatalytic directional degradation of polyurethane materials of the present invention uses the alcoholamine compound represented by formula (I) or formula (II) as the degradation liquid, because its structure has both an amine and an alcohol structure containing active hydrogen. , can directionally open the urethane bonds in the polyurethane material structure, and further control the reaction temperature to avoid the urea gene in the polyurethane material structure from being degraded and opened to form aromatic polyamine compounds, so that the final degraded polyol product does not require other
  • the purification action can be reused in the synthesis of polyurethane materials.
  • the present invention further provides a polyol prepared by the method 100 of the aforementioned autocatalytic directional degradation of polyurethane materials. Specifically, by heating and degrading polyurethane materials with alcoholamine compounds, polyols containing urea structures can be obtained, which can include a structure shown in formula (III):
  • the polyols prepared by the method 100 of the autocatalytic directional degradation of polyurethane materials of the present invention can be a mixture of polyols, not a single polyol. At least a part of the polyols can be polyols containing a urea structure, and part of the polyols can be polyols containing a urea structure. In embodiments, the proportion of polyols containing urea structures in the degraded polyol mixture can be between 1% and 100%, such as 10%, 30%, 50%, 70%, 90% or 100%.
  • the present invention further provides a polyurethane material, which is obtained by reacting the aforementioned polyol and isocyanate.
  • isocyanate reference can be made to the types of isocyanate components described above, which will not be described again here.
  • the polyol product obtained by the method 100 of the autocatalytic directional degradation of polyurethane materials of the present invention does not require any purification and washing, and can be used as a polyol in polyurethane materials after only filtering and drying steps, and is produced by
  • the functionality of the polyol product can be calculated from the hydrogen and oxygen value, prepolymerization reaction, and viscosity change, and can be applied to polyurethane materials in fields such as polyurethane rigid foam, polyurethane adhesive, or thermoplastic polyurethane to achieve the purpose of recycling.
  • Example 1 Place 100 grams of broken polyurethane resin particles (synthetic thermosetting PU) into a 500 mL glass reaction kettle, add 200 grams of diethanolamine, control the reaction temperature at 150°C, and react for 1.5 hours until the solution becomes transparent. During clarification, excess diethanolamine is recovered by distillation to obtain liquefied polyether polyol. It was measured that the OH value of the polyether polyol prepared in Example 1 was 600, the viscosity was 200 cps, and the polyurethane liquefaction rate was 100%.
  • Example 2 Place 100 grams of broken polyurethane resin particles (waste polyurethane foam material) into a 500 mL glass reaction kettle, add 200 grams of isopropanolamine, control the reaction temperature at 130°C, and react for 4 hours until the solution appears. When it is transparent and clarified, excess isopropanolamine is recovered by distillation to obtain liquefied polyether polyol. It was measured that the OH value of the polyether polyol prepared in Example 2 was 800, the viscosity was 110 cps, and the polyurethane liquefaction rate was 100%.
  • Example 3 Place 100 grams of broken polyurethane resin particles (waste polyurethane foam material) into a 500 mL glass reaction kettle, add 200 grams of diethanolamine, control the reaction temperature at 110°C, and react for 6 hours until the solution becomes transparent and clear. When, excess diethanolamine is recovered by distillation to obtain liquefied polyether polyol. It was measured that the OH value of the polyether polyol prepared in Example 3 was 700, the viscosity was 130 cps, and the polyurethane liquefaction rate was 100%.
  • Example 4 Place 100 grams of broken polyurethane resin particles (waste polyurethane foam material) into a 500 mL glass reaction kettle, add 200 grams of diisopropanolamine, control the reaction temperature at 160°C, and react for 2 hours. Wait until the solution When transparent and clear, excess diisopropanolamine is recovered by distillation to obtain liquefied polyether polyol. It was measured that the OH value of the polyether polyol prepared in Example 4 was 650, the viscosity was 200 cps, and the polyurethane liquefaction rate was 100%.
  • Figure 2 shows the infrared spectrum of the degraded polyol
  • There is an amide absorption band at the position of 1 and there is a characteristic peak of NH's variable angle vibration at the position of 1540cm -1 to 1570cm -1 , which shows that the alcohol amine compound will participate in the degradation reaction, and the polyol product obtained after using it to degrade the polyurethane material is retained.
  • the corresponding functionality range is determined based on the appearance and physical properties of the synthesized product to obtain the functionality close value of the polyol product degraded by the autocatalytic directional degradation method of the polyurethane material of the present invention, which is beneficial to subsequent Polyurethane material synthesis.
  • the isocyanate used is not limited to the methylene diphenyl isocyanate selected in Examples 1 to 4. It can also be Use aromatic diisocyanate, aliphatic diisocyanate, aromatic diisocyanate derivatives, aliphatic diisocyanate derivatives, polymethylene polyphenyl isocyanate or a mixture thereof for the synthesis reaction.
  • the hypothetical functionality values and functionality proximity values of the polyols obtained by degradation from Examples 1 to 4 are shown in Table 1 below.
  • the present invention uses an alcoholamine compound with active hydrogen on the amine group as the degradation liquid, and controls the heating temperature to degrade the polyurethane material. It has the advantages of rapid degradation, low temperature, high recovery efficiency and no need for a catalyst.
  • the polyol obtained after degradation can be used as a raw material for the subsequent synthesis of polyurethane without washing and purification, so that the polyurethane material can be recycled, no longer a high-energy-consuming and cumbersome purification process, and can become an environmentally friendly material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明提供一种聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料。所述聚氨酯材料自催化定向降解的方法包含进行破碎步骤、进行混合步骤、进行降解步骤以及进行高温减压步骤。破碎步骤是形成聚氨酯颗粒。混合步骤是将聚氨酯颗粒与醇胺化合物混合,以形成降解体系,且醇胺化合物具有如式(I)或式(II)所示的结构,其中式(I)及式(II)中各符号如说明书中所定义者。降解步骤是降解降解体系,以得到中间产物。高温减压步骤是将中间产物去除醇胺化合物,以得到多元醇。借此,以醇胺化合物加热降解聚氨酯材料,且其所得的产物多元醇可应用于聚氨酯材料合成中,达到回收循环的目的。

Description

聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料 技术领域
本发明是关于一种聚氨酯材料的降解的方法,特别是关于一种聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料。
背景技术
随着全球聚氨酯材料年生产量与消费量的增加,废弃聚氨酯材料的数量也不断增加,虽然聚氨酯材料在环境中可被阳光、水气自然降解,但其降解速度缓慢、时间冗长,依然造成环境危害,而聚氨酯材料的关键原料大都来自石化原料,因此无法回收废弃聚氨酯材料,且必会造成石化资源过度浪费。
当前废弃聚氨酯材料的回收再利用方法包含能量回收法、物理回收法或化学回收法等,能量回收法是直接将废弃聚氨酯材料焚烧且直接回收热能,但这只是一种过度的方法,对于过度消耗石化资源并无积极的改善。然而,物理回收法是将废弃聚氨酯材料区分为热塑型聚氨酯与热固型聚氨酯,热塑型聚氨酯可以通过热处理(热压粘合、挤出成型)重新加工后再使用,热固型聚氨酯通过破碎,将材料粒径细微化,作为聚氨酯新料或其他材料的填充物。另外,化学回收法是将废弃聚氨酯材料通过轻裂解法、热解法、胺解法、碱解法、水解法与醇解法,将材料降解成多元醇树脂并回收应用。
有鉴于此,如何找寻适当的降解液,并提供低能耗且快速降解的聚氨酯材料降解方法,使聚氨酯材料能循环再利用,遂成相关业者努力的目标。
发明内容
本发明的一目的在于提供一种聚氨酯材料自催化定向降解的方法及其制备的多元醇,其是使用醇胺化合物加热分解聚氨酯材料,所得的产物多元醇包含具有脲结构的多元醇。
本发明的另一目的在于提供一种聚氨酯材料,其是将降解聚氨酯材料后的多元醇产物应用于聚氨酯材料的合成,达到回收循环的目的。
本发明的一实施方式提供一种聚氨酯材料自催化定向降解的方法,包 含进行破碎步骤、进行混合步骤、进行降解步骤以及进行高温减压步骤。破碎步骤是将聚氨酯材料破碎,以形成多个聚氨酯颗粒。混合步骤是将聚氨酯颗粒与醇胺化合物混合,以形成降解体系,且醇胺化合物具有如式(I)或式(II)所示的一结构:
Figure PCTCN2022117759-appb-000001
Figure PCTCN2022117759-appb-000002
其中,R为碳数2至6的亚烷基或其结构异构物、苯基及其衍生物。降解步骤是将降解体是在反应温度下降解,以得到中间产物。高温减压步骤是将中间产物在反应温度以及反应压力下去除醇胺化合物,以得到多元醇。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中聚氨酯材料是经聚合反应而得,且聚合反应的反应单体可包含异氰酸酯组分以及异氰酸酯反应性组分。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中异氰酸酯组分可包含芳香族二异氰酸酯、脂肪族二异氰酸酯、芳香族二异氰酸酯衍生物、脂肪族二异氰酸酯衍生物、多亚甲基多苯基异氰酸酯或其混合。此外,异氰酸酯反应性组分可包含聚酯多元醇、聚醚多元醇、小分子多官能化合物或其混合。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中聚氨酯颗粒的粒径可为2mm至5mm。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中聚氨酯颗粒与醇胺化合物的质量比可为1:0.9至1:3。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中反应温度可为110℃至160℃。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中在降解步骤中,降解体是在反应温度下维持降解时间,且降解时间可为30分钟至6小时。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中反应压力可为1mbar至1000mbar。
依据前段所述的聚氨酯材料自催化定向降解的方法,其中聚氨酯材料降解完成后的液化率可为100%。
本发明的另一实施方式提供一种多元醇,其是由如前述聚氨酯材料自催化定向降解的方法制备而得。
依据前段所述的多元醇,其可包含如式(III)所示的一结构:
Figure PCTCN2022117759-appb-000003
本发明的再一实施方式提供一种聚氨酯材料,其是由前述多元醇与异氰酸酯反应而得。
借此,本发明的聚氨酯材料自催化定向降解的方法主要选用胺基上带有活性氢的醇胺化合物加热使聚氨酯材料溶解,以得到多元醇,且无需进行任何纯化及洗涤动作,只需经过滤及干燥动作即可作为聚氨酯材料中的多元醇使用,使得聚氨酯材料能循环再利用,成为环境友善材料。
附图的简要说明
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,附图的说明如下:
图1是绘示本发明的一实施方式的聚氨酯材料自催化定向降解的方法的步骤流程图。
图2是绘示降解后的多元醇的红外线光谱图。
图3是绘示降解后的多元醇溶于水并干燥后的红外线光谱图。
【主要元件符号说明】
100:聚氨酯材料自催化定向降解的方法
110,120,130,140:步骤
实现发明的最佳方式
下述将更详细讨论本发明各实施方式。然而,此实施方式可为各种发明概念的应用,可被具体实行在各种不同的特定范围内。特定的实施方式是仅以说明为目的,且不受限于揭露的范围。
本发明中,有时以键线式(skeleton formula)表示化合物结构,此种表示法可以省略碳原子、氢原子以及碳氢键。倘若,结构式中有明确绘出 官能基的,则以绘示者为准。
本发明中,「醇胺化合物具有如式(I)所示的一结构」,为了简洁与通顺,有时会表达为式(I)所示的醇胺化合物或醇胺化合物(I),其他化合物或基团的表示方式依此类推。
<聚氨酯材料自催化定向降解的方法>
请参阅图1,其是绘示本发明的一实施方式的聚氨酯材料自催化定向降解的方法100的步骤流程图。图1中,聚氨酯材料自催化定向降解的方法100包含步骤110、步骤120、步骤130以及步骤140。
步骤110为进行破碎步骤,其是将聚氨酯材料破碎,以形成多个聚氨酯颗粒,其中聚氨酯颗粒的粒径可为2mm至5mm。
详细来说,本发明的聚氨酯材料是经聚合反应而得,且聚合反应的反应单体包含异氰酸酯组分以及异氰酸酯反应性组分。异氰酸酯组分可包含芳香族二异氰酸酯、脂肪族二异氰酸酯、芳香族二异氰酸酯衍生物、脂肪族二异氰酸酯衍生物、多亚甲基多苯基异氰酸酯或其混合。举例来说,所述芳香族二异氰酸酯可为但不限于甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、萘二异氰酸酯(NDI)、对苯二异氰酸酯(PPDI)、苯二亚甲基二异氰酸酯(XDI)、二甲基联苯二异氰酸酯(TODI)、二甲基二苯基甲烷二异氰酸酯(DMMDI)中的一种或一种以上的混合;所述脂肪族二异氰酸酯可为但不限于异佛尔酮异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)、二环己基甲烷二异氰酸酯(H 12MDI)、1,4环己烷二异氰酸酯(CHDI)、三甲基-1,6-六亚甲基二异氰酸酯(TMHDI)、甲基环己基二异氰酸酯(HTDI)中的一种或一种以上的混合;所述芳香族二异氰酸酯衍生物可为但不限于甲苯二异氰酸酯二聚体(TDI-dimer)、甲苯二异氰酸酯三聚体(TDI-trimer)或其混合;所述脂肪族二异氰酸酯衍生物可为但不限于六亚甲基二异氰酸酯二聚体(HDI-dimer)、六亚甲基二异氰酸酯三聚体(HDI-trimer)、六亚甲基二异氰酸酯缩二脲(HDI Biuret)、异佛尔酮异氰酸酯三聚体(IPDI-trimer)中的一种或一种以上的混合。
另外,异氰酸酯反应性组分可包含聚酯多元醇、聚醚多元醇、小分子多官能化合物或其混合。举例来说,所述聚酯多元醇可为但不限于己二酸是聚酯多元醇、芳香族聚酯多元醇、聚己内酯二醇、聚碳酸酯二醇中的一种或一种以上的混合;所述聚醚多元醇可为但不限于聚氧化丙烯多元醇、 聚氧化乙烯多元醇、聚四氢呋喃多元醇中的一种或一种以上的混合;所述小分子多官能化合物可为但不限于二元醇、多元醇、醇胺类、二胺化合物中的一种或一种以上的混合。
具体地,所述二元醇可为但不限于乙二醇、1,4-丁二醇、一缩二乙二醇、二缩三乙二醇、1,2-丙二醇、新戊二醇、甲基丙二醇、1,6-己二醇、1,3-丙二醇、一缩二丙二醇、二缩三丙二醇、丁基乙基丙二醇、二乙基戊二醇、3-甲基-1,5-戊二醇、1,3-丁二醇、1,2-丁二醇、2,3-丁二醇、三甲基戊二醇、环己二醇或1,4-二羟甲基环己烷;所述多元醇可为但不限于三羟甲基丙烷、甘油、三羟甲基乙烷、1,2,6-己三醇、三羟乙基异氰尿酸酯、季戊四醇、木醣醇或山梨醇;所述醇胺类可为但不限于三乙醇胺、二乙醇胺、三异丙醇胺、甲基二乙醇胺、双羟异丙基苯胺、双羟异丙基对甲苯胺、二羟乙基苯胺、二羟乙基对甲苯胺或二羟乙基间甲苯胺;所述二胺化合物可为但不限于3,3’-二氯-4,4’-二苯基甲烷二胺、3,5-二甲硫基甲苯二胺、3,5-二乙基甲苯二胺、4,4’-亚甲基双(3-氯-2,6-二乙基苯胺)、4,4’-亚甲基双(2,6-二乙基苯胺)、4,4’-亚甲基双(2,6-二异丙基苯胺)、4,4’-亚甲基双(2-异丙基-6-甲基苯胺)、4,4’-亚甲基双(2-异丙基-6-二乙基苯胺)、4,4’-亚甲基双(2-乙基苯胺)、甲苯二胺、4,4’-二胺基二苯基甲烷、异佛尔酮二胺、二氨基二环己基甲烷、三甲基己二胺或二甲基二氨基二环己基甲烷。
步骤120为进行混合步骤,其是将聚氨酯颗粒与醇胺化合物混合,以形成降解体系,且醇胺化合物具有如式(I)或式(II)所示的一结构:
Figure PCTCN2022117759-appb-000004
Figure PCTCN2022117759-appb-000005
其中,R为碳数2至6的亚烷基或其结构异构物、苯基及其衍生物。详细来说,本发明是以胺基上带有活性氢的醇胺化合物作为降解液,其是单一组分的降解液,且未添加任何溶剂或添加剂,而聚氨酯颗粒与醇胺化合物的质量比可为1:0.9至1:3。
步骤130为进行降解步骤,其是将降解体系在反应温度下降解,以得到中间产物,其中反应温度可为110℃至160℃。详细来说,降解体是可在反应温度下维持降解时间,其可为30分钟至6小时,而聚氨酯材料降解完 成后的液化率可为100%。
步骤140为进行高温减压步骤,其是将中间产物在反应温度以及反应压力下去除醇胺化合物,以得到多元醇,其中反应压力可为1mbar至1000mbar。详细来说,由于醇胺化合物沸点低,故易于在低压环境中蒸馏分离,因此中间产物可在110℃至160℃的温度以及1mbar至1000mbar的压力下去除多余的醇胺化合物,待降温后即可得到降解后的多元醇,且经由高温减压去除的醇胺化合物可以重复作为聚氨酯材料的降解液。
借此,本发明的聚氨酯材料自催化定向降解的方法100利用式(I)或式(II)所示的醇胺化合物作为降解液,因其结构中同时具有含活性氢的胺与醇类结构,可以定向打开聚氨酯材料结构中的氨基甲酸酯键,并进一步控制反应温度,避免聚氨酯材料结构中的脲基因降解而打开,形成芳香类多胺化合物,可使最终降解的多元醇产物无需其他纯化动作,即可再应用于聚氨酯材料的合成。
本发明进一步提供一种由前述聚氨酯材料自催化定向降解的方法100制备而得的多元醇。详细来说,通过醇胺化合物进行加热降解聚氨酯材料,可获得含有脲结构的多元醇,其可包含如式(III)所示的一结构:
Figure PCTCN2022117759-appb-000006
另外,由本发明的聚氨酯材料自催化定向降解的方法100制备而得的多元醇可为多元醇混合物,并非单一多元醇,其中至少一部份多元醇可为含有脲结构的多元醇,而在部分实施例中,含有脲结构的多元醇占降解后的多元醇混合物的占比可为1%至100%之间,例如10%、30%、50%、70%、90%或100%。
<聚氨酯材料>
本发明再一步提供一种聚氨酯材料,其是由前述多元醇与异氰酸酯反应而得,而关于异氰酸酯可参考前文所述的异氰酸酯组分的种类,在此不另赘述。具体来说,利用本发明的聚氨酯材料自催化定向降解的方法100所得的多元醇产物可无需任何纯化及洗涤,只需经过滤及干燥步骤即可作 为聚氨酯材料中的多元醇使用,并通过由氢氧值、预聚反应、粘度变化可以算出多元醇产物的官能度,将其应用于如聚氨酯硬泡、聚氨酯胶粘剂或热塑性聚氨酯等领域的聚氨酯材料,达到循环回收的目的。
兹以下列具体实施例进一步示范说明本发明,用以有利于本发明所属技术领域通常知识者,可在不需过度解读的情形下完整利用并实践本发明,而不应将这些实施例视为对本发明范围的限制,但用于说明如何实施本发明的材料及方法。
<实施例>
<降解聚氨酯材料>
实施例1:将100克的聚氨酯树脂破碎颗粒(合成热固型PU)置于500mL的玻璃反应釜中,加入200克的二乙醇胺,反应温度控制在150℃,反应1.5小时,待溶液呈现透明澄清时,蒸馏回收过量的二乙醇胺,以得到液化聚醚多元醇。经测定,实施例1所制备的聚醚多元醇的OH值为600,粘度为200cps,聚氨酯液化率为100%。
实施例2:将100克的聚氨酯树脂破碎颗粒(废旧聚氨酯泡沫材料)置于500mL的玻璃反应釜中,加入200克的异丙醇胺,反应温度控制在130℃,反应4小时,待溶液呈现透明澄清时,蒸馏回收过量的异丙醇胺,以得到液化聚醚多元醇。经测定,实施例2所制备的聚醚多元醇的OH值为800,粘度为110cps,聚氨酯液化率为100%。
实施例3:将100克的聚氨酯树脂破碎颗粒(废旧聚氨酯泡沫材料)置于500mL的玻璃反应釜中,加入200克的二乙醇胺,反应温度控制在110℃,反应6小时,待溶液呈现透明澄清时,蒸馏回收过量的二乙醇胺,以得到液化聚醚多元醇。经测定,实施例3所制备的聚醚多元醇的OH值为700,粘度为130cps,聚氨酯液化率为100%。
实施例4:将100克的聚氨酯树脂破碎颗粒(废旧聚氨酯泡沫材料)置于500mL的玻璃反应釜中,加入200克的二异丙醇胺,反应温度控制在160℃,反应2小时,待溶液呈现透明澄清时,蒸馏回收过量的二异丙醇胺,以得到液化聚醚多元醇。经测定,实施例4所制备的聚醚多元醇的OH值为650,粘度为200cps,聚氨酯液化率为100%。
请参阅图2以及图3,其中图2绘示降解后的多元醇的红外线光谱图,图3绘示降解后的多元醇溶于水并干燥后的红外线光谱图。由图2以及图3 的结果可见降解后的多元醇以及降解后的多元醇水洗后,均在1700cm -1至1750cm -1的位置有C=O伸缩振动特征峰,在1610cm -1至1640cm -1的位置有酰胺吸收带,且在1540cm -1至1570cm -1的位置有N-H的变角振动特征峰,可说明醇胺化合物会参与降解反应,利用其降解聚氨酯材料后得到的多元醇产物保留了大量的脲结构,且此结构具有水溶性的特征。
<多元醇官能度测试>
为了将降解后所得的多元醇进行聚氨酯材料的合成,需得知多元醇与异氰酸酯之间的配比,但降解后的多元醇为未知官能度,故需对多元醇进行官能度的测试。详细来说,先假设数种实施例1至实施例4的降解而得的多元醇的官能度数值,再以适当配比分别将亚甲基二苯异氰酸酯与降解后的多元醇进行合成反应,并由合成后的产物外观、物性等去判定所对应的官能度区间,以得到本发明的聚氨酯材料自催化定向降解的方法所降解而得的多元醇产物的官能度接近值,有利于进行后续的聚氨酯材料合成。
然而,本发明的聚氨酯材料自催化定向降解的方法所得的多元醇在进行官能度区间判定时,其所使用的异氰酸酯不限于实施例1至实施例4选用的亚甲基二苯异氰酸酯,亦可选用芳香族二异氰酸酯、脂肪族二异氰酸酯、芳香族二异氰酸酯衍生物、脂肪族二异氰酸酯衍生物、多亚甲基多苯基异氰酸酯或其混合做合成反应。关于实施例1至实施例4的降解而得的多元醇的假设官能度值与官能度接近值如下表一所示。
Figure PCTCN2022117759-appb-000007
综上所述,本发明以胺基上带有活性氢的醇胺化合物作为降解液,并控制加热温度以降解聚氨酯材料,具有降解快速、温度低、回收效率高且不需催化剂等优点,而降解后所得的多元醇可不需经过洗涤纯化即可作为后续合成聚氨酯的原料,使得聚氨酯材料能够循环利用,不再是高耗能、 繁琐的纯化工艺,且可成为环境友善材料。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。

Claims (13)

  1. 一种聚氨酯材料自催化定向降解的方法,其特征在于,包含:
    进行破碎步骤,其是将聚氨酯材料破碎,以形成多个聚氨酯颗粒;
    进行混合步骤,其是将所述多个聚氨酯颗粒与醇胺化合物混合,以形成降解体系,且该醇胺化合物具有如式(I)或式(II)所示的一结构:
    Figure PCTCN2022117759-appb-100001
    其中,R为碳数2至6的亚烷基或其结构异构物、苯基及其衍生物;
    进行降解步骤,其是将该降解体系在反应温度下降解,以得到中间产物;以及
    进行高温减压步骤,其是将该中间产物在该反应温度以及反应压力下去除该醇胺化合物,以得到多元醇。
  2. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,该聚氨酯材料是经聚合反应而得,且该聚合反应的反应单体包含异氰酸酯组分以及异氰酸酯反应性组分。
  3. 如权利要求2所述的聚氨酯材料自催化定向降解的方法,其特征在于,该异氰酸酯组分包含芳香族二异氰酸酯、脂肪族二异氰酸酯、芳香族二异氰酸酯衍生物、脂肪族二异氰酸酯衍生物、多亚甲基多苯基异氰酸酯或其混合。
  4. 如权利要求2所述的聚氨酯材料自催化定向降解的方法,其特征在于,该异氰酸酯反应性组分包含聚酯多元醇、聚醚多元醇、小分子多官能化合物或其混合。
  5. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,所述多个聚氨酯颗粒的粒径为2mm至5mm。
  6. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,所述多个聚氨酯颗粒与该醇胺化合物的质量比为1:0.9至1:3。
  7. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,该反应温度为110℃至160℃。
  8. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,在该降解步骤中,该降解体是在该反应温度下维持降解时间,且该降解时间为30分钟至6小时。
  9. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,该反应压力为1mbar至1000mbar。
  10. 如权利要求1所述的聚氨酯材料自催化定向降解的方法,其特征在于,该聚氨酯材料降解完成后的液化率为100%。
  11. 一种多元醇,其特征在于,是由如权利要求1至权利要求10中任一项所述的聚氨酯材料自催化定向降解的方法制备而得。
  12. 如权利要求11所述的多元醇,其特征在于,包含如式(III)所示的一结构:
    Figure PCTCN2022117759-appb-100002
  13. 一种聚氨酯材料,其特征在于,是由如权利要求11所述的多元醇与异氰酸酯反应而得。
PCT/CN2022/117759 2022-09-08 2022-09-08 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料 WO2024050749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117759 WO2024050749A1 (zh) 2022-09-08 2022-09-08 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117759 WO2024050749A1 (zh) 2022-09-08 2022-09-08 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料

Publications (1)

Publication Number Publication Date
WO2024050749A1 true WO2024050749A1 (zh) 2024-03-14

Family

ID=90192695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117759 WO2024050749A1 (zh) 2022-09-08 2022-09-08 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料

Country Status (1)

Country Link
WO (1) WO2024050749A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126344A (ja) * 1993-11-01 1995-05-16 Mitsui Toatsu Chem Inc ポリウレタンのリサイクル法
US5616623A (en) * 1994-11-29 1997-04-01 Bayer Aktiengesellschaft Process for the decompostion of polyurethane plastics
CN102516593A (zh) * 2011-12-22 2012-06-27 万华节能建材股份有限公司 一种利用外墙保温用聚氨酯泡沫塑料生产回收多元醇的方法
CN103012838A (zh) * 2011-09-21 2013-04-03 绍兴市恒丰聚氨酯实业有限公司 一种废旧聚氨酯泡沫胺解回收利用方法
CN104494006A (zh) * 2014-12-05 2015-04-08 广西吉宽太阳能设备有限公司 废旧聚氨酯的处理工艺
CN106700126A (zh) * 2015-07-27 2017-05-24 临沂斯科瑞聚氨酯材料有限公司 一种聚氨酯自催化降解回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126344A (ja) * 1993-11-01 1995-05-16 Mitsui Toatsu Chem Inc ポリウレタンのリサイクル法
US5616623A (en) * 1994-11-29 1997-04-01 Bayer Aktiengesellschaft Process for the decompostion of polyurethane plastics
CN103012838A (zh) * 2011-09-21 2013-04-03 绍兴市恒丰聚氨酯实业有限公司 一种废旧聚氨酯泡沫胺解回收利用方法
CN102516593A (zh) * 2011-12-22 2012-06-27 万华节能建材股份有限公司 一种利用外墙保温用聚氨酯泡沫塑料生产回收多元醇的方法
CN104494006A (zh) * 2014-12-05 2015-04-08 广西吉宽太阳能设备有限公司 废旧聚氨酯的处理工艺
CN106700126A (zh) * 2015-07-27 2017-05-24 临沂斯科瑞聚氨酯材料有限公司 一种聚氨酯自催化降解回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAI-PING CHEN, QIAO QIAN, TU GEN-GUO: "The Chemical Degradation Mechanism of Polyurethane", LIAONING CHEMICAL INDUSTRY, vol. 36, no. 8, 20 August 2007 (2007-08-20), pages 535 - 539, XP093146953 *

Similar Documents

Publication Publication Date Title
CN102532463B (zh) 一种皮革涂饰用水性聚氨酯及其制备方法
CN109048698B (zh) 一种聚氨酯抛磨轮及其制备方法
JP2007056269A5 (zh)
CN106832203B (zh) 轮胎用聚氨酯树脂及制备方法
CN111072903B (zh) 一种阳离子型水性聚氨酯乳液的制备方法
CN102241956A (zh) 一种聚碳酸亚丙酯基水性聚氨酯粘合剂及其制备方法
CN108912300B (zh) 耐溶剂聚氨酯弹性体及其制备方法
CN112239530A (zh) 一种疏水自愈超弹性聚氨酯弹性体制备的新方法
JP7302590B2 (ja) セルロースナノファイバー含有ポリウレタンの製造方法
EP1437371B1 (en) Pneumatic tire comprising polyurethane skin layer with gas barrier properties
WO2024050749A1 (zh) 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料
TWI843199B (zh) 聚氨酯材料自催化定向降解的方法、其製備的多元醇以及聚氨酯材料
CN112592457B (zh) 一种多异氰酸酯组合物及其制备方法和应用
CN113278190A (zh) 一种石墨烯/废旧聚氨酯复合材料的制备方法
KR20190051284A (ko) 보로닉 에스테르 화합물과 이의 제조방법 및 이를 이용한 자가복원 폴리우레탄계 조성물
TW202411326A (zh) 聚氨酯材料自催化定向降解的方法、其製備的多元醇以及聚氨酯材料
US3115481A (en) Polyurethane collapsed foam elastomer
US20220403095A1 (en) Acrylate oligomer and preparation method and application method thereof
CN117700829A (zh) 聚氨酯材料自催化定向降解的方法、其制备的多元醇以及聚氨酯材料
CN109762129A (zh) 一种光可逆的自愈合无溶剂聚氨酯组合物、合成革贝斯及制备方法
JP2009131916A (ja) ポリウレタン研磨パッドの製造方法
JP2006160684A (ja) 有機ポリイソシアネート組成物、該有機ポリイソシアネートの製造方法、接着剤組成物及び塗料用組成物
CN109206591B (zh) 一种水性封闭型聚异氰酸酯交联剂及其制备方法
CN110982041A (zh) 一种蓖麻油基聚氨酯泡沫及其制备方法
CN113756099B (zh) 一种高稳定型浸渍液及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957721

Country of ref document: EP

Kind code of ref document: A1