WO2024050694A1 - 天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用 - Google Patents

天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用 Download PDF

Info

Publication number
WO2024050694A1
WO2024050694A1 PCT/CN2022/117298 CN2022117298W WO2024050694A1 WO 2024050694 A1 WO2024050694 A1 WO 2024050694A1 CN 2022117298 W CN2022117298 W CN 2022117298W WO 2024050694 A1 WO2024050694 A1 WO 2024050694A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
iron
porphine
chlorin
zinc
Prior art date
Application number
PCT/CN2022/117298
Other languages
English (en)
French (fr)
Inventor
任勇
魏利辉
王乐天
周冬梅
孟东锋
Original Assignee
南京百特生物工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京百特生物工程有限公司 filed Critical 南京百特生物工程有限公司
Priority to PCT/CN2022/117298 priority Critical patent/WO2024050694A1/zh
Publication of WO2024050694A1 publication Critical patent/WO2024050694A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings

Definitions

  • the present invention relates to natural porphine salts and their application as plant growth regulators and immune inducers, and belongs to the technical field of plant growth regulators.
  • Chlorophyll and heme are a type of natural porphine structures produced and present in animals and plants. They are the material basis for life-sustaining movements such as photosynthesis and oxygen respiration of animals and plants. Among them, heme has a classic porphine structure, and the chlorophyll structure is two-fold. Compared with the structure of porphin, the parent nucleus of chlorin has more significant asymmetry in chlorin, and its existing forms and states are also more complex and diverse. At present, various porphine products obtained through natural extraction and processing have begun to be widely used in many fields such as chemical industry, medicine, food and agriculture.
  • iron chlorin (ferric chloride, CN102285992B) and hemin (heme, CN10048884C) have been used in a variety of crops as new plant growth regulators
  • sodium iron chlorophyllin and chlorophyllin Sodium copper/potassium salts are used as food additives (food colorants)
  • sodium protoporphyrin is used as a treatment for liver cirrhosis.
  • Chinese patents CN101045730, CN102351867, CN102775416 and CN 102796108 have disclosed chlorophyll iron and zinc in recent years.
  • chlororophyllin iron zinc salt chlorophyll iron calcium salt (chlorophyllin iron calcium salt), chlorophyll iron magnesium salt (chlorophyllin iron magnesium salt), chlorophyll iron manganese salt (chlorophyllin iron manganese salt), etc.
  • the sodium salt of porphine is the basic raw material for the preparation of these products.
  • the water-soluble porphine salts that have been reported are mainly divalent transition metal porphine chelate sodium/potassium salts, such as chlorophyll zinc sodium salt (chlorophyllin zinc sodium salt), chlorophyll zinc potassium salt (chlorophyllin zinc potassium salt) , chlorophyll manganese sodium salt (chlorophyllin manganese sodium salt), chlorophyllin copper sodium salt, etc.
  • iron sodium salt and copper sodium salt of chlorophyllin show that its products have good water solubility and the stability of solid samples has been significantly improved. The products are easy to transport and carry. However, at present, the research and application of natural porphin salts as plant growth regulators have not yet been carried out. See report.
  • Plant immune inducers are a new type of biopesticides developed in recent years based on vaccine engineering technology. Plant immune inducers activate the plant's immune system by regulating the metabolism and growth of plants, resulting in effective prevention and control. It can prevent crop diseases (disease prevention), improve crop resistance, increase production and improve quality, and is harmless to humans and animals and does not pollute the environment. Therefore, it has become a popular variety in the current research and development of biopesticides.
  • the plant immune inducers that have been discovered so far are mainly small molecules of plant or microbial origin such as salicylic acid, matrine, etc., large molecules such as humic acid, lentinan, etc., and some chemically synthesized fungicides, using natural porphine salts.
  • plant vaccine plant vaccine
  • Naturally derived porphins have a planar parent ring with high electron density and are easy to chelate metal ions to form chelates such as chlorophyll and heme.
  • the outside of the porphine ring is connected to an alkyl or alkenyl group and is connected to a carboxyalkyl group and other groups.
  • the present invention provides natural porphine salts and their application as plant growth regulators and immune inducers.
  • the natural porphine salt has good photothermal stability, strong activity, good control effect, can quickly prepare aqueous solutions, and is easy to use in the field.
  • the invention prepares a series of naturally derived porphine salts, including salts of porphine compounds or salts of chlorin compounds.
  • Porphine compounds or chlorin compounds of natural origin used in the present invention wherein the porphine compounds include protoporphyrin and a series of protoporphyrin chelates, and the chlorin compounds include pheophorbide and a series of Pheophorbide chelate.
  • the salt of the porphine compound of the present invention is prepared by salting acid-type protoporphyrin or its series of chelates with metal ions necessary for plant nutrition; the acid-type protoporphyrin and its series of chelates are referred to Including: protoporphyrin, hemin (heme), hydroxyheme; the metal ions necessary for plant nutrition include: sodium, potassium, ammonium, magnesium, calcium, iron, zinc, manganese and copper. valent, divalent or trivalent ions;
  • Protoporphyrin is a product obtained by removing chelated iron from heme extracted from animal blood. It is a porphine structure of natural origin;
  • the salt of the chlorin compound of the present invention is prepared by salting acid-type pheophorbide (chlorin) and its series of chelates with metal ions necessary for plant nutrition;
  • the acid referred to Type pheophorbide and its series of acid-type chelates include: pheophorbide (chlorin), iron chloride (iron chlorin), iron hydroxychlorophyllin (hydroxychlorin) Iron chlorin), iron chlorophyllin (ferrous chlorin, ferrous chlorophyllin or iron chlorophyllin II), zinc chlorophyllin (zinc chlorin), copper chlorophyllin (dihydroporphin) Copper hydroporphine);
  • the metal ions necessary for plant nutrition include: sodium, potassium, ammonium, magnesium, calcium, iron, zinc, manganese and conventional monovalent, divalent or trivalent ions of copper;
  • Chlorin also known as pheophorbide, is a product obtained by hydrolyzing chlorophyll extracted from plants or silkworm excrement and demetalizing magnesium. It is a mixture of various monomers with the mother core structure of chlorin. It mainly contains: pheophorbide Various monomeric compounds such as chlorophyllin a, pyropheophorbide a, chlorin e6, chlorin e4, chlorin f, chlorin p6 and purpurin 18.
  • the porphine salt of the present invention can be commercially available chlorophyllin products such as pheophorbide (sodium salt), chlorophyllin copper sodium salt, chlorophyllin iron sodium salt, chlorophyllin zinc sodium salt, It is prepared from iron hydroporphine, sodium protoporphyrin or heme as raw materials. Generally, porphine salt products with a content of more than 95% (measured by photometry) can be obtained.
  • the monovalent metal ion salt can be prepared by using an acid-type porphine compound or a chlorin compound with alcohol as a solvent, and a The alcohol solution of the valent metal hydroxide is mixed and precipitated, or the acid-type porphine compound or chlorin-type compound is salted with the monovalent metal hydroxide aqueous solution and then precipitated with acetone as the solvent, or the acid-type porphin compound is precipitated. It is prepared by preparing a solution of chlorin-based compounds or chlorin-based compounds and monovalent metal hydroxide using acetone as the solvent, passing dry ammonia gas into it to precipitate, and finally filtering, washing and drying.
  • the above-mentioned monovalent metal hydroxides include: sodium hydroxide, potassium hydroxide, ammonia water, etc.
  • the monovalent metal ion salts of porphine compounds or chlorin compounds of the present invention include: potassium protoporphyrin, ammonium protoporphyrin, sodium heme chloride (sodium heme, the same below), hemin chloride Potassium, heme ammonium chloride, hydroxyheme potassium, hydroxyheme ammonium, chlorin iron sodium salt (chlorophyllin iron sodium salt, the same below), chlorin iron potassium salt, chlorin Phenoferric ammonium salt, hydroxychlorophyllin iron potassium salt, hydroxychlorophyllin iron sodium salt, hydroxychlorophyllin iron ammonium salt, chlorophyllin iron potassium salt, chlorophyllin iron ammonium salt, chlorin sodium salt ( Pheophorbide sodium salt, the same below), chlorin potassium salt, chlorin ammonium salt, chlorophyllin zinc ammonium salt, chlorophyllin copper ammonium salt, etc.
  • the divalent or trivalent metal ion salt can be an aqueous solution of a sodium/potassium salt of a porphine compound or a chlorin compound and a soluble divalent metal ion salt.
  • an aqueous solution of trivalent metal ion salt can be easily prepared by mixing, precipitating, filtering, washing and drying.
  • the above-mentioned soluble divalent or trivalent metal ion salts include: sulfate, hydrochloride, nitrate, etc. of divalent or trivalent metal ions.
  • the divalent metal ion salts of porphine compounds or chlorin compounds of the present invention include: magnesium protoporphyrin, calcium protoporphyrin, ferrous protoporphyrin, manganese protoporphyrin, zinc protoporphyrin, protoporphyrin Copper chloride, magnesium heme chloride, calcium heme chloride, ferrous heme chloride, manganese heme chloride, zinc heme chloride, copper heme chloride, magnesium hydroxyheme, calcium hydroxyheme, Hydroxyheme ferrous, hydroxyheme manganese, hydroxyheme zinc, hydroxyheme copper, chlorin iron magnesium salt, chlorin iron calcium salt, chlorin iron ferrous salt, chlorin Iron manganese salt, chlorin iron zinc salt, chlorin iron copper salt, hydroxychlorophyllin iron magnesium salt, hydroxychlorophyllin iron calcium salt, hydroxychlorophyllin iron ferrous salt, hydroxychlorophyllin iron Manganese salt, hydroxych
  • the trivalent metal ion salts of porphine compounds or chlorin compounds of the present invention include: protoporphyrin iron salt, heme iron salt, hydroxyheme iron salt, chlorin iron iron salt (chlorine iron salt). chlorophyllin iron iron salt), hydroxychlorophyllin iron iron salt, chlorophyllin iron iron salt, chlorin iron salt, chlorophyllin zinc iron salt, chlorophyllin copper iron salt, etc.
  • the porphine salt of the present invention is used as a plant growth regulator or a plant immune inducer.
  • the porphine salts include:
  • the porphine salt of the present invention maintains the macrocyclic structure of porphine, and the Soret band and Q band of the ultraviolet and visible spectra still have characteristic absorption.
  • the maximum absorption peak ( ⁇ max ) of each band is relatively acidic due to the influence of salt-forming metal ions. porphine produces a certain displacement.
  • the Q band in the visible light region has relatively weak absorption, it still keeps the porphine salt products darker in color.
  • Soret band spectrum 360 ⁇ 420nm
  • the red-shift amplitude such as heme (20% methanol aqueous solution)
  • ⁇ max 368nm, its alkali metal and alkaline earth metal salts (in aqueous solution): heme sodium, heme potassium, heme magnesium, heme calcium ⁇ max all red-shift to 393nm ⁇ 395nm, transition metals
  • the ⁇ max red shift amplitude varies, such as heme manganese salt 395nm, ⁇
  • the max red shift amplitude is the same as that of alkali metal salts, which may be related to the d 5 electron structure of the valence layer and the small electronegativity (1.5) of manganese; the heme zinc salt is 377nm, the valence layer
  • the iron (III) salt undergoes a blue shift. This may be due to its valence layer d5 structure which is prone to accept feedback electrons. It is related to the reduction of porphine conjugated electron density; the blue shift of heme copper salt to ⁇ max is 367nm, which may be related to the d 9 structural characteristics of the copper valence layer and the large electronegativity 1.9.
  • DTA/TG Thermal analysis
  • Thermogravimetric (TG) measurement shows that usually monovalent metal salts remove 2 moles of water and divalent metal salts. Remove 3 moles of water.
  • acid-type porphins usually have no obvious weight loss before decomposition or the weight loss is significantly lower than that of the corresponding salt, indicating that the acid-type sample contains no or very little water inside and the solid internal structure is dense;
  • Differential Thermal (DTA) It is shown that porphine salts often exhibit obvious or prominent endothermic/exothermic peaks. After the sample is dehydrated, the specific heat of the system gradually increases as the temperature increases, but there is no phase change characteristic peak.
  • the decomposition temperature is mostly higher than that of the corresponding acid-type porphyrin. Due to the high dehydration temperature and large endothermic range (large energy required for dehydration), it means that the small amount of solid water adsorbed by porphine after salt formation mainly exists in the form of hydrated ions; the differential heat curve of acid-type porphin is relatively flat. , the endothermic peak and the exothermic peak are not obvious.
  • the porphine salt and monovalent metal ion salt of the present invention have good water solubility, and the divalent/trivalent metal ion salt is soluble or slightly soluble in water, and the solubility is significantly higher than that of the corresponding acid-type porphine;
  • the porphine salt of the present invention can be easily diluted and prepared by directly adding water and stirring to prepare a solution with a porphine salt content of 0.01 ppm to 10 ppm (about 0.014 ⁇ mol/L to 14.0 ⁇ mol/L) for use as a plant growth regulator or plant immune inducer. .
  • the 0.001ppm-0.1ppm solution of the porphine salt of the present invention can be used for seed soaking and crop field irrigation; the 0.01ppm-10.0ppm solution can be used for crop foliar spraying.
  • To promote seed germination increase germination rate, increase root length, promote root growth, enhance plant immunity and stress resistance, accelerate seedling growth, increase chlorophyll content, delay premature plant aging, increase yield and improve quality.
  • the porphine salt of the present invention still maintains the chlorophyllase inhibitory effect of acid-type chlorin, and its in vitro test proves that the chlorophyllase inhibition rate increases with the increase in salt sample concentration, and is a typical competitive inhibitor; the test proves , the porphine salt of the present invention also has multiple plant signal regulation effects, such as regulating NO concentration in crop roots to promote root growth, inducing an increase in SOD, CAT and POD activities of plant leaves under salt stress, promoting proline release in the body, etc. , which can then reduce the oxidative damage caused by salt stress, enhance crop stress resistance, and can also significantly alleviate the phytotoxicity caused by herbicides and significantly increase crop yields.
  • the in vitro disease resistance test proves that the porphine salt of the present invention has excellent plant immunity induction activity, can significantly weaken the infection of Phytophthora capsici, and has a significant control effect on pepper plant diseases artificially inoculated with Phytophthora spores, 2.0ppm
  • the solution spraying has a control effect of 71.89%.
  • the field test of spraying 0.2ppm iron sodium salt solution to prevent tobacco diseases has proven that the control effect reaches 71.00%, which can significantly improve plant stress resistance and thereby increase crop yields.
  • the porphine salt of the present invention has good stability, stable and reliable quality during long-term storage, long shelf life, and is easy to carry and transport; the product has good water solubility, is easy to prepare an aqueous solution, has stable content, and has good reproducibility in field use. ; Low concentration, strong activity, high prevention efficiency, easy to use; natural raw materials, rich sources, no emissions, no pollution, energy saving and environmental protection. Especially as an immune inducer, it has high prevention efficiency and its use effect is significantly better than existing products.
  • Figure 2 UV absorbance photometric scanning spectrum of hemin and heme magnesium solutions exposed to strong light for 3 hours in a stability test.
  • Example 1 Weigh 5.0 grams of protoporphyrin and dissolve it in 1000 ml of ethanol, slowly add 12.0 ml of 10% potassium hydroxide ethanol solution dropwise under stirring, leave it in the refrigerator overnight, filter, wash with cold ethanol, and dry under reduced pressure to obtain the protoporphyrin.
  • the product prepared in ethanol is sodium heme chloride.
  • chloride ions are replaced by hydroxyl groups into the reaction solution (generating NaCl).
  • the resulting product is chlorine-free (substituted by hydroxyl groups) and should be hydroxyhemin. Hemin sodium instead of hemin sodium.
  • Comparative test 2 Determination of the maximum UV absorption wavelength ( ⁇ max ) of the sample
  • the axial coordination groups chlorine and hydroxyl groups of iron in the center of heme have different electron donating/withdrawing abilities.
  • the results are related to the electronegativity, lone electron pair and valence shell electronic structure of the element.
  • the electronegativity of chlorine element is 3.0, which has It has a 3p valence layer structure, and 5 pairs of lone electrons are available when combined with the central iron in the axial direction;
  • the oxygen element in the hydroxyl group has an electronegativity of 3.5, which is a 2p valence layer structure, and 4 pairs of lone electrons are available for the oxygen that is combined with the central iron in the axial direction.
  • hydroxyl has stronger electron withdrawal and weak feedback electron ability. Therefore, the coordination of hydroxyl causes the electron density of the porphine conjugated structure to decrease, and the characteristic absorption Soret band shifts from 393nm to blue. Hydroxyheme sodium 384nm.
  • chlorin iron mother drug produced by Nanjing Baite Bioengineering Co., Ltd., the same below
  • DTA/TG dark green powder that decomposes at 302°C
  • ⁇ max 400nm (aqueous solution).
  • DTA/TG dark green powder that decomposes at 377°C
  • ⁇ max 399nm (aqueous solution).
  • DTA/TG dark green powder that decomposes at 329°C
  • ⁇ max 405nm
  • DTA/TG dark green powder that decomposes at 299°C
  • ⁇ max 400nm (aqueous solution).
  • DTA/TG dark green powder that decomposes at 278°C
  • ⁇ max 400nm (aqueous solution).
  • DTA/TG dark green powder that decomposes at 208°C
  • ⁇ max 401nm (aqueous solution ).
  • DTA/TG dark green powder that decomposes at 311°C
  • ⁇ max 405nm
  • Example 72 The same as Example 71, except that the sodium hydroxide aqueous solution was used instead of the potassium hydroxide solution to prepare 8.46 grams of iron hydroxychlorophyllin sodium salt.
  • DTA/TG hydroxychlorophyllin iron calcium salt
  • DTA/TG dark green powder that decomposes at 331°C
  • ⁇ max 403nm (aqueous solution).
  • DTA/TG dark green powder that decomposes at 264°C
  • ⁇ max 395nm (aqueous solution).
  • Example 81 Differential thermal/thermogravimetric analysis (DTA/TG) of chlorin iron sodium salt and chlorin iron
  • Test sample chlorin iron sodium salt, chlorin iron
  • the sample decomposes and exothermic peak, and the specific heat change of the sample within the measuring range is not obvious (approximately a horizontal line); the dehydration of sodium iron chlorin salt has obvious endothermic heat, the endothermic peak moves to 71.7°C, and the endothermic heat increases significantly. After 110°C, the sample The specific heat increases. On the curve, it begins to decompose at 180°C and exotherms violently until an exothermic peak appears at 271.67°C. A second exothermic peak appears at 453.24°C. After further decomposition, the specific heat begins to decrease. The difference in thermal reactions between the two samples is very significant. The decomposition point of salt samples is significantly higher than that of acid samples.
  • Example 82 Dilution and pH measurement of sample solutions such as chlorin iron sodium salt
  • the solution pH reaches 10.21 ⁇ 10.95, showing strong alkalinity, and it still shows strong alkalinity after being diluted ten times; as the concentration further increases
  • the pH of the soluble magnesium salt 100ppm is similar to that of the sodium/potassium salt solution.
  • the hydrolysis effect of the salt gradually When diluted to 10 -6 ⁇ 10 -7 mol/L (the sample concentration in this example is 1.0 ppm ⁇ 0.1 ppm), the hydrogen ions provided by water dissociation gradually dominate.
  • the pH of the solution should be close to or approximately equal to 7.0 , but the pH of this measurement was ⁇ 7.0, and the solution unexpectedly changed from weakly alkaline to weakly acidic.
  • the results indicate that there are acidic components in the system, that is, the measured porphine salt sample may contain a small/trace amount of coexisting acid-type porphins. These residues The acid-type porphyrin is an important reason why the solution shows weak acidity after dilution.
  • Acid-type porphins are polybasic acids.
  • sodium protoporphyrin and heme are both dibasic acids.
  • Chlorins and chelates are mixtures of monobasic acids, dibasic acids and tribasic acid monomers.
  • the present invention The soluble sodium salt, potassium salt or ammonium salt samples used are all prepared by the precipitation method of acid porphine in an organic solvent by adding alkali neutralization reaction.
  • the divalent and trivalent metal salts such as magnesium salt are prepared by the metathesis reaction precipitation method to form salts.
  • various process factors such as component concentration, alkali addition speed, stirring uniformity, reaction temperature, etc., restrict the formation of precipitation and the composition of the product.
  • Samples 90 samples of porphine salts and chlorin salts (contents are all ⁇ 95.0%, measured by photometry)
  • Determination Dissolve an appropriate amount of salt sample with water and dilute it to prepare a test solution with a concentration of ⁇ 10ppm; the acid type reference substance (extremely difficult to dissolve in water) is prepared with a 30% to 50% ethanol aqueous solution to prepare a test solution with a concentration of ⁇ 10ppm.
  • each test solution After each test solution is prepared, use a UV spectrophotometer to scan the absorbance in the range of 200nm to 800nm (at 0 hour). Then divide each sample test solution into two parts. One part of the test solution is placed at room temperature 25°C in the dark, and the other part is placed under 30,000lux illumination. Under intensity conditions, take the solution at 1, 2, and 3 hours respectively, and repeat scanning to measure the absorbance of the test solution at each time point.
  • the relative % content is calculated by taking the absorbance value at 0 (initial) of the maximum absorption peak of each test solution as 100% relative content, and comparing the absorbance value at each time point with the value at 0.
  • the tested 90 salt compound aqueous solutions (measured concentration: 12ppm ⁇ 25ppm) were exposed to strong light for 3 hours for stability. The results are shown in the table below:
  • Example 84 Effects of chlorin iron sodium salt, heme potassium, and protoporphyrin potassium on wheat germination and seedling growth
  • each treatment was repeated three times. For each sample, 50 seeds with full and consistent sizes were selected, disinfected with sodium hypochlorite for 5 minutes, rinsed with clean water, placed in plastic boxes covered with 100g of sand, and poured into the prepared sample solution. 25ml, arrange the seeds neatly, cover them, and place them in a constant temperature incubator at 25°C for cultivation.
  • the sprout length of wheat seeds exceeds half of the seed diameter (long axis) as germination (criterion standard); according to the growth conditions of wheat, record the whiteness of seeds and the number of germinations every day, and randomly select 10 wheat seedlings on the 6th day to measure their root length. , plant height, root number, root weight and aboveground weight were measured on the 7th day. All index data measurements were repeated three times.
  • chlorin iron sodium salt has different effects on the growth of early wheat seedlings. It has a significant effect on promoting the growth of the root system, while the effect of the above-ground seedlings is relatively weak. 0.0250ppm is a suitable concentration.
  • Example 85 In vitro chlorophyllase inhibitory activity test According to the literature method (Journal of Northwest Botany, 2003, 23(5): 750-754.), accurately weigh 2.00g of acetone powder made from mung bean leaves, and add 50 mL of phosphate buffer ( pH 7.0 ⁇ 7.3) After 4.0 hours of extraction, centrifuge at 4°C ⁇ 5°C for 10 minutes. The active enzyme concentration of the supernatant is 0.13mmol/L, which is the chlorophyllase solution.
  • Chlorin salts maintain the strong chlorophyllase inhibitory activity of acid-type chlorin, which is of great significance and value for practical applications.
  • Example 86 Experiment on inducing adventitious roots of mung bean hypocotyl
  • test solution Take 8 ml of commercially available STANLEY universal hydroponic nutrient solution and dilute it to 3200 ml with tap water (diluted 400 times) to obtain a dilute nutrient solution; weigh appropriate amounts of salt samples such as sodium protoporphyrin and potassium heme chloride. , prepare 0.010ppm and 0.1ppm sample test solutions with dilute nutrient solution, take 150 ml of each; take another 150 ml of dilute nutrient solution as a blank control, place the test solution and control solution in a brown bottle, and apply a black film to the mouth.
  • salt samples such as sodium protoporphyrin and potassium heme chloride
  • Example 87 Experiment on preventing and controlling sheath blight and increasing yield of rice (application of plant immune inducer)
  • treatment 1 chlorin iron sodium salt 3.0 mg/mu
  • treatment 2 clean water (control).
  • spray pesticides at the end of the tillering stage (July 22, 2021), the jointing and booting stage (August 16, 2021), and the full heading stage (August 30, 2021).
  • the water consumption per mu was 30 liters, 45 liters and 45 liters respectively (concentration: 0.100ppm, 0.067ppm and 0.067ppm).
  • the test sample was dissolved, diluted and stirred evenly before application. Each treatment area was 3 mu.
  • each treatment was sampled at five points (each sampling point was 20m2 ) to check the condition of rice sheath blight in detail, and the corrected control effects were obtained as follows:
  • the harvest time is November 8, 2021.
  • the yield composition and structure were investigated, and then the yield per mu was measured. The results are as follows:
  • chlorin iron sodium salt has obvious effects on preventing and treating rice sheath blight, and it also has a good effect on increasing rice yield. It is a plant immune inducer with good performance.
  • Example 88 Experiment on preventing and controlling leaf blast in rice to increase yield (application of plant immune inducer)
  • Test results show that sodium iron chlorin salt can significantly improve the resistance of rice to rice leaf blast and has the application effect of a plant immune inducer.
  • the harvest time was November 8, 2022.
  • the yield composition structure was investigated, and then the yield per mu was measured.
  • the sample yield increase effect was obvious. The specific results are as follows:
  • Example 89 Test on increasing pepper production by spraying heme potassium salt solution
  • Test variety Hebei Jize pepper; planting density: 3,500 trees/acre;
  • Planting method mechanical transplanting
  • Test method The test and control areas are 10 acres each.
  • the treatment group is sprayed with heme potassium salt solution, the control group is sprayed with heme (the dose concentration is the same as that of the treatment group), and the blank is sprayed with clean water.
  • the treatments were sprayed with pesticides and controls on May 19 (after transplanting) and July 2 (full flowering period).
  • the dosage was 1.5 mg/mu, and the water consumption per mu was: 15L, 30L (sample concentration: 0.1ppm and 0.05ppm).
  • a sampling survey was carried out to select ten pepper plants with uniform growth in the treatment group and the control group, and the number of results and single fruit weight were counted. The whole field was harvested in three times, on August 30, September 13, and September 25.
  • the results of the combined statistical comparison of production are as follows:
  • Cultivation adopts flat planting, plastic film covering, seedling transplanting and pressurized drip irrigation. Seedlings were transplanted on April 29, 2,600 plants/acre. The control and treatment areas are 20 acres each. The treatment area is sprayed twice at the early flowering stage (May 22, 2021) and the fruit setting stage (June 5, 2021). The spray concentration of iron sodium salt solution of chlorophyllin is 0.05ppm. .
  • Harvest date is August 3rd. During harvest, 5 consecutive plants from each treatment were randomly selected for sampling statistics. The data are as follows:
  • Example 91 Test on increasing wheat yield by spraying iron chlorin and its potassium salt
  • Crop Huaimai No. 35, 7 acres each of iron chlorin (powder) treated field, potassium salt treated field and control field (sprayed with clean water);
  • the entire field will be harvested on June 11, 2021.
  • the production test data is as follows:
  • Spraying iron chlorin and its potassium salt at a dosage of 3 mg/acre can significantly increase yield, but potassium salt has a better yield increase effect.
  • Example 92 Experiment on preventing and curing tobacco diseases by spraying iron chlorin sodium salt
  • each plot was 50 square meters, and sprayed around May 28 and June 4 during the root extension period (12-14 leaves) after the tobacco leaves were transplanted. Twice; the spray volume for each treatment is the same (30 liters/acre), and during operation, strive to spray evenly on the leaf surface without leaving any dead spots.
  • chlorin iron sodium salt significantly improved tobacco immunity, played a role in resisting tobacco mosaic virus and reducing the incidence, and the effect was better than the positive control iron chlorin and lentinan.
  • Example 93 Test on spraying tobacco with iron chlorin sodium salt to promote yield increase
  • Test location Yutang Village, Huanghua Town, Changsha County, Hunan province;
  • Yunyan 87 planting density 16,500 plants/hectare, plant spacing 50cm, row spacing 110 ⁇ 120cm
  • sodium iron chlorin salt can significantly increase the weight of tobacco single leaves, increase the width and length of the leaves, and increase the yield per mu of tobacco.
  • 0.1ppm is more suitable and is more conducive to increasing tobacco leaf yield.
  • Example 94 Test on preventing and controlling Verticillium wilt by spraying iron sodium salt of chlorophyllin on cotton
  • Cotton variety Xinluzhong 66, sown on April 21, 2020, one film with four rows, 15,000 plants per mu, and each treatment area is 1 mu.
  • Verticillium wilt The incidence of Verticillium wilt was investigated 20 days after the application of each sample. Three-point investigation method was used for each treatment, and 100 plants were selected at each point. Investigating the prevention and control effects, the results are as follows:
  • the harvest time is November 11 and 15, 2020.
  • three sampling points are first selected for each treatment area plot, each with an area of 0.01 acres.
  • the growth of cotton is counted, and then the yield increase rate is harvested and calculated.
  • the data are as follows:
  • Example 95 Effect of chlorin iron potassium salt on germination of salt-stressed rice
  • This experiment set up three NaCl concentrations of 0, 2.5, and 4.5g/L plus 0.2ppm chlorin iron potassium salt, and a salt stress blank control (CK: 4.5g/L NaCl solution), with a total of 4 treatments: (1) 4.5g/L NaCl solution (CK); (2) 0g/L NaCl solution-0.2ppm chlorin iron potassium salt solution; (3) 2.5g/L NaCl solution-0.2ppm chlorin iron potassium salt solution ; (4) 4.5g/L NaCl solution-0.2ppm chlorin iron potassium salt solution.
  • Soak the selected rice (variety: Nanjing 9108) seeds with full grains in sodium hypochlorite solution for 2-3 minutes to disinfect, and then rinse them with clean water two to three times. After washing, select 50 plump seeds and put them into the prepared seed soaking solution to completely submerge the seeds. Soak the seeds at 25°C for 48 hours. After soaking the seeds, move them to a plastic box covered with two layers of paper towels, moisten the germination bed with the salt concentration solution corresponding to each treatment, and cultivate it in a constant temperature incubator at 25°C. The lighting is set to 12 hours light/12 hours dark, and the humidity is 70 %, the germination bed should always be kept moist during cultivation. The rice seed germination and seedling growth were observed and recorded daily.
  • the germination rate of each treatment was recorded on the 7th day.
  • the number of normal seedlings was counted on the 14th day. 10 seeds from each treatment were randomly selected to measure the seedling length, root length, root number, root weight and seedling weight.
  • the germination potential was counted on the 5th day of germination and the germination rate was counted on the 14th day. The results are as follows:
  • Table 4 Effect of sample solutions on rice root-to-shoot ratio and seedling promotion speed under different concentrations of salt stress
  • chlorin iron potassium salt has good stress resistance properties, can promote the germination of salt-stressed rice seeds, increase the germination rate and vitality, promote the rooting of seedlings and the growth of the above-ground parts of the plant, increase the root length, and promote the weight and weight of the seedlings.
  • the increase in root weight can significantly reduce the damage of salt stress to plants.
  • Example 96 Experiment on spraying iron sodium salt of chlorophyllin to submerge rice
  • Table 2 Chlorophyll content and changes in rice leaves under simulated drought conditions
  • Example 98 In vitro experiment of chlorin iron sodium salt inducing plant resistance to pepper blight
  • Example 99 Pot experiment of chlorin iron sodium salt inducing pepper disease resistance
  • V8 culture medium Add 1g CaCO 3 to every 100 mL of V8 vegetable juice culture medium, centrifuge at 6000r/min for 10 minutes, take the supernatant, dilute it 10 times, add 15% agar powder, and sterilize at 121°C for 20 minutes.
  • Test seeds Sujiao No. 5, bred by the Vegetable Research Institute of Jiangsu Academy of Agricultural Sciences.
  • Preparation of zoospores of Phytophthora capsici Punch a bacterial plate from the edge of the newly activated Phytophthora capsici plate, pick out a 6mm bacterial plate with a needle and transfer it to an empty petri dish with a diameter of 9cm, with the bacteria side facing up, pick 10 from each plate A bacteria dish. Add 15 mL of sterilized water to the plate, place it in a clean workbench and illuminate it. Change the water every 30 minutes for a total of 3 times. Use a straw to suck out the remaining wastewater, then add 10 mL of V8 liquid culture medium, and place it in a 25°C incubator for 24 hours in the dark to induce the production of a large number of cystospores.
  • Treatment group chlorin iron sodium salt 2.0ppm solution spray
  • Transplant pepper seedlings at the 4-6 leaf stage planting one plant per pot. After treatment with chlorin iron sodium salt solution for 3 days, inoculate Phytophthora capsici spores with an inoculation amount of approximately 1 ⁇ 10 5 spores per seedling. Each treatment was set up with 3 repetitions, each with 18 pots. After treatment, regular observations were made once a day, and the incidence rate of peppers was recorded, and the disease index and control efficiency were calculated.
  • Incidence rate number of infected plants/total number of plants ⁇ 100%
  • RNA was extracted using the TRIzol method. Take the sample into a 2mL centrifuge tube, add liquid nitrogen and grind thoroughly; add 1mL TRIzol reagent (Thermo Fisher, USA), mix thoroughly and let it stand for 5 minutes; add 200 ⁇ L chloroform, shake and mix and let it stand for 5 minutes, 12,000g, 4 Centrifuge for 15 minutes at °C; transfer the supernatant to a 1.5 mL centrifuge tube, add an equal volume of pre-cooled isopropyl alcohol, shake and mix, let stand at -80°C for 30 minutes, centrifuge at 12,000g and 4°C for 10 minutes; discard the supernatant. Add 75% alcohol, 12,000 g, centrifuge at 4°C for 5 min, and wash twice; discard the supernatant, dissolve the precipitate in 30 ⁇ L of 0.1% DEPC-treated water
  • cDNA first strand gDNA Removal and cDNA Synthesis SuperMix kit (Quanshijin, Beijing) was synthesized and the remaining genomic DNA in the RNA template was removed at the same time.
  • the total system was 20 ⁇ L.
  • Total RNA 1000ng, RNase-free Water added to 7 ⁇ L, Random Primer (N9) 1 ⁇ L, total 8 ⁇ L.
  • N9 Random Primer
  • cDNA was diluted 40 times and stored at -20°C for later use.
  • cDNA as a template, in ROCHE 96 real-time fluorescence quantitative PCR instrument for amplification.
  • the amplification system is: 10 ⁇ L 2 ⁇ PerfectStart TM Green Green qPCR SuperMix (Full Gold, Beijing), 0.4 ⁇ L each of upstream and downstream primers (10 ⁇ mol/L), 1 ⁇ L cDNA, and 8.2 ⁇ L Nuclease-free Water to a total volume of 20 ⁇ L.
  • the reaction program is: pre-denaturation at 95°C for 180s; 95°C for 10s, 60°C for 30s, 40 cycles; 95°C for 10s, 65°C for 10s, 97°C for 1s; finally cooling at 37°C for 30s; the reaction system is judged by the dissolution curve and fluorescence value change curve. Specificity, the experiment was repeated three times, and the relative expression of the gene was calculated using 2- ⁇ Ct. The results are as follows:
  • Plot conditions previous wheat crop, soil fertility is consistent, and field management is the same.
  • both the treated and control fields were treated with stem and leaf spraying of 4% imazapyr 200ml/mu + 10% pyrimethoxime 40ml/mu.
  • the control field was sprayed with clean water; at the rice breaching stage (August 25), the same method was sprayed again.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用,所述卟吩盐,包括卟吩的盐或二氢卟吩的盐。相对于现有技术,本发明的卟吩盐稳定性好,长期存放质量稳定可靠、货架期长易于携带运输;产品水溶性好,易制得水溶液且含量稳定大田使用重现性好;使用浓度低、活性强、防效高,使用方便;原料天然、来源丰富,制备无排放、无污染,节能环保。尤其是作为免疫诱抗剂,防效高,使用效果显著优于现有产品。

Description

天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用 技术领域
本发明涉及天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用,属于植物生长调节剂技术领域。
背景技术
叶绿素和血红素是一类产生并存在于动植物的天然卟吩结构物,是动植物光合作用及输氧呼吸等维持生命运动的物质基础,其中血红素具有经典的卟吩结构,叶绿素结构则是二氢卟吩母核,相对于卟吩的结构二氢卟吩不对称性更为显著,存在的形式及状态也更为复杂多样。目前,经天然提取加工得到的各种卟吩类产品在化工、医药、食品及农业等多领域开始得到广泛应用。如二氢卟吩铁(氯化叶绿酸铁,CN102285992B)和氯化血红素(血红素,CN10048884C)作为新型植物生长调节剂已应用于多种作物,叶绿酸铁钠盐及叶绿酸铜钠/钾盐用于食品添加剂(食品着色剂),原卟啉钠用于肝硬化治疗用药,除了市售产品外,近年来中国专利CN101045730、CN102351867、CN102775416及CN 102796108等公开了叶绿素铁锌盐(叶绿酸铁锌盐)、叶绿素铁钙盐(叶绿酸铁钙盐)、叶绿素铁镁盐(叶绿酸铁镁盐)、叶绿素铁锰盐(叶绿酸铁锰盐)等二价盐的制备和性质;文献(铁叶绿酸金属盐反应速率、平衡常数及结构研究,硕士学位论文,华北理工大学2017.03)研究系列叶绿酸铁金属盐的制备,包括成盐反应、产物结构及理化特性等显示:叶绿酸铁与二价Mg 2+、Ca 2+、Mn 2+和Zn 2+离子形成1:1摩尔比的微溶/难溶盐(K sp≈10 -16~10 -18M 2),成盐反应快(活化能低~20kJ/mol);利用水溶性差异,从水溶液中生成沉淀可以制得这些卟吩螯合物的二价金属盐,其中水溶性的卟吩钠盐是制备这些产物的基本原料。已经报道的水溶性卟吩盐主要是二价过渡金属卟吩螯合物钠/钾盐,如叶绿素锌钠盐(叶绿酸锌钠盐)、叶绿素锌钾盐(叶绿酸锌钾盐)、叶绿素锰钠盐(叶绿酸锰钠盐)、叶绿酸铜钠盐等,这些钠/钾盐溶解性好,常规水溶液显较强碱性,而三价过渡金属卟吩螯合物钠/钾盐报道不多;氯化血红素为三价铁卟吩螯合物,中心铁轴向结合的氯极易被更强配位能力的羟基所取代,水溶液中加碱氯化血红素即成为羟基血红素钠(氯化血红素的性质和检测方法,中国生化药物杂志,1993.66(4):58~59),实验证明,由碱性水溶液沉淀只能制得羟基血红素钠盐而无法得到氯化血红素钠。叶绿酸铁钠盐和铜钠盐的使用表明,其产品水溶性好,固体样品稳定性有明显提高产品方便运输携带,但是目前,天然卟吩盐作为植物生长调节剂的研究及应用还未见报道。
植物免疫诱抗剂(也称植物疫苗)是近年来依据疫苗工程技术兴起发展的一类新型生物农药,植物免疫诱抗剂通过调节植物的新陈代谢和生长,激活植物的免疫系统,产生有效防控农作物病害(防病)、提高农作物抗性、同时具有增产改善品质的效果,而且对人畜无害、不污染环境,因此成为当前生物农药研究创制的热门品种。目前已经发现的植物免疫诱抗剂主要是植物源或微生物源小分子如水杨酸、苦参碱等,大分子如腐殖酸、香菇多糖等,和部分化学合成杀菌剂,采用天然卟吩盐作为植物免疫诱抗剂(植物疫苗)的研究及应用尚未见报道。
天然来源的卟吩,母环呈平面型,电子密度高,易螯合金属离子形成螯合物如叶绿素血红素等,卟吩环外侧连接有烷基或烯基并连有羧烷基等基团,结构复杂而异构体多,如酸型的二氢卟吩铁,基本不溶于水而且光热稳定性不好,研究发现,平面型的二氢卟吩铁分子具有很强的缔合/聚集特性,加之分子整体的高亲油性晶格能较大以致固体难以扩散/分散,难以溶解(K sp小),而且随放置时间的延长缔合/聚集进一步加剧导致溶解度进一步的降低(K sp逐步降低);溶液中,化合物稳定性亦显著下降(二氢卟吩铁溶液的基本性质初探,南京师大学报(自然科学版),43:1,2020,3:143-148)。由此可见,酸型卟吩大多分子极性小,脂溶性强而水溶性差,一般不溶或难溶于水,且常态下光热不稳定,产品固态低温保存虽可达足够的货架期,但溶液中尤其在水溶液中,遇光易分解,大田使用中需严格操作才易获良好效果,降低了产品使用的便利性,增加了产品使用效果的不确定性。为此,需要研制开发稳定性好、使用方便而活性强的产品以满足实际使用的需要。
发明内容
发明目的:为了解决现有技术存在的问题,本发明提供了天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用。所述天然卟吩盐光热稳定性好、活性强,防治效果好,能够快速配制水溶液,大田使用方便
技术方案:为了实现上述目的,本发明采用以下技术方案:
本发明制备系列天然来源的卟吩盐,包括卟吩类化合物的盐或二氢卟吩类化合物的盐。
本发明所用天然来源的卟吩类化合物或二氢卟吩类化合物,其中卟吩类化合物包括原卟啉及系列原卟啉螯合物,二氢卟吩类化合物包括脱镁叶绿酸及系列脱镁叶绿酸螯合物。
本发明所述卟吩类化合物的盐,由酸型的原卟啉或其系列螯合物与植物营养必需的金属离子成盐制备得到;所指的酸型原卟啉及其系列螯合物包括:原卟啉、氯化血红素(血红素)、羟基血红素;所指的植物营养必需的金属离子包括:钠、钾、铵、镁、钙、铁、锌、锰及铜的常规一价、二价或三价离子;
原卟啉是经动物血提取的血红素脱除螯合铁所得的产物,为天然来源的卟吩结构物;
本发明所述二氢卟吩类化合物的盐,由酸型的脱镁叶绿酸(二氢卟吩)及其系列螯合物与植物营养必需的金属离子成盐制备得到;所指的酸型脱镁叶绿酸及其系列酸型的螯合物包括:脱镁叶绿酸(二氢卟吩)、氯化叶绿酸铁(二氢卟吩铁)、羟基叶绿酸铁(羟基二氢卟吩铁)、叶绿酸铁(二氢卟吩亚铁、叶绿酸亚铁或叶绿酸铁II)、叶绿酸锌(二氢卟吩锌)、叶绿酸铜(二氢卟吩铜);所指的植物营养必需的金属离子包括:钠、钾、铵、镁、钙、铁、锌、锰及铜的常规一价、二价或三价离子;
二氢卟吩也称脱镁叶绿酸,是由植物或蚕沙提取的叶绿素水解脱金属镁所得的产物,为二氢卟吩母核结构的多种单体混合物,主要含有:脱镁叶绿酸a、焦脱镁叶绿酸a、二氢卟吩e6、二氢卟吩e4、二氢卟吩f、二氢卟吩p6和紫红素18等多种单体化合物。
本发明的卟吩盐,可以市场购得的叶绿酸类产品如脱镁叶绿酸(钠盐)、叶绿酸铜钠盐、叶绿酸铁钠盐、叶绿酸锌钠盐、二氢卟吩铁、原卟啉钠或血红素等为原料经过制备而得,一般可得95%以上含量(光度法测定)的卟吩盐产物。
本发明的卟吩类化合物或二氢卟吩类化合物的盐的制备,其中一价金属离子盐可以通过酸型的卟吩类化合物或二氢卟吩类化合物以醇为溶剂配制溶液,与一价金属氢氧化物的醇溶液混合沉淀,或酸型的卟吩类化合物或二氢卟吩类化合物与一价金属氢氧化物水溶液中成盐再以丙酮为溶剂沉淀,或酸型的卟吩类化合物或二氢卟吩类化合物与一价金属氢氧化物以丙酮为溶剂配制溶液后通入干燥氨气进行沉淀,最后过滤、洗涤后干燥而制得。
上述一价金属氢氧化物包括:氢氧化钠、氢氧化钾、氨水等。
本发明的卟吩类化合物或二氢卟吩类化合物的一价金属离子盐包括:原卟啉钾、原卟啉铵、氯化血红素钠(血红素钠,下同)、氯化血红素钾、氯化血红素铵、羟基血红素钾、羟基血红素铵、二氢卟吩铁钠盐(氯化叶绿酸铁钠盐,下同)、二氢卟吩铁钾盐、二氢卟吩铁铵盐、羟基叶绿酸铁钾盐、羟基叶绿酸铁钠盐、羟基叶绿酸铁铵盐、叶绿酸 铁钾盐、叶绿酸铁铵盐、二氢卟吩钠盐(脱镁叶绿酸钠盐,下同)、二氢卟吩钾盐、二氢卟吩铵盐、叶绿酸锌铵盐、叶绿酸铜铵盐等。
本发明的卟吩类化合物或二氢卟吩类化合物的盐的制备,其中二价或三价金属离子盐可以卟吩类化合物或二氢卟吩类化合物钠/钾盐的水溶液与可溶性二价或三价金属离子盐的水溶液经混合,沉淀,过滤、洗涤再干燥而方便地制得。
上述可溶性二价或三价金属离子盐包括:二价或三价金属离子的硫酸盐、盐酸盐、硝酸盐等。
本发明的卟吩类化合物或二氢卟吩类化合物的二价金属离子盐包括:原卟啉镁、原卟啉钙、原卟啉亚铁、原卟啉锰、原卟啉锌、原卟啉铜、氯化血红素镁、氯化血红素钙、氯化血红素亚铁、氯化血红素锰、氯化血红素锌、氯化血红素铜、羟基血红素镁、羟基血红素钙、羟基血红素亚铁、羟基血红素锰、羟基血红素锌、羟基血红素铜、二氢卟吩铁镁盐、二氢卟吩铁钙盐、二氢卟吩铁亚铁盐、二氢卟吩铁锰盐、二氢卟吩铁锌盐、二氢卟吩铁铜盐、羟基叶绿酸铁镁盐、羟基叶绿酸铁钙盐、羟基叶绿酸铁亚铁盐、羟基叶绿酸铁锰盐、羟基叶绿酸铁锌盐、羟基叶绿酸铁铜盐、叶绿酸铁镁盐、叶绿酸铁钙盐、叶绿酸铁亚铁盐、叶绿酸铁锰盐、叶绿酸铁锌盐、叶绿酸铁铜盐、二氢卟吩镁盐、二氢卟吩亚铁盐、二氢卟吩锰盐、二氢卟吩锌盐、二氢卟吩铜盐、叶绿酸锌镁盐、叶绿酸锌钙盐、叶绿酸锌亚铁盐、叶绿酸锌锰盐、叶绿酸锌锌盐、叶绿酸锌铜盐、叶绿酸铜镁盐、叶绿酸铜钙盐、叶绿酸铜亚铁盐、叶绿酸铜锰盐、叶绿酸铜锌盐、叶绿酸铜铜盐等。
本发明的卟吩类化合物或二氢卟吩类化合物的三价金属离子盐包括:原卟啉铁盐、氯化血红素铁盐、羟基血红素铁盐、二氢卟吩铁铁盐(氯化叶绿酸铁铁盐)、羟基叶绿酸铁铁盐、叶绿酸铁铁盐、二氢卟吩铁盐、叶绿酸锌铁盐、叶绿酸铜铁盐等。
本发明的卟吩盐用作植物生长调节剂或植物免疫诱抗剂使用,所指的卟吩盐包括:
原卟啉的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
氯化血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
羟基血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
二氢卟吩铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
羟基叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
二氢卟吩的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
叶绿酸锌的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
叶绿酸铜的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐。
本发明的卟吩盐,保持有卟吩的大环结构,紫外及可见光谱Soret带和Q带仍具有特征吸收,各谱带最大吸收峰(λ max)因为成盐金属离子的影响而较酸型卟吩产生一定位移,可见光区Q带虽然吸收相对较弱,但仍然使卟吩盐类产品保持有较深的颜色,水溶液中,其Soret带光谱(360~420nm)吸收强容易观察到差异,因此可作为成盐产物的鉴别或验证(卟啉及其衍生物的紫外-可见光谱,光谱实验室,28:3,2011,5:1165-1169),也是光度法测定卟吩类产品含量的基本依据(食品安全国家标准,食品添加剂叶绿素铜钾盐GB1886.307-2020)。与酸型卟吩相比,卟吩盐由于金属的给电子特性导致卟吩环共轭结构电子密度的增加,Soret带λ max出现红移,金属性越强红移幅度越大,如血红素(20%甲醇水溶液)λ max=368nm,其碱金属和碱土金属盐(水溶液中):血红素钠、血红素钾、血红素镁、血红素钙λ max皆红移到393nm~395nm,过渡金属盐由于d轨道参与共轭、离子价态、元素电负性及d电子数等因素均能影响卟吩电子密度的变化,因此λ max红移幅度大小不一,如血红素锰盐395nm,λ max红移幅度与碱金属盐相同,可能与价层d 5电子结构及锰电负性(1.5)较小有关;血红素锌盐377nm,价层d 10电子,锌电负性(1.6)比锰稍大红移幅度即明显降低;血红素亚铁(II)盐和血红素铁(III)盐,λ max分别为371nm和373nm,与铁价态高提供的电子数多相对应,而原卟啉亚铁盐与原卟啉铁盐λ max分别为362nm和356nm,原卟啉环上无螯合金属,铁(III)盐却发生蓝移,可能与其价层d 5结构易接受反馈电子而降低卟吩共轭电子密度相关;血红素铜盐出现蓝移λ max为367nm,可能与铜价层d 9结构特性及较大电负性1.9有关。
本发明的卟吩盐,热分析(DTA/TG)显示明显的脱水吸热过程(88~120℃),热重(TG)测定显示,通常一价金属盐脱2摩尔水、二价金属盐脱3摩尔水,对比之下,酸型卟吩分解前通常无明显失重或失重明显低于相应的盐,说明酸型样品内部不含水或含水极少,固体内部结构致密;差热(DTA)显示,卟吩盐常常表现明显或突出的吸热峰/放热峰,样品脱水后随温度升高体系比热逐步增大,但无相变特征峰,分解温度大多高于对应的酸型卟吩,由于脱水温度偏高且吸热区间较大(脱水所需能量大),说明卟吩成盐后吸附的少量固态水主要以水合离子的形式存在;酸型卟吩差热曲线则相对平坦,吸热峰放热峰都不明显。
本发明的卟吩盐,一价金属离子盐具有良好的水溶性,二价/三价金属离子盐可溶或微溶于水,且溶解性均明显高于对应的酸型卟吩;卟吩盐水溶液在本发明用途的稀浓度 下(10ppm~0.001ppm)均显中性或甚至弱酸性(pH=6.5~7.5)适于植物生理要求,而且光热稳定性好,加速试验表明,本发明的卟吩盐固体存放2年以上含量无变化,水溶液遮光下无明显降解,一般正常光照条件下(非直射强光)水溶液2~3小时含量无明显降低,能够满足大田需要且方便使用。
试验证明,本发明的卟吩盐水溶液直射高强光(照度30000lux)条件下1~3小时,含量均显著高于现有的酸型产品氯化血红素及二氢卟吩铁。
本发明的卟吩盐直接加水搅拌即可以方便地稀释配制成卟吩盐含量0.01ppm~10ppm(约0.014μmol/L~14.0μmol/L)的溶液作为植物生长调节剂或植物免疫诱抗剂使用。
本发明的卟吩盐的0.001ppm~0.1ppm溶液可用于种子浸种和作物田间灌溉;0.01ppm~10.0ppm溶液用于作物叶面喷洒。以促进种子萌发、提高发芽率、增加根长、促进根部生长,增强植物免疫力及抗逆作用,加快幼苗生长、提高叶绿素含量、延缓植物早衰、增加产量提高品质。
本发明的卟吩盐仍保持了酸型二氢卟吩的叶绿素酶抑制作用,其体外试验证明叶绿素酶抑制率随盐样品浓度的升高而增大,为典型的竞争型抑制剂;试验证明,本发明的卟吩盐还具有多重植物信号调控作用,如调控作物根部NO浓度而促进根系生长、诱导盐胁迫下植物叶片SOD、CAT和POD活力的升高、促进体内脯氨酸释放等等,进而能够减轻盐胁迫造成的氧化损伤,增强作物抗逆性、也能够显著缓解除草剂产生的药害而大幅提高作物产量。疫病抗性的离体试验证明:本发明的卟吩盐具有优良的植物免疫诱抗活性,能够显著减弱辣椒疫霉菌的侵染,对人工接种疫霉孢子辣椒植株疫病具有显著防治效果,2.0ppm溶液喷洒防效达71.89%,二氢卟吩铁钠盐0.2ppm溶液喷洒防治烟草病害大田试验证明防效达71.00%,能够显著提高植物抗逆性,从而增加作物产量。
技术效果:相对于现有技术,本发明的卟吩盐稳定性好,长期存放质量稳定可靠、货架期长易于携带运输;产品水溶性好,易制得水溶液且含量稳定大田使用重现性好;使用浓度低、活性强、防效高,使用方便;原料天然、来源丰富,制备无排放、无污染,节能环保。尤其是作为免疫诱抗剂,防效高,使用效果显著优于现有产品。
附图说明
图1:叶绿酸铁钠盐与叶绿酸铁DTA/TG(差热/热重)分析对比:上:DTA(差热);下:TG(热重)
图2:氯化血红素及氯化血红素镁溶液强光照射3小时稳定性试验的紫外吸光光度扫描谱图。
具体实施方式
下面结合具体实例,进一步阐明本发明。
实施例1:称取原卟啉5.0克溶解于1000毫升乙醇中,搅拌下缓慢滴加10%氢氧化钾的乙醇溶液12.0毫升,冰箱放置过夜,过滤,冷乙醇洗涤,减压干燥,得原卟啉钾盐约4.35克,紫褐色固体>302℃分解(DTA/TG),易溶于水,λ max=372nm(水溶液)。
实施例2:称取原卟啉5.0克溶解于1000毫升丙酮中,搅拌下缓慢通入干燥的氨气至饱和,放置过夜,过滤,少量冷丙酮洗涤,减压干燥,得原卟啉铵盐约3.11克,紫褐色固体>296℃分解(DTA/TG),易溶于水,λ max=371nm(水溶液)。
实施例3:称取原卟啉钠盐5.0克搅拌溶解于100毫升水,另外称取硫酸镁5.0克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得原卟啉镁盐约3.50克,紫褐色固体>361℃分解(DTA/TG),可溶于水,λ max=355nm(水溶液)。
实施例4:称取原卟啉钠盐5.0克搅拌溶于100毫升水,另外称取硫酸钙4.5克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得原卟啉钙盐约3.93克,紫褐色固体>365℃分解(DTA/TG),可溶于水,λ max=356nm(水溶液)。
实施例5:称取原卟啉钠盐5.0克搅拌溶于100毫升水,另外称取硫酸锰6.0克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得原卟啉锰盐约3.83克,紫褐色固体>367℃分解(DTA/TG),可溶于水,λ max=357nm(水溶液)。
实施例6:称取原卟啉钠盐5.0克搅拌溶于100毫升水,另外称取硫酸亚铁6.5克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得原卟啉亚铁盐约4.51克,紫褐色固体>359℃分解(DTA/TG),可溶于水,λ max=362nm(水溶液)。
实施例7:称取原卟啉钠盐5.0克搅拌溶解于100毫升水,另外称取三氯化铁4.5克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置1小时,过滤,冷水洗涤,减压干燥,得原卟啉铁盐约4.63克,紫褐色固体>367℃分解(DTA/TG), 微溶于水,λ max=356nm(水溶液)。
实施例8:称取原卟啉钠盐5.0克搅拌溶解于100毫升水,另外称取硫酸锌5.0克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得原卟啉锌盐约4.23克,紫褐色固体>361℃分解(DTA/TG),微溶于水,λ max=358nm(水溶液)。
实施例9:称取原卟啉钠盐5.0克搅拌溶于100毫升水,另外称取硫酸铜6.0克搅拌溶解于50毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得原卟啉铜盐约4.72克,紫褐色固体>363℃分解(DTA/TG),微溶于水,λ max=382nm(水溶液)。
实施例10:称取氯化血红素10.0克溶于1000毫升乙醇中,搅拌下缓慢滴加10%氢氧化钾的乙醇溶液25.0毫升,放置过夜,过滤,冷乙醇洗涤,减压干燥,得氯化血红素钾盐约7.14克,黑色固体粉末>251℃分解(DTA/TG),易溶于水,λ max=394nm(水溶液)。
实施例11:称取氯化血红素10.0克溶于1000毫升乙醇中,搅拌下缓慢滴加10%氢氧化钠的乙醇溶液25.0毫升,放置过夜,过滤,冷乙醇洗涤,减压干燥,得氯化血红素钠盐约9.33克,黑色固体粉末>264℃分解(DTA/TG),易溶于水,λ max=393nm(水溶液)。
对比样品:羟基血红素钠盐制备
按照文献(氯化血红素钠的制备,化学世界,2004.10:540~541)方法:氯化血红素10.0克溶于120毫升0.2mol/L的NaOH溶液,搅拌6小时,过滤,向滤液中缓缓加入1000毫升丙酮(8倍量以上),析出黑色沉淀,放置过夜,过滤,少许丙酮洗涤,减压干燥得黑色固体8.7克,易溶于水,λ max=384nm(水溶液)。
对比试验1:Cl -离子检出
试剂:HNO 3溶液(4mol/L)、AgNO 3试液(0.1mol/L)
方法:分别取上述制备沉淀过滤产物后的滤液(反应母液),旋转蒸发分别回收溶剂乙醇或丙酮至完全,冷却,得残留固体,分别加约20毫升纯水溶解,再以HNO 3调至中性(pH≈7)得待检溶液;取少许待检溶液(0.5~1毫升)加入试管,滴加AgNO 3试液数滴,观察有无沉淀/浑浊,产生浑浊则继续缓慢加入HNO 3少许,观察变化。
结果:乙醇滤液回收后所得的待检溶液无浑浊,未检出Cl -离子。
丙酮滤液回收后所得的待检溶液产生沉淀(AgCl↓),加入HNO 3后沉淀无变化, 检出Cl -离子。
说明:乙醇中制备产物(本实施例)为氯化血红素钠。氯化血红素碱性溶液加丙酮沉淀(文献方法)制备对比样品过程中氯离子被羟基取代进入反应溶液中(生成NaCl),所得产物是不含氯的(被羟基取代),应该是羟基血红素钠,而不是氯化血红素钠。
对比试验2:样品紫外最大吸收波长(λ max)测定
样品:氯化血红素钠、羟基血红素钠、氯化血红素
试剂:纯水、NaOH溶液0.1mol/L
仪器:岛津UV2600紫外分光光度仪
方法:称取适量样品,用纯水或NaOH溶液溶解,再稀释成约20.0ppm浓度的溶液,紫外仪扫描测定样品最大吸收波长λ max(结构特征),结果见下表:
样品在不同溶剂中的紫外最大吸收波长(λ max)
Figure PCTCN2022117298-appb-000001
结果:NaOH溶液中,三个样品的特征吸收皆为384nm,说明氯化血红素中与中心铁结合的轴向氯基团在较高OH -离子浓度下被羟基取代,生成产物羟基血红素钠。而水溶液配制的溶液中,OH -离子浓度不高(20ppm氯化血红素钠溶液pH=7.5),氯基团得以保留,本实施例样品显示氯化血红素钠特征吸收393nm;而文献法制备的对比样品与NaOH溶液的特征值完全相同,显示样品为羟基血红素钠。
血红素中心铁的轴向配位基团氯和羟基具有不同的给/吸电子能力,其作用结果与元素电负性、孤电子对及价层电子结构相关,氯元素电负性3.0,具有3p价层结构,与中心铁的轴向结合时可用5对孤电子;羟基中氧元素电负性3.5,为2p价层结构,与中心铁的轴向结合的氧可用孤电子为4对。由此可见,相对氯而言,羟基具有更强的吸电子和弱的反馈电子能力,因此羟基配位导致卟吩共轭结构的电子密度有所降低,特征吸收Soret谱带由393nm蓝移到羟基血红素钠的384nm。
实施例12:称取氯化血红素5.0克溶解于1000毫升丙酮中,搅拌下缓慢通入干燥的氨气至饱和,放置过夜,过滤,少许冷丙酮洗涤,减压干燥,得氯化血红素铵盐约3.60克,褐色固体>243℃分解(DTA/TG),易溶于水,λ max=386nm(水溶液)。
实施例13:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取硫酸镁11.0克搅拌溶解于100毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素镁盐约7.19克,深褐色固体>292℃分解(DTA/TG),可溶于水,λ max=395nm(水溶液)。
实施例14:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取氯化钙9.0克搅拌溶解于100毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素钙盐约7.37克,深褐色固体>311℃分解(DTA/TG),可溶于水,λ max=395nm(水溶液)。
实施例15:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取硫酸锰11.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素锰盐约8.57克,深褐色固体>329℃分解(DTA/TG),微溶于水,λ max=395nm(水溶液)。
实施例16:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取硫酸亚铁14.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素亚铁盐约8.63克,深褐色固体>327℃分解(DTA/TG),微溶于水,λ max=373nm(水溶液)。
实施例17:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取氯化铁11.0克搅拌溶解于120毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素铁盐约9.06克,深褐色固体>334℃分解(DTA/TG),微溶于水,λ max=371nm(水溶液)。
实施例18:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取硫酸锌14.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素锌盐约9.13克,深褐色固体>274℃分解(DTA/TG),微溶于水,λ max=377nm(水溶液)。
实施例19:称取氯化血红素钠盐10.0克搅拌溶解于200毫升水,另外称取硫酸铜15.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得氯化血红素铜盐约9.06克,深褐色固体>248℃分解(DTA/TG),微溶于水,λ max=367nm(水溶液)。
实施例20:称取二氢卟吩铁母药(南京百特生物工程有限公司生产,下同)1000.0 克,混合于15升工业酒精,搅拌使充分溶解,缓慢滴加2.5升15%氢氧化钾乙醇溶液,沉淀放置过夜,过滤,冷乙醇洗涤,减压干燥,得896.0克二氢卟吩铁钾盐,墨绿色粉末>313℃分解(DTA/TG),易溶于水,λ max=400nm(水溶液)。
实施例21:称取二氢卟吩铁母药1000.0克,混合于15升工业酒精,使充分溶解,缓慢滴加2.3升15%氢氧化钠乙醇溶液,沉淀放置过夜,过滤,冷乙醇洗涤,减压干燥,得907克二氢卟吩铁钠盐,墨绿色粉末>301℃分解(DTA/TG),易溶于水,λ max=399nm(水溶液)。
实施例22:称取二氢卟吩铁母药100.0克,用1.5升丙酮混合,使溶解,缓慢通入干燥的氨气,产生沉淀,放置过夜,过滤,冷丙酮洗涤,减压干燥,得约51.2克二氢卟吩铁铵盐,墨绿色粉末>270℃分解(DTA/TG),易溶于水,λ max=401nm(水溶液)。
实施例23:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取六水氯化镁110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤2次,压滤,再减压干燥,得73.1克二氢卟吩铁镁盐,墨绿色粉末>302℃分解(DTA/TG),可溶于水,λ max=400nm(水溶液)。
实施例24:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取二水氯化钙100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得80.2克二氢卟吩铁钙盐,墨绿色粉末>377℃分解(DTA/TG),可溶于水,λ max=399nm(水溶液)。
实施例25:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取四水氯化亚铁110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得91.1克二氢卟吩铁亚铁盐,墨绿色粉末>303℃分解(DTA/TG),微溶于水,λ max=401nm(水溶液)。
实施例26:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取六水三氯化铁110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得89.2克二氢卟吩铁铁盐,墨绿色粉末>329℃分解(DTA/TG),微溶于水,λ max=405nm(水溶液)。
实施例27:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取四水氯化锰100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得87.8克二氢卟吩铁锰盐,墨绿色粉末>299℃分解(DTA/TG),微溶于水,λ max=400nm(水溶液)。
实施例28:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取氯化锌100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得91.4克二氢卟吩铁锌盐,墨绿色粉末>300℃分解(DTA/TG),微溶于水,λ max=399nm(水溶液)。
实施例29:称取二氢卟吩铁钠盐100.0克搅拌溶解于1升水,另外称取二水氯化铜95.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得87.2克二氢卟吩铁铜盐,墨绿色粉末>222℃分解(DTA/TG),微溶于水,λ max=398nm(水溶液)。
实施例30:称取市售叶绿酸铁钠盐1000.0克搅拌溶解于10升水,室温搅拌下缓慢滴加15%稀硫酸,至pH=3~4止,避光放置过夜,过滤,冷水洗涤2次,压滤,再减压干燥,所得叶绿酸铁用15升工业酒精混合,搅拌溶解后,缓慢滴加2.5升15%氢氧化钾乙醇溶液,沉淀放置过夜,过滤,冷乙醇洗涤,减压干燥,得约783.0克叶绿酸铁钾盐,墨绿色粉末>309℃分解(DTA/TG),易溶于水,λ max=397nm(水溶液)。
实施例31:称取市售叶绿酸铁钠盐100.0克搅拌溶解于1升水,室温搅拌下缓慢滴加15%稀硫酸,至pH=3~4止,避光放置过夜,过滤,冷水洗涤2次压滤,再减压干燥,所得叶绿酸铁用1.5升丙酮混合使溶解,搅拌下缓慢通入干燥的氨气,产生沉淀,放置过夜,过滤,冷丙酮洗涤,减压干燥,得约37.2克叶绿酸铁铵盐,墨绿色粉末>224℃分解(DTA/TG),易溶于水,λ max=398nm(水溶液)。
实施例32:称取市售叶绿酸铁钠盐100.0克搅拌溶解于1升水,另外称取硫酸亚铁120.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得90.9克叶绿酸铁亚铁盐,墨绿色粉末>278℃分解(DTA/TG),微溶于水,λ max=400nm(水溶液)。
实施例33:称取市售叶绿酸铁钠盐100.0克搅拌溶解于1升水,另外称取氯化铁90.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得91.6克叶绿酸铁铁盐,墨绿色粉末>343℃分解(DTA/TG),微溶于水,λ max=399nm(水溶液)。
实施例34:称取市售叶绿酸铁钠盐100.0克搅拌溶解于1升水,另外称取硫酸铜110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得91.2克叶绿酸铁铜盐,墨绿色粉末>208℃分解(DTA/TG),微溶于水,λ max=401nm(水溶液)。
实施例35:称取市售叶绿酸锌钠盐500.0克,用5升纯净水溶解,搅拌下稀硫酸调pH至4-5,析出沉淀,过滤,水洗,烘干得叶绿酸锌。称取叶绿酸锌100.0克,用1.5升丙酮混合,使溶解,缓慢通入干燥的氨气,产生沉淀,放置过夜,过滤,冷丙酮洗涤,减压干燥,得约40.2克叶绿酸锌铵盐,黑色粉末>251℃分解(DTA/TG),易溶于水,λ max=404nm(水溶液)。
实施例36:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取六水氯化镁100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤2次,压滤,再减压干燥,得87.6克市售叶绿酸锌镁盐,黑色粉末>333℃分解(DTA/TG),可溶于水,λ max=405nm(水溶液)。
实施例37:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取二水氯化钙100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得83.7克叶绿酸锌钙盐,黑色粉末>365℃分解(DTA/TG),可溶于水,λ max=405nm(水溶液)。
实施例38:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取四水氯化亚铁120.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得90.2克叶绿酸锌亚铁盐,黑色粉末>371℃分解(DTA/TG),微溶于水,λ max=406nm(水溶液)。
实施例39:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取六水三氯化铁100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得89.8克叶绿酸锌铁盐,黑色粉末>341℃分解(DTA/TG),微溶于水,λ max=403nm(水溶液)。
实施例40:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取四水氯化锰100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得90.7克叶绿酸锌锰盐,黑色粉末>336℃分解(DTA/TG),微溶于水,λ max=404nm(水溶液)。
实施例41:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取氯化锌100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得92.5克叶绿酸锌锌盐,黑色粉末>320℃分解(DTA/TG),微溶于水,λ max=409nm(水溶液)。
实施例42:称取市售叶绿酸锌钠盐100.0克搅拌溶解于1升水,另外称取二水氯化铜95.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得90.3克叶绿酸锌铜盐,黑色粉末>271℃分解(DTA/TG),微溶于水,λ max=409nm(水溶液)。
实施例43:称取市售叶绿酸铜钠盐100.0克搅拌溶解于2升水,室温搅拌下缓慢滴加15%稀硫酸,至pH=3~5止,避光放置过夜,过滤,冷水洗涤2次压滤,再减压干燥,得叶绿酸铜,用2升工业酒精混合,搅拌溶解后,缓慢滴加250毫升15%氢氧化钾乙醇溶液,沉淀放置过夜,过滤,冷乙醇洗涤,减压干燥,得约79.8克叶绿酸铜钾盐,墨绿色粉末>296℃分解(DTA/TG),易溶于水,λ max=405nm(水溶液)。
实施例44:称取市售叶绿酸铜钠盐100.0克搅拌溶解于2升水,室温搅拌下缓慢滴加15%稀硫酸,至pH=3~5止,避光放置过夜,过滤,冷水洗涤2次压滤,再减压干燥,得叶绿酸铜,用2升丙酮混合,搅拌溶解后,缓慢通入干燥氨气产生沉淀至饱和后停止,沉淀放置过夜,过滤,冷丙酮洗涤,减压干燥,得约44.6克叶绿酸铜铵盐,墨绿色粉末>277℃分解(DTA/TG),易溶于水,λ max=404nm(水溶液)。
实施例45:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取硫酸镁100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得74.1克叶绿酸铜镁盐,墨绿色粉末>280℃分解(DTA/TG),可溶于水,λ max=406nm(水溶液)。
实施例46:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取氯化钙90.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得87.4克叶绿酸铜钙盐,墨绿色粉末>305℃分解(DTA/TG),可溶于水,λ max=405nm(水溶液)。
实施例47:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取四水氯化锰90.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得70.3克叶绿酸铜锰盐,墨绿色粉末>311℃分解(DTA/TG),可溶于水,λ max=405nm(水溶液)。
实施例48:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取硫酸亚铁120.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得90.4克叶绿酸铜亚铁盐,墨绿色粉末>266℃分解(DTA/TG),微溶于水,λ max=403nm(水溶液)。
实施例49:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取氯化铁90.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得89.7克叶绿酸铜铁盐,墨绿色粉末>357℃分解(DTA/TG),微溶于水,λ max=406nm(水溶液)。
实施例50:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取氯化锌100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得90.5克叶绿酸铜锌盐,墨绿色粉末>263℃分解(DTA/TG),微溶于水,λ max=404nm(水溶液)。
实施例51:称取市售叶绿酸铜钠盐100.0克搅拌溶解于1升水,另外称取硫酸铜110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得91.7克叶绿酸铜铜盐,墨绿色粉末>242℃分解(DTA/TG),微溶于水,λ max=404nm(水溶液)。
实施例52:称取市售叶绿酸镁钠盐1000克,混合溶解于20升预热60℃的纯净水中,停止加热,缓慢滴加稀硫酸,至pH=3~4止,避光放置过夜,过滤,冷水洗涤2次压滤,再减压干燥,得脱镁叶绿酸(二氢卟吩)886.3克。将干燥的二氢卟吩100.0克溶解于1.6升工业酒精,搅拌使充分溶解,缓慢滴加300毫升15%氢氧化钾乙醇溶液,产生沉淀,沉淀放置过夜,过滤,冷乙醇洗涤,减压干燥,得69.2克二氢卟吩钾盐,黑色粉末>283℃分解(DTA/TG),易溶于水,λ max=405nm(水溶液)。
实施例53:称取干燥的二氢卟吩1000克(按照实施例52方法制备),混合于15升工业酒精,使充分溶解,缓慢滴加2.3升15%氢氧化钠的乙醇溶液,沉淀放置过夜,过滤,冷乙醇洗涤,减压干燥,得723.0克二氢卟吩钠盐,黑色粉末>277℃分解(DTA/TG),易溶于水,λ max=404nm(水溶液)。
实施例54:称取干燥的二氢卟吩100.0克(按照实施例52方法制备),用1.5升丙酮混合,使溶解,缓慢通入干燥的氨气,产生沉淀,放置过夜,过滤,冷丙酮洗涤,减压干燥,得约37.6克二氢卟吩铵盐,褐色粉末>281℃分解(DTA/TG),易溶于水,λ max=403nm(水溶液)。
实施例55:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取六水氯化镁110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤2次,压滤,再减压干燥,得80.7克二氢卟吩镁盐,深褐色粉末>312℃分解(DTA/TG),可溶于水,λ max=404nm(水 溶液)。
实施例56:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取二水氯化钙100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得83.1克二氢卟吩钙盐,黑色粉末>373℃分解(DTA/TG),可溶于水,λ max=404nm(水溶液)。
实施例57:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取四水氯化亚铁110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得83.9克二氢卟吩亚铁盐,黑色粉末>292℃分解(DTA/TG),微溶于水,λ max=405nm(水溶液)。
实施例58:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取六水三氯化铁110.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得84.5克二氢卟吩铁盐,黑色粉末>303℃分解(DTA/TG),微溶于水,λ max=403nm(水溶液)。
实施例59:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取四水氯化锰100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得81.4克二氢卟吩锰盐,黑色粉末>284℃分解(DTA/TG),微溶于水,λ max=404nm(水溶液)。
实施例60:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取氯化锌100.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得86.0克二氢卟吩锌盐,黑色粉末>349℃分解(DTA/TG),微溶于水,λ max=409nm(水溶液)。
实施例61:称取二氢卟吩钠盐(按照实施例53方法制备)100.0克搅拌溶解于1升水,另外称取二水氯化铜95.0克搅拌溶解于500毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得84.6克二氢卟吩铜盐,黑色粉末>245℃分解(DTA/TG),微溶于水,λ max=405nm(水溶液)。
实施例62:称取氯化血红素10.0克溶于1000毫升6.0%氢氧化钾水溶液中,避光搅拌5小时,缓慢加入8000毫升丙酮,避光搅拌1小时后放置过夜,过滤,冷丙酮洗涤,减压干燥,得羟基血红素钾盐约8.37克,黑色固体粉末>303℃分解(DTA/TG),易溶于水,λ max=388nm(水溶液)。
实施例63:称取羟基血红素钾5.0克溶解于1000毫升水,避光搅拌下缓慢滴加5%硫酸至pH≈4,放置过夜,过滤,水洗滤饼至中性,减压干燥,所得固体溶解于1000毫升丙酮中,搅拌下缓慢通入干燥的氨气至饱和,放置过夜,过滤,少许冷丙酮洗涤,减压干燥,得羟基血红素铵盐约3.17克,褐色固体>287℃分解(DTA/TG),易溶于水,λ max=383nm(水溶液)。
实施例64:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取硫酸镁12.0克搅拌溶解于100毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,少许冷水洗涤,减压干燥,得羟基血红素镁盐约7.25克,深褐色固体>293℃分解(DTA/TG),可溶于水,λ max=387nm(水溶液)。
实施例65:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取氯化钙10.0克搅拌溶解于100毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得羟基血红素钙盐约7.46克,深褐色固体>307℃分解(DTA/TG),可溶于水,λ max=392nm(水溶液)。
实施例66:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取硫酸锰11.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得羟基血红素锰盐约8.12克,深褐色固体>322℃分解(DTA/TG),微溶于水,λ max=390nm(水溶液)。
实施例67:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取硫酸亚铁14.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得羟基血红素亚铁盐约7.71克,深褐色固体>331℃分解(DTA/TG),微溶于水,λ max=371nm(水溶液)。
实施例68:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取氯化铁11.0克搅拌溶解于120毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得羟基血红素铁盐约8.43克,深褐色固体>328℃分解(DTA/TG),微溶于水,λ max=367nm(水溶液)。
实施例69:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取硫酸锌14.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得羟基血红素锌盐约8.94克,深褐色固体>303℃分解(DTA/TG),微溶于水,λ max=375nm(水溶液)。
实施例70:称取羟基血红素钾盐10.0克搅拌溶解于200毫升水,另外称取硫酸 铜15.0克搅拌溶解于150毫升水,搅拌下缓慢将两溶液混合,继续搅拌1小时后放置过夜,过滤,冷水洗涤,减压干燥,得羟基血红素铜盐约8.22克,深褐色固体>266℃分解(DTA/TG),微溶于水,λ max=363nm(水溶液)。
实施例71:称取二氢卟吩铁母药(南京百特生物工程有限公司生产)100.0克,搅拌溶解于1000毫升6%氢氧化钾水溶液中,避光搅拌5小时,缓慢加入8000毫升丙酮,避光搅拌1小时后放置过夜,过滤,冷丙酮洗涤,减压干燥,得羟基叶绿酸铁钾盐9.02克,墨绿色粉末>320℃分解(DTA/TG),易溶于水,λ max=395nm(水溶液)。
实施例72:与实施例71相同,只是将氢氧化钠水溶液替代氢氧化钾溶液,制得羟基叶绿酸铁钠盐8.46克,墨绿色粉末>311℃分解(DTA/TG),易溶于水,λ max=396nm(水溶液)。
实施例73:称取羟基叶绿酸铁钠5.0克,溶于1000毫升水,避光搅拌下缓慢滴加5%硫酸至pH≈4,放置过夜,过滤,水洗滤饼至中性,减压干燥,所得固体溶解于1000毫升丙酮中,搅拌下缓慢通入干燥的氨气至饱和,放置过夜,过滤,少许冷丙酮洗涤,减压干燥,得羟基叶绿酸铁铵盐3.34克,墨绿色粉末>255℃分解(DTA/TG),易溶于水,λ max=404nm(水溶液)。
实施例74:称取羟基叶绿酸铁钠10.0克搅拌溶解于100毫升水,另外称取六水氯化镁11.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤2次,压滤,再减压干燥,得羟基叶绿酸铁镁盐7.27克,墨绿色粉末>317℃分解(DTA/TG),可溶于水,λ max=401nm(水溶液)。
实施例75:称取羟基叶绿酸铁钠10.0克搅拌溶解于100毫升水,另外称取二水氯化钙10.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得羟基叶绿酸铁钙盐7.71克,墨绿色粉末>332℃分解(DTA/TG),可溶于水,λ max=402nm(水溶液)。
实施例76:称取羟基叶绿酸铁钠10.0克搅拌溶解于110毫升水,另外称取四水氯化亚铁10.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得羟基叶绿酸铁亚铁盐9.26克,墨绿色粉末>315℃分解(DTA/TG),微溶于水,λ max=398nm(水溶液)。
实施例77:称取羟基叶绿酸铁钠10.0克搅拌溶解于110毫升水,另外称取六水三氯化铁10.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得羟基叶绿酸铁铁盐8.11克,墨绿 色粉末>304℃分解(DTA/TG),微溶于水,λ max=401nm(水溶液)。
实施例78:称取羟基叶绿酸铁钠10.0克搅拌溶解于100毫升水,另外称取四水氯化锰10.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得87.8克羟基叶绿酸铁锰盐,墨绿色粉末>331℃分解(DTA/TG),微溶于水,λ max=403nm(水溶液)。
实施例79:称取羟基叶绿酸铁钠10.0克搅拌溶解于100毫升水,另外称取氯化锌10.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得羟基叶绿酸铁锌盐8.67克,墨绿色粉末>327℃分解(DTA/TG),微溶于水,λ max=403nm(水溶液)。
实施例80:称取羟基叶绿酸铁钠10.0克搅拌溶解于100毫升水,另外称取二水氯化铜9.0克搅拌溶解于50毫升水,室温搅拌下缓慢混合两种溶液,产生沉淀,避光放置过夜,过滤,冷水洗涤,压滤,再减压干燥,得羟基叶绿酸铁铜盐8.42克,墨绿色粉末>264℃分解(DTA/TG),微溶于水,λ max=395nm(水溶液)。
实施例81:二氢卟吩铁钠盐与二氢卟吩铁差热/热重分析(DTA/TG)
测试仪器:岛津DTG-60差热-热重同步分析仪
测试样品:二氢卟吩铁钠盐,二氢卟吩铁
参比:三氧化二铝
测试气流:氮气
升温速度:10℃/分钟
升温范围:25℃~500℃
样品称量:4.3~4.5毫克
分析软件:ta60WS Ver.2.11
结果分析:测试得二氢卟吩铁钠盐和二氢卟吩铁的DTA/TG谱图,采用分析软件合并二样品谱图,结果见附图1,分别为样品DTA对比图(附图1:上图)和TG对比图(附图1:下图)。
由图可知,二氢卟吩铁成钠盐后样品DTA/TG谱图显示两样品皆无熔融相变峰(无熔点),而热响应差异十分明显。同量程下(uV),酸型的二氢卟吩铁DTA曲线(附图1:上图)平稳起伏波动不大,吸热峰/放热峰几乎平坦,而二氢卟吩铁钠盐则曲线起伏波动大,测试得到271.67℃和453.24℃的两个大的放热峰;90.46℃为二氢卟吩铁样品脱水或脱低沸点小分子的吸热峰,219.16℃为二氢卟吩铁样品分解放热峰,量程内样品 比热变化皆不明显(近似水平线);二氢卟吩铁钠盐脱水吸热明显,吸热峰移至71.7℃,吸热量增加明显,110℃后样品比热增大,曲线上杨,180℃开始分解而剧烈放热至271.67℃出现放热峰,453.24℃出现第二个放热峰进一步分解后比热开始降低,两样品热反应差异十分显著,盐样品分解点明显高于酸型样品。TG谱图(附图1:下图)对比可见,二氢卟吩铁140℃前TG变化平缓,样品有3.256%的少量失重,而二氢卟吩铁钠盐TG曲线下降较快,样品脱水失重7.511%与二分子水合(盐)含量相当;二氢卟吩铁180℃后出现缓慢失重(分解),至390℃失重加快(分解加剧),二氢卟吩铁钠盐200℃后开始明显失重(分解)至295℃失重率减小,405℃后失重率再增大(分解加剧),显示盐样品分解温度明显高于酸型样品。
结果说明,两样品受热只有分解点而无熔点,二氢卟吩铁成盐后热稳定性明显强于酸型样品。
实施例82:二氢卟吩铁钠盐等样品溶液的稀释及pH测定
样品:叶绿酸铁钠盐(市售食品添加剂,食品级,含量96%)、原卟啉钠(市售药品原料,医药级,含量95.0%)、二氢卟吩铁钠盐(光度法测定含量:95.5%,下同)、血红素钾(含量96.0%)、叶绿酸铁镁盐(含量97.3%)、血红素镁(含量95.7%),纯净水(pH=7);
仪器:FA1604N电子天平,PHS-3C台式酸度测定仪,超声仪,容量瓶;
方法:精密称取样品0.2500克置于25毫升容量瓶,以纯净水溶解,稀释至刻度即配制得1.00%(10000.0ppm)初始液,分取初始液用纯净水以不同比例稀释配制1000.0~0.1ppm浓度的系列溶液,每样重复三次测定,得其pH值。微溶性盐以饱和溶解度以下浓度配制溶液,称取适量样品,溶解后以相同方法稀释测定。其ppm浓度对应的mol/L浓度及溶液pH测定结果见下表:
各样品溶液不同ppm浓度对应的mol/L浓度与pH
Figure PCTCN2022117298-appb-000002
Figure PCTCN2022117298-appb-000003
如表所示:所测样品,易溶性钠/钾盐1%浓度(10000.0ppm)时溶液pH达10.21~10.95,显示强碱性,稀释十倍后依然显较强碱性;随浓度的进一步稀释,pH降低碱度明显下降,可溶性镁盐(100ppm)与钠/钾盐溶液pH相近,至30.0ppm时溶液pH<8.0(pH=7.50~7.63),此时溶液处于植物生理适应的pH范围;稀释至10.0ppm时溶液近中性;进一步稀释到本发明样品通常使用浓度1.0ppm~0.1ppm(~10 -6mol/L)区间时,样品溶液却意外地显弱酸性,所测样品中,叶绿酸铁钠盐(食品添加剂)和原卟啉钠(肝病治疗药物)均为市售产品,与本发明新制备的二氢卟吩铁钠盐和血红素钠盐等样品一样,稀溶液均意外地显弱酸型(未见文献报道)。
一般而言,酸溶液或碱溶液稀释到接近水离解氢离子浓度10 -7mol/L或更稀浓度时,溶液pH会接近于或约等于7.0,但不会超过7.0(由酸性变碱,或由碱性变酸)。强碱弱酸盐溶液,一般浓度条件下(浓度>>10 -7mol/L)由于弱酸酸根的水解,其盐的水溶液呈明显碱性,溶液稀释后随浓度的降低,盐的水解效应逐渐减弱,当稀释至10 -6~10 -7mol/L(本实施例样品浓度1.0ppm~0.1ppm)时,水离解提供的氢离子逐渐占主导,此时溶液的pH理应接近或约等于7.0,而本测定却pH<7.0,溶液意外的由弱碱性变为弱酸性,结果说明体系中存在酸性成分,即所测卟吩盐样品中可能含有少量/微量共存酸型卟吩, 这些残留的酸型卟吩是溶液稀释后显示弱酸性的重要原因。
酸型卟吩为多元酸,如原卟啉钠和血红素均为二元酸,二氢卟吩及螯合物等则是一元酸、二元酸与三元酸单体的混合物,本发明使用的可溶性钠盐、钾盐或铵盐样品均采用酸型卟吩在有机溶剂中加碱中和反应的沉淀法制备,镁盐等二价三价金属盐采用复分解反应沉淀法制备,成盐反应过程中,组分浓度、加碱速度、搅拌均匀度、反应温度等多种工艺因素制约着沉淀的形成和产物的构成。实验证明,卟吩盐制备过程中成盐不尽完全,或少量未反应的酸型分子同时被沉淀包夹,形成共沉淀的现象,另外平面卟吩分子易相互聚集的特点是其容易引发共沉淀的内在原因,由此制备中的成盐不完全在所难免。而这种意外的pH变化却提高了本发明产品的实用性,更适合于作物的生理条件,而更有利于大田作物的应用。
实施例83:样品溶液避光/光照稳定性测定
样品:卟吩盐和二氢卟吩盐共90个样品(含量均≥95.0%,光度法测定)
对照品:二氢卟吩铁,氯化血红素
仪器:岛津UV2600紫外分光光度仪,希玛AR813A光照度仪
测定:取适量盐样品加水溶解稀释配制成浓度≈10ppm的测试液;酸型对照品(极难溶于水)则以30%~50%乙醇水溶液配制成浓度≈10ppm测试液。
各试液配制后,即用紫外分光光度仪扫描200nm~800nm区间吸光度(0时),然后每样品试液分两份,一份试液室温25℃避光放置,另一份置于30000lux光照强度条件下,分别于1、2、3小时取溶液,重复扫描测定试液各时间点吸光度。
以各试液最大吸收峰0时(起始)吸光度值为100%相对含量,各时间点吸光度值与0时值比,计算得相对%含量。
结果:避光条件下,测试的盐样品及酸型对照样品含量皆基本保持不变,或个别有轻微降低(相对含量仍>96.5%)。
光照条件下对比试验,盐样品溶液稳定性与对照样品差异十分显著,仅以氯化血红素,氯化血红素镁盐溶液光照稳定性为例,其吸光度扫描对比如附图2所示:氯化血红素溶液光照1小时相对含量即降低至不足30%,3小时后含量仅20.21%,对应的氯化血红素镁盐3小时后相对含量75.61%,远高于酸型对照,二氢卟吩铁与其钠盐的对比也有相近结果。各对比样品相对含量变化见下表
避光/光照条件下样品溶液3小时相对%含量
Figure PCTCN2022117298-appb-000004
Figure PCTCN2022117298-appb-000005
进一步对比测定并计算了各样品溶液强烈光照条件下的相对含量降低50%时间(半衰期t 1/2),结果见下表:
避光/光照条件下样品溶液相对含量半衰期t 1/2(小时)
Figure PCTCN2022117298-appb-000006
结果显示:强光照下,对照品氯化血红素和二氢卟吩铁含量半衰期(t 1/2)分别为0.69小时和0.73小时,而其镁盐和钠盐的半衰期分别增加至6.0小时和3.41小时,增长了8.69倍和4.67倍,成盐化合物溶液的光照稳定性比酸型对照有显著地增强。而避光条件下样品盐型化合物溶液t 1/2也明显比酸型化合物溶液的长,说明盐型化合物稳定性好,更能适合大田复杂的应用环境,更具实际使用价值。
测试的90个盐型化合物水溶液(测定浓度:12ppm~25ppm)强光照射3小时稳定性,结果见下表:
系列盐样品溶液光照1~3小时浓度相对含量%变化
Figure PCTCN2022117298-appb-000007
Figure PCTCN2022117298-appb-000008
*:0小时相对含量100%
结果显示:本发明的系列盐型化合物皆表现出较强的稳定性,光照3小时后大多数样品溶液相对含量仍可保持50%以上,稳定性明显优于现有使用的酸型产品,因而更能满足实际的广泛需求,具备更高的实用价值。
实施例84:二氢卟吩铁钠盐、血红素钾、原卟啉钾对小麦发芽及幼苗生长的影响
供试品种:淮麦35
样品:二氢卟吩铁钠盐、血红素钾、原卟啉钾,清水对照(CK)
方法:各处理重复3次,各样品每次选取籽粒饱满、大小一致的种子50粒,次氯酸钠消毒5min,清水冲洗干净,分别置于铺入100g砂子的塑料盒中,倒入配好的样品溶液25ml,将种子排列整齐,盖上盖子,置于25℃恒温培养箱中培养。以小麦种子的芽长超过种子直径(长轴)的一半为发芽(判据标准);根据小麦生长情况,每日记录 种子的露白、发芽数量,第6天随机选取10株麦苗测定其根长、株高、根数,第7天测定根重以及地上部分重。所有指标数据测定均为3次重复。
三个样品不同浓度的小麦发芽率见下表1:
表1各样品浓度的小麦发芽率
Figure PCTCN2022117298-appb-000009
结果显示:与对照(CK=0ppm)相比,0.2500ppm~0.0025ppm浓度范围各样品皆表现出明显的促进小麦发芽的作用,其中0.2500ppm血红素钾促进发芽率效果最好,其他样品0.0250ppm浓度更好。
不同浓度二氢卟吩铁钠盐溶液的小麦幼苗根/苗的影响见下表2:
表2二氢卟吩铁钠盐对小麦幼苗生长的影响
Figure PCTCN2022117298-appb-000010
结果显示:二氢卟吩铁钠盐对小麦早期幼苗生长有不同的影响,有明显的促进根系的生长作用,而地上苗部分的作用相对较弱,0.0250ppm是适合使用的浓度。
不同浓度的血红素钾溶液小麦幼苗根/苗的影响见下表3:
表3不同浓度血红素钾对小麦幼苗生长的影响
Figure PCTCN2022117298-appb-000011
Figure PCTCN2022117298-appb-000012
结果可见:低浓度血红素钾(0.0250ppm或0.0025ppm)能够明显促进小麦幼苗地上部分的生长和根系数量的增加,而对根长促进效果则较弱。
不同浓度的原卟啉钾溶液小麦幼苗根/苗的影响见下表4:
表4不同浓度原卟啉钾对小麦幼苗生长的影响
Figure PCTCN2022117298-appb-000013
结果表明:低浓度原卟啉钾(0.0250ppm或0.0025ppm)具有一定的促进小麦根系生长的作用,而对幼苗期地上部分的生长,促进效果较弱。
实施例85:体外叶绿素酶抑制活性试验按照文献方法(西北植物学报,2003,23(5):750~754.)准确称取用绿豆叶制成的丙酮粉2.00g,以50mL磷酸缓冲液(pH 7.0~7.3)抽提4.0h后4℃~5℃离心10min,上清液活性酶浓度0.13mmol/L为叶绿素酶液。酶液中加入0.3ppm~30.0ppm浓度的二氢卟吩盐样品,然后加入底物叶绿素(120ppm),测定盐样品溶液各浓度的叶绿素酶抑制率,计算得盐样品叶绿素酶抑制活性IC 50值,结果见下表:
系列盐样品的叶绿素酶抑制活性IC 50
Figure PCTCN2022117298-appb-000014
Figure PCTCN2022117298-appb-000015
二氢卟吩盐保持了酸型二氢卟吩较强的叶绿素酶抑制活性,对实际应用具有重要意义和价值。
实施例86:诱导绿豆下胚轴不定根试验
试液配制:取市售STANLEY通用型水培营养液8毫升,用自来水稀释至3200毫升(稀释400倍),得稀营养液;称取原卟啉钠、氯化血红素钾等盐样品适量,用稀营养液配制得0.010ppm和0.1ppm的样品试液,各取150毫升;另取稀营养液150毫升,为空白对照,试液及对照液置于棕色瓶中,黑色薄膜敷口。选取生长统一、苗高均为7~8cm的绿豆幼苗,第一真叶节下3cm处切取,各瓶插入8根绿豆苗(去根),使下胚根浸泡入溶液。室温20-25℃,每2天换新溶液,共处理7天。处理第2~3天即显示明显差异,第7天观察测定,计算每插条平均不定根数及平均不定根总长,结果见下表:
Figure PCTCN2022117298-appb-000016
结果显示,试验各样品与空白对照相比均有明显促进绿豆下胚轴生根范围与生根数的作用,且作用效果均优于现有植物生长调节剂产品氯化血红素。
实施例87:水稻防治纹枯病增产实验(植物免疫诱抗剂应用)
地点:江苏省大丰区大中街道光明村众华家庭农场,选取地势平坦肥力较好的粘壤土大田6亩,前茬作物小麦。
试验水稻品种:南粳9108,
2021年5月16日播种,2021年6月12日移栽,机插株距18cm,行距25cm。
按GB/T17980.20-2000田间药效准则设2个处理,处理1:二氢卟吩铁钠盐3.0毫克/亩,处理2:清水(对照)。结合植物生长特点及病虫防治需求,分别于分蘖末期(2021年7月22日)、拔节孕穗期(2021年8月16日)、齐穗期(2021年8月30日)各喷洒施药一次,亩用水量分别为30升、45升和45升(浓度:0.100ppm、0.067ppm和0.067ppm),试验样品溶解稀释搅拌均匀后施药,各处理面积分别3亩。
收获前各处理分别以五点取样(每取样点20m 2)详细查验水稻纹枯病情,获得校正防治效果如下表:
Figure PCTCN2022117298-appb-000017
采收时间2021年11月8日,收获前夕调查产量组成、结构,然后实测亩产量,结果如下:
Figure PCTCN2022117298-appb-000018
从实验可看出二氢卟吩铁钠盐具有明显的防治水稻纹枯病作用,同时对水稻增产也有很好的效果,是性能良好的植物免疫诱抗剂。
实施例88:水稻防治叶瘟病增产实验(植物免疫诱抗剂应用)
地点:江苏省大丰区大中街道光明村众华家庭农场,前茬作物油菜。
试验地块:地势平坦,粘壤土,肥力较好;
水稻品种:南粳9108;
2021年5月16日播种,2021年6月14日移栽,机插株距18cm,行距25cm。
实验按照田间药效准则GB/T17980.19-2000实验规范进行,试验设2个处理,处理1:二氢卟吩铁钠盐,处理2:空白对照(水),充分稀释溶解再施药。结合病虫防治特点,分别于分蘖末期(2021年7月22日)、拔节孕穗期(2021年8月16日)、齐穗期(2021年8月30日)各施药一次,施药量:二氢卟吩铁钠盐3毫克/亩,三次亩用水量分别为30L、45L和45L(样品浓度:0.1ppm、0.067ppm和0.067ppm)。各处理面积分别3亩,按照五点取样法,每个处理设取样点5个(每取样点20m 2)。在收获前田间调查水稻叶瘟病发生情况,其校正防治效果如下表:
Figure PCTCN2022117298-appb-000019
试验结果显示,二氢卟吩铁钠盐能显著提升水稻对水稻叶瘟病的抵抗力,具有植物免疫诱抗剂的应用效果。
采收时间202年11月8日,收获前夕调查产量组成结构,然后实测亩产量,样品增产效果明显,具体结果如下表:
Figure PCTCN2022117298-appb-000020
实施例89:喷洒血红素钾盐溶液辣椒增产试验
实验地点:德州市武城县武城镇李塘坊村,
试验地:中壤土,肥力中上,前茬作物:高粱。
试验品种:河北鸡泽椒;种植密度:3500棵/亩;
种植方式:机械移栽;
种植时间:2020年5月8日;
试验方法:试验与对照各10亩,处理组喷施血红素钾盐溶液,对照组喷施血红素(剂量浓度与处理组相同)、空白喷施清水。处理分别在5月19日(移栽后),7月2日(盛花期)喷洒用药和对照,用药量为1.5毫克/亩,亩用水量分别为:15L,30L(样品浓度:0.1ppm和0.05ppm)。9月13日抽样调查处理组和对照组分别选取长势均匀的十株辣椒,统计结果数和单果重;全田共分三次采收8月30日,9月13日,9月25日。产量合并统计对比,结果如下:
Figure PCTCN2022117298-appb-000021
试验表明,用血红素钾盐喷洒辣椒,能够明显增加坐果率及单果重,有显著的增产效果,对照组血红素也有较好的增产效果,但增产不如血红素钾盐,而且差异明显。
实施例90:叶绿酸铁钠盐喷洒番茄增产试验
实验地点:新疆建设兵团二十二团3连地块,前茬苗圃,土壤质地轻壤。
品种:加工番茄1615;
栽培采用平植、地膜覆盖、育苗移栽、加压滴灌。4月29日移苗,2600株/亩。对照和处理面积各20亩,处理区喷施两次分别在开花初期(2021年5月22日)和座果期(2021年6月5日),叶绿酸铁钠盐溶液喷洒浓度0.05ppm。
收获期8月3日。收获时各处理随机选取连续5株进行抽样统计,数据如下:
Figure PCTCN2022117298-appb-000022
结果显示,叶绿酸铁钠盐能够提高番茄坐果率及单果重量,从而发挥提高番茄亩产增加超过27%的作用;同时还观察到,叶绿酸铁钠盐喷洒后番茄的红青果比达到3.36(对照:红青果比3.17),红青果比提高了5.91%,显示叶绿酸铁钠盐不仅能够增产,而且具有促进番茄提前着色的作用提升果蔬品质的明显效果,试验证明:叶绿酸铁钠盐有较高的实用价值和广阔的应用前景。
实施例91:二氢卟吩铁与其钾盐对比喷洒小麦增产试验
实验地点:江苏省黄海农场农科所小麦试验田,前茬作物:
播种时间:2020年12月10日,播种量:30kg/亩;水稻;
作物:淮麦35号,二氢卟吩铁(粉剂)处理田、钾盐处理田和对照田(喷洒清水)各7亩;
方法:分别在三叶一心(2021年3月14日),孕穗破口期(2021年4月14日),扬花期(2021年5月1日)各喷洒二氢卟吩铁/钾盐溶液一次;每次二氢卟吩铁/钾盐用量:3毫克/亩,亩用水量:分别为15L、30L、30L(浓度:0.2ppm、0.1ppm、0.1ppm);
2021年6月11日全田实收。测产数据如下:
Figure PCTCN2022117298-appb-000023
二氢卟吩铁及其钾盐用量3毫克/亩喷洒均有明显增产作用,但钾盐增产效果更好。
实施例92:二氢卟吩铁钠盐喷洒防治烟草病害试验
地点:贵州省瓮安县天文镇乌江村;
品种:云烟87,5月13日移栽,行距100cm,株距50cm
样品:二氢卟吩铁钠盐、二氢卟吩铁粉剂(阳性对照)、香菇多糖水剂(阳性对照)、清水(空白对照)
方法:设置6个处理,处理1-3:3个不同浓度二氢卟吩铁钠盐溶液;对照1:二氢卟吩铁粉剂溶液;对照2:0.5%香菇多糖水剂;对照3:空白对照;
每个处理在大田里选择相对分散的4个小区,每个小区50平方米,于烟叶移栽后伸根期(12-14片叶)于5月28日和6月4日前后喷洒施药两次;每个处理喷洒体积相同(30升/亩),操作时力求叶面均匀喷雾不留死角。
7月15日调查各处理全部小区烟株,按国家烟草病害分级标准GB/T23222-2008进行发病分级调查,统计各处理区域发病率和发病指数,结果如下:
二氢卟吩铁钠盐喷洒防治烟草病害
Figure PCTCN2022117298-appb-000024
结果显示二氢卟吩铁钠盐显示明显提高烟草免疫力,发挥抵抗烟草花叶病毒、降低发病率的作用,且效果优于阳性对照二氢卟吩铁和香菇多糖。
实施例93:二氢卟吩铁钠盐喷洒烟草促进增产试验
试验地点:湖南省长沙县黄花镇鱼塘村;
品种:云烟87,种植密度16500株/公顷,株距50cm,行距110~120cm
方法:设置四个喷洒浓度,每个处理四个小区,每小区20平方米;于2019年5月8日烟叶移栽后伸根期(12~14片叶),2019年5月15日施药两次;亩用水量45升(喷雾量:1.35升/小区)
收获时抽样统计株高、叶片长度、宽度、单叶重量,将小区全部叶片烤制成烤烟,统计各样品(二氢卟吩铁钠盐)浓度喷洒后烤烟长势及产量,结果如下表:
Figure PCTCN2022117298-appb-000025
Figure PCTCN2022117298-appb-000026
二氢卟吩铁钠盐喷洒烟叶效果与浓度存在一定的关系,试验浓度下二氢卟吩铁钠盐能明显提高烟草单叶的重量,提高叶片的宽度和长度,提高烟草的亩产量,但0.1ppm更加适合些,更有利于烟叶产量的提高。
实施例94:叶绿酸铁钠盐喷洒棉花防治枯黄萎病试验
实验地点:新疆维吾尔自治区博乐市乌图布拉格镇东方红一队,前茬作物棉花;
棉花品种:新陆中66,2020年4月21日播种,一膜四行,亩株数1.5万株,处理各面积1亩。
样品:叶绿酸铁钠盐、碧护(阳性对照)、清水(空白对照)
方法:样品设置三个浓度,阳性对照、空白对照共五个处理;分别于棉花苗期(5月28日)及蕾期(6月28日)各喷洒一次,每次皆调整浓度,叶绿酸铁钠盐及对照各次浓度变化(处理1~5)如下表:
Figure PCTCN2022117298-appb-000027
每次样品施药后20天后调查枯黄萎病发病率,每处理三点调查法,每点选取100株。调查防治效果,结果如下:
Figure PCTCN2022117298-appb-000028
Figure PCTCN2022117298-appb-000029
收获时间2020年11与15日,收获时每个处理区地块先选取三个采样点,每个样点面积0.01亩,统计棉花长势,然后收获并计算增产率,数据如下:
Figure PCTCN2022117298-appb-000030
结果可见叶绿酸铁钠盐能够明显降低棉花枯黄萎病发病率,提高棉花的产量,随着苗期样品喷洒浓度的增加,防治棉花枯黄萎病作用效果愈好,与阳性对照比较整体均有更好的效果。
实施例95:二氢卟吩铁钾盐对盐胁迫水稻发芽的影响
本试验设置0、2.5、4.5g/L三个NaCl浓度加0.2ppm二氢卟吩铁钾盐,一个盐胁迫空白对照(CK:4.5g/L NaCl溶液),共4个处理:(1)4.5g/L NaCl溶液(CK);(2)0g/L NaCl溶液-0.2ppm二氢卟吩铁钾盐溶液;(3)2.5g/L NaCl溶液-0.2ppm二氢卟吩铁钾盐溶液;(4)4.5g/L NaCl溶液-0.2ppm二氢卟吩铁钾盐溶液。
将经挑选籽粒饱满的水稻(品种:南粳9108)种子浸泡在次氯酸钠溶液中消毒2-3分钟,然后用清水冲洗两到三次。洗净后,挑选50粒饱满种子放入配置好的浸种液中,使种子完全浸没,25℃下浸种48小时。浸种后,将其移至平铺两层纸巾的塑料盒中,使用各处理相对应的盐浓度溶液湿润发芽床,于25℃恒温培养箱中培养,光照设置为12h光照/12h黑暗,湿度70%,培养期间发芽床始终保持湿润。逐日观察记录稻种萌动和幼苗生长情况,第7天时记录各处理发芽率,第14天时统计正常苗数,各处理随机选 取10粒测量苗长、根长、根数、根重和苗重。分别于发芽第5天统计发芽势和第14天统计发芽率。结果如下表:
表1:不同浓度盐胁迫下样品溶液对水稻发芽的影响
Figure PCTCN2022117298-appb-000031
表2:不同浓度盐胁迫下样品溶液对水稻根系的影响
Figure PCTCN2022117298-appb-000032
表3:不同浓度盐胁迫下样品溶液对水稻幼苗生长的影响
Figure PCTCN2022117298-appb-000033
表4:不同浓度盐胁迫下样品溶液对水稻根冠比及幼苗促进速度的影响
Figure PCTCN2022117298-appb-000034
结果显示,二氢卟吩铁钾盐表现出良好的抗逆性能,能够促进盐胁迫水稻种子发芽,提高发芽率及活力,促进幼苗的生根及植株地上部生长,增加根长,促进苗重和根重的增加,能够明显减轻盐胁迫对植株的危害。
实施例96:叶绿酸铁钠盐喷洒水涝淹没水稻的试验
地点:安徽省马鞍山市当涂县姑孰镇小寺脚村,河边水浇地;
水稻品种:南粳9108
水涝情况:2021年7月10日被水淹面积20亩,7月20日水退,十天里,整株淹没近四天,大半株淹没近六天;水退后稻株疲软叶片发黄披垂。
方法用量:采用飞防喷洒10.0ppm叶绿酸铁钠盐溶液,喷洒处理10亩,平均用量1.2L/亩(施药量:12.0毫克/亩);空白对照田10亩(0毫克/亩);
结果:采收日期2021年10月20日,对照田收获320斤/亩(水分含量16.5%),处理田收获720斤/亩(水分含量16.5%),叶绿酸铁钠盐喷洒效果极其显著。
实施例97:干旱水稻幼苗喷洒二氢卟吩铁钾盐试验
样品:二氢卟吩铁钾盐、清水(对照)
品种:徽两优473水稻种
方法:选取饱满的水稻种子经6%次氯酸钠消毒2-3min,用水冲洗干净。于室温(30±1℃)下清水浸种至露白为止,将种子移至秧盘中育苗,大约15天后,选取长势一致的水稻苗移至桶中继续生长,每桶3穴,每穴2株。土壤采用粘壤土,移栽前土壤粉碎,过筛,混匀。桶高30cm,桶内径30cm。秧苗盆栽期间的水肥、病虫害均统一管理。二氢卟吩铁钾盐样品配制成2个浓度溶液喷洒移栽后的水稻苗。
干旱模型:2020年8月18日移栽,第二天(9月19日)开始稻苗自然干旱及样品喷施处理,土壤水分含量采用NY/T 52-1987法测定,具体方案及干旱模型结果如下表1:
表1:水稻干旱胁迫实验因素及水平
Figure PCTCN2022117298-appb-000035
如表所示:自然干旱后,土壤含水量由0天的正常(含水量26.0%)第3天变化为轻度干旱(含水量6.0%~10.0%),第6天加重到中等干旱(含水量6.0%~8.0%)程度。
于水稻分蘖期(9月19日)开始进行干旱胁迫及喷洒样品后,分别于第3天,第6天(9月21日,9月25日)两次检测叶片叶绿素含量(mg/g),结果如下表2:
表2:模拟干旱条件下水稻叶片叶绿素含量及变化
Figure PCTCN2022117298-appb-000036
结果可见干旱条件下,水稻叶片叶绿素含量随时间推移逐步下降(空白处理),干旱对水稻叶片叶绿素含量变化影响明显,而二氢卟吩铁钾盐溶液处理,随时间推移水稻叶片叶绿素含量却不降反升,证明样品在干旱胁迫下能够维持叶绿素的含量,延缓叶绿素的分解,具有明显的抗逆作用。
实施例98:二氢卟吩铁钠盐诱导植物对辣椒疫病抗性的离体实验
实验方法:用灭菌超纯水(DDW)、20.0ppm二氢卟吩铁钠盐及2.0ppm二氢卟吩铁钠盐注射处理本氏烟叶片分别于7天,10天后接种辣椒疫霉菌LT263菌饼,接种36h后观察结果。
结果:与DDW处理相比,20.0ppm及2.0ppm二氢卟吩铁钠盐处理本氏烟7天及 10天后,可以使接种LT263病斑面积明显减小;
结论:采用二氢卟吩铁钠盐溶液处理本氏烟7天或10天后,均能够有效减弱/减少辣椒疫霉菌的侵染。
实施例99:二氢卟吩铁钠盐诱导辣椒抗疫病的盆栽实验
供试培养基
V8培养基:每100mL V8蔬菜果汁培养基加1g CaCO 3,6000r/min下离心10min,取上清液,稀释10倍后,加入15%琼脂粉,121℃灭菌20min。
供试种子:苏椒5号,江苏省农业科学院蔬菜研究所选育。
辣椒疫霉游动孢子的制备:从新活化的辣椒疫霉平板边缘打菌碟,用针头挑取6mm菌碟并转移至直径为9cm的空培养皿中,菌面朝上,每个平皿挑10个菌碟。向平皿中加入15mL灭菌水,放置于超净工作台中光照,每30min换一次水,共换3次。用吸管吸出剩余废水,后加入10mL V8液体培养基,置于25℃培养箱中黑暗培养24h,诱导其产生大量囊孢子。然后将其放置于4℃冰箱中放置30min,再放入25℃培养箱中培养30min,此时游动孢子大量释放。取10μL使用血球计数板在显微镜下观察、计数,剩余样品收集备用。
二氢卟吩铁钠盐对辣椒疫病的盆栽防效测定
实验共设置2种处理:
对照组(CK):清水喷雾;
处理组:二氢卟吩铁钠盐2.0ppm溶液喷雾
移栽4-6叶期的辣椒苗,每盆种植1棵,二氢卟吩铁钠盐溶液处理3天后,接种辣椒疫霉孢子,接种量约为每棵苗1×10 5个孢子。每个处理设置3个重复,每个重复18盆,处理后,每天定时观察1次,并记录辣椒发病率,统计其病情指数及防治效率。
按照《辣椒疫病测报调查规范》方法(NY/T2060.1-2011),调查植株疫病情况,计算发病率、病情指数和防治效果(叶旻硕等,2019):
发病率=发病株数/总株数×100%
病情指数=[(各级发病株数×相对病级数)/(调查总株数×5)×100%
防治效果=[(对照病情指数-处理病情指数)/对照病情指数]×100%
植物总RNA的提取
收集二氢卟吩铁钠盐处理12、24、36、48、60和72h后的辣椒叶片(样品)每次 各0.2g用于RNA的提取。RNA的提取采用TRIzol方法。取样品于2mL离心管中,加入液氮后充分研磨;加入1mL TRIzol reagent(Thermo Fisher,USA),充分混匀后静置5min;加入200μL氯仿,震荡混匀后静置5min,12,000g,4℃离心15min;将上清液转移至1.5mL离心管中,加入等体积的预冷异丙醇,震荡混匀,-80℃静置30min,12,000g,4℃离心10min;弃上清液,加入75%的酒精,12,000g,4℃离心5min,洗涤两次;弃上清,沉淀溶于30μL的0.1%DEPC处理水中,-80℃保存。
cDNA第一链的合成及荧光定量PCR
cDNA第一链用
Figure PCTCN2022117298-appb-000037
gDNA Removal and cDNA Synthesis SuperMix试剂盒合成(全式金,北京),同时去除RNA模板中残留的基因组DNA,其总体系为20μL。总RNA 1000ng,RNase-free Water补充至7μL,Random Primer(N9)1μL,共计8μL。混匀后65℃孵育5min,冰上放置2min;然后加2×ES Reaction Mix 10μL,
Figure PCTCN2022117298-appb-000038
Mix 1μL,gDNA Remover 1μL;轻轻混匀,25℃孵育10min,后42℃孵育15min,85℃加热5s失活,4℃保存。cDNA稀释40倍,-20℃保存备用。
利用Real-time PCR检测二氢卟吩铁钠盐处理不同时间后辣椒叶片内抗病相关基因PR1、WRKY40、WRKY53、ACCO及GST的表达情况,以Actin为内参,特异性引物序列见下表:
qRT-PCR所用引物名称及序列
Figure PCTCN2022117298-appb-000039
Figure PCTCN2022117298-appb-000040
以cDNA为模板,在ROCHE
Figure PCTCN2022117298-appb-000041
96实时荧光定量PCR仪上进行扩增。扩增体系为:10μL 2×PerfectStart TM Green Green qPCR SuperMix(全式金,北京),上下游引物各0.4μL(10μmol/L),cDNA 1μL,补Nuclease-free Water 8.2μL至总体积20μL。反应程序为:95℃预变性180s;95℃ 10s,60℃ 30s,40循环;95℃ 10s,65℃ 10s,97℃ 1s;最后37℃ 30s冷却;以溶解曲线和荧光值变化曲线判断反应体系的特异性,实验重复3次,基因的相对表达量采用2-ΔΔCt计算,结果如下表:
Figure PCTCN2022117298-appb-000042
二氢卟吩铁钠盐处理后辣椒疫病的发病率显著降低,防效达71.89%,显示二氢卟吩铁钠盐2.0ppm浓度下即具有很强的植物免疫诱抗活性。
实施例100:缓解除草剂药害显著提高水稻产量
地点:江苏省淮安市盱眙县马湖村,
水稻品种:金粳818水稻,
样品:二氢卟吩铁钠盐(0.25ppm水溶液)
时间:2021年6月-11月
地块条件:前茬小麦,土壤肥力一致,田间管理相同。
方法:分别设处理田1.5亩,对照田1.5亩;水稻喷洒除草剂出现药害后喷洒样品2次,附清水空白对照,具体操作如下:
6月20日杂草3叶、水稻3-3.5叶时,对处理田和对照田均进行4%甲氧咪草烟200ml/亩+10%嘧啶肟草醚40ml/亩茎叶喷雾法处理,每亩用水30kg;一周后除草效果良好,但水稻伴随出现明显药害;使用除草剂10天后(6月30日),对处理田茎叶喷洒样品7.5毫克/亩,每亩用溶液30升;对照田喷洒清水;于水稻破口期(8月25日),相同方法再喷洒一次。
结果:11月10日采收,产量数据如下:
Figure PCTCN2022117298-appb-000043
从田间实际看到水稻田间除草效果明显,处理及对照田块没有明显的差异,但是产生一定的影响作物生长的药害作用,喷洒二氢卟吩铁钠盐溶液的地块,水稻长势好于空白对照,其亩穗数、穗实粒数、千粒重等方面均有明显增加,产量有显著的增加,亩增产率达22%以上。可见喷施二氢卟吩铁钠盐溶液对除草效果不仅没有影响,而且还能显著减轻除草剂的不利影响,提高亩产量。

Claims (19)

  1. 卟吩盐,包括卟吩类化合物的盐或二氢卟吩类化合物的盐。
  2. 根据权利要求1所述的卟吩盐,其特征在于,所述卟吩类化合物的盐包括原卟啉的盐或原卟啉螯合物的盐;所述二氢卟吩类化合物的盐包括脱镁叶绿酸的盐或脱镁叶绿酸螯合物的盐。
  3. 根据权利要求1所述的卟吩盐,其特征在于,所述卟吩类化合物选自原卟啉、氯化血红素或羟基血红素;所述二氢卟吩类化合物选自脱镁叶绿酸、二氢卟吩铁(氯化叶绿酸铁)、羟基叶绿酸铁、叶绿酸铁、叶绿酸锌或叶绿酸铜。
  4. 根据权利要求1所述的卟吩盐,其特征在于,所述卟吩类化合物的盐是由酸型的原卟啉或其螯合物与金属离子成盐所制得;所述二氢卟吩类化合物的盐是由酸型的脱镁叶绿酸或其螯合物与金属离子成盐所制得。
  5. 根据权利要求1所述的卟吩盐,其特征在于,所述卟吩类化合物的盐包括卟吩类化合物的一价、二价或三价金属离子盐;所述二氢卟吩类化合物的盐包括二氢卟吩类化合物的一价、二价或三价金属离子盐。
  6. 根据权利要求1所述的卟吩盐,其特征在于,所述卟吩类化合物的盐包括卟吩类化合物的钠、钾、铵、镁、钙、亚铁、铁、锌、锰或铜盐;所述二氢卟吩类化合物的盐包括二氢卟吩类化合物的钠、钾、铵、镁、钙、亚铁、铁、锌、锰或铜盐。
  7. 根据权利要求1所述的卟吩盐,其特征在于,所述卟吩盐包括:
    原卟啉的钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    氯化血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    羟基血红素的钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    二氢卟吩铁(氯化叶绿酸铁)的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    羟基叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸铁的铵、亚铁、铁、及铜盐,
    二氢卟吩(脱镁叶绿酸)的钾、铵、镁、亚铁、铁、锌、锰及铜盐,
    叶绿酸锌的钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸铜的铵、镁、钙、亚铁、铁、锌、锰及铜盐。
  8. 权利要求1-7任一项所述的卟吩盐的制备方法,其特征在于,包括将酸型的卟吩类化合物或二氢卟吩类化合物与一价金属氢氧化物反应,形成沉淀,分离,即得卟吩类化合物或二氢卟吩类化合物的一价金属离子盐;或者将卟吩类化合物或二氢卟吩类化 合物的一价金属盐与可溶性多价金属离子盐反应,形成沉淀,分离,即得卟吩类化合物或二氢卟吩类化合物的多价金属离子盐。
  9. 根据权利要求8所述的卟吩盐的制备方法,其特征在于,所述金属氢氧化物选自氢氧化钠、氢氧化钾或氨水;
    所述卟吩类化合物或二氢卟吩类化合物的多价金属离子盐制备过程中,所述卟吩类化合物或二氢卟吩类化合物的一价金属盐选自卟吩类化合物或二氢卟吩类化合物的钠盐或者钾盐;所述可溶性多价金属离子盐包括二价或三价金属离子的硫酸盐、盐酸盐或硝酸盐。
  10. 根据权利要求8所述的卟吩盐的制备方法,其特征在于:
    所述卟吩类化合物或二氢卟吩类化合物的一价金属离子盐的制备方法包括如下步骤:
    酸型的卟吩类化合物或二氢卟吩类化合物采用有机溶剂配制溶液,与一价金属离子盐的有机溶剂混合沉淀,或酸型的卟吩类化合物或二氢卟吩类化合物与一价金属离子盐在水溶液中成盐再利用有机溶剂沉淀,或酸型的卟吩类化合物或二氢卟吩类化合物采用有机溶剂配制溶液后通入干燥氨气形成沉淀,最后过滤、洗涤、干燥,即得。
    所述卟吩类化合物或二氢卟吩类化合物的多价金属离子盐的制备方法包括如下步骤:
    卟吩类化合物或二氢卟吩类化合物的一价金属盐的水溶液与可溶性多价金属离子盐的水溶液经混合,沉淀,过滤、洗涤,干燥,即得。
  11. 权利要求1-6任一项所述的卟吩盐作为植物生长调节剂或植物免疫诱抗剂的应用。
  12. 根据权利要求11所述的应用,其特征在于,所述卟吩盐包括:
    原卟啉的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    氯化血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    羟基血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    二氢卟吩铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    羟基叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    二氢卟吩的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸锌的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸铜的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐。
  13. 根据权利要求11所述的应用,其特征在于,包括对有需要调节生长或增强抗逆性的植物或该植物生长的环境,通过喷洒、涂抹、浸种、飞防、浸穗、灌溉或撒播的方式,达到调节该植物生长或增强抗逆性的目的。
  14. 根据权利要求11所述的应用,其特征在于,应用时,施加卟吩盐的浓度/含量为0.001ppm~10ppm。
  15. 根据权利要求11所述的应用,其特征在于,用于种子浸种和作物田间灌溉时,施加卟吩盐的浓度/含量为0.001ppm~0.1ppm;用于作物叶面喷洒,施加卟吩盐的浓度/含量为0.01ppm~10ppm。
  16. 根据权利要求11所述的应用,其特征在于,所述植物生长调节剂的作用,包括促进种子萌发、提高发芽率、增加根长、促进根部生长,增强植物免疫力及抗逆作用,加快幼苗生长、提高叶绿素含量、延缓植物早衰和增加产量提高品质。
  17. 根据权利要求11所述的应用,其特征在于,所述植物免疫诱抗剂的作用,包括提高植物抗逆性和增加作物产量。
  18. 包含权利要求1-6任一项所述卟吩盐的组合物作为植物生长调节剂或植物免疫诱抗剂的应用。
  19. 根据权利要求18所述的应用,其特征在于,所述卟吩盐包括:
    原卟啉的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    氯化血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    羟基血红素的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    二氢卟吩铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    羟基叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸铁的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    二氢卟吩的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸锌的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐,
    叶绿酸铜的钠、钾、铵、镁、钙、亚铁、铁、锌、锰及铜盐。
PCT/CN2022/117298 2022-09-06 2022-09-06 天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用 WO2024050694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117298 WO2024050694A1 (zh) 2022-09-06 2022-09-06 天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117298 WO2024050694A1 (zh) 2022-09-06 2022-09-06 天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用

Publications (1)

Publication Number Publication Date
WO2024050694A1 true WO2024050694A1 (zh) 2024-03-14

Family

ID=90192699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117298 WO2024050694A1 (zh) 2022-09-06 2022-09-06 天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用

Country Status (1)

Country Link
WO (1) WO2024050694A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156690A (ja) * 1984-01-25 1985-08-16 Sato Yakugaku Kenkyusho:Kk ポルフィリン化合物の可溶性塩およびその製造法
JPH04202193A (ja) * 1990-11-30 1992-07-22 Sato Yakugaku Kenkyusho:Kk ポルフィリンアルカリ塩の製造方法
CN1082049A (zh) * 1992-06-28 1994-02-16 毕思彬 金属(铜,铁,锌,锗等)叶绿酸碱盐的制备方法
CN1418880A (zh) * 2001-11-14 2003-05-21 上海金赤生物制品有限公司 一种原卟啉二钠盐的制备方法
CN101045730A (zh) * 2007-02-15 2007-10-03 河北理工大学 天然叶绿素铁锌盐的制备方法
CN102273467A (zh) * 2011-06-28 2011-12-14 南京师范大学 含有叶绿素及其水解产物的金属衍生物作为植物生长调节剂的应用
CN102285992A (zh) * 2011-06-28 2011-12-21 南京师范大学 具有植物生长调节活性的二氢卟吩铁(iii)螯合物及其作为植物生长调节剂的应用
CN110090214A (zh) * 2018-01-29 2019-08-06 武汉联合药业有限责任公司 叶绿素衍生物改善耳微循环障碍的用途
CN110585215A (zh) * 2019-09-19 2019-12-20 中山大学 氯化血红素及其复合物在医药中的新应用
CN112203511A (zh) * 2018-04-30 2021-01-08 桑科能源股份有限公司 提高植物的非生物胁迫抗性的大环四吡咯化合物、组合物和方法
CN112940528A (zh) * 2021-02-26 2021-06-11 河南城建学院 一种韭菜绿色素的提取方法及其制备叶绿素铜钠盐和叶绿素锌钠盐以及稳定性比较
WO2021163782A1 (en) * 2020-02-20 2021-08-26 Suncor Energy Inc. Oxygen impermeable porphyrin photosensitizer film composition for application to plants.
CN113631039A (zh) * 2019-02-15 2021-11-09 桑科能源股份有限公司 用作杀虫剂的光敏剂和螯合剂组合
CN114287438A (zh) * 2021-12-06 2022-04-08 季红进 含有5-氨基乙酰丙酸与叶绿酸金属盐的组合物
US20220248677A1 (en) * 2019-06-27 2022-08-11 Nanjing Ruijiang Biological Engineering Co., Ltd. Use of dihydroporphin derived from chlorophyll as plant growth regulator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156690A (ja) * 1984-01-25 1985-08-16 Sato Yakugaku Kenkyusho:Kk ポルフィリン化合物の可溶性塩およびその製造法
JPH04202193A (ja) * 1990-11-30 1992-07-22 Sato Yakugaku Kenkyusho:Kk ポルフィリンアルカリ塩の製造方法
CN1082049A (zh) * 1992-06-28 1994-02-16 毕思彬 金属(铜,铁,锌,锗等)叶绿酸碱盐的制备方法
CN1418880A (zh) * 2001-11-14 2003-05-21 上海金赤生物制品有限公司 一种原卟啉二钠盐的制备方法
CN101045730A (zh) * 2007-02-15 2007-10-03 河北理工大学 天然叶绿素铁锌盐的制备方法
CN102285992A (zh) * 2011-06-28 2011-12-21 南京师范大学 具有植物生长调节活性的二氢卟吩铁(iii)螯合物及其作为植物生长调节剂的应用
CN102273467A (zh) * 2011-06-28 2011-12-14 南京师范大学 含有叶绿素及其水解产物的金属衍生物作为植物生长调节剂的应用
CN110090214A (zh) * 2018-01-29 2019-08-06 武汉联合药业有限责任公司 叶绿素衍生物改善耳微循环障碍的用途
CN112203511A (zh) * 2018-04-30 2021-01-08 桑科能源股份有限公司 提高植物的非生物胁迫抗性的大环四吡咯化合物、组合物和方法
CN113631039A (zh) * 2019-02-15 2021-11-09 桑科能源股份有限公司 用作杀虫剂的光敏剂和螯合剂组合
US20220248677A1 (en) * 2019-06-27 2022-08-11 Nanjing Ruijiang Biological Engineering Co., Ltd. Use of dihydroporphin derived from chlorophyll as plant growth regulator
CN110585215A (zh) * 2019-09-19 2019-12-20 中山大学 氯化血红素及其复合物在医药中的新应用
WO2021163782A1 (en) * 2020-02-20 2021-08-26 Suncor Energy Inc. Oxygen impermeable porphyrin photosensitizer film composition for application to plants.
CN112940528A (zh) * 2021-02-26 2021-06-11 河南城建学院 一种韭菜绿色素的提取方法及其制备叶绿素铜钠盐和叶绿素锌钠盐以及稳定性比较
CN114287438A (zh) * 2021-12-06 2022-04-08 季红进 含有5-氨基乙酰丙酸与叶绿酸金属盐的组合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUNT JERRY E., SCHABER PETER M., MICHALSKI TOMASZ J., DOUGHERTY RALPH C., KATZ JOSEPH J.: "APPLICATION OF CALIFORNIUM-252 PLASMA DESORPTION MASS SPECTROSCOPY TO CHLOROPHYLL STUDIES", INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PHYSICS, vol. 53, 1 January 1983 (1983-01-01), pages 45 - 58, XP093147445 *
LIU, SHUPING; LIU, YAN: "The Preparation and Spectrum Progress in the Study of Metal Chlorophyll Derivatives", JOURNAL OF TANGSHAN TEACHERS COLLEGE, CN, vol. 36, no. 2, 20 March 2014 (2014-03-20), CN , pages 28 - 32, XP009553677, ISSN: 1009-9115, DOI: 10.3969/j.issn.1009-9115.2014.02.008 *
PANEQUE ARMANDO, FERNÁNDEZ–BERTRÁN JOSÉ, REGUERA EDILSO, YEE-MADEIRA H.: "Solid State Reactions of Hemin with Basic Substances: Formation of bis and Mixed Complexes", STRUCTURAL CHEMISTRY, SPRINGER US, NEW YORK, vol. 14, no. 6, 1 December 2003 (2003-12-01), New York, pages 551 - 558, XP093147441, ISSN: 1040-0400, DOI: 10.1023/B:STUC.0000007566.08376.02 *
PENG, YIRU: "Tumor Photodynamic Therapy Drug Research Progress (I)", FUJIAN MEDICAL JOURNAL., CN, vol. 25, no. 2, 20 June 2003 (2003-06-20), CN, pages 124 - 125, XP009553683, ISSN: 1002-2600 *
SUN, CAIYUN; BI, CHUN-BO: "Progress on the Research of Metal-Substituted Chlorophyll Derivatives", JOURNAL OF TANGSHAN TEACHERS COLLEGE, CN, vol. 30, no. 2, 20 March 2008 (2008-03-20), CN , pages 55 - 58, XP009553678, ISSN: 1009-9115 *

Similar Documents

Publication Publication Date Title
CN102285992B (zh) 具有植物生长调节活性的二氢卟吩铁(iii)螯合物及其作为植物生长调节剂的应用
CN105961104B (zh) 一种高sod含量水稻的种植方法、种植用肥料
CN105875611B (zh) 一种植物抗盐调节剂及其制备方法
CN105777381B (zh) 一种含有维生素b的中微量元素复合肥料及其制备方法
WO2023025115A1 (zh) 2-氨基-3-甲基己酸在促进植物生长和增产上的应用
CN105230661A (zh) 作物用功能性助剂及其制备方法
CN105052933A (zh) 一种高效种子包衣剂、其制备方法、其处理种子的方法及其应用
WO2008049335A1 (fr) Un régulateur de croissance de plantes contenant de l&#39;hémine
CN102286010B (zh) N-(2-乙酸)水杨酰腙稀土配合物及其制备方法和用途
CN108902159A (zh) 一种烟草壮根健苗剂及其制备方法
CN113603521B (zh) 一种适合茶树扦插及人工光室内种植的无土栽培营养液
CN114794113A (zh) 2-氨基-3-苯基丁酸或其衍生物作为植物生长调节剂的应用
US4673687A (en) New chemotherapeutic agents for the control of plant and animal diseases
CN103190400B (zh) 丁酸钠在提高植物对白粉病抗性中的新用途
WO2000005954A1 (en) Treatment of plants with salicylic acid and organic amines
WO2024050694A1 (zh) 天然卟吩盐及其作为植物生长调节剂及免疫诱抗剂的应用
KR20210096575A (ko) 나노유기게르마늄 및 나노유기셀레늄을 이용한 기능성 작물의 재배방법
CN112956483B (zh) 一种抑制杂草种子生长的化合物球座菌素a
CN110012695A (zh) 一种提高水稻种子活力的处理方法
US20220192190A1 (en) Nutrient solution formula for inhibiting green algae
ALI et al. Identification of potent gametocides for selective induction of male sterility in rice
CN110178845B (zh) 一种促生抗病的有机稀土复合物及其制备方法和应用
CN111493076B (zh) 3,5-二氯邻氨基苯甲酸诱导拟南芥对灰霉病抗性的应用及其方法
JP6789612B2 (ja) 植物用発育向上剤、およびそれを用いた植物の製造方法
CN103798273B (zh) 一种含硫酸链霉素的复配农药及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957668

Country of ref document: EP

Kind code of ref document: A1