WO2024048187A1 - 半導体装置、および、半導体装置の製造方法 - Google Patents

半導体装置、および、半導体装置の製造方法 Download PDF

Info

Publication number
WO2024048187A1
WO2024048187A1 PCT/JP2023/028284 JP2023028284W WO2024048187A1 WO 2024048187 A1 WO2024048187 A1 WO 2024048187A1 JP 2023028284 W JP2023028284 W JP 2023028284W WO 2024048187 A1 WO2024048187 A1 WO 2024048187A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
main surface
surface electrode
positioning
positioning member
Prior art date
Application number
PCT/JP2023/028284
Other languages
English (en)
French (fr)
Inventor
克彦 吉原
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024048187A1 publication Critical patent/WO2024048187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device and a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses an example of such a semiconductor device.
  • the conductive member When a conductive member is conductively bonded to the main surface electrode of a semiconductor element via a conductive bonding layer, for example, the conductive member may move closer to, move away from, or tilt from the main surface electrode. There is a concern that this may cause the thickness of the conductive bonding layer to become non-uniform.
  • An object of the present disclosure is to provide a semiconductor device that is improved over conventional ones, and a method for manufacturing such a semiconductor device.
  • a semiconductor device provided by a first aspect of the present disclosure includes a semiconductor element having a first main surface electrode, a conductive member, and a conductive bonding layer that electrically connects the first main surface electrode and the conductive member. Equipped with. Further, the semiconductor device includes a first positioning member disposed between the first main surface electrode and the conductive member and in contact with the first main surface electrode and the conductive member.
  • the thickness of the conductive bonding layer can be made more uniform in the semiconductor device.
  • FIG. 1 is a partial perspective view showing a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 3 is a partial plan view showing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 4 is a bottom view of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 5 is a left side view showing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view taken along line VIII-
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a partially enlarged plan view showing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 11 is a partially enlarged sectional view taken along line XI-XI in FIG. 10.
  • FIG. 12 is a partially enlarged sectional view taken along line XII-XII in FIG.
  • FIG. 13 is a partially enlarged sectional view taken along line XIII-XIII in FIG. 10.
  • FIG. 14 is a partially enlarged plan view showing the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 15 is a partially enlarged sectional view taken along line XV-XV in FIG. 14.
  • FIG. 16 is a partially enlarged sectional view taken along line XVI-XVI in FIG. 14.
  • FIG. 17 is a partially enlarged sectional view taken along line XVII-XVII in FIG. 14.
  • FIG. 18 is a partially enlarged cross-sectional view showing a method for manufacturing a semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 19 is a partially enlarged cross-sectional view showing a method for manufacturing a semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 20 is a partially enlarged cross-sectional view showing the method for manufacturing a semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 21 is a partially enlarged cross-sectional view showing the method for manufacturing a semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 22 is a partially enlarged cross-sectional view showing the method for manufacturing a semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 23 is a partially enlarged plan view showing a first modification of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 24 is a partially enlarged plan view showing a second modification of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 25 is a partially enlarged sectional view showing a third modification of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 26 is a partially enlarged sectional view showing a fourth modification of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 27 is a partially enlarged cross-sectional view showing a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 28 is a partially enlarged plan view showing a semiconductor device according to a third embodiment of the present disclosure.
  • a thing A is formed on a thing B and "a thing A is formed on a thing B” mean “a thing A is formed on a thing B” unless otherwise specified.
  • "something A is placed on something B” and “something A is placed on something B” mean "something A is placed on something B” unless otherwise specified.
  • a certain surface A faces (one side or the other side of) the direction B is not limited to the case where the angle of the surface A with respect to the direction B is 90 degrees; Including cases where it is tilted to the opposite direction.
  • the semiconductor device A10 includes two insulating members 11, two conductive members 12, two heat dissipating members 13, a plurality of fourth conductive members 14, a plurality of first semiconductor elements 21, a plurality of second semiconductor elements 22, and a sealing resin. 50, a plurality of first positioning members 71, 73, a plurality of second positioning members 72, 74, a plurality of conductive bonding layers 291, and a plurality of conductive bonding layers 292.
  • the semiconductor device A10 includes a first wiring 15, a second wiring 16, a first gate terminal 171, a second gate terminal 172, a first detection terminal 181, a second detection terminal 182, a plurality of first wires 41, a plurality of first wires 41, and a plurality of first wires 41.
  • illustration of the sealing resin 50 is omitted for convenience of understanding.
  • the sealing resin 50 is shown by an imaginary line (two-dot chain line).
  • FIG. 3 shows the second conductive member 32 with imaginary lines.
  • the thickness direction of the first semiconductor element 21 and the second semiconductor element 22 will be referred to as "thickness direction z.”
  • One direction perpendicular to the thickness direction z is referred to as a “first direction x.”
  • a direction perpendicular to both the thickness direction z and the first direction x is referred to as a “second direction y.”
  • the semiconductor device A10 converts the DC power supply voltage applied to the first conductive member 31 and the second conductive member 32 into AC power using the plurality of first semiconductor elements 21 and the plurality of second semiconductor elements 22.
  • the converted AC power is input from the third conductive member 33 to a power supply target such as a motor.
  • the semiconductor device A10 constitutes a part of a power conversion circuit such as an inverter.
  • the two insulating members 11 are located apart from each other in the first direction x, as shown in FIGS. 2 and 3.
  • the two insulating members 11 are made of a resin material containing epoxy resin.
  • the two insulating members 11 may be made of a ceramic material containing aluminum nitride (AlN).
  • the two conductive members 12 are located on one side of the two insulating members 11 in the thickness direction z, as shown in FIGS. 6 and 7.
  • the two conductive members 12 are individually joined to the two insulating members 11.
  • first member 12A the conductive member 12 on which the plurality of first semiconductor elements 21 are mounted
  • second member 12B the conductive member 12 on which the plurality of second semiconductor elements 22 are mounted
  • Each of the two conductive members 12 has a main surface 121, a back surface 122, and a first end surface 123.
  • the main surface 121 and the back surface 122 face opposite to each other in the thickness direction z.
  • the main surface 121 includes a first main surface 121A belonging to the first member 12A and a second main surface 121B belonging to the second member 12B.
  • the first main surface 121A faces the plurality of first semiconductor elements 21.
  • the second main surface 121B faces the plurality of second semiconductor elements 22.
  • the back surface 122 is joined to either of the two insulating members 11.
  • each of the two conductive members 12 includes a first layer 120A, a second layer 120B, and a bonding layer 120C.
  • the first layer 120A has a back surface 122.
  • the second layer 120B has a main surface 121.
  • the compositions of the first layer 120A and the second layer 120B include copper (Cu).
  • the dimension in the thickness direction z of the second layer 120B is larger than the dimension in the thickness direction of the first layer 120A.
  • the bonding layer 120C has a first end surface 123.
  • the bonding layer 120C conductively bonds the first layer 120A and the second layer 120B.
  • the bonding layer 120C contains a metal element.
  • the metal element is, for example, tin (Sn).
  • the two heat dissipating members 13 are located on the opposite side of the two electrically conductive members 12 in the thickness direction with respect to the two insulating members 11.
  • the two heat dissipating members 13 are individually joined to the two insulating members 11.
  • the composition of the two heat radiating members 13 includes copper.
  • Each of the two heat radiating members 13 has an end surface 131 facing in a direction perpendicular to the thickness direction z.
  • the end surface 131 is surrounded by the periphery of the insulating member 11 when viewed in the thickness direction z.
  • a portion of each of the two heat radiating members 13 is exposed to the outside from the sealing resin 50.
  • a heat sink (not shown) is joined to the two heat radiating members 13.
  • the specific configurations of the two insulating members 11, the first layer 120A of the two conductive members 12, and the two heat dissipating members 13 are not limited at all, and are configured by, for example, a DBC (Direct Bonded Copper) substrate.
  • DBC Direct Bonded Copper
  • the plurality of first semiconductor elements 21 are bonded to the first main surface 121A of the first member 12A. In this embodiment, all of the plurality of first semiconductor elements 21 are the same element.
  • the plurality of first semiconductor elements 21 are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the plurality of first semiconductor elements 21 may be field-effect transistors including MISFETs (Metal-Insulator-Semiconductor Field-Effect Transistors), or bipolar transistors such as IGBTs (Insulated Gate Bipolar Transistors).
  • the plurality of first semiconductor elements 21 are n-channel type MOSFETs with a vertical structure.
  • the plurality of first semiconductor elements 21 include a compound semiconductor substrate.
  • the composition of the compound semiconductor substrate includes silicon carbide (SiC).
  • the plurality of first semiconductor elements 21 are arranged along the second direction y.
  • the first semiconductor element 21 has a first back electrode 211, a first main surface electrode 212, and a second main surface electrode 213.
  • the first back electrode 211 faces the first main surface 121A of the first member 12A. A current corresponding to the power before being converted by the first semiconductor element 21 flows through the first back electrode 211 .
  • the first back electrode 211 is, for example, a drain electrode.
  • the first back electrode 211 is conductively bonded to the first main surface 121A via the conductive bonding layer 291. Therefore, the first back electrodes 211 of the plurality of first semiconductor elements 21 are electrically connected to the first member 12A.
  • the conductive bonding layer 291 is, for example, solder. In addition, the conductive bonding layer 291 may be a sintered metal containing silver or the like.
  • the first main surface electrode 212 is located on the opposite side from the first back electrode 211 in the thickness direction z. A current corresponding to the power converted by the first semiconductor element 21 flows through the first main surface electrode 212 .
  • the first main surface electrode 212 corresponds to the source electrode of the first semiconductor element 21, for example.
  • the second main surface electrode 213 is located on the same side as the first main surface electrode 212 in the thickness direction z.
  • a control voltage for driving the first semiconductor element 21 is applied to the second main surface electrode 213 .
  • the second main surface electrode 213 is, for example, a gate electrode. As shown in FIG. 3, the area of the second main surface electrode 213 is smaller than the area of the first main surface electrode 212 when viewed in the thickness direction z.
  • the plurality of second semiconductor elements 22 are bonded to the second main surface 121B of the second member 12B, as shown in FIGS. 6, 7, and 9.
  • the plurality of second semiconductor elements 22 are the same elements as the plurality of first semiconductor elements 21. Therefore, the plurality of second semiconductor elements 22 are n-channel type MOSFETs with a vertical structure.
  • the plurality of second semiconductor elements 22 are arranged along the second direction y.
  • the second semiconductor element 22 has a second back electrode 221, a third main surface electrode 222, and a fourth main surface electrode 223.
  • the second back electrode 221 faces the second main surface 121B of the second member 12B. A current corresponding to the power before being converted by the second semiconductor element 22 flows through the second back electrode 221 .
  • the second back electrode 221 is, for example, a drain electrode.
  • the second back electrode 221 is conductively bonded to the second main surface 121B via a conductive bonding layer 291. Therefore, the second back electrodes 221 of the plurality of second semiconductor elements 22 are electrically connected to the second member 12B.
  • the third main surface electrode 222 is located on the opposite side from the second back electrode 221 in the thickness direction z. A current corresponding to the power converted by the second semiconductor element 22 flows through the third main surface electrode 222 .
  • the third main surface electrode 222 is, for example, a source electrode of the second semiconductor element 22.
  • the fourth main surface electrode 223 is located on the same side as the third main surface electrode 222 in the thickness direction z.
  • a control voltage for driving the second semiconductor element 22 is applied to the fourth main surface electrode 223 .
  • the fourth main surface electrode 223 is, for example, a gate electrode. As shown in FIG. 4, the area of the fourth main surface electrode 223 is smaller than the area of the third main surface electrode 222 when viewed in the thickness direction z.
  • the first wiring 15 is located next to the plurality of first semiconductor elements 21 in the first direction x.
  • the first wiring 15 is joined to the first main surface 121A of the first member 12A.
  • the first wiring 15, like the pair of support members 10, is made of a DBC substrate.
  • the first wiring 15 includes a first insulating layer 151, a first gate wiring 152, a first detection wiring 153, and a first support layer 154.
  • the first insulating layer 151 extends in the second direction y. As shown in FIGS. 6 and 7, the first insulating layer 151 is located on the first main surface 121A of the first member 12A.
  • the first insulating layer 151 is made of ceramics containing aluminum nitride, for example.
  • the first gate wiring 152 is arranged on the first insulating layer 151.
  • the first gate wiring 152 is located on the opposite side of the first member 12A with respect to the first insulating layer 151 in the thickness direction z.
  • the first gate wiring 152 extends in the second direction y.
  • the first gate wiring 152 is electrically connected to the second main surface electrodes 213 of the plurality of first semiconductor elements 21 .
  • the composition of the first gate wiring 152 includes copper.
  • the first detection wiring 153 is arranged on the first insulating layer 151.
  • the first detection wiring 153 is located on the opposite side of the plurality of first semiconductor elements 21 with respect to the first gate wiring 152 in the first direction x. Further, the first detection wiring 153 is located on the same side as the first gate wiring 152 with respect to the first insulating layer 151 in the thickness direction z.
  • the first detection wiring 153 extends in the second direction y.
  • the first detection wiring 153 is electrically connected to the first main surface electrodes 212 of the plurality of first semiconductor elements 21 .
  • the composition of the first detection wiring 153 includes copper.
  • the first support layer 154 has a first support layer 154 located on the opposite side of the first gate wiring 152 and the first detection wiring 153 with respect to the first insulating layer 151 in the thickness direction z.
  • the first support layer 154 is bonded to the first main surface 121A of the first member 12A via, for example, a brazing material.
  • the composition of the first support layer 154 includes copper.
  • each of the plurality of first wires 41 is electrically connected to the second main surface electrode 213 of one of the plurality of first semiconductor elements 21 and the first gate wiring 152 of the first wiring 15. has been done. Thereby, the second main surface electrodes 213 of the plurality of first semiconductor elements 21 are electrically connected to the first gate wiring 152.
  • the composition of the plurality of first wires 41 includes aluminum (Al). In addition, the composition of the plurality of first wires 41 may include copper (Cu) or gold (Au).
  • each of the plurality of second wires 42 is electrically connected to the first main surface electrode 212 of any one of the plurality of first semiconductor elements 21 and the first detection wiring 153 of the first wiring 15. has been done. Thereby, the first main surface electrodes 212 of the plurality of first semiconductor elements 21 are electrically connected to the first detection wiring 153.
  • the composition of the plurality of second wires 42 includes aluminum (Al). In addition, the composition of the plurality of second wires 42 may include copper (Cu) or gold (Au).
  • the first gate terminal 171 is located next to the first member 12A in the second direction y, as shown in FIGS. 2 and 3.
  • the first gate terminal 171 is electrically connected to the first gate wiring 152 of the first wiring 15 .
  • the first gate terminal 171 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the first gate terminal 171 is covered with a sealing resin 50.
  • the first gate terminal 171 has an L-shape when viewed in the first direction x.
  • the first gate terminal 171 includes a portion that stands up in the thickness direction z. The portion is exposed to the outside from the sealing resin 50.
  • a gate voltage for driving the plurality of first semiconductor elements 21 is applied to the first gate terminal 171 .
  • the first detection terminal 181 is located next to the first gate terminal 171 in the first direction x, as shown in FIGS. 2 and 3.
  • the first detection terminal 181 is electrically connected to the first detection wiring 153 of the first wiring 15 .
  • the first detection terminal 181 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the first detection terminal 181 is covered with a sealing resin 50.
  • the first detection terminal 181 is L-shaped when viewed in the first direction x.
  • the first detection terminal 181 includes a portion that stands up in the thickness direction z. The portion is exposed to the outside from the sealing resin 50.
  • a voltage having the same potential as the voltage applied to the first main surface electrodes 212 of the plurality of first semiconductor elements 21 is applied to the first detection terminal 181 .
  • the second wiring 16 is located next to the plurality of second semiconductor elements 22 in the first direction x.
  • the second wiring 16 is joined to the second main surface 121B of the second member 12B.
  • the second wiring 16 like the first wiring 15, is made of a DBC substrate.
  • the second wiring 16 includes a second insulating layer 161, a second gate wiring 162, a second detection wiring 163, and a second support layer 164.
  • the second insulating layer 161 extends in the second direction y. As shown in FIGS. 6 and 7, the second insulating layer 161 is located on the second main surface 121B of the second member 12B.
  • the second insulating layer 161 is made of ceramics containing aluminum nitride, for example.
  • the second gate wiring 162 is arranged on the second insulating layer 161.
  • the second gate wiring 162 is located on the opposite side of the second member 12B with respect to the first insulating layer 151 in the thickness direction z.
  • the second gate wiring 162 extends in the second direction y.
  • the second gate wiring 162 is electrically connected to the fourth main surface electrodes 223 of the plurality of second semiconductor elements 22 .
  • the composition of the second gate wiring 162 includes copper.
  • the second detection wiring 163 is arranged on the second insulating layer 161.
  • the second detection wiring 163 is located on the opposite side of the plurality of second semiconductor elements 22 with respect to the second gate wiring 162 in the first direction x. Further, the second detection wiring 163 is located on the same side as the second gate wiring 162 with respect to the second insulating layer 161 in the thickness direction z.
  • the second detection wiring 163 extends in the second direction y.
  • the second detection wiring 163 is electrically connected to the third main surface electrodes 222 of the plurality of second semiconductor elements 22 .
  • the composition of the second detection wiring 163 includes copper.
  • the second support layer 164 has a second support layer 164 located on the opposite side of the second gate wiring 162 and the second detection wiring 163 with respect to the second insulating layer 161 in the thickness direction z.
  • the second support layer 164 is bonded to the second main surface 121B of the second member 12B via, for example, a brazing material.
  • the composition of the second support layer 164 includes copper.
  • each of the plurality of third wires 43 is electrically connected to the fourth main surface electrode 223 of one of the plurality of second semiconductor elements 22 and the second gate wiring 162 of the second wiring 16. has been done. Thereby, the fourth main surface electrode 223 of the second semiconductor element 22 is electrically connected to the second gate wiring 162.
  • the composition of the plurality of third wires 43 includes aluminum (Al).
  • the composition of the plurality of third wires 43 may include copper (Cu) or gold (Au).
  • each of the plurality of fourth wires 44 is electrically connected to the third main surface electrode 222 of any one of the plurality of second semiconductor elements 22 and the second detection wiring 163 of the second wiring 16. has been done. Thereby, the third main surface electrodes 222 of the plurality of second semiconductor elements 22 are electrically connected to the second detection wiring 163.
  • the composition of the plurality of fourth wires 44 includes aluminum (Al). In addition, the composition of the plurality of fourth wires 44 may include copper (Cu) or gold (Au).
  • the second gate terminal 172 is located next to the second member 12B in the second direction y, as shown in FIGS. 2 and 3.
  • the second gate terminal 172 is located on the same side as the first gate terminal 171 with respect to the support member 10 in the second direction y.
  • the second gate terminal 172 is electrically connected to the second gate wiring 162 of the second wiring 16 .
  • the second gate terminal 172 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the second gate terminal 172 is covered with a sealing resin 50.
  • the second gate terminal 172 has an L-shape when viewed in the first direction x.
  • the second gate terminal 172 includes a portion that stands up in the thickness direction z. The portion is exposed to the outside from the sealing resin 50.
  • a gate voltage for driving the plurality of second semiconductor elements 22 is applied to the second gate terminal 172.
  • the second detection terminal 182 is located next to the second gate terminal 172 in the first direction x, as shown in FIGS. 2 and 3.
  • the second detection terminal 182 is electrically connected to the second detection wiring 163 of the second wiring 16 .
  • the second detection terminal 182 is a metal lead made of a material containing copper or a copper alloy. As shown in FIG. 4, a portion of the second detection terminal 182 is covered with the sealing resin 50.
  • the second detection terminal 182 is L-shaped when viewed in the first direction x. As shown in FIG. 4, the second detection terminal 182 includes a portion that stands up in the thickness direction z. The portion is exposed to the outside from the sealing resin 50.
  • a voltage having the same potential as the voltage applied to the third main surface electrodes 222 of the plurality of second semiconductor elements 22 is applied to the second detection terminal 182 .
  • the plurality of fifth wires 45 are individually electrically connected to the first gate terminal 171 and the first detection terminal 181, and the first gate wiring 152 and the first detection wiring 153 of the first wiring 15. has been done.
  • the first gate terminal 171 is electrically connected to the second main surface electrodes 213 of the plurality of first semiconductor elements 21 via the first gate wiring 152.
  • the first detection terminal 181 is electrically connected to the first main surface electrode 212 of the plurality of first semiconductor elements 21 via the first detection wiring 153 .
  • the plurality of fifth wires 45 are individually conductive to the second gate terminal 172 and the second detection terminal 182, and the second gate wiring 162 and the second detection wiring 163 of the second wiring 16. It is joined. Thereby, the second gate terminal 172 is electrically connected to the fourth main surface electrode 223 of the plurality of second semiconductor elements 22 via the second gate wiring 162. The second detection terminal 182 is electrically connected to the third main surface electrode 222 of the plurality of second semiconductor elements 22 via the second detection wiring 163.
  • the composition of the plurality of fifth wires 45 includes aluminum (Al). In addition, the composition of the plurality of fifth wires 45 may include copper (Cu) or gold (Au).
  • the semiconductor device A10 further includes four dummy terminals 19, as shown in FIGS. 2 and 3. Two of the four dummy terminals 19 are located on the opposite side of the first gate terminal 171 with respect to the first detection terminal 181 in the first direction x. The remaining two dummy terminals 19 are located on the opposite side of the second gate terminal 172 with respect to the second detection terminal 182 in the first direction x.
  • the plurality of dummy terminals 19 are metal leads made of a material containing copper or a copper alloy.
  • the shape of each of the plurality of dummy terminals 19 is equal to the shape of the first gate terminal 171. A portion of each of the plurality of dummy terminals 19 is covered with sealing resin. The portions of the plurality of dummy terminals 19 that stand up in the thickness direction z are exposed to the outside from the sealing resin 50.
  • the first conductive member 31 is located on the opposite side of the plurality of second semiconductor elements 22 with respect to the plurality of first semiconductor elements 21 in the first direction x.
  • the first conductive member 31 has a first terminal portion 311 and a first pillow material 312.
  • the first terminal portion 311 is electrically conductively bonded to the first main surface 121A of the first member 12A via the first pillow material 312. Therefore, the first terminal portion 311 is located away from the first member 12A in the thickness direction z.
  • the first terminal portion 311 overlaps the first member 12A when viewed in the thickness direction z.
  • the composition of the first terminal portion 311 includes copper (Cu).
  • the first conductive member 31 is electrically connected to the first member 12A. Furthermore, the first conductive member 31 is electrically connected to the first back electrodes 211 of the plurality of first semiconductor elements 21 via the first member 12A.
  • the first terminal portion 311 is a P terminal (positive electrode) to which a DC power supply voltage to be subjected to power conversion is applied.
  • a first attachment hole 311A is provided in a portion of the first terminal portion 311 that is exposed to the outside from the sealing resin 50.
  • the first attachment hole 311A penetrates the first terminal portion 311 in the thickness direction z.
  • each of the plurality of fourth conductive members 14 is connected to the first main surface electrode 212 of any one of the plurality of first semiconductor elements 21.
  • the second member 12B is electrically conductively bonded to the second main surface 121B via a conductive bonding layer 292, respectively.
  • the fourth conductive member 14 has a connecting portion 141.
  • the connecting portion 141 is located at the end of the fourth conductive member 14 in the first direction x.
  • the connecting portion 141 is a portion where the dimension in the thickness direction z is locally large.
  • the connecting portion 141 is electrically connected to the first main surface electrode 212 by a conductive bonding layer 292 .
  • the second member 12B is electrically connected to the first main surface electrodes 212 of the plurality of first semiconductor elements 21.
  • the plurality of fourth conductive members 14 extend in the first direction x.
  • the composition of the plurality of fourth conductive members 14 includes copper (Cu).
  • the plurality of first positioning members 71 are arranged between the first main surface electrode 212 and the connection portion 141 of the fourth conductive member 14.
  • the plurality of first positioning members 71 are in contact with the first main surface electrode 212 and the connecting portion 141.
  • the plurality of first positioning members 71 overlap the connecting portion 141 when viewed in the thickness direction z.
  • the specific configuration of the first positioning member 71 is not limited at all.
  • the first positioning member 71 is preferably made of a conductive material.
  • the first positioning member 71 contains metal as a main component, such as aluminum (Al), copper (Cu), and the like.
  • the first positioning member 71 is made of a piece of wire.
  • a wire piece in the present disclosure is formed by partially cutting a wire material.
  • the first positioning member 71 is made of the same components as the first wire 41 and the second wire 42.
  • the first positioning member 71 has the same cross-sectional area as the first wire 41 and the second wire 42 .
  • the first positioning member 71 is made of a part of a wire material having a wire diameter of 100 ⁇ m or more and 500 ⁇ m or less, for example, and is a part of a wire material having a wire diameter of 125 ⁇ m or 150 ⁇ m.
  • the number of the plurality of first positioning members 71 is not limited at all.
  • the semiconductor device A10 includes four first positioning members 71.
  • the four first positioning members 71 are distinguished as first positioning members 711, 712, 713, and 714.
  • the first positioning member 711 and the first positioning member 712 and the first positioning member 713 and the first positioning member 714 are spaced apart from each other in the first direction x. Further, the first positioning member 711 and the first positioning member 713 and the first positioning member 712 and the first positioning member 714 are spaced apart from each other in the second direction y. In the illustrated example, each of the plurality of first positioning members 71 has a shape along the first direction x.
  • the plurality of second positioning members 72 are arranged on the first main surface electrode 212, and are adjacent to the connection portion 141 of the fourth conductive member 14 when viewed in the thickness direction z. are doing.
  • the size of the plurality of second positioning members 72 in the thickness direction z is larger than the distance between the first main surface electrode 212 and the connecting portion 141.
  • the difference between the size of the second positioning member 72 in the thickness direction z and the distance between the first main surface electrode 212 and the connecting portion 141 is, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • the plurality of second positioning members 72 are in contact with the conductive bonding layer 292, but the plurality of second positioning members 72 do not necessarily have to be in contact with the conductive bonding layer 292.
  • the specific configuration of the second positioning member 72 is not limited at all.
  • the second positioning member 72 is preferably made of a conductive material.
  • the second positioning member 72 contains metal as a main component, such as aluminum (Al), copper (Cu), and the like.
  • the second positioning member 72 is configured by a piece of wire.
  • the second positioning member 72 may be made of the same component as the first wire 41 and the second wire 42.
  • the second positioning member 72 is made of, for example, a portion of a wire material having a larger wire diameter than the wire material used for the first positioning member 71.
  • the number of the plurality of second positioning members 72 is not limited at all.
  • the semiconductor device A10 includes six second positioning members 72.
  • the six second positioning members 72 are distinguished as second positioning members 721, 722, 723, 724, 725, and 726.
  • the second positioning member 721 and the second positioning member 723 and the second positioning member 722 and the second positioning member 724 are spaced apart from each other in the second direction y with the connecting portion 141 in between. Furthermore, the second positioning member 725 and the second positioning member 726 are spaced apart from each other in the first direction x with the connecting portion 141 in between.
  • the second conductive member 32 straddles between the first member 12A and the second member 12B, and also connects the first member 12A and the second member in the thickness direction z. It is located away from 12B.
  • the composition of the second conductive member 32 includes copper (Cu).
  • the second conductive member 32 includes a second terminal portion 321 , a plurality of connecting portions 322 , a first connecting portion 323 , and a second connecting portion 324 .
  • each of the plurality of connection parts 322 is conductively bonded to the third main surface electrode 222 of any one of the plurality of second semiconductor elements 22 via the conductive bonding layer 292. ing.
  • the plurality of connecting portions 322 have a locally large portion in the thickness direction z, and have a shape extending in the first direction x.
  • the plurality of first positioning members 73 are arranged between the third main surface electrode 222 and the connecting portion 322 of the second conductive member 32.
  • the plurality of first positioning members 73 are in contact with the third main surface electrode 222 and the connecting portion 322.
  • the plurality of first positioning members 73 overlap the connecting portion 322 when viewed in the thickness direction z.
  • the specific configuration of the first positioning member 73 is not limited at all.
  • the first positioning member 73 is preferably made of a conductive material.
  • the first positioning member 73 contains metal as a main component, such as aluminum (Al), copper (Cu), and the like.
  • the first positioning member 73 is made of a piece of wire.
  • the first positioning member 73 is made of the same components as the third wire 43 and the fourth wire 44.
  • the first positioning member 73 has the same cross-sectional area as the third wire 43 and the fourth wire 44 .
  • the first positioning member 73 is made of a part of a wire material having a wire diameter of 100 ⁇ m or more and 500 ⁇ m or less, for example, and is a part of a wire material having a wire diameter of 125 ⁇ m or 150 ⁇ m.
  • the number of the plurality of first positioning members 73 is not limited at all.
  • the semiconductor device A10 includes four first positioning members 73.
  • the four first positioning members 73 are distinguished as first positioning members 731, 732, 733, and 734.
  • the first positioning member 731 and the first positioning member 732 and the first positioning member 733 and the first positioning member 734 are spaced apart from each other in the first direction x. Further, the first positioning member 731 and the first positioning member 733 and the first positioning member 732 and the first positioning member 734 are spaced apart from each other in the second direction y. In the illustrated example, each of the plurality of first positioning members 73 has a shape along the first direction x.
  • the plurality of second positioning members 74 are arranged on the third main surface electrode 222, and are adjacent to the connecting portion 322 of the second conductive member 32 when viewed in the thickness direction z. are doing.
  • the size of the plurality of second positioning members 74 in the thickness direction z is larger than the distance between the third main surface electrode 222 and the connection portion 322.
  • the difference between the size of the second positioning member 74 in the thickness direction z and the distance between the third main surface electrode 222 and the connecting portion 322 is, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • the plurality of second positioning members 74 are in contact with the conductive bonding layer 292, but the plurality of second positioning members 74 do not necessarily have to be in contact with the conductive bonding layer 292.
  • the specific configuration of the second positioning member 74 is not limited at all.
  • the second positioning member 74 is preferably made of a conductive material.
  • the second positioning member 74 contains metal as a main component, such as aluminum (Al), copper (Cu), and the like.
  • the second positioning member 74 is configured by a piece of wire.
  • the second positioning member 74 may be made of the same component as the third wire 43 and the fourth wire 44.
  • the second positioning member 74 is made of, for example, a portion of a wire material having a larger wire diameter than the wire material used for the first positioning member 73.
  • the number of the plurality of second positioning members 74 is not limited at all.
  • the semiconductor device A10 includes six second positioning members 74.
  • the six second positioning members 74 are distinguished as second positioning members 741, 742, 743, 744, 745, and 746.
  • the second positioning member 741 and the second positioning member 743 and the second positioning member 742 and the second positioning member 744 are spaced apart from each other in the second direction y with the connecting portion 322 in between. Further, the second positioning member 745 and the second positioning member 746 are spaced apart from each other in the first direction x with the connecting portion 322 in between.
  • the first connecting portion 323 extends in the second direction y.
  • the plurality of connecting parts 322 are connected to a first connecting part 323.
  • the second connecting portion 324 is located on the opposite side of the plurality of connecting portions 322 with respect to the first connecting portion 323 in the first direction x.
  • the second connecting portion 324 is connected to the first connecting portion 323.
  • the second connecting portion 324 extends in the first direction x.
  • the first connecting portion 323 and the second connecting portion 324 overlap the first member 12A. Therefore, when viewed in the thickness direction z, the second conductive member 32 overlaps the first member 12A.
  • the second terminal portion 321 is located on the opposite side of the plurality of second semiconductor elements 22 with respect to the plurality of first semiconductor elements 21 in the first direction x.
  • the second terminal portion 321 is located away from the first terminal portion 311 in the second direction y.
  • the second terminal portion 321 is located away from the first member 12A in the thickness direction z.
  • the composition of the second terminal portion 321 includes copper.
  • the second terminal portion 321 is connected to the second connecting portion 324 of the second conductive member 32. Therefore, the second conductive member 32 is electrically connected to the third main surface electrodes 222 of the plurality of second semiconductor elements 22 .
  • the second terminal portion 321 is an N terminal (negative electrode) to which a DC power supply voltage to be subjected to power conversion is applied.
  • a second attachment hole 321A is provided in a portion of the second terminal portion 321 that is exposed to the outside from the sealing resin 50.
  • the second attachment hole 321A penetrates the second terminal portion 321 in the thickness direction z.
  • the third conductive member 33 connects the first conductive member 31 and the second terminal portion 321 of the second conductive member 32 with respect to the plurality of first semiconductor elements 21 in the first direction x. located on the opposite side.
  • the third conductive member 33 has a third terminal portion 331 and a second pillow material 332.
  • the third terminal portion 331 is electrically conductively bonded to the second main surface 121B of the second member 12B via the second pillow material 332. Therefore, the third terminal portion 331 is located away from the second member 12B in the thickness direction z.
  • the composition of the third terminal portion 331 includes copper.
  • the third conductive member 33 is electrically connected to the second member 12B. Further, the third conductive member 33 is electrically connected to the second back electrodes 221 of the plurality of second semiconductor elements 22 via the second member 12B. The AC power converted by the plurality of first semiconductor elements 21 and the plurality of second semiconductor elements 22 is output from the third terminal section 331.
  • a portion of the third terminal portion 331 is exposed to the outside from the sealing resin 50.
  • a third attachment hole 331A is provided in a portion of the third terminal portion 331 that is exposed to the outside from the sealing resin 50.
  • the third attachment hole 331A penetrates the third terminal portion 331 in the thickness direction z.
  • the sealing resin 50 covers the two conductive members 12, the first wiring 15, the second wiring 16, the plurality of first semiconductor elements 21, and the plurality of second semiconductor elements 22. There is. Further, the sealing resin 50 connects the first conductive member 31, the second conductive member 32, the third conductive member 33, the first gate terminal 171, the second gate terminal 172, the first detection terminal 181, the second detection terminal 182, and A portion of each of the plurality of dummy terminals 19 is covered.
  • the sealing resin 50 has electrical insulation properties.
  • the sealing resin 50 is made of a material containing, for example, a black epoxy resin. As shown in FIG. 5, the sealing resin 50 has a top surface 51, a bottom surface 52, two first side surfaces 53, and two second side surfaces 54.
  • the top surface 51 faces the same side as the first main surface 121A of the first member 12A in the thickness direction z.
  • the bottom surface 52 faces opposite to the top surface 51 in the thickness direction z.
  • a portion of the heat dissipation layer 103 of the support member 10 is exposed from the bottom surface 52.
  • the two first side surfaces 53 are located apart from each other in the first direction x, and are connected to the top surface 51 and the bottom surface 52.
  • a portion of each of the first terminal portion 311 of the first conductive member 31 and the second terminal portion 321 of the second conductive member 32 is exposed to the outside from one of the two first side surfaces 53. are doing.
  • a portion of the third terminal portion 331 of the third conductive member 33 is exposed to the outside from the other of the two first side surfaces 53 .
  • the two second side surfaces 54 are located apart from each other in the second direction y, and are connected to the top surface 51 and the bottom surface 52.
  • the first gate terminal 171, the second gate terminal 172, the first detection terminal 181, the second detection terminal 182, and each of the plurality of dummy terminals 19 are connected from one of the two second side surfaces 54. part is exposed to the outside.
  • the first semiconductor element 21 is mounted on the first main surface 121A.
  • the wire material 40 is then bonded to the first main surface electrode 212.
  • a wedge tool Wg is used to join the wire material 40.
  • a portion of the wire material 40 is pressed against the first main surface electrode 212 by a wedge tool Wg.
  • the wedge tool Wg is moved and the wire material 40 is cut by the cutting tool Ct.
  • the second wire 42 is formed as shown in FIG. 19.
  • a plurality of first positioning members 71 are formed using the wire material 40. After pressing a portion of the wire material 40 to the position where the first positioning member 71 is to be formed, the wire material 40 is cut by the cutting tool Ct. Thereby, as shown in FIG. 20, a plurality of first positioning members 71 are formed at predetermined positions. Note that the cross-sectional shape of the first positioning member 71 shown in FIG. 13 is formed by pressing the wire material 40 with the wedge tool Wg. Further, a plurality of second positioning members 72 are formed using a wire material having a larger wire diameter than the wire material 40 by the same procedure as the plurality of first positioning members 71.
  • a conductive bonding material 290 is applied to the first main surface electrode 212.
  • the conductive bonding material 290 is, for example, a solder paste.
  • the connecting portion 141 of the fourth conductive member 14 is attached to the conductive bonding material 290.
  • the connecting portion 141 is brought close to the first semiconductor element 21 in the thickness direction z, and the connecting portion 141 and the plurality of first positioning members 71 are brought into contact with each other.
  • the conductive bonding material 290 is cured using, for example, a reflow oven or the like to form conductive bonding layers 291 and 292. Then, by forming the sealing resin 50, etc., the semiconductor device A10 is obtained.
  • the first positioning member 71 is interposed between the first main surface electrode 212 and the connecting portion 141.
  • the first positioning member 71 is in contact with the first main surface electrode 212 and the connecting portion 141 .
  • the semiconductor device A10 includes a plurality of first positioning members 71. Thereby, the thickness of the conductive bonding layer 292 can be more reliably made uniform.
  • the first positioning member 711 and the first positioning member 712 and the first positioning member 713 and the first positioning member 714 are spaced apart from each other in the first direction x. Thereby, it is possible to more reliably suppress the connection portion 141 (fourth conductive member 14) from tilting around the axis extending in the second direction y.
  • the first positioning member 711 and the first positioning member 713 and the first positioning member 712 and the first positioning member 714 are spaced apart from each other in the second direction y. Thereby, it is possible to more reliably prevent the connecting portion 141 (fourth conductive member 14) from tilting around the axis extending in the first direction x.
  • the plurality of first positioning members 71 have metal as a main component. Thereby, a decrease in electrical resistance between the first main surface electrode 212 and the fourth conductive member 14 can be avoided.
  • the plurality of first positioning members 71 are made of wire pieces. Thereby, the plurality of first positioning members 71 can be formed using the wedge tool Wg or the like. As shown in FIGS. 18 and 19, forming the plurality of first positioning members 71 using the wire material 40 for forming the second wire 42 and the like is preferable for improving the manufacturing efficiency of the semiconductor device A10.
  • a plurality of second positioning members 72 are arranged adjacent to the connecting portion 141.
  • the second positioning member 721 and the second positioning member 723 and the second positioning member 722 and the second positioning member 724 are separated from each other in the second direction y with the connecting portion 141 in between. Thereby, the position of the connecting portion 141 in the second direction y can be defined more accurately.
  • the second positioning member 725 and the second positioning member 726 are separated from each other in the first direction x with the connecting portion 141 in between. Thereby, the position of the connecting portion 141 in the first direction x can be defined more accurately.
  • the plurality of second positioning members 72 can be formed using a wedge tool Wg or the like.
  • the second positioning member 74 is arranged on one side of the first direction x of any of the connecting parts 322, and By arranging the second positioning member 74 on the other side of the connecting portion 322 in the first direction x, it is possible to define the position of the entire second conductive member 32 in the first direction x.
  • FIG. 23 shows a first modification of the semiconductor device A10.
  • the specific configuration of the plurality of first positioning members 71 is different from the plurality of first positioning members 71 of the semiconductor device A10.
  • the plurality of first positioning members 71 have a shape along the second direction y.
  • the plurality of first positioning members 71 having such a shape can be formed by setting the orientation of the wedge tool Wg shown in FIGS. 18 and 19.
  • the thickness of the conductive bonding layer 292 can be made more uniform.
  • the specific shape of the plurality of first positioning members 71 is not limited at all, and the same applies to the plurality of first positioning members 73.
  • FIG. 24 shows a second modification of the semiconductor device A10.
  • the semiconductor device A12 of this modification differs from the plurality of first positioning members 71 of the semiconductor device A10 in the number and arrangement of the plurality of first positioning members 71.
  • the number of the plurality of first positioning members 71 is three.
  • the first positioning member 711 and the first positioning member 712 are arranged apart from each other in the second direction y.
  • the first positioning member 713 is spaced apart from the first positioning member 711 and the first positioning member 712 in the first direction x. In the second direction y, the first positioning member 713 is located between the first positioning member 711 and the first positioning member 712.
  • the thickness of the conductive bonding layer 292 can be made more uniform.
  • the number of first positioning members 71 is not limited at all, and the same applies to the plurality of first positioning members 73. By using the three first positioning members 71, it is possible to support the connecting portion 141 at three points. Thereby, the thickness of the conductive bonding layer 292 can be made uniform.
  • FIG. 25 shows a third modification of the semiconductor device A10.
  • the semiconductor device A13 of this modification differs from the plurality of second positioning members 72 of the semiconductor device A10 in the number and arrangement of the plurality of second positioning members 72.
  • the number of the plurality of second positioning members 72 is four.
  • the second positioning member 721 and the second positioning member 722 are separated from each other in the second direction y with the connecting portion 141 in between.
  • the thickness of the conductive bonding layer 292 can be made more uniform. Furthermore, the second positioning member 721 and the second positioning member 722 can more accurately define the position of the connecting portion 141 in the second direction y. As understood from this modification, the number of second positioning members 72 is not limited at all, and the same applies to the second positioning members 74.
  • FIG. 26 shows a fourth modification of the semiconductor device A10.
  • the specific configuration of the plurality of second positioning members 72 is different from the plurality of second positioning members 72 of the semiconductor device A10.
  • the second positioning member 72 includes a first part 7211 and a second part 7212.
  • the first portion 7211 is in contact with the first main surface electrode 212.
  • the second part 7212 is arranged on the first part 7211.
  • the first portion 7211 and the second portion 7212 are formed, for example, by a portion of the wire material 40 used to form the first positioning member 71. Therefore, for example, the cross-sectional area of the first positioning member 71, the cross-sectional area of the first portion 7211, and the cross-sectional area of the second portion 7212 are the same.
  • the thickness of the conductive bonding layer 292 can be made more uniform. Furthermore, it is possible to form the first positioning member 71 and the second positioning member 72 using the same wire material 40. Thereby, manufacturing efficiency of the semiconductor device A14 can be improved.
  • FIG. 27 shows a semiconductor device according to a second embodiment of the present disclosure.
  • the semiconductor device A20 of this embodiment is different from the above-described embodiments in the configuration of the fourth conductive member 14.
  • the fourth conductive member 14 of this modification is formed, for example, by partially bending a metal plate material having a constant thickness.
  • the connecting portion 141 is located closer to the first principal surface electrode 212 in the thickness direction z than adjacent portions.
  • the thickness of the conductive bonding layer 292 can be made more uniform.
  • the specific configuration of the fourth conductive member 14 is not limited at all, and the same applies to the second conductive member 32.
  • FIG. 27 shows a semiconductor device according to a third embodiment of the present disclosure.
  • the semiconductor device A30 of this embodiment does not include the plurality of second positioning members 72 described above. Such an embodiment also allows the thickness of the conductive bonding layer 292 to be made more uniform.
  • the semiconductor device and the method for manufacturing a semiconductor device according to the present disclosure are not limited to the embodiments described above.
  • the specific configurations of the semiconductor device and the method of manufacturing the semiconductor device according to the present disclosure can be modified in various designs.
  • the present disclosure includes the embodiments described in the appendix below.
  • a semiconductor element having a first main surface electrode; A conductive member; a conductive bonding layer that electrically connects the first main surface electrode and the conductive member;
  • a semiconductor device comprising: a first positioning member disposed between the first main surface electrode and the conductive member and in contact with the first main surface electrode and the conductive member.
  • Appendix 2. The semiconductor device according to appendix 1, wherein the first positioning member is in contact with the conductive bonding layer.
  • Appendix 3. The semiconductor device according to appendix 2, wherein the first positioning member has metal as a main component.
  • the semiconductor device comprising a plurality of the first positioning members.
  • Appendix 6 The semiconductor device according to appendix 5, wherein the plurality of first positioning members include two first positioning members spaced apart from each other in a first direction perpendicular to a thickness direction of the semiconductor element.
  • Appendix 7. The semiconductor device according to appendix 6, wherein the plurality of first positioning members include two first positioning members spaced apart from each other in the thickness direction and a second direction perpendicular to the first direction.
  • the semiconductor element includes a second main surface electrode disposed on the same side as the first main surface electrode in the thickness direction; The semiconductor device according to appendix 6, further comprising a first wire bonded to the second main surface electrode.
  • Appendix 10. The semiconductor device according to appendix 9, wherein the first positioning member and the first wire have the same cross-sectional area.
  • Appendix 11. The semiconductor device according to any one of appendices 8 to 10, further comprising a second wire electrically connected to the semiconductor element.
  • Appendix 12. The semiconductor device according to appendix 11, wherein the first positioning member and the second wire are made of the same component.
  • Appendix 13 The semiconductor device according to appendix 12, wherein the first positioning member and the second wire have the same cross-sectional area.
  • the first main surface electrode is a source electrode, 14.
  • the semiconductor device according to any one of appendices 8 to 13, wherein the second main surface electrode is a gate electrode.
  • Appendix 15. The conductive member is disposed on the first main surface electrode, is adjacent to the conductive member when viewed in the thickness direction of the semiconductor element, and has a size in the thickness direction that is equal to that of the first main surface electrode and the conductive member. 15.
  • the semiconductor device according to any one of Supplementary Notes 1 to 14, further comprising a second positioning member having a distance greater than the distance from the second positioning member.
  • Appendix 16 The semiconductor device according to appendix 15, wherein the second positioning member is a piece of wire.
  • Appendix 17. The semiconductor device according to appendix 15 or 16, comprising a plurality of the second positioning members. Appendix 18.
  • a method for manufacturing a semiconductor device comprising the step of electrically bonding the first principal surface electrode and the conductive member by curing the conductive bonding material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

半導体装置は、半導体素子と、導通部材と、導電接合層と、第1位置決め部材とを備える。前記半導体素子は、第1主面電極を有する。前記導電接合層は、前記第1主面電極と前記導通部材とを導通接合する。前記第1位置決め部材は、前記第1主面電極と前記導通部材との間に配置され、且つ前記第1主面電極および前記導通部材に接する。一例として、前記第1位置決め部材は、前記導電接合層に接する。一例として、前記第1位置決め部材は、金属を主成分とする。

Description

半導体装置、および、半導体装置の製造方法
 本開示は、半導体装置、および、半導体装置の製造方法に関する。
 従来、スイッチング機能を有する半導体素子が搭載された半導体装置が広く知られている。当該半導体装置は、主に電力変換用に利用されている。特許文献1には、このような半導体装置の一例が開示されている。
特開2013-258387号公報
 半導体素子の主面電極に導電接合層を介して導通部材が導通接合される場合、たとえば導通部材が主面電極に対して近づいたり、離隔したり、傾いたりすることが起こりうる。これにより、導電接合層の厚さが不均一となることが懸念される。
 本開示は、従来よりも改良が施された半導体装置、延いてはそのような半導体装置の製造方法を提供することを一の課題とする。特に本開示は、上記した事情に鑑み、導電接合層の厚さをより均一化することが可能な半導体装置および半導体装置の製造方法を提供することを一の課題とする。
 本開示の第1の側面によって提供される半導体装置は、第1主面電極を有する半導体素子と、導通部材と、前記第1主面電極と前記導通部材とを導通接合する導電接合層と、を備える。さらに当該半導体装置は、前記第1主面電極と前記導通部材との間に配置され、且つ前記第1主面電極および前記導通部材に接する第1位置決め部材を備える。
 上記構成によれば、半導体装置において導電接合層の厚さをより均一化することができる。
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
図1は、本開示の第1実施形態にかかる半導体装置を示す部分斜視図である。 図2は、本開示の第1実施形態にかかる半導体装置を示す平面図である。 図3は、本開示の第1実施形態にかかる半導体装置を示す部分平面図である。 図4は、本開示の第1実施形態にかかる半導体装置を示す底面図である 図5は、本開示の第1実施形態にかかる半導体装置を示す左側面図である。 図6は、図2のVI-VI線に沿う断面図である。 図7は、図2のVII-VII線に沿う断面図である。 図8は、図2のVIII-VIII線に沿う断面図である。 図9は、図2のIX-IX線に沿う断面図である。 図10は、本開示の第1実施形態にかかる半導体装置を示す部分拡大平面図である。 図11は、図10のXI-XI線に沿う部分拡大断面図である。 図12は、図10のXII-XII線に沿う部分拡大断面図である。 図13は、図10のXIII-XIII線に沿う部分拡大断面図である。 図14は、本開示の第1実施形態にかかる半導体装置を示す部分拡大平面図である。 図15は、図14のXV-XV線に沿う部分拡大断面図である。 図16は、図14のXVI-XVI線に沿う部分拡大断面図である。 図17は、図14のXVII-XVII線に沿う部分拡大断面図である。 図18は、本開示の第1実施形態にかかる半導体装置の製造方法を示す部分拡大断面図である。 図19は、本開示の第1実施形態にかかる半導体装置の製造方法を示す部分拡大断面図である。 図20は、本開示の第1実施形態にかかる半導体装置の製造方法を示す部分拡大断面図である。 図21は、本開示の第1実施形態にかかる半導体装置の製造方法を示す部分拡大断面図である。 図22は、本開示の第1実施形態にかかる半導体装置の製造方法を示す部分拡大断面図である。 図23は、本開示の第1実施形態にかかる半導体装置の第1変形例を示す部分拡大平面図である。 図24は、本開示の第1実施形態にかかる半導体装置の第2変形例を示す部分拡大平面図である。 図25は、本開示の第1実施形態にかかる半導体装置の第3変形例を示す部分拡大断面図である。 図26は、本開示の第1実施形態にかかる半導体装置の第4変形例を示す部分拡大断面図である。 図27は、本開示の第2実施形態にかかる半導体装置を示す部分拡大断面図である。 図28は、本開示の第3実施形態にかかる半導体装置を示す部分拡大平面図である。
 本開示を実施するための形態について、添付図面に基づいて説明する。
 本開示における「第1」、「第2」、「第3」等の用語は、単に識別のために用いたものであり、それらの対象物に順列を付することを意図していない。
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。また、本開示において「ある面Aが方向B(の一方側または他方側)を向く」とは、面Aの方向Bに対する角度が90°である場合に限定されず、面Aが方向Bに対して傾いている場合を含む。
 第1実施形態:
 図1~図17に基づき、本開示の第1実施形態にかかる半導体装置A10について説明する。半導体装置A10は、2つの絶縁部材11、2つの導電部材12、2つの放熱部材13、複数の第4導通部材14、複数の第1半導体素子21、複数の第2半導体素子22、封止樹脂50、複数の第1位置決め部材71,73、複数の第2位置決め部材72、74、複数の導電接合層291および複数の導電接合層292を備える。
 さらに半導体装置A10は、第1配線15、第2配線16、第1ゲート端子171、第2ゲート端子172、第1検出端子181、第2検出端子182、複数の第1ワイヤ41、複数の第2ワイヤ42、複数の第3ワイヤ43、複数の第4ワイヤ44、および複数の第5ワイヤ45を備える。ここで、図1は、理解の便宜上、封止樹脂50の図示を省略している。図2は、理解の便宜上、封止樹脂50を想像線(二点鎖線)で示している。図3は、理解の便宜上、第2導通部材32を想像線で示している。
 半導体装置A10の説明においては、便宜上、第1半導体素子21および第2半導体素子22の厚さ方向を「厚さ方向z」と呼ぶ。厚さ方向zに対して直交する1つの方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直交する方向を「第2方向y」と呼ぶ。
 半導体装置A10は、第1導通部材31および第2導通部材32に印加された直流の電源電圧を、複数の第1半導体素子21および複数の第2半導体素子22により交流電力に変換する。変換された交流電力は、第3導通部材33からモータなどの電力供給対象に入力される。半導体装置A10は、インバータなどの電力変換回路の一部を構成する。
 2つの絶縁部材11は、図2および図3に示すように、第1方向xにおいて互いに離れて位置する。2つの絶縁部材11は、エポキシ樹脂を含む樹脂材料からなる。この他、2つの絶縁部材11は、窒化アルミニウム(AlN)を含むセラミックス材料からなる場合でもよい。
 2つの導電部材12は、図6および図7に示すように、2つの絶縁部材11の厚さ方向zの一方側に位置する。2つの導電部材12は、2つの絶縁部材11に個別に接合されている。半導体装置A10の説明においては、2つの導電部材12のうち、複数の第1半導体素子21を搭載する導電部材12を「第1部材12A」と呼ぶ。2つの導電部材12のうち、複数の第2半導体素子22を搭載する導電部材12を「第2部材12B」と呼ぶ。
 2つの導電部材12の各々は、主面121、裏面122および第1端面123を有する。厚さ方向zにおいて主面121および裏面122は、互いに反対側を向く。主面121は、第1部材12Aに属する第1主面121Aと、第2部材12Bに属する第2主面121Bとを含む。第1主面121Aは、複数の第1半導体素子21に対向している。第2主面121Bは、複数の第2半導体素子22に対向している。裏面122は、2つの絶縁部材11のいずれかに接合されている。
 半導体装置A10においては、図6~図9に示すように、2つの導電部材12の各々は、第1層120A、第2層120Bおよび接合層120Cを含む。第1層120Aは、裏面122を有する。第2層120Bは、主面121を有する。第1層120Aおよび第2層120Bの組成は、銅(Cu)を含む。第2層120Bの厚さ方向zの寸法は、第1層120Aの厚さ方向の寸法よりも大きい。接合層120Cは、第1端面123を有する。接合層120Cは、第1層120Aと第2層120Bとを導電接合する。接合層120Cは、金属元素を含む。当該金属元素は、たとえば錫(Sn)である。
 2つの放熱部材13は、図6および図7に示すように、2つの絶縁部材11に対して2つの導電部材12とは厚さ方向の反対側に位置する。2つの放熱部材13は、2つの絶縁部材11に個別に接合されている。2つの放熱部材13の組成は、銅を含む。2つの放熱部材13の各々は、厚さ方向zに対して直交する方向を向く端面131を有する。厚さ方向zに視て、端面131は、絶縁部材11の周縁に囲まれている。図4に示すように、2つの放熱部材13の各々の一部は、封止樹脂50から外部の露出している。半導体装置A10の使用の際、2つの放熱部材13には、ヒートシンク(図示略)が接合される。
 2つの絶縁部材11、2つの導電部材12の第1層120A、および2つの放熱部材13の具体的構成は何ら限定されず、たとえば、DBC(Direct Bonded Copper)基板によって構成される。
 複数の第1半導体素子21は、図6~図8に示すように、第1部材12Aの第1主面121Aに接合されている。本実施形態においては、複数の第1半導体素子21は、いずれも同一の素子である。複数の第1半導体素子21は、たとえばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。この他、複数の第1半導体素子21は、MISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)を含む電界効果トランジスタや、IGBT(Insulated Gate Bipolar Transistor)のようなバイポーラトランジスタでもよい。半導体装置A10の説明においては、複数の第1半導体素子21は、nチャネル型であり、かつ縦型構造のMOSFETを対象とする。複数の第1半導体素子21は、化合物半導体基板を含む。当該化合物半導体基板の組成は、炭化ケイ素(SiC)を含む。複数の第1半導体素子21は、第2方向yに沿って配列されている。
 第1半導体素子21は、第1裏面電極211、第1主面電極212および第2主面電極213を有する。
 第1裏面電極211は、第1部材12Aの第1主面121Aに対向している。第1裏面電極211には、第1半導体素子21により変換される前の電力に対応する電流が流れる。第1裏面電極211は、たとえば、ドレイン電極である。第1裏面電極211は、導電接合層291を介して第1主面121Aに導電接合されている。したがって、複数の第1半導体素子21の第1裏面電極211は、第1部材12Aに導通している。導電接合層291は、たとえばハンダである。この他、導電接合層291は、銀などを含む焼結金属でもよい。
 第1主面電極212は、厚さ方向zにおいて第1裏面電極211とは反対側に位置する。第1主面電極212には、第1半導体素子21により変換された後の電力に対応する電流が流れる。第1主面電極212は、たとえば、第1半導体素子21のソース電極に相当する。
 第2主面電極213は、厚さ方向zにおいて第1主面電極212と同じ側に位置する。第2主面電極213には、第1半導体素子21を駆動するための制御電圧が印加される。第2主面電極213は、たとえばゲート電極である。図3に示すように、厚さ方向zに視て、第2主面電極213の面積は、第1主面電極212の面積よりも小さい。
 複数の第2半導体素子22は、図6、図7および図9に示すように、第2部材12Bの第2主面121Bに接合されている。複数の第2半導体素子22は、複数の第1半導体素子21と同一の素子である。したがって、複数の第2半導体素子22は、nチャネル型であり、かつ縦型構造のMOSFETである。複数の第2半導体素子22は、第2方向yに沿って配列されている。
 第2半導体素子22は、第2裏面電極221、第3主面電極222および第4主面電極223を有する。
 第2裏面電極221は、第2部材12Bの第2主面121Bに対向している。第2裏面電極221には、第2半導体素子22により変換される前の電力に対応する電流が流れる。第2裏面電極221は、たとえばドレイン電極である。第2裏面電極221は、導電接合層291を介して第2主面121Bに導電接合されている。したがって、複数の第2半導体素子22の第2裏面電極221は、第2部材12Bに導通している。
 第3主面電極222は、厚さ方向zにおいて第2裏面電極221とは反対側に位置する。第3主面電極222には、第2半導体素子22により変換された後の電力に対応する電流が流れる。第3主面電極222は、たとえば、第2半導体素子22のソース電極である。
 第4主面電極223は、厚さ方向zにおいて第3主面電極222と同じ側に位置する。第4主面電極223には、第2半導体素子22を駆動するための制御電圧が印加される。第4主面電極223には、たとえばゲート電極である。図4に示すように、厚さ方向zに視て、第4主面電極223の面積は、第3主面電極222の面積よりも小さい。
 第1配線15は、図3に示すように、第1方向xにおいて複数の第1半導体素子21の隣に位置する。第1配線15は、第1部材12Aの第1主面121Aに接合されている。半導体装置A10においては、第1配線15は、一対の支持部材10と同様に、DBC基板から構成される。図6および図7に示すように、第1配線15は、第1絶縁層151、第1ゲート配線152、第1検出配線153および第1支持層154を有する。
 図3に示すように、第1絶縁層151は、第2方向yに延びている。図6および図7に示すように、第1絶縁層151は、第1部材12Aの第1主面121Aの上に位置する。第1絶縁層151は、たとえば、窒化アルミニウムを含むセラミックスからなる。
 図3、図6および図7に示すように、第1ゲート配線152は、第1絶縁層151の上に配置されている。第1ゲート配線152は、厚さ方向zにおいて第1絶縁層151を基準として第1部材12Aとは反対側に位置する。第1ゲート配線152は、第2方向yに延びている。第1ゲート配線152は、複数の第1半導体素子21の第2主面電極213に導通している。第1ゲート配線152の組成は、銅を含む。
 図3、図6および図7に示すように、第1検出配線153は、第1絶縁層151の上に配置されている。第1検出配線153は、第1方向xにおいて第1ゲート配線152を基準として複数の第1半導体素子21とは反対側に位置する。さらに第1検出配線153は、厚さ方向zにおいて第1絶縁層151を基準として第1ゲート配線152と同じ側に位置する。第1検出配線153は、第2方向yに延びている。第1検出配線153は、複数の第1半導体素子21の第1主面電極212に導通している。第1検出配線153の組成は、銅を含む。
 図6および図7に示すように、第1支持層154は、厚さ方向zにおいて第1絶縁層151を基準として第1ゲート配線152および第1検出配線153とは反対側に位置する、第1支持層154は、たとえばろう材を介して第1部材12Aの第1主面121Aに接合されている。第1支持層154の組成は、銅を含む。
 複数の第1ワイヤ41の各々は、図3に示すように、複数の第1半導体素子21のいずれかの第2主面電極213と、第1配線15の第1ゲート配線152とに導電接合されている。これにより、複数の第1半導体素子21の第2主面電極213は、第1ゲート配線152に導通している。複数の第1ワイヤ41の組成は、アルミニウム(Al)を含む。この他、複数の第1ワイヤ41の組成は、銅(Cu)を含む場合や、金(Au)を含む場合でもよい。
 複数の第2ワイヤ42の各々は、図3に示すように、複数の第1半導体素子21のいずれかの第1主面電極212と、第1配線15の第1検出配線153とに導電接合されている。これにより、複数の第1半導体素子21の第1主面電極212は、第1検出配線153に導通している。複数の第2ワイヤ42の組成は、アルミニウム(Al)を含む。この他、複数の第2ワイヤ42の組成は、銅(Cu)を含む場合や、金(Au)を含む場合でもよい。
 第1ゲート端子171は、図2および図3に示すように、第2方向yにおいて第1部材12Aの隣に位置する。第1ゲート端子171は、第1配線15の第1ゲート配線152に導通している。第1ゲート端子171は、銅または銅合金を含む材料からなる金属リードである。図4に示すように、第1ゲート端子171の一部は、封止樹脂50に覆われている。第1方向xに視て、第1ゲート端子171はL字状である。図5および図8に示すように、第1ゲート端子171は、厚さ方向zに起立した部分を含む。当該部分は、封止樹脂50から外部に露出している。第1ゲート端子171には、複数の第1半導体素子21が駆動するためのゲート電圧が印加される。
 第1検出端子181は、図2および図3に示すように、第1方向xにおいて第1ゲート端子171の隣に位置する。第1検出端子181は、第1配線15の第1検出配線153に導通している。第1検出端子181は、銅または銅合金を含む材料からなる金属リードである。図4に示すように、第1検出端子181の一部は、封止樹脂50に覆われている。第1方向xに視て、第1検出端子181はL字状である。図5に示すように、第1検出端子181は、厚さ方向zに起立した部分を含む。当該部分は、封止樹脂50から外部に露出している。第1検出端子181には、複数の第1半導体素子21の第1主面電極212に印加される電圧と等電位の電圧が印加される。
 第2配線16は、図3に示すように、第1方向xにおいて複数の第2半導体素子22の隣に位置する。第2配線16は、第2部材12Bの第2主面121Bに接合されている。半導体装置A10においては、第2配線16は、第1配線15と同様に、DBC基板から構成される。図6および図7に示すように、第2配線16は、第2絶縁層161、第2ゲート配線162、第2検出配線163および第2支持層164を有する。
 図3に示すように、第2絶縁層161は、第2方向yに延びている。図6および図7に示すように、第2絶縁層161は、第2部材12Bの第2主面121Bの上に位置する。第2絶縁層161は、たとえば、窒化アルミニウムを含むセラミックスからなる。
 図3、図6および図7に示すように、第2ゲート配線162は、第2絶縁層161の上に配置されている。第2ゲート配線162は、厚さ方向zにおいて第1絶縁層151を基準として第2部材12Bとは反対側に位置する。第2ゲート配線162は、第2方向yに延びている。第2ゲート配線162は、複数の第2半導体素子22の第4主面電極223に導通している。第2ゲート配線162の組成は、銅を含む。
 図3、図6および図7に示すように、第2検出配線163は、第2絶縁層161の上に配置されている。第2検出配線163は、第1方向xにおいて第2ゲート配線162を基準として複数の第2半導体素子22とは反対側に位置する。さらに第2検出配線163は、厚さ方向zにおいて第2絶縁層161を基準として第2ゲート配線162と同じ側に位置する。第2検出配線163は、第2方向yに延びている。第2検出配線163は、複数の第2半導体素子22の第3主面電極222に導通している。第2検出配線163の組成は、銅を含む。
 図6および図7に示すように、第2支持層164は、厚さ方向zにおいて第2絶縁層161を基準として第2ゲート配線162および第2検出配線163とは反対側に位置する、第2支持層164は、たとえばろう材を介して第2部材12Bの第2主面121Bに接合されている。第2支持層164の組成は、銅を含む。
 複数の第3ワイヤ43の各々は、図3に示すように、複数の第2半導体素子22のいずれかの第4主面電極223と、第2配線16の第2ゲート配線162とに導電接合されている。これにより、第2半導体素子22の第4主面電極223は、第2ゲート配線162に導通している。複数の第3ワイヤ43の組成は、アルミニウム(Al)を含む。この他、複数の第3ワイヤ43の組成は、銅(Cu)を含む場合や、金(Au)を含む場合でもよい。
 複数の第4ワイヤ44の各々は、図3に示すように、複数の第2半導体素子22のいずれかの第3主面電極222と、第2配線16の第2検出配線163とに導電接合されている。これにより、複数の第2半導体素子22の第3主面電極222は、第2検出配線163に導通している。複数の第4ワイヤ44の組成は、アルミニウム(Al)を含む。この他、複数の第4ワイヤ44の組成は、銅(Cu)を含む場合や、金(Au)を含む場合でもよい。
 第2ゲート端子172は、図2および図3に示すように、第2方向yにおいて第2部材12Bの隣に位置する。第2ゲート端子172は、第2方向yにおいて支持部材10を基準として第1ゲート端子171と同じ側に位置する。第2ゲート端子172は、第2配線16の第2ゲート配線162に導通している。第2ゲート端子172は、銅または銅合金を含む材料からなる金属リードである。図4に示すように、第2ゲート端子172の一部は、封止樹脂50に覆われている。第1方向xに視て、第2ゲート端子172はL字状である。図5および図9に示すように、第2ゲート端子172は、厚さ方向zに起立した部分を含む。当該部分は、封止樹脂50から外部に露出している。第2ゲート端子172には、複数の第2半導体素子22が駆動するためのゲート電圧が印加される。
 第2検出端子182は、図2および図3に示すように、第1方向xにおいて第2ゲート端子172の隣に位置する。第2検出端子182は、第2配線16の第2検出配線163に導通している。第2検出端子182は、銅または銅合金を含む材料からなる金属リードである。図4に示すように、第2検出端子182の一部は、封止樹脂50に覆われている。第1方向xに視て、第2検出端子182はL字状である。図4に示すように、第2検出端子182は、厚さ方向zに起立した部分を含む。当該部分は、封止樹脂50から外部に露出している。第2検出端子182には、複数の第2半導体素子22の第3主面電極222に印加される電圧と等電位の電圧が印加される。
 複数の第5ワイヤ45は、図3に示すように、第1ゲート端子171および第1検出端子181と、第1配線15の第1ゲート配線152および第1検出配線153とに個別に導電接合されている。これにより、第1ゲート端子171は、第1ゲート配線152を介して複数の第1半導体素子21の第2主面電極213に導通している。第1検出端子181は、第1検出配線153を介して複数の第1半導体素子21の第1主面電極212に導通している。
 さらに複数の第5ワイヤ45は、図3に示すように、第2ゲート端子172および第2検出端子182と、第2配線16の第2ゲート配線162および第2検出配線163とに個別に導電接合されている。これにより、第2ゲート端子172は、第2ゲート配線162を介して複数の第2半導体素子22の第4主面電極223に導通している。第2検出端子182は、第2検出配線163を介して複数の第2半導体素子22の第3主面電極222に導通している。複数の第5ワイヤ45の組成は、アルミニウム(Al)を含む。この他、複数の第5ワイヤ45の組成は、銅(Cu)を含む場合や、金(Au)を含む場合でもよい。
 半導体装置A10は、図2および図3に示すように、4つのダミー端子19をさらに備える。4つのダミー端子19のうち2つのダミー端子19は、第1方向xにおいて第1検出端子181を基準として第1ゲート端子171とは反対側に位置する。残り2つのダミー端子19は、第1方向xにおいて第2検出端子182を基準として第2ゲート端子172とは反対側に位置する。複数のダミー端子19は、銅または銅合金を含む材料からなる金属リードである。複数のダミー端子19の各々の形状は、第1ゲート端子171の形状に等しい。複数のダミー端子19の各々の一部は、封止樹脂に覆われている。複数のダミー端子19の厚さ方向zに起立した部分は、封止樹脂50から外部に露出している。
 第1導通部材31は、図2および図3に示すように、第1方向xにおいて複数の第1半導体素子21を基準として複数の第2半導体素子22とは反対側に位置する。図6に示すように、第1導通部材31は、第1端子部311および第1枕材312を有する。第1端子部311は、第1枕材312を介して第1部材12Aの第1主面121Aに導電接合されている。したがって、第1端子部311は、厚さ方向zにおいて第1部材12Aから離れて位置する。図3に示すように、厚さ方向zに視て、第1端子部311は、第1部材12Aに重なっている。第1端子部311の組成は、銅(Cu)を含む。
 第1導通部材31は、第1部材12Aに導通している。さらに第1導通部材31は、第1部材12Aを介して複数の第1半導体素子21の第1裏面電極211に導通している。第1端子部311は、電力変換対象となる直流の電源電圧が印加されるP端子(正極)である。
 図6に示すように、第1端子部311の一部は、封止樹脂50から外部に露出している。封止樹脂50から外部に露出する第1端子部311の部分には、第1取付け孔311Aが設けられている。第1取付け孔311Aは、厚さ方向zに第1端子部311を貫通している。
 複数の第4導通部材14の各々は、図3、図6~図8および図10~図13に示すように、複数の第1半導体素子21のいずれかの第1主面電極212と、第2部材12Bの第2主面121Bとに、それぞれ導電接合層292を介して導電接合されている。本実施形態においては、第4導通部材14は、接続部141を有する。接続部141は、第4導通部材14の第1方向xの端部に位置している。図示された例においては、接続部141は、局所的に厚さ方向zの寸法が大きい部位である。接続部141は、導電接合層292によって第1主面電極212に導通接合されている。これにより、第2部材12Bは、複数の第1半導体素子21の第1主面電極212に導通している。複数の第4導通部材14は、第1方向xに延びている。複数の第4導通部材14の組成は、銅(Cu)を含む。
 図10~図13に示すように、複数の第1位置決め部材71は、第1主面電極212と第4導通部材14の接続部141との間に配置されている。複数の第1位置決め部材71は、第1主面電極212および接続部141に接している。厚さ方向zに視て、複数の第1位置決め部材71は、接続部141に重なっている。
 第1位置決め部材71の具体的構成は何ら限定されない。第1位置決め部材71は、導電性材料からなることが好ましい。第1位置決め部材71は、主成分として金属を含み、たとえばアルミニウム(Al)、銅(Cu)等を含む。本実施形態においては、第1位置決め部材71は、ワイヤ片によって構成されている。本開示でのワイヤ片とは、ワイヤ材料が部分的に切断されることによって形成されたものである。第1位置決め部材71は、第1ワイヤ41および第2ワイヤ42と同じ成分からなる。第1位置決め部材71は、第1ワイヤ41および第2ワイヤ42と断面積が同じである。第1位置決め部材71は、たとえば線径が100μm以上500μm以下のワイヤ材料の一部によって構成されており、たとえば線径が125μmまたは150μmのワイヤ材料の一部である。
 複数の第1位置決め部材71の個数は、何ら限定されない。図示された例においては、半導体装置A10は、4つの第1位置決め部材71を備えている。説明の便宜として、4つの第1位置決め部材71を、第1位置決め部材711、712,713,714として区別する。
 第1位置決め部材711および第1位置決め部材712と第1位置決め部材713および第1位置決め部材714とは、第1方向xに互いに離隔している。また、第1位置決め部材711および第1位置決め部材713と第1位置決め部材712および第1位置決め部材714とは、第2方向yに互いに離隔している。図示された例においては、複数の第1位置決め部材71は、いずれも第1方向xに沿った形状である。
 複数の第2位置決め部材72は、図10~図13に示すように、第1主面電極212上に配置されており、厚さ方向zに視て第4導通部材14の接続部141に隣接している。複数の第2位置決め部材72の厚さ方向zの大きさは、第1主面電極212と接続部141との距離よりも大きい。第2位置決め部材72の厚さ方向zの大きさと第1主面電極212と接続部141との距離との差は、たとえば100μm以上300μm以下である。図示された例においては、複数の第2位置決め部材72は、導電接合層292と接しているが、複数の第2位置決め部材72は、導電接合層292と必ずしも接していなくてもよい。
 第2位置決め部材72の具体的構成は何ら限定されない。第2位置決め部材72は、導電性材料からなることが好ましい。第2位置決め部材72は、主成分として金属を含み、たとえばアルミニウム(Al)、銅(Cu)等を含む。本実施形態においては、第2位置決め部材72は、ワイヤ片によって構成されている。第2位置決め部材72は、第1ワイヤ41および第2ワイヤ42と同じ成分からなるものであってもよい。第2位置決め部材72は、たとえば第1位置決め部材71に用いられたワイヤ材料よりも、線径が大きいワイヤ材料の一部によって構成されている。
 複数の第2位置決め部材72の個数は、何ら限定されない。図示された例においては、半導体装置A10は、6つの第2位置決め部材72を備えている。説明の便宜として、6つの第2位置決め部材72を、第2位置決め部材721、722,723,724,725,726として区別する。
 第2位置決め部材721および第2位置決め部材723と第2位置決め部材722および第2位置決め部材724とは、接続部141を挟んで第2方向yに互いに離隔している。また、第2位置決め部材725と第2位置決め部材726とは、接続部141を挟んで第1方向xに互いに離隔している。
 第2導通部材32は、図2、図6および図7に示すように、第1部材12Aと第2部材12Bとの間を跨ぐととともに、厚さ方向zにおいて第1部材12Aおよび第2部材12Bから離れて位置する。第2導通部材32の組成は、銅(Cu)を含む。第2導通部材32は、第2端子部321、複数の接続部322、第1連結部323および第2連結部324を有する。
 図6、図7および図9に示すように、複数の接続部322の各々は、複数の第2半導体素子22のいずれかの第3主面電極222に導電接合層292を介して導電接合されている。図示された例においては、複数の接続部322は、局所的に厚さ方向zの寸法が大きい部位を有しており、第1方向xに延びた形状である。
 図14~図17に示すように、複数の第1位置決め部材73は、第3主面電極222と第2導通部材32の接続部322との間に配置されている。複数の第1位置決め部材73は、第3主面電極222および接続部322に接している。厚さ方向zに視て、複数の第1位置決め部材73は、接続部322に重なっている。
 第1位置決め部材73の具体的構成は何ら限定されない。第1位置決め部材73は、導電性材料からなることが好ましい。第1位置決め部材73は、主成分として金属を含み、たとえばアルミニウム(Al)、銅(Cu)等を含む。本実施形態においては、第1位置決め部材73は、ワイヤ片によって構成されている。第1位置決め部材73は、第3ワイヤ43および第4ワイヤ44と同じ成分からなる。第1位置決め部材73は、第3ワイヤ43および第4ワイヤ44と断面積が同じである。第1位置決め部材73は、たとえば線径が100μm以上500μm以下のワイヤ材料の一部によって構成されており、たとえば線径が125μmまたは150μmのワイヤ材料の一部である。
 複数の第1位置決め部材73の個数は、何ら限定されない。図示された例においては、半導体装置A10は、4つの第1位置決め部材73を備えている。説明の便宜として、4つの第1位置決め部材73を、第1位置決め部材731、732,733,734として区別する。
 第1位置決め部材731および第1位置決め部材732と第1位置決め部材733および第1位置決め部材734とは、第1方向xに互いに離隔している。また、第1位置決め部材731および第1位置決め部材733と第1位置決め部材732および第1位置決め部材734とは、第2方向yに互いに離隔している。図示された例においては、複数の第1位置決め部材73は、いずれも第1方向xに沿った形状である。
 複数の第2位置決め部材74は、図14~図17に示すように、第3主面電極222上に配置されており、厚さ方向zに視て第2導通部材32の接続部322に隣接している。複数の第2位置決め部材74の厚さ方向zの大きさは、第3主面電極222と接続部322との距離よりも大きい。第2位置決め部材74の厚さ方向zの大きさと第3主面電極222と接続部322との距離との差は、たとえば100μm以上300μm以下である。図示された例においては、複数の第2位置決め部材74は、導電接合層292と接しているが、複数の第2位置決め部材74は、導電接合層292と必ずしも接していなくてもよい。
 第2位置決め部材74の具体的構成は何ら限定されない。第2位置決め部材74は、導電性材料からなることが好ましい。第2位置決め部材74は、主成分として金属を含み、たとえばアルミニウム(Al)、銅(Cu)等を含む。本実施形態においては、第2位置決め部材74は、ワイヤ片によって構成されている。第2位置決め部材74は、第3ワイヤ43および第4ワイヤ44と同じ成分からなるものであってもよい。第2位置決め部材74は、たとえば第1位置決め部材73に用いられたワイヤ材料よりも、線径が大きいワイヤ材料の一部によって構成されている。
 複数の第2位置決め部材74の個数は、何ら限定されない。図示された例においては、半導体装置A10は、6つの第2位置決め部材74を備えている。説明の便宜として、6つの第2位置決め部材74を、第2位置決め部材741、742,743,744,745,746として区別する。
 第2位置決め部材741および第2位置決め部材743と第2位置決め部材742および第2位置決め部材744とは、接続部322を挟んで第2方向yに互いに離隔している。また、第2位置決め部材745と第2位置決め部材746とは、接続部322を挟んで第1方向xに互いに離隔している。
 図2および図8に示すように、第1連結部323は、第2方向yに延びている。複数の接続部322は、第1連結部323につながっている。第2連結部324は、第1方向xにおいて第1連結部323を基準として複数の接続部322とは反対側に位置する。第2連結部324は、第1連結部323につながっている。第2連結部324は、第1方向xに延びている。厚さ方向zに視て、第1連結部323および第2連結部324は、第1部材12Aに重なっている。したがって、厚さ方向zに視て、第2導通部材32は、第1部材12Aに重なっている。
 第2端子部321は、図2に示すように、第1方向xにおいて複数の第1半導体素子21を基準として複数の第2半導体素子22とは反対側に位置する。第2端子部321は、第2方向yにおいて第1端子部311から離れて位置する。第2端子部321は、厚さ方向zにおいて第1部材12Aから離れて位置する。第2端子部321の組成は、銅を含む。
 図2に示すように、第2端子部321は、第2導通部材32の第2連結部324につながっている。したがって、第2導通部材32は、複数の第2半導体素子22の第3主面電極222に導通している。第2端子部321は、電力変換対象となる直流の電源電圧が印加されるN端子(負極)である。
 図7に示すように、第2端子部321の一部は、封止樹脂50から外部に露出している。封止樹脂50から外部に露出する第2端子部321の部分には、第2取付け孔321Aが設けられている。第2取付け孔321Aは、厚さ方向zに第2端子部321を貫通している。
 第3導通部材33は、図2および図3に示すように、第1方向xにおいて複数の第1半導体素子21を基準として第1導通部材31、および第2導通部材32の第2端子部321とは反対側に位置する。図6に示すように、第3導通部材33は、第3端子部331および第2枕材332を有する。第3端子部331は、第2枕材332を介して第2部材12Bの第2主面121Bに導電接合されている。したがって、第3端子部331は、厚さ方向zにおいて第2部材12Bから離れて位置する。第3端子部331の組成は、銅を含む。
 第3導通部材33は、第2部材12Bに導通している。さらに第3導通部材33は、第2部材12Bを介して複数の第2半導体素子22の第2裏面電極221に導通している。複数の第1半導体素子21、および複数の第2半導体素子22により変換された交流電力は、第3端子部331から出力される。
 図6に示すように、第3端子部331の一部は、封止樹脂50から外部に露出している。封止樹脂50から外部に露出する第3端子部331の部分には、第3取付け孔331Aが設けられている。第3取付け孔331Aは、厚さ方向zに第3端子部331を貫通している。
 封止樹脂50は、図6~図9に示すように、2つの導電部材12、第1配線15、第2配線16、複数の第1半導体素子21、複数の第2半導体素子22を覆っている。さらに封止樹脂50は、第1導通部材31、第2導通部材32、第3導通部材33、第1ゲート端子171、第2ゲート端子172、第1検出端子181、第2検出端子182、および複数のダミー端子19の各々の一部を覆っている。封止樹脂50は、電気絶縁性を有する。封止樹脂50は、たとえば黒色のエポキシ樹脂を含む材料からなる。図5に示すように、封止樹脂50は、頂面51、底面52、2つの第1側面53、および2つの第2側面54を有する。
 図6~図9に示すように、頂面51は、厚さ方向zにおいて第1部材12Aの第1主面121Aと同じ側を向く。底面52は、厚さ方向zにおいて頂面51とは反対側を向く。図4に示すように、底面52から支持部材10の放熱層103の一部が露出している。
 図6および図7に示すように、2つの第1側面53は、第1方向xにおいて互いに離れて位置し、かつ頂面51および底面52につながっている。2つの第1側面53のうち一方の第1側面53から、第1導通部材31の第1端子部311と、第2導通部材32の第2端子部321との各々の一部が外部に露出している。2つの第1側面53のうち他方の第1側面53から、第3導通部材33の第3端子部331の一部が外部に露出している。図8および図9に示すように、2つの第2側面54は、第2方向yにおいて互いに離れて位置し、かつ頂面51および底面52につながっている。2つの第2側面54のうち一方の第2側面54から、第1ゲート端子171、第2ゲート端子172、第1検出端子181、第2検出端子182、および複数のダミー端子19の各々の一部が外部に露出している。
 次に、半導体装置A10の製造方法の一例について、図18~図22を参照しつつ、以下に説明する。これらの図においては、第1半導体素子21、第1ワイヤ41、複数の第1位置決め部材71および第4導通部材14が用いられた箇所について主に説明するが、第1位置決め部材71についての製造工程は、たとえば第2位置決め部材72についても同様に適用可能である。
 まず、図18に示すように、第1主面121Aに第1半導体素子21を搭載する。次いで、ワイヤ材料40を第1主面電極212に接合する。ワイヤ材料40の接合は、たとえばウエッジツールWgを用いる。ワイヤ材料40の一部を、ウエッジツールWgによって第1主面電極212に押し付ける。次いで、ウエッジツールWgを移動させ、カッティングツールCtによってワイヤ材料40を切断する。これにより、図19に示すように、第2ワイヤ42が形成される。
 次いで、ワイヤ材料40を用いて、複数の第1位置決め部材71を形成する。ワイヤ材料40の一部を、第1位置決め部材71が形成されるべき位置に押し付けた後に、カッティングツールCtによってワイヤ材料40を切断する。これにより、図20に示すように、所定の位置に複数の第1位置決め部材71が形成される。なお、図13に示す第1位置決め部材71の断面形状は、ワイヤ材料40がウエッジツールWgによって押圧されることによって形作られたものである。また、ワイヤ材料40よりも線径が太いワイヤ材料を用いて、複数の第1位置決め部材71と同様の手順により複数の第2位置決め部材72を形成する。
 次いで、図21に示すように、第1主面電極212に導電性接合材290を塗布する。導電性接合材290は、たとえばはんだペーストである。次いで、図22に示すように、第4導通部材14の接続部141を導電性接合材290に付着させる。本実施形態においては、接続部141を厚さ方向zにおいて第1半導体素子21に接近させ、接続部141と複数の第1位置決め部材71とを接触させる。この後は、たとえばリフロー炉等を用いて、導電性接合材290を硬化させ、導電接合層291,292を形成する。そして、封止樹脂50を形成する等により、半導体装置A10が得られる。
 次に、半導体装置A10の作用効果について説明する。
 本実施形態によれば、図10~図14に示すように、第1主面電極212と接続部141との間に、第1位置決め部材71が介在している。第1位置決め部材71は、第1主面電極212および接続部141と接している。これにより、第1主面電極212に対して接続部141が不当に近づいたり、離れたり、傾いたりすることを抑制可能である。したがって、導電接合層292の厚さをより均一化することが可能である。
 半導体装置A10は、複数の第1位置決め部材71を備える。これにより、導電接合層292の厚さをより確実に均一化することができる。
 第1位置決め部材711および第1位置決め部材712と第1位置決め部材713および第1位置決め部材714とは、第1方向xに互いに離隔している。これにより、接続部141(第4導通部材14)が第2方向yに延びる軸周りに傾くことをより確実に抑制することができる。
 第1位置決め部材711および第1位置決め部材713と第1位置決め部材712および第1位置決め部材714とは、第2方向yに互いに離隔している。これにより、接続部141(第4導通部材14)が第1方向xに延びる軸周りに傾くことをより確実に抑制することができる。
 複数の第1位置決め部材71は、金属を主成分とする。これにより、第1主面電極212と第4導通部材14との間の電気抵抗の低下を回避することができる。
 複数の第1位置決め部材71は、ワイヤ片からなる。これにより、ウエッジツールWg等を用いて複数の第1位置決め部材71を形成することができる。図18および図19に示すように、第2ワイヤ42等を形成するためのワイヤ材料40を用いて複数の第1位置決め部材71を形成することは、半導体装置A10の製造効率の向上に好ましい。
 以上に述べた効果は、複数の第1位置決め部材73についても同様である。
 また、複数の第2位置決め部材72が、接続部141に隣接して配置されている。複数の第1位置決め部材71および第2位置決め部材72を形成した後に第4導通部材14を載置することにより、第4導通部材14の第1方向xおよび第2方向yにおける位置をより正確に規定することができる。
 図10に示すように、第2位置決め部材721および第2位置決め部材723と第2位置決め部材722および第2位置決め部材724とは、接続部141を挟んで第2方向yに離隔している。これにより、接続部141の第2方向yにおける位置をより正確に規定することができる。
 また、第2位置決め部材725と第2位置決め部材726とは、接続部141を挟んで第1方向xに離隔している。これにより、接続部141の第1方向xにおける位置をより正確に規定することができる。
 複数の第2位置決め部材72がワイヤ片からなる場合、ウエッジツールWg等を用いて複数の第2位置決め部材72を形成することができる。
 以上に述べた複数の第2位置決め部材72についての効果は、複数の第2位置決め部材74についても同様である。
 また、本実施形態のように、第2導通部材32が複数の接続部322を有する場合、いずれかの接続部322の第1方向xの一方側に第2位置決め部材74を配置し、他の接続部322の第1方向xの他方側に第2位置決め部材74を配置することにより、第2導通部材32全体の第1方向xにおける位置を規定することが可能である。
 第1実施形態 第1変形例:
 図23は、半導体装置A10の第1変形例を示している。本変形例の半導体装置A11は、複数の第1位置決め部材71の具体的構成が、半導体装置A10の複数の第1位置決め部材71と異なっている。
 本変形例においては、複数の第1位置決め部材71は、第2方向yに沿った形状である。このような形状の複数の第1位置決め部材71は、図18および図19に示すウエッジツールWgの向きを設定することにより形成することが可能である。
 本変形例によっても、導電接合層292の厚さをより均一化することができる。また、本変形例から理解されるように、複数の第1位置決め部材71の具体的な形状は、何ら限定されず、複数の第1位置決め部材73についても同様である。
 第1実施形態 第2変形例:
 図24は、半導体装置A10の第2変形例を示している。本変形例の半導体装置A12は、複数の第1位置決め部材71の個数および配置が、半導体装置A10の複数の第1位置決め部材71と異なっている。
 本変形例においては、複数の第1位置決め部材71の個数は、3個である。第1位置決め部材711と第1位置決め部材712とが、第2方向yに互いに離隔して配置されている。第1位置決め部材713は、第1位置決め部材711および第1位置決め部材712と第1方向xに離隔している。第2方向yにおいて、第1位置決め部材713は、第1位置決め部材711と第1位置決め部材712との間に位置する。
 本変形例によっても、導電接合層292の厚さをより均一化することができる。また、本変形例から理解されるように、第1位置決め部材71の個数は、何ら限定されず、複数の第1位置決め部材73についても同様である。3つの第1位置決め部材71を用いることにより、接続部141を3点で支持することが可能である。これにより、導電接合層292の厚さの均一化を図ることができる。
 第1実施形態 第3変形例:
 図25は、半導体装置A10の第3変形例を示している。本変形例の半導体装置A13は、複数の第2位置決め部材72の個数および配置が、半導体装置A10の複数の第2位置決め部材72と異なっている。
 本変形例においては、複数の第2位置決め部材72の個数は、4個である。第2位置決め部材721および第2位置決め部材722は、接続部141を挟んで第2方向yに離隔している。
 本変形例によっても、導電接合層292の厚さをより均一化することができる。また、第2位置決め部材721および第2位置決め部材722によって、接続部141の第2方向yにおける位置をより正確に規定することが可能である。本変形例から理解されるように、第2位置決め部材72の個数は、何ら限定されず、第2位置決め部材74についても同様である。
 第1実施形態 第4変形例:
 図26は、半導体装置A10の第4変形例を示している。本変形例の半導体装置A14は、複数の第2位置決め部材72の具体的構成が、半導体装置A10の複数の第2位置決め部材72と異なっている。
 本変形例においては、第2位置決め部材72は、第1部7211および第2部7212を含む。第1部7211は、第1主面電極212に接している。第2部7212は、第1部7211上に配置されている。第1部7211および第2部7212は、たとえば第1位置決め部材71の形成に用いられたワイヤ材料40の一部によって形成されている。このため、たとえば、第1位置決め部材71の断面積と、第1部7211の断面積および第2部7212の断面積は、同じである。
 本変形例によっても、導電接合層292の厚さをより均一化することができる。また、第1位置決め部材71と第2位置決め部材72とを同じワイヤ材料40を用いて形成することが可能である。これにより、半導体装置A14の製造効率を高めることができる。
 第2実施形態:
 図27は、本開示の第2実施形態に係る半導体装置を示している。本実施形態の半導体装置A20は、第4導通部材14の構成が上述した実施形態と異なっている。
 本変形例の第4導通部材14は、たとえば板厚が一定である金属板材料を部分的に屈曲させることにより形成されている。接続部141は、隣接する部位よりも厚さ方向zにおいて第1主面電極212に近い位置にある。
 本実施形態によっても、導電接合層292の厚さをより均一化することができる。また、本実施形態から理解されるように、第4導通部材14の具体的構成は何ら限定されず、第2導通部材32も同様である。
 第3実施形態:
 図27は、本開示の第3実施形態に係る半導体装置を示している。本実施形態の半導体装置A30は、上述の複数の第2位置決め部材72を備えていない。このような実施形態によっても、導電接合層292の厚さをより均一化することができる。
 本開示に係る半導体装置および半導体装置の製造方法は、上述した実施形態に限定されるものではない。本開示に係る半導体装置および半導体装置の製造方法の具体的な構成は、種々に設計変更自在である。本開示は、以下の付記に記載された実施形態を含む。
 付記1.
 第1主面電極を有する半導体素子と、
 導通部材と、
 前記第1主面電極と前記導通部材とを導通接合する導電接合層と、
 前記第1主面電極と前記導通部材との間に配置され、且つ前記第1主面電極および前記導通部材に接する第1位置決め部材と、を備える、半導体装置。
 付記2.
 前記第1位置決め部材は、前記導電接合層に接する、付記1に記載の半導体装置。
 付記3.
 前記第1位置決め部材は、金属を主成分とする、付記2に記載の半導体装置。
 付記4.
 前記第1位置決め部材は、ワイヤ片である、付記3に記載の半導体装置。
 付記5.
 複数の前記第1位置決め部材を備える、付記1ないし4のいずれかに記載の半導体装置。
 付記6.
 前記複数の第1位置決め部材は、前記半導体素子の厚さ方向と直交する第1方向に互いに離隔した2つの前記第1位置決め部材を含む、付記5に記載の半導体装置。
 付記7.
 前記複数の第1位置決め部材は、前記厚さ方向および前記第1方向と直交する第2方向に互いに離隔した2つの前記第1位置決め部材を含む、付記6に記載の半導体装置。
 付記8.
 前記半導体素子は、前記厚さ方向において前記第1主面電極と同じ側に配置された第2主面電極と、
 前記第2主面電極に接合された第1ワイヤをさらに有する、付記6に記載の半導体装置。
 付記9.
 前記第1位置決め部材と前記第1ワイヤとは、同じ成分からなる、付記8に記載の半導体装置。
 付記10.
 前記第1位置決め部材と前記第1ワイヤとは、断面積が同じである、付記9に記載の半導体装置。
 付記11.
 前記半導体素子に導通する第2ワイヤをさらに有する、付記8ないし10のいずれかに記載の半導体装置。
 付記12.
 前記第1位置決め部材と前記第2ワイヤとは、同じ成分からなる、付記11に記載の半導体装置。
 付記13.
 前記第1位置決め部材と前記第2ワイヤとは、断面積が同じである、付記12に記載の半導体装置。
 付記14.
 前記第1主面電極は、ソース電極であり、
 前記第2主面電極は、ゲート電極である、付記8ないし13のいずれかに記載の半導体装置。
 付記15.
 前記第1主面電極上に配置され、且つ、前記半導体素子の厚さ方向に視て前記導通部材と隣接するとともに、前記厚さ方向の大きさが、前記第1主面電極と前記導通部材との距離よりも大きい、第2位置決め部材をさらに備える、付記1ないし14のいずれかに記載の半導体装置。
 付記16.
 前記第2位置決め部材は、ワイヤ片である、付記15に記載の半導体装置。
 付記17.
 複数の前記第2位置決め部材を備える、付記15または16に記載の半導体装置。
 付記18.
 半導体素子の第1主面電極にワイヤ材料の一部を配置することにより、第1位置決め部材を形成する工程と、
 前記第1主面電極上に導電接合材を配置する工程と、
 前記第1位置決め部材および前記導電接合材に導通部材を接触させる工程と、
 前記導電接合材を硬化させることにより、前記第1主面電極と前記導通部材とを導通接合する工程と、を備える、半導体装置の製造方法。
A10,A11,A12,A13,A14,A20,A30:半導体装置
10:支持部材    11:絶縁部材
12:導電部材    12A:第1部材
12B:第2部材    13:放熱部材
14:第4導通部材    15:第1配線
16:第2配線    19:ダミー端子
21:第1半導体素子    22:第2半導体素子
31:第1導通部材    32:第2導通部材
33:第3導通部材    40:ワイヤ材料
41:第1ワイヤ    42:第2ワイヤ
43:第3ワイヤ    44:第4ワイヤ
45:第5ワイヤ    50:封止樹脂
51:頂面    52:底面
53:第1側面    54:第2側面
71,711~714,73,731~734:第1位置決め部材
72,721~726,74,741~746:第2位置決め部材
103:放熱層    120A:第1層
120B:第2層    120C:接合層
121:主面    121A:第1主面
121B:第2主面    122:裏面
123:第1端面    131:端面
141:接続部    151:第1絶縁層
152:第1ゲート配線    153:第1検出配線
154:第1支持層    161:第2絶縁層
162:第2ゲート配線    163:第2検出配線
164:第2支持層    171:第1ゲート端子
172:第2ゲート端子    181:第1検出端子
182:第2検出端子    211:第1裏面電極
212:第1主面電極    213:第2主面電極
221:第2裏面電極    222:第3主面電極
223:第4主面電極    290:導電性接合材
291:導電接合層    292:導電接合層
311:第1端子部    311A:第1取付け孔
312:第1枕材    321:第2端子部
321A:第2取付け孔    322:接続部
323:第1連結部    324:第2連結部
331:第3端子部    331A:第3取付け孔
332:第2枕材    7211:第1部
7212:第2部    Ct:カッティングツール
Wg:ウエッジツール    x:第1方向
y:第2方向    z:厚さ方向

Claims (18)

  1.  第1主面電極を有する半導体素子と、
     導通部材と、
     前記第1主面電極と前記導通部材とを導通接合する導電接合層と、
     前記第1主面電極と前記導通部材との間に配置され、且つ前記第1主面電極および前記導通部材に接する第1位置決め部材と、を備える、半導体装置。
  2.  前記第1位置決め部材は、前記導電接合層に接する、請求項1に記載の半導体装置。
  3.  前記第1位置決め部材は、金属を主成分とする、請求項2に記載の半導体装置。
  4.  前記第1位置決め部材は、ワイヤ片である、請求項3に記載の半導体装置。
  5.  複数の前記第1位置決め部材を備える、請求項1ないし4のいずれかに記載の半導体装置。
  6.  前記複数の第1位置決め部材は、前記半導体素子の厚さ方向と直交する第1方向に互いに離隔した2つの前記第1位置決め部材を含む、請求項5に記載の半導体装置。
  7.  前記複数の第1位置決め部材は、前記厚さ方向および前記第1方向と直交する第2方向に互いに離隔した2つの前記第1位置決め部材を含む、請求項6に記載の半導体装置。
  8.  前記半導体素子は、前記厚さ方向において前記第1主面電極と同じ側に配置された第2主面電極と、
     前記第2主面電極に接合された第1ワイヤをさらに有する、請求項6に記載の半導体装置。
  9.  前記第1位置決め部材と前記第1ワイヤとは、同じ成分からなる、請求項8に記載の半導体装置。
  10.  前記第1位置決め部材と前記第1ワイヤとは、断面積が同じである、請求項9に記載の半導体装置。
  11.  前記半導体素子に導通する第2ワイヤをさらに有する、請求項8ないし10のいずれかに記載の半導体装置。
  12.  前記第1位置決め部材と前記第2ワイヤとは、同じ成分からなる、請求項11に記載の半導体装置。
  13.  前記第1位置決め部材と前記第2ワイヤとは、断面積が同じである、請求項12に記載の半導体装置。
  14.  前記第1主面電極は、ソース電極であり、
     前記第2主面電極は、ゲート電極である、請求項8ないし13のいずれかに記載の半導体装置。
  15.  前記第1主面電極上に配置され、且つ、前記半導体素子の厚さ方向に視て前記導通部材と隣接するとともに、前記厚さ方向の大きさが、前記第1主面電極と前記導通部材との距離よりも大きい、第2位置決め部材をさらに備える、請求項1ないし14のいずれかに記載の半導体装置。
  16.  前記第2位置決め部材は、ワイヤ片である、請求項15に記載の半導体装置。
  17.  複数の前記第2位置決め部材を備える、請求項15または16に記載の半導体装置。
  18.  半導体素子の第1主面電極にワイヤ材料の一部を配置することにより、第1位置決め部材を形成する工程と、
     前記第1主面電極上に導電接合材を配置する工程と、
     前記第1位置決め部材および前記導電接合材に導通部材を接触させる工程と、
     前記導電接合材を硬化させることにより、前記第1主面電極と前記導通部材とを導通接合する工程と、を備える、半導体装置の製造方法。
PCT/JP2023/028284 2022-09-02 2023-08-02 半導体装置、および、半導体装置の製造方法 WO2024048187A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022139667 2022-09-02
JP2022-139667 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048187A1 true WO2024048187A1 (ja) 2024-03-07

Family

ID=90099246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028284 WO2024048187A1 (ja) 2022-09-02 2023-08-02 半導体装置、および、半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024048187A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236019A (ja) * 2004-02-19 2005-09-02 Fuji Electric Holdings Co Ltd 半導体装置の製造方法
JP2015076511A (ja) * 2013-10-09 2015-04-20 株式会社日立製作所 半導体装置およびその製造方法
JP2018019000A (ja) * 2016-07-29 2018-02-01 株式会社ケーヒン パワー半導体モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236019A (ja) * 2004-02-19 2005-09-02 Fuji Electric Holdings Co Ltd 半導体装置の製造方法
JP2015076511A (ja) * 2013-10-09 2015-04-20 株式会社日立製作所 半導体装置およびその製造方法
JP2018019000A (ja) * 2016-07-29 2018-02-01 株式会社ケーヒン パワー半導体モジュール

Similar Documents

Publication Publication Date Title
US8018047B2 (en) Power semiconductor module including a multilayer substrate
KR100957078B1 (ko) 전기적으로 절연된 전력 장치 패키지
WO2020071185A1 (ja) 半導体装置および半導体装置の製造方法
US20150206864A1 (en) Semiconductor Device
WO2020017465A1 (ja) 半導体装置及び半導体装置の製造方法
WO2019235146A1 (ja) 半導体モジュール
WO2020208739A1 (ja) 半導体装置
US20230077964A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2024048187A1 (ja) 半導体装置、および、半導体装置の製造方法
JP2019083292A (ja) 半導体装置
JP7365368B2 (ja) 半導体装置
US10903138B2 (en) Semiconductor device and method of manufacturing the same
WO2024106219A1 (ja) 半導体装置
WO2019116910A1 (ja) 半導体装置および半導体装置の製造方法
JP4861200B2 (ja) パワーモジュール
WO2023149257A1 (ja) 半導体装置
WO2024024371A1 (ja) 半導体装置
WO2023112662A1 (ja) 半導体モジュールおよび半導体装置
JP2021027150A (ja) 半導体装置
WO2023120185A1 (ja) 半導体装置
WO2024018851A1 (ja) 半導体装置
WO2024075589A1 (ja) 半導体装置
WO2023199808A1 (ja) 半導体装置
WO2022259809A1 (ja) 半導体装置
WO2024018790A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859956

Country of ref document: EP

Kind code of ref document: A1