WO2024048162A1 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
WO2024048162A1
WO2024048162A1 PCT/JP2023/027955 JP2023027955W WO2024048162A1 WO 2024048162 A1 WO2024048162 A1 WO 2024048162A1 JP 2023027955 W JP2023027955 W JP 2023027955W WO 2024048162 A1 WO2024048162 A1 WO 2024048162A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
rolling bearing
rolling
pockets
retainer
Prior art date
Application number
PCT/JP2023/027955
Other languages
English (en)
French (fr)
Inventor
奈央 辻村
光生 川村
智也 坂口
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022135965A external-priority patent/JP7483809B2/ja
Priority claimed from JP2022135962A external-priority patent/JP7483808B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2024048162A1 publication Critical patent/WO2024048162A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages

Definitions

  • the present invention relates to rolling bearings.
  • a pair of raceway rings (inner ring and outer ring) that are arranged to face each other in the radial direction and rotate relative to each other via a plurality of rolling elements, and an annular retainer that holds the plurality of rolling elements at intervals in the circumferential direction;
  • the cage In a rolling bearing equipped with a cage, the cage is usually installed between the inner and outer rings in a manner movable in the radial and circumferential directions. Therefore, the cage located at the neutral position forms a radial clearance with each bearing ring, and a radial clearance and a circumferential clearance with the rolling elements accommodated in the rolling element accommodation portions (pockets). Form a gap.
  • the radial clearance between the bearing ring and the cage described above is referred to as the "guiding clearance,” and the radial clearance and circumferential clearance between the pocket and the rolling element described above are referred to as the “pocket radial clearance” and “pocket radial clearance,” respectively. Also called “circumferential clearance”.
  • the pocket radial clearance is infinite.
  • Rolling bearings are broadly divided into “rolling element guided type” and “race ring guided type”.
  • rolling element-guided rolling bearings the pocket radial clearance is smaller than the guiding clearance, and the radial movement of the cage is limited by the contact between the inner surface of the pocket (pocket surface) and the rolling elements. The rings never touch.
  • a ring guided rolling bearing is a rolling bearing in which the guiding clearance is smaller than the pocket radial clearance. In a ring-guided rolling bearing, when the guide clearance is smaller than the pocket circumferential clearance, when the cage moves radially from the neutral position, it first comes into contact with the bearing ring.
  • the cage will first contact the rolling elements when it moves in the radial direction, but if the rolling elements are arranged evenly If the cage is misaligned, the range of motion of the cage changes, so it may come into contact with the raceway.
  • the rolling bearing is a rolling element guided type or raceway ring guided type (whether the cage is guided by rolling elements or raceway rings) is selected as appropriate depending on the application of the rolling bearing. Ru.
  • the cage is made eccentrically rotatable by giving a predetermined unbalance amount to the cage, and by keeping a part of the rotating cage in constant contact with the outer ring or rolling elements. , the occurrence of high-speed whirl phenomena, as well as the occurrence of problems such as abnormal noises and vibrations caused by this phenomenon, are prevented as much as possible.
  • Patent Document 1 the technical means (invention) for preventing the occurrence of high-speed whirl phenomenon described in Patent Document 1 is said to be unsuitable for rolling bearings that adopt an inner ring guide method as the cage guide method. (See paragraph 0036 of the same document), the practical scope of application is limited to rolling bearings that employ an outer ring guide method or a rolling element guide method as a cage guide method.
  • the technical means described in Patent Document 1 is based on the product of the pitch circle diameter [mm] of the bearing and the rotation speed [rpm], since the contact surface pressure of the contact portion tends to increase as the rotation speed increases. It is said that it is not suitable for high-speed rotation type rolling bearings in which the expressed dmn value exceeds a predetermined value.
  • the high-speed whirl phenomenon also occurs in rolling bearings for which it is difficult to apply the technical means described in Patent Document 1, that is, inner ring guide type rolling bearings and raceway ring guided type rolling bearings that rotate at high speed. obtain.
  • the first object of the present invention is to provide a means for preventing the high-speed whirl phenomenon that can be widely applied to rolling bearings in general, regardless of the guide system of the cage, the rotational speed (dmn value) of the bearing, etc. There is a particular thing.
  • a second object of the present invention is to provide a raceway-guided rolling bearing that can prevent the occurrence of high-speed whirl as much as possible.
  • the cage is usually installed between the inner and outer rings so that it can move in the radial and circumferential directions, and the range of cage movement is within the guide clearance, pocket radial clearance, and pocket circumferential clearance. Limited to the smallest gap. Therefore, once the positions of the raceway ring and each rolling element are determined, the cage center can exist geometrically based on the arrangement and shape of the pockets (the cage can move without contacting the outer ring, inner ring, and rolling elements). The area, that is, the "cage movable area" can be estimated.
  • the present inventors performed dynamic analysis under various conditions, and found that under analysis conditions in which high-speed whirl phenomenon occurs, the shape of the cage movable region is circular or a regular polygon approximating a circle. However, under analysis conditions where it is recognized that high-speed whirl phenomenon does not occur, it was found that the shape of the cage movable region becomes a circle or an ⁇ distorted shape'' that deviates from a regular polygon that approximates a circle. did. Such findings will be explained based on the analysis results shown in FIGS. 10A to 10D and FIGS. 11A to 11D.
  • FIGS. 10A, 10C, 11A, and 11C show the "retainer movable area" and "retainer center position" at the moment when the inner ring is rotated 2.5 times
  • FIG. 10B, FIGS. 10D, 11B, and 11D show the locus of movement of the center of the cage during 10 rotations of the inner ring of the rolling bearing whose movable area is as shown in FIGS. 10A, 10C, 11A, and 11C, respectively.
  • the shape of the retainer movable region is a circle as shown in FIGS. 10A and 10C, or a regular polygon that approximates a circle, a high-speed whirl phenomenon occurs, and as a result, as shown in FIGS.
  • the first invention of the present application which was created to achieve the above object, has an inner ring and an outer ring that rotate relative to each other via a plurality of rolling elements, and a plurality of pockets each housing the rolling elements at intervals in the circumferential direction.
  • the outer edge of a scatter diagram obtained by plotting on two-dimensional coordinates an infinite number of positions where the cage can exist without contacting the inner ring, outer ring, and rolling elements.
  • the ratio Ri/Re of the maximum circumscribed circle diameter Ri of the cage movable region to the minimum circumscribed circle diameter Re of the cage movable region is 0. It is characterized by being 900 or less.
  • the ratio Ri/Re is 0.900 or less means that the shape of the retainer movable region is a circular shape or an irregular shape that deviates from a regular polygon that approximates a circular shape. Therefore, the rolling bearing having the above configuration can effectively prevent the occurrence of high-speed whirl phenomenon, based on the verification results of the present inventors. Although it is not possible to determine the detailed reason why making the shape of the retainer movable region distorted is effective in preventing the occurrence of high-speed whirl, based on the analysis results shown in FIGS.
  • the first invention unlike the technical means proposed in Patent Document 1, a specific portion of the cage does not always come into contact with the outer ring or the rolling elements. Therefore, the first invention of the present application can be applied to various rolling bearings regardless of the guide method of the cage.
  • each of the plurality of pockets provided in the cage is divided into a large pocket or a small pocket with different circumferential dimensions (circumferential opening dimensions). It should be composed of
  • large pocket groups in which one or more large pockets are arranged (two or more in succession) at equal intervals in the circumferential direction. For example, when the number of rolling elements is 10, they are arranged as large, large, small, small, small, large, large, small, small, small. This makes it possible to prevent problems such as vibrations caused by mass imbalance of the cage as much as possible.
  • the circumferential dimension difference between the large pocket and the small pocket can be 0.1 mm or more.
  • the high-speed whirl phenomenon of the cage in the rolling bearing can be effectively prevented by simply arranging the large pocket and the small pocket, which have slightly different circumferential dimensions, appropriately.
  • the circumferential dimensional difference between the large pocket and the small pocket is changed as appropriate depending on various parameters such as the total number of rolling elements (pockets) and bearing size.
  • the radial movement of the cage is limited by the contact between the raceway (the guide surface of the raceway) and the cage (the guided surface of the cage). and the area where the center of the cage can exist geometrically based on the shape of the guided surface, etc.
  • the area where the cage can move without contacting the bearing ring (guide ring) hereinafter, this area is referred to as "holding" (referred to as “vessel movable area”) can be estimated by simulation.
  • the second invention of the present application which was created to achieve the above second object, has an inner ring and an outer ring that rotate relative to each other via a plurality of rolling elements, and a plurality of pockets that individually accommodate the rolling elements.
  • a cage provided at intervals, the cage having an annular guided surface guided by an annular guide surface provided on the outer circumferential surface of the inner ring or the inner circumferential surface of the outer ring,
  • the rolling bearing is located at a neutral position in which the radial clearance formed between the guide surface and the guided surface is smaller than the radial clearance formed between the inner surface of the cage pocket and the rolling elements.
  • the area surrounded by the line connecting the outer edges of the scatter diagram obtained by plotting an infinite number of positions where the cage can exist without contacting the inner ring, outer ring, and rolling elements on two-dimensional coordinates is the area surrounded by the line connecting the outer edges of the cage.
  • the cage is characterized in that the ratio Ri/Re of the maximum circumscribed circle diameter Ri of the cage movable region to the minimum circumscribed circle diameter Re of the cage movable region is less than 0.990.
  • the rolling bearing having the above configuration can effectively prevent the occurrence of high-speed whirl phenomenon, based on the verification results of the present inventors. It should be noted that although it is not possible to determine the detailed reason why making the cage movable region in an irregular shape is effective in preventing the occurrence of high-speed whirl, the guide surface This is presumed to be because the direction of the frictional force generated when the guide surface contacts the cage deviates from the circular orbit, making it impossible to continuously accelerate the whirling motion of the cage.
  • the present invention can be applied to rolling bearings. Even when applied to (particularly ring-guided rolling bearings), there is no concern about an increase in centrifugal force due to unbalance or an increase in NRRO of the shaft. Therefore, the second invention can be widely applied to raceway guided rolling bearings.
  • the straight portion parallel to the axis-parallel plane extending along the axis of the rolling bearing is By providing it on the guide surface, the above ratio Ri/Re can be made less than 0.990.
  • the straight portion parallel to the axis-parallel plane extending along the axis of the rolling bearing is used as the guide surface.
  • the above ratio Ri/Re can be made less than 0.990.
  • a plurality of the above straight parts be provided at equal intervals in the circumferential direction. This makes it possible to prevent problems such as vibrations caused by mass imbalance of the retainer and the inner ring as much as possible.
  • the occurrence of high-speed whirl phenomenon can be prevented as much as possible, regardless of whether the inner ring guide or the outer ring guide is used, and regardless of the rotation speed (dmn value) of the bearing. It becomes possible to realize a bearing ring guided rolling bearing.
  • FIG. 1 is a front view of a rolling bearing according to an embodiment of the first invention.
  • FIG. 1B is a partial side view of a cage that constitutes the rolling bearing of FIG. 1A. It is a schematic cross section taken along the line AA in FIG. 1B.
  • FIG. 3 is a partially enlarged side view of a cage in which rolling elements are accommodated in pockets.
  • FIG. 3 is a conceptual diagram for explaining how to obtain a cage movable region.
  • FIG. 1A is a diagram showing a movable region of a retainer constituting the rolling bearing of FIG. 1A.
  • FIG. 4 is a diagram showing a locus of movement of the cage center during 10 rotations of the inner ring of the rolling bearing of the embodiment in which the shape of the movable region is as shown in FIG. 3; 4A is a diagram showing a change in the speed (translational speed) of the retainer while the inner ring in FIG. 4A rotates 10 times.
  • FIG. FIG. 3 is a diagram showing a cage movable region, etc. of a comparative rolling bearing that does not have the characteristic configuration of the present invention.
  • FIG. 6 is a diagram showing a locus of movement of the cage center during 10 rotations of the inner ring of a rolling bearing whose movable region has the shape shown in FIG.
  • FIG. 5; 6A is a diagram showing a change in the speed (translational speed) of the retainer while the inner ring in FIG. 6A rotates 10 times.
  • FIG. FIG. 7 is a diagram showing a cage movable region, etc. of a rolling bearing according to another embodiment of the first invention.
  • FIG. 3 is a diagram showing a cage movable region, etc. of a comparative rolling bearing that does not have the characteristic configuration of the first invention.
  • FIG. 7 is a diagram showing a cage movable region, etc. of a rolling bearing according to another embodiment of the first invention.
  • FIG. 3 is a diagram showing a cage movable region, etc. of a comparative rolling bearing that does not have the characteristic configuration of the first invention.
  • FIG. 7 is a diagram showing a cage movable region, etc. of a rolling bearing according to another embodiment of the first invention.
  • FIG. 3 is a diagram showing a cage movable region, etc. of a comparative rolling bearing that does not have the characteristic configuration of the first invention.
  • FIG. 3 is a diagram showing the cage movable region, etc., obtained in the study process of the first invention.
  • 10A is a diagram showing a movement locus of the cage center during ten rotations of the inner ring of the bearing whose movable region is as shown in FIG. 10A.
  • FIG. FIG. 3 is a diagram showing the cage movable region, etc., obtained in the study process of the first invention.
  • FIG. 10C is a diagram showing a movement locus of the center of the cage while the inner ring of the bearing rotates 10 times so that the movable region is as shown in FIG. 10C.
  • FIG. FIG. 3 is a diagram showing the cage movable region, etc., obtained in the study process of the first invention.
  • FIG. 11A is a diagram showing a locus of movement of the center of the retainer during 10 rotations of the inner ring of the bearing whose movable region is as shown in FIG. 11A.
  • FIG. 3 is a diagram showing the cage movable region, etc., obtained in the study process of the first invention.
  • FIG. 11C is a diagram showing a movement locus of the center of the retainer during 10 rotations of the inner ring of the bearing whose movable region is as shown in FIG. 11C.
  • FIG. 7 is a plan view of a rolling bearing according to an embodiment of the second invention. 13 is a sectional view taken along the line AA in FIG. 12. FIG. FIG. 13 is a plan view of the cage of the rolling bearing of FIG. 12; FIG. 14B is a right side view of FIG. 14A.
  • FIG. 3 is a conceptual diagram for explaining how to obtain a cage movable region.
  • FIG. 13 is a diagram showing a movable region of the cage of the rolling bearing shown in FIG.
  • FIG. 12; 13 is a diagram showing a movement locus of the center of the cage while the inner ring of the rolling bearing shown in FIG. 12 rotates 10 times.
  • FIG. FIG. 13 is a diagram showing changes in speed (translational speed) while the inner ring of the rolling bearing shown in FIG. 12 rotates 10 times.
  • It is a figure which shows the movement locus of the cage
  • FIG. 7 is a plan view of a cage according to a modified example.
  • FIG. 18A is a right side view of FIG. 18A. It is a top view of the inner ring which constitutes the rolling bearing concerning other embodiments of the 2nd invention.
  • axial direction refers to the direction parallel to the axis O of the rolling bearing 1 shown in Fig. 1, etc., and the axis O
  • radial direction refers to the direction parallel to the axis O of the rolling bearing 1 shown in Fig. 1, etc.
  • axis O refers to the direction parallel to the axis O of the rolling bearing 1 shown in Fig. 1, etc.
  • FIG. 1A is a front view of a rolling bearing 1 according to an embodiment of the first invention
  • FIG. 1B is a partial side view of a cage constituting the rolling bearing 1
  • FIG. 1C is a schematic view taken along the line AA in FIG. 1B.
  • the cross-sectional view, FIG. 1D is a partially enlarged side view of a cage in which rolling elements are accommodated in pockets.
  • the rolling bearing 1 is made of a highly rigid metal material such as bearing steel (high carbon chromium bearing steel), and includes a pair of bearing rings (inner ring 2 and outer ring 3) arranged radially opposite each other, and an outer circumference of the inner ring 2.
  • a plurality of rolling elements are rotatably interposed between the inner raceway surface formed on the surface 2a and the outer raceway surface formed on the inner peripheral surface 3a of the outer ring 3;
  • This is a so-called ball bearing that includes an annular retainer 5 that holds balls 4 at intervals in the circumferential direction.
  • the holder 5 has a plurality of pockets 6 corresponding to the number of balls 4, and each pocket 6 accommodates one ball 4.
  • the inner surface (pocket surface) 6a of each pocket 6 is formed into a cylindrical surface with a constant diameter.
  • the illustrated cage 5 is a resin cage made of an injection molded resin material. However, depending on the required characteristics, the cage 5 may be a cage other than a resin cage, such as a machined cage obtained by cutting a metal material into a predetermined shape, or a press molding into a predetermined annular shape. A pressed cage obtained by joining a pair of (punched) cage materials may also be used.
  • the cage 5 is assembled between the inner ring 2 and the outer ring 3 so as to form a radial clearance between the inner ring 2 and the outer ring 3, and a circumferential clearance between the cage and the balls 4 housed in the pockets 6. It is. That is, as shown in FIG. 1A, when the cage 5 is located at the neutral position, the space between the opposing outer circumferential surface 2a of the inner ring 2 and the inner circumferential surface 5a of the cage 5, and the inner circumferential surface 3a of the outer ring 3 A radial clearance (a first radial clearance ⁇ 1 and a second radial clearance ⁇ 2), also called a “guiding clearance”, is formed between the balls 4 and the outer circumferential surface 5b of the cage 5.
  • a radial clearance (a first radial clearance ⁇ 1 and a second radial clearance ⁇ 2), also called a “guiding clearance”, is formed between the balls 4 and the outer circumferential surface 5b of the cage 5.
  • a circumferential gap ⁇ also called a "pocket circumferential gap", is formed between the pocket surfaces 6a [see FIG. 1D].
  • the rolling bearing 1 can operate smoothly.
  • the second radial clearance ⁇ 2 is smaller than the first radial clearance ⁇ 1, and the second radial clearance ⁇ 2 is, for example, 1.2 mm in diameter. That is, the diameter of the inner peripheral surface 3a of the outer ring 3 is 1.2 mm larger than the diameter of the outer peripheral surface 5b of the retainer 5.
  • Each pocket 6 has two types of pockets that differ only in circumferential dimension (diameter dimension) W, namely, a large pocket 6A with a relatively large diameter dimension W, or a small pocket 6B with a relatively small diameter dimension W. Consists of any of the following.
  • the pocket 6 placed at the 0 o'clock position in FIG. 1C is a large pocket 6A, and the remaining seven pockets 6 are small pockets 6B.
  • the diameter w of the large pocket 6A is set to 9.925 mm
  • the diameter of the small pocket 6B is set to 9.725 mm.
  • the circumferential clearance (pocket circumferential clearance) ⁇ formed between the pocket surface 6a of the large pocket 6A and the ball 4 is 0.4 mm in diameter
  • the gap between the pocket surface 6a of the small pocket 6B and the ball 4 is 0.4 mm in diameter.
  • the circumferential clearance ⁇ formed in this case is 0.2 mm in diameter.
  • FIG. 2 is a conceptual diagram showing a part of the retainer 5 and two balls 4 accommodated in pockets of the retainer 5.
  • the symbol O indicates the center of the bearing
  • the symbol C indicates the center C of the cage 5
  • the symbol B indicates the center of the ball 4
  • the symbol P indicates an arbitrary point on the pocket surface (inner surface of the pocket) of the cage 5.
  • the left-hand character of the subscript of code B and the subscript of code P indicates the number of ball 4
  • the right-hand character of the subscript of code P is, It shows the j-th point when the pocket surface is discretized (divided into mesh).
  • the shape of the movable region 10 becomes a shape slightly deformed from a regular octagon, as shown in FIG.
  • a rolling bearing in which only the shape of the cage 5 is partially different specifically, a cage 5 in which all eight pockets 6 provided in total are made up of the above-mentioned small pockets 6B.
  • the cage movable range in the rolling bearing 1 incorporating the cage was determined.
  • FIGS. 6A and 6B show the comparison target.
  • the movement locus of the center of the cage and the change in speed (translational speed) during 10 rotations of the inner ring of the rolling bearing are shown, respectively.
  • the cage movable region 10 is determined for each of the rolling bearings (1) to (6) shown below, and the maximum inscribed circle of the cage movable region 10 is calculated with respect to the minimum circumscribed circle diameter Re of the cage movable region 10.
  • the ratio Ri/Re of the diameter Ri was calculated.
  • the cage movable area 10 and the above ratios in the following rolling bearings (1) to (6) are shown in FIGS. 7A, 7B, 8A, 8B, 9A, and 9B, respectively.
  • the ratio Ri/Re of the maximum circumscribed circle diameter Ri of the cage movable region 10 to the minimum circumscribed circle diameter Re of the cage movable region 10 is 0.900 or less, that is, the shape of the cage movable region 10 is circular.
  • the generation of the high-speed whirl phenomenon in the cage 5 can be effectively prevented by creating an "irregular shape" that deviates from a regular polygon that approximates a circle.
  • each of the plurality of pockets 6 provided in the cage 5 with a large pocket 6A having a relatively large circumferential dimension or a small pocket 6B having a relatively small circumferential dimension (some pockets, the circumferential dimension W of which is larger than the circumferential dimension W of the remaining pockets. Therefore, the first invention can be widely applied to rolling bearings in general, regardless of the guide method of the cage 5 or the rotational speed (dmn value) of the bearing, etc., and as a result, the occurrence of high-speed whirl phenomenon is prevented and abnormal noise and vibration It becomes possible to realize a quiet rolling bearing 1 in which such problems are unlikely to occur.
  • a large pocket group in which one or more large pockets 6A are arranged is arranged in the circumferential direction. It is preferable to arrange them at equal intervals. For example, if the total number of balls 4 (pockets 6) is 10, the pockets 6 are arranged in the order of large, large, small, small, small, large, large, small, small, small. This makes it possible to prevent problems such as vibrations caused by mass imbalance of the retainer 5 as much as possible.
  • the rolling bearing 1 according to the embodiment of the first invention has been described above, the embodiment of the first invention is not limited to this, and various changes can be made without departing from the gist thereof. .
  • rollers may be used as the rolling elements that constitute the rolling bearing 1. That is, the first invention is applicable not only to ball bearings but also to roller bearings such as cylindrical roller bearings and needle roller bearings. Further, the shape of the pocket 6 provided in the retainer 5 is not only circular in plan view as shown in FIG. be. Moreover, it is applicable not only to single-row bearings but also to double-row bearings.
  • axial direction axial direction
  • radial direction and “circumferential direction” used below to indicate directionality are directions parallel to the bearing center (axial center) O of the rolling bearing 21 shown in FIG. 12, etc. , a radial direction of a circle centered on the axis O, and a circumferential direction of a circle centered on the axis O.
  • FIG. 12 is a plan view of a rolling bearing 21 according to an embodiment of the second invention
  • FIG. 13 is a schematic cross-sectional view taken along the line AA in FIG. 12, and
  • FIG. 4B is a right side view of the retainer 25.
  • the rolling bearing 21 is made of a highly rigid metal material such as bearing steel (high carbon chromium bearing steel), and includes a pair of bearing rings (inner ring 22 and outer ring 23) that are arranged opposite to each other in the radial direction, and an outer periphery of the inner ring 22.
  • a plurality of rolling elements (here, 10 balls 24) are rotatably interposed between the inner raceway surface formed on the surface 22a and the outer raceway surface formed on the inner peripheral surface 23a of the outer ring 23, and the balls 24.
  • This is a so-called ball bearing, which is equipped with an annular retainer 25 that holds the bearings at intervals in the circumferential direction.
  • the retainer 25 has a plurality of (10) pockets 26 arranged at equal intervals in the circumferential direction, and one ball 24 is accommodated in each pocket 26.
  • the illustrated retainer 25 is a retainer in which the inner surface (pocket surface) 26a of each pocket 26 is formed into a cylindrical surface with a constant diameter, that is, the retainer 25 is a retainer in which the shape of the pocket 26 is uniform in the radial direction.
  • the cage 25 is arranged between the inner ring 22 and the outer ring 23 so as to form a radial clearance between the inner ring 22 and the outer ring 23, and a circumferential clearance between the balls 24 housed in the pockets 26. is incorporated into. That is, as shown in FIG.
  • a radial clearance (a first radial clearance ⁇ 21 and a second radial clearance ⁇ 22), also called a “guiding clearance”, is formed between the ball 24 and the outer circumferential surface 25b of the retainer 25.
  • a circumferential gap ⁇ also called a “pocket circumferential gap” is formed between the pocket surfaces 26a (see FIG. 13).
  • the second radial clearance ⁇ 22 is smaller than the first radial clearance ⁇ 21, and the second radial clearance ⁇ 22 is, for example, 0.8 mm in diameter. That is, the diameter of the inner peripheral surface 23a of the outer ring 23 is 0.8 mm larger than the diameter of the outer peripheral surface 25b of the retainer 25. Further, the circumferential clearance ⁇ is, for example, 1.2 mm in diameter. In other words, the diameter W of the pocket 26 [see FIG. 3(b)] is 1.2 mm larger than the diameter of the ball 24.
  • the second radial clearance ⁇ 22 is the smallest among the first radial clearance ⁇ 21, the second radial clearance ⁇ 22, and the circumferential clearance ⁇ . Therefore, in the rolling bearing 21 of this embodiment, the radial movement of the cage 25 is limited by the contact between the cage 25 and the outer ring 23, which is a bearing ring.
  • the cage 25 of this embodiment has an inner circumferential surface 25a formed in a perfect circular shape, and an outer circumferential surface 25b formed in a non-perfect circular shape. ing.
  • the outer circumferential surface 25b is formed in a non-perfect circular shape.
  • the inner diameter dimension ⁇ a of the cage 25 is, for example, 42.8 mm
  • the outer diameter dimension ⁇ b when assuming that the outer circumferential surface 25b of the cage 25 is a perfect circle is, for example, 51.4 mm.
  • the distance D 1 between the parallel plane PP (center Oc of the retainer 25) and the straight portion 27 is, for example, 25.3 mm.
  • the straight portion 27 is obtained by cutting a portion of the outer circumferential surface 25b of the retainer 25 by a maximum of 0.4 mm in the radial direction.
  • the second radial clearance ⁇ 22 in the circumferential region where the straight portion 27 is formed is the same as the second radial clearance ⁇ 22 in the circumferential region where the straight portion 27 is not formed. It is larger than the radial clearance ⁇ 22 (see FIG. 12).
  • the retainer 25 of this embodiment having the above configuration is a resin retainer made of an injection molded product of a resin material, and the pocket 26 is molded at the same time as the retainer 25 is injection molded.
  • the straight portion 27 may be molded at the same time as the retainer 25 is injection molded, or may be formed by machining after molding.
  • the cage 25 may be a cage other than a resin cage, such as a machined cage obtained by cutting a metal material into a predetermined shape, or a cage with a predetermined annular shape, depending on the application and required characteristics. A pressed cage obtained by joining a pair of press-formed (punched) cage materials may also be used.
  • the "cage movable area" that is, the position where the cage 25 located at the neutral position can exist without contacting the outer ring 23 (and inner ring 22) is defined in two dimensions. The area surrounded by the line connecting the outer edges of the scatter diagram obtained by plotting an infinite number of plots on the coordinates was calculated. As described above, in the rolling bearing 21 of this embodiment, the second radial clearance ⁇ 21 formed between the outer ring 23 and the cage 25 is larger than the first radial clearance ⁇ 21 formed between the inner ring 22 and the cage 25.
  • FIG. 15 is a conceptual diagram showing a portion of the retainer 25 and the inner circumferential surface 23a of the outer ring 23.
  • the symbols O and O c in the figure indicate the center of the bearing and the center of the cage 25, respectively, and the symbol P indicates an arbitrary point on the outer circumferential surface 25b of the cage 25. Note that the subscript P indicates the j-th point when the outer circumferential surface 25b of the cage 25 is discretized (divided into mesh).
  • the magnitude (absolute value d) of a vector directed from the bearing center O toward an arbitrary point P j on the outer circumferential surface 25b of the cage 25 and the radius r of the inner circumferential surface 23a of the outer ring 23 are compared, - If the absolute value d is greater than or equal to the radius r, it is determined that any point P j on the outer peripheral surface 25b of the retainer 25 interferes with the outer ring 23, - If the absolute value d is smaller than the radius r, it is determined that any point P j on the outer peripheral surface 25b of the retainer 25 does not interfere with the outer ring 23.
  • the position of the cage center O c and the phase of the cage 25 are changed, and a determination task similar to that described above is performed. If there is a phase that is determined to be the above-mentioned "point on the cage movable area" at the position of the selected cage center O c , then the selected cage center O c position and the cage center O c are The position is determined to be "a point on the retainer movable area.”
  • the shape of the cage movable region 30 of the rolling bearing 21 of this embodiment having the configuration shown in FIGS.
  • the cage movable area in the rolling bearing 1 equipped with the cage 26 with a separation distance D 1 of 25.5 mm was determined.
  • FIGS. 16B and 16C show the movement locus of the center of the cage and the change in speed (translational speed) during 10 rotations of the inner ring 22 of the rolling bearing 21 of this embodiment
  • FIGS. 17B and 17C show, respectively, The movement locus of the cage center and the change in speed (translational speed) during 10 rotations of the inner ring of a comparative rolling bearing are shown, respectively.
  • the ratio Ri/Re of the maximum circumscribed circle diameter Ri of the cage movable region 30 to the minimum circumscribed circle diameter Re of the cage movable region 30 is set to less than 0.990, that is, the shape of the cage movable region 30 is set to a perfect circle. It is believed that the occurrence of a high-speed whirl phenomenon in the cage 25 can be effectively prevented by creating a "distorted shape" that deviates from the shape. Although it is not possible to determine the detailed reason why making the shape of the cage movable region 30 irregular is effective in preventing the occurrence of high-speed whirl phenomenon, it is possible that the shape of the cage movable region 30 is distorted.
  • the ratio Ri/Re of the maximum circumscribed circle diameter Ri to the minimum circumscribed circle diameter Re of the cage movable region 30 is set to 0.990.
  • this ratio Ri/Re becomes too small, it will become impossible to ensure the mechanical strength etc. required for the cage 25, and the mass balance of the cage 25 in the circumferential direction will collapse. Such problems may arise, and the bearing performance of the rolling bearing 21 may be adversely affected. Therefore, the lower limit value of the above ratio Ri/Re is appropriately selected depending on the required characteristics and size.
  • the above technical means adopted in the rolling bearing 21 of this embodiment does not intentionally increase the unbalance of the cage, unlike the technical means proposed in Patent Document 1. Even if the present invention is applied to the rolling bearing 21, there is no concern about an increase in centrifugal force due to unbalance or an increase in NRRO of the shaft. Therefore, the present invention can be widely applied to raceway guided rolling bearings.
  • the straight portion 27 is provided at one location in the circumferential direction of the outer peripheral surface 25b of the retainer 25, but the straight portion 27 may be provided at two or more locations in the circumferential direction.
  • 18A and 18B are diagrams showing a specific example thereof, in which a cage 25 is provided with straight portions 27 at two locations facing each other across the center Oc on the outer circumferential surface 25b (the straight portions 27 are provided on the outer circumferential surface 25b).
  • the retainers 25) are shown equally spaced at two locations. Providing the straight portion 27 in this manner can prevent problems such as vibration caused by mass imbalance of the retainer 25, which is advantageous in improving the reliability of the rolling bearing 21. .
  • the straight portion 27 provided in order to make the ratio Ri/Re of the maximum circumscribed circle diameter Ri of the cage movable region 30 to the minimum circumscribed circle diameter Re of the cage movable region 30 less than 0.990 is instead of the outer circumferential surface 25b (guided surface), it is also possible to provide it on the inner circumferential surface 23a (guide surface) of the outer ring 23, which faces each other via the second radial clearance ⁇ 2. However, in consideration of ease of processing, etc., it is preferable to provide the straight portion 27 on the outer circumferential surface 25b of the retainer 25.
  • the rolling bearing 21 according to the embodiment of the second invention described above is an outer ring guide type in which the inner peripheral surface 23a of the outer ring 23 is used as a guide surface for guiding the cage 25. It can also be applied to an inner ring guide type rolling bearing in which the outer peripheral surface 22a of the retainer 25 is used as a guide surface and the inner peripheral surface 25a of the retainer 25 is used as a guided surface.
  • an inner ring guide type rolling bearing is omitted, in this case, for example, as shown in FIG.
  • the straight portions 27 may be provided at two or more locations in the circumferential direction of the outer circumferential surface 22a of the inner ring 222, but in that case, from the viewpoint of preventing mass imbalance from occurring in the inner ring 22, the straight portions 27 may be It is preferable to arrange them at equal intervals in the circumferential direction.
  • the straight portion 27 is replaced with the outer circumferential surface 22a (guiding surface) of the inner ring 22, and is replaced with the inner circumferential surface 25a (covered surface) of the cage 25, which faces the inner circumferential surface 25a (guide surface) of the cage 25, which faces with the first radial clearance ⁇ 1 interposed therebetween. It is also possible to provide it on the guide surface. However, in consideration of ease of machining, etc., it is preferable to provide a straight portion 27 on the outer circumferential surface 22a of the inner ring 22.
  • the embodiment of the second invention is not limited to this, and various changes can be made without departing from the gist thereof. .
  • rollers may be used as the rolling elements that constitute the rolling bearing 21. That is, the second invention is applicable not only to ball bearings but also to other known rolling bearings such as cylindrical roller bearings and needle roller bearings. Further, the shape of the pocket 26 provided in the retainer 25 is not limited to a perfect circle in plan view as shown in FIG. There is also. Moreover, it is applicable not only to single-row bearings but also to double-row bearings.
  • the first and second inventions of the present application can effectively prevent the occurrence of high-speed whirl phenomenon in the cages 5 and 25 constituting the rolling bearings 1 and 21. It can be particularly preferably applied to rolling bearings used in applications where the phenomenon is likely to occur.
  • rolling bearings particularly ball bearings used to support the spindle of a machine tool or the reaction wheel of space equipment are subjected to a relatively large axial preload during use.
  • the radial load acting on the ball bearing is much larger than the axial load (for example, when the above ratio Fr/Fa exceeds 3), the load will be applied to each rolling element (ball).
  • the present invention can be particularly suitably applied to ball bearings used in applications where the following formula (1) holds, such as support bearings for main shafts of machine tools and reaction wheels of space equipment.
  • the cage theoretical rotation speed Nc is determined by the inner ring rotation speed Ni (rpm), the outer ring rotation speed Ne (rpm), the rolling element diameter Dw (mm), and the pitch circle of the rolling element.
  • the diameter is dp (mm) and the contact angle of the rolling element with the raceway surface is ⁇ (rad)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

転がり軸受1において、中立位置に位置している保持器5がボール4と接触せずに存在可能な位置を、二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域を保持器可動領域10と定義したとき、この保持器可動領域10の最小外接円径Reに対する保持器可動領域10の最大内接円径Riの比Ri/Reを0.900以下とする。

Description

転がり軸受
 本発明は、転がり軸受に関する。
 径方向に対向配置された状態で複数の転動体を介して相対回転する一対の軌道輪(内輪及び外輪)と、複数の転動体を周方向に間隔を空けて保持する環状の保持器と、を備えた転がり軸受において、保持器は、通常、径方向及び周方向に移動可能な状態で内外輪間に組み込まれる。従って、中立位置に位置する保持器は、各軌道輪との間に径方向すきまを形成すると共に、転動体の収容部(ポケット)に収容された転動体との間に径方向すきま及び周方向すきまを形成する。上記の軌道輪と保持器の間の径方向すきまは「案内すきま」と、また、上記のポケットと転動体の間の径方向すきま及び周方向すきまは、それぞれ「ポケット径方向すきま」及び「ポケット周方向すきま」とも称される。但し、例えばポケットの形状が径方向に一様な保持器を採用した転がり軸受では「ポケット径方向すきま」が存在しない(ポケット径方向すきまは無限大となる)。
 転がり軸受は、「転動体案内型」と「軌道輪案内型」とに大別される。転動体案内型の転がり軸受では、ポケット径方向すきまが案内すきまよりも小さく、保持器の径方向移動がポケットの内面(ポケット面)と転動体の接触により制限されることから、保持器と軌道輪が接触することはない。一方、軌道輪案内型の転がり軸受は、案内すきまがポケット径方向すきまよりも小さい転がり軸受である。軌道輪案内型の転がり軸受のうち、案内すきまがポケット周方向すきまより小さい場合、保持器が中立位置から径方向に移動すると、最初に軌道輪と接触する。案内すきまがポケット周方向すきまより大きい場合は、転動体の配置が等配であれば、保持器が径方向に移動したときに最初に転動体と接触するが、転動体の配置が等配からずれると保持器の可動範囲が変わるため、軌道輪と接触することもあり得る。転がり軸受を転動体案内型又は軌道輪案内型の何れにするか(保持器の案内形式を転動体案内又は軌道輪案内の何れにするか)は、転がり軸受の用途等に応じて適宜選択される。
 転がり軸受の作動時(内輪と外輪の相対回転時)には、保持器とそのポケットに収容された転動体の接触に伴って生じる摩擦力により、高速ホワール現象とも称される、異音、振動、トルクの増大、発熱などの不具合、さらには保持器の破断等の致命的な不具合の発生要因である保持器の高速振れ回り現象(高速ホワール現象)が発生することがある。
 そこで、例えば下記の特許文献1においては、保持器に所定のアンバランス量を与えることで保持器を偏心回転可能とし、回転中の保持器の一部を外輪又は転動体に常時接触させることにより、高速ホワール現象の発生、さらにはこれに起因した異音・振動等の不具合発生を可及的に防止するようにしている。
特開2011-196513号公報
 しかしながら、特許文献1に記載されている、高速ホワール現象の発生を防止するための技術手段(発明)は、保持器の案内方式として内輪案内方式を採用する転がり軸受には適さないとされており(同文献の段落0036を参照)、実質的な適用範囲が、保持器の案内方式として外輪案内方式又は転動体案内方式を採用する転がり軸受に制限されている。また、特許文献1に記載されている技術手段は、回転数の増加に伴い接触部の接触面圧が上昇し易いことから、軸受のピッチ円直径[mm]と回転数[rpm]の積で表されるdmn値が所定値を超えるような高速回転タイプの転がり軸受には適さない、とされている。しかしながら、高速ホワール現象は、特許文献1に記載の技術手段の適用が難しいとされている転がり軸受、すなわち内輪案内方式の転がり軸受や、軌道輪案内方式でかつ高速回転タイプの転がり軸受においても生じ得る。
 係る実情に鑑み、本発明の第1の目的は、保持器の案内方式や軸受の回転数(dmn値)等に関わらず、転がり軸受全般に広く適用できる、高速ホワール現象の防止手段を提供することにある。
 また、本発明の第2の目的は、高速ホワール現象の発生を可及的に防止することができる軌道輪案内型の転がり軸受を提供することにある。
 前述したとおり、保持器は通常、径方向及び周方向に移動可能な状態で内外輪間に組み込まれており、保持器の移動範囲は、案内すきま、ポケット径方向すきま、ポケット周方向すきまのうち最も小さいすきまで制限される。従って、軌道輪と各転動体の位置が決まると、ポケットの配置や形状に基づいて幾何学的に保持器中心が存在できる(保持器が外輪、内輪及び転動体と接触することなく移動できる)領域、つまり「保持器可動領域」を推定することができる。そこで、本発明者らは、種々の条件で動力学解析を行ったところ、高速ホワール現象が発生すると認められる解析条件においては、保持器可動領域の形状が、円形、もしくは円に近似する正多角形となる一方、高速ホワール現象が発生しないと認められる解析条件においては、保持器可動領域の形状が、円形、もしくは円に近似する正多角形から乖離した「いびつな形状」になることが判明した。係る知見を、図10A~10D及び図11A~11Dに示す解析結果に基づいて説明する。
 まず、図10A、図10C、図11A及び図11Cには、それぞれ、内輪を2.5回転させた瞬間における「保持器可動領域」及び「保持器の中心位置」を示しており、図10B、図10D、図11B及び図11Dには、それぞれ、可動領域が図10A、図10C、図11A及び図11Cに示すものとなる転がり軸受の内輪が10回転する間の保持器中心の移動軌跡を示している。保持器可動領域の形状が、図10Aや図10Cに示すような円形、あるいは円形に近似する正多角形である場合、高速ホワール現象が発生し、その結果、図10B及び図10Dに示すように保持器中心の移動軌跡を示す線が極めて密になった。これに対し、保持器可動領域の形状が図11Aや図11Cに示すようないびつな形状である場合、高速ホワール現象は発生せず、その結果、図11B及び図11Dに示すように保持器中心の移動軌跡を示す線が極めて粗になった。本願の第1発明は、係る知見に基づいて創案されたものである。
 すなわち、上記の目的を達成するために創案された本願の第1発明は、複数の転動体を介して相対回転する内輪及び外輪と、転動体を個別に収容した複数のポケットが周方向に間隔を空けて設けられた保持器と、を備え、保持器が内輪、外輪及び転動体と接触せずに存在可能な位置を、二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域を保持器可動領域と定義したとき、この保持器可動領域の最小外接円径Reに対する保持器可動領域の最大内接円径Riの比Ri/Reが0.900以下であることを特徴とする。
 上記の比Ri/Reが0.900以下であるということは、保持器可動領域の形状が、円形、あるいは円形に近似する正多角形から乖離したいびつな形状であることを意味する。そのため、上記構成を有する転がり軸受は、本発明者らの検証結果から、高速ホワール現象の発生を効果的に防止することができる。なお、保持器可動領域の形状をいびつな形状とすることが高速ホワール現象の発生防止に有効である詳細理由を断定することはできないものの、図11A及び図11Cに示す解析結果に基づけば、保持器が可動領域のいびつな形状となる位置に変位したときに、高速ホワール現象の駆動力であるポケット面と転動体の間に生じる摩擦力が運動を阻害する方向に働くためであると推察される。言い換えれば、高速ホワール現象を発生させるには、保持器に作用する力の向きが時計の針のように回転し、常に円運動の加速度として働く必要があると考えられ、可動領域の形状をいびつにすればこの作用を妨げることができるものと推察される。
 また、第1発明においては、特許文献1で提案されている技術手段のように保持器の特定の部位が外輪や転動体と常時接触するわけではない。そのため、本願の第1発明は、保持器の案内方式に関わらず、様々な転がり軸受に適用することができる。
 上記構成において、比Ri/Reを0.900以下にするには、例えば、保持器に設けられる複数のポケットのそれぞれを、周方向寸法(周方向の開口寸法)が互いに異なる大ポケット又は小ポケットで構成すれば良い。
 大ポケットは複数設けることができる。この場合、大ポケットをひとつ以上並べた(二つ以上続けて配した)大ポケット群を周方向等間隔で配置するのが好ましい。例えば転動体個数が10個であるときは、大・大・小・小・小・大・大・小・小・小と配置する。これにより、保持器の質量アンバランスに起因する振動等の問題発生を可及的に防止することができる。
 大ポケットと小ポケットの周方向寸法差は0.1mm以上とすることができる。つまり、転がり軸受における保持器の高速ホワール現象は、周方向寸法が互いに僅かに異なる大ポケット及び小ポケットを適切に配置するだけで効果的に防止することができる。なお、大ポケットと小ポケットの周方向寸法差は、転動体(ポケット)の総数や軸受サイズ等、種々のパラメータに応じて適宜変更される。
 また、前述したとおり、軌道輪案内型の転がり軸受では、保持器の径方向移動が、軌道輪(の案内面)と保持器(の被案内面)の接触により制限されることから、案内面及び被案内面の形状等に基づいて幾何学的に保持器中心が存在できる領域、換言すると、保持器が軌道輪(案内輪)と接触することなく移動できる領域(以下、この領域を「保持器可動領域」と言う。)をシミュレーションにより推定することができる。そして、発明者らが鋭意検討を重ねた結果、高速ホワール現象が発生すると認められる解析条件においては、保持器可動領域の形状が真円形に近づくほど高速ホワール現象が発生し易く、これとは逆に、保持器可動領域の形状が、円形(真円形)から乖離する「いびつな形状」になるほど、高速ホワール現象が発生し難くなることを見出した。本願の第2発明は、係る知見に基づいて創案されたものである。
 すなわち、上記第2の目的を達成するために創案された本願の第2発明は、複数の転動体を介して相対回転する内輪及び外輪と、転動体を個別に収容した複数のポケットが周方向に間隔を空けて設けられた保持器と、を備え、保持器が、内輪の外周面又は外輪の内周面に設けられた環状の案内面に案内される環状の被案内面を有し、上記案内面と上記被案内面の間に形成される径方向すきまが、保持器のポケット内面と転動体の間に形成される径方向すきまよりも小さい転がり軸受において、中立位置に位置している保持器が内輪、外輪及び転動体と接触せずに存在可能な位置を、二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域を保持器可動領域と定義したとき、この保持器可動領域の最小外接円径Reに対する保持器可動領域の最大内接円径Riの比Ri/Reが0.990未満であることを特徴とする。
 上記の比Ri/Reが0.990未満であるということは、保持器可動領域の形状が、真円形状から乖離したいびつな形状であることを意味する。そのため、上記構成を有する転がり軸受は、本発明者らの検証結果から、高速ホワール現象の発生を効果的に防止することができる。なお、保持器可動領域の形状をいびつな形状とすることが高速ホワール現象の発生防止に有効である詳細理由を断定することはできないものの、保持器可動領域がいびつな形状になることによって案内面と被案内面の接触時に生じる摩擦力の方向が円軌道から外れ、保持器の振れ回り運動を継続的に加速させることができなくなったためであると推察される。言い換えれば、高速ホワール現象を発生させるには、保持器に作用する力の向きが時計の針のように回転し、常に円運動の加速度として働く必要があり、可動領域の形状をいびつにすればこの作用を妨げることができるものと推察される。
 また、第2発明で採用する技術手段は、特許文献1で提案されている技術手段のように保持器のアンバランスを意図的に増加させようとするものではないことから、本発明を転がり軸受(特に軌道輪案内型の転がり軸受)に適用してもアンバランスに起因する遠心力の増加や軸のNRROの増加の懸念はない。このため、第2発明は軌道輪案内型の転がり軸受に広く適用することができる。
 外輪の内周面に案内面が設けられると共に保持器の外周面に被案内面が設けられる場合には、例えば、転がり軸受の軸心に沿って延びる軸平行平面と平行なストレート部を上記被案内面に設けることにより、上記の比Ri/Reを0.990未満とすることができる。
 内輪の外周面に案内面が設けられると共に保持器の内周面に被案内面が設けられる場合には、例えば、転がり軸受の軸心に沿って延びる軸平行平面と平行なストレート部を上記案内面に設けることにより、上記の比Ri/Reを0.990未満とすることができる。
 上記のストレート部は周方向等間隔で複数設けるのが好ましい。これにより、保持器や内輪の質量アンバランスに起因する振動等の問題発生を可及的に防止することができる。
 以上から、本願の第1発明によれば、保持器の案内方式や軸受の回転数(dmn値)に関わらず、高速ホワール現象の発生を効果的に防止することが可能となる。
 また、本願の第2発明によれば、内輪案内又は外輪案内の別を問わず、また軸受の回転数(dmn値)を問わず、高速ホワール現象の発生を可及的に防止することができる軌道輪案内型の転がり軸受を実現することが可能となる。
第1発明の実施形態に係る転がり軸受の正面図である。 図1Aの転がり軸受を構成する保持器の部分側面図である。 図1BのA-A線矢視概略断面である。 ポケットに転動体を収容した保持器の部分拡大側面図である。 保持器可動領域の求め方を説明するための概念図である。 図1Aの転がり軸受を構成する保持器の可動領域等を示す図である。 可動領域の形状が図3に示すものになる実施形態の転がり軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 図4Aの内輪が10回転する間の保持器の速度(並進速度)の推移を示す図である。 本発明の特徴的構成を有さない比較対象の転がり軸受の保持器可動領域等を示す図である。 可動領域の形状が図5に示すものになる転がり軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 図6Aの内輪が10回転する間の保持器の速度(並進速度)の推移を示す図である。 第1発明の他の実施形態に係る転がり軸受の保持器可動領域等を示す図である。 第1発明の特徴的構成を有さない比較対象の転がり軸受の保持器可動領域等を示す図である。 第1発明の他の実施形態に係る転がり軸受の保持器可動領域等を示す図である。 第1発明の特徴的構成を有さない比較対象の転がり軸受の保持器可動領域等を示す図である。 第1発明の他の実施形態に係る転がり軸受の保持器可動領域等を示す図である。 第1発明の特徴的構成を有さない比較対象の転がり軸受の保持器可動領域等を示す図である。 第1発明の検討過程で求めた保持器可動領域等を示す図である。 可動領域が図10Aに示すものになる軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 第1発明の検討過程で求めた保持器可動領域等を示す図である。 可動領域が図10Cに示すものとなる軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 第1発明の検討過程で求めた保持器可動領域等を示す図である。 可動領域が図11Aに示すものになる軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 第1発明の検討過程で求めた保持器可動領域等を示す図である。 可動領域が図11Cに示すものとなる軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 第2発明の実施形態に係る転がり軸受の平面図である。 図12のA-A線矢視断面図である。 図12の転がり軸受の保持器の平面図である。 図14Aの右側面図である。 保持器可動領域の求め方を説明するための概念図である。 図12の転がり軸受の保持器の可動領域を示す図である。 図12の転がり軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 図12の転がり軸受の内輪が10回転する間の速度(並進速度)の推移を示す図である。 第2発明の特徴的構成を有さない比較対象の転がり軸受の保持器の可動領域を示す図である。 同軸受の内輪が10回転する間の保持器中心の移動軌跡を示す図である。 同軸受の内輪が10回転する間の速度(並進速度)の推移を示す図である。 変形例に係る保持器の平面図である。 図18Aの右側面図である。 第2発明の他の実施形態に係る転がり軸受を構成する内輪の平面図である。
 以下、本願の第1発明の実施の形態を図面に基づいて説明する。なお、方向性を示すために以下使用する「軸方向」、「径方向」及び「周方向」とは、それぞれ、図1等に示す転がり軸受1の軸心Oと平行な方向、軸心Oを中心とする円の径方向、及び軸心Oを中心とする円の周方向である。
 図1Aは、第1発明の実施形態に係る転がり軸受1の正面図、図1Bは、転がり軸受1を構成する保持器の部分側面図、図1Cは、図1BのA-A線矢視概略断面図、図1Dは、ポケットに転動体を収容した保持器の部分拡大側面図である。この転がり軸受1は、軸受鋼(高炭素クロム軸受鋼)等の高剛性の金属材料で形成され、径方向に対向配置された一対の軌道輪(内輪2及び外輪3)と、内輪2の外周面2aに形成された内側軌道面と外輪3の内周面3aに形成された外側軌道面の間に転動自在に介在する複数の転動体(ここでは8個のボール4)と、複数のボール4を周方向に間隔を空けて保持した円環状の保持器5とを備えた、いわゆる玉軸受である。
 保持器5は、ボール4の数に対応する複数のポケット6を有し、各ポケット6にボール4が1個ずつ収容されている。各ポケット6の内面(ポケット面)6aは径一定の円筒面に形成されている。図示例の保持器5は、樹脂材料の射出成形品からなる樹脂保持器である。但し、保持器5としては、要求特性等に応じて、樹脂保持器以外の保持器、例えば金属材料を所定形状に削り出すことで得られるもみ抜き保持器、あるいは、所定の環状形態にプレス成形(打ち抜き加工)された一対の保持器素材を結合して得られるプレス保持器、が使用される場合もある。
 保持器5は、内輪2及び外輪3との間に径方向すきまを、また、ポケット6に収容したボール4との間に周方向すきまをそれぞれ形成するように内輪2と外輪3の間に組み込まれている。すなわち、図1Aに示すように、保持器5が中立位置に位置しているとき、対向する内輪2の外周面2aと保持器5の内周面5aの間、及び外輪3の内周面3aと保持器5の外周面5bの間には、それぞれ、「案内すきま」とも称される径方向すきま(第1径方向すきまδ1及び第2径方向すきまδ2)が形成され、また、ボール4とポケット面6aの間には「ポケット周方向すきま」とも称される周方向すきまεが形成される[図1Dを参照]。これにより、転がり軸受1は滑らかに作動可能である。図示例の転がり軸受1では、第1径方向すきまδ1よりも第2径方向すきまδ2の方が小さく、第2径方向すきまδ2は、例えば直径値で1.2mmとされる。つまり、外輪3の内周面3aの直径寸法は、保持器5の外周面5bの直径寸法よりも1.2mm大きい。
 各ポケット6は、周方向寸法(直径寸法)Wのみを互いに異ならせた二種類のポケット、すなわち、直径寸法Wが相対的に大きい大ポケット6A、又は直径寸法Wが相対的に小さい小ポケット6Bの何れかで構成される。ここでは、図1Cの0時の位置に配置されたポケット6を大ポケット6Aとし、残り7つのポケット6を小ポケット6Bとしている。例えば、直径寸法9.525mmのボール4を使用する場合、大ポケット6Aの直径寸法wは9.925mmに、また小ポケット6Bの直径寸法は9.725mmに設定する。この場合、大ポケット6Aのポケット面6aとボール4の間に形成される周方向すきま(ポケット周方向すきま)εは直径値で0.4mmとなり、小ポケット6Bのポケット面6aとボール4の間に形成される周方向すきまεは直径値で0.2mmとなる。
 以上の構成を有する転がり軸受1について、「保持器可動領域」、つまり、保持器5が内輪2、外輪3及びボール4と接触せずに存在可能な位置を二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域、を求めた。「保持器可動領域」を求めるに当たって必要となる、保持器5がボール4と接触せずに存在可能な位置、の求め方を図2に示す概念図に基づいて説明する。
 図2は、保持器5の一部、及び当該保持器5のポケットに収容された二個のボール4を抜き出して示す概念図である。同図中の符号Oは軸受中心を、符号Cは保持器5の中心Cを、符号Bはボール4の中心を、符号Pは保持器5のポケット面(ポケットの内面)上の任意の点をそれぞれ示している。なお、符号Bの下付き文字(添え字)、及び符号Pの下付き文字のうちの左側の文字はボール4の番号を示しており、符号Pの下付き文字のうちの右側の文字は、ポケット面を離散化(メッシュ分割)したときのj番目の点、を示している。
[第1工程]
 まず、ボール4の中心Biからこのボール4を収容したポケット6の内面上の任意の点Pi,jに向かうベクトルの大きさ(絶対値d)とボール4の半径Dw/2とを比較し、
・上記絶対値dが半径Dw/2よりも大きい場合は、ポケット6の内面上の点Pi,jはボール4と干渉しない、と判定し、
・上記の絶対値dが半径Dw/2以下である場合は、ポケット6の内面上の点Pi,jはボール4と干渉すると判定する。
 以降、これと同様の判定作業を他の点Pに対して実行する。
 図2に示す例では、符号B1で示す中心を持つボール4を収容したポケット6の内面上の点P1,jや点P1,j+1はボール4と干渉せず、符号B2で示す中心を持つボール4を収容したポケット6の内面上の点P2,jや点P2,j+1はボール4と干渉する、と言える。
 そして、f(i,j)=d-Dw/2としたときに、全てのi,jに対してf(i,j)≧0の関係式が成立すれば、そのときの保持器中心Cの位置は、保持器5がボール4と接触せずに存在可能な保持器可動領域上の点であると判定される。
[第2工程]
 保持器中心Cの位置、及び保持器の位相を変化させ、上記の第1工程で実行した判定作業と同様の判定作業を実行する。そして、選択した保持器中心Cの位置において一つでも上記の「保持器可動領域上の点」と判定される位相があれば、その選択した保持器中心Cの位置は「保持器可動領域上の点」であると判定する。
 前述した直径寸法を有するボール4、及びポケット6を有する保持器5を使用する場合の可動領域10の形状は、図3に示すように、正八角形から多少崩れた形状となり、この可動領域10の最小外接円径Reに対する最大内接円径Riの比(=Ri/Re)は0.853である。一方、これとの比較対象として、保持器5の形状のみを部分的に異ならせた転がり軸受、具体的には計8つ設けられるポケット6の全てを上記の小ポケット6Bで構成した保持器5を組み込んだ転がり軸受1における保持器可動領域を求めた。この場合の保持器可動領域10の形状は、図5に示すような略正八角形となり、この可動領域10の最小外接円径Reに対する最大内接円径Riの比(=Ri/Re)は0.921である。
 そして、上述した本実施形態の転がり軸受1、及び比較対象の転がり軸受を同一条件で運転したときに、各保持器の中心がどのような移動軌跡を辿るか、また各保持器の移動速度(並進速度)がどのように推移するかを動力学解析により検証した。図4A及び図4Bに、本実施形態の転がり軸受1の内輪2が10回転する間の保持器中心の移動軌跡及び速度(並進速度)の推移を、また、図6A及び図6Bに、比較対象の転がり軸受の内輪が10回転する間の保持器中心の移動軌跡及び速度(並進速度)の推移をそれぞれ示す。
 図4Aと図6Aを対比すると、本実施形態の転がり軸受1よりも比較対象の転がり軸受の方が、保持器の移動軌跡を示す線が遥かに密になっている。また、図4Bと図6Bを対比すると、本実施形態の転がり軸受1では、その運転開始後、時間が経過するにつれて保持器5の並進速度がゼロに収束するように徐々に低下しているのに対し、比較対象の転がり軸受では、その運転開始後、所定時間が経過した段階で保持器の並進速度が急激に高速化し、かつその高速化した状態が継続している。この解析結果から、本実施形態の転がり軸受1においては保持器5の高速ホワール現象が発生しないと認められるのに対し、比較対象の転がり軸受においては保持器の高速ホワール現象が発生すると認められる。
 また、ポケット6の総数を12、20又は31とした保持器を用いる転がり軸受についても、保持器可動領域10の形状によって高速ホワール現象が発生するか否かを検証した。具体的には、以下示す(1)~(6)の転がり軸受のそれぞれについて保持器可動領域10を求め、保持器可動領域10の最小外接円径Reに対する保持器可動領域10の最大内接円径Riの比Ri/Reを算出した。下記(1)~(6)の転がり軸受における保持器可動領域10、並びに上記の比を、図7A、図7B、図8A、図8B、図9A及び図9Bにそれぞれ示す。
(1)ポケットの総数を12とした樹脂保持器のうち、2つのポケットを大ポケットとし、残余のポケットを小ポケットとした転がり軸受。
(2)ポケットの総数を12とした樹脂保持器のうち、1つのポケットのみを大ポケットとし、残余のポケットを小ポケットとした転がり軸受。
(3)ポケットの総数を20とした樹脂保持器のうち、4つのポケットを大ポケットとし、残余のポケットを小ポケットとした転がり軸受。
(4)ポケットの総数を20とした樹脂保持器のうち、3つのポケットを大ポケットとし、残余のポケットを小ポケットとした転がり軸受。
(5)ポケットの総数を31とした樹脂保持器のうち、8つのポケットを大ポケットとし、残余のポケットを小ポケットとした転がり軸受。
(6)ポケットの総数を31とした樹脂保持器のうち、5つのポケットを大ポケットとし、残余のポケットを小ポケットとした転がり軸受。
 そして、保持器可動領域10の形状が図7A、図7B、図8A、図8B、図9A及び図9Bに示すものとなった上記の各転がり軸受について動力学解析を行った。各転がり軸受における保持器中心の移動軌跡等に関する図示は省略するが、保持器可動領域10の形状が図7A、図8A及び図9Aに示すものとなった転がり軸受においては保持器の高速ホワール現象が発生しないと認められたのに対し、保持器可動領域10の形状が図7B、図8B及び図9Bに示すものとなった転がり軸受においては保持器の高速ホワール現象が発生すると認められた。
 以上から、保持器可動領域10の最小外接円径Reに対する保持器可動領域10の最大内接円径Riの比Ri/Reを0.900以下、すなわち、保持器可動領域10の形状を、円形、あるいは円形に近似する正多角形から乖離した「いびつな形状」とすれば、保持器5の高速ホワール現象の発生を効果的に防止することができると考えられる。また、係る効果は、保持器5に設けられる複数のポケット6のそれぞれを、周方向寸法が相対的に大きい大ポケット6A、あるいは周方向寸法が相対的に小さい小ポケット6Bで構成する(一部のポケットを、周方向寸法Wが残余のポケットの周方向寸法Wよりも大きいもので構成する)だけで享受することができる。そのため、第1発明は、保持器5の案内方式や軸受の回転数(dmn値)等に関わらず転がり軸受全般に広く適用でき、その結果、高速ホワール現象の発生が防止されて異音・振動等が発生し難い静粛な転がり軸受1を実現することが可能となる。
 なお、保持器5に大ポケット6Aを複数設ける転がり軸受1[例えば、上記(1)(3)及び(5)の転がり軸受]においては、大ポケット6Aをひとつ以上並べた大ポケット群を周方向等間隔で配置するのが好ましい。例えばボール4(ポケット6)の総数が10個である場合は、大・大・小・小・小・大・大・小・小・小の順にポケット6を配置する。これにより、保持器5の質量アンバランスに起因する振動等の問題発生を可及的に防止することができる。
 以上、第1発明の実施形態に係る転がり軸受1について説明したが、第1発明の実施の形態はこれに限定されるわけではなく、その要旨を逸脱しない範囲において種々の変更を施すことができる。
 例えば、転がり軸受1を構成する転動体には、ボール4に替えてころ(円筒ころ、針状ころ等)を用いることも可能である。すなわち、第1発明は、玉軸受のみならず、円筒ころ軸受や針状ころ軸受等のころ軸受にも適用可能である。また、保持器5に設けられるポケット6の形状は、図1Bに示すような平面視円形に形成される以外に、例えば周方向に沿って長軸が配置された楕円状に形成される場合もある。また、単列軸受のみならず複列軸受にも適用可能である。
 以下、本願の第2発明の実施の形態を図面に基づいて説明する。なお、方向性を示すために以下使用する「軸方向」、「径方向」及び「周方向」とは、それぞれ、図12等に示す転がり軸受21の軸受中心(軸心)Oと平行な方向、軸心Oを中心とする円の径方向、及び軸心Oを中心とする円の周方向である。
 図12は、第2発明の実施形態に係る転がり軸受21の平面図、図13は、図12のA-A線矢視概略断面図、図14Aは、転がり軸受21を構成する保持器25の平面図、図4Bは、同保持器25の右側面図である。この転がり軸受21は、軸受鋼(高炭素クロム軸受鋼)等の高剛性の金属材料で形成され、径方向に対向配置された一対の軌道輪(内輪22及び外輪23)と、内輪22の外周面22aに形成された内側軌道面と外輪23の内周面23aに形成された外側軌道面の間に転動自在に介在する複数の転動体(ここでは10個のボール24)と、ボール24を周方向に間隔を空けて保持した円環状の保持器25とを備えた、いわゆる玉軸受である。
 保持器25は、周方向等間隔で配置された複数(10個)のポケット26を有し、各ポケット26にボール24が1個ずつ収容されている。図示例の保持器25は、各ポケット26の内面(ポケット面)26aが径一定の円筒面に形成された保持器、すなわちポケット26の形状が径方向に一様な保持器である。そして、保持器25は、内輪22及び外輪23との間に径方向すきまを、また、ポケット26に収容したボール24との間に周方向すきまをそれぞれ形成するように内輪22と外輪23の間に組み込まれている。すなわち、図12に示すように、保持器25が中立位置に位置しているとき、対向する内輪22の外周面22aと保持器25の内周面25aの間、及び外輪23の内周面23aと保持器25の外周面25bの間には、それぞれ、「案内すきま」とも称される径方向すきま(第1径方向すきまδ21及び第2径方向すきまδ22)が形成され、また、ボール24とポケット面26aの間には「ポケット周方向すきま」とも称される周方向すきまεが形成される(図13参照)。これにより、転がり軸受21は滑らかに作動可能である。
 図示例の転がり軸受21では、第1径方向すきまδ21よりも第2径方向すきまδ22の方が小さく、第2径方向すきまδ22は、例えば直径値で0.8mmとされる。つまり、外輪23の内周面23aの直径寸法は、保持器25の外周面25bの直径寸法よりも0.8mm大きい。また、周方向すきまεは、例えば直径値で1.2mmとされる。つまり、ポケット26の直径寸法W[図3(b)参照]は、ボール24の直径寸法よりも1.2mm大きい。従って、本実施形態の転がり軸受1では、第1径方向すきまδ21、第2径方向すきまδ22及び周方向すきまεのうち、第2径方向すきまδ22が最も小さい。そのため、本実施形態の転がり軸受21は、保持器25の径方向移動が軌道輪である外輪23と保持器25の接触によって制限される。
 図14Aにも示すように、本実施形態の保持器25は、これを平面視したとき、内周面25aが真円形状に形成されている一方、外周面25bが非真円形状に形成されている。ここでは、外周面25bの周方向一箇所に、転がり軸受1の軸心O(保持器25の中心Oc)を含む軸平行平面P-Pと平行なストレート部27を形成することにより、外周面25bが非真円形状に形成されている。保持器25の内径寸法φaは、例えば42.8mmとされ、保持器25の外周面25bが真円形状であると仮定した場合の外径寸法φbは、例えば51.4mmとされ、上記の軸平行平面P-P(保持器25の中心Oc)とストレート部27の離間距離D1は、例えば25.3mmとされる。この場合、ストレート部27は、保持器25の外周面25bの一部を径方向に最大0.4mm肉取りすることにより得られる。
 保持器25の外周面25bにストレート部27を形成したことにより、ストレート部27が形成された周方向領域における第2径方向すきまδ22は、ストレート部27が形成されていない周方向領域における第2径方向すきまδ22よりも大きくなっている(図12参照)。
 以上の構成を有する本実施形態の保持器25は、樹脂材料の射出成形品からなる樹脂保持器とされ、ポケット26は保持器25を射出成形するのと同時に型成形される。ストレート部27は、ポケット26と同様に、保持器25を射出成形するのと同時に型成形しても良いし、型成形後の機械加工により形成しても良い。但し、保持器25としては、用途・要求特性等に応じて、樹脂保持器以外の保持器、例えば金属材料を所定形状に削り出すことで得られるもみ抜き保持器、あるいは、所定の環状形態にプレス成形(打ち抜き加工)された一対の保持器素材を結合して得られるプレス保持器、が使用される場合もある。
 以上の構成を有する転がり軸受21について、「保持器可動領域」、つまり、中立位置に位置している保持器25が外輪23(及び内輪22)と接触せずに存在可能な位置を、二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域、を求めた。なお、前述したとおり、本実施形態の転がり軸受21では、内輪22と保持器25の間に形成される第1径方向すきまδ21よりも、外輪23と保持器25の間に形成される第2径方向すきまδ22の方が小さいことから、保持器25と外輪23の非接触状態が維持されている間は保持器25と内輪22の非接触状態も維持される。要するに、保持器25が外輪23と接触せずに存在可能な位置に位置している場合、保持器25は内輪22(及びボール24)とも接触しない。本実施形態の転がり軸受21における「保持器可動領域」を求めるに当たって必要となる、保持器25が外輪23と接触せずに存在可能な位置、の求め方を図15等に基づいて説明する。
 図15は、保持器25、及び外輪23の内周面23aの一部を抜き出して示す概念図である。同図中の符号O,Ocは前述したとおり軸受中心及び保持器25の中心をそれぞれ示し、符号Pは保持器25の外周面25b上の任意の点を示している。なお、符号Pの下付き文字(添え字)は、保持器25の外周面25bを離散化(メッシュ分割)したときのj番目の点、を示している。
 まず、軸受中心Oから保持器25の外周面25b上の任意の点Pjに向かうベクトルの大きさ(絶対値d)と外輪23の内周面23aの半径rとを比較し、
・上記絶対値dが半径r以上である場合は、保持器25の外周面25b上の任意の点Pjは外輪23と干渉する、と判定し、
・上記絶対値dが半径rよりも小さい場合は、保持器25の外周面25b上の任意の点Pjは外輪23と干渉しない、と判定する。
 以降、これと同様の判定作業を、保持器25の外周面25b上の他の任意の点Pj+nに対して実行する。
 図15に示す例では、保持器25の外周面5b上の任意の点Pj、Pj+1は、外輪23と干渉しない、と言える。
 そして、f(j)=d-rとしたときに、全てのjに対してf(j)<0の関係式が成立すれば、そのときの保持器中心Ocの位置は、保持器25が外輪23と接触せずに存在可能な保持器可動領域上の点であると判定される。
 次に、保持器中心Ocの位置、及び保持器25の位相を変化させ、上記の判定作業と同様の判定作業を実行する。そして、選択した保持器中心Ocの位置において一つでも上記の「保持器可動領域上の点」と判定される位相があれば、その選択したOcの位置、及び保持器中心Ocの位置は「保持器可動領域上の点」であると判定する。
 図12~14に示す構成を有する本実施形態の転がり軸受21の保持器可動領域30の形状は、図16Aに示すように、真円形状から多少崩れた形状となり、この保持器可動領域30の最小外接円径Reに対する最大内接円径Riの比(=Ri/Re)は0.986である。一方、これとの比較対象として、保持器26の形状が部分的に異なる転がり軸受21、具体的には、外周面の周方向一箇所にストレート部27が設けられ、かつストレート部27と中心Ocの離間距離D1を25.5mmとした保持器26を具備する転がり軸受1における保持器可動領域を求めた。この場合の保持器可動領域30の形状は図17Aに示すものとなり、この保持器可動領域10の最小外接円径Reに対する最大内接円径Riの比(=Ri/Re)は0.990である。
 そして、上述した本実施形態の転がり軸受21、及び比較対象の転がり軸受を同一条件で運転したときに、各保持器の中心がどのような移動軌跡を辿るか、また各保持器の移動速度(並進速度)がどのように推移するかを動力学解析により検証した。図16B及び図16Cに、本実施形態の転がり軸受21の内輪22が10回転する間の保持器中心の移動軌跡及び速度(並進速度)の推移をそれぞれ示し、また、図17B及び図17Cに、比較対象の転がり軸受の内輪が10回転する間の保持器中心の移動軌跡及び速度(並進速度)の推移をそれぞれ示す。
 図16Bと図17Bを対比すると、本実施形態の転がり軸受21よりも比較対象の転がり軸受の方が、保持器中心の移動軌跡を示す線が遥かに密になっている。また、図16Cと図17Cを対比すると、本実施形態の転がり軸受21では、その運転開始後、時間が経過するにつれて保持器25の並進速度がゼロに収束するように徐々に低下しているのに対し、比較対象の転がり軸受では、その運転開始後、所定時間が経過した段階で保持器の並進速度が急激に高速化し、かつその高速化した状態が継続している。この解析結果から、本実施形態の転がり軸受21においては保持器25の高速ホワール現象が発生しないと認められるのに対し、比較対象の転がり軸受においては保持器の高速ホワール現象が発生すると認められる。
 従って、保持器可動領域30の最小外接円径Reに対する保持器可動領域30の最大内接円径Riの比Ri/Reを0.990未満、すなわち、保持器可動領域30の形状を、真円形状から乖離した「いびつな形状」とすれば、保持器25の高速ホワール現象の発生を効果的に防止することができると考えられる。保持器可動領域30の形状をいびつな形状とすることが高速ホワール現象の発生防止に有効である詳細理由を断定することはできないものの、保持器可動領域30の形状がいびつな形状になることにより、案内面(外輪23の内周面23a)と被案内面(保持器25の外周面25b)の接触時に生じる摩擦力の方向が円軌道から外れ、保持器25の振れ回り運動を継続的に加速させることができなくなったためであると推察される。言い換えれば、高速ホワール現象を発生させるには、保持器に作用する力の向きが時計の針のように回転し、常に円運動の加速度として働く必要があり、可動領域の形状をいびつにすることがこの作用を妨げていると推察される。
 保持器25の高速ホワール現象の発生を効果的に防止するためには、上記のとおり、保持器可動領域30の最小外接円径Reに対する最大内接円径Riの比Ri/Reを0.990未満とすれば良いが、この比Ri/Reがあまりに小さくなると、保持器25に必要とされる機械的強度等を確保することができなくなる、周方向で保持器25の質量バランスが崩れる、などといった問題が生じ、転がり軸受21の軸受性能に悪影響が及ぶ可能性がある。そのため、上記の比Ri/Reの下限値は、要求特性やサイズに応じて適宜選定する。
 また、本実施形態の転がり軸受21で採用した上記の技術手段は、特許文献1で提案されている技術手段のように保持器のアンバランスを意図的に増加させようとするものではないことから、本発明を転がり軸受21に適用してもアンバランスに起因する遠心力の増加や軸のNRROの増加の懸念はない。このため、本発明は軌道輪案内型の転がり軸受に広く適用することができる。
 以上で説明した実施形態では、保持器25の外周面25bの周方向一箇所にストレート部27を設けたが、このストレート部27は、周方向の二箇所以上に設けても良い。図18A,18Bは、その具体的な一例を示す図であり、外周面25bのうち、中心Ocを挟んで対向する二箇所にストレート部27を設けた保持器25(ストレート部27を外周面25bの二箇所に等配した保持器25)を示している。係る態様でストレート部27を設けるようにすれば、保持器25の質量アンバランスに起因する振動等の問題発生を防止することができるので、転がり軸受21の信頼性向上を図る上で有利である。
 なお、保持器可動領域30の最小外接円径Reに対する保持器可動領域30の最大内接円径Riの比Ri/Reを0.990未満とするために設けるストレート部27は、保持器25の外周面25b(被案内面)に替えて、第2径方向すきまδ2を介して対向する外輪23の内周面23a(案内面)に設けることも可能である。但し、加工の容易性等を考慮すると保持器25の外周面25bにストレート部27を設けるのが好ましい。
 以上で説明した第2発明の実施形態に係る転がり軸受21は、外輪23の内周面23aを保持器25を案内するための案内面とした外輪案内型であるが、本発明は、内輪22の外周面22aを案内面とし、保持器25の内周面25aを被案内面とした内輪案内型の転がり軸受に適用することもできる。内輪案内型の転がり軸受についての図示は省略するが、この場合には、例えば図19に示すように、案内面である内輪22の外周面22aの周方向一箇所にストレート部27を設けることにより、保持器可動領域30の最小外接円径Reに対する保持器可動領域30の最大内接円径Riの比Ri/Reを0.990未満とすれば、前述した外輪案内型の転がり軸受21と同様の作用効果を享受することができる。なお、ストレート部27は、内輪222の外周面22aの周方向二箇所以上に設けても良いが、その場合には、内輪22に質量アンバランスが生じるのを防止する観点から、ストレート部27を周方向等間隔で配置するのが好ましい。
 内輪案内型の転がり軸受21においては、ストレート部27を、内輪22の外周面22a(案内面)に替えて、第1径方向すきまδ1を介して対向する保持器25の内周面25a(被案内面)に設けることも可能である。但し、加工の容易性等を考慮すると、内輪22の外周面22aにストレート部27を設けるのが好ましい。
 以上、第2発明の実施形態に係る転がり軸受21について説明したが、第2発明の実施の形態はこれに限定されるわけではなく、その要旨を逸脱しない範囲において種々の変更を施すことができる。
 例えば、転がり軸受21を構成する転動体には、ボール24に替えてころ(円筒ころ、針状ころ等)を用いることも可能である。すなわち、第2発明は、玉軸受のみならず、円筒ころ軸受や針状ころ軸受等、公知の他の転がり軸受にも適用可能である。また、保持器25に設けられるポケット26の形状は、図13に示すような平面視真円形に形成される以外に、例えば周方向に沿って長軸が配置された楕円状に形成される場合もある。また、単列軸受のみならず複列軸受にも適用可能である。
 以上で説明したとおり、本願の第1及び第2発明は、転がり軸受1,21を構成する保持器5,25の高速ホワール現象の発生を効果的に防止し得るものであることから、高速ホワール現象が発生し易い用途等で使用される転がり軸受に特に好ましく適用することができる。
 例えば、工作機械の主軸や宇宙機器のリアクションホイールを支持するための転がり軸受(特に玉軸受)は、使用時に比較的大きな軸方向の予圧を受けている。具体的には、運転中に受ける径方向荷重Frと軸方向荷重Faの比(=Fr/Fa)が3以下である場合が多く、このような場合には高速ホワール現象が特に発生し易い。これは、転動体の周方向での配置間隔が一定になるほど高速ホワール現象が発生し易いためである。逆に言えば、玉軸受に作用する径方向荷重が軸方向荷重に比べて格段に大きい場合(例えば、上記の比Fr/Faが3を超える場合)には、各転動体(ボール)に進み遅れが生じて転動体の配置間隔が不均一になるため、高速ホワール現象が発生しにくくなる。従って、工作機械の主軸や宇宙機器のリアクションホイールの支持軸受等、下記の式(1)が成立する用途で使用される玉軸受には、本発明を特に好適に適用することができる。
 また、保持器の理論回転数をNc(rpm)、ポケットすきまをc(mm)、保持器質量をm(kg)、軸受内の平均転動体荷重をQ(N)としたとき、下記の式(2)が成立するときには高速ホワール現象が発生し易い。すなわち、下記の式(2)が成立する運転状況では、保持器の遠心力により転動体が外輪の軌道面(外側軌道面)に対して滑り難いため、転動体の配置間隔が不均一になり難い。従って、本願の第1及び第2発明は、下記の式(2)が成立する状況で運転される転がり軸受に好適に適用することができる。
 なお、上記の式(2)における、保持器理論回転数Ncは、内輪回転数をNi(rpm)、外輪回転数をNe(rpm)、転動体径をDw(mm)、転動体のピッチ円直径をdp(mm)、軌道面に対する転動体の接触角をα(rad)としたとき、以下の式(3)によって算出することができる。
 以上、本願の第1及び第2発明に係る転がり軸受1,21について説明したが、第1及び第2発明は以上で説明した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得る。
1,21   転がり軸受
2,22   内輪
3,23   外輪
4,24   ボール(転動体)
5,25   保持器
6,26   ポケット
6a,26a ポケット面
10,30  保持器可動領域
Re     最小外接円径
Ri     最大内接円径

Claims (8)

  1.  複数の転動体を介して相対回転する内輪及び外輪と、前記転動体を個別に収容した複数のポケットが周方向に間隔を空けて設けられた円環状の保持器と、を備えた転がり軸受において、
     中立位置に位置している前記保持器が前記内輪、外輪及び転動体と接触せずに存在可能な位置を、二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域を保持器可動領域と定義したとき、この保持器可動領域の最小外接円径Reに対する前記保持器可動領域の最大内接円径Riの比Ri/Reが0.900以下であることを特徴とする転がり軸受。
  2.  複数の前記ポケットのそれぞれを、周方向寸法が互いに異なる大ポケット又は小ポケットで構成することにより、前記比Ri/Reを0.900以下にした請求項1に記載の転がり軸受。
  3.  前記大ポケットは複数設けられ、前記大ポケットをひとつ以上並べた大ポケット群が周方向等間隔で配置されている請求項2に記載の転がり軸受。
  4.  前記大ポケットと前記小ポケットの周方向寸法差を0.1mm以上とした請求項2又は3に記載の転がり軸受。
  5.  複数の転動体を介して相対回転する内輪及び外輪と、前記転動体を個別に収容した複数のポケットが周方向に間隔を空けて設けられた保持器と、を備え、前記保持器が、前記外輪の内周面又は前記内輪の外周面に設けられた環状の案内面に案内される環状の被案内面を有し、前記案内面と前記被案内面の間に形成される径方向すきまが、前記保持器のポケット内面と前記転動体の間に形成される径方向すきまよりも小さい転がり軸受において、
     中立位置に位置している前記保持器が前記内輪、前記外輪及び前記転動体と接触せずに存在可能な位置を、二次元座標上に無数にプロットすることで得られる散布図の外縁部を繋ぐ線で囲まれた領域を保持器可動領域と定義したとき、この保持器可動領域の最小外接円径Reに対する前記保持器可動領域の最大内接円径Riの比Ri/Reが0.990未満であることを特徴とする転がり軸受。
  6.  前記外輪の内周面に前記案内面が設けられると共に前記保持器の外周面に前記被案内面が設けられ、前記転がり軸受の軸心に沿って延びる軸平行平面と平行なストレート部を前記被案内面に設けることにより、前記比Ri/Reを0.990未満にした請求項5に記載の転がり軸受。
  7.  前記内輪の外周面に前記案内面が設けられると共に前記保持器の外周面に前記被案内面が設けられ、前記転がり軸受の軸心に沿って延びる軸平行平面と平行なストレート部を前記案内面に設けることにより、前記比Ri/Reを0.990未満にした請求項5に記載の転がり軸受。
  8.  前記ストレート部を周方向等間隔で複数設けた請求項6又は7に記載の転がり軸受。
PCT/JP2023/027955 2022-08-29 2023-07-31 転がり軸受 WO2024048162A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022135965A JP7483809B2 (ja) 2022-08-29 2022-08-29 転がり軸受
JP2022-135962 2022-08-29
JP2022-135965 2022-08-29
JP2022135962A JP7483808B2 (ja) 2022-08-29 2022-08-29 転がり軸受

Publications (1)

Publication Number Publication Date
WO2024048162A1 true WO2024048162A1 (ja) 2024-03-07

Family

ID=90099253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027955 WO2024048162A1 (ja) 2022-08-29 2023-07-31 転がり軸受

Country Status (1)

Country Link
WO (1) WO2024048162A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081076A1 (ja) * 2011-11-29 2013-06-06 日本精工株式会社 保持器および転がり軸受
JP2014159840A (ja) * 2013-02-20 2014-09-04 Nsk Ltd ころがり軸受
JP2018169044A (ja) * 2017-03-29 2018-11-01 Ntn株式会社 自動調心ころ軸受

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081076A1 (ja) * 2011-11-29 2013-06-06 日本精工株式会社 保持器および転がり軸受
JP2014159840A (ja) * 2013-02-20 2014-09-04 Nsk Ltd ころがり軸受
JP2018169044A (ja) * 2017-03-29 2018-11-01 Ntn株式会社 自動調心ころ軸受

Similar Documents

Publication Publication Date Title
EP2787229B1 (en) Rolling bearing with a cage
WO2012099120A1 (ja) 転がり軸受
EP1347185B1 (en) Cylindrical roller bearing
US7048445B2 (en) Cylindrical roller bearing
US20170138404A1 (en) Rolling bearing
US7033081B2 (en) Ball bearing
US10514063B2 (en) Rolling bearing
WO2006112432A1 (ja) 転がり軸受
US20100183256A1 (en) Angular ball bearing
WO2024048162A1 (ja) 転がり軸受
JP7483808B2 (ja) 転がり軸受
WO2014171162A1 (ja) アンギュラ玉軸受用保持器
JP7483809B2 (ja) 転がり軸受
JP6340794B2 (ja) 円筒ころ軸受
JP2017145843A (ja) スラストころ軸受
JP5499327B2 (ja) 転がり軸受
JP2017214965A (ja) ころ軸受
JP2020046008A (ja) クロスローラ軸受
JP2024032359A (ja) 転がり軸受
JP2019173888A (ja) アンギュラ玉軸受
JP2015064081A (ja) 転がり軸受
Ricci Ball bearings subjected to a variable eccentric thrust load
JP2007298184A (ja) アンギュラ玉軸受
JP2004314203A (ja) 工作機械テーブル装置及び工作機械テーブル装置用転がり軸受
JP2005076671A (ja) トロイダル型無段変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859931

Country of ref document: EP

Kind code of ref document: A1