WO2024048055A1 - Resin composition, adhesive film, bonding sheet for interlayer adhesion, and resin composition for semiconductor package with antenna - Google Patents

Resin composition, adhesive film, bonding sheet for interlayer adhesion, and resin composition for semiconductor package with antenna Download PDF

Info

Publication number
WO2024048055A1
WO2024048055A1 PCT/JP2023/024266 JP2023024266W WO2024048055A1 WO 2024048055 A1 WO2024048055 A1 WO 2024048055A1 JP 2023024266 W JP2023024266 W JP 2023024266W WO 2024048055 A1 WO2024048055 A1 WO 2024048055A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
composition according
group
antenna
Prior art date
Application number
PCT/JP2023/024266
Other languages
French (fr)
Japanese (ja)
Inventor
遼 宇佐美
寛史 高杉
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024048055A1 publication Critical patent/WO2024048055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a resin composition, an adhesive film, an interlayer bonding sheet, and a resin composition for a semiconductor package with an antenna.
  • thermosetting resin composition containing a thermosetting resin having a styrene group at the end and a styrene thermoplastic elastomer is known.
  • a thermosetting resin composition disclosed in Patent Document 1 a thermosetting resin having a styrene group at the terminal and having a phenylene ether skeleton is used as the thermosetting resin having a styrene group at the terminal.
  • the thermosetting resin having a styrene group at the terminal is used as the thermosetting resin having a styrene group at the terminal.
  • the styrene thermoplastic elastomer a low molecular weight styrene elastomer is used.
  • 5G millimeter wave antennas require a structure that reduces conductor loss (in other words, has low transmission loss) by shortening the wiring distance between the antenna and the IC in terms of packaging technology.
  • semiconductor packages with antennas eg, antenna-in-package (AiP) and antenna-on-package (AoP)
  • the antenna portion is integrally formed with the semiconductor device portion
  • the insulating layer around the antenna also becomes hotter than in a conventional structure due to heat generation from the IC, so it is required to have low dielectric loss even when placed in a high-temperature environment.
  • IC refers to an integrated circuit.
  • the resin composition disclosed in Patent Document 1 contains a thermosetting resin having a styrene group at the end and a styrene thermoplastic elastomer. It is said to contain a thermoplastic resin and a styrene thermoplastic elastomer.
  • soldering heat resistance is sometimes required for insulating layers of printed wiring boards, but the resin composition disclosed in Patent Document 1 does not mention such soldering heat resistance. do not have.
  • Resin compositions intended for use in the high frequency range mentioned above are required to have excellent solder heat resistance and low dielectric properties, and there is a strong desire to develop resin compositions that have excellent properties. There is.
  • the present invention has been made in view of the problems of the prior art.
  • the present invention provides a resin composition that can be suitably used for adhesive films, interlayer bonding sheets, interlayer adhesives, etc., and has excellent solder heat resistance and low dielectric properties. Furthermore, the present invention provides an adhesive film, a bonding sheet for interlayer bonding, and a resin composition for a semiconductor package with an antenna using such a resin composition.
  • the following resin compositions, adhesive films, interlayer bonding sheets, and resin compositions for semiconductor packages with antennas are provided.
  • a resin composition comprising (A) a polyphenylene ether resin having a terminal end with a functional group containing a carbon-carbon double bond, and (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more.
  • R 1 represents a hydrogen atom or an alkyl group.
  • the content of the component (C) is 0.1 to 5.0 parts by mass based on a total of 100 parts by mass of the component (A), the component (B), and the component (C) in the resin composition.
  • a resin composition for a semiconductor package with an antenna comprising the resin composition according to any one of [1] to [12] above.
  • a laminate or a semiconductor device comprising a cured product of the resin composition according to any one of [1] to [12] above.
  • the resin composition of the present invention has excellent soldering heat resistance and low dielectric properties. Therefore, the resin composition of the present invention can be suitably used for adhesive films, interlayer bonding sheets, interlayer adhesives, and the like. Furthermore, the adhesive film, interlayer adhesion bonding sheet, and resin composition for semiconductor packages with antennas of the present invention are those using the resin composition of the present invention, and are said to have excellent soldering heat resistance and low dielectric properties. be effective.
  • FIG. 2 is a schematic partial cross-sectional view showing an example of a semiconductor package with an antenna.
  • FIG. 7 is a schematic partial cross-sectional view showing another example of a semiconductor package with an antenna.
  • One embodiment of the resin composition of the present invention comprises (A) a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end, and (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more.
  • a resin composition comprising:
  • (A) polyphenylene ether resin having a functional group containing a carbon-carbon double bond at its terminal may be referred to as component (A).
  • component (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more is sometimes referred to as component (B).
  • the resin composition of this embodiment has excellent solder heat resistance and low dielectric properties.
  • the resin composition of this embodiment includes a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A), thereby imparting low dielectric properties to the resin composition.
  • Solder heat resistance can be effectively improved.
  • a thermoplastic elastomer having a number average molecular weight of 60,000 or more as component (B) the resin composition becomes difficult to melt, and the soldering heat resistance can be further improved.
  • the resin composition of the present embodiment contains (C) an epoxy resin, (D) a curing agent, (E) an organic peroxide, and (F) a hardening agent.
  • Other components such as a refueling agent, (G) a filler, and (H) a crosslinking agent may also be included.
  • each of the above-mentioned components may be referred to as components (C) to (H) as appropriate.
  • Component (A) is a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end.
  • the functional group containing a carbon-carbon double bond include a terminal vinyl group, a vinylene group, and a vinylidene group.
  • Component (A) is not particularly limited as long as it has a functional group containing a carbon-carbon double bond at its terminal and polyphenylene ether in its skeleton. By including component (A), it is possible to effectively improve solder heat resistance while imparting low dielectric properties to the resin composition.
  • component (A) examples include those containing modified polyphenylene ether having a styrene structure at the end.
  • modified polyphenylene ether is not particularly limited as long as it has a styrene structure at its terminal.
  • the styrene structure may be an unsubstituted styrene group having no substituent, or a styrene group having any substituent.
  • solder heat resistance of the resin composition can be improved.
  • modified polyphenylene ether having a styrene structure at its terminal undergoes a curing reaction even without the use of peroxide, and has extremely excellent soldering heat resistance.
  • modified polyphenylene ether having a styrene structure at the end used as component (A) include compounds having a structure represented by the following general formula (2).
  • R 2 , R 3 , R 4 , R 7 , and R 8 are an alkyl group or a phenyl group having 6 or less carbon atoms, and may be the same or different from each other.
  • R 5 , R 6 , and R 7 are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and may be the same or different from each other.
  • R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , and R 17 are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and each They may be the same or different from each other.
  • -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • -(YO)- is represented by the above structural formula (5).
  • -(YO)- one type of structure or two or more types of structures are arranged randomly.
  • R 18 and R 19 are an alkyl group or a phenyl group having 6 or less carbon atoms, and may be the same or different from each other.
  • R 20 and R 21 are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and may be the same or different from each other.
  • a and b are integers of 0 to 100. At least one of a and b is not 0.
  • -A- in structural formula (4) is, for example, methylene, ethylidene, 1-methylethylidene, 1,1-propylidene, 1,4-phenylenebis(1-methylethylidene), 1,3-phenylenebis(1 -methylethylidene), cyclohexylidene, phenylmethylene, naphthylmethylene, and 1-phenylethylidene.
  • -A- in structural formula (4) is not limited to these.
  • R 2 , R 3 , R 4 , R 8 , R 9 , R 18 , and R 19 are alkyl groups having 3 or less carbon atoms
  • R 5 , R 6 , R 7 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 20 and R 21 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms.
  • -(O-X-O)- represented by structural formula (3) or (4) is represented by the following structural formula (6), structural formula (7), or structural formula (8).
  • -(Y-O)- represented by structural formula (5) is a compound represented by the following structural formula (9) or structural formula (10), or It is more preferable that the compound represented by (9) and the compound represented by Structural Formula (10) be randomly arranged.
  • the method for producing the compound represented by general formula (2) is not particularly limited.
  • the compound represented by general formula (2) can be produced by the following method. First, a difunctional phenylene ether oligomer is obtained by oxidative coupling of a difunctional phenol compound and a monofunctional phenol compound. Next, the terminal phenolic hydroxyl group of the obtained bifunctional phenylene ether oligomer is converted into vinylbenzyl ether. In this way, the compound represented by general formula (2) can be produced.
  • the number average molecular weight of the compound represented by general formula (2) is preferably from 1,000 to 5,000, more preferably from 1,000 to 3,000, and from 1,000 to 2,500. It is even more preferable that there be.
  • the number average molecular weight is 1000 or more, stickiness is unlikely to occur when the resin composition is formed into a coating film.
  • the number average molecular weight is 5,000 or less, a decrease in solubility in a solvent in the resin composition can be effectively suppressed.
  • the electrical properties and curability at high frequencies of the resin composition are improved.
  • the above-mentioned number average molecular weight is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the compound represented by general formula (2) may be used alone, or two or more compounds represented by general formula (2) may be used in combination.
  • polyphenylene ether having a styrene structure at the end of component (A) examples include the product names "OPE-2200” and “OPE-1200” manufactured by Mitsubishi Gas Chemical Company.
  • component (A) in addition to those containing the modified polyphenylene ether having a styrene structure at the terminal described above (for example, the compound represented by the above general formula (2)), Examples include those containing a modified polyphenylene ether having the group shown in 1).
  • R 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group for R 1 is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
  • examples of the group represented by formula (1) include an acrylate group and a methacrylate group.
  • a modified polyphenylene ether having a group represented by formula (1) has a polyphenylene ether chain in the molecule, for example, a repeating unit represented by the following structural formula (11) in the molecule.
  • a repeating unit represented by the following structural formula (11) in the molecule Preferably.
  • m represents 1 to 50.
  • R 22 to R 25 are each independent and may be the same or different from each other.
  • R 22 to R 25 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
  • the alkyl group in R 22 to R 25 is not particularly limited, but is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
  • the alkenyl group in R 22 to R 25 is not particularly limited, but is preferably an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 10 carbon atoms. Specific examples include vinyl group, allyl group, and 3-butenyl group.
  • the alkynyl group in R 22 to R 25 is not particularly limited, but is preferably an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms. Specific examples include ethynyl group and prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group in R 22 to R 25 is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is preferable. group is more preferred. Specific examples include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, hexanoyl group, octanoyl group, and cyclohexylcarbonyl group.
  • the alkenylcarbonyl group in R 22 to R 25 is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is preferable. groups are more preferred. Specific examples include acryloyl group, methacryloyl group, and crotonoyl group.
  • the alkynylcarbonyl group in R 22 to R 25 is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is preferable. group is more preferred. Specifically, for example, a propioloyl group and the like can be mentioned.
  • modified polyphenylene ether having a group represented by the above formula (1) for example, a group represented by the above formula (1) is added to the terminal of a polyphenylene ether represented by the following formula (12) or formula (13). Examples include those that have. Specific examples of the modified polyphenylene ether include modified polyphenylene ether represented by the following formula (14) or formula (15).
  • s and t are preferably such that the total value of s and t is 1 to 30, for example. Further, s is preferably from 0 to 20, and t is preferably from 0 to 20. That is, s preferably represents 0 to 20, t represents 0 to 20, and the sum of s and t preferably represents 1 to 30.
  • Y represents an alkylene group having 1 to 3 carbon atoms or a direct bond, and examples of the alkylene group include a dimethylmethylene group.
  • R 1 is the same as R 1 in the above formula (1), and represents a hydrogen atom or an alkyl group.
  • alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
  • the number average molecular weight (Mn) of the modified polyphenylene ether having the group represented by formula (1) is not particularly limited. Specifically, it is preferably 500 to 5,000, more preferably 800 to 4,000, and even more preferably 1,000 to 3,000.
  • the number average molecular weight may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography (GPC), etc. can be mentioned.
  • GPC gel permeation chromatography
  • m is the weight average molecular weight of the modified polyphenylene ether such that It is preferable that the value falls within a certain range. Specifically, m is preferably 1 to 50.
  • the cured product When the weight average molecular weight of the modified polyphenylene ether having the group represented by formula (1) is within the above numerical range, the cured product will have excellent heat resistance while having excellent dielectric properties derived from polyphenylene ether. Furthermore, the moldability of the resin composition can also be improved. For example, if the weight average molecular weight of conventional polyphenylene ether is within the above numerical range, the molecular weight will be relatively low, and the heat resistance of the cured product will tend to decrease. On the other hand, the modified polyphenylene ether having the group represented by formula (1) above has the group represented by formula (1) at the end, and therefore can improve the heat resistance of the cured product.
  • the weight average molecular weight of the modified polyphenylene ether can be made relatively low, it also has excellent moldability. For this reason, by using component (A) containing a modified polyphenylene ether having a group represented by formula (1) at the terminal, a resin composition having better heat resistance and moldability of the cured product can be obtained. Can be done.
  • the average number of groups represented by the above formula (1) at the molecular ends (number of terminal functional groups) per molecule of modified polyphenylene ether is not particularly limited. . Specifically, the number is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. In addition, if the number of terminal functional groups is too large, the reactivity becomes too high, which may cause problems such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition. . That is, when such modified polyphenylene ether is used, molding defects such as voids occur during multilayer molding due to insufficient fluidity, resulting in poor moldability that makes it difficult to obtain a highly reliable printed wiring board. Problems could have arisen.
  • the number of terminal functional groups of the above-mentioned modified polyphenylene ether is a numerical value representing the average value of the groups represented by the above formula (1) per molecule of all the modified polyphenylene ethers present in 1 mole of the modified polyphenylene ether. Can be mentioned.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether and calculating the decrease from the number of hydroxyl groups in the polyphenylene ether before modification.
  • the number of terminal functional groups is the decrease from the number of hydroxyl groups in the polyphenylene ether before modification.
  • the method for measuring the number of hydroxyl groups remaining in modified polyphenylene ether is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of modified polyphenylene ether, and measure the UV absorbance of the mixed solution. It can be found by
  • the intrinsic viscosity of the modified polyphenylene ether used as component (A) is not particularly limited. Specifically, it is preferably 0.03 to 0.12 dl/g, more preferably 0.04 to 0.11 dl/g, and even more preferably 0.06 to 0.095 dl/g. preferable. If the intrinsic viscosity is too low, the molecular weight tends to be low, making it difficult to obtain low dielectric properties such as low dielectric constant and low dielectric loss tangent. Furthermore, if the intrinsic viscosity is too high, the viscosity will be high, sufficient fluidity will not be obtained, and the moldability of the cured product will tend to deteriorate. Therefore, if the intrinsic viscosity of the modified polyphenylene ether is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
  • the above-mentioned intrinsic viscosity is an intrinsic viscosity measured in methylene chloride at 25°C, and more specifically, for example, a 0.18 g/45ml methylene chloride solution (liquid temperature 25°C) was measured with a viscometer. value etc.
  • this viscometer include the product name "AVS500 Visco System” manufactured by Schott.
  • the method for synthesizing the modified polyphenylene ether used as component (A) is not particularly limited as long as it can synthesize a modified polyphenylene ether having a group represented by the above formula (1) at its terminal.
  • Component (A) may be a modified polyphenylene ether having a group represented by the above formula (1) at its end, or a modified polyphenylene ether having a group represented by the above formula (1) at its end. Two or more types may be used in combination. Furthermore, it may be used in combination with one or more of the compounds represented by the general formula (2) described above.
  • the product name "Noryl SA9000" manufactured by SABIC Japan may be mentioned.
  • component (A) is 5 to 70 parts per 100 parts by mass of the total of components (A), (B), and (B') from the viewpoint of having excellent low dielectric properties and soldering heat resistance. It is preferably 6 to 60 parts by weight, even more preferably 7 to 50 parts by weight, and particularly preferably 8 to 40 parts by weight. Note that the component (B') will be described later.
  • Component (B) is a thermoplastic elastomer having a number average molecular weight of 60,000 or more.
  • a thermoplastic elastomer having a number average molecular weight of 60,000 or more as component (B), the resin composition becomes difficult to melt, and the soldering heat resistance can be favorably improved.
  • a thermoplastic elastomer other than the above-mentioned component (B), that is, a thermoplastic elastomer having a number average molecular weight of less than 60,000 may be referred to as component (B').
  • the number average molecular weight of the thermoplastic elastomer as component (B) is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the film may be dissolved in a solvent and the number average molecular weight of the components dissolved in the solvent may be measured.
  • the thermoplastic elastomer as component (B) preferably has a number average molecular weight of 60,000 or more, more preferably 100,000 or more, even more preferably 110,000 or more, and even more preferably 120,000 or more. It is particularly preferable that it is above. With such a number average molecular weight, the soldering heat resistance is further improved. There is no particular restriction on the upper limit of the number average molecular weight of the thermoplastic elastomer as component (B). However, if the number average molecular weight of the thermoplastic elastomer becomes too large, it may become difficult to melt the thermoplastic elastomer, resulting in poor workability. Therefore, the number average molecular weight of the thermoplastic elastomer as component (B) is preferably 200,000 or less, more preferably 150,000 or less, even more preferably 140,000 or less, It is particularly preferred that it is 130,000 or less.
  • the thermoplastic elastomer as component (B) is not particularly limited, but is preferably a thermoplastic elastomer having a dielectric loss tangent (tan ⁇ ) of less than 0.005 in the frequency range of 1 to 100 GHz. This can contribute to the excellent dielectric properties in the high frequency region of the thermosetting film formed from the resin composition of the present disclosure.
  • the "thermoplastic elastomer having a dielectric loss tangent (tan ⁇ ) of less than 0.005 in the frequency range of 1 to 100 GHz” is preferably a styrene-based thermoplastic elastomer, and preferably a hydrogenated styrene-based thermoplastic elastomer. More preferred.
  • the hydrogenated styrene thermoplastic elastomer refers to a hydrogenated styrene thermoplastic elastomer
  • examples of the hydrogenated styrene thermoplastic elastomer include, for example, styrene/butadiene/butylene/styrene block copolymer (monomer). Examples include partially hydrogenated, SBBS) and styrene/ethylene/butylene/styrene block copolymers (fully hydrogenated, SEBS).
  • component (B) is a styrene thermoplastic elastomer
  • the styrene ratio of component (B) is preferably 10 to 70%, more preferably 15 to 60%.
  • the styrene ratio of component (B) is 20 to 50%, film forming properties and workability are excellent.
  • the hydrogenated styrenic thermoplastic elastomer of component (B) is not particularly limited, but is preferably a styrene/ethylene/butylene/styrene block copolymer (SEBS).
  • SEBS styrene/ethylene/butylene/styrene block copolymer
  • SEBS Styrene/ethylene/butylene/styrene block copolymer
  • SEBS is a fully hydrogenated styrene-based thermoplastic elastomer, and since it is a styrene-based thermoplastic elastomer without double bonds, it can further improve dielectric properties. Can be done.
  • styrene/ethylene/butylene/styrene block copolymer having a number average molecular weight of 60,000 or more, it is possible to improve solder heat resistance while maintaining good dielectric properties. Furthermore, by using styrene/ethylene/butylene/styrene block copolymer (SEBS) as the component (B), when the resin composition is formed into a film, the film is less likely to curl.
  • SEEPS hydrogenated styrene thermoplastic elastomer
  • SEEPS styrene/ethylene/ethylene/propylene/styrene block copolymer
  • component (B) there is no particular restriction on the content of component (B), but the mass ratio of component (A) to component (B) (component (A):component (B)) is 5:95 to 70:30.
  • the ratio is preferably 10:90 to 67:33, even more preferably 20:80 to 60:40, and particularly preferably 25:75 to 40:60.
  • the content of component (B) is preferably greater than that of component (A).
  • the ratio of component (B) is too high, when the resin composition is formed into a film, the film may be more likely to tack, which may reduce workability.
  • the ratio of component (B) increases, the dielectric properties of the resin composition may deteriorate, so it is preferably within the above range.
  • the content of component (B) is preferably 20 to 95 parts by mass, more preferably 30 to 93 parts by mass, and 35 parts by mass. More preferably, the amount is 80 parts by mass. By being within this range, excellent solder heat resistance can be achieved while maintaining low dielectric properties.
  • the resin composition of this embodiment may contain a plurality of thermoplastic elastomers as the (B) component.
  • component (B) a plurality of thermoplastic elastomers having a number average molecular weight of 60,000 or more may be contained.
  • the resin composition of the present embodiment may contain a thermoplastic elastomer (component (B')) having a number average molecular weight of less than 60,000 as a thermoplastic elastomer other than the component (B).
  • the content (mass basis) of the thermoplastic elastomer having a number average molecular weight of 60,000 or more is 60,000 or more.
  • the content of the thermoplastic elastomer is preferably greater than 000 or less.
  • thermoplastic elastomer examples include "Septon 8004", “Septon 8006”, and “Septon V9461” manufactured by Kuraray Co., Ltd., for example.
  • Component (C) is an epoxy resin.
  • Epoxy resin is a compound having one or more epoxy groups in its molecule, and when heated, the epoxy groups react to form a three-dimensional network structure and can be cured.
  • the soldering heat resistance can be further improved.
  • the epoxy resin as component (C) it is possible to improve the adhesion even to a smooth surface such as the shiny surface of copper.
  • component (C) there is no particular restriction on the content of the epoxy resin as component (C), but 0.1 to 5.0 parts by mass per 100 parts by mass of the total of components (A), (B), and (C).
  • the amount is preferably from 0.5 to 4.0 parts by weight, and even more preferably from 0.7 to 3.0 parts by weight. If the content of component (C) is too large, the dielectric loss tangent of the cured product may become high.
  • the content of component (C) is preferably 0.1 to 5.0 parts by mass, and 0.5 to 3.0 parts by mass. More preferably, the amount is 0.6 to 2.0 parts by mass.
  • epoxy resins include bisphenol compounds such as bisphenol A, bisphenol E, and bisphenol F, or derivatives thereof (e.g., alkylene oxide adducts), hydrogenated bisphenol A, hydrogenated bisphenol E, hydrogenated bisphenol F, and cyclohexanediol.
  • diols with alicyclic structures such as cyclohexanedimethanol and cyclohexanediethanol, or derivatives thereof; difunctional diols obtained by epoxidizing aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, and decanediol, or derivatives thereof, etc.
  • trifunctional epoxy resin having a trihydroxyphenylmethane skeleton and an aminophenol skeleton
  • polyfunctional epoxy resin obtained by epoxidizing phenol novolak resin, cresol novolac resin, phenol aralkyl resin, biphenylaralkyl resin, naphthol aralkyl resin, etc.
  • Preferred are bisphenol A type epoxy resin, bisphenol F type epoxy resin, and aminophenol type epoxy resin.
  • the compounds exemplified here may be used alone or in combination of two or more.
  • the epoxy resin of component (C) is preferably liquid at room temperature (25°C).
  • Component (D) is a curing agent.
  • the curing agent of component (D) is not particularly limited as long as it generally cures epoxy resins, and the curing agent in the present application includes a curing catalyst that promotes the reaction of epoxy resins. Although there are no particular limitations on the curing agent, imidazole-based curing catalysts are more preferable because they allow for appropriate adjustment of curing properties.
  • the imidazole curing catalyst may be imidazole, and imidazole adducts, clathrated imidazole, microcapsule imidazole, imidazole compounds coordinated with stabilizers, etc. can also be used. These have a nitrogen atom with a lone pair of electrons in their structure, which can activate the epoxy group and also activate other epoxy resins used together, promoting curing. be able to.
  • imidazole-based curing catalysts include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, 2- Phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methyl, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-Undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-Phenylimidazolium trimellitate, 2,
  • Imidazole that has been subjected to adduct treatment, inclusion treatment with a different molecule, microcapsule treatment, or coordination with a stabilizer is a modification of the above-mentioned imidazole. These are made by reducing the activity of imidazole by adduct treatment, inclusion treatment with different molecules, microcapsule treatment, or by coordinating a stabilizer, thereby achieving an excellent pot life at low temperatures while curing and accelerating hardening. High ability.
  • commercial products of imidazole include 2E4MZ, 2P4MZ, 2PZ-CN, C11Z-CNS, C11Z-A, 2MZA-PW, 2MA-OK, 2P4MHZ-PW, 2PHZ-PW (the above, Shikoku (manufactured by Kasei Kogyo Co., Ltd.), EH2021 (manufactured by ADEKA Co., Ltd.), etc., but is not limited to these.
  • imidazole adducts include, for example, PN-50, PN-50J, PN-40, PN-40J, PN-31, and PN-23, which have a structure in which an imidazole compound is ring-opened and added to the epoxy group of an epoxy resin.
  • PN-H manufactured by Ajinomoto Fine Techno, Inc.
  • Examples of commercially available clathrate imidazoles include TIC-188, KM-188, HIPA-2P4MHZ, NIPA-2P4MHZ, TEP-2E4MZ, HIPA-2E4MZ, and NIPA-2E4MZ (all manufactured by Nippon Soda). However, it is not limited to these.
  • microcapsule imidazoles examples include Novacure HX3721, HX3722, HX3742, HX3748 (manufactured by Asahi Kasei Corporation), and LC-80 (manufactured by A&C Catalysts).
  • the content of the curing agent can be appropriately selected depending on the type of curing agent used as component (D). Further, when the amount of the resin composition other than the filler is 100 parts by mass, the content of component (D) is preferably 0.001 to 1.0 parts by mass, more preferably 0.005 to 0.60 parts by mass. . Further, the content of the imidazole curing catalyst is preferably 0.1 to 10% by mass, more preferably 1 to 6% by mass based on the epoxy resin. If the content of component (D) is too small, the curability of the film produced using the resin composition may deteriorate, and the adhesiveness, toughness, and heat resistance may deteriorate.
  • component (D) if the content of component (D) is too large, there is a risk that the shelf life of the film produced using the resin composition will deteriorate, and the original physical properties of the resin will be impaired in the cured product, resulting in poor adhesiveness and toughness. There is a risk that the properties and heat resistance may decrease.
  • Component (E) is an organic peroxide.
  • the content of the organic peroxide can be appropriately selected depending on the type, but typically it is preferably 0.1 to 10 parts by weight, and 0.5 to 5 parts by weight, based on 100 parts by weight of component (A). part is more preferable.
  • organic peroxides examples include benzoyl peroxide, isobutyryl peroxide, isononanoyl peroxide, decanoyl peroxide, lauroyl peroxide, parachlorobenzoyl peroxide, di(3,5,5-trimethylhexanoyl) peroxide.
  • diacyl peroxides such as; peroxyketals such as 2,2-di(4,4-di-(di-tert-butylperoxy)cyclohexyl)propane; isopropyl purge carbonate, di-sec-butyl purge carbonate, Peroxy dicarbonates such as di-2-ethylhexyl purge carbonate, di-1-methylheptyl purge carbonate, di-3-methoxybutyl purge carbonate, dicyclohexyl purge carbonate; tert-butyl perbenzoate, tert-butyl peracetate, tert -Butyl per-2-ethylhexanoate, tert-butyl perisobutyrate, tert-butyl perpivalate, tert-butyl diper adipate, cumyl perneodecanoate, tert-butyl peroxybenzoate, 2,5-dimethyl - Peroxy
  • the 10-hour half-life temperature is 100°C. It is preferable to use a temperature between 140°C and 140°C. Furthermore, the 10-hour half-life temperature is more preferably 110 to 130°C.
  • organic peroxides for component (E) include Perbutyl H, Perbutyl Z, Perbutypercyl P, Percyl D, Percyl H, and Perhexa C (manufactured by NOF Chemical Co., Ltd.). Examples include.
  • Component (F) is a flame retardant.
  • the flame retardant as component (F) is an optional component that is appropriately contained within a range that does not impair the effects of the resin composition of the present embodiment described above.
  • flame retardance may be required.
  • further inclusion of a flame retardant as component (F) can contribute to improving the flame retardancy of the cured product made of the resin composition of this embodiment.
  • flame retardant As the flame retardant as component (F), inorganic phosphorus-based flame retardants, organic phosphorus-based flame retardants, metal hydrates such as aluminum hydroxide hydrate, magnesium hydroxide hydrate, etc. can be mentioned.
  • the flame retardant as component (F) may be used alone or in combination of two or more.
  • inorganic phosphorus-based flame retardants include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide; Acids; examples include phosphine oxide.
  • organic phosphorus-based flame retardants include phosphate ester flame retardants, mono-substituted phosphonic acid diesters and 2-substituted phosphinic esters; metal salts of 2-substituted phosphinic acids, organic nitrogen-containing phosphorus compounds, cyclic organic phosphorus compounds, etc. Can be mentioned.
  • metal salts include lithium salts, sodium salts, potassium salts, calcium salts, magnesium salts, aluminum salts, titanium salts, zinc salts, and the like.
  • the content of the flame retardant can be appropriately selected depending on the type of flame retardant used as component (F). Furthermore, when the amount of the resin composition other than the filler is 100 parts by mass, the content of component (F) is preferably 15 to 50 parts by mass, more preferably 20 to 40 parts by mass. Further, examples of the flame retardant as component (F) include phosphinate metal salts (eg, trade name "OP-935" manufactured by Clariant Japan).
  • Component (G) is a filler.
  • the type of filler as component (G) is not particularly limited, and examples include known inorganic fillers.
  • the filler as component (G) is required to have insulation properties and a low coefficient of thermal expansion.
  • inorganic filler As the inorganic filler as component (G), a general inorganic filler can be used.
  • inorganic fillers include silica, alumina, aluminum nitride, calcium carbonate, aluminum silicate, magnesium silicate, magnesium carbonate, barium sulfate, barium carbonate, lime sulfate, aluminum hydroxide, calcium silicate, potassium titanate, oxidized Examples include titanium, zinc oxide, silicon carbide, silicon nitride, and boron nitride.
  • the inorganic fillers may be used alone or in combination of two or more. In particular, from the viewpoint of insulation, silica filler and alumina filler are preferable. Moreover, from the viewpoint of dielectric properties, silica filler is preferable.
  • the inorganic filler may be surface-treated with a silane coupling agent having one or more functional groups selected from acrylic, methacrylic, styryl, amino, epoxy, and vinyl.
  • inorganic fillers include aminosilane coupling agents, ureidosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, vinylsilane coupling agents, and styrylsilane coupling agents.
  • Surface treatment agents such as acrylate silane coupling agents, isocyanate silane coupling agents, sulfide silane coupling agents, organosilazane compounds, and titanate coupling agents improve heat resistance, moisture resistance, and dispersion. Those with improved properties are preferred.
  • silica filler may be used alone or in combination of two or more. More preferably, among the surface-treated silica fillers, it is preferable to use a silica filler surface-treated with a vinyl silane coupling agent. By using a silica filler whose surface has been treated with a vinyl silane coupling agent, the coefficient of thermal expansion can be improved.
  • the shape of the inorganic filler is not particularly limited, and examples include spherical, scaly, acicular, and amorphous shapes. From the viewpoint of workability, a spherical shape is preferable.
  • the average particle diameter is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 4 ⁇ m. When the average particle size of the inorganic filler is within this range, it has excellent embedding properties between fine structures.
  • the average particle diameter is the particle diameter at an integrated value of 50% in a volume-based particle size distribution measured by a laser diffraction/scattering method. The average particle diameter can be measured, for example, using a laser scattering diffraction particle size distribution analyzer: LS13320 (manufactured by Beckman Coulter, wet type).
  • component (G) when containing component (G), the content of component (G) is preferably 0.1 to 90 parts by mass, and preferably 20 to 85 parts by mass, based on 100 parts by mass of nonvolatile components in the resin composition. It is more preferably 30 to 80 parts by weight, particularly preferably 50 to 80 parts by weight. With this configuration, the coefficient of thermal expansion can be improved satisfactorily.
  • Component (H) is a crosslinking agent.
  • a crosslinking agent as the component (H)
  • cracking of the film made of the resin composition can be effectively prevented.
  • crosslinking with the polyphenylene ether resin as component (A) further improvement in the solder heat resistance of the resin composition can be expected.
  • crosslinking agent as component (H) for example, polybutadiene, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, diallyl isocyanurate, 2,2'-diallyl bisphenol A, etc. can be used.
  • crosslinking agent having an isocyanuric ring structure and two allyl groups in one molecule. By having two allyl groups, the crosslinking agent (H) component can improve soldering heat resistance while having low dielectric properties.
  • the heat resistance of the resin composition is improved because the component (H) has an isocyanuric ring structure.
  • the (H) component may be a compound having an isocyanuric ring structure and two allyl groups in one molecule. As a result, it is possible to obtain good solder heat resistance while having low dielectric properties, and also to obtain good film formability, making it easy to form into a film.
  • the (H) component may be a liquid compound at 25°C.
  • the (H) component may be a flame-retardant cross-linking agent that is a cross-linking agent with the polyphenylene ether resin as the (A) component and also imparts flame retardancy.
  • a flame-retardant crosslinking agent having an isocyanuric ring structure and two allyl groups in one molecule and a phosphorus-based substituent at the terminal can be used. Thereby, it can crosslink with the polyphenylene ether resin as component (A), improve the solder heat resistance of the resin composition, and also impart flame retardancy.
  • component (H) is preferably a compound represented by the following general formula (16).
  • R is an alkyl group having 4 to 14 carbon atoms, preferably an alkyl group having 8 to 14 carbon atoms, and R is an alkyl group having 10 to 12 carbon atoms. It is particularly preferable that Further, R may be a phosphorus-based substituent.
  • the content of component (H) is preferably 10 to 70 parts by mass based on 100 parts by mass of component (A). With this configuration, it is possible to improve solder heat resistance while maintaining low dielectric properties.
  • the content of component (H) is more preferably 15 to 65 parts by mass, and 20 to 60 parts by mass, based on 100 parts by mass of component (A). More preferably.
  • the component (H) is contained in 2 to 50% by mass, more preferably 3 to 40% by mass, and particularly preferably 4 to 30% by mass in 100% by mass of the nonvolatile components in the resin composition. preferable.
  • the dielectric properties of the resin composition are excellent.
  • the content ratio of the (H) component in the nonvolatile components can be measured by, for example, an infrared spectrophotometer (FTIR) or a gas chromatograph mass spectrometry method. Note that if the number average molecular weight of the thermoplastic elastomer as component (B) becomes too large, the thermoplastic elastomer may be difficult to melt, resulting in poor workability.
  • component (H) is preferably added in an amount of 1 to 30 parts by weight, more preferably 3 to 25 parts by weight, and 5 to 20 parts by weight, based on 100 parts by weight of the filler (G). More preferably, the amount is 7 to 15 parts by mass.
  • the resin composition of the present embodiment may further contain components other than the components (A) to (H) described above.
  • other components include various additives such as colorants, dispersants, silane coupling agents, antioxidants, and rheology control agents.
  • the resin composition of this embodiment can be manufactured by a conventional method.
  • the resin composition of this embodiment can be manufactured by mixing the components described above using, for example, a Raikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-shaft mixer, etc. .
  • the resin composition of this embodiment can be suitably used as a resin composition for adhesive films used in electronic components. Further, the resin composition of the present embodiment can be suitably used as an interlayer bonding sheet or an interlayer adhesive for multilayer substrates.
  • the resin composition of this embodiment is used for various purposes for electronic parts, there are no particular restrictions on the electronic parts to be bonded, and examples thereof include ceramic substrates, organic substrates, semiconductor chips, semiconductor devices, and the like.
  • Adhesive films, interlayer bonding sheets, interlayer adhesives, and the like using the resin composition of the present embodiment are included as cured products of the resin composition in laminates and semiconductor devices constituting electronic components and the like. Therefore, it is preferable that a cured product of the resin composition of this embodiment be included in a laminate or a semiconductor device constituting an electronic component or the like.
  • the resin composition of this embodiment can also be used as a resin composition used for producing a semiconductor package with an antenna (resin composition for a semiconductor package with an antenna). Note that details of the semiconductor package with antenna will be described later.
  • the resin composition of this embodiment is suitable as a resin composition for forming an insulating layer for connecting the semiconductor device part and the antenna part and an insulating layer inside the antenna part in such a semiconductor package with an antenna. It can be used for.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of a semiconductor package with an antenna.
  • the antenna-equipped semiconductor package 100 has an antenna section 5 integrally formed with a semiconductor device section 10, and is particularly designed for RF (radio frequency) communication for transmitting and receiving 5G millimeter waves.
  • a semiconductor package 100 with an antenna serves as a high frequency substrate on which a chip 8 is mounted.
  • the antenna section 5 is connected to an RF chip 8 that performs millimeter wave communication through a wiring layer 4 having various wiring patterns.
  • An insulating layer 1 for connection (first insulating layer 1A), a wiring layer 4 with a multilayer structure arranged in the core substrate 2, and an insulating layer 1 configured to cover wiring vias in the wiring layer 4.
  • first insulating layer 1A is not only provided to be interposed between the semiconductor device section 10 and the antenna section 5, but also to extend into the inside of the antenna section 5. It's okay.
  • the wiring layer 4 is connected to an RF chip 8 that performs communication for transmitting and receiving millimeter waves, and the other part of the wiring layer 4 is is connected to the electrical connection metal 7.
  • the wiring layer 4 and the RF chip 8 are electrically connected via hemispherical connection pads 9.
  • the electrical connection metal 7 is a terminal portion for physically and/or electrically connecting the semiconductor package 100 with an antenna to the outside depending on the function of the electrical connection metal 7.
  • the insulating layer 1 suppresses the attenuation of the current and millimeter wave signals output from the RF chip 8 during transmission, and transmits them to the antenna section 5 to efficiently radiate them into space. It is required to reduce the loss (transmission loss) in the connection section that connects the The same goes for reception, and in order to suppress the attenuation of the reflected wave of the millimeter wave signal received by the antenna section 5 and transmit it to the RF chip 8 as the reception section, the connection between the antenna section 5 and the RF chip 8 is necessary. It is required to reduce the loss (transmission loss) in the transmission area.
  • the antenna section 5 is disposed on one surface side of the semiconductor device section 10 as a patch antenna serving as a planar antenna.
  • the semiconductor package with antenna 100 includes an insulating layer 1 for connecting the semiconductor device section 10 and the antenna section 5 (for example, a first insulating layer 1A), and an insulating layer 1 inside the antenna section 5.
  • the structure of layer 1 has particularly important characteristics.
  • the structure of the insulating layer 1 in the semiconductor package with antenna 100 of this embodiment will be explained in more detail.
  • the insulating layer 1 for connecting the semiconductor device section 10 and the antenna section 5 and the insulating layer 1 inside the antenna section 5 may be collectively referred to simply as "insulating layer 1.”
  • At least one insulating layer 1 is made of a cured product of a resin composition configured similarly to the resin composition of the present invention described above. That is, the cured product constituting the insulating layer 1 is composed of a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A), and a number average molecular weight of 60,000 as the component (B). This is a cured product of a resin composition containing the above thermoplastic elastomer.
  • the semiconductor package 100 with an antenna including the insulating layer 1 configured as described above has excellent solder heat resistance and low dielectric properties.
  • a 288° C. solder test may be performed on the insulating layer 1 for connecting the antenna section 5, which was not necessary in the past. Soldering heat resistance at heat-resistant temperatures is required.
  • Known high-frequency films are used as insulation layers in conventional semiconductor packages, but some of these high-frequency films do not meet the above-mentioned solder heat resistance. There are many things that cannot be used for the semiconductor package 100 with an antenna.
  • the cured material constituting the insulating layer 1 has a dielectric loss tangent (tan ⁇ ) of 0.0020 or less when measured at a frequency of 10 GHz using the SPDR (split post dielectric resonator) method. It is preferable that the soldering heat resistance is 290° C. for 2 minutes or more.
  • the insulating layer 1 can be obtained by heating and curing a resin composition containing the above-described components (A) and (B).
  • the resin composition for forming the insulating layer 1 is a resin composition configured similarly to the resin composition of the present invention described above.
  • the resin composition contains any of the components (C) to (H), and further other components. Good too.
  • the antenna-equipped semiconductor package 100 of this embodiment has excellent solder heat resistance and dielectric properties, so it is a semiconductor package with an RF (radio frequency) chip 8 mounted thereon that performs communication for transmitting and receiving 5G millimeter waves. Suitable for use as a package.
  • a first insulating layer 1A for connecting the semiconductor device part 10 and the antenna part 5 a second insulating layer 1B configured to cover the wiring via in the wiring layer 4, and a second insulating layer 1B configured to cover the wiring via in the wiring layer 4. It is preferable that each of the third insulating layer 1C, the fourth insulating layer 1D, and the fifth insulating layer 1E have the same structure as the insulating layer 1 made of the cured material described above.
  • a resin composition for a semiconductor package with an antenna which includes at least component (A) and component (B).
  • the "resin composition for a semiconductor package with antenna” may be simply referred to as “resin composition.”
  • the resin composition is preferably in the form of a film.
  • This film for a semiconductor package with an antenna is produced by coating a solution of a resin composition containing components (A) and (B) with an organic solvent on a PET film that has undergone mold release treatment as a support. It can be obtained by drying at 80 to 130°C.
  • the obtained antenna-equipped semiconductor package film is peeled from the support, attached to the semiconductor device part 10, and heat-treated at 200° C. for 30 to 60 minutes to produce an antenna-equipped semiconductor package. can.
  • FIG. 2 is a schematic partial cross-sectional view showing another example of a semiconductor package with an antenna.
  • a semiconductor package with an antenna 200 shown in FIG. 2 has antenna parts 25 and 26 formed integrally with a semiconductor device part 30.
  • the antenna sections 25 and 26 are connected to an RF chip 28 that performs millimeter wave communication in the semiconductor device section 10 by a wiring layer 24 having various wiring patterns.
  • the semiconductor device section 30 includes a core substrate 22, an antenna section 25 disposed on one surface side of the semiconductor device section 30, and an insulating layer 21 for connecting the semiconductor device section 30 and the antenna section 25.
  • An RF chip 28 that performs 5G millimeter wave transmission/reception communication is housed within the core substrate 22 and is wired by a wiring layer 24 disposed within the core substrate 22 .
  • an antenna section 26 is provided as a dipole antenna in which linear conducting wires (elements) are arranged symmetrically.
  • the other surface side of the semiconductor device section 30 is connected to an electrical connection metal 27 for physically and/or electrically connecting the semiconductor package with antenna 200 to the outside.
  • the insulating layer 21 is made of a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A) and a polyphenylene ether resin as the component (B).
  • a cured product of a resin composition containing a thermoplastic elastomer having a number average molecular weight of 60,000 or more has excellent solder heat resistance and low dielectric properties.
  • the cured product used as the insulating layer 21 can be configured similarly to the cured product used as the insulating layer 1 of the semiconductor package 100 with antenna shown in FIG.
  • Example preparation After weighing and blending each component to the proportions (parts by mass) shown in Tables 1 to 4 below, they were placed in a reaction vessel heated to 80°C, and constantly rotated at a rotation speed of 150 rpm. Pressure mixing was carried out for 4 hours. When adding the curing agent (D) and/or the organic peroxide (E), the curing agent (D) and/or the organic peroxide (E) are added after cooling. . As described above, varnishes containing the resin compositions of Examples 1 to 20 and Comparative Examples 1 to 2 were prepared.
  • the raw materials used to prepare the resin compositions in Examples 1 to 20 and Comparative Examples 1 to 2 are as follows.
  • the number average molecular weights (Mn) of component (A), component (B), and component (B') were determined by a chromatography method.
  • A1 Polyphenylene ether resin having a methacrylic group at the end, manufactured by SABIC Japan, trade name "Noryl SA9000", number average molecular weight (Mn): 1,700.
  • A2 Polyphenylene ether resin having a styrene group at the end, manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name "OPE-2200", number average molecular weight (Mn): 2,200.
  • A3 Polyphenylene ether resin having a styrene group at the end, manufactured by Mitsubishi Gas Chemical Company, trade name "OPE-1200", number average molecular weight (Mn): 1,200.
  • (C) component epoxy resin
  • (C1) Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name "828EL”.
  • (C2) Novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name "EPPN-502H”.
  • H1 Manufactured by Shikoku Kasei Co., Ltd., trade name "L-DAIC”.
  • H2 Manufactured by Shikoku Kasei Co., Ltd., product name "P-DAIC”.
  • the “raw material ratio” column in Tables 1 to 4 shows the ratio of the raw materials used to prepare the resin compositions in Examples 1 to 17 and Comparative Examples 1 to 2.
  • the ratios in each column of “raw material ratio” in Tables 1 to 4 are as follows.
  • the column “A/(A+B+B') x 100 (mass ratio)” indicates the content (parts by mass) of component (A) relative to the total of 100 parts by mass of component (A), component (B), and component (B'). shows.
  • the column “B/(A+B) ⁇ 100 (mass ratio)” indicates the content (parts by mass) of component (B) relative to the total of 100 parts by mass of components (A) and (B).
  • the column “C/(A+B+C) ⁇ 100 (mass ratio)” indicates the content (parts by mass) of component (C) based on the total of 100 parts by mass of component (A), component (B), and component (C). .
  • a varnish containing the resin composition prepared as described above is applied to one side of the support (PET film subjected to mold release treatment) and dried at 100°C to form an adhesive film with the support. Obtained.
  • the dielectric constant ( ⁇ ) and dielectric loss tangent (tan ⁇ ) of the film (test piece) whose thickness was measured were measured using a dielectric resonator method (SPDR method). Note that in the measurement using the dielectric resonator method, the measurement frequency was 10 GHz.
  • the dielectric constant ( ⁇ ) 2.50 or less is considered “excellent”, more than 2.50 and 3.00 or less is considered “good”, and more than 3.00 is considered “poor”.
  • the dielectric loss tangent (tan ⁇ ) is defined as "excellent” if it is less than 0.00010, "good” if it is 0.00010 or more and less than 0.0020, “fair” if it is 0.0020 or more and less than 0.0030, and 0. A score of .030 or higher is considered “impossible”.
  • the solder heat resistance is evaluated as "excellent” if no blistering occurs for 4 minutes or more. In addition, if the time until swelling occurs is 3 minutes or more but less than 4 minutes, it is considered “good”, if it is 2 minutes or more but less than 3 minutes, it is considered “acceptable”, and if it is less than 2 minutes, it is “unacceptable”. And so.
  • the length shortened by curling on the side of the opposite tip of the test piece was measured. If the length shortened by curling of the test piece (amount of warpage) is less than 5 cm, it is considered a pass (good; " ⁇ "), if it is 5 cm or more but less than 7 cm, it is also considered a pass (fair; " ⁇ "), and if it is 7 cm or more Cases were marked as not possible (“x”).
  • the resin compositions of Examples 1 to 20 contained a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A), and a component (B).
  • the resin compositions of Examples 1 to 20 all showed good results in each evaluation of dielectric properties (dielectric constant ( ⁇ ) and dielectric loss tangent (tan ⁇ )), soldering heat resistance, peel strength, and curling property. .
  • the resin compositions of Comparative Examples 1 and 2 used a thermoplastic elastomer with a number average molecular weight of less than 60,000 as the component (B'), and compared with the resin compositions of Examples 1 to 17. , the soldering heat resistance was very poor. Further, in the curling evaluation of the resin composition of Comparative Example 2, the length shortened by curling (the amount of warpage) was extremely large, and the curling evaluation results were very poor. The deterioration in curling properties of the resin composition of Comparative Example 2 is presumed to be due to the use of SEEPS-OH styrene elastomer as the thermoplastic elastomer.
  • the resin composition of the present invention can be used as a resin composition for adhesive films used in electronic components. Furthermore, the resin composition of the present invention can be used as an interlayer bonding sheet or an interlayer adhesive for multilayer substrates. Further, a semiconductor package with an antenna using the resin composition of the present invention can be used as a high frequency substrate on which an RF chip that performs 5G millimeter wave transmission/reception communication is mounted. The resin composition for a semiconductor package with an antenna of the present invention can be used for an insulating layer of a semiconductor package with an antenna.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition having excellent solder heat resistance and low dielectric properties. The resin composition contains (A) a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at an end and (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more.

Description

樹脂組成物、接着フィルム、層間接着用ボンディングシート、及びアンテナ付き半導体パッケージ用樹脂組成物Resin compositions, adhesive films, interlayer bonding sheets, and resin compositions for semiconductor packages with antennas
 本発明は、樹脂組成物、接着フィルム、層間接着用ボンディングシート、及びアンテナ付き半導体パッケージ用樹脂組成物に関する。 The present invention relates to a resin composition, an adhesive film, an interlayer bonding sheet, and a resin composition for a semiconductor package with an antenna.
 最近のプリント配線板における伝送信号の高速化要求に伴い、伝送信号の顕著な高周波化が進んでいる。これに伴い、プリント配線板に使用する材料に対して、高周波領域、具体的には、周波数1GHz以上の領域での伝送損失を低減できることが求められる。 With the recent demand for higher speed transmission signals in printed wiring boards, the frequency of transmission signals is becoming significantly higher. Accordingly, materials used for printed wiring boards are required to be able to reduce transmission loss in a high frequency region, specifically, in a frequency region of 1 GHz or higher.
 プリント配線板の絶縁層等に使用される樹脂組成物として、例えば、末端にスチレン基を有する熱硬化性樹脂と、スチレン系熱可塑性エラストマーと、を含有する熱硬化性樹脂組成物が知られている(例えば、特許文献1)。例えば、特許文献1に開示された熱硬化性樹脂組成物は、末端にスチレン基を有する熱硬化性樹脂として、末端にスチレン基を有しフェニレンエーテル骨格を有する熱硬化性樹脂などが用いられている。また、スチレン系熱可塑性エラストマーとしては、低分子量のスチレン系エラストマーが用いられている。 As a resin composition used for an insulating layer of a printed wiring board, for example, a thermosetting resin composition containing a thermosetting resin having a styrene group at the end and a styrene thermoplastic elastomer is known. (For example, Patent Document 1). For example, in the thermosetting resin composition disclosed in Patent Document 1, a thermosetting resin having a styrene group at the terminal and having a phenylene ether skeleton is used as the thermosetting resin having a styrene group at the terminal. There is. Furthermore, as the styrene thermoplastic elastomer, a low molecular weight styrene elastomer is used.
 また、近年、次世代の通信技術として5Gの標準化が進み、高周波対応の製品を実現する市場要求は高まりつつある。多素子アンテナ技術、高速伝送等の技術開発が加速し、また、高周波帯の利用により通信容量も増え、情報処理能力の向上と同時に高周波ノイズや熱の発生量も増加し、その対策も大きな課題となっている。 Additionally, in recent years, the standardization of 5G as a next-generation communication technology has progressed, and the market demand for products compatible with high frequencies is increasing. Technological developments such as multi-element antenna technology and high-speed transmission are accelerating, and the use of high-frequency bands increases communication capacity.At the same time as information processing capacity improves, high-frequency noise and heat generation also increase, making countermeasures a major issue. It becomes.
 例えば、5Gミリ波用アンテナでは、パッケージ技術に関してアンテナとICの配線距離を短くして導体損失を低くする(別言すれば、伝送ロスの少ない)構造が必要とされている。このため、近年、アンテナ部が半導体装置部に一体に形成されたアンテナ付き半導体パッケージ(例えば、アンテナ・イン・パッケージ(AiP)やアンテナ・オン・パッケージ(AoP))が開発されている。このようなパッケージでは、ICからの発熱によりアンテナ周辺の絶縁層も従来構造よりも高温になるため、高温環境下に置かれても誘電損失が小さいことが求められる。なお、「IC」とは、集積回路(Integrated Circuit)のことである。 For example, 5G millimeter wave antennas require a structure that reduces conductor loss (in other words, has low transmission loss) by shortening the wiring distance between the antenna and the IC in terms of packaging technology. For this reason, in recent years, semiconductor packages with antennas (eg, antenna-in-package (AiP) and antenna-on-package (AoP)) in which the antenna portion is integrally formed with the semiconductor device portion have been developed. In such a package, the insulating layer around the antenna also becomes hotter than in a conventional structure due to heat generation from the IC, so it is required to have low dielectric loss even when placed in a high-temperature environment. Note that "IC" refers to an integrated circuit.
国際公開第2019/230531号International Publication No. 2019/230531
 特許文献1に開示された樹脂組成物は、上述したように末端にスチレン基を有する熱硬化性樹脂と、スチレン系熱可塑性エラストマーと、を含有するものであり、末端にスチレン基を有する熱硬化性樹脂と、スチレン系熱可塑性エラストマーと、を含有するものとされている。一方で、プリント配線板の絶縁層等には、はんだ耐熱性が要求されることがあるが、特許文献1に開示された樹脂組成物については、このようなはんだ耐熱性についての言及はされていない。 As described above, the resin composition disclosed in Patent Document 1 contains a thermosetting resin having a styrene group at the end and a styrene thermoplastic elastomer. It is said to contain a thermoplastic resin and a styrene thermoplastic elastomer. On the other hand, soldering heat resistance is sometimes required for insulating layers of printed wiring boards, but the resin composition disclosed in Patent Document 1 does not mention such soldering heat resistance. do not have.
 上述したような高周波領域での使用を見据えた樹脂組成物は、優れたはんだ耐熱性や、低い誘電特性などが求められており、これらの各種特性に優れた樹脂組成物の開発が切望されている。 Resin compositions intended for use in the high frequency range mentioned above are required to have excellent solder heat resistance and low dielectric properties, and there is a strong desire to develop resin compositions that have excellent properties. There is.
 本発明は、このような従来技術の有する問題点に鑑みてなされたものである。本発明は、接着フィルム、層間接着用ボンディングシート、層間接着剤などに好適に用いることができ、はんだ耐熱性に優れ、低い誘電特性を有する樹脂組成物を提供する。更に、本発明は、このような樹脂組成物を用いた接着フィルム、層間接着用ボンディングシート、及びアンテナ付き半導体パッケージ用樹脂組成物を提供する。 The present invention has been made in view of the problems of the prior art. The present invention provides a resin composition that can be suitably used for adhesive films, interlayer bonding sheets, interlayer adhesives, etc., and has excellent solder heat resistance and low dielectric properties. Furthermore, the present invention provides an adhesive film, a bonding sheet for interlayer bonding, and a resin composition for a semiconductor package with an antenna using such a resin composition.
 本発明によれば、以下に示す樹脂組成物、接着フィルム、層間接着用ボンディングシート、及びアンテナ付き半導体パッケージ用樹脂組成物が提供される。 According to the present invention, the following resin compositions, adhesive films, interlayer bonding sheets, and resin compositions for semiconductor packages with antennas are provided.
[1] (A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)数平均分子量が60,000以上の熱可塑性エラストマーと、を含む樹脂組成物。 [1] A resin composition comprising (A) a polyphenylene ether resin having a terminal end with a functional group containing a carbon-carbon double bond, and (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more.
[2] 前記(A)成分が、末端にスチレン構造を有する変性ポリフェニレンエーテルを含有する、前記[1]に記載の樹脂組成物。 [2] The resin composition according to [1] above, wherein the component (A) contains a modified polyphenylene ether having a styrene structure at the end.
[3] 前記(A)成分が、末端に下記式(1)に示される基を有する変性ポリフェニレンエーテルを含有する、前記[1]又は[2]に記載の樹脂組成物。 [3] The resin composition according to [1] or [2] above, wherein the component (A) contains a modified polyphenylene ether having a group represented by the following formula (1) at its terminal.
Figure JPOXMLDOC01-appb-C000002
(但し、前記式(1)中、Rは、水素原子又はアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000002
(However, in the above formula (1), R 1 represents a hydrogen atom or an alkyl group.)
[4] 前記(B)成分が、スチレン系熱可塑性エラストマーである、前記[1]~[3]のいずれかに記載の樹脂組成物。 [4] The resin composition according to any one of [1] to [3] above, wherein the component (B) is a styrenic thermoplastic elastomer.
[5] 前記(B)成分が、水添スチレン系熱可塑性エラストマーである、前記[4]に記載の樹脂組成物。 [5] The resin composition according to [4] above, wherein the component (B) is a hydrogenated styrene thermoplastic elastomer.
[6] 前記(B)成分の前記水添スチレン系熱可塑性エラストマーが、スチレン/エチレン/ブチレン/スチレンブロックコポリマーである、前記[5]に記載の樹脂組成物。 [6] The resin composition according to [5] above, wherein the hydrogenated styrenic thermoplastic elastomer of the component (B) is a styrene/ethylene/butylene/styrene block copolymer.
[7] 前記(B)成分が、数平均分子量が100,000以上の熱可塑性エラストマーである、前記[1]~[6]のいずれかに記載の樹脂組成物。 [7] The resin composition according to any one of [1] to [6] above, wherein the component (B) is a thermoplastic elastomer having a number average molecular weight of 100,000 or more.
[8] 前記(A)成分と前記(B)成分との質量比が、5:95~70:30である、前記[1]~[7]のいずれかに記載の樹脂組成物。 [8] The resin composition according to any one of [1] to [7] above, wherein the mass ratio of the component (A) to the component (B) is 5:95 to 70:30.
[9] 前記(B)成分の含有量が、前記(A)成分の含有量よりも多い、前記[1]~[8]のいずれかに記載の樹脂組成物。 [9] The resin composition according to any one of [1] to [8], wherein the content of the component (B) is greater than the content of the component (A).
[10] (C)エポキシ樹脂を更に含む、前記[1]~[9]のいずれかに記載の樹脂組成物。 [10] The resin composition according to any one of [1] to [9] above, further comprising (C) an epoxy resin.
[11] 前記樹脂組成物中の前記(A)成分、前記(B)成分及び前記(C)成分の合計100質量部に対して、前記(C)成分の含有量が0.1~5.0質量部である、前記[10]に記載の樹脂組成物。 [11] The content of the component (C) is 0.1 to 5.0 parts by mass based on a total of 100 parts by mass of the component (A), the component (B), and the component (C) in the resin composition. The resin composition according to [10] above, which contains 0 parts by mass.
[12] (D)硬化剤を更に含む、前記[1]~[11]のいずれかに記載の樹脂組成物。 [12] The resin composition according to any one of [1] to [11] above, further comprising (D) a curing agent.
[13] 前記[1]~[12]のいずれかに記載の樹脂組成物を用いた接着フィルム。 [13] An adhesive film using the resin composition according to any one of [1] to [12] above.
[14] 前記[1]~[12]のいずれかに記載の樹脂組成物を用いた層間接着用ボンディングシート。 [14] An interlayer bonding sheet using the resin composition according to any one of [1] to [12] above.
[15] 前記[1]~[12]のいずれかに記載の樹脂組成物からなるアンテナ付き半導体パッケージ用樹脂組成物。 [15] A resin composition for a semiconductor package with an antenna, comprising the resin composition according to any one of [1] to [12] above.
[16] 前記[1]~[12]のいずれかに記載の樹脂組成物の硬化物を含む、積層板又は半導体装置。 [16] A laminate or a semiconductor device comprising a cured product of the resin composition according to any one of [1] to [12] above.
 本発明の樹脂組成物は、はんだ耐熱性に優れ、低い誘電特性を有するという効果を奏する。このため、本発明の樹脂組成物は、接着フィルム、層間接着用ボンディングシート、層間接着剤などに好適に用いることができる。また、本発明の接着フィルム、層間接着用ボンディングシート、及びアンテナ付き半導体パッケージ用樹脂組成物は、本発明の樹脂組成物を用いたものであり、はんだ耐熱性に優れ、低い誘電特性を有するという効果を奏する。 The resin composition of the present invention has excellent soldering heat resistance and low dielectric properties. Therefore, the resin composition of the present invention can be suitably used for adhesive films, interlayer bonding sheets, interlayer adhesives, and the like. Furthermore, the adhesive film, interlayer adhesion bonding sheet, and resin composition for semiconductor packages with antennas of the present invention are those using the resin composition of the present invention, and are said to have excellent soldering heat resistance and low dielectric properties. be effective.
アンテナ付き半導体パッケージの一例を示す模式的部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing an example of a semiconductor package with an antenna. アンテナ付き半導体パッケージの他の例を示す模式的部分断面図である。FIG. 7 is a schematic partial cross-sectional view showing another example of a semiconductor package with an antenna.
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。したがって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments. Therefore, it is understood that modifications and improvements made to the following embodiments based on the common knowledge of those skilled in the art without departing from the spirit of the present invention also fall within the scope of the present invention. Should.
〔樹脂組成物〕
 本発明の樹脂組成物の一の実施形態は、(A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)数平均分子量が60,000以上の熱可塑性エラストマーと、を含む樹脂組成物である。以下、(A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂を、(A)成分ということがある。同様に、(B)数平均分子量が60,000以上の熱可塑性エラストマーを、(B)成分ということがある。
[Resin composition]
One embodiment of the resin composition of the present invention comprises (A) a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end, and (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more. A resin composition comprising: Hereinafter, (A) polyphenylene ether resin having a functional group containing a carbon-carbon double bond at its terminal may be referred to as component (A). Similarly, (B) a thermoplastic elastomer having a number average molecular weight of 60,000 or more is sometimes referred to as component (B).
 本実施形態の樹脂組成物は、はんだ耐熱性に優れ、低い誘電特性を有するものである。特に、本実施形態の樹脂組成物は、(A)成分として炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂を含むことにより、樹脂組成物に低誘電特性を付与しつつ、はんだ耐熱性を有効に向上させることができる。また、(B)成分としての数平均分子量が60,000以上の熱可塑性エラストマーを含むことで、樹脂組成物が溶融しにくくなり、はんだ耐熱性をより向上させることができる。 The resin composition of this embodiment has excellent solder heat resistance and low dielectric properties. In particular, the resin composition of this embodiment includes a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A), thereby imparting low dielectric properties to the resin composition. Solder heat resistance can be effectively improved. Further, by including a thermoplastic elastomer having a number average molecular weight of 60,000 or more as component (B), the resin composition becomes difficult to melt, and the soldering heat resistance can be further improved.
 なお、本実施形態の樹脂組成物は、上述した(A)成分及び(B)成分に加えて、(C)エポキシ樹脂、(D)硬化剤、(E)有機過酸化物、(F)難燃剤、(G)充填材、及び(H)架橋剤などの他の成分を含んでいてもよい。以下、上述した各成分を、適宜、(C)成分~(H)成分ということがある。 In addition to the above-mentioned components (A) and (B), the resin composition of the present embodiment contains (C) an epoxy resin, (D) a curing agent, (E) an organic peroxide, and (F) a hardening agent. Other components such as a refueling agent, (G) a filler, and (H) a crosslinking agent may also be included. Hereinafter, each of the above-mentioned components may be referred to as components (C) to (H) as appropriate.
〔(A)成分〕
 (A)成分は、炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂である。炭素-炭素二重結合を含む官能基としては、例えば、末端ビニル基、ビニレン基、又はビニリデン基などを挙げることができる。(A)成分は、その末端に炭素-炭素二重結合を含む官能基を有し、骨格にポリフェニレンエーテルがあれば特に制限はない。(A)成分を含むことにより、樹脂組成物に低誘電特性を付与しつつ、はんだ耐熱性を有効に向上させることができる。
[(A) component]
Component (A) is a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end. Examples of the functional group containing a carbon-carbon double bond include a terminal vinyl group, a vinylene group, and a vinylidene group. Component (A) is not particularly limited as long as it has a functional group containing a carbon-carbon double bond at its terminal and polyphenylene ether in its skeleton. By including component (A), it is possible to effectively improve solder heat resistance while imparting low dielectric properties to the resin composition.
 (A)成分として、例えば、末端にスチレン構造を有する変性ポリフェニレンエーテルを含有するものを挙げることができる。このような変性ポリフェニレンエーテルは、その末端にスチレン構造を有していれば特に制限はない。スチレン構造は、置換基を有していない非置換のスチレン基であってもよいし、任意の置換基を有するスチレン基であってもよい。このような(A)成分を含むことにより、樹脂組成物のはんだ耐熱性を向上させることができる。特に、末端にスチレン構造を有する変性ポリフェニレンエーテルは、過酸化物を用いなくても硬化反応が起き、はんだ耐熱性に極めて優れるものとなる。 Examples of component (A) include those containing modified polyphenylene ether having a styrene structure at the end. Such modified polyphenylene ether is not particularly limited as long as it has a styrene structure at its terminal. The styrene structure may be an unsubstituted styrene group having no substituent, or a styrene group having any substituent. By including such component (A), the solder heat resistance of the resin composition can be improved. In particular, modified polyphenylene ether having a styrene structure at its terminal undergoes a curing reaction even without the use of peroxide, and has extremely excellent soldering heat resistance.
 (A)成分として用いられる末端にスチレン構造を有する変性ポリフェニレンエーテルは、例えば、下記一般式(2)で示される構造の化合物を挙げることができる。 Examples of the modified polyphenylene ether having a styrene structure at the end used as component (A) include compounds having a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)中、-(O-X-O)-は、上記構造式(3)又は(4)で表される。 In the above general formula (2), -(O-X-O)- is represented by the above structural formula (3) or (4).
 構造式(3)中、R、R、R、R、及びRは、炭素数6以下のアルキル基又はフェニル基であり、互いに同一であってもよいし、互いに異なっていてもよい。R、R、及びRは、水素原子又は炭素数6以下のアルキル基又はフェニル基であり、互いに同一であってもよいし、互いに異なっていてもよい。 In structural formula (3), R 2 , R 3 , R 4 , R 7 , and R 8 are an alkyl group or a phenyl group having 6 or less carbon atoms, and may be the same or different from each other. Good too. R 5 , R 6 , and R 7 are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and may be the same or different from each other.
 構造式(4)中、R10、R11、R12、R13、R14、R15、R16、及びR17は、水素原子、炭素数6以下のアルキル基又はフェニル基であり、互いに同一であってもよいし、互いに異なっていてもよい。-A-は、炭素数20以下の直鎖状、分岐状または環状の2価の炭化水素基である。 In structural formula (4), R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , and R 17 are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and each They may be the same or different from each other. -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
 また、一般式(2)中、-(Y-O)-は、上記構造式(5)で表される。-(Y-O)-では、1種類の構造又は2種類以上の構造が、ランダムに配列している。構造式(5)中、R18及びR19は、炭素数6以下のアルキル基又はフェニル基であり、互いに同一であってもよいし、互いに異なっていてもよい。R20及びR21は、水素原子、炭素数6以下のアルキル基又はフェニル基であり、互いに同一であってもよいし、互いに異なっていてもよい。 Furthermore, in general formula (2), -(YO)- is represented by the above structural formula (5). In -(YO)-, one type of structure or two or more types of structures are arranged randomly. In Structural Formula (5), R 18 and R 19 are an alkyl group or a phenyl group having 6 or less carbon atoms, and may be the same or different from each other. R 20 and R 21 are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and may be the same or different from each other.
 また、一般式(2)中、a及びbは、0~100の整数である。a及びbの少なくともいずれか一方は、0でない。 Furthermore, in the general formula (2), a and b are integers of 0 to 100. At least one of a and b is not 0.
 構造式(4)における-A-としては、例えば、メチレン、エチリデン、1-メチルエチリデン、1,1-プロピリデン、1,4-フェニレンビス(1-メチルエチリデン)、1,3-フェニレンビス(1-メチルエチリデン)、シクロヘキシリデン、フェニルメチレン、ナフチルメチレン、及び1-フェニルエチリデン等の、2価の有機基が挙げられる。ただし、構造式(4)における-A-は、これらに限定されない。 -A- in structural formula (4) is, for example, methylene, ethylidene, 1-methylethylidene, 1,1-propylidene, 1,4-phenylenebis(1-methylethylidene), 1,3-phenylenebis(1 -methylethylidene), cyclohexylidene, phenylmethylene, naphthylmethylene, and 1-phenylethylidene. However, -A- in structural formula (4) is not limited to these.
 一般式(2)で示される化合物としては、R、R、R、R、R、R18、及びR19が炭素数3以下のアルキル基であり、R、R、R、R10、R11、R12、R13、R14、R15、R16、R17、R20、及びR21が水素原子又は炭素数3以下のアルキル基であるものが好ましい。特に、構造式(3)又は構造式(4)で表される-(O-X-O)-が、下記構造式(6)、構造式(7)、又は構造式(8)で表される化合物であることがより好ましい。また、同様に、特に、構造式(5)で表される-(Y-O)-が、下記構造式(9)又は構造式(10)で表される化合物であるか、或いは、構造式(9)で表される化合物と構造式(10)で表される化合物とがランダムに配列した構造であることがより好ましい。 In the compound represented by general formula (2), R 2 , R 3 , R 4 , R 8 , R 9 , R 18 , and R 19 are alkyl groups having 3 or less carbon atoms, and R 5 , R 6 , R 7 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 20 and R 21 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms. In particular, -(O-X-O)- represented by structural formula (3) or (4) is represented by the following structural formula (6), structural formula (7), or structural formula (8). More preferably, it is a compound that Similarly, in particular, -(Y-O)- represented by structural formula (5) is a compound represented by the following structural formula (9) or structural formula (10), or It is more preferable that the compound represented by (9) and the compound represented by Structural Formula (10) be randomly arranged.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(2)で示される化合物の製造方法は、特に限定されない。例えば、一般式(2)で示される化合物は、以下の方法によって製造することができる。まず、2官能フェノール化合物と1官能フェノール化合物とを酸化カップリングさせることによって、2官能フェニレンエーテルオリゴマーを得る。次に、得られた2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基を、ビニルベンジルエーテル化する。このようにして、一般式(2)で示される化合物を製造することができる。 The method for producing the compound represented by general formula (2) is not particularly limited. For example, the compound represented by general formula (2) can be produced by the following method. First, a difunctional phenylene ether oligomer is obtained by oxidative coupling of a difunctional phenol compound and a monofunctional phenol compound. Next, the terminal phenolic hydroxyl group of the obtained bifunctional phenylene ether oligomer is converted into vinylbenzyl ether. In this way, the compound represented by general formula (2) can be produced.
 一般式(2)で示される化合物の数平均分子量は、1,000~5,000であることが好ましく、1,000~3,000であることがより好ましく、1,000~2,500であることが更に好ましい。数平均分子量が1000以上であれば、樹脂組成物を塗膜状にした際に、べたつきが生じ難い。また、数平均分子量が5,000以下であれば、樹脂組成物における溶剤への溶解性の低下を有効に抑制できる。また、数平均分子量が上記数値範囲にある化合物を(A)成分として用いることにより、樹脂組成物における高周波での電気特性、及び硬化性が向上する。ここで、上記した数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。 The number average molecular weight of the compound represented by general formula (2) is preferably from 1,000 to 5,000, more preferably from 1,000 to 3,000, and from 1,000 to 2,500. It is even more preferable that there be. When the number average molecular weight is 1000 or more, stickiness is unlikely to occur when the resin composition is formed into a coating film. Moreover, if the number average molecular weight is 5,000 or less, a decrease in solubility in a solvent in the resin composition can be effectively suppressed. Further, by using a compound having a number average molecular weight within the above numerical range as the component (A), the electrical properties and curability at high frequencies of the resin composition are improved. Here, the above-mentioned number average molecular weight is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
 (A)成分は、一般式(2)で示される化合物を単独で用いてもよいし、一般式(2)で示される化合物の2種以上組み合わせて用いてもよい。 As component (A), the compound represented by general formula (2) may be used alone, or two or more compounds represented by general formula (2) may be used in combination.
 (A)成分の末端にスチレン構造を有するポリフェニレンエーテルとして、三菱ガス化学社製の商品名「OPE-2200」及び「OPE-1200」が挙げられる。 Examples of the polyphenylene ether having a styrene structure at the end of component (A) include the product names "OPE-2200" and "OPE-1200" manufactured by Mitsubishi Gas Chemical Company.
 また、(A)成分としては、これまでに説明した末端にスチレン構造を有する変性ポリフェニレンエーテル(例えば、上記一般式(2)で示される化合物など)を含有するもの以外に、末端に下記式(1)に示される基を有する変性ポリフェニレンエーテルを含有するものが挙げられる。 In addition, as the component (A), in addition to those containing the modified polyphenylene ether having a styrene structure at the terminal described above (for example, the compound represented by the above general formula (2)), Examples include those containing a modified polyphenylene ether having the group shown in 1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(1)中、Rは、水素原子又はアルキル基を示す。また、Rのアルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 In the above formula (1), R 1 represents a hydrogen atom or an alkyl group. Further, the alkyl group for R 1 is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
 また、式(1)で表される基としては、例えば、アクリレート基、及びメタクリレート基等が挙げられる。 Further, examples of the group represented by formula (1) include an acrylate group and a methacrylate group.
 また、式(1)に示される基を有する変性ポリフェニレンエーテルは、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記構造式(11)で表される繰り返し単位を分子中に有していることが好ましい。 Furthermore, a modified polyphenylene ether having a group represented by formula (1) has a polyphenylene ether chain in the molecule, for example, a repeating unit represented by the following structural formula (11) in the molecule. Preferably.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記構造式(11)において、mは、1~50を示す。また、R22~R25は、それぞれ独立し、互いに同一であってもよいし、互いに異なっていてもよい。R22~R25は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 In the above structural formula (11), m represents 1 to 50. Further, R 22 to R 25 are each independent and may be the same or different from each other. R 22 to R 25 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
 R22~R25において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。 Specific examples of the functional groups listed in R 22 to R 25 include the following.
 R22~R25におけるアルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The alkyl group in R 22 to R 25 is not particularly limited, but is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
 R22~R25におけるアルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。 The alkenyl group in R 22 to R 25 is not particularly limited, but is preferably an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 10 carbon atoms. Specific examples include vinyl group, allyl group, and 3-butenyl group.
 R22~R25におけるアルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。 The alkynyl group in R 22 to R 25 is not particularly limited, but is preferably an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms. Specific examples include ethynyl group and prop-2-yn-1-yl group (propargyl group).
 R22~R25におけるアルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。 The alkylcarbonyl group in R 22 to R 25 is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is preferable. group is more preferred. Specific examples include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, hexanoyl group, octanoyl group, and cyclohexylcarbonyl group.
 R22~R25におけるアルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。 The alkenylcarbonyl group in R 22 to R 25 is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is preferable. groups are more preferred. Specific examples include acryloyl group, methacryloyl group, and crotonoyl group.
 R22~R25におけるアルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。 The alkynylcarbonyl group in R 22 to R 25 is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is preferable. group is more preferred. Specifically, for example, a propioloyl group and the like can be mentioned.
 上記式(1)に示される基を有する変性ポリフェニレンエーテルとしては、例えば、下記式(12)又は式(13)で表されるポリフェニレンエーテルの末端に、上記式(1)で表される基を有するものが挙げられる。変性ポリフェニレンエーテルとしては、具体的には、下記式(14)又は式(15)で表される変性ポリフェニレンエーテルが挙げられる。 As the modified polyphenylene ether having a group represented by the above formula (1), for example, a group represented by the above formula (1) is added to the terminal of a polyphenylene ether represented by the following formula (12) or formula (13). Examples include those that have. Specific examples of the modified polyphenylene ether include modified polyphenylene ether represented by the following formula (14) or formula (15).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(12)~式(15)中、s,tは、例えば、sとtとの合計値が、1~30となるものであることが好ましい。また、sが、0~20であることが好ましく、tが、0~20であることが好ましい。すなわち、sは、0~20を示し、tは、0~20を示し、sとtとの合計は、1~30を示すことが好ましい。また、式(12)~式(15)中、Yは、炭素数1~3のアルキレン基又は直接結合を示し、また、このアルキレン基としては、例えば、ジメチルメチレン基等が挙げられる。また、式(14)及び式(15)中、Rは、上記式(1)のRと同様であり、水素原子又はアルキル基を示す。また、アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 In formulas (12) to (15), s and t are preferably such that the total value of s and t is 1 to 30, for example. Further, s is preferably from 0 to 20, and t is preferably from 0 to 20. That is, s preferably represents 0 to 20, t represents 0 to 20, and the sum of s and t preferably represents 1 to 30. In formulas (12) to (15), Y represents an alkylene group having 1 to 3 carbon atoms or a direct bond, and examples of the alkylene group include a dimethylmethylene group. Moreover, in formula (14) and formula (15), R 1 is the same as R 1 in the above formula (1), and represents a hydrogen atom or an alkyl group. Further, the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
 式(1)に示される基を有する変性ポリフェニレンエーテルの数平均分子量(Mn)は、特に限定されない。具体的には、500~5,000であることが好ましく、800~4,000であることがより好ましく、1,000~3,000であることが更に好ましい。ここで、数平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、式(1)に示される基を有する変性ポリフェニレンエーテルが、式(11)で表される繰り返し単位を分子中に有している場合、mは、変性ポリフェニレンエーテルの重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、mは、1~50であることが好ましい。 The number average molecular weight (Mn) of the modified polyphenylene ether having the group represented by formula (1) is not particularly limited. Specifically, it is preferably 500 to 5,000, more preferably 800 to 4,000, and even more preferably 1,000 to 3,000. Here, the number average molecular weight may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography (GPC), etc. can be mentioned. In addition, when the modified polyphenylene ether having the group represented by formula (1) has a repeating unit represented by formula (11) in the molecule, m is the weight average molecular weight of the modified polyphenylene ether such that It is preferable that the value falls within a certain range. Specifically, m is preferably 1 to 50.
 式(1)に示される基を有する変性ポリフェニレンエーテルの重量平均分子量が上記したような数値範囲内であると、ポリフェニレンエーテルに由来する優れた誘電特性を有しつつ、硬化物の耐熱性も優れたものとなり、更に、樹脂組成物の成形性も向上させることができる。例えば、従来のポリフェニレンエーテルにおいて、その重量平均分子量が上記したような数値範囲内であると、比較的低分子量のものとなり、その硬化物の耐熱性が低下する傾向がある。一方で、上記式(1)に示される基を有する変性ポリフェニレンエーテルは、式(1)で表される基を末端に有するため、硬化物の耐熱性を改善することができる。また、変性ポリフェニレンエーテルの重量平均分子量を比較的に低分子量とすることができるため、成形性にも優れたものとなる。このため、末端に式(1)に示される基を有する変性ポリフェニレンエーテルを含む(A)成分を用いることにより、硬化物の耐熱性により優れ、且つ成形性にも優れた樹脂組成物とすることができる。 When the weight average molecular weight of the modified polyphenylene ether having the group represented by formula (1) is within the above numerical range, the cured product will have excellent heat resistance while having excellent dielectric properties derived from polyphenylene ether. Furthermore, the moldability of the resin composition can also be improved. For example, if the weight average molecular weight of conventional polyphenylene ether is within the above numerical range, the molecular weight will be relatively low, and the heat resistance of the cured product will tend to decrease. On the other hand, the modified polyphenylene ether having the group represented by formula (1) above has the group represented by formula (1) at the end, and therefore can improve the heat resistance of the cured product. Furthermore, since the weight average molecular weight of the modified polyphenylene ether can be made relatively low, it also has excellent moldability. For this reason, by using component (A) containing a modified polyphenylene ether having a group represented by formula (1) at the terminal, a resin composition having better heat resistance and moldability of the cured product can be obtained. Can be done.
 また、(A)成分として用いられる変性ポリフェニレンエーテルにおける、変性ポリフェニレンエーテル1分子当たりの、分子末端に有する、上記式(1)で表される基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては十分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下したりする等の不具合が発生するおそれがある。即ち、このような変性ポリフェニレンエーテルを用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがあった。 Furthermore, in the modified polyphenylene ether used as component (A), the average number of groups represented by the above formula (1) at the molecular ends (number of terminal functional groups) per molecule of modified polyphenylene ether is not particularly limited. . Specifically, the number is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. In addition, if the number of terminal functional groups is too large, the reactivity becomes too high, which may cause problems such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition. . That is, when such modified polyphenylene ether is used, molding defects such as voids occur during multilayer molding due to insufficient fluidity, resulting in poor moldability that makes it difficult to obtain a highly reliable printed wiring board. Problems could have arisen.
 上述した変性ポリフェニレンエーテルの末端官能基数は、変性ポリフェニレンエーテル1モル中に存在する全ての変性ポリフェニレンエーテルの1分子あたりの、上記式(1)で表される基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテルに残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテルに残存する水酸基数の測定方法は、変性ポリフェニレンエーテルの溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。 The number of terminal functional groups of the above-mentioned modified polyphenylene ether is a numerical value representing the average value of the groups represented by the above formula (1) per molecule of all the modified polyphenylene ethers present in 1 mole of the modified polyphenylene ether. Can be mentioned. The number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether and calculating the decrease from the number of hydroxyl groups in the polyphenylene ether before modification. The number of terminal functional groups is the decrease from the number of hydroxyl groups in the polyphenylene ether before modification. The method for measuring the number of hydroxyl groups remaining in modified polyphenylene ether is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of modified polyphenylene ether, and measure the UV absorbance of the mixed solution. It can be found by
 また、(A)成分として用いられる変性ポリフェニレンエーテルの固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであることが好ましく、0.04~0.11dl/gであることがより好ましく、0.06~0.095dl/gであることがさらに好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、変性ポリフェニレンエーテルの固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。 Furthermore, the intrinsic viscosity of the modified polyphenylene ether used as component (A) is not particularly limited. Specifically, it is preferably 0.03 to 0.12 dl/g, more preferably 0.04 to 0.11 dl/g, and even more preferably 0.06 to 0.095 dl/g. preferable. If the intrinsic viscosity is too low, the molecular weight tends to be low, making it difficult to obtain low dielectric properties such as low dielectric constant and low dielectric loss tangent. Furthermore, if the intrinsic viscosity is too high, the viscosity will be high, sufficient fluidity will not be obtained, and the moldability of the cured product will tend to deteriorate. Therefore, if the intrinsic viscosity of the modified polyphenylene ether is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
 上記した固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製の商品名「AVS500 Visco System」等が挙げられる。 The above-mentioned intrinsic viscosity is an intrinsic viscosity measured in methylene chloride at 25°C, and more specifically, for example, a 0.18 g/45ml methylene chloride solution (liquid temperature 25°C) was measured with a viscometer. value etc. Examples of this viscometer include the product name "AVS500 Visco System" manufactured by Schott.
 また、(A)成分として用いられる変性ポリフェニレンエーテルの合成方法は、上記式(1)で表される基を末端に有する変性ポリフェニレンエーテルを合成できれば、特に限定されない。 Furthermore, the method for synthesizing the modified polyphenylene ether used as component (A) is not particularly limited as long as it can synthesize a modified polyphenylene ether having a group represented by the above formula (1) at its terminal.
 (A)成分は、上記式(1)で表される基を末端に有する変性ポリフェニレンエーテルを単独で用いてもよいし、上記式(1)で表される基を末端に有する変性ポリフェニレンエーテルの2種以上組み合わせて用いてもよい。更に、これまでに説明した一般式(2)で示される化合物の1種以上と併用してもよい。 Component (A) may be a modified polyphenylene ether having a group represented by the above formula (1) at its end, or a modified polyphenylene ether having a group represented by the above formula (1) at its end. Two or more types may be used in combination. Furthermore, it may be used in combination with one or more of the compounds represented by the general formula (2) described above.
 (A)成分の上記式(1)で表される基を末端に有する変性ポリフェニレンエーテルとして、SABICジャパン社製の商品名「Noryl SA9000」が挙げられる。 As the modified polyphenylene ether having a group represented by the above formula (1) at the end of the component (A), the product name "Noryl SA9000" manufactured by SABIC Japan may be mentioned.
 また、(A)成分の含有量は、低誘電特性とはんだ耐熱性に優れるという観点から、(A)成分と(B)成分と(B’)成分の合計100質量部に対し、5~70質量部が好ましく、6~60質量部がより好ましく、7~50質量部が更に好ましく、8~40質量部が特に好ましい。なお、(B’)成分については後述する。 In addition, the content of component (A) is 5 to 70 parts per 100 parts by mass of the total of components (A), (B), and (B') from the viewpoint of having excellent low dielectric properties and soldering heat resistance. It is preferably 6 to 60 parts by weight, even more preferably 7 to 50 parts by weight, and particularly preferably 8 to 40 parts by weight. Note that the component (B') will be described later.
〔(B)成分〕
 (B)成分は、数平均分子量が60,000以上の熱可塑性エラストマーである。(B)成分として数平均分子量が60,000以上の熱可塑性エラストマーを含むことで、樹脂組成物が溶融しにくくなり、はんだ耐熱性を良好に向上させることができる。また、以下、上述したような(B)成分以外の熱可塑性エラストマー、即ち、数平均分子量が60,000未満の熱可塑性エラストマーを、(B’)成分ということがある。
[(B) component]
Component (B) is a thermoplastic elastomer having a number average molecular weight of 60,000 or more. By including a thermoplastic elastomer having a number average molecular weight of 60,000 or more as component (B), the resin composition becomes difficult to melt, and the soldering heat resistance can be favorably improved. Further, hereinafter, a thermoplastic elastomer other than the above-mentioned component (B), that is, a thermoplastic elastomer having a number average molecular weight of less than 60,000, may be referred to as component (B').
 (B)成分としての熱可塑性エラストマーの数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。なお、樹脂組成物からなるフィルムにおける数平均分子量を測定する際には、例えば、当該フィルムを溶剤に溶かし、溶剤に溶かした成分中の数平均分子量を測定すればよい。 The number average molecular weight of the thermoplastic elastomer as component (B) is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. In addition, when measuring the number average molecular weight of a film made of a resin composition, for example, the film may be dissolved in a solvent and the number average molecular weight of the components dissolved in the solvent may be measured.
 (B)成分としての熱可塑性エラストマーは、数平均分子量が60,000以上であることが好ましく、100,000以上であることがより好ましく、110,000以上であることが更に好ましく、120,000以上であることが特に好ましい。このような数平均分子量であると、はんだ耐熱性が更に向上する。(B)成分としての熱可塑性エラストマーの数平均分子量の上限値については特に制限はない。但し、熱可塑性エラストマーの数平均分子量が大きくなり過ぎると、当該熱可塑性エラストマーが溶融し難くなり、作業性が悪くなってしまう場合がある。このため、(B)成分としての熱可塑性エラストマーの数平均分子量は、200,000以下であることが好ましく、150,000以下であることがより好ましく、140,000以下であることが更に好ましく、130,000以下であることが特に好ましい。 The thermoplastic elastomer as component (B) preferably has a number average molecular weight of 60,000 or more, more preferably 100,000 or more, even more preferably 110,000 or more, and even more preferably 120,000 or more. It is particularly preferable that it is above. With such a number average molecular weight, the soldering heat resistance is further improved. There is no particular restriction on the upper limit of the number average molecular weight of the thermoplastic elastomer as component (B). However, if the number average molecular weight of the thermoplastic elastomer becomes too large, it may become difficult to melt the thermoplastic elastomer, resulting in poor workability. Therefore, the number average molecular weight of the thermoplastic elastomer as component (B) is preferably 200,000 or less, more preferably 150,000 or less, even more preferably 140,000 or less, It is particularly preferred that it is 130,000 or less.
 (B)成分としての熱可塑性エラストマーは、特に限定されることはないが、周波数1~100GHzの領域で、0.005未満の誘電正接(tanδ)を有する熱可塑性エラストマーであることが好ましい。これにより、本開示の樹脂組成物から形成される熱硬化性フィルムの、高周波領域での優れた誘電特性に寄与することができる。「周波数1~100GHzの領域で、0.005未満の誘電正接(tanδ)を有する熱可塑性エラストマー」としては、スチレン系熱可塑性エラストマーであることが好ましく、水添スチレン系熱可塑性エラストマーであることがより好ましい。ここで、水添スチレン系熱可塑性エラストマーとは、水素添加されたスチレン系熱可塑性エラストマーのことであり、水添スチレン系熱可塑性エラストマーとしては、例えば、スチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(一部水添、SBBS)や、スチレン/エチレン/ブチレン/スチレンブロックコポリマー(完全水添、SEBS)があげられる。水添スチレン系熱可塑性エラストマーを用いることで、誘電特性を向上させることができる。なお、(B)成分がスチレン系熱可塑性エラストマーである場合、(B)成分のスチレン比率は10~70%であることが好ましく、15~60%であることがより好ましい。(B)成分のスチレン比率が20~50%であることにより成膜性や作業性に優れる。 The thermoplastic elastomer as component (B) is not particularly limited, but is preferably a thermoplastic elastomer having a dielectric loss tangent (tan δ) of less than 0.005 in the frequency range of 1 to 100 GHz. This can contribute to the excellent dielectric properties in the high frequency region of the thermosetting film formed from the resin composition of the present disclosure. The "thermoplastic elastomer having a dielectric loss tangent (tan δ) of less than 0.005 in the frequency range of 1 to 100 GHz" is preferably a styrene-based thermoplastic elastomer, and preferably a hydrogenated styrene-based thermoplastic elastomer. More preferred. Here, the hydrogenated styrene thermoplastic elastomer refers to a hydrogenated styrene thermoplastic elastomer, and examples of the hydrogenated styrene thermoplastic elastomer include, for example, styrene/butadiene/butylene/styrene block copolymer (monomer). Examples include partially hydrogenated, SBBS) and styrene/ethylene/butylene/styrene block copolymers (fully hydrogenated, SEBS). By using a hydrogenated styrene thermoplastic elastomer, dielectric properties can be improved. Note that when component (B) is a styrene thermoplastic elastomer, the styrene ratio of component (B) is preferably 10 to 70%, more preferably 15 to 60%. When the styrene ratio of component (B) is 20 to 50%, film forming properties and workability are excellent.
 (B)成分の水添スチレン系熱可塑性エラストマーは、特に限定されることはないが、スチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)であることが好ましい。スチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)は完全水添されたスチレン系熱可塑性エラストマーであり、二重結合を有さないスチレン系熱可塑性エラストマーであることから、誘電特性をより向上させることができる。また、数平均分子量が60,000以上のスチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)を用いることで、誘電特性も良好でありながら、はんだ耐熱性も向上させることができる。さらに、(B)成分としてスチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)を用いることで、樹脂組成物をフィルム化した際に、当該フィルムがカールしづらいものとなる。また、(B)成分の水添スチレン系熱可塑性エラストマーの他の好適例として、スチレン/エチレン/エチレン/プロピレン/スチレンブロックコポリマー(SEEPS)が挙げられる。 The hydrogenated styrenic thermoplastic elastomer of component (B) is not particularly limited, but is preferably a styrene/ethylene/butylene/styrene block copolymer (SEBS). Styrene/ethylene/butylene/styrene block copolymer (SEBS) is a fully hydrogenated styrene-based thermoplastic elastomer, and since it is a styrene-based thermoplastic elastomer without double bonds, it can further improve dielectric properties. Can be done. Further, by using a styrene/ethylene/butylene/styrene block copolymer (SEBS) having a number average molecular weight of 60,000 or more, it is possible to improve solder heat resistance while maintaining good dielectric properties. Furthermore, by using styrene/ethylene/butylene/styrene block copolymer (SEBS) as the component (B), when the resin composition is formed into a film, the film is less likely to curl. Another suitable example of the hydrogenated styrene thermoplastic elastomer as component (B) is styrene/ethylene/ethylene/propylene/styrene block copolymer (SEEPS).
 (B)成分の含有量については特に制限はないが、(A)成分と(B)成分との質量比((A)成分:(B)成分)が、5:95~70:30であることが好ましく、10:90~67:33がより好ましく、20:80~60:40が更に好ましく、25:75~40:60が特に好ましい。また、はんだ耐熱性の観点からは(B)成分の含有量は、(A)成分よりも多いほうが好ましい。但し、(B)成分の比率が過剰に多くなると、樹脂組成物をフィルム化した際に、当該フィルムにタックが発生しやすくなることがあり作業性が低下する場合がある。また、(B)成分の比率が多くなると、樹脂組成物の誘電特性が悪くなる場合もあることから、上記範囲であることが好ましい。 There is no particular restriction on the content of component (B), but the mass ratio of component (A) to component (B) (component (A):component (B)) is 5:95 to 70:30. The ratio is preferably 10:90 to 67:33, even more preferably 20:80 to 60:40, and particularly preferably 25:75 to 40:60. Furthermore, from the viewpoint of soldering heat resistance, the content of component (B) is preferably greater than that of component (A). However, if the ratio of component (B) is too high, when the resin composition is formed into a film, the film may be more likely to tack, which may reduce workability. Furthermore, if the ratio of component (B) increases, the dielectric properties of the resin composition may deteriorate, so it is preferably within the above range.
 また、フィラーを除いた樹脂組成物量を100質量部とした際の、(B)成分の含有量は20~95質量部であることが好ましく、30~93質量部であることがより好ましく、35~80質量部であることが更に好ましい。この範囲であることで、低い誘電特性を維持しながら、はんだ耐熱性に優れる。 Further, when the amount of the resin composition excluding filler is 100 parts by mass, the content of component (B) is preferably 20 to 95 parts by mass, more preferably 30 to 93 parts by mass, and 35 parts by mass. More preferably, the amount is 80 parts by mass. By being within this range, excellent solder heat resistance can be achieved while maintaining low dielectric properties.
 本実施形態の樹脂組成物は、(B)成分として、複数の熱可塑性エラストマーを含有してもよい。(B)成分として、数平均分子量が60,000以上の熱可塑性エラストマーを複数種含有してもよい。また、本実施形態の樹脂組成物は、(B)成分以外の熱可塑性エラストマーとして、数平均分子量が60,000未満の熱可塑性エラストマー((B’)成分)を含有するものであってもよい。なお、本実施形態の樹脂組成物が、複数の熱可塑性エラストマーを含有する場合には、数平均分子量が60,000以上の熱可塑性エラストマーの含有量(質量基準)が、数平均分子量が60,000以下の熱可塑性エラストマーの含有量よりも多いことが好ましい。 The resin composition of this embodiment may contain a plurality of thermoplastic elastomers as the (B) component. As component (B), a plurality of thermoplastic elastomers having a number average molecular weight of 60,000 or more may be contained. Further, the resin composition of the present embodiment may contain a thermoplastic elastomer (component (B')) having a number average molecular weight of less than 60,000 as a thermoplastic elastomer other than the component (B). . In addition, when the resin composition of this embodiment contains a plurality of thermoplastic elastomers, the content (mass basis) of the thermoplastic elastomer having a number average molecular weight of 60,000 or more is 60,000 or more. The content of the thermoplastic elastomer is preferably greater than 000 or less.
 (B)成分の数平均分子量が60,000以上の熱可塑性エラストマーとしては、例えば、クラレ社製の商品名「セプトン8004」、「セプトン8006」及び「セプトンV9461」が挙げられる。 Examples of the thermoplastic elastomer in which the component (B) has a number average molecular weight of 60,000 or more include "Septon 8004", "Septon 8006", and "Septon V9461" manufactured by Kuraray Co., Ltd., for example.
〔(C)成分〕
 (C)成分は、エポキシ樹脂である。エポキシ樹脂は、エポキシ基を分子内に1つ以上有する化合物であり、加熱によりエポキシ基が反応することで3次元的網目構造を形成し、硬化することができる。(C)成分としてエポキシ樹脂を含むことにより、はんだ耐熱性の更なる向上を図ることができる。また、(C)成分のエポキシ樹脂を含むことにより、被着体が銅の光沢面のような平滑な面に対しても密着性の向上を図ることができる。
[(C) component]
Component (C) is an epoxy resin. Epoxy resin is a compound having one or more epoxy groups in its molecule, and when heated, the epoxy groups react to form a three-dimensional network structure and can be cured. By including an epoxy resin as component (C), the soldering heat resistance can be further improved. Furthermore, by including the epoxy resin as component (C), it is possible to improve the adhesion even to a smooth surface such as the shiny surface of copper.
 (C)成分のエポキシ樹脂の含有量については特に制限はないが、(A)成分、(B)成分及び(C)成分の合計100質量部に対して、0.1~5.0質量部であることが好ましく、0.5~4.0質量部であることがより好ましく、0.7~3.0質量部であることが更に好ましい。(C)成分の含有量が多すぎると、硬化物の誘電正接が高くなってしまうことがある。 There is no particular restriction on the content of the epoxy resin as component (C), but 0.1 to 5.0 parts by mass per 100 parts by mass of the total of components (A), (B), and (C). The amount is preferably from 0.5 to 4.0 parts by weight, and even more preferably from 0.7 to 3.0 parts by weight. If the content of component (C) is too large, the dielectric loss tangent of the cured product may become high.
 また、フィラーを除いた樹脂組成物量を100質量部とした際の、(C)成分の含有量は0.1~5.0質量部であることが好ましく、0.5~3.0質量部であることがより好ましく、0.6~2.0質量部であることが更に好ましい。 Further, when the amount of the resin composition excluding the filler is 100 parts by mass, the content of component (C) is preferably 0.1 to 5.0 parts by mass, and 0.5 to 3.0 parts by mass. More preferably, the amount is 0.6 to 2.0 parts by mass.
 エポキシ樹脂の具体例としては、ビスフェノールA、ビスフェノールE、ビスフェノールF等のビスフェノール化合物又はこれらの誘導体(例えば、アルキレンオキシド付加物)、水素添加ビスフェノールA、水素添加ビスフェノールE、水素添加ビスフェノールF、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノール等の脂環構造を有するジオール又はこれらの誘導体、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール等の脂肪族ジオール又はこれらの誘導体等をエポキシ化した2官能性エポキシ樹脂;トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する3官能性エポキシ樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂等をエポキシ化した多官能性エポキシ樹脂が挙げられるが、これらに限定されない。好ましくは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アミノフェノール型エポキシ樹脂である。ここで例示した化合物は単独で用いられてもよいし、2つ以上のものが混合して用いられてもよい。 Specific examples of epoxy resins include bisphenol compounds such as bisphenol A, bisphenol E, and bisphenol F, or derivatives thereof (e.g., alkylene oxide adducts), hydrogenated bisphenol A, hydrogenated bisphenol E, hydrogenated bisphenol F, and cyclohexanediol. , diols with alicyclic structures such as cyclohexanedimethanol and cyclohexanediethanol, or derivatives thereof; difunctional diols obtained by epoxidizing aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, and decanediol, or derivatives thereof, etc. trifunctional epoxy resin having a trihydroxyphenylmethane skeleton and an aminophenol skeleton; polyfunctional epoxy resin obtained by epoxidizing phenol novolak resin, cresol novolac resin, phenol aralkyl resin, biphenylaralkyl resin, naphthol aralkyl resin, etc. These include, but are not limited to: Preferred are bisphenol A type epoxy resin, bisphenol F type epoxy resin, and aminophenol type epoxy resin. The compounds exemplified here may be used alone or in combination of two or more.
 (C)成分のエポキシ樹脂は、室温(25℃)で液状であることが好ましい。 The epoxy resin of component (C) is preferably liquid at room temperature (25°C).
〔(D)成分〕
 (D)成分は、硬化剤である。(D)成分の硬化剤は、一般的にエポキシ樹脂を硬化するものであれば特に制限はなく、本願における硬化剤は、エポキシ樹脂の反応を促進する硬化触媒も硬化剤に含めるものとする。硬化剤としては、特に制限はないが、適度な硬化性の調整が可能なことから、イミダゾール系硬化触媒がより好ましい。
[(D) component]
Component (D) is a curing agent. The curing agent of component (D) is not particularly limited as long as it generally cures epoxy resins, and the curing agent in the present application includes a curing catalyst that promotes the reaction of epoxy resins. Although there are no particular limitations on the curing agent, imidazole-based curing catalysts are more preferable because they allow for appropriate adjustment of curing properties.
 イミダゾール系硬化触媒はイミダゾールであってもよく、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、安定化剤を配位させたイミダゾール化合物等を用いることもできる。これらは、その構造の中に非共有電子対を有する窒素原子を有し、これがエポキシ基を活性化させたり、さらにその他併用するエポキシ樹脂をも活性化させたりすることができ、硬化を促進することができる。 The imidazole curing catalyst may be imidazole, and imidazole adducts, clathrated imidazole, microcapsule imidazole, imidazole compounds coordinated with stabilizers, etc. can also be used. These have a nitrogen atom with a lone pair of electrons in their structure, which can activate the epoxy group and also activate other epoxy resins used together, promoting curing. be able to.
 イミダゾール系硬化触媒の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチル、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-エチル-4-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2-メチルイミダゾール・イソシアヌル酸付加物、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられるが、これらに限定されるものではない。アダクト処理、異分子による包接処理、マイクロカプセル処理、あるいは安定化剤を配位させたイミダゾールは、前記のイミダゾールを修飾したものである。これらはイミダゾールにアダクト処理、異分子による包接処理、マイクロカプセル処理により、あるいは安定化剤を配位させることで活性を落とすことにより、低温領域で優れたポットライフを発現しつつも硬化や硬化促進能力が高い。 Specific examples of imidazole-based curing catalysts include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, 2- Phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methyl, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-Undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-Phenylimidazolium trimellitate, 2,4-diamino-6-(2'-methylimidazolyl-(1'))-ethyl-s-triazine, 2,4-diamino-6-(2'-undecyl imidazolyl-(1')-ethyl-s-triazine, 2,4-diamino-6-(2'-ethyl-4-methylimidazolyl-(1'))-ethyl-s-triazine, 2,4-diamino -6-(2'-Methylimidazolyl-(1'))-ethyl-s-triazine/isocyanuric acid adduct, 2-phenylimidazole/isocyanuric acid adduct, 2-methylimidazole/isocyanuric acid adduct, 1-cyanoethyl -2-phenyl-4,5-di(2-cyanoethoxy)methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc. It is not limited to these. Imidazole that has been subjected to adduct treatment, inclusion treatment with a different molecule, microcapsule treatment, or coordination with a stabilizer is a modification of the above-mentioned imidazole. These are made by reducing the activity of imidazole by adduct treatment, inclusion treatment with different molecules, microcapsule treatment, or by coordinating a stabilizer, thereby achieving an excellent pot life at low temperatures while curing and accelerating hardening. High ability.
 また、イミダゾールの市販品としては(以下、商品名)、2E4MZ、2P4MZ、2PZ-CN、C11Z-CNS、C11Z-A、2MZA-PW、2MA-OK、2P4MHZ-PW、2PHZ-PW(以上、四国化成工業社製)、EH2021(ADEKA社製)、などが挙げられるが、これらに限定されるものではない。イミダゾールアダクトの市販品としては、例えば、エポキシ樹脂のエポキシ基へイミダゾール化合物が開環付加した構造を有する、PN-50、PN-50J、PN-40、PN-40J、PN-31、PN-23、PN-H(以上、味の素ファインテクノ社製)などが挙げられるが、これらに限定されるものではない。包接イミダゾールの市販品としては、例えば、TIC-188、KM-188、HIPA-2P4MHZ、NIPA-2P4MHZ、TEP-2E4MZ、HIPA-2E4MZ、NIPA-2E4MZ(以上、日本曹達社製)などが挙げられるが、これらに限定されるものではない。マイクロカプセル型イミダゾールの市販品としては、例えば、ノバキュアHX3721、HX3722、HX3742、HX3748(以上、旭化成社製)、LC-80(以上、A&C Catalysts社製)、などが挙げられる。 In addition, commercial products of imidazole (hereinafter referred to as trade names) include 2E4MZ, 2P4MZ, 2PZ-CN, C11Z-CNS, C11Z-A, 2MZA-PW, 2MA-OK, 2P4MHZ-PW, 2PHZ-PW (the above, Shikoku (manufactured by Kasei Kogyo Co., Ltd.), EH2021 (manufactured by ADEKA Co., Ltd.), etc., but is not limited to these. Commercially available imidazole adducts include, for example, PN-50, PN-50J, PN-40, PN-40J, PN-31, and PN-23, which have a structure in which an imidazole compound is ring-opened and added to the epoxy group of an epoxy resin. , PN-H (manufactured by Ajinomoto Fine Techno, Inc.), but is not limited to these. Examples of commercially available clathrate imidazoles include TIC-188, KM-188, HIPA-2P4MHZ, NIPA-2P4MHZ, TEP-2E4MZ, HIPA-2E4MZ, and NIPA-2E4MZ (all manufactured by Nippon Soda). However, it is not limited to these. Examples of commercially available microcapsule imidazoles include Novacure HX3721, HX3722, HX3742, HX3748 (manufactured by Asahi Kasei Corporation), and LC-80 (manufactured by A&C Catalysts).
 硬化剤の含有量は、(D)成分として使用する硬化剤の種類に応じて適宜選択することができる。また、フィラー以外の樹脂組成物量を100質量部とした際の、(D)成分の含有量は、0.001~1.0質量部が好ましく、0.005~0.60質量部がさらに好ましい。また、イミダゾール系硬化触媒の含有量は、エポキシ樹脂に対し0.1~10質量%が好ましく、1~6質量%がより好ましい。(D)成分の含有量が少なすぎると、樹脂組成物を用いて作製されるフィルムの硬化性が悪化し、接着性、強靭性、耐熱性が低下するおそれがある。一方、(D)成分の含有量が多すぎると、樹脂組成物を用いて作製されるフィルムのシェルフライフが悪化するおそれがあり、また、硬化物において樹脂本来の物性を損ね、接着性、強靭性、耐熱性が低下するおそれがある。 The content of the curing agent can be appropriately selected depending on the type of curing agent used as component (D). Further, when the amount of the resin composition other than the filler is 100 parts by mass, the content of component (D) is preferably 0.001 to 1.0 parts by mass, more preferably 0.005 to 0.60 parts by mass. . Further, the content of the imidazole curing catalyst is preferably 0.1 to 10% by mass, more preferably 1 to 6% by mass based on the epoxy resin. If the content of component (D) is too small, the curability of the film produced using the resin composition may deteriorate, and the adhesiveness, toughness, and heat resistance may deteriorate. On the other hand, if the content of component (D) is too large, there is a risk that the shelf life of the film produced using the resin composition will deteriorate, and the original physical properties of the resin will be impaired in the cured product, resulting in poor adhesiveness and toughness. There is a risk that the properties and heat resistance may decrease.
〔(E)成分〕
 (E)成分は、有機過酸化物である。このような有機過酸化物を含有することで、(A)成分の反応開始温度が低温側にシフトし、樹脂組成物の硬化が促進される。このため、樹脂組成物のはんだ耐熱性が更に向上される。有機過酸化物の含有量は、種類に応じて適宜選択することができるが、代表的には(A)成分100質量部に対し0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
[(E) component]
Component (E) is an organic peroxide. By containing such an organic peroxide, the reaction initiation temperature of component (A) is shifted to a lower temperature side, and curing of the resin composition is promoted. Therefore, the solder heat resistance of the resin composition is further improved. The content of the organic peroxide can be appropriately selected depending on the type, but typically it is preferably 0.1 to 10 parts by weight, and 0.5 to 5 parts by weight, based on 100 parts by weight of component (A). part is more preferable.
 有機過酸化物としては、ベンゾイルパーオキサイド、イソブチリルパーオキサイド、イソノナノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキシドなどのジアシルパーオキサイド類;2,2-ジ(4,4-ジ-(ジ-tert-ブチルパーオキシ)シクロヘキシル)プロパンなどのパーオキシケタール類;イソプロピルパージカーボネート、ジ-sec-ブチルパージカーボネート、ジ-2-エチルヘキシルパージカーボネート、ジ-1-メチルヘプチルパージカーボネート、ジ-3-メトキシブチルパージカーボネート、ジシクロヘキシルパージカーボネートなどのパーオキシジカーボネート類;tert-ブチルパーベンゾエート、tert-ブチルパーアセテート、tert-ブチルパー-2-エチルへキサノエート、tert-ブチルパーイソブチレート、tert-ブチルパーピバレート、tert-ブチルジパーアジペート、クミルパーネオデカノエート、tert-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5ジ(ベンゾイルパーオキシ)ヘキサンなどのパーオキシエステル類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、2,5-ジメチル-2,5ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5ジ(t-ブチルパーオキシ)ヘキシン-3、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-tert-ヘキシルパーオキサイド、ジ(2-tert-ブチルパーオキシイソプロピル)ベンゼンなどのジアルキルパーオキサイド類;クメンヒドロキシパーオキサイド、tert-ブチルハイドロパーオキサイド、p-メンタハイドロパーオキサイドなどのハイドロパーオキサイド類等を使用することができる。使用される有機過酸化物に特に制限はないが、樹脂組成物を硬化させる際に、例えば、60~80℃程度の乾燥工程が必要となることが多いため、10時間半減期温度が100℃~140℃のものを用いることが好ましい。さらに、10時間半減期温度は110~130℃のものがより好ましい。 Examples of organic peroxides include benzoyl peroxide, isobutyryl peroxide, isononanoyl peroxide, decanoyl peroxide, lauroyl peroxide, parachlorobenzoyl peroxide, di(3,5,5-trimethylhexanoyl) peroxide. diacyl peroxides such as; peroxyketals such as 2,2-di(4,4-di-(di-tert-butylperoxy)cyclohexyl)propane; isopropyl purge carbonate, di-sec-butyl purge carbonate, Peroxy dicarbonates such as di-2-ethylhexyl purge carbonate, di-1-methylheptyl purge carbonate, di-3-methoxybutyl purge carbonate, dicyclohexyl purge carbonate; tert-butyl perbenzoate, tert-butyl peracetate, tert -Butyl per-2-ethylhexanoate, tert-butyl perisobutyrate, tert-butyl perpivalate, tert-butyl diper adipate, cumyl perneodecanoate, tert-butyl peroxybenzoate, 2,5-dimethyl - Peroxy esters such as 2,5 di(benzoylperoxy)hexane; Ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide Oxide, 2,5-dimethyl-2,5di(t-butylperoxy)hexane, 2,5-dimethyl-2,5di(t-butylperoxy)hexane-3,1,1-di(t- Dialkyl peroxides such as (hexylperoxy)-3,3,5-trimethylcyclohexane, di-tert-hexyl peroxide, di(2-tert-butylperoxyisopropyl)benzene; cumene hydroxy peroxide, tert-butyl hydro Hydroperoxides such as peroxide and p-mentha hydroperoxide can be used. There are no particular restrictions on the organic peroxide used, but when curing the resin composition, a drying process at about 60 to 80°C is often required, so the 10-hour half-life temperature is 100°C. It is preferable to use a temperature between 140°C and 140°C. Furthermore, the 10-hour half-life temperature is more preferably 110 to 130°C.
 (E)成分の有機過酸化物の市販品としては(以下、商品名)、パーブチルH、パーブチルZ、パーブチパークミルP、パークミルD、パークミルH、パーヘキサC(以上、日油化学社製)などが挙げられる。 Commercially available organic peroxides for component (E) include Perbutyl H, Perbutyl Z, Perbutypercyl P, Percyl D, Percyl H, and Perhexa C (manufactured by NOF Chemical Co., Ltd.). Examples include.
〔(F)成分〕
 (F)成分は、難燃剤である。(F)成分としての難燃剤は、これまでに説明した本実施形態の樹脂組成物の効果を損なわない範囲で適宜含有される任意成分である。例えば、プリント配線板の絶縁層等に使用される樹脂組成物においては、これまでに説明したはんだ耐熱性や低誘電特性に加えて、更に難燃性を求められることがある。このような要求に対して、(F)成分として難燃剤を更に含むことにより、本実施形態の樹脂組成物からなる硬化物の難燃性の向上に寄与することができる。
[(F) component]
Component (F) is a flame retardant. The flame retardant as component (F) is an optional component that is appropriately contained within a range that does not impair the effects of the resin composition of the present embodiment described above. For example, in resin compositions used for insulating layers of printed wiring boards, in addition to the solder heat resistance and low dielectric properties described above, flame retardance may be required. In response to such demands, further inclusion of a flame retardant as component (F) can contribute to improving the flame retardancy of the cured product made of the resin composition of this embodiment.
 難燃剤の種類については特に制限はない。例えば、(F)成分としての難燃剤として、無機系のリン系難燃剤、有機系のリン系難燃剤、水酸化アルミニウムの水和物、水酸化マグネシウムの水和物等の金属水和物などが挙げられる。(F)成分としての難燃剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 There are no particular restrictions on the type of flame retardant. For example, as the flame retardant as component (F), inorganic phosphorus-based flame retardants, organic phosphorus-based flame retardants, metal hydrates such as aluminum hydroxide hydrate, magnesium hydroxide hydrate, etc. can be mentioned. The flame retardant as component (F) may be used alone or in combination of two or more.
 無機系のリン系難燃剤としては、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。 Examples of inorganic phosphorus-based flame retardants include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide; Acids; examples include phosphine oxide.
 有機系のリン系難燃剤としては、リン酸エステル系難燃剤、1置換ホスホン酸ジエステル及び2置換ホスフィン酸エステル;2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物等が挙げられる。「金属塩」としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩等が挙げられる。 Examples of organic phosphorus-based flame retardants include phosphate ester flame retardants, mono-substituted phosphonic acid diesters and 2-substituted phosphinic esters; metal salts of 2-substituted phosphinic acids, organic nitrogen-containing phosphorus compounds, cyclic organic phosphorus compounds, etc. Can be mentioned. Examples of "metal salts" include lithium salts, sodium salts, potassium salts, calcium salts, magnesium salts, aluminum salts, titanium salts, zinc salts, and the like.
 難燃剤の含有量は、(F)成分として使用する難燃剤の種類に応じて適宜選択することができる。また、フィラー以外の樹脂組成物量を100質量部とした際の、(F)成分の含有量は、15~50質量部が好ましく、20~40質量部が更に好ましい。また、(F)成分としての難燃剤としては、ホスフィン酸金属塩(例えば、クラリアントジャパン社製の商品名「OP-935」)等が挙げられる。 The content of the flame retardant can be appropriately selected depending on the type of flame retardant used as component (F). Furthermore, when the amount of the resin composition other than the filler is 100 parts by mass, the content of component (F) is preferably 15 to 50 parts by mass, more preferably 20 to 40 parts by mass. Further, examples of the flame retardant as component (F) include phosphinate metal salts (eg, trade name "OP-935" manufactured by Clariant Japan).
〔(G)成分〕
 (G)成分は、充填材である。(G)成分としての充填材の種類については特に制限はなく、例えば、公知の無機充填材などが挙げられる。(G)成分としての充填材には、絶縁性と低熱膨張係数が求められる。
[(G) component]
Component (G) is a filler. The type of filler as component (G) is not particularly limited, and examples include known inorganic fillers. The filler as component (G) is required to have insulation properties and a low coefficient of thermal expansion.
 (G)成分としての無機充填材としては、一般的な無機フィラーを用いることができる。例えば、無機フィラーとしては、シリカ、アルミナ、窒化アルミニウム、炭酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、炭酸マグネシウム、硫酸バリウム、炭酸バリウム、硫酸石灰、水酸化アルミニウム、ケイ酸カルシウム、チタン酸カリウム、酸化チタン、酸化亜鉛、炭化ケイ素、窒化ケイ素、窒化ホウ素等が挙げられる。無機フィラーは単独でも、2種以上併用してもよい。特に、絶縁性の点からは、シリカフィラー、アルミナフィラーが好ましい。また、誘電特性の観点からは、シリカフィラーが好ましい。無機フィラーは、アクリル、メタクリル、スチリル、アミノ、エポキシ、ビニルから選ばれる1種以上の官能基を有するシランカップリング剤で表面処理されていてもよい。例えば、無機フィラーは、アミノシラン系カップリング剤、ウレイドシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、ビニルシラン系カップリング剤、スチリルシラン系カップリング剤、アクリレートシラン系カップリング剤、イソシアネートシラン系カップリング剤、スルフィドシラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等の表面処理剤で表面処理してその耐熱性、耐湿性、分散性を向上させたものが好ましい。これらは1種又は2種以上組み合わせて使用してもよい。より好ましくは、表面処理したシリカフィラーの中でも、ビニルシラン系カップリング剤で表面処理されたシリカフィラーを用いることが好ましい。ビニルシラン系カップリング剤で表面処理されたシリカフィラーを用いることで、熱膨張係数を良好にすることができる。 As the inorganic filler as component (G), a general inorganic filler can be used. For example, inorganic fillers include silica, alumina, aluminum nitride, calcium carbonate, aluminum silicate, magnesium silicate, magnesium carbonate, barium sulfate, barium carbonate, lime sulfate, aluminum hydroxide, calcium silicate, potassium titanate, oxidized Examples include titanium, zinc oxide, silicon carbide, silicon nitride, and boron nitride. The inorganic fillers may be used alone or in combination of two or more. In particular, from the viewpoint of insulation, silica filler and alumina filler are preferable. Moreover, from the viewpoint of dielectric properties, silica filler is preferable. The inorganic filler may be surface-treated with a silane coupling agent having one or more functional groups selected from acrylic, methacrylic, styryl, amino, epoxy, and vinyl. For example, inorganic fillers include aminosilane coupling agents, ureidosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, vinylsilane coupling agents, and styrylsilane coupling agents. Surface treatment agents such as acrylate silane coupling agents, isocyanate silane coupling agents, sulfide silane coupling agents, organosilazane compounds, and titanate coupling agents improve heat resistance, moisture resistance, and dispersion. Those with improved properties are preferred. These may be used alone or in combination of two or more. More preferably, among the surface-treated silica fillers, it is preferable to use a silica filler surface-treated with a vinyl silane coupling agent. By using a silica filler whose surface has been treated with a vinyl silane coupling agent, the coefficient of thermal expansion can be improved.
 無機フィラーの形状は、特に限定されず、球状、りん片状、針状、不定形等が挙げられる。作業性の点から、球状が好ましい。平均粒子径は、0.1~10μmであることが好ましく、0.1~4μmであることが更に好ましい。無機フィラーの平均粒子径がこの範囲であることで、微細構造間への埋め込み性に優れる。平均粒子径は、レーザー回折・散乱法によって測定した、体積基準での粒度分布における積算値50%での粒径である。平均粒子径は、例えば、レーザー散乱回析法粒度分布測定装置:LS13320(ベックマンコールター社製、湿式)により測定できる。 The shape of the inorganic filler is not particularly limited, and examples include spherical, scaly, acicular, and amorphous shapes. From the viewpoint of workability, a spherical shape is preferable. The average particle diameter is preferably 0.1 to 10 μm, more preferably 0.1 to 4 μm. When the average particle size of the inorganic filler is within this range, it has excellent embedding properties between fine structures. The average particle diameter is the particle diameter at an integrated value of 50% in a volume-based particle size distribution measured by a laser diffraction/scattering method. The average particle diameter can be measured, for example, using a laser scattering diffraction particle size distribution analyzer: LS13320 (manufactured by Beckman Coulter, wet type).
 また、(G)成分を含有する場合、(G)成分の含有量は、樹脂組成物中の不揮発成分100質量部に対して、0.1~90質量部であることが好ましく、20~85質量部であることがより好ましく、30~80質量部であることが更に好ましく、50~80質量部であることが特に好ましい。このように構成することによって、熱膨張係数を良好に向上させることができる。 In addition, when containing component (G), the content of component (G) is preferably 0.1 to 90 parts by mass, and preferably 20 to 85 parts by mass, based on 100 parts by mass of nonvolatile components in the resin composition. It is more preferably 30 to 80 parts by weight, particularly preferably 50 to 80 parts by weight. With this configuration, the coefficient of thermal expansion can be improved satisfactorily.
〔(H)成分〕
 (H)成分は、架橋剤である。(H)成分としての架橋剤を含むことで、樹脂組成物からなるフィルムの割れを有効に防止することができる。また、(A)成分としてのポリフェニレンエーテル樹脂と架橋することで、樹脂組成物のはんだ耐熱性の更なる向上が期待できる。
[(H) component]
Component (H) is a crosslinking agent. By including a crosslinking agent as the component (H), cracking of the film made of the resin composition can be effectively prevented. Furthermore, by crosslinking with the polyphenylene ether resin as component (A), further improvement in the solder heat resistance of the resin composition can be expected.
 (H)成分としての架橋剤としては、例えばポリブタジエン、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルイソシアヌレート、2,2’-ジアリルビスフェノールA等を用いることができるが、これらの架橋剤の中でも、1分子中にイソシアヌル環構造及び2個のアリル基を有する架橋剤を用いることが好ましい。(H)成分の架橋剤は、アリル基を2個有することにより、低誘電特性でありながら、はんだ耐熱性を向上させることができる。詳細は明らかではないが、(H)成分がイソシアヌル環構造を有することで樹脂組成物の耐熱性が向上すると推定される。また(H)成分は、1分子中にイソシアヌル環構造及び2個のアリル基を有する化合物であってもよい。これにより、低誘電特性でありながらはんだ耐熱性が良く、さらに良好な成膜性が得られ、フィルム化しやすくできる。また、(H)成分は25℃で液状の化合物であってもよい。 As the crosslinking agent as component (H), for example, polybutadiene, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, diallyl isocyanurate, 2,2'-diallyl bisphenol A, etc. can be used. However, among these crosslinking agents, it is preferable to use a crosslinking agent having an isocyanuric ring structure and two allyl groups in one molecule. By having two allyl groups, the crosslinking agent (H) component can improve soldering heat resistance while having low dielectric properties. Although the details are not clear, it is presumed that the heat resistance of the resin composition is improved because the component (H) has an isocyanuric ring structure. Moreover, the (H) component may be a compound having an isocyanuric ring structure and two allyl groups in one molecule. As a result, it is possible to obtain good solder heat resistance while having low dielectric properties, and also to obtain good film formability, making it easy to form into a film. Moreover, the (H) component may be a liquid compound at 25°C.
 さらに(H)成分は、(A)成分としてのポリフェニレンエーテル樹脂との架橋剤でありながら、かつ難燃性を付与した、難燃性架橋剤であってもよい。例えば、1分子中にイソシアヌル環構造及び2個のアリル基を有し、末端にリン系の置換基を有する難燃性架橋剤を用いることができる。これにより、(A)成分としてのポリフェニレンエーテル樹脂と架橋し、樹脂組成物のはんだ耐熱性を向上させるとともに、難燃性も付与することができる。 Furthermore, the (H) component may be a flame-retardant cross-linking agent that is a cross-linking agent with the polyphenylene ether resin as the (A) component and also imparts flame retardancy. For example, a flame-retardant crosslinking agent having an isocyanuric ring structure and two allyl groups in one molecule and a phosphorus-based substituent at the terminal can be used. Thereby, it can crosslink with the polyphenylene ether resin as component (A), improve the solder heat resistance of the resin composition, and also impart flame retardancy.
 また、(H)成分は、下記一般式(16)式で表される化合物であることが好ましい。 Furthermore, the component (H) is preferably a compound represented by the following general formula (16).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記一般式(16)中、Rは、炭素数が4~14個のアルキル基であり、炭素数が8~14個のアルキル基であることが好ましく、炭素数が10~12個のアルキル基であることが特に好ましい。また、Rはリン系の置換基であってもよい。 In the above general formula (16), R is an alkyl group having 4 to 14 carbon atoms, preferably an alkyl group having 8 to 14 carbon atoms, and R is an alkyl group having 10 to 12 carbon atoms. It is particularly preferable that Further, R may be a phosphorus-based substituent.
 (H)成分の含有量は、(A)成分100質量部に対して、10~70質量部であることが好ましい。このように構成することによって、低誘電特性でありながらはんだ耐熱性も向上させることができる。なお、特に限定されることはないが、(H)成分の含有量は、(A)成分100質量部に対して、15~65質量部であることがより好ましく、20~60質量部であることが更に好ましい。また、樹脂組成物中の不揮発成分100質量%中に、(H)成分を2~50質量%含むことが好ましく、3~40質量%含むことが更に好ましく、4~30質量%含むことが特に好ましい。樹脂組成物中の不揮発成分100質量%中の(H)成分の含有比率がこの範囲内であると、樹脂組成物の誘電特性が優れる。なお、不揮発成分中の(H)成分の含有比率は、例えば、赤外分光光度計(FTIR)や、ガスクロマトグラフ質量分析等の方法によって測定することができる。なお、(B)成分の熱可塑性エラストマーの数平均分子量が大きくなり過ぎると、当該熱可塑性エラストマーが溶融し難くなり、作業性が悪くなってしまう場合がある。しかしながら、1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物を含むことにより、分子量が大きい熱可塑性樹脂を使用した場合であっても、樹脂組成物の溶融粘度を低くし、フィルム化しやすくすることができる。また、例えば(G)充填剤を樹脂組成物中の不揮発成分100質量部に対して、50質量部以上添加する場合には、硬化後の樹脂組成物が脆くなりやすく、樹脂組成物をフィルム化したときに割れが生じることがある。これに対し、(H)成分を上記範囲で添加することにより、樹脂組成物をフィルム化したときの割れの発生を抑制することができる。さらに、(H)成分を上記範囲で添加することにより、樹脂組成物をフィルム化したときに、後述するカール性を抑制することができる。なお、上記観点から(H)成分は、(G)充填剤100質量部に対し、1~30質量部であることが好ましく、3~25質量部添加することがより好ましく、5~20質量部であることが更に好ましく、7~15質量部であることが特に好ましい。 The content of component (H) is preferably 10 to 70 parts by mass based on 100 parts by mass of component (A). With this configuration, it is possible to improve solder heat resistance while maintaining low dielectric properties. Although not particularly limited, the content of component (H) is more preferably 15 to 65 parts by mass, and 20 to 60 parts by mass, based on 100 parts by mass of component (A). More preferably. Further, it is preferable that the component (H) is contained in 2 to 50% by mass, more preferably 3 to 40% by mass, and particularly preferably 4 to 30% by mass in 100% by mass of the nonvolatile components in the resin composition. preferable. When the content ratio of the (H) component in 100% by mass of nonvolatile components in the resin composition is within this range, the dielectric properties of the resin composition are excellent. Note that the content ratio of the (H) component in the nonvolatile components can be measured by, for example, an infrared spectrophotometer (FTIR) or a gas chromatograph mass spectrometry method. Note that if the number average molecular weight of the thermoplastic elastomer as component (B) becomes too large, the thermoplastic elastomer may be difficult to melt, resulting in poor workability. However, by including a compound that has an isocyanuric ring structure and two allyl groups in one molecule and is liquid at 25°C, even when a thermoplastic resin with a large molecular weight is used, the melting of the resin composition The viscosity can be lowered and it can be easily formed into a film. In addition, for example, when adding 50 parts by mass or more of the filler (G) to 100 parts by mass of the nonvolatile components in the resin composition, the resin composition after curing tends to become brittle, and the resin composition may be formed into a film. Cracks may occur when On the other hand, by adding the component (H) in the above range, it is possible to suppress the occurrence of cracks when the resin composition is formed into a film. Furthermore, by adding component (H) in the above range, curling, which will be described later, can be suppressed when the resin composition is formed into a film. In addition, from the above viewpoint, the component (H) is preferably added in an amount of 1 to 30 parts by weight, more preferably 3 to 25 parts by weight, and 5 to 20 parts by weight, based on 100 parts by weight of the filler (G). More preferably, the amount is 7 to 15 parts by mass.
 (H)成分の1分子中にイソシアヌル環構造及び2個のアリル基を有し、25℃で液状の化合物としては、例えば、四国化成社製の商品名「L-DAIC」が挙げられる。また、1分子中にイソシアヌル環構造及び2個のアリル基を有し、末端にリン系の置換基を有する難燃性架橋剤としては、四国化成社製の商品名「P-DAIC」が挙げられる。 An example of a compound that has an isocyanuric ring structure and two allyl groups in one molecule of component (H) and is liquid at 25°C is the product name "L-DAIC" manufactured by Shikoku Kasei Co., Ltd. In addition, as a flame-retardant crosslinking agent that has an isocyanuric ring structure and two allyl groups in one molecule and has a phosphorus-based substituent at the terminal, the product name "P-DAIC" manufactured by Shikoku Kasei Co., Ltd. is cited. It will be done.
〔その他の成分〕
 本実施形態の樹脂組成物は、これまでに説明した(A)成分~(H)成分以外の成分を更に含んでいてもよい。例えば、その他の成分としては、着色剤、分散剤、シランカップリング剤、酸化防止剤、レオロジーコントロール剤等の各種添加剤などを挙げることができる。
[Other ingredients]
The resin composition of the present embodiment may further contain components other than the components (A) to (H) described above. For example, other components include various additives such as colorants, dispersants, silane coupling agents, antioxidants, and rheology control agents.
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物は、慣用の方法により製造することができる。本実施形態の樹脂組成物は、これまでに説明した各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等を用いて混合することで製造することができる。
[Method for manufacturing resin composition]
The resin composition of this embodiment can be manufactured by a conventional method. The resin composition of this embodiment can be manufactured by mixing the components described above using, for example, a Raikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-shaft mixer, etc. .
〔樹脂組成物の用途〕
 本実施形態の樹脂組成物は、電子部品に使用する接着フィルム用の樹脂組成物として好適に用いることができる。また、本実施形態の樹脂組成物は、多層化基板用の層間接着用ボンディングシートや層間接着剤としても好適に用いることができる。本実施形態の樹脂組成物を電子部品用の各種用途に用いる場合、接着対象となる電子部品については特に制限はなく、セラミック基板や有機基板、半導体チップ、半導体装置等が挙げられる。
[Applications of resin composition]
The resin composition of this embodiment can be suitably used as a resin composition for adhesive films used in electronic components. Further, the resin composition of the present embodiment can be suitably used as an interlayer bonding sheet or an interlayer adhesive for multilayer substrates. When the resin composition of this embodiment is used for various purposes for electronic parts, there are no particular restrictions on the electronic parts to be bonded, and examples thereof include ceramic substrates, organic substrates, semiconductor chips, semiconductor devices, and the like.
 本実施形態の樹脂組成物を用いた接着フィルム、層間接着用ボンディングシート及び層間接着剤などは、電子部品等を構成する積層板や半導体装置において、樹脂組成物の硬化物として含まれる。このため、電子部品等を構成する積層板や半導体装置においては、本実施形態の樹脂組成物の硬化物を含むことが好ましい。 Adhesive films, interlayer bonding sheets, interlayer adhesives, and the like using the resin composition of the present embodiment are included as cured products of the resin composition in laminates and semiconductor devices constituting electronic components and the like. Therefore, it is preferable that a cured product of the resin composition of this embodiment be included in a laminate or a semiconductor device constituting an electronic component or the like.
 また、本実施形態の樹脂組成物は、アンテナ付き半導体パッケージを作製に用いられる樹脂組成物(アンテナ付き半導体パッケージ用樹脂組成物)として用いることもできる。なお、アンテナ付き半導体パッケージの詳細については後述する。本実施形態の樹脂組成物は、このようなアンテナ付き半導体パッケージにおいて、半導体装置部とアンテナ部とを接続するための絶縁層や、アンテナ部内部の絶縁層を形成するための樹脂組成物として好適に用いることができる。 Moreover, the resin composition of this embodiment can also be used as a resin composition used for producing a semiconductor package with an antenna (resin composition for a semiconductor package with an antenna). Note that details of the semiconductor package with antenna will be described later. The resin composition of this embodiment is suitable as a resin composition for forming an insulating layer for connecting the semiconductor device part and the antenna part and an insulating layer inside the antenna part in such a semiconductor package with an antenna. It can be used for.
〔アンテナ付き半導体パッケージ〕
 次に、アンテナ付き半導体パッケージの実施形態について説明する。アンテナ付き半導体パッケージの一の実施形態は、図1に示すようなアンテナ付き半導体パッケージ100である。図1は、アンテナ付き半導体パッケージの一例を示す模式的部分断面図である。
[Semiconductor package with antenna]
Next, an embodiment of a semiconductor package with an antenna will be described. One embodiment of a semiconductor package with an antenna is a semiconductor package with an antenna 100 as shown in FIG. FIG. 1 is a schematic partial cross-sectional view showing an example of a semiconductor package with an antenna.
 図1に示すように、アンテナ付き半導体パッケージ100は、半導体装置部10にアンテナ部5が一体的に形成されたものであり、特に、5Gミリ波の送信・受信の通信を行うRF(無線周波)チップ8が実装される高周波基板としてのアンテナ付き半導体パッケージ100である。アンテナ部5は、半導体装置部10において、ミリ波の通信を行うRFチップ8と各種配線パターンを有する配線層4により接続されている。 As shown in FIG. 1, the antenna-equipped semiconductor package 100 has an antenna section 5 integrally formed with a semiconductor device section 10, and is particularly designed for RF (radio frequency) communication for transmitting and receiving 5G millimeter waves. ) A semiconductor package 100 with an antenna serves as a high frequency substrate on which a chip 8 is mounted. In the semiconductor device section 10, the antenna section 5 is connected to an RF chip 8 that performs millimeter wave communication through a wiring layer 4 having various wiring patterns.
 図1に示すアンテナ付き半導体パッケージ100における半導体装置部10は、コア基板2と、半導体装置部10の一方の表面側に配設されたアンテナ部5と、半導体装置部10とアンテナ部5とを接続するための絶縁層1(第一絶縁層1A)と、コア基板2内に配置された複層構造の配線層4と、配線層4における配線ビアを被覆するように構成された絶縁層1(第二絶縁層1B、第三絶縁層1C、第四絶縁層1D、第五絶縁層1E)とを含む。なお、第一絶縁層1Aは、半導体装置部10とアンテナ部5との間を介在するように設けられているだけでなく、アンテナ部5の内部にまで延設されるようにして設けられていてもよい。 The semiconductor device section 10 in the semiconductor package with antenna 100 shown in FIG. An insulating layer 1 for connection (first insulating layer 1A), a wiring layer 4 with a multilayer structure arranged in the core substrate 2, and an insulating layer 1 configured to cover wiring vias in the wiring layer 4. (a second insulating layer 1B, a third insulating layer 1C, a fourth insulating layer 1D, and a fifth insulating layer 1E). Note that the first insulating layer 1A is not only provided to be interposed between the semiconductor device section 10 and the antenna section 5, but also to extend into the inside of the antenna section 5. It's okay.
 アンテナ付き半導体パッケージ100は、半導体装置部10の他方の表面側において、配線層4の一部位が、ミリ波の送信・受信の通信を行うRFチップ8と連結されるとともに、配線層4の他の部位が、電気連結金属7と連結されている。図1に示す例では、配線層4とRFチップ8は、半球状の接続パッド9を介して電気的に接続されている。電気連結金属7は、当該電気連結金属7を介して、その機能に合わせて、アンテナ付き半導体パッケージ100と外部とを物理的及び/又は電気的に連結させるための端子部である。 In the semiconductor package with antenna 100, on the other surface side of the semiconductor device section 10, a part of the wiring layer 4 is connected to an RF chip 8 that performs communication for transmitting and receiving millimeter waves, and the other part of the wiring layer 4 is is connected to the electrical connection metal 7. In the example shown in FIG. 1, the wiring layer 4 and the RF chip 8 are electrically connected via hemispherical connection pads 9. In the example shown in FIG. The electrical connection metal 7 is a terminal portion for physically and/or electrically connecting the semiconductor package 100 with an antenna to the outside depending on the function of the electrical connection metal 7.
 絶縁層1は、送信時においてRFチップ8から出力された電流やミリ波信号が減衰することを抑制しつつ、アンテナ部5に伝えて空間に効率よく放射するため、アンテナ部5とRFチップ8をつなぐ接続部の損失(伝送ロス)を小さくすることが求められる。受信時も同様で、アンテナ部5で受信されたミリ波信号の反射波が減衰することを抑制しつつ、受信部としてのRFチップ8に伝えるには、アンテナ部5とRFチップ8をつなぐ接続部の損失(伝送ロス)を小さくすることが求められる。 The insulating layer 1 suppresses the attenuation of the current and millimeter wave signals output from the RF chip 8 during transmission, and transmits them to the antenna section 5 to efficiently radiate them into space. It is required to reduce the loss (transmission loss) in the connection section that connects the The same goes for reception, and in order to suppress the attenuation of the reflected wave of the millimeter wave signal received by the antenna section 5 and transmit it to the RF chip 8 as the reception section, the connection between the antenna section 5 and the RF chip 8 is necessary. It is required to reduce the loss (transmission loss) in the transmission area.
 アンテナ部5は、平面アンテナとしてのパッチアンテナとして半導体装置部10の一方の表面側に配設されている。 The antenna section 5 is disposed on one surface side of the semiconductor device section 10 as a patch antenna serving as a planar antenna.
 アンテナ付き半導体パッケージ100は、半導体装置部10とアンテナ部5とを接続するための絶縁層1(例えば、第一絶縁層1A)、及びアンテナ部5内部の絶縁層1のうちの少なくとも一方の絶縁層1の構成に関して特に主要な特徴を有している。以下、本実施形態のアンテナ付き半導体パッケージ100における絶縁層1の構成について更に詳細に説明する。なお、以下、半導体装置部10とアンテナ部5とを接続するための絶縁層1、及びアンテナ部5内部の絶縁層1を総称して、単に「絶縁層1」ということがある。 The semiconductor package with antenna 100 includes an insulating layer 1 for connecting the semiconductor device section 10 and the antenna section 5 (for example, a first insulating layer 1A), and an insulating layer 1 inside the antenna section 5. The structure of layer 1 has particularly important characteristics. Hereinafter, the structure of the insulating layer 1 in the semiconductor package with antenna 100 of this embodiment will be explained in more detail. Note that hereinafter, the insulating layer 1 for connecting the semiconductor device section 10 and the antenna section 5 and the insulating layer 1 inside the antenna section 5 may be collectively referred to simply as "insulating layer 1."
 アンテナ付き半導体パッケージ100において、少なくとも一の絶縁層1は、これまでに説明した本発明の樹脂組成物と同様に構成された樹脂組成物の硬化物からなる。即ち、絶縁層1を構成する硬化物は、(A)成分としての炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)成分としての数平均分子量が60,000以上の熱可塑性エラストマーと、を含む樹脂組成物の硬化物である。 In the semiconductor package with antenna 100, at least one insulating layer 1 is made of a cured product of a resin composition configured similarly to the resin composition of the present invention described above. That is, the cured product constituting the insulating layer 1 is composed of a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A), and a number average molecular weight of 60,000 as the component (B). This is a cured product of a resin composition containing the above thermoplastic elastomer.
 上記したように構成された絶縁層1を備えたアンテナ付き半導体パッケージ100は、はんだ耐熱性に優れ、低い誘電特性を有する。5Gミリ波用のアンテナ部5を備えたアンテナ付き半導体パッケージ100では、例えば、アンテナ部5を接続するための絶縁層1について、288℃のはんだ試験が行われることがあり、従来では必要なかった耐熱温度での耐はんだ耐熱性が求められる。従来の半導体パッケージにおける絶縁層は、公知の高周波フィルムが使用されているが、このような高周波フィルムは、上述した耐はんだ耐熱性を満たしていないものがあり、5Gミリ波用のアンテナ部5を備えたアンテナ付き半導体パッケージ100に対しての使用できないものが多く含まれている。本実施形態のアンテナ付き半導体パッケージ100において、絶縁層1を構成する硬化物は、SPDR(スプリットポスト誘電体共振器)法にて周波数10GHzで測定した誘電正接(tanδ)が0.0020以下であり、はんだ耐熱が290℃2分以上であることが好ましい。 The semiconductor package 100 with an antenna including the insulating layer 1 configured as described above has excellent solder heat resistance and low dielectric properties. In the semiconductor package 100 with an antenna equipped with the antenna section 5 for 5G millimeter waves, for example, a 288° C. solder test may be performed on the insulating layer 1 for connecting the antenna section 5, which was not necessary in the past. Soldering heat resistance at heat-resistant temperatures is required. Known high-frequency films are used as insulation layers in conventional semiconductor packages, but some of these high-frequency films do not meet the above-mentioned solder heat resistance. There are many things that cannot be used for the semiconductor package 100 with an antenna. In the semiconductor package with antenna 100 of the present embodiment, the cured material constituting the insulating layer 1 has a dielectric loss tangent (tan δ) of 0.0020 or less when measured at a frequency of 10 GHz using the SPDR (split post dielectric resonator) method. It is preferable that the soldering heat resistance is 290° C. for 2 minutes or more.
 絶縁層1は、上述した(A)成分と(B)成分とを含む樹脂組成物を、加熱硬化することによって得ることができる。絶縁層1を形成するための樹脂組成物は、これまでに説明した本発明の樹脂組成物と同様に構成された樹脂組成物である。樹脂組成物には、既に説明した(A)成分及び(B)成分に加えて、(C)成分~(H)成分のいずれかの他成分、及び更にそれ以外の他の成分を含んでいてもよい。 The insulating layer 1 can be obtained by heating and curing a resin composition containing the above-described components (A) and (B). The resin composition for forming the insulating layer 1 is a resin composition configured similarly to the resin composition of the present invention described above. In addition to the already explained components (A) and (B), the resin composition contains any of the components (C) to (H), and further other components. Good too.
 本実施形態のアンテナ付き半導体パッケージ100は、はんだ耐熱性に優れ、且つ誘電特性にも優れているため、5Gミリ波の送信・受信の通信を行うRF(無線周波)チップ8が実装された半導体パッケージとして好適に利用される。 The antenna-equipped semiconductor package 100 of this embodiment has excellent solder heat resistance and dielectric properties, so it is a semiconductor package with an RF (radio frequency) chip 8 mounted thereon that performs communication for transmitting and receiving 5G millimeter waves. Suitable for use as a package.
 アンテナ付き半導体パッケージ100において、半導体装置部10とアンテナ部5とを接続するための第一絶縁層1A、及び、配線層4における配線ビアを被覆するように構成された第二絶縁層1B、第三絶縁層1C、第四絶縁層1D、及び第五絶縁層1Eのそれぞれが、これまでに説明した硬化物からなる絶縁層1と同様に構成されていることが好ましい。 In the semiconductor package with antenna 100, a first insulating layer 1A for connecting the semiconductor device part 10 and the antenna part 5, a second insulating layer 1B configured to cover the wiring via in the wiring layer 4, and a second insulating layer 1B configured to cover the wiring via in the wiring layer 4. It is preferable that each of the third insulating layer 1C, the fourth insulating layer 1D, and the fifth insulating layer 1E have the same structure as the insulating layer 1 made of the cured material described above.
 次に、アンテナ付き半導体パッケージ100における絶縁層1の作製方法については特に制限はないが、例えば、以下のような方法を挙げることができる。 Next, there is no particular restriction on the method for manufacturing the insulating layer 1 in the semiconductor package with antenna 100, but for example, the following method can be mentioned.
 まず、(A)成分と(B)成分とを少なくとも含むアンテナ付き半導体パッケージ用樹脂組成物を調製する。以下、「アンテナ付き半導体パッケージ用樹脂組成物」を、単に「樹脂組成物」ということがある。取り扱いの観点から、樹脂組成物は、フィルム形状であることが好ましい。このアンテナ付き半導体パッケージ用フィルムは、例えば、(A)成分と(B)成分とを含む樹脂組成物に有機溶剤を加えた溶液を、支持体である離型処理をほどこしたPETフィルムに塗工し、80~130℃で乾燥させることにより得ることができる。得られたアンテナ付き半導体パッケージ用フィルムを、支持体から剥離し、半導体装置部10に貼り付け、例えば、200℃で30~60分の熱処理を行うことにより、アンテナ付き半導体パッケージを作製することができる。 First, a resin composition for a semiconductor package with an antenna is prepared, which includes at least component (A) and component (B). Hereinafter, the "resin composition for a semiconductor package with antenna" may be simply referred to as "resin composition." From the viewpoint of handling, the resin composition is preferably in the form of a film. This film for a semiconductor package with an antenna is produced by coating a solution of a resin composition containing components (A) and (B) with an organic solvent on a PET film that has undergone mold release treatment as a support. It can be obtained by drying at 80 to 130°C. The obtained antenna-equipped semiconductor package film is peeled from the support, attached to the semiconductor device part 10, and heat-treated at 200° C. for 30 to 60 minutes to produce an antenna-equipped semiconductor package. can.
 アンテナ付き半導体パッケージ100における半導体装置部10における配線層4等の構成については、図1に示すような構成に限定されることはなく、5Gミリ波用アンテナを備えた各種半導体パッケージに適用することができる。例えば、図2は、アンテナ付き半導体パッケージの他の例を示す模式的部分断面図である。 The configuration of the wiring layer 4, etc. in the semiconductor device section 10 in the semiconductor package with antenna 100 is not limited to the configuration shown in FIG. 1, and can be applied to various semiconductor packages equipped with a 5G millimeter wave antenna. Can be done. For example, FIG. 2 is a schematic partial cross-sectional view showing another example of a semiconductor package with an antenna.
 図2に示すアンテナ付き半導体パッケージ200は、半導体装置部30にアンテナ部25,26が一体的に形成されたものである。アンテナ部25,26は、半導体装置部10において、ミリ波の通信を行うRFチップ28と各種の配線パターンを有する配線層24により接続されている。 A semiconductor package with an antenna 200 shown in FIG. 2 has antenna parts 25 and 26 formed integrally with a semiconductor device part 30. The antenna sections 25 and 26 are connected to an RF chip 28 that performs millimeter wave communication in the semiconductor device section 10 by a wiring layer 24 having various wiring patterns.
 半導体装置部30は、コア基板22と、半導体装置部30の一方の表面側に配設されたアンテナ部25と、半導体装置部30とアンテナ部25とを接続するための絶縁層21と、を有する。コア基板22内には、5Gミリ波の送信・受信の通信を行うRFチップ28が収容されており、コア基板22内に配置された配線層24によって配線されている。半導体装置部30の両端には直線状の導線(エレメント)を左右対称に配設したダイポールアンテナとしてのアンテナ部26が設けられている。半導体装置部30の他方の表面側は、アンテナ付き半導体パッケージ200と外部とを物理的及び/又は電気的に連結させるための電気連結金属27と連結されている。 The semiconductor device section 30 includes a core substrate 22, an antenna section 25 disposed on one surface side of the semiconductor device section 30, and an insulating layer 21 for connecting the semiconductor device section 30 and the antenna section 25. have An RF chip 28 that performs 5G millimeter wave transmission/reception communication is housed within the core substrate 22 and is wired by a wiring layer 24 disposed within the core substrate 22 . At both ends of the semiconductor device section 30, an antenna section 26 is provided as a dipole antenna in which linear conducting wires (elements) are arranged symmetrically. The other surface side of the semiconductor device section 30 is connected to an electrical connection metal 27 for physically and/or electrically connecting the semiconductor package with antenna 200 to the outside.
 図2に示すようなアンテナ付き半導体パッケージ200においても、絶縁層21を、(A)成分としての炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)成分としての数平均分子量が60,000以上の熱可塑性エラストマーと、を含む樹脂組成物の硬化物とすることで、はんだ耐熱性に優れ、低い誘電特性を有する。絶縁層21として用いられる硬化物は、図1に示すアンテナ付き半導体パッケージ100の絶縁層1として用いられる硬化物と同様に構成されたものを採用することができる。 Also in the semiconductor package with antenna 200 as shown in FIG. 2, the insulating layer 21 is made of a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A) and a polyphenylene ether resin as the component (B). A cured product of a resin composition containing a thermoplastic elastomer having a number average molecular weight of 60,000 or more has excellent solder heat resistance and low dielectric properties. The cured product used as the insulating layer 21 can be configured similarly to the cured product used as the insulating layer 1 of the semiconductor package 100 with antenna shown in FIG.
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. In the following examples, parts and % indicate parts by mass and % by mass unless otherwise specified.
(実施例1~20、比較例1~2)
〔サンプル作製〕
 各成分を下記表1~表4に示す配合割合(質量部)になるように計量配合した後、それらを80℃に加温された反応釜に投入し、回転数150rpmで回転させながら、常圧混合を4時間行った。(D)成分の硬化剤及び/又は(E)成分の有機過酸化物を加える場合には、冷却後に、(D)成分の硬化剤及び/又は(E)成分の有機過酸化物を加えた。以上のようにして、実施例1~20及び比較例1~2の樹脂組成物を含むワニスを調製した。
(Examples 1 to 20, Comparative Examples 1 to 2)
[Sample preparation]
After weighing and blending each component to the proportions (parts by mass) shown in Tables 1 to 4 below, they were placed in a reaction vessel heated to 80°C, and constantly rotated at a rotation speed of 150 rpm. Pressure mixing was carried out for 4 hours. When adding the curing agent (D) and/or the organic peroxide (E), the curing agent (D) and/or the organic peroxide (E) are added after cooling. . As described above, varnishes containing the resin compositions of Examples 1 to 20 and Comparative Examples 1 to 2 were prepared.
 実施例1~20及び比較例1~2において樹脂組成物の調製に使用した原料は以下の通りである。なお、(A)成分、(B)成分及び(B’)成分の数平均分子量(Mn)は、クロマトグラフィー法により、数平均分子量(Mn)を求めた。 The raw materials used to prepare the resin compositions in Examples 1 to 20 and Comparative Examples 1 to 2 are as follows. The number average molecular weights (Mn) of component (A), component (B), and component (B') were determined by a chromatography method.
〔(A)成分:炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂〕
(A1):末端にメタクリル基を有するポリフェニレンエーテル樹脂、SABICジャパン社製、商品名「Noryl SA9000」、数平均分子量(Mn):1,700。
(A2):末端にスチレン基を有するポリフェニレンエーテル樹脂、三菱ガス化学社製、商品名「OPE-2200」、数平均分子量(Mn):2,200。
(A3):末端にスチレン基を有するポリフェニレンエーテル樹脂、三菱ガス化学社製、商品名「OPE-1200」、数平均分子量(Mn):1,200。
[Component (A): polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end]
(A1): Polyphenylene ether resin having a methacrylic group at the end, manufactured by SABIC Japan, trade name "Noryl SA9000", number average molecular weight (Mn): 1,700.
(A2): Polyphenylene ether resin having a styrene group at the end, manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name "OPE-2200", number average molecular weight (Mn): 2,200.
(A3): Polyphenylene ether resin having a styrene group at the end, manufactured by Mitsubishi Gas Chemical Company, trade name "OPE-1200", number average molecular weight (Mn): 1,200.
〔(B)成分:数平均分子量が60,000以上の熱可塑性エラストマー〕
(B1):スチレン系エラストマー(SEBS(スチレン比率31%))、クラレ社製、商品名「セプトン8004」、数平均分子量(Mn):76,495。
(B2):スチレン系エラストマー(SEBS(スチレン比率33%))、クラレ社製、商品名「セプトン8006」、数平均分子量(Mn):125,769。
(B3):スチレン系エラストマー(SEEPS(スチレン比率30%))、クラレ社製、商品名「セプトンV9461」、数平均分子量(Mn):129,783。
[Component (B): thermoplastic elastomer with a number average molecular weight of 60,000 or more]
(B1): Styrenic elastomer (SEBS (styrene ratio 31%)), manufactured by Kuraray Co., Ltd., trade name "Septon 8004", number average molecular weight (Mn): 76,495.
(B2): Styrenic elastomer (SEBS (styrene ratio 33%)), manufactured by Kuraray Co., Ltd., trade name "Septon 8006", number average molecular weight (Mn): 125,769.
(B3): Styrenic elastomer (SEEPS (styrene ratio 30%)), manufactured by Kuraray Co., Ltd., trade name "Septon V9461", number average molecular weight (Mn): 129,783.
〔(B’)成分:数平均分子量が60,000未満の熱可塑性エラストマー〕
(B’4):スチレン系エラストマー(SEBS(スチレン比率30%))、クレイトン社製、商品名「G1652」、数平均分子量(Mn):53,864。
(B’5):スチレン系エラストマー(SEEPS-OH(スチレン比率28%))、クラレ社製、商品名「HG-252」、数平均分子量(Mn):54,029。
[Component (B'): thermoplastic elastomer with a number average molecular weight of less than 60,000]
(B'4): Styrenic elastomer (SEBS (styrene ratio 30%)), manufactured by Clayton, trade name "G1652", number average molecular weight (Mn): 53,864.
(B'5): Styrenic elastomer (SEEPS-OH (styrene ratio 28%)), manufactured by Kuraray Co., Ltd., trade name "HG-252", number average molecular weight (Mn): 54,029.
〔(C)成分:エポキシ樹脂〕
(C1):ビスフェノールA型エポキシ樹脂、三菱ケミカル社製、商品名「828EL」。
(C2):ノボラック型エポキシ樹脂、日本化薬社製、商品名「EPPN-502H」。
[(C) component: epoxy resin]
(C1): Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name "828EL".
(C2): Novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name "EPPN-502H".
〔(D)成分:硬化剤〕
(D1):ADEKA社製、商品名「EH2021」。
〔(E)成分:有機過酸化物〕
(E1):日油化学社製、商品名「パーブチルZ」。
(E2):日油化学社製、商品名「パークミルD」。
〔(F)成分:難燃剤〕
(F1):クラリアントジャパン社製、商品名「OP935」。
〔(G)成分:充填材〕
(G1):アミノシランカップリング剤で表面処理された球状シリカ、アドマテックス社製、商品名「SC4050 SX」、平均粒子径1.0μm。
〔(H)成分:架橋剤〕
(H1):四国化成社製、商品名「L-DAIC」。
(H2):四国化成社製、商品名「P-DAIC」。
[Component (D): Curing agent]
(D1): Manufactured by ADEKA, product name "EH2021".
[Component (E): organic peroxide]
(E1): Manufactured by NOF Chemical Co., Ltd., trade name "Perbutyl Z".
(E2): Manufactured by NOF Chemical Co., Ltd., trade name "Perc Mill D".
[(F) component: flame retardant]
(F1): Manufactured by Clariant Japan, product name "OP935".
[(G) component: filler]
(G1): Spherical silica surface-treated with an aminosilane coupling agent, manufactured by Admatex, trade name "SC4050 SX", average particle diameter 1.0 μm.
[(H) component: crosslinking agent]
(H1): Manufactured by Shikoku Kasei Co., Ltd., trade name "L-DAIC".
(H2): Manufactured by Shikoku Kasei Co., Ltd., product name "P-DAIC".
 表1~表4の「原料比率」の欄に、実施例1~17及び比較例1~2において、樹脂組成物の調製に用いた原料の比率を示す。表1~表4の「原料比率」の各欄における比率は、以下の通りである。「A/(A+B+B’)×100(質量比)」の欄は、(A)成分、(B)成分及び(B’)成分の合計100質量部に対する(A)成分の含有量(質量部)を示す。「B/(A+B)×100(質量比)」の欄は、(A)成分及び(B)成分の合計100質量部に対する(B)成分の含有量(質量部)を示す。「C/(A+B+C)×100(質量比)」の欄は、(A)成分、(B)成分及び(C)成分の合計100質量部に対する(C)成分の含有量(質量部)を示す。 The "raw material ratio" column in Tables 1 to 4 shows the ratio of the raw materials used to prepare the resin compositions in Examples 1 to 17 and Comparative Examples 1 to 2. The ratios in each column of "raw material ratio" in Tables 1 to 4 are as follows. The column "A/(A+B+B') x 100 (mass ratio)" indicates the content (parts by mass) of component (A) relative to the total of 100 parts by mass of component (A), component (B), and component (B'). shows. The column "B/(A+B)×100 (mass ratio)" indicates the content (parts by mass) of component (B) relative to the total of 100 parts by mass of components (A) and (B). The column “C/(A+B+C)×100 (mass ratio)” indicates the content (parts by mass) of component (C) based on the total of 100 parts by mass of component (A), component (B), and component (C). .
 次に、上記のようにして調製した樹脂組成物を含むワニスを支持体(離型処理を施したPETフィルム)の片面に塗布し、100℃で乾燥させることにより、支持体付の接着フィルムを得た。 Next, a varnish containing the resin composition prepared as described above is applied to one side of the support (PET film subjected to mold release treatment) and dried at 100°C to form an adhesive film with the support. Obtained.
 このようにして得られた支持体付の接着フィルムについて、以下に示す方法にて誘電特性の評価を行った。測定結果を表1~表4に示す。 The dielectric properties of the thus obtained adhesive film with a support were evaluated using the method shown below. The measurement results are shown in Tables 1 to 4.
〔誘電特性(誘電率(ε)、誘電正接(tanδ))〕
 接着フィルムの両面を、離型処理を施したPETフィルムではさみ、その接着フィルムをプレス機を用いて熱硬化させた。プレス機による熱硬化は、200℃、60分、10kgf/cmの条件とした。その後、硬化した接着フィルムの両面に配置された離型処理を施したPETフィルム除去し、該接着フィルムから試験片(50±0.5mm×100±2mm)を切り出し、厚みを測定した。表1~表4の「フィルム膜厚」の欄に、測定した接着フィルムの膜厚を示す。次に、厚みを測定したフィルム(試験片)を誘電体共振器法(SPDR法)にて、誘電率(ε)及び誘電正接(tanδ)を測定した。なお、誘電体共振器法による測定は、測定周波数を10GHzとした。誘電率(ε)は、2.50以下を「優」とし、2.50超、3.00以下を「良」とし、3.00超を「不可」とする。また、誘電正接(tanδ)は、0.00010未満を「優」とし、0.00010以上、0.0020未満を「良」とし、0.0020以上、0.0030未満を「可」とし、0.030以上を「不可」とする。
[Dielectric properties (permittivity (ε), dielectric loss tangent (tanδ))]
Both sides of the adhesive film were sandwiched between release-treated PET films, and the adhesive film was heat-cured using a press. Thermal curing using a press was carried out at 200° C., 60 minutes, and 10 kgf/cm 2 . Thereafter, the release-treated PET films placed on both sides of the cured adhesive film were removed, and a test piece (50±0.5 mm x 100±2 mm) was cut out from the adhesive film and its thickness was measured. The "Film Thickness" column in Tables 1 to 4 shows the measured thickness of the adhesive film. Next, the dielectric constant (ε) and dielectric loss tangent (tan δ) of the film (test piece) whose thickness was measured were measured using a dielectric resonator method (SPDR method). Note that in the measurement using the dielectric resonator method, the measurement frequency was 10 GHz. Regarding the dielectric constant (ε), 2.50 or less is considered "excellent", more than 2.50 and 3.00 or less is considered "good", and more than 3.00 is considered "poor". In addition, the dielectric loss tangent (tan δ) is defined as "excellent" if it is less than 0.00010, "good" if it is 0.00010 or more and less than 0.0020, "fair" if it is 0.0020 or more and less than 0.0030, and 0. A score of .030 or higher is considered "impossible".
 また、得られた支持体付の接着フィルムについて、以下のはんだ耐熱試験、及びピール強度、及びカール性の評価を行った。各結果を表1~表4に示す。 Furthermore, the obtained adhesive film with a support was subjected to the following soldering heat resistance test and evaluation of peel strength and curling property. The results are shown in Tables 1 to 4.
〔はんだ耐熱性〕
 JIS C5012(1993)に準拠して行った。具体的には、接着フィルムの両面に、粗化面を内側にして銅箔を貼りあわせ、プレス機で熱圧着させた。熱圧着の条件は、200℃、60分、10kgf/cmとした。得られた試験片を25mm×25mmにカットし、288℃に熱したはんだ槽にフロートし、4分間膨れの有無を確認した。表1~表4に示す結果(秒)は、目視にて試験片に膨れが発生するまでの時間(秒)を示す。なお、4分間膨れが発生しなかった場合は「4min≦」と記載した。はんだ耐熱性の評価は、4分間以上膨れが発生しない場合を「優」とする。また、膨れが発生するまでの時間が、3分間以上、4分未満の場合を「良」とし、2分間以上、3分未満の場合を「可」とし、2分未満の場合を「不可」とした。
[Solder heat resistance]
It was conducted in accordance with JIS C5012 (1993). Specifically, copper foil was pasted on both sides of the adhesive film with the roughened side facing inside, and then hot-pressed using a press. The conditions for thermocompression bonding were 200° C., 60 minutes, and 10 kgf/cm 2 . The obtained test piece was cut into a size of 25 mm x 25 mm, floated on a solder bath heated to 288° C., and the presence or absence of blisters was checked for 4 minutes. The results (seconds) shown in Tables 1 to 4 indicate the time (seconds) until the test piece visually bulges. In addition, when no blistering occurred for 4 minutes, it was written as "4min≦". The solder heat resistance is evaluated as "excellent" if no blistering occurs for 4 minutes or more. In addition, if the time until swelling occurs is 3 minutes or more but less than 4 minutes, it is considered "good", if it is 2 minutes or more but less than 3 minutes, it is considered "acceptable", and if it is less than 2 minutes, it is "unacceptable". And so.
〔ピール強度〕
 JIS C 6471に準拠して行った。具体的には、接着フィルムの両面に、粗化面を内側にして銅箔を貼りあわせ、プレス機で熱圧着させた。銅箔は、商品名「CF-T9」、福田金属箔工業社製、18μmを用いた。熱圧着の条件は、200℃、60分、10kgf/cmとした。得られた試験片を10mm幅にカットし、オートグラフで引きはがし、ピール強度を測定した。測定結果について、各N=5の平均値を計算した。
[Peel strength]
It was conducted in accordance with JIS C 6471. Specifically, copper foil was pasted on both sides of the adhesive film with the roughened side facing inside, and then hot-pressed using a press. The copper foil used was 18 μm, trade name “CF-T9”, manufactured by Fukuda Metal Foil Industry Co., Ltd. The conditions for thermocompression bonding were 200° C., 60 minutes, and 10 kgf/cm 2 . The obtained test piece was cut to a width of 10 mm and peeled off using an autograph to measure the peel strength. Regarding the measurement results, the average value of each N=5 was calculated.
〔カール性〕
 まず、樹脂組成物を含むワニスを支持体(離型処理を施した厚さ38μmPETフィルム)の片面に塗布し、100℃で乾燥させることにより、支持体付の接着フィルムを得た。得られた支持体付の接着フィルムを常温に戻した後、その支持体付の接着フィルムを30cm×50cmの大きさに切断し、カール性を評価するための試験片を作製した。作製した試験片を、水平な台の上に、当該試験片の支持体側が下側となるようにして置き、下記方法にて、試験片のカールにより短縮される長さ(反り量)を測定した。まず、水平な台の上に置いた試験片の一方の先端部の辺を台上に固定する。このようにして、一方の先端部の辺を固定した試験片について、当該試験片の反対の先端部の辺においてカールにより短縮される長さを測定した。試験片のカールにより短縮される長さ(反り量)が5cm未満の場合を合格(良;「〇」)とし、5cm以上、7cm未満の場合も合格(可;「△」)とし、7cm以上の場合を不可(「×」)とした。
[Curling property]
First, a varnish containing a resin composition was coated on one side of a support (38 μm thick PET film subjected to mold release treatment) and dried at 100° C. to obtain an adhesive film with a support. After the obtained adhesive film with a support was returned to room temperature, the adhesive film with a support was cut into a size of 30 cm x 50 cm to prepare a test piece for evaluating curlability. Place the prepared test piece on a horizontal table with the support side of the test piece facing down, and measure the length shortened by curling of the test piece (amount of warpage) using the method below. did. First, one edge of the tip of a test piece placed on a horizontal table is fixed on the table. In this way, for a test piece with one side of the tip fixed, the length shortened by curling on the side of the opposite tip of the test piece was measured. If the length shortened by curling of the test piece (amount of warpage) is less than 5 cm, it is considered a pass (good; "〇"), if it is 5 cm or more but less than 7 cm, it is also considered a pass (fair; "△"), and if it is 7 cm or more Cases were marked as not possible (“x”).
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
〔結果〕
 表1~表4に示すように、実施例1~20の樹脂組成物は、(A)成分としての炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、(B)成分としての数平均分子量が60,000以上の熱可塑性エラストマーと、を含むものであった。実施例1~20の樹脂組成物は、誘電特性(誘電率(ε)及び誘電正接(tanδ))、はんだ耐熱性、ピール強度、カール性の各評価において全て良好な結果を示すものであった。
〔result〕
As shown in Tables 1 to 4, the resin compositions of Examples 1 to 20 contained a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end as the component (A), and a component (B). A thermoplastic elastomer having a number average molecular weight of 60,000 or more. The resin compositions of Examples 1 to 20 all showed good results in each evaluation of dielectric properties (dielectric constant (ε) and dielectric loss tangent (tan δ)), soldering heat resistance, peel strength, and curling property. .
 また、実施例1~17の樹脂組成物のうち、(B)成分としてSEBSのスチレン系エラストマーを用いたもの(即ち、実施例1~5,7~17)については、カール性の評価において特に良好な結果を示すものであった。また、実施例16,18~20の樹脂組成物のように、(G)成分の充填剤を50質量部以上含むものについても、はんだ耐熱性、ピール強度、カール性の各評価において合格基準を満たし、特に、実施例16,18,19のように(H)成分の架橋剤を所定量以上含む樹脂組成物については、カール性の評価を含めた全ての評価において良好な結果を示すものであった。 In addition, among the resin compositions of Examples 1 to 17, those using SEBS styrene elastomer as the (B) component (i.e., Examples 1 to 5, 7 to 17) were particularly evaluated for curling properties. This showed good results. Furthermore, resin compositions containing 50 parts by mass or more of component (G), such as the resin compositions of Examples 16 and 18 to 20, also met the acceptance criteria in the evaluations of soldering heat resistance, peel strength, and curling properties. In particular, resin compositions containing a predetermined amount or more of the crosslinking agent (H) component as in Examples 16, 18, and 19 showed good results in all evaluations including evaluation of curling properties. there were.
 比較例1,2の樹脂組成物は、(B’)成分として、数平均分子量が60,000未満の熱可塑性エラストマーを用いたものであり、実施例1~17の樹脂組成物と比較して、はんだ耐熱性が非常に劣るものであった。また、比較例2の樹脂組成物は、カール性の評価において、カールにより短縮される長さ(反り量)が非常に大きくなり、カール性の評価結果が非常に悪いものであった。比較例2の樹脂組成物のカール性の悪化は、熱可塑性エラストマーとしてSEEPS-OHのスチレン系エラストマーを用いたことが理由と推測される。 The resin compositions of Comparative Examples 1 and 2 used a thermoplastic elastomer with a number average molecular weight of less than 60,000 as the component (B'), and compared with the resin compositions of Examples 1 to 17. , the soldering heat resistance was very poor. Further, in the curling evaluation of the resin composition of Comparative Example 2, the length shortened by curling (the amount of warpage) was extremely large, and the curling evaluation results were very poor. The deterioration in curling properties of the resin composition of Comparative Example 2 is presumed to be due to the use of SEEPS-OH styrene elastomer as the thermoplastic elastomer.
 本発明の樹脂組成物は、電子部品に使用する接着フィルム用の樹脂組成物として用いることができる。また、本発明の樹脂組成物は、多層化基板用の層間接着用ボンディングシートや層間接着剤としても用いることができる。また、本発明の樹脂組成物を用いたアンテナ付き半導体パッケージは、5Gミリ波の送信・受信の通信を行うRFチップが実装される高周波基板として利用することができる。本発明のアンテナ付き半導体パッケージ用樹脂組成物は、アンテナ付き半導体パッケージの絶縁層に利用することができる。 The resin composition of the present invention can be used as a resin composition for adhesive films used in electronic components. Furthermore, the resin composition of the present invention can be used as an interlayer bonding sheet or an interlayer adhesive for multilayer substrates. Further, a semiconductor package with an antenna using the resin composition of the present invention can be used as a high frequency substrate on which an RF chip that performs 5G millimeter wave transmission/reception communication is mounted. The resin composition for a semiconductor package with an antenna of the present invention can be used for an insulating layer of a semiconductor package with an antenna.
1 絶縁層
1A 第一絶縁層
1B 第二絶縁層
1C 第三絶縁層
1D 第四絶縁層
1E 第五絶縁層
2 コア基板
4 配線層
5 アンテナ部(パッチアンテナ)
7 電気連結金属
8 RFチップ
9 接続パッド
10 半導体装置部
21 絶縁層
22 コア基板
24 配線層
25 アンテナ部(パッチアンテナ)
26 アンテナ部(ダイポールアンテナ)
27 電気連結金属
28 RFチップ
30 半導体装置部
100,200 アンテナ付き半導体パッケージ
1 Insulating layer 1A First insulating layer 1B Second insulating layer 1C Third insulating layer 1D Fourth insulating layer 1E Fifth insulating layer 2 Core substrate 4 Wiring layer 5 Antenna section (patch antenna)
7 Electrical connection metal 8 RF chip 9 Connection pad 10 Semiconductor device section 21 Insulating layer 22 Core substrate 24 Wiring layer 25 Antenna section (patch antenna)
26 Antenna section (dipole antenna)
27 Electrical connection metal 28 RF chip 30 Semiconductor device section 100, 200 Semiconductor package with antenna

Claims (16)

  1.  (A)炭素-炭素二重結合を含む官能基を末端に有するポリフェニレンエーテル樹脂と、
     (B)数平均分子量が60,000以上の熱可塑性エラストマーと、を含む樹脂組成物。
    (A) a polyphenylene ether resin having a functional group containing a carbon-carbon double bond at the end;
    (B) A resin composition containing a thermoplastic elastomer having a number average molecular weight of 60,000 or more.
  2.  前記(A)成分が、末端にスチレン構造を有する変性ポリフェニレンエーテルを含有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the component (A) contains a modified polyphenylene ether having a styrene structure at the end.
  3.  前記(A)成分が、末端に下記式(1)に示される基を有する変性ポリフェニレンエーテルを含有する、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (但し、前記式(1)中、Rは、水素原子又はアルキル基を示す。)
    The resin composition according to claim 1 or 2, wherein the component (A) contains a modified polyphenylene ether having a group represented by the following formula (1) at its terminal.
    Figure JPOXMLDOC01-appb-C000001
    (However, in the above formula (1), R 1 represents a hydrogen atom or an alkyl group.)
  4.  前記(B)成分が、スチレン系熱可塑性エラストマーである、請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the component (B) is a styrenic thermoplastic elastomer.
  5.  前記(B)成分が、水添スチレン系熱可塑性エラストマーである、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the component (B) is a hydrogenated styrenic thermoplastic elastomer.
  6.  前記(B)成分の前記水添スチレン系熱可塑性エラストマーが、スチレン/エチレン/ブチレン/スチレンブロックコポリマーである、請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the hydrogenated styrenic thermoplastic elastomer of the component (B) is a styrene/ethylene/butylene/styrene block copolymer.
  7.  前記(B)成分が、数平均分子量が100,000以上の熱可塑性エラストマーである、請求項1~6のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the component (B) is a thermoplastic elastomer having a number average molecular weight of 100,000 or more.
  8.  前記(A)成分と前記(B)成分との質量比が、5:95~70:30である、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the mass ratio of the component (A) to the component (B) is 5:95 to 70:30.
  9.  前記(B)成分の含有量が、前記(A)成分の含有量よりも多い、請求項1~8のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the content of the component (B) is greater than the content of the component (A).
  10.  (C)エポキシ樹脂を更に含む、請求項1~9のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, further comprising (C) an epoxy resin.
  11.  前記樹脂組成物中の前記(A)成分、前記(B)成分及び前記(C)成分の合計100質量部に対して、前記(C)成分の含有量が0.1~5.0質量部である、請求項10に記載の樹脂組成物。 The content of the component (C) is 0.1 to 5.0 parts by mass with respect to a total of 100 parts by mass of the component (A), the component (B), and the component (C) in the resin composition. The resin composition according to claim 10.
  12.  (D)硬化剤を更に含む、請求項1~11のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, further comprising (D) a curing agent.
  13.  請求項1~12のいずれか一項に記載の樹脂組成物を用いた接着フィルム。 An adhesive film using the resin composition according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか一項に記載の樹脂組成物を用いた層間接着用ボンディングシート。 An interlayer bonding sheet using the resin composition according to any one of claims 1 to 12.
  15.  請求項1~12のいずれか一項に記載の樹脂組成物からなるアンテナ付き半導体パッケージ用樹脂組成物。 A resin composition for a semiconductor package with an antenna, comprising the resin composition according to any one of claims 1 to 12.
  16.  請求項1~12のいずれか一項に記載の樹脂組成物の硬化物を含む、積層板又は半導体装置。 A laminate or a semiconductor device comprising a cured product of the resin composition according to any one of claims 1 to 12.
PCT/JP2023/024266 2022-08-31 2023-06-29 Resin composition, adhesive film, bonding sheet for interlayer adhesion, and resin composition for semiconductor package with antenna WO2024048055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022137783 2022-08-31
JP2022-137783 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048055A1 true WO2024048055A1 (en) 2024-03-07

Family

ID=90099499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024266 WO2024048055A1 (en) 2022-08-31 2023-06-29 Resin composition, adhesive film, bonding sheet for interlayer adhesion, and resin composition for semiconductor package with antenna

Country Status (1)

Country Link
WO (1) WO2024048055A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034195A (en) * 2013-08-07 2015-02-19 三菱樹脂株式会社 Fluorine-based resin porous body
JP2016027131A (en) * 2014-06-26 2016-02-18 住友電気工業株式会社 Adhesive composition, coverlay for printed wiring board, bonding film for printed wiring board, and printed wiring board
JP2016033189A (en) * 2014-07-31 2016-03-10 三菱樹脂株式会社 Paraffinic heat storage material composition and heat storage material
JP2016079354A (en) * 2014-10-22 2016-05-16 ナミックス株式会社 Resin composition, insulation film and semiconductor device using the same
JP2017125174A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Polyphenylene ether resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
WO2019151014A1 (en) * 2018-02-05 2019-08-08 デクセリアルズ株式会社 Adhesive composition, thermosetting adhesive sheet, and printed wiring board
WO2019230531A1 (en) * 2018-05-29 2019-12-05 ナミックス株式会社 Thermosetting resin composition, film containing same, and multilayer wiring board using same
JP2020007451A (en) * 2018-07-06 2020-01-16 株式会社日本触媒 Resin composition and production method thereof
WO2020096036A1 (en) * 2018-11-08 2020-05-14 日立化成株式会社 Resin composition, prepreg, laminate, resin film, multilayer printed wiring board, and multilayer printed wiring board for millimeter wave radar
JP2020143264A (en) * 2019-02-28 2020-09-10 太陽ホールディングス株式会社 Curable composition, dry film, cured product and electronic component
WO2021024364A1 (en) * 2019-08-06 2021-02-11 デクセリアルズ株式会社 Adhesive composition, thermally curable adhesive sheet, and printed wiring board
JP2022026390A (en) * 2020-07-31 2022-02-10 アイカ工業株式会社 Resin composition and adhesive sheet using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034195A (en) * 2013-08-07 2015-02-19 三菱樹脂株式会社 Fluorine-based resin porous body
JP2016027131A (en) * 2014-06-26 2016-02-18 住友電気工業株式会社 Adhesive composition, coverlay for printed wiring board, bonding film for printed wiring board, and printed wiring board
JP2016033189A (en) * 2014-07-31 2016-03-10 三菱樹脂株式会社 Paraffinic heat storage material composition and heat storage material
JP2016079354A (en) * 2014-10-22 2016-05-16 ナミックス株式会社 Resin composition, insulation film and semiconductor device using the same
JP2017125174A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Polyphenylene ether resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
WO2019151014A1 (en) * 2018-02-05 2019-08-08 デクセリアルズ株式会社 Adhesive composition, thermosetting adhesive sheet, and printed wiring board
WO2019230531A1 (en) * 2018-05-29 2019-12-05 ナミックス株式会社 Thermosetting resin composition, film containing same, and multilayer wiring board using same
JP2020007451A (en) * 2018-07-06 2020-01-16 株式会社日本触媒 Resin composition and production method thereof
WO2020096036A1 (en) * 2018-11-08 2020-05-14 日立化成株式会社 Resin composition, prepreg, laminate, resin film, multilayer printed wiring board, and multilayer printed wiring board for millimeter wave radar
JP2020143264A (en) * 2019-02-28 2020-09-10 太陽ホールディングス株式会社 Curable composition, dry film, cured product and electronic component
WO2021024364A1 (en) * 2019-08-06 2021-02-11 デクセリアルズ株式会社 Adhesive composition, thermally curable adhesive sheet, and printed wiring board
JP2022026390A (en) * 2020-07-31 2022-02-10 アイカ工業株式会社 Resin composition and adhesive sheet using the same

Similar Documents

Publication Publication Date Title
EP1260551B1 (en) Flame-retardant epoxy resin composition and laminate made with the same
KR102323672B1 (en) Resin composition, and insulating film and semiconductor device using same
JP5463110B2 (en) Coverlay film
CN112771110B (en) Resin composition, film, laminate, and semiconductor device
KR102138174B1 (en) Resin composition and adhesive film, coverlay film, and interlayer adhesive using resin composition
TWI577729B (en) Epoxy resin composition, adhesive film and cover lay film thereof
EP3467038B1 (en) Thermosetting resin compositin, prepreg, laminated board, printed wiring board, and high-speed communication-compatible module
JP6428082B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
JP7272068B2 (en) Resin compositions, prepregs, laminates, multilayer printed wiring boards and semiconductor packages
JP5405959B2 (en) Epoxy resin composition and adhesive film thereby
JP2021138849A (en) Resin composition, prepreg, laminate, resin film, printed wiring board, semiconductor package, and method for producing resin composition
JP6604565B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
WO2024048055A1 (en) Resin composition, adhesive film, bonding sheet for interlayer adhesion, and resin composition for semiconductor package with antenna
CN110709476A (en) Resin composition, insulating layer for wiring board, and laminate
JP6950233B2 (en) Thermosetting resin composition for adhesion of build-up film, thermosetting resin composition, prepreg, laminate, laminate, multilayer printed wiring board and semiconductor package
TW202411329A (en) Resin compositions, adhesive films, adhesive sheets for interlayer bonding, and resin compositions for semiconductor packages with antennas
WO2023053749A1 (en) Resin composition, adhesive film, bonding sheet for interlayer bonding, resin composition for semiconductor package with antenna, and semiconductor package with antenna
JP2023170864A (en) Resin composition, prepreg, laminate, resin film, printed wiring board, antenna device and antenna module
WO2022102781A1 (en) Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board, and semiconductor package
JP6857895B2 (en) Resin composition, thermosetting film, cured product, printed wiring board, semiconductor device
JP2019194345A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP5727325B2 (en) Thermosetting resin material and multilayer substrate
JP2020200406A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and module for high-speed communication
JP2020169276A (en) Resin composition, prepreg, laminated plate, multilayer printed wiring board and semiconductor package
JP2019099711A (en) Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859825

Country of ref document: EP

Kind code of ref document: A1