WO2023053749A1 - Resin composition, adhesive film, bonding sheet for interlayer bonding, resin composition for semiconductor package with antenna, and semiconductor package with antenna - Google Patents

Resin composition, adhesive film, bonding sheet for interlayer bonding, resin composition for semiconductor package with antenna, and semiconductor package with antenna Download PDF

Info

Publication number
WO2023053749A1
WO2023053749A1 PCT/JP2022/030845 JP2022030845W WO2023053749A1 WO 2023053749 A1 WO2023053749 A1 WO 2023053749A1 JP 2022030845 W JP2022030845 W JP 2022030845W WO 2023053749 A1 WO2023053749 A1 WO 2023053749A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
heat resistance
resistance test
loss tangent
dielectric loss
Prior art date
Application number
PCT/JP2022/030845
Other languages
French (fr)
Japanese (ja)
Inventor
遼 宇佐美
寛史 高杉
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2023053749A1 publication Critical patent/WO2023053749A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof

Definitions

  • the present invention relates to a resin composition, an adhesive film, a bonding sheet for interlayer adhesion, a resin composition for a semiconductor package with an antenna, and a semiconductor package with an antenna.
  • Patent Document 1 discloses a curable composition containing a specific polyphenylene ether, an epoxy resin, and an elastomer having reactive functional groups that react with epoxy groups.
  • a structure that shortens the wiring distance between the antenna and the IC to reduce conductor loss (in other words, less transmission loss) is required in terms of package technology. Therefore, in recent years, a semiconductor package with an antenna (for example, antenna-in-package (AiP) or antenna-on-package (AoP)) in which an antenna section is integrally formed with a semiconductor device section has been developed. In such a package, heat generated from the IC causes the temperature of the insulating layer around the antenna to be higher than that of the conventional structure.
  • IC means an integrated circuit.
  • the curable composition disclosed in Patent Document 1 includes a thermosetting resin having a styrene group at the end and a phenylene ether skeleton, and a hydrogenated polymer such as styrene/ethylene/butylene/styrene block copolymer (SEBS). It contains a styrenic thermoplastic elastomer.
  • SEBS styrene/ethylene/butylene/styrene block copolymer
  • SEBS styrene/ethylene/butylene/styrene block copolymer
  • the curable composition disclosed in Patent Document 1 has a low dielectric loss tangent, no mention is made of changes in the dielectric loss tangent when left at high temperatures or solder heat resistance.
  • Resin compositions intended for use in the high frequency range described above are required to have excellent solder heat resistance, low dielectric properties in the initial state, suppression of changes in dielectric properties when left at high temperatures for long periods of time, and the like. Development of a resin composition having excellent properties is desired.
  • the present invention has been made in view of such problems of the prior art.
  • INDUSTRIAL APPLICABILITY The present invention can be suitably used for adhesive films, bonding sheets for interlayer adhesion, interlayer adhesives, etc., has excellent solder heat resistance, has low dielectric properties in the initial state, and has excellent dielectric properties when left at high temperatures for a long period of time.
  • a resin composition capable of suppressing change.
  • the present invention provides an adhesive film, a bonding sheet for interlayer adhesion, a resin composition for a semiconductor package with an antenna, and a semiconductor package with an antenna using such a resin composition.
  • the following resin composition, adhesive film, bonding sheet for interlayer adhesion, resin composition for semiconductor package with antenna, and semiconductor package with antenna are provided.
  • [1] Contains (A) a polyphenylene ether having a styrene structure at its end and (B) a styrene-based elastomer having an amino group, and the content of the component (B) is less than 100 parts by mass of the component (A) On the other hand, the resin composition is 70 to 1100 parts by mass.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 which may be the same or different, are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group; —(O—X—O)— is represented by the above structural formula (2), and in the structural formula (2), R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different.
  • R 11 , R 12 and R 13 may be the same or different and may be a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group
  • R 18 and R 19 may be the same or different, a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group
  • Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom
  • a and b are integers of 0 to 300, at least one of which is not 0
  • c and d are integers of 0 or 1;
  • component (C) is 0.01 to 11 parts by mass with respect to a total of 100 parts by mass of component (A), component (B) and component (C).
  • a laminate or semiconductor device comprising a cured product of the resin composition according to any one of [1] to [9].
  • a resin composition for a semiconductor package with an antenna comprising the resin composition according to any one of [1] to [9].
  • “Amount of change in dielectric loss tangent before and after heat resistance test” "Dielectric loss tangent at frequency 10 GHz after heat resistance test” - "Dielectric loss tangent at frequency 10 GHz before heat resistance test”
  • the heat resistance test is performed under heating conditions of 125° C. and 1000 hours.
  • the resin composition of the present invention has excellent solder heat resistance, low dielectric properties in the initial state, and suppresses changes in dielectric properties when left at high temperatures for a long period of time. Therefore, the resin composition of the present invention can be suitably used for adhesive films, bonding sheets for interlayer adhesion, interlayer adhesives, and the like.
  • the adhesive film, the bonding sheet for interlayer adhesion, and the resin composition for a semiconductor package with an antenna of the present invention use the above resin composition of the present invention, are excellent in solder heat resistance, and have low dielectric properties in the initial state. In addition, it has the effect of suppressing the change in dielectric properties when left at high temperatures for a long period of time.
  • the antenna section is formed integrally with the semiconductor device section. is composed of a cured product of the resin composition described above. Therefore, the semiconductor package with an antenna of the present invention has excellent solder heat resistance, has low dielectric properties in the initial state, and suppresses changes in dielectric properties when left at high temperatures for a long period of time.
  • FIG. 1 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to one embodiment of the present invention
  • FIG. FIG. 10 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to another embodiment of the invention
  • One embodiment of the resin composition of the present invention is a resin composition containing (A) a polyphenylene ether having a styrene structure at its end and (B) a styrene elastomer having an amino group.
  • the (A) polyphenylene ether having a styrene structure at the terminal may be referred to as the (A) component.
  • the (B) amino group-containing styrene elastomer is sometimes referred to as the (B) component.
  • the content of component (B) is 70 to 1100 parts by mass per 100 parts by mass of component (A).
  • the resin composition of the present embodiment has excellent solder heat resistance, low dielectric properties in the initial state, and can suppress changes in dielectric properties when left at high temperatures for a long period of time.
  • the resin composition of the present embodiment is extremely excellent in soldering heat resistance by containing a polyphenylene ether having a styrene structure at its end as the component (A).
  • the resin composition of the present embodiment contains 70 to 1100 parts by mass of a styrene-based elastomer having an amino group as component (B) with respect to 100 parts by mass of component (A), thereby providing excellent solder heat resistance.
  • low dielectric properties are realized in the initial state, and changes in the dielectric properties during long-term high-temperature storage are effectively suppressed.
  • the resin composition of the present embodiment when a film made of the resin composition is left under conditions of 125° C. for 1000 hours, the change in the dielectric properties of the film from the initial value can be very effectively suppressed. can be done.
  • the resin composition of the present embodiment includes (C) an epoxy resin, (D) a polytetrafluoroethylene filler, (E) a curing catalyst, and (F) Other ingredients such as organic peroxides and (G) antioxidants may also be included.
  • C an epoxy resin
  • D a polytetrafluoroethylene filler
  • E a curing catalyst
  • F Other ingredients such as organic peroxides and (G) antioxidants may also be included.
  • the respective components described above may be referred to as components (C) to (G) as appropriate.
  • Component (A) is a polyphenylene ether having a styrene structure at its end.
  • Component (A) is not particularly limited as long as it has a styrene structure at its terminal.
  • the styrene structure may be an unsubstituted styrene group having no substituent or a styrene group having an arbitrary substituent.
  • component (A) for example, a compound having a structure represented by the following general formula (1) can be mentioned.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may be the same or different, and may be a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group. or a phenyl group.
  • -(O-X-O)- is represented by the above structural formula (2), in which R 8 , R 9 , R 10 , R 14 and R 15 are the same or different may be a halogen atom, an alkyl group having 6 or less carbon atoms , or a phenyl group; or a phenyl group.
  • -(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly
  • R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group
  • R 18 and R 19 may be the same or different. It is often a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom.
  • the compound represented by general formula (1) is as described in JP-A-2004-59644.
  • the compound represented by general formula (1) Since the compound represented by general formula (1) has styrene functional groups at both ends, the resin composition containing component (A) is easily cured by heating. From the viewpoint of curability, the compound represented by the general formula (1) preferably has hydrogen as R 1 to R 7 .
  • R 8 , R 9 , R 10 , R 14 and R 15 each have 3 carbon atoms.
  • the following alkyl groups are preferred, and methyl groups are particularly preferred.
  • R 11 , R 12 and R 13 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms, particularly preferably methyl groups.
  • structural formula (4) is mentioned.
  • R 16 and R 17 are preferably alkyl groups having 3 or less carbon atoms, methyl is particularly preferred.
  • R 18 and R 19 are preferably a hydrogen atom or an alkyl group having 3 or less carbon atoms, particularly preferably a methyl group.
  • the following structural formula (5) or structural formula (6) may be mentioned.
  • Z is, for example, an alkylene group having 3 or less carbon atoms, specifically a methylene group.
  • At least one of a and b represents an integer of 0 to 300, preferably an integer of 0 to 30.
  • the compound represented by general formula (1) preferably has a number average molecular weight of 1,000 to 3,000. Further, the compound represented by the general formula (1) is a functional group having vinyl groups at both ends, and has an equivalent weight per functional group (functional group equivalent weight) of 500 to 1500, which corresponds to 1/2 of the above molecular weight. things are appropriate.
  • the functional group equivalent indicates the degree of cross-linking density of the cured product, and when the functional group equivalent is 500 or more, an appropriate cross-linking density is obtained and sufficient mechanical strength is provided, so cracks occur when formed into a film. There is an advantage that the occurrence of such as can be avoided.
  • the number average molecular weight is a value obtained by using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • the compound represented by general formula (1) can be prepared by the method described in JP-A-2004-59644. For example, a reaction in which a polycondensate of 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol and 2,6-dimethylphenol is further reacted with chloromethylstyrene. The product can be used.
  • the compound represented by the general formula (1) may be used alone, or two or more of the compounds represented by the general formula (1) may be used in combination.
  • polyphenylene ether having a styrene structure at the end of component (A) trade names "OPE-2200” and “OPE-1200” manufactured by Mitsubishi Gas Chemical Company, Inc. can be mentioned.
  • Component (B) is a styrene-based elastomer having an amino group.
  • the styrene-based elastomer of the component (B) has an amino group as a functional group, thereby improving adhesion and soldering heat resistance.
  • (C) in the system to which the epoxy resin is added the reaction between the amino group and the epoxy resin can further improve the solder heat resistance.
  • the content of component (B) is 70 to 1100 parts by mass with respect to 100 parts by mass of component (A). By configuring in this way, it is possible to maintain excellent solder heat resistance, have low dielectric properties in the initial state, and suppress changes in dielectric properties when left at high temperatures for a long period of time. For example, if the content of component (B) is too high, the dielectric properties in the initial state will be low, but the solder heat resistance will be poor.
  • the content of component (B) is preferably 100 to 800 parts by mass, more preferably 200 to 600 parts by mass, with respect to 100 parts by mass of component (A). is more preferred.
  • component (B) is preferably 40 to 90 parts by mass, more preferably 60 to 85 parts by mass, when the amount of the resin composition excluding the filler is 100 parts by mass.
  • the styrene-based elastomer of component (B) is preferably a styrene-based elastomer having a double bond.
  • styrenic elastomers having double bonds include block copolymers containing at least one terminal block of styrene or its analogue block and at least one intermediate block of an elastomeric block of a conjugated diene. can. Examples include styrene/butadiene/styrene block copolymer (SBS) and styrene/butadiene/butylene/styrene block copolymer (SBBS).
  • a cured product of a resin composition containing such a styrene-based elastomer has excellent solder heat resistance.
  • the styrene ratio in component (B) is preferably 10 to 60%, more preferably 20 to 40%. When the styrene ratio of the component (B) is 20 to 40%, the film formability and workability are excellent.
  • the styrene-based elastomer having an amino group as component (B) is preferably a styrene/butadiene/butylene/styrene block copolymer (SBBS). That is, component (B) is preferably an amine-modified styrene/butadiene/butylene/styrene block copolymer (SBBS). Styrene/butadiene/butylene/styrene block copolymers (SBBS) with amine groups have good solder heat resistance, and since they have amino groups, they react with other components such as epoxy, resulting in better solder heat resistance and adhesion. become a thing.
  • the amine-modified styrene/butadiene/butylene/styrene block copolymer (SBBS) preferably has amino groups at its terminals.
  • the weight average molecular weight of component (B) is preferably 20,000 to 200,000, more preferably 30,000 to 150,000.
  • the weight average molecular weight is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. If the weight-average molecular weight is less than 20,000, the heat resistance and adhesion may deteriorate. On the other hand, if the weight average molecular weight is more than 200,000, the solubility in solvents may be poor, making it difficult to form a film.
  • [(C) component] (C) Component is an epoxy resin.
  • Epoxy resins are compounds having one or more epoxy groups in the molecule, and can be cured by forming a three-dimensional network structure by reacting the epoxy groups with heating.
  • the solder heat resistance can be further improved.
  • the epoxy resin as the component (C) it is possible to improve the adhesiveness even to the smooth surface of the adherend such as the glossy surface of copper.
  • the content of the epoxy resin of component (C) is not particularly limited, but it is 0.01 to 11 parts by mass per 100 parts by mass of components (A), (B) and (C). preferably 0.1 to 5 parts by mass, and even more preferably 0.5 to 3 parts by mass. If the content of component (C) is too high, the dielectric loss tangent of the cured product may become high.
  • epoxy resins include bisphenol compounds such as bisphenol A, bisphenol E, and bisphenol F, or derivatives thereof (eg, alkylene oxide adducts), hydrogenated bisphenol A, hydrogenated bisphenol E, hydrogenated bisphenol F, and cyclohexanediol.
  • the (C) component epoxy resin is preferably liquid at room temperature (25°C).
  • Component (D) is a polytetrafluoroethylene filler (hereinafter also referred to as "PTFE filler").
  • the PTFE filler of component (D) is added to the resin composition as a filler to improve the dielectric properties of the resin composition.
  • a PTFE filler it is possible to improve the dielectric properties such as dielectric constant ( ⁇ ) and dielectric loss tangent (tan ⁇ ) of the film formed using the resin composition.
  • the content of the PTFE filler of component (D) is not particularly limited, but the content in 100% by mass of the resin composition is preferably 0.01 to 60% by mass, more preferably 0.1 to 50% by mass. and more preferably 20 to 40% by mass. If the content of component (D) is too low, it may be difficult to obtain the effect of improving the dielectric properties of the PTFE filler. On the other hand, if the content of the component (D) is too high, it may become difficult to form a film from the resin composition.
  • the PTFE filler of component (D) preferably has an average particle size of 20 ⁇ m or less. When the average particle size of the PTFE filler is larger than 20 ⁇ m, it may become difficult to disperse it uniformly in the resin composition. More preferably, the PTFE filler has an average particle size of 0.01 to 10 ⁇ m.
  • the shape of the PTFE filler is not particularly limited, and may be spherical, amorphous, or scale-like.
  • the average particle diameter of the PTFE filler is a volume-based median diameter measured by a laser diffraction method after wet dispersion.
  • [(E) component] (E) Component is a curing catalyst.
  • the curing catalyst of the component (E) is not particularly limited as long as it is a curing catalyst that promotes general epoxy reaction, but an imidazole-based curing catalyst is more preferable because it enables appropriate adjustment of curability.
  • the imidazole-based curing catalyst may be imidazole, and imidazole adducts, inclusion imidazoles, microcapsule-type imidazoles, imidazole compounds coordinated with stabilizers, and the like can also be used. They have nitrogen atoms in their structure that have lone pairs of electrons that can activate epoxy groups and even other co-used epoxy resins, facilitating curing. be able to.
  • imidazole-based curing catalysts include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, 2- Phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methyl, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4
  • Adduct treatment, inclusion treatment with foreign molecules, microencapsulation treatment, or imidazole coordinated with a stabilizer is a modification of the imidazole. These can be hardened or accelerated while exhibiting excellent pot life in low-temperature regions by reducing the activity of imidazole by adduct treatment, inclusion treatment with foreign molecules, microencapsulation treatment, or by coordinating a stabilizer. Highly capable.
  • commercial products of imidazole include 2E4MZ, 2P4MZ, 2PZ-CN, C11Z-CNS, C11Z-A, 2MZA-PW, 2MA-OK, 2P4MHZ-PW, and 2PHZ-PW (above, Shikoku (manufactured by Kasei Kogyo Co., Ltd.), EH2021 (manufactured by ADEKA), and the like, but are not limited thereto.
  • imidazole adducts include, for example, PN-50, PN-50J, PN-40, PN-40J, PN-31, and PN-23, which have a ring-opening addition structure of an imidazole compound to an epoxy group of an epoxy resin.
  • PN-H manufactured by Ajinomoto Fine-Techno Co., Inc.
  • clathrate imidazoles include, for example, TIC-188, KM-188, HIPA-2P4MHZ, NIPA-2P4MHZ, TEP-2E4MZ, HIPA-2E4MZ, and NIPA-2E4MZ (manufactured by Nippon Soda Co., Ltd.). However, it is not limited to these.
  • Examples of commercial products of microcapsule-type imidazole include Novacure HX3721, HX3722, HX3742, HX3748 (manufactured by Asahi Kasei Corporation), LC-80 (manufactured by A&C Catalysts), and the like.
  • the content of the curing catalyst can be appropriately selected according to the type of curing catalyst used as component (E).
  • the content of the component (E) is preferably 0.001 to 1.0 parts by mass, more preferably 0.01 to 0.60 parts by mass when the amount of the resin composition other than the filler is 100 parts by mass.
  • the content of the imidazole-based curing catalyst is preferably 0.1 to 10% by mass, more preferably 1 to 6% by mass, relative to the epoxy resin. If the content of the component (E) is too small, the curability of the film produced using the resin composition may deteriorate, and the adhesiveness, toughness and heat resistance may deteriorate.
  • the shelf life of the film produced using the resin composition may be deteriorated, and the physical properties inherent in the resin may be impaired in the cured product, resulting in adhesiveness, toughness, etc. There is a risk of deterioration in durability and heat resistance.
  • [(F) component] (F) Component is an organic peroxide.
  • the content of the organic peroxide can be appropriately selected depending on the type, but is typically 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight of component (A). part is more preferred.
  • organic peroxides examples include benzoyl peroxide, isobutyryl peroxide, isononanoyl peroxide, decanoyl peroxide, lauroyl peroxide, parachlorobenzoyl peroxide, and di(3,5,5-trimethylhexanoyl) peroxide.
  • diacyl peroxides such as; 2,2-di(4,4-di-(di-tert-butylperoxy)cyclohexyl) cyclohexyl) propane and other peroxyketals; isopropyl purge carbonate, di-sec-butyl purge carbonate, Peroxydicarbonates such as di-2-ethylhexyl purgecarbonate, di-1-methylheptyl purgecarbonate, di-3-methoxybutyl purgecarbonate, dicyclohexyl purgecarbonate; tert-butyl perbenzoate, tert-butyl peracetate, tert -butyl per-2-ethylhexanoate, tert-butyl perisobutyrate, tert-butyl perpivalate, tert-butyl diperadipate, cumyl perneodecanoate, tert-butyl peroxybenzoate, 2,5-di
  • the organic peroxide used is not particularly limited, but when curing the resin composition, for example, a drying step of about 60 to 80 ° C. is often required, so the 10-hour half-life temperature is 100 ° C. It is preferable to use one having a temperature of up to 140°C. Furthermore, the 10-hour half-life temperature is more preferably 110 to 130°C.
  • component (F) Commercially available organic peroxides of component (F) (hereinafter referred to as product names) include Perbutyl H, Perbutyl Z, Perbutipacumyl P, Permyl D, Permyl H, and Perhexa C (manufactured by NOF Chemical Co., Ltd.). etc. can be mentioned.
  • the (G) component is an antioxidant. By containing such an antioxidant, oxidation of the resin composition can be reduced, and changes in dielectric properties due to long-term high-temperature storage can be further reduced.
  • antioxidants used as the component (G), but examples include phenol antioxidants, sulfur antioxidants, amine antioxidants, phosphorus antioxidants, and the like.
  • phenolic antioxidants include 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H, 3H,5H)-trione, 4,4′,4′′-(1-methylpropyl-3-ylidene)tris(6-butyl-m-cresol), 1,3,5-tris(3,5-di- tert-butyl-4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 6,6'-di-tert-butyl-4,4'-butylidenedi-m-cresol, octadecyl 3-(3,5- di-tert-butyl-4-hydroxyphenyl)propionate, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 3,9-bis ⁇ 2-[3-( 3-tert-but-but
  • Sulfur antioxidants include 2,2-bis ⁇ [3-(dodecyltino)-1-oxopropoxy]methyl ⁇ propane-1,3, diylbis[3-(dodecyltino)propionate], di(tridecyl) 3, 3'-thiodipropionate and the like.
  • Amine antioxidants include dinonyldiphenylamine, octylbutylphenylamine, 2,6-diterdobutylphenol and their derivatives.
  • Phosphorus antioxidants include 3,9-bis(octadecyloxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]udecane, 3,9-bis( 2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]udecane, 2,2′-methylenebis(4, 6-di-tert-butylphenyl)2-ethylhexylphosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(nonylphenyl)phosphite, tetra-dodecyl (propane-2,2-diylbis (4,1-phenylene))bis(phosphite), tetra-tridecyl(propane-2,2-diylbis(4,1-phen
  • antioxidants of component (G) include AO-20, AO-50, AO-80, AO-503, AO-523S, PEP-8, HP-10, TPP ( above, manufactured by ADEKA) and the like.
  • an antioxidant having a carbon chain with 10 or more carbon atoms such as an octadecyl group or a dodecyl group in its structure is preferable because of its good dielectric properties.
  • the antioxidant having a carbon chain of 10 or more carbon atoms has high compatibility with the component (A) and component (B), so that the antioxidant can be prevented from bleeding out of the resin composition.
  • the content of the antioxidant can be appropriately selected depending on the type, but is typically preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass, based on the total amount of the resin composition.
  • the resin composition of the present embodiment may further contain components other than components (A) to (G) described above.
  • components include various additives such as colorants, dispersants, flame retardants, silane coupling agents, rheology control agents, inorganic fillers and organic fillers.
  • the cured product of the resin composition of the present embodiment preferably has a dielectric loss tangent change of 0.0050 or less before and after the heat resistance test calculated by the following formula 1 of the cured product.
  • the amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 1 is more preferably 0.0040 or less, and even more preferably 0.0030 or less.
  • DSC differential scanning calorimetry
  • the cured product of the resin composition of the present embodiment has a dielectric loss tangent change rate of 400% or less before and after the heat resistance test, which is calculated by the following formula 2.
  • the rate of change in dielectric loss tangent before and after the heat resistance test calculated by Equation 2 below is more preferably 300% or less, and even more preferably 200% or less.
  • the resin composition of this embodiment can be produced by a conventional method.
  • the resin composition of the present embodiment can be produced by mixing each component described above using, for example, a Laikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-screw mixer, or the like. .
  • the resin composition of the present embodiment can be suitably used as a resin composition for adhesive films used in electronic parts.
  • the resin composition of the present embodiment can also be suitably used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer substrates.
  • the electronic parts to be adhered are not particularly limited, and examples thereof include ceramic substrates, organic substrates, semiconductor chips, and semiconductor devices.
  • the adhesive film, the bonding sheet for interlayer adhesion, the interlayer adhesive, and the like using the resin composition of the present embodiment are included as cured products of the resin composition in laminates and semiconductor devices that constitute electronic components and the like. Therefore, laminates and semiconductor devices that constitute electronic parts and the like preferably contain a cured product of the resin composition of the present embodiment.
  • the resin composition of the present embodiment can also be used as a resin composition (resin composition for a semiconductor package with an antenna) used for manufacturing a semiconductor package with an antenna. Details of the semiconductor package with an antenna will be described later.
  • the resin composition of the present embodiment is suitable as a resin composition for forming an insulating layer for connecting the semiconductor device portion and the antenna portion and an insulating layer inside the antenna portion in such a semiconductor package with an antenna. can be used for
  • FIG. 1 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to one embodiment of the present invention.
  • the semiconductor package 100 with an antenna has a semiconductor device portion 10 and an antenna portion 5 integrally formed thereon.
  • the antenna section 5 is connected to an RF chip 8 that performs millimeter wave communication by a wiring layer 4 having various wiring patterns.
  • An insulating layer 1 (first insulating layer 1A) for connection, a wiring layer 4 having a multi-layer structure arranged in a core substrate 2, and an insulating layer 1 configured to cover wiring vias in the wiring layer 4.
  • the first insulating layer 1A is not only provided so as to intervene between the semiconductor device section 10 and the antenna section 5, but is also provided so as to extend to the inside of the antenna section 5.
  • the wiring layer 4 on the other surface side of the semiconductor device portion 10 is connected to the RF chip 8 that performs millimeter wave transmission/reception communication. is connected to the electrical connection metal 7 .
  • the wiring layer 4 and the RF chip 8 are electrically connected via hemispherical connection pads 9 .
  • the electrical connection metal 7 is a terminal portion for physically and/or electrically connecting the semiconductor package 100 with an antenna and the outside according to its function through the electrical connection metal 7 .
  • the insulating layer 1 suppresses the attenuation of the current and millimeter wave signals output from the RF chip 8 during transmission, and transmits them to the antenna unit 5 to efficiently radiate them into space. It is required to reduce the loss (transmission loss) of the connection that connects the The same is true for reception.
  • the connection between the antenna unit 5 and the RF chip 8 is required. It is required to reduce the loss (transmission loss) of the part.
  • the antenna section 5 is arranged on one surface side of the semiconductor device section 10 as a patch antenna as a planar antenna.
  • an insulating layer 1 for example, a first insulating layer 1A for connecting the semiconductor device portion 10 and the antenna portion 5 and an insulating layer 1 inside the antenna portion 5 is insulated.
  • layer 1 There are particular main features regarding the construction of layer 1 .
  • the configuration of the insulating layer 1 in the semiconductor package 100 with an antenna of this embodiment will be described in more detail below.
  • the insulating layer 1 for connecting the semiconductor device portion 10 and the antenna portion 5 and the insulating layer 1 inside the antenna portion 5 may be collectively referred to simply as the "insulating layer 1".
  • At least one insulating layer 1 is made of a cured product of a resin composition configured in the same manner as the resin composition of the present invention described above. That is, the cured product constituting the insulating layer 1 is a cured resin composition containing polyphenylene ether having a styrene structure at the end as component (A) and a styrene elastomer having an amino group as component (B). It is a thing.
  • This resin composition is prepared so that the content of component (B) is 70 to 1100 parts by mass per 100 parts by mass of component (A).
  • the semiconductor package 100 with an antenna having the insulating layer 1 configured as described above has excellent solder heat resistance, has low dielectric properties in the initial state, and suppresses changes in dielectric properties when left at high temperatures for a long period of time. can be done.
  • the insulating layer 1 for connecting the antenna section 5 may be subjected to a solder test at 288 ° C., which was not necessary in the past. Solder heat resistance at heat resistant temperature is required.
  • the cured product constituting the insulating layer 1 has a dielectric loss tangent (tan ⁇ ) of 0.0020 or less measured at a frequency of 10 GHz by an SPDR (split post dielectric resonator) method. It is preferable that the solder heat resistance is 290° C. for 2 minutes or more.
  • the insulating layer 1 can be obtained by heating and curing a resin composition containing the above-described components (A) and (B).
  • the resin composition for forming the insulating layer 1 is a resin composition constructed in the same manner as the resin composition of the present invention described above.
  • the resin composition contains an epoxy resin as component (C), a polytetrafluoroethylene filler as component (D), and a curing agent as component (E).
  • Other components such as a catalyst, an organic peroxide as component (F), and an antioxidant as component (G) may be included.
  • the semiconductor package 100 with an antenna of this embodiment has excellent solder heat resistance and excellent dielectric properties in the initial state and after long-term high temperature exposure. It is suitably used as a semiconductor package in which the frequency) chip 8 is mounted.
  • the first insulating layer 1A for connecting the semiconductor device portion 10 and the antenna portion 5 the second insulating layer 1B configured to cover the wiring via in the wiring layer 4, the second Each of the third insulating layer 1C, the fourth insulating layer 1D, and the fifth insulating layer 1E is preferably configured in the same manner as the insulating layer 1 made of the cured material described above.
  • the method of manufacturing the insulating layer 1 in the semiconductor package 100 with an antenna is not particularly limited, but for example, the following method can be used.
  • a resin composition for a semiconductor package with an antenna containing at least component (A) and component (B) is prepared.
  • the "resin composition for a semiconductor package with an antenna” may be simply referred to as the "resin composition”.
  • the resin composition is preferably in the form of a film.
  • This film for a semiconductor package with an antenna is obtained by, for example, applying a solution obtained by adding an organic solvent to a resin composition containing components (A) and (B) on a PET film that is a support and has been subjected to a release treatment. and dried at 80 to 130°C.
  • the obtained film for a semiconductor package with an antenna is peeled off from the support, attached to the semiconductor device portion 10, and subjected to heat treatment at 200° C. for 30 to 60 minutes, for example, to produce a semiconductor package with an antenna. can.
  • FIG. 2 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to another embodiment of the invention.
  • a semiconductor package 200 with an antenna shown in FIG. 2 is obtained by integrally forming antenna sections 25 and 26 with a semiconductor device section 30 .
  • the antenna sections 25 and 26 are connected to an RF chip 28 that performs millimeter wave communication and a wiring layer 24 having various wiring patterns.
  • the semiconductor device portion 30 includes a core substrate 22, an antenna portion 25 provided on one surface side of the semiconductor device portion 30, and an insulating layer 21 for connecting the semiconductor device portion 30 and the antenna portion 25. have.
  • An RF chip 28 that performs 5G millimeter wave transmission/reception communication is accommodated in the core substrate 22 and is wired by a wiring layer 24 arranged in the core substrate 22 .
  • an antenna portion 26 is provided as a dipole antenna in which linear conductors (elements) are arranged symmetrically.
  • the other surface side of the semiconductor device portion 30 is connected to an electrical connection metal 27 for physically and/or electrically connecting the semiconductor package 200 with an antenna and the outside.
  • the semiconductor package 200 with an antenna as shown in FIG. By using a cured product of a resin composition containing, it is possible to have excellent solder heat resistance, have low dielectric properties in the initial state, and suppress changes in dielectric properties when left at high temperatures for a long period of time.
  • the cured material used as the insulating layer 21 the cured material having the same structure as the cured material used as the insulating layer 1 of the semiconductor package 100 with an antenna shown in FIG. 1 can be adopted.
  • the calculated amount of change in dielectric loss tangent before and after the heat resistance test is preferably 0.0050 or less.
  • the amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 3 is more preferably 0.0040 or less, and even more preferably 0.0030 or less.
  • the cured product of this resin composition has a dielectric loss tangent change rate of 400% or less before and after the heat resistance test, which is calculated by the following formula 4.
  • the rate of change in dielectric loss tangent before and after the heat resistance test calculated by Equation 4 below is more preferably 300% or less, and even more preferably 200% or less.
  • Example preparation After weighing and blending each component so that the blending ratio (parts by mass) shown in Tables 1 to 4 below, they are put into a reaction kettle heated to 80 ° C. and rotated at a rotation speed of 150 rpm. Pressure mixing was carried out for 4 hours. When the curing catalyst of component (E) and/or the organic peroxide of component (F) were added, the curing catalyst of component (E) and/or the organic peroxide of component (F) were added after cooling. . As described above, varnishes containing the resin compositions of Examples 1 to 16 and Comparative Examples 1 to 7 were prepared.
  • the raw materials used to prepare the resin compositions in Examples 1-16 and Comparative Examples 1-7 are as follows.
  • A1 trade name "OPE-2200” manufactured by Mitsubishi Gas Chemical Company.
  • A2 manufactured by Mitsubishi Gas Chemical Company, trade name "OPE-1200”.
  • A'3 Trade name "Noryl SA90” manufactured by SABIC Japan.
  • A'4 Trade name "Noryl SA9000” manufactured by SABIC Japan.
  • B1 Styrene-based elastomer having an amino group (SBBS), manufactured by Asahi Kasei Chemicals, trade name "MP10". (Styrene ratio: 30%) Molecular weight: Mw: 52,000.
  • SB'3 Styrene-based elastomer (SBS (styrene ratio: 43%)) manufactured by JSR, trade name "TR2003".
  • B'3 Styrene-based elastomer (SBBS (styrene ratio: 30%)) manufactured by Asahi Kasei Chemicals, trade name "P1500”.
  • B'4 Styrene-based elastomer (SEBS (styrene ratio: 30%)) manufactured by Kraton Polymer Co., Ltd., trade name "G1652”.
  • C1 Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name "828EL”.
  • C2 Biphenyl-type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name "NC3000H”.
  • C3 Naphthalene-type epoxy resin, manufactured by DIC, trade name "HP-4032D”.
  • C4 novolac type epoxy resin, trade name "EPPN-502H” manufactured by Nippon Kayaku Co., Ltd.;
  • the column “ratio of raw materials” in Tables 1 to 4 shows the ratio of the raw materials used to prepare the resin compositions in Examples 1 to 16 and Comparative Examples 1 to 7.
  • the ratios in each column of "raw material ratio” in Tables 1 to 4 are as follows.
  • the column of "B/A x 100 (mass ratio)” indicates the content (parts by mass) of component (B) with respect to 100 parts by mass of component (A).
  • the column of "B/(A+B) x 100 (mass ratio)” indicates the content (parts by mass) of component (B) with respect to a total of 100 parts by mass of components (A) and (B).
  • the column “C / (A + B + C) ⁇ 100 (mass ratio)” shows the content (parts by mass) of component (B) with respect to a total of 100 parts by mass of components (A), (B) and (C). .
  • the varnish containing the resin composition prepared as described above is applied to one side of the support (PET film subjected to release treatment) and dried at 100° C. to form an adhesive film with the support. Obtained.
  • dielectric constant ( ⁇ ) and dielectric loss tangent (tan ⁇ ) were measured before and after the heat resistance test described below. Also, from the dielectric loss tangent (tan ⁇ ) before and after the heat resistance test, the amount of change in the dielectric loss tangent before and after the heat resistance test and the rate of change (%) in the dielectric loss tangent before and after the heat resistance test were calculated.
  • the amount of change in the dielectric loss tangent before and after the heat resistance test is obtained by subtracting the value of the dielectric loss tangent at a frequency of 10 GHz before the heat resistance test from the dielectric loss tangent at a frequency of 10 GHz after the heat resistance test (heating condition of 125° C. for 1000 hours). Also, the rate of change in dielectric loss before and after the heat resistance test is obtained by dividing the amount of change in the dielectric loss tangent before and after the heat resistance test by the value of the dielectric loss tangent at a frequency of 10 GHz before the heat resistance test (heating condition of 125°C for 1000 hours). is preferably 0.0050 or less, more preferably 0.0040 or less, and even more preferably 0.0030 or less. The rate of change in dielectric loss tangent before and after the heat resistance test is preferably 400% or less, more preferably 300% or less, and even more preferably 200% or less. Each result is shown in Tables 1 to 4.
  • the adhesive film before the heat resistance test was heat-cured at 200° C. for 60 minutes at 10 kgf/cm 2 , peeled off from the support, and then cut out from the adhesive film into a test piece (50 ⁇ 0.5 mm ⁇ 100 ⁇ 2 mm), Thickness was measured.
  • the dielectric constant ( ⁇ ) and dielectric loss tangent (tan ⁇ ) of the film whose thickness was measured were measured by the dielectric resonator method (SPDR method). In the measurement by the dielectric resonator method, the measurement frequency was 10 GHz.
  • the dielectric constant ( ⁇ ) is preferably 2.6 or less.
  • the dielectric loss tangent (tan ⁇ ) is preferably 0.0020 or less, more preferably 0.0010 or less.
  • dielectric constant ( ⁇ ), dielectric loss tangent (tan ⁇ ) A heat resistance test was performed by placing the adhesive film in a constant temperature bath at 125° C. and holding it for 1000 hours. After conducting such a heat resistance test, the adhesive film was taken out from the constant temperature bath, and when the surface temperature of the adhesive film reached room temperature, the dielectric resonator method (SPDR method) was performed. , the dielectric constant ( ⁇ ) and dielectric loss tangent (tan ⁇ ) were measured.
  • the dielectric constant ( ⁇ ) is preferably 2.6 or less.
  • the dielectric loss tangent (tan ⁇ ) is preferably 0.0050 or less, more preferably 0.0040 or less, and even more preferably 0.0030 or less.
  • solder heat resistance It was carried out according to JIS C5012 (1993). Specifically, a copper foil was pasted on both sides of the adhesive film with the roughened surface facing inward, and was thermocompressed with a press. The thermocompression bonding conditions were 200° C., 60 minutes, and 10 kgf/cm 2 . The obtained test piece was cut into a size of 25 mm ⁇ 25 mm, floated in a solder bath heated to 288° C., and the presence or absence of swelling was confirmed for 4 minutes. The results (seconds) shown in Tables 1 to 4 show the time (seconds) until the test pieces blister visually. In addition, when swelling did not generate
  • the resin compositions of Examples 1 to 16 consisted of polyphenylene ether having a styrene structure at the terminal as component (A) and a styrene elastomer having an amino group as component (B). and was included.
  • the content of component (B) with respect to 100 parts by mass of component (A) is within a specific numerical range.
  • dielectric properties permittivity ( ⁇ ) and dielectric loss tangent (tan ⁇ )
  • the resin compositions of Examples 1 to 16 show a small amount of change in dielectric loss tangent before and after the heat resistance test, and the change rate (%) of the dielectric loss tangent before and after the heat resistance test is a small value of 400% or less at maximum. there were.
  • all the examples except Example 3 showed a very small value of 300% or less at the maximum of the rate of change (%).
  • the resin composition of Example 4 had a relatively low content of the component (B) and tended to have slightly higher dielectric properties.
  • the resin composition of Example 5 had a relatively large content of the component (B) and tended to have low dielectric properties.
  • a polyphenylene ether having a terminal hydroxyl group (OH group) was used as the (A') component instead of a polyphenylene ether having a styrene structure at the terminal.
  • a polyphenylene ether having a terminal methacrylic group was used as the component (A') instead of the polyphenylene ether having a terminal styrene structure.
  • the resin compositions of Comparative Examples 1 and 2 were extremely poor in solder heat resistance.
  • the resin composition of Comparative Example 1 exhibited a high dielectric loss tangent (tan ⁇ ) before the heat resistance test and a high dielectric constant ( ⁇ ) after the heat resistance test.
  • the resin composition of Comparative Example 2 exhibited a high dielectric constant ( ⁇ ) after the heat resistance test.
  • the content of component (B) was 61.67 parts by mass with respect to 100 parts by mass of component (A).
  • the resin composition of Comparative Example 6 was inferior in soldering heat resistance and showed a high dielectric loss tangent (tan ⁇ ) before the heat resistance test.
  • the content of component (B) was 1895 parts by mass with respect to 100 parts by mass of component (A).
  • the resin composition of Comparative Example 7 was extremely poor in solder heat resistance.
  • the resin composition of the present invention can be used as a resin composition for adhesive films used in electronic parts.
  • the resin composition of the present invention can also be used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer substrates.
  • the semiconductor package with an antenna of the present invention can be used as a high-frequency substrate on which an RF chip that performs 5G millimeter wave transmission/reception communication is mounted.
  • the resin composition for a semiconductor package with an antenna of the present invention can be used for the insulating layer of the semiconductor package with an antenna of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a resin composition that has excellent resistance to soldering heat, has a low dielectric characteristic at an initial state, and can suppress changes in dielectric characteristics when left for an extended period at a high temperature. The composition includes: (A) polyphenylene ether having a styrene structure at an end; and (B) styrene elastomer having an amino group, where the content of component (B) is 70-1100 parts by mass with respect to 100 parts by mass of component (A).

Description

樹脂組成物、接着フィルム、層間接着用ボンディングシート、アンテナ付き半導体パッケージ用樹脂組成物及びアンテナ付き半導体パッケージResin composition, adhesive film, bonding sheet for interlayer adhesion, resin composition for semiconductor package with antenna, and semiconductor package with antenna
 本発明は、樹脂組成物、接着フィルム、層間接着用ボンディングシート、アンテナ付き半導体パッケージ用樹脂組成物及びアンテナ付き半導体パッケージに関する。 The present invention relates to a resin composition, an adhesive film, a bonding sheet for interlayer adhesion, a resin composition for a semiconductor package with an antenna, and a semiconductor package with an antenna.
 現在、電気・電子機器分野における伝送信号の高速化要求に伴い、伝送信号の顕著な高周波化が進んでいる。そして、このような高周波化に対応するため、高周波領域での使用を見据えた樹脂組成物の開発も種々進められている(例えば、特許文献1参照)。特許文献1には、特定のポリフェニレンエーテルと、エポキシ樹脂と、エポキシ基と反応する反応性官能基を有するエラストマーと、を含有する硬化性組成物が開示されている。  Currently, due to the demand for higher speed transmission signals in the field of electrical and electronic equipment, the frequency of transmission signals is increasing significantly. In order to cope with such a high frequency, various resin compositions have been developed in anticipation of use in a high frequency region (see, for example, Patent Document 1). Patent Document 1 discloses a curable composition containing a specific polyphenylene ether, an epoxy resin, and an elastomer having reactive functional groups that react with epoxy groups.
 また、近年、次世代の通信技術として5Gの標準化が進み、高周波対応の製品を実現する市場要求は高まりつつある。多素子アンテナ技術、高速伝送等の技術開発が加速し、また、高周波帯の利用により通信容量も増え、情報処理能力の向上と同時に高周波ノイズや熱の発生量も増加し、その対策も大きな課題となっている。 In addition, in recent years, the standardization of 5G as a next-generation communication technology has progressed, and the market demand for realizing products that support high frequencies is increasing. Technological developments such as multi-element antenna technology and high-speed transmission have accelerated, and the use of high-frequency bands has increased communication capacity. Along with the improvement in information processing capability, the amount of high-frequency noise and heat generated has also increased, and countermeasures are also a major issue. It has become.
 例えば、5Gミリ波用アンテナでは、パッケージ技術に関してアンテナとICの配線距離を短くして導体損失を低くする(別言すれば、伝送ロスの少ない)構造が必要とされている。このため、近年、アンテナ部が半導体装置部に一体に形成されたアンテナ付き半導体パッケージ(例えば、アンテナ・イン・パッケージ(AiP)やアンテナ・オン・パッケージ(AoP))が開発されている。このようなパッケージでは、ICからの発熱によりアンテナ周辺の絶縁層も従来構造よりも高温になるため、高温環境下に置かれても誘電損失が小さいことが求められる。なお、「IC」とは、集積回路(Integrated Circuit)のことである。 For example, in 5G millimeter-wave antennas, a structure that shortens the wiring distance between the antenna and the IC to reduce conductor loss (in other words, less transmission loss) is required in terms of package technology. Therefore, in recent years, a semiconductor package with an antenna (for example, antenna-in-package (AiP) or antenna-on-package (AoP)) in which an antenna section is integrally formed with a semiconductor device section has been developed. In such a package, heat generated from the IC causes the temperature of the insulating layer around the antenna to be higher than that of the conventional structure. Note that "IC" means an integrated circuit.
特開2016-089137号公報JP 2016-089137 A
 しかしながら、従来の樹脂組成物からなる接着剤や接着フィルムは、長期間高温状態に曝されると誘電特性が悪化してしまうという問題があった。このため、従来の樹脂組成物からなる接着剤や接着フィルムは、設計時のパフォーマンスを維持できなくなってしまうことがあった。 However, conventional adhesives and adhesive films made of resin compositions have the problem that their dielectric properties deteriorate when exposed to high temperatures for a long period of time. For this reason, the adhesives and adhesive films made of conventional resin compositions may not be able to maintain the performance at the time of design.
 例えば、特許文献1に開示された硬化性組成物は、末端にスチレン基を有しフェニレンエーテル骨格を有する熱硬化性樹脂と、スチレン/エチレン/ブチレン/スチレンブロックコポリマー(SEBS)等の水添されたスチレン系熱可塑性エラストマーを含むものである。この特許文献1に開示された硬化性組成物は、誘電正接は低いが高温放置での誘電正接の変化やはんだ耐熱性については言及されていない。 For example, the curable composition disclosed in Patent Document 1 includes a thermosetting resin having a styrene group at the end and a phenylene ether skeleton, and a hydrogenated polymer such as styrene/ethylene/butylene/styrene block copolymer (SEBS). It contains a styrenic thermoplastic elastomer. Although the curable composition disclosed in Patent Document 1 has a low dielectric loss tangent, no mention is made of changes in the dielectric loss tangent when left at high temperatures or solder heat resistance.
 上述したような高周波領域での使用を見据えた樹脂組成物は、優れたはんだ耐熱性、初期状態における低い誘電特性、長期高温放置での誘電特性の変化抑制などが求められており、これらの各種特性に優れた樹脂組成物の開発が切望されている。 Resin compositions intended for use in the high frequency range described above are required to have excellent solder heat resistance, low dielectric properties in the initial state, suppression of changes in dielectric properties when left at high temperatures for long periods of time, and the like. Development of a resin composition having excellent properties is desired.
 本発明は、このような従来技術の有する問題点に鑑みてなされたものである。本発明は、接着フィルム、層間接着用ボンディングシート、層間接着剤などに好適に用いることができ、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制することが可能な樹脂組成物を提供する。更に、本発明は、このような樹脂組成物を用いた接着フィルム、層間接着用ボンディングシート、アンテナ付き半導体パッケージ用樹脂組成物及びアンテナ付き半導体パッケージを提供する。 The present invention has been made in view of such problems of the prior art. INDUSTRIAL APPLICABILITY The present invention can be suitably used for adhesive films, bonding sheets for interlayer adhesion, interlayer adhesives, etc., has excellent solder heat resistance, has low dielectric properties in the initial state, and has excellent dielectric properties when left at high temperatures for a long period of time. Provided is a resin composition capable of suppressing change. Furthermore, the present invention provides an adhesive film, a bonding sheet for interlayer adhesion, a resin composition for a semiconductor package with an antenna, and a semiconductor package with an antenna using such a resin composition.
 本発明によれば、以下に示す樹脂組成物、接着フィルム、層間接着用ボンディングシート、アンテナ付き半導体パッケージ用樹脂組成物及びアンテナ付き半導体パッケージが提供される。 According to the present invention, the following resin composition, adhesive film, bonding sheet for interlayer adhesion, resin composition for semiconductor package with antenna, and semiconductor package with antenna are provided.
[1] (A)末端にスチレン構造を有するポリフェニレンエーテルと、(B)アミノ基を有するスチレン系エラストマーと、を含み、前記(B)成分の含有量が、前記(A)成分100質量部に対して、70~1100質量部である、樹脂組成物。 [1] Contains (A) a polyphenylene ether having a styrene structure at its end and (B) a styrene-based elastomer having an amino group, and the content of the component (B) is less than 100 parts by mass of the component (A) On the other hand, the resin composition is 70 to 1100 parts by mass.
[2] 前記(A)成分が、下記一般式(1)で示される構造である、請求項1に記載の樹脂組成物。 [2] The resin composition according to claim 1, wherein the component (A) has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)中、
 R、R、R、R、R、R、Rは、同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
 -(O-X-O)-は、上記構造式(2)で示され、当該構造式(2)中、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
 -(Y-O)-は、上記構造式(3)で示される1種類の構造、又は、上記構造式(3)で示される2種類以上の構造がランダムに配列したものであり、当該構造式(3)中、R16、R17は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R18、R19は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
 Zは、炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
 a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、c、dは、0又は1の整数を示す。
In the above general formula (1),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , which may be the same or different, are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group;
—(O—X—O)— is represented by the above structural formula (2), and in the structural formula (2), R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different. R 11 , R 12 and R 13 may be the same or different and may be a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group. is the basis,
-(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly, and the structure In formula (3), R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, R 18 and R 19 may be the same or different, a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group;
Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom;
a and b are integers of 0 to 300, at least one of which is not 0; c and d are integers of 0 or 1;
[3] (C)エポキシ樹脂を更に含む、前記[1]又は[2]に記載の樹脂組成物。 [3] The resin composition according to [1] or [2] above, further comprising (C) an epoxy resin.
[4] 前記(C)成分の含有量が、前記(A)成分、前記(B)成分及び前記(C)成分の合計100質量部に対して、0.01~11質量部である、前記[3]に記載の樹脂組成物。 [4] The content of component (C) is 0.01 to 11 parts by mass with respect to a total of 100 parts by mass of component (A), component (B) and component (C). The resin composition according to [3].
[5] 前記(B)成分のアミノ基を有するスチレン系エラストマーが、スチレン/ブタジエン/ブチレン/スチレンブロックコポリマーである、前記[1]~[4]のいずれかに記載の樹脂組成物。 [5] The resin composition according to any one of [1] to [4] above, wherein the amino group-containing styrene elastomer of component (B) is a styrene/butadiene/butylene/styrene block copolymer.
[6] (D)ポリテトラフルオロエチレンフィラーを更に含む、前記[1]~[5]のいずれかに記載の樹脂組成物。 [6] The resin composition according to any one of [1] to [5], further comprising (D) a polytetrafluoroethylene filler.
[7] (E)硬化触媒を更に含む、前記[1]~[6]のいずれかに記載の樹脂組成物。 [7] The resin composition according to any one of [1] to [6], further comprising (E) a curing catalyst.
[8] (F)有機過酸化物を更に含む、前記[1]~[7]のいずれかに記載の樹脂組成物。 [8] (F) The resin composition according to any one of [1] to [7], further comprising an organic peroxide.
[9] (G)酸化防止剤を更に含む、前記[1]~[8]のいずれかに記載の樹脂組成物。 [9] The resin composition according to any one of [1] to [8], further comprising (G) an antioxidant.
[10] 前記[1]~[9]のいずれかに記載の樹脂組成物を用いた接着フィルム。 [10] An adhesive film using the resin composition according to any one of [1] to [9] above.
[11] 前記[1]~[9]のいずれか一項に記載の樹脂組成物を用いた層間接着用ボンディングシート。 [11] A bonding sheet for interlayer adhesion using the resin composition according to any one of [1] to [9].
[12] 前記[1]~[9]のいずれかに記載の樹脂組成物の硬化物を含む、積層板又は半導体装置。 [12] A laminate or semiconductor device comprising a cured product of the resin composition according to any one of [1] to [9].
[13] 前記[1]~[9]のいずれかに記載の樹脂組成物を用いた層間接着剤。 [13] An interlayer adhesive using the resin composition according to any one of [1] to [9].
[14] 前記[1]~[9]のいずれかに記載の樹脂組成物からなるアンテナ付き半導体パッケージ用樹脂組成物。 [14] A resin composition for a semiconductor package with an antenna, comprising the resin composition according to any one of [1] to [9].
[15] 前記[1]~[9]のいずれかに記載の樹脂組成物の硬化物であって、前記硬化物の下記計算式1で算出される耐熱試験前後の誘電正接の変化量が0.0050以下である、硬化物。
 [計算式1]
 「耐熱試験前後の誘電正接の変化量」=「耐熱試験後の周波数10GHzの誘電正接」-「耐熱試験前の周波数10GHzの誘電正接」
 前記計算式1において、耐熱試験は、125℃、1000時間の加熱条件にて行う。
[15] A cured product of the resin composition according to any one of the above [1] to [9], wherein the amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 1 of the cured product is 0 A cured product of 0.0050 or less.
[Formula 1]
"Amount of change in dielectric loss tangent before and after heat resistance test" = "Dielectric loss tangent at frequency 10 GHz after heat resistance test" - "Dielectric loss tangent at frequency 10 GHz before heat resistance test"
In Formula 1, the heat resistance test is performed under heating conditions of 125° C. and 1000 hours.
[16] 前記硬化物の下記計算式2で算出される前記耐熱試験前後の誘電正接の変化率が400%以下である、前記[15]に記載の硬化物。
 [計算式2]
 「耐熱試験前後の誘電正接の変化率(%)」=「耐熱試験前後の誘電正接の変化量」/「耐熱試験前の周波数10GHzの誘電正接」×100
 前記計算式2において、耐熱試験は、125℃、1000時間の加熱条件にて行い、耐熱試験前後の誘電正接の変化量は、前記計算式1で算出された値である。
[16] The cured product according to [15], wherein the rate of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 2 of the cured product is 400% or less.
[Formula 2]
"Rate of change in dielectric loss tangent before and after heat resistance test (%)" = "Amount of change in dielectric loss tangent before and after heat resistance test" / "Dielectric loss tangent at frequency 10 GHz before heat resistance test" x 100
In Equation 2, the heat resistance test was performed under the heating conditions of 125° C. and 1000 hours, and the amount of change in dielectric loss tangent before and after the heat resistance test is the value calculated by Equation 1 above.
[17] 半導体装置部にアンテナ部が一体的に形成されたアンテナ付き半導体パッケージであって、前記半導体装置部と前記アンテナ部とを接続するための絶縁層、及び前記アンテナ部内部の絶縁層のうちの少なくとも一方が、(A)末端にスチレン構造を有するポリフェニレンエーテルと、(B)アミノ基を有するスチレン系エラストマーと、を含む樹脂組成物の硬化物であり、前記樹脂組成物が、前記(A)成分100質量部に対して、前記(B)成分を70~1100質量部含む、アンテナ付き半導体パッケージ。 [17] A semiconductor package with an antenna in which an antenna section is integrally formed with a semiconductor device section, wherein an insulating layer for connecting the semiconductor device section and the antenna section and an insulating layer inside the antenna section At least one of them is a cured product of a resin composition containing (A) a polyphenylene ether having a styrene structure at its end and (B) a styrene elastomer having an amino group, and the resin composition comprises the ( A semiconductor package with an antenna, containing 70 to 1100 parts by mass of component (B) with respect to 100 parts by mass of component A).
[18] 前記硬化物の下記計算式3で算出される耐熱試験前後の誘電正接の変化量が0.0050以下である、前記[17]に記載のアンテナ付き半導体パッケージ。
 [計算式3]
 「耐熱試験前後の誘電正接の変化量」=「耐熱試験後の周波数10GHzの誘電正接」-「耐熱試験前の周波数10GHzの誘電正接」
 前記計算式3において、耐熱試験は、125℃、1000時間の加熱条件にて行う。
[18] The semiconductor package with an antenna according to [17], wherein the cured product has a dielectric loss tangent change of 0.0050 or less before and after the heat resistance test calculated by the following formula 3.
[Formula 3]
"Amount of change in dielectric loss tangent before and after heat resistance test" = "Dielectric loss tangent at frequency 10 GHz after heat resistance test" - "Dielectric loss tangent at frequency 10 GHz before heat resistance test"
In the calculation formula 3, the heat resistance test is performed under heating conditions of 125° C. and 1000 hours.
[19] 前記硬化物の下記計算式4で算出される前記耐熱試験前後の誘電正接の変化率が400%以下である、前記[18]に記載のアンテナ付き半導体パッケージ。
 [計算式4]
 「耐熱試験前後の誘電正接の変化率(%)」=「耐熱試験前後の誘電正接の変化量」/「耐熱試験前の周波数10GHzの誘電正接」×100
 前記計算式4において、耐熱試験は、125℃、1000時間の加熱条件にて行い、耐熱試験前後の誘電正接の変化量は、前記計算式3で算出された値である。
[19] The semiconductor package with an antenna according to [18], wherein the rate of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 4 of the cured product is 400% or less.
[Formula 4]
"Rate of change in dielectric loss tangent before and after heat resistance test (%)" = "Amount of change in dielectric loss tangent before and after heat resistance test" / "Dielectric loss tangent at frequency 10 GHz before heat resistance test" x 100
In Equation 4, the heat resistance test was performed under the heating conditions of 125° C. and 1000 hours, and the amount of change in dielectric loss tangent before and after the heat resistance test is the value calculated by Equation 3 above.
 本発明の樹脂組成物は、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制するという効果を奏する。このため、本発明の樹脂組成物は、接着フィルム、層間接着用ボンディングシート、層間接着剤などに好適に用いることができる。また、本発明の接着フィルム、層間接着用ボンディングシート、及びアンテナ付き半導体パッケージ用樹脂組成物は、上述した本発明の樹脂組成物が用いれ、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制するという効果を奏する。 The resin composition of the present invention has excellent solder heat resistance, low dielectric properties in the initial state, and suppresses changes in dielectric properties when left at high temperatures for a long period of time. Therefore, the resin composition of the present invention can be suitably used for adhesive films, bonding sheets for interlayer adhesion, interlayer adhesives, and the like. In addition, the adhesive film, the bonding sheet for interlayer adhesion, and the resin composition for a semiconductor package with an antenna of the present invention use the above resin composition of the present invention, are excellent in solder heat resistance, and have low dielectric properties in the initial state. In addition, it has the effect of suppressing the change in dielectric properties when left at high temperatures for a long period of time.
 本発明のアンテナ付き半導体パッケージは、半導体装置部にアンテナ部が一体的に形成されたものであり、半導体装置部とアンテナ部とを接続するための絶縁層、及びアンテナ部内部の絶縁層のうちの少なくとも一方が、上述した樹脂組成物の硬化物によって構成されている。このため、本発明のアンテナ付き半導体パッケージは、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制するという効果を奏する。 In the semiconductor package with an antenna of the present invention, the antenna section is formed integrally with the semiconductor device section. is composed of a cured product of the resin composition described above. Therefore, the semiconductor package with an antenna of the present invention has excellent solder heat resistance, has low dielectric properties in the initial state, and suppresses changes in dielectric properties when left at high temperatures for a long period of time.
本発明の一の実施形態のアンテナ付き半導体パッケージを示す模式的部分断面図である。1 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to one embodiment of the present invention; FIG. 本発明の他の実施形態のアンテナ付き半導体パッケージを示す模式的部分断面図である。FIG. 10 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to another embodiment of the invention;
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。したがって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. Therefore, it is understood that the following modifications, improvements, etc., to the following embodiments are also included in the scope of the present invention without departing from the spirit of the present invention, based on the ordinary knowledge of those skilled in the art. should.
〔樹脂組成物〕
 本発明の樹脂組成物の一の実施形態は、(A)末端にスチレン構造を有するポリフェニレンエーテルと、(B)アミノ基を有するスチレン系エラストマーと、を含む樹脂組成物である。以下、(A)末端にスチレン構造を有するポリフェニレンエーテルを(A)成分ということがある。同様に、(B)アミノ基を有するスチレン系エラストマーを(B)成分ということがある。本実施形態の樹脂組成物は、(B)成分の含有量が、(A)成分100質量部に対して、70~1100質量部である。
[Resin composition]
One embodiment of the resin composition of the present invention is a resin composition containing (A) a polyphenylene ether having a styrene structure at its end and (B) a styrene elastomer having an amino group. Hereinafter, the (A) polyphenylene ether having a styrene structure at the terminal may be referred to as the (A) component. Similarly, the (B) amino group-containing styrene elastomer is sometimes referred to as the (B) component. In the resin composition of the present embodiment, the content of component (B) is 70 to 1100 parts by mass per 100 parts by mass of component (A).
 本実施形態の樹脂組成物は、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制することができる。特に、本実施形態の樹脂組成物は、(A)成分として末端にスチレン構造を有するポリフェニレンエーテルを含むことにより、はんだ耐熱性に極めて優れている。更に、本実施形態の樹脂組成物は、(A)成分100質量部に対して、(B)成分としてのアミノ基を有するスチレン系エラストマーを70~1100質量部含むことで、優れたはんだ耐熱性を有しつつ、初期状態において低い誘電特性を実現し、且つ長期高温放置での誘電特性の変化が有効に抑制されたものとなっている。例えば、本実施形態の樹脂組成物によれば、125℃の条件下に樹脂組成物からなるフィルムを1000時間放置した際、当該フィルムの誘電特性の初期値からの変化を極めて有効に抑制することができる。 The resin composition of the present embodiment has excellent solder heat resistance, low dielectric properties in the initial state, and can suppress changes in dielectric properties when left at high temperatures for a long period of time. In particular, the resin composition of the present embodiment is extremely excellent in soldering heat resistance by containing a polyphenylene ether having a styrene structure at its end as the component (A). Furthermore, the resin composition of the present embodiment contains 70 to 1100 parts by mass of a styrene-based elastomer having an amino group as component (B) with respect to 100 parts by mass of component (A), thereby providing excellent solder heat resistance. In addition, low dielectric properties are realized in the initial state, and changes in the dielectric properties during long-term high-temperature storage are effectively suppressed. For example, according to the resin composition of the present embodiment, when a film made of the resin composition is left under conditions of 125° C. for 1000 hours, the change in the dielectric properties of the film from the initial value can be very effectively suppressed. can be done.
 なお、本実施形態の樹脂組成物は、上述した(A)成分及び(B)成分に加えて、(C)エポキシ樹脂、(D)ポリテトラフルオロエチレンフィラー、(E)硬化触媒、(F)有機過酸化物及び(G)酸化防止剤などの他の成分を含んでいてもよい。以下、上述した各成分を、適宜、(C)成分~(G)成分ということがある。 In addition to the components (A) and (B) described above, the resin composition of the present embodiment includes (C) an epoxy resin, (D) a polytetrafluoroethylene filler, (E) a curing catalyst, and (F) Other ingredients such as organic peroxides and (G) antioxidants may also be included. Hereinafter, the respective components described above may be referred to as components (C) to (G) as appropriate.
〔(A)成分〕
 (A)成分は、末端にスチレン構造を有するポリフェニレンエーテルである。(A)成分は、その末端にスチレン構造を有していれば特に制限はない。スチレン構造は、置換基を有していない非置換のスチレン基であってもよいし、任意の置換基を有するスチレン基であってもよい。(A)成分を含むことにより、樹脂組成物のはんだ耐熱性を向上させることができる。
[(A) component]
Component (A) is a polyphenylene ether having a styrene structure at its end. Component (A) is not particularly limited as long as it has a styrene structure at its terminal. The styrene structure may be an unsubstituted styrene group having no substituent or a styrene group having an arbitrary substituent. By including the component (A), the soldering heat resistance of the resin composition can be improved.
 (A)成分としては、例えば、下記一般式(1)で示される構造の化合物を挙げることができる。 As the component (A), for example, a compound having a structure represented by the following general formula (1) can be mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(1)中、R、R、R、R、R、R、Rは、同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基である。また、-(O-X-O)-は、上記構造式(2)で示され、当該構造式(2)中、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基である。また、-(Y-O)-は、上記構造式(3)で示される1種類の構造、又は、上記構造式(3)で示される2種類以上の構造がランダムに配列したものであり、当該構造式(3)中、R16、R17は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R18、R19は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基である。また、Zは、炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともある。a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、c、dは、0又は1の整数を示す。例えば、一般式(1)で示される化合物は、特開2004-59644号公報に記載されたとおりである。 In general formula (1) above, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 may be the same or different, and may be a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group. or a phenyl group. -(O-X-O)- is represented by the above structural formula (2), in which R 8 , R 9 , R 10 , R 14 and R 15 are the same or different may be a halogen atom, an alkyl group having 6 or less carbon atoms , or a phenyl group; or a phenyl group. In addition, -(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly, In the structural formula (3), R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, and R 18 and R 19 may be the same or different. It is often a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. Z is an organic group having 1 or more carbon atoms, and may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom. a and b are integers of 0 to 300, at least one of which is not 0; c and d are integers of 0 or 1; For example, the compound represented by general formula (1) is as described in JP-A-2004-59644.
 一般式(1)で示される化合物は、両末端にスチレン官能基を有しているため、このような(A)成分を含む樹脂組成物は、加熱によって容易に硬化するものとなる。一般式(1)で示される化合物は、硬化性の点から、R~Rが水素であることが好ましい。 Since the compound represented by general formula (1) has styrene functional groups at both ends, the resin composition containing component (A) is easily cured by heating. From the viewpoint of curability, the compound represented by the general formula (1) preferably has hydrogen as R 1 to R 7 .
 一般式(1)で示される化合物の-(O-X-O)-の構成を示す上記構造式(2)において、R、R、R10、R14、R15は、炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。また、上記構造式(2)において、R11、R12、R13は、水素原子又は炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。具体的には、下記構造式(4)が挙げられる。 In the above structural formula (2) showing the configuration of —(O—X—O)— of the compound represented by general formula (1), R 8 , R 9 , R 10 , R 14 and R 15 each have 3 carbon atoms. The following alkyl groups are preferred, and methyl groups are particularly preferred. In the above structural formula (2), R 11 , R 12 and R 13 are preferably hydrogen atoms or alkyl groups having 3 or less carbon atoms, particularly preferably methyl groups. Specifically, the following structural formula (4) is mentioned.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(1)で示される化合物の-(Y-O)-の構成を示す上記構造式(3)において、R16、R17は、炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。また、上記構造式(3)において、R18、R19は、水素原子又は炭素数3以下のアルキル基であることが好ましく、メチル基であることが特に好ましい。具体的には、下記構造式(5)又は構造式(6)が挙げられる。 In the above structural formula (3) showing the configuration of —(Y—O)— of the compound represented by general formula (1), R 16 and R 17 are preferably alkyl groups having 3 or less carbon atoms, methyl is particularly preferred. In the structural formula (3) above, R 18 and R 19 are preferably a hydrogen atom or an alkyl group having 3 or less carbon atoms, particularly preferably a methyl group. Specifically, the following structural formula (5) or structural formula (6) may be mentioned.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 Zは、例えば、炭素数3以下のアルキレン基が挙げられ、具体的には、メチレン基である。 Z is, for example, an alkylene group having 3 or less carbon atoms, specifically a methylene group.
 a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、0~30の整数であることが好ましい。 At least one of a and b represents an integer of 0 to 300, preferably an integer of 0 to 30.
 樹脂組成物の硬化物の弾性率を適正な範囲に制御するため、一般式(1)で示される化合物は、数平均分子量が1000~3000であることが好ましい。また、一般式(1)で示される化合物は、両末端にビニル基を有する官能基であり、且つ官能基当たりの当量(官能基当量)として上記分子量の1/2相当の500~1500を有するものが適切である。官能基当量は、硬化物の架橋密度の度合いを示すものであり、官能基当量が500以上であると、適切な架橋密度が得られ、十分な機械強度がもたらされるため、フィルムにした時にクラック等の発生が避けられうるという利点がある。また、官能基当量が1500以下であると、(B)成分との相溶性が良好で、透明なフィルムが得られやすい。加えて、溶融粘度が高くなって反応性が低下し、そのために硬化温度を実用上好ましくない温度まで上げざるを得ないといった事態も避けやすく、有利である。なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。 In order to control the elastic modulus of the cured product of the resin composition within an appropriate range, the compound represented by general formula (1) preferably has a number average molecular weight of 1,000 to 3,000. Further, the compound represented by the general formula (1) is a functional group having vinyl groups at both ends, and has an equivalent weight per functional group (functional group equivalent weight) of 500 to 1500, which corresponds to 1/2 of the above molecular weight. things are appropriate. The functional group equivalent indicates the degree of cross-linking density of the cured product, and when the functional group equivalent is 500 or more, an appropriate cross-linking density is obtained and sufficient mechanical strength is provided, so cracks occur when formed into a film. There is an advantage that the occurrence of such as can be avoided. Further, when the functional group equivalent is 1500 or less, the compatibility with the component (B) is good and a transparent film can be easily obtained. In addition, it is easy to avoid a situation in which the melt viscosity increases and the reactivity decreases, so that the curing temperature has to be raised to a practically unpreferable temperature, which is advantageous. In this specification, the number average molecular weight is a value obtained by using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
 一般式(1)で示される化合物は、特開2004-59644号公報に記載された方法で調製することができる。例えば、2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジオールと2,6-ジメチルフエノールとの重縮合物に、更にクロロメチルスチレンを反応させた反応生成物を使用することができる。 The compound represented by general formula (1) can be prepared by the method described in JP-A-2004-59644. For example, a reaction in which a polycondensate of 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol and 2,6-dimethylphenol is further reacted with chloromethylstyrene. The product can be used.
 (A)成分は、一般式(1)で示される化合物を単独で用いてもよいし、一般式(1)で示される化合物の2種以上組み合わせて用いてもよい。 As the component (A), the compound represented by the general formula (1) may be used alone, or two or more of the compounds represented by the general formula (1) may be used in combination.
 (A)成分の末端にスチレン構造を有するポリフェニレンエーテルとして、三菱ガス化学社製の商品名「OPE-2200」及び「OPE-1200」を挙げることができる。 As the polyphenylene ether having a styrene structure at the end of component (A), trade names "OPE-2200" and "OPE-1200" manufactured by Mitsubishi Gas Chemical Company, Inc. can be mentioned.
〔(B)成分〕
 (B)成分は、アミノ基を有するスチレン系エラストマーである。(B)成分のスチレン系エラストマーは、官能基としてアミノ基を有することで密着性が向上し、はんだ耐熱性を向上させることができる。さらに(C)エポキシ樹脂を添加した系では、アミノ基とエポキシ樹脂の反応により、はんだ耐熱性の更なる向上を図ることができる。
[(B) component]
Component (B) is a styrene-based elastomer having an amino group. The styrene-based elastomer of the component (B) has an amino group as a functional group, thereby improving adhesion and soldering heat resistance. Furthermore, (C) in the system to which the epoxy resin is added, the reaction between the amino group and the epoxy resin can further improve the solder heat resistance.
 (B)成分の含有量は、(A)成分100質量部に対して、70~1100質量部である。このように構成することによって、優れたはんだ耐熱性を維持しつつ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制することができる。例えば、(B)成分の含有量が多すぎると、初期状態の誘電特性は低くなるものの、はんだ耐熱性が乏しくなる。なお、特に限定されることはないが、(B)成分の含有量は、(A)成分100質量部に対して、100~800質量部であることが好ましく、200~600質量部であることが更に好ましい。 The content of component (B) is 70 to 1100 parts by mass with respect to 100 parts by mass of component (A). By configuring in this way, it is possible to maintain excellent solder heat resistance, have low dielectric properties in the initial state, and suppress changes in dielectric properties when left at high temperatures for a long period of time. For example, if the content of component (B) is too high, the dielectric properties in the initial state will be low, but the solder heat resistance will be poor. Although not particularly limited, the content of component (B) is preferably 100 to 800 parts by mass, more preferably 200 to 600 parts by mass, with respect to 100 parts by mass of component (A). is more preferred.
 また、フィラーを除いた樹脂組成物量を100質量部とした際の、(B)成分の含有量は40~90質量部であることが好ましく、60~85質量部であることが更に好ましい。 The content of component (B) is preferably 40 to 90 parts by mass, more preferably 60 to 85 parts by mass, when the amount of the resin composition excluding the filler is 100 parts by mass.
 (B)成分のスチレン系エラストマーは、二重結合を有するスチレン系エラストマーであることが好ましい。二重結合を有するスチレン系エラストマーとしては、例えば、スチレン若しくはその類似体のブロックを少なくとも一つの末端ブロックとして含み、共役ジエンのエラストマーブロックを少なくとも一つの中間ブロックとして含むブロック共重合体を挙げることができる。例えば、スチレン/ブタジエン/スチレンブロックコポリマー(SBS)、スチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(SBBS)等を挙げることができる。このようなスチレン系エラストマーを含む樹脂組成物の硬化物は、はんだ耐熱性に優れたものとなる。また、(B)成分中のスチレン比率は10~60%であることが好ましく、より好ましくは20~40%であることが好ましい。(B)成分のスチレン比率が20~40%であることにより成膜性や作業性に優れる。 The styrene-based elastomer of component (B) is preferably a styrene-based elastomer having a double bond. Examples of styrenic elastomers having double bonds include block copolymers containing at least one terminal block of styrene or its analogue block and at least one intermediate block of an elastomeric block of a conjugated diene. can. Examples include styrene/butadiene/styrene block copolymer (SBS) and styrene/butadiene/butylene/styrene block copolymer (SBBS). A cured product of a resin composition containing such a styrene-based elastomer has excellent solder heat resistance. Also, the styrene ratio in component (B) is preferably 10 to 60%, more preferably 20 to 40%. When the styrene ratio of the component (B) is 20 to 40%, the film formability and workability are excellent.
 (B)成分のアミノ基を有するスチレン系エラストマーは、スチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(SBBS)であることが好ましい。即ち、(B)成分は、アミン変性のスチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(SBBS)であることが好ましい。アミン基を有するスチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(SBBS)は、はんだ耐熱性が良く、アミノ基を有することでエポキシ等の他の成分と反応し、はんだ耐熱性や密着性がより優れたものになる。なお、アミン変性のスチレン/ブタジエン/ブチレン/スチレンブロックコポリマー(SBBS)は、末端にアミノ基を有するものが好ましい。 The styrene-based elastomer having an amino group as component (B) is preferably a styrene/butadiene/butylene/styrene block copolymer (SBBS). That is, component (B) is preferably an amine-modified styrene/butadiene/butylene/styrene block copolymer (SBBS). Styrene/butadiene/butylene/styrene block copolymers (SBBS) with amine groups have good solder heat resistance, and since they have amino groups, they react with other components such as epoxy, resulting in better solder heat resistance and adhesion. become a thing. The amine-modified styrene/butadiene/butylene/styrene block copolymer (SBBS) preferably has amino groups at its terminals.
 (B)成分の重量平均分子量は、20,000~200,000であるものが好ましく、30,000~150,000であることがより好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。上記重量平均分子量が20,000より小さい場合、耐熱性や密着性が低下する恐れがある。また、上記重量平均分子量が200,000より大きい場合、溶剤への溶解性が乏しくなり、フィルム化が困難になることがある。 The weight average molecular weight of component (B) is preferably 20,000 to 200,000, more preferably 30,000 to 150,000. The weight average molecular weight is determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. If the weight-average molecular weight is less than 20,000, the heat resistance and adhesion may deteriorate. On the other hand, if the weight average molecular weight is more than 200,000, the solubility in solvents may be poor, making it difficult to form a film.
 (B)成分のアミノ基を有するスチレン系エラストマーとして、旭化成社製の商品名「MP10」を挙げることができる。 As a styrene-based elastomer having an amino group as the component (B), Asahi Kasei's product name "MP10" can be mentioned.
〔(C)成分〕
 (C)成分は、エポキシ樹脂である。エポキシ樹脂は、エポキシ基を分子内に1つ以上有する化合物であり、加熱によりエポキシ基が反応することで3次元的網目構造を形成し、硬化することができる。(C)成分としてエポキシ樹脂を含むことにより、はんだ耐熱性の更なる向上を図ることができる。また、(C)成分のエポキシ樹脂を含むことにより、被着体が銅の光沢面のような平滑な面に対しても密着性の向上を図ることができる。
[(C) component]
(C) Component is an epoxy resin. Epoxy resins are compounds having one or more epoxy groups in the molecule, and can be cured by forming a three-dimensional network structure by reacting the epoxy groups with heating. By including an epoxy resin as the component (C), the solder heat resistance can be further improved. Further, by including the epoxy resin as the component (C), it is possible to improve the adhesiveness even to the smooth surface of the adherend such as the glossy surface of copper.
 (C)成分のエポキシ樹脂の含有量については特に制限はないが、(A)成分、(B)成分及び(C)成分の合計100質量部に対して、0.01~11質量部であることが好ましく、0.1~5質量部であることがより好ましく、0.5~3質量部であることが更に好ましい。(C)成分の含有量が多すぎると、硬化物の誘電正接が高くなってしまうことがある。 The content of the epoxy resin of component (C) is not particularly limited, but it is 0.01 to 11 parts by mass per 100 parts by mass of components (A), (B) and (C). preferably 0.1 to 5 parts by mass, and even more preferably 0.5 to 3 parts by mass. If the content of component (C) is too high, the dielectric loss tangent of the cured product may become high.
 エポキシ樹脂の具体例としては、ビスフェノールA、ビスフェノールE、ビスフェノールF等のビスフェノール化合物又はこれらの誘導体(例えば、アルキレンオキシド付加物)、水素添加ビスフェノールA、水素添加ビスフェノールE、水素添加ビスフェノールF、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノール等の脂環構造を有するジオール又はこれらの誘導体、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール等の脂肪族ジオール又はこれらの誘導体等をエポキシ化した2官能性エポキシ樹脂;トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する3官能性エポキシ樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂等をエポキシ化した多官能性エポキシ樹脂が挙げられるが、これらに限定されない。好ましくは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アミノフェノール型エポキシ樹脂である。ここで例示した化合物は単独で用いられてもよいし、2つ以上のものが混合して用いられてもよい。 Specific examples of epoxy resins include bisphenol compounds such as bisphenol A, bisphenol E, and bisphenol F, or derivatives thereof (eg, alkylene oxide adducts), hydrogenated bisphenol A, hydrogenated bisphenol E, hydrogenated bisphenol F, and cyclohexanediol. , Cyclohexanedimethanol, cyclohexanediethanol and other diols having an alicyclic structure or their derivatives, aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol and decanediol, or their derivatives epoxidized bifunctional epoxidized epoxy resins; trifunctional epoxy resins having a trihydroxyphenylmethane skeleton and aminophenol skeleton; include, but are not limited to. Bisphenol A type epoxy resin, bisphenol F type epoxy resin and aminophenol type epoxy resin are preferred. The compounds exemplified here may be used alone, or two or more of them may be mixed and used.
 (C)成分のエポキシ樹脂は、室温(25℃)で液状であることが好ましい。 The (C) component epoxy resin is preferably liquid at room temperature (25°C).
〔(D)成分〕
 (D)成分は、ポリテトラフルオロエチレンフィラー(以下、「PTFEフィラー」ともいう)である。(D)成分のPTFEフィラーは、充填材として樹脂組成物に配合され、その樹脂組成物の誘電特性を向上させることができる。例えば、PTFEフィラーを樹脂組成物に配合することで、当該樹脂組成物を用いて形成されるフィルムの誘電率(ε)及び誘電正接(tanδ)といった誘電特性の向上を図ることができる。
[(D) component]
Component (D) is a polytetrafluoroethylene filler (hereinafter also referred to as "PTFE filler"). The PTFE filler of component (D) is added to the resin composition as a filler to improve the dielectric properties of the resin composition. For example, by adding a PTFE filler to the resin composition, it is possible to improve the dielectric properties such as dielectric constant (ε) and dielectric loss tangent (tan δ) of the film formed using the resin composition.
 (D)成分のPTFEフィラーの含有量については特に制限はないが、樹脂組成物100質量%中の含有割合が、0.01~60質量%であることが好ましく、0.1~50質量%であることがより好ましく、20~40質量%であることが更に好ましい。(D)成分の含有割合が低すぎると、PTFEフィラーを含有させたことによる誘電特性の向上効果が発現し難くなることがある。一方で、(D)成分の含有割合が高すぎると、樹脂組成物のフィルム化が困難になることがある。 The content of the PTFE filler of component (D) is not particularly limited, but the content in 100% by mass of the resin composition is preferably 0.01 to 60% by mass, more preferably 0.1 to 50% by mass. and more preferably 20 to 40% by mass. If the content of component (D) is too low, it may be difficult to obtain the effect of improving the dielectric properties of the PTFE filler. On the other hand, if the content of the component (D) is too high, it may become difficult to form a film from the resin composition.
 (D)成分のPTFEフィラーは、平均粒径が20μm以下であることが好ましい。PTFEフィラーの平均粒径が20μmよりも大きい場合には、樹脂組成物中に均一に分散し難くなることがある。PTFEフィラーの平均粒径は、0.01~10μmであることがより好ましい。PTFEフィラーの形状は特に限定されず、球状、不定形、りん片状等のいずれの形態であってもよい。なお、PTFEフィラーの平均粒径は、湿式分散後、レーザー回折法によって測定した体積基準のメジアン径である。 The PTFE filler of component (D) preferably has an average particle size of 20 μm or less. When the average particle size of the PTFE filler is larger than 20 μm, it may become difficult to disperse it uniformly in the resin composition. More preferably, the PTFE filler has an average particle size of 0.01 to 10 μm. The shape of the PTFE filler is not particularly limited, and may be spherical, amorphous, or scale-like. The average particle diameter of the PTFE filler is a volume-based median diameter measured by a laser diffraction method after wet dispersion.
〔(E)成分〕
 (E)成分は、硬化触媒である。(E)成分の硬化触媒は、一般的なエポキシの反応を促進する硬化触媒であれば、特に制限はないが、適度な硬化性の調整が可能なことから、イミダゾール系硬化触媒がより好ましい。
[(E) component]
(E) Component is a curing catalyst. The curing catalyst of the component (E) is not particularly limited as long as it is a curing catalyst that promotes general epoxy reaction, but an imidazole-based curing catalyst is more preferable because it enables appropriate adjustment of curability.
 イミダゾール系硬化触媒はイミダゾールであってもよく、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、安定化剤を配位させたイミダゾール化合物等を用いることもできる。これらは、その構造の中に非共有電子対を有する窒素原子を有し、これがエポキシ基を活性化させたり、さらにその他併用するエポキシ樹脂をも活性化させたりすることができ、硬化を促進することができる。 The imidazole-based curing catalyst may be imidazole, and imidazole adducts, inclusion imidazoles, microcapsule-type imidazoles, imidazole compounds coordinated with stabilizers, and the like can also be used. They have nitrogen atoms in their structure that have lone pairs of electrons that can activate epoxy groups and even other co-used epoxy resins, facilitating curing. be able to.
 イミダゾール系硬化触媒の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチル、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-エチル-4-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2-メチルイミダゾール・イソシアヌル酸付加物、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられるが、これらに限定されるものではない。アダクト処理、異分子による包接処理、マイクロカプセル処理、あるいは安定化剤を配位させたイミダゾールは、前記のイミダゾールを修飾したものである。これらはイミダゾールにアダクト処理、異分子による包接処理、マイクロカプセル処理により、あるいは安定化剤を配位させることで活性を落とすことにより、低温領域で優れたポットライフを発現しつつも硬化や硬化促進能力が高い。 Specific examples of imidazole-based curing catalysts include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, 2- Phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methyl, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-diamino-6-(2'-methylimidazolyl-(1'))-ethyl-s-triazine, 2,4-diamino-6-(2'-undecyl imidazolyl-(1′))-ethyl-s-triazine, 2,4-diamino-6-(2′-ethyl-4-methylimidazolyl-(1′))-ethyl-s-triazine, 2,4-diamino -6-(2'-methylimidazolyl-(1'))-ethyl-s-triazine/isocyanuric acid adduct, 2-phenylimidazole/isocyanuric acid adduct, 2-methylimidazole/isocyanuric acid adduct, 1-cyanoethyl -2-phenyl-4,5-di(2-cyanoethoxy)methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and the like, It is not limited to these. Adduct treatment, inclusion treatment with foreign molecules, microencapsulation treatment, or imidazole coordinated with a stabilizer is a modification of the imidazole. These can be hardened or accelerated while exhibiting excellent pot life in low-temperature regions by reducing the activity of imidazole by adduct treatment, inclusion treatment with foreign molecules, microencapsulation treatment, or by coordinating a stabilizer. Highly capable.
 また、イミダゾールの市販品としては(以下、商品名)、2E4MZ、2P4MZ、2PZ-CN、C11Z-CNS、C11Z-A、2MZA-PW、2MA-OK、2P4MHZ-PW、2PHZ-PW(以上、四国化成工業社製)、EH2021(ADEKA社製)、などが挙げられるが、これらに限定されるものではない。イミダゾールアダクトの市販品としては、例えば、エポキシ樹脂のエポキシ基へイミダゾール化合物が開環付加した構造を有する、PN-50、PN-50J、PN-40、PN-40J、PN-31、PN-23、PN-H(以上、味の素ファインテクノ社製)などが挙げられるが、これらに限定されるものではない。包接イミダゾールの市販品としては、例えば、TIC-188、KM-188、HIPA-2P4MHZ、NIPA-2P4MHZ、TEP-2E4MZ、HIPA-2E4MZ、NIPA-2E4MZ(以上、日本曹達社製)などが挙げられるが、これらに限定されるものではない。マイクロカプセル型イミダゾールの市販品としては、例えば、ノバキュアHX3721、HX3722、HX3742、HX3748(以上、旭化成社製)、LC-80(以上、A&C Catalysts社製)、などが挙げられる。 In addition, commercial products of imidazole (hereinafter referred to as trade names) include 2E4MZ, 2P4MZ, 2PZ-CN, C11Z-CNS, C11Z-A, 2MZA-PW, 2MA-OK, 2P4MHZ-PW, and 2PHZ-PW (above, Shikoku (manufactured by Kasei Kogyo Co., Ltd.), EH2021 (manufactured by ADEKA), and the like, but are not limited thereto. Commercially available imidazole adducts include, for example, PN-50, PN-50J, PN-40, PN-40J, PN-31, and PN-23, which have a ring-opening addition structure of an imidazole compound to an epoxy group of an epoxy resin. , and PN-H (manufactured by Ajinomoto Fine-Techno Co., Inc.), but are not limited to these. Commercially available clathrate imidazoles include, for example, TIC-188, KM-188, HIPA-2P4MHZ, NIPA-2P4MHZ, TEP-2E4MZ, HIPA-2E4MZ, and NIPA-2E4MZ (manufactured by Nippon Soda Co., Ltd.). However, it is not limited to these. Examples of commercial products of microcapsule-type imidazole include Novacure HX3721, HX3722, HX3742, HX3748 (manufactured by Asahi Kasei Corporation), LC-80 (manufactured by A&C Catalysts), and the like.
 硬化触媒の含有量は、(E)成分として使用する硬化触媒の種類に応じて適宜選択することができる。また、フィラー以外の樹脂組成物量を100質量部とした際の、(E)成分の含有量は、0.001~1.0質量部が好ましく、0.01~0.60質量部がさらに好ましい。また、イミダゾール系硬化触媒の含有量は、エポキシ樹脂に対し0.1~10質量%が好ましく、1~6質量%がより好ましい。(E)成分の含有量が少なすぎると、樹脂組成物を用いて作製されるフィルムの硬化性が悪化し、接着性、強靭性、耐熱性が低下するおそれがある。一方、(E)成分の含有量が多すぎると、樹脂組成物を用いて作製されるフィルムのシェルフライフが悪化するおそれがあり、また、硬化物において樹脂本来の物性を損ね、接着性、強靭性、耐熱性が低下するおそれがある。 The content of the curing catalyst can be appropriately selected according to the type of curing catalyst used as component (E). The content of the component (E) is preferably 0.001 to 1.0 parts by mass, more preferably 0.01 to 0.60 parts by mass when the amount of the resin composition other than the filler is 100 parts by mass. . Also, the content of the imidazole-based curing catalyst is preferably 0.1 to 10% by mass, more preferably 1 to 6% by mass, relative to the epoxy resin. If the content of the component (E) is too small, the curability of the film produced using the resin composition may deteriorate, and the adhesiveness, toughness and heat resistance may deteriorate. On the other hand, if the content of the component (E) is too large, the shelf life of the film produced using the resin composition may be deteriorated, and the physical properties inherent in the resin may be impaired in the cured product, resulting in adhesiveness, toughness, etc. There is a risk of deterioration in durability and heat resistance.
〔(F)成分〕
 (F)成分は、有機過酸化物である。このような有機過酸化物を含有することで、(A)成分の反応開始温度が低温側にシフトし、樹脂組成物の硬化が促進される。このため、樹脂組成物のはんだ耐熱性が更に向上される。有機過酸化物の含有量は、種類に応じて適宜選択することができるが、代表的には(A)成分100質量部に対し0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
[(F) component]
(F) Component is an organic peroxide. By containing such an organic peroxide, the reaction initiation temperature of the component (A) shifts to the low temperature side, and curing of the resin composition is accelerated. Therefore, the soldering heat resistance of the resin composition is further improved. The content of the organic peroxide can be appropriately selected depending on the type, but is typically 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight of component (A). part is more preferred.
 有機過酸化物としては、ベンゾイルパーオキサイド、イソブチリルパーオキサイド、イソノナノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキシドなどのジアシルパーオキサイド類;2,2-ジ(4,4-ジ-(ジ-tert-ブチルパーオキシ)シクロヘキシル)プロパンなどのパーオキシケタール類;イソプロピルパージカーボネート、ジ-sec-ブチルパージカーボネート、ジ-2-エチルヘキシルパージカーボネート、ジ-1-メチルヘプチルパージカーボネート、ジ-3-メトキシブチルパージカーボネート、ジシクロヘキシルパージカーボネートなどのパーオキシジカーボネート類;tert-ブチルパーベンゾエート、tert-ブチルパーアセテート、tert-ブチルパー-2-エチルへキサノエート、tert-ブチルパーイソブチレート、tert-ブチルパーピバレート、tert-ブチルジパーアジペート、クミルパーネオデカノエート、tert-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5ジ(ベンゾイルパーオキシ)ヘキサンなどのパーオキシエステル類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、2,5-ジメチル-2,5ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5ジ(t-ブチルパーオキシ)ヘキシン-3、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-tert-ヘキシルパーオキサイド、ジ(2-tert-ブチルパーオキシイソプロピル)ベンゼンなどのジアルキルパーオキサイド類;クメンヒドロキシパーオキサイド、tert-ブチルハイドロパーオキサイド、p-メンタハイドロパーオキサイドなどのハイドロパーオキサイド類等を使用することができる。使用される有機過酸化物に特に制限はないが、樹脂組成物を硬化させる際に、例えば、60~80℃程度の乾燥工程が必要となることが多いため、10時間半減期温度が100℃~140℃のものを用いることが好ましい。さらに、10時間半減期温度は110~130℃のものがより好ましい。 Examples of organic peroxides include benzoyl peroxide, isobutyryl peroxide, isononanoyl peroxide, decanoyl peroxide, lauroyl peroxide, parachlorobenzoyl peroxide, and di(3,5,5-trimethylhexanoyl) peroxide. diacyl peroxides such as; 2,2-di(4,4-di-(di-tert-butylperoxy)cyclohexyl) cyclohexyl) propane and other peroxyketals; isopropyl purge carbonate, di-sec-butyl purge carbonate, Peroxydicarbonates such as di-2-ethylhexyl purgecarbonate, di-1-methylheptyl purgecarbonate, di-3-methoxybutyl purgecarbonate, dicyclohexyl purgecarbonate; tert-butyl perbenzoate, tert-butyl peracetate, tert -butyl per-2-ethylhexanoate, tert-butyl perisobutyrate, tert-butyl perpivalate, tert-butyl diperadipate, cumyl perneodecanoate, tert-butyl peroxybenzoate, 2,5-dimethyl -Peroxy esters such as 2,5 di(benzoylperoxy)hexane; Ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; Di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide oxide, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane, 2,5-dimethyl-2,5di(t-butylperoxy)hexyne-3, 1,1-di(t- dialkyl peroxides such as hexylperoxy)-3,3,5-trimethylcyclohexane, di-tert-hexyl peroxide, di(2-tert-butylperoxyisopropyl)benzene; cumene hydroperoxide, tert-butyl hydro Hydroperoxides such as peroxide and p-mentha hydroperoxide can be used. The organic peroxide used is not particularly limited, but when curing the resin composition, for example, a drying step of about 60 to 80 ° C. is often required, so the 10-hour half-life temperature is 100 ° C. It is preferable to use one having a temperature of up to 140°C. Furthermore, the 10-hour half-life temperature is more preferably 110 to 130°C.
 (F)成分の有機過酸化物の市販品としては(以下、商品名)、パーブチルH、パーブチルZ、パーブチパークミルP、パークミルD、パークミルH、パーヘキサC(以上、日油化学社製)などを挙げることができる。 Commercially available organic peroxides of component (F) (hereinafter referred to as product names) include Perbutyl H, Perbutyl Z, Perbutipacumyl P, Permyl D, Permyl H, and Perhexa C (manufactured by NOF Chemical Co., Ltd.). etc. can be mentioned.
〔(G)成分〕
 (G)成分は、酸化防止剤である。このような酸化防止剤を含有することで、樹脂組成物の酸化を軽減でき、長期高温放置による誘電特性の変化をより軽減することができる。
[(G) component]
The (G) component is an antioxidant. By containing such an antioxidant, oxidation of the resin composition can be reduced, and changes in dielectric properties due to long-term high-temperature storage can be further reduced.
 (G)成分としての酸化防止剤の種類については特に制限はないが、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤等が挙げられる。 There are no particular restrictions on the type of antioxidant used as the component (G), but examples include phenol antioxidants, sulfur antioxidants, amine antioxidants, phosphorus antioxidants, and the like.
 例えば、フェノール系酸化防止剤としては、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4,4’,4”-(1-メチルプロピル-3-イリデン)トリス(6-ブチル-m-クレゾール)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、6,6’-ジ-tert-ブチル-4,4’-ブチリデネジ-m-クレゾール、オクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリトリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、3、9-ビス{2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ〕-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン等が挙げられる。 For example, phenolic antioxidants include 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H, 3H,5H)-trione, 4,4′,4″-(1-methylpropyl-3-ylidene)tris(6-butyl-m-cresol), 1,3,5-tris(3,5-di- tert-butyl-4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 6,6'-di-tert-butyl-4,4'-butylidenedi-m-cresol, octadecyl 3-(3,5- di-tert-butyl-4-hydroxyphenyl)propionate, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 3,9-bis{2-[3-( 3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl}-2,4,8,10-tetraoxaspiro[5.5]undecane and the like.
 イオウ系酸化防止剤としては、2,2-ビス{〔3-(ドデシルチノ)-1-オキソプロポキシ〕メチル}プロパン-1,3,ジイルビス〔3-(ドデシルチノ)プロピオネート〕、ジ(トリデシル)3,3’-チオジプロピネート等が挙げられる。 Sulfur antioxidants include 2,2-bis{[3-(dodecyltino)-1-oxopropoxy]methyl}propane-1,3, diylbis[3-(dodecyltino)propionate], di(tridecyl) 3, 3'-thiodipropionate and the like.
 アミン系酸化防止剤としては、ジノニルジフェニルアミン、オクチルブチルフェニルアミン、2,6-ジテルドブチルフェノールおよびそれらの誘導体等が挙げられる。 Amine antioxidants include dinonyldiphenylamine, octylbutylphenylamine, 2,6-diterdobutylphenol and their derivatives.
 リン系酸化防止剤としては、3,9-ビス(オクタデシロキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ〔5,5〕ウデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ〔5、5〕ウデカン、2,2’-メチレンビス(4、6-ジ-tert-ブチルフェニル)2-エチルヘキシルフォスファイト、トリス(2、4-ジ-tert-ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、テトラ-ドデシル(プロパン-2、2-ジイルビス(4、1-フェニレン))ビス(フォスファイト)、テトラ-トリデシル(プロパン-2、2-ジイルビス(4、1-フェニレン))ビス(フォスファイト)、テトラ-テトラデシル(プロパン-2、2-ジイルビス(4、1-フェニレン))ビス(フォスファイト)、テトラ-ペンタデシル(プロパン-2、2-ジイルビス(4、1-フェニレン))ビス(フォスファイト)、2-エチルヘキシルジフェニルフォスファイト、イソデシルジフェニルフォスファイト、トリイソデシルフォスファイト、トリイソデシルフォスファイト等が挙げられる。 Phosphorus antioxidants include 3,9-bis(octadecyloxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]udecane, 3,9-bis( 2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5]udecane, 2,2′-methylenebis(4, 6-di-tert-butylphenyl)2-ethylhexylphosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(nonylphenyl)phosphite, tetra-dodecyl (propane-2,2-diylbis (4,1-phenylene))bis(phosphite), tetra-tridecyl(propane-2,2-diylbis(4,1-phenylene))bis(phosphite), tetra-tetradecyl(propane-2,2-diylbis (4,1-phenylene))bis(phosphite), tetra-pentadecyl(propane-2,2-diylbis(4,1-phenylene))bis(phosphite), 2-ethylhexyldiphenylphosphite, isodecyldiphenylphosphite phyto, triisodecylphosphite, triisodecylphosphite and the like.
 (G)成分の酸化防止剤の市販品としては(以下、商品名)、AO-20、AO-50、AO-80、AO-503、AO-523S、PEP-8、HP-10、TPP(以上、ADEKA社製)等が挙げられる。これらの中でも構造中にオクタデシル基やドデシル基等の炭素数が10以上の炭素鎖を有する酸化防止剤が、誘電特性がよく好ましい。また、炭素数が10以上の炭素鎖を有する酸化防止剤は、(A)成分(B)成分との相溶性も高いため樹脂組成物からの酸化防止剤のブリードを抑制できる。酸化防止剤の含有量は種類に応じて適宜選択することができるが、代表的には樹脂組成物全量に対し0.01~5質量%が好ましく、0.1~3質量%がより好ましい。 Commercially available antioxidants of component (G) (hereinafter referred to as trade names) include AO-20, AO-50, AO-80, AO-503, AO-523S, PEP-8, HP-10, TPP ( above, manufactured by ADEKA) and the like. Among these, an antioxidant having a carbon chain with 10 or more carbon atoms such as an octadecyl group or a dodecyl group in its structure is preferable because of its good dielectric properties. In addition, the antioxidant having a carbon chain of 10 or more carbon atoms has high compatibility with the component (A) and component (B), so that the antioxidant can be prevented from bleeding out of the resin composition. The content of the antioxidant can be appropriately selected depending on the type, but is typically preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass, based on the total amount of the resin composition.
〔その他の成分〕
 本実施形態の樹脂組成物は、これまでに説明した(A)成分~(G)成分以外の成分を更に含んでいてもよい。例えば、その他の成分としては、着色剤、分散剤、難燃剤、シランカップリング剤、レオロジーコントロール剤、無機フィラー、有機フィラー等の各種添加剤などを挙げることができる。
[Other ingredients]
The resin composition of the present embodiment may further contain components other than components (A) to (G) described above. Examples of other components include various additives such as colorants, dispersants, flame retardants, silane coupling agents, rheology control agents, inorganic fillers and organic fillers.
〔樹脂組成物の硬化物の誘電正接〕
 本実施形態の樹脂組成物の硬化物は、当該硬化物の下記計算式1で算出される耐熱試験前後の誘電正接の変化量が0.0050以下であることが好ましい。下記計算式1で算出される耐熱試験前後の誘電正接の変化量は、0.0040以下がより好ましく、0.0030以下が更に好ましい。このように構成することによって、本実施形態の樹脂組成物の硬化物は、高温環境下に置かれても誘電損失が小さいものとなる。
[Dielectric loss tangent of cured product of resin composition]
The cured product of the resin composition of the present embodiment preferably has a dielectric loss tangent change of 0.0050 or less before and after the heat resistance test calculated by the following formula 1 of the cured product. The amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 1 is more preferably 0.0040 or less, and even more preferably 0.0030 or less. With such a configuration, the cured product of the resin composition of the present embodiment has a small dielectric loss even when placed in a high-temperature environment.
 [計算式1]
 「耐熱試験前後の誘電正接の変化量」=「耐熱試験後の周波数10GHzの誘電正接」-「耐熱試験前の周波数10GHzの誘電正接」
 ここで、計算式1において、上述した耐熱試験は、125℃、1000時間の加熱条件にて行うこととする。耐熱試験のより具体的な方法は、以下の通りである。樹脂組成物の硬化物を、125℃の恒温槽に投入し、1000時間保持することによって行う。樹脂組成物の硬化物は、樹脂組成物を化学反応により硬化し、硬化の化学反応が完了したものである。化学反応の完了は、例えば示唆走査熱量測定(DSC)の発熱ピークが消失していることで確認することができる。なお、周波数10GHzの誘電正接は常温(23℃)における測定値であり、測定手法としては、例えば、SPDR(スプリットポスト誘電体共振器)法や空洞共振摂動法などを挙げることができる。
[Formula 1]
"Amount of change in dielectric loss tangent before and after heat resistance test" = "Dielectric loss tangent at frequency 10 GHz after heat resistance test" - "Dielectric loss tangent at frequency 10 GHz before heat resistance test"
Here, in Formula 1, the heat resistance test described above is performed under heating conditions of 125° C. and 1000 hours. A more specific method of the heat resistance test is as follows. A cured product of the resin composition is placed in a constant temperature bath at 125° C. and held for 1000 hours. The cured product of the resin composition is obtained by curing the resin composition through a chemical reaction and completing the chemical reaction for curing. Completion of the chemical reaction can be confirmed, for example, by the disappearance of the exothermic peak in differential scanning calorimetry (DSC). Note that the dielectric loss tangent at a frequency of 10 GHz is a measured value at room temperature (23° C.), and examples of measurement methods include the SPDR (split post dielectric resonator) method and the cavity resonance perturbation method.
 また、本実施形態の樹脂組成物の硬化物は、当該硬化物の下記計算式2で算出される耐熱試験前後の誘電正接の変化率が400%以下であることが更に好ましい。下記計算式2で算出される耐熱試験前後の誘電正接の変化率は、300%以下がより好ましく、200%以下が更に好ましい。 Further, it is more preferable that the cured product of the resin composition of the present embodiment has a dielectric loss tangent change rate of 400% or less before and after the heat resistance test, which is calculated by the following formula 2. The rate of change in dielectric loss tangent before and after the heat resistance test calculated by Equation 2 below is more preferably 300% or less, and even more preferably 200% or less.
 [計算式2]
 「耐熱試験前後の誘電正接の変化率(%)」=「耐熱試験前後の誘電正接の変化量」/「耐熱試験前の周波数10GHzの誘電正接」×100
 ここで、上記計算式2において、耐熱試験は、125℃、1000時間の加熱条件にて行い、耐熱試験前後の誘電正接の変化量は、上記計算式1で算出された値である。
[Formula 2]
"Rate of change in dielectric loss tangent before and after heat resistance test (%)" = "Amount of change in dielectric loss tangent before and after heat resistance test" / "Dielectric loss tangent at frequency 10 GHz before heat resistance test" x 100
Here, in Equation 2 above, the heat resistance test is performed under the heating conditions of 125° C. and 1000 hours, and the amount of change in dielectric loss tangent before and after the heat resistance test is the value calculated by Equation 1 above.
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物は、慣用の方法により製造することができる。本実施形態の樹脂組成物は、これまでに説明した各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等を用いて混合することで製造することができる。
[Method for producing resin composition]
The resin composition of this embodiment can be produced by a conventional method. The resin composition of the present embodiment can be produced by mixing each component described above using, for example, a Laikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-screw mixer, or the like. .
〔樹脂組成物の用途〕
 本実施形態の樹脂組成物は、電子部品に使用する接着フィルム用の樹脂組成物として好適に用いることができる。また、本実施形態の樹脂組成物は、多層化基板用の層間接着用ボンディングシートや層間接着剤としても好適に用いることができる。本実施形態の樹脂組成物を電子部品用の各種用途に用いる場合、接着対象となる電子部品については特に制限はなく、セラミック基板や有機基板、半導体チップ、半導体装置等が挙げられる。
[Use of resin composition]
The resin composition of the present embodiment can be suitably used as a resin composition for adhesive films used in electronic parts. The resin composition of the present embodiment can also be suitably used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer substrates. When the resin composition of the present embodiment is used for various applications for electronic parts, the electronic parts to be adhered are not particularly limited, and examples thereof include ceramic substrates, organic substrates, semiconductor chips, and semiconductor devices.
 本実施形態の樹脂組成物を用いた接着フィルム、層間接着用ボンディングシート及び層間接着剤などは、電子部品等を構成する積層板や半導体装置において、樹脂組成物の硬化物として含まれる。このため、電子部品等を構成する積層板や半導体装置においては、本実施形態の樹脂組成物の硬化物を含むことが好ましい。 The adhesive film, the bonding sheet for interlayer adhesion, the interlayer adhesive, and the like using the resin composition of the present embodiment are included as cured products of the resin composition in laminates and semiconductor devices that constitute electronic components and the like. Therefore, laminates and semiconductor devices that constitute electronic parts and the like preferably contain a cured product of the resin composition of the present embodiment.
 また、本実施形態の樹脂組成物は、アンテナ付き半導体パッケージを作製に用いられる樹脂組成物(アンテナ付き半導体パッケージ用樹脂組成物)として用いることもできる。なお、アンテナ付き半導体パッケージの詳細については後述する。本実施形態の樹脂組成物は、このようなアンテナ付き半導体パッケージにおいて、半導体装置部とアンテナ部とを接続するための絶縁層や、アンテナ部内部の絶縁層を形成するための樹脂組成物として好適に用いることができる。 Further, the resin composition of the present embodiment can also be used as a resin composition (resin composition for a semiconductor package with an antenna) used for manufacturing a semiconductor package with an antenna. Details of the semiconductor package with an antenna will be described later. The resin composition of the present embodiment is suitable as a resin composition for forming an insulating layer for connecting the semiconductor device portion and the antenna portion and an insulating layer inside the antenna portion in such a semiconductor package with an antenna. can be used for
〔アンテナ付き半導体パッケージ〕
 次に、本発明のアンテナ付き半導体パッケージの実施形態について説明する。本発明のアンテナ付き半導体パッケージの一の実施形態は、図1に示すようなアンテナ付き半導体パッケージ100である。図1は、本発明の一の実施形態のアンテナ付き半導体パッケージを示す模式的部分断面図である。
[Semiconductor package with antenna]
Next, an embodiment of a semiconductor package with an antenna according to the present invention will be described. One embodiment of the semiconductor package with an antenna of the present invention is a semiconductor package 100 with an antenna as shown in FIG. FIG. 1 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to one embodiment of the present invention.
 図1に示すように、アンテナ付き半導体パッケージ100は、半導体装置部10にアンテナ部5が一体的に形成されたものであり、特に、5Gミリ波の送信・受信の通信を行うRF(無線周波)チップ8が実装される高周波基板としてのアンテナ付き半導体パッケージ100である。アンテナ部5は、半導体装置部10において、ミリ波の通信を行うRFチップ8と各種配線パターンを有する配線層4により接続されている。 As shown in FIG. 1, the semiconductor package 100 with an antenna has a semiconductor device portion 10 and an antenna portion 5 integrally formed thereon. ) A semiconductor package 100 with an antenna as a high-frequency substrate on which a chip 8 is mounted. In the semiconductor device section 10, the antenna section 5 is connected to an RF chip 8 that performs millimeter wave communication by a wiring layer 4 having various wiring patterns.
 図1に示すアンテナ付き半導体パッケージ100における半導体装置部10は、コア基板2と、半導体装置部10の一方の表面側に配設されたアンテナ部5と、半導体装置部10とアンテナ部5とを接続するための絶縁層1(第一絶縁層1A)と、コア基板2内に配置された複層構造の配線層4と、配線層4における配線ビアを被覆するように構成された絶縁層1(第二絶縁層1B、第三絶縁層1C、第四絶縁層1D、第五絶縁層1E)とを含む。なお、第一絶縁層1Aは、半導体装置部10とアンテナ部5との間を介在するように設けられているだけでなく、アンテナ部5の内部にまで延設されるようにして設けられていてもよい。 The semiconductor device portion 10 in the semiconductor package 100 with an antenna shown in FIG. An insulating layer 1 (first insulating layer 1A) for connection, a wiring layer 4 having a multi-layer structure arranged in a core substrate 2, and an insulating layer 1 configured to cover wiring vias in the wiring layer 4. (second insulating layer 1B, third insulating layer 1C, fourth insulating layer 1D, fifth insulating layer 1E). The first insulating layer 1A is not only provided so as to intervene between the semiconductor device section 10 and the antenna section 5, but is also provided so as to extend to the inside of the antenna section 5. may
 アンテナ付き半導体パッケージ100は、半導体装置部10の他方の表面側において、配線層4の一部位が、ミリ波の送信・受信の通信を行うRFチップ8と連結されるとともに、配線層4の他の部位が、電気連結金属7と連結されている。図1に示す例では、配線層4とRFチップ8は、半球状の接続パッド9を介して電気的に接続されている。電気連結金属7は、当該電気連結金属7を介して、その機能に合わせて、アンテナ付き半導体パッケージ100と外部とを物理的及び/又は電気的に連結させるための端子部である。 In the semiconductor package 100 with an antenna, a portion of the wiring layer 4 on the other surface side of the semiconductor device portion 10 is connected to the RF chip 8 that performs millimeter wave transmission/reception communication. is connected to the electrical connection metal 7 . In the example shown in FIG. 1, the wiring layer 4 and the RF chip 8 are electrically connected via hemispherical connection pads 9 . The electrical connection metal 7 is a terminal portion for physically and/or electrically connecting the semiconductor package 100 with an antenna and the outside according to its function through the electrical connection metal 7 .
 絶縁層1は、送信時においてRFチップ8から出力された電流やミリ波信号が減衰することを抑制しつつ、アンテナ部5に伝えて空間に効率よく放射するため、アンテナ部5とRFチップ8をつなぐ接続部の損失(伝送ロス)を小さくすることが求められる。受信時も同様で、アンテナ部5で受信されたミリ波信号の反射波が減衰することを抑制しつつ、受信部としてのRFチップ8に伝えるには、アンテナ部5とRFチップ8をつなぐ接続部の損失(伝送ロス)を小さくすることが求められる。 The insulating layer 1 suppresses the attenuation of the current and millimeter wave signals output from the RF chip 8 during transmission, and transmits them to the antenna unit 5 to efficiently radiate them into space. It is required to reduce the loss (transmission loss) of the connection that connects the The same is true for reception. In order to transmit the reflected wave of the millimeter wave signal received by the antenna unit 5 to the RF chip 8 as a receiving unit while suppressing the attenuation of the reflected wave, the connection between the antenna unit 5 and the RF chip 8 is required. It is required to reduce the loss (transmission loss) of the part.
 アンテナ部5は、平面アンテナとしてのパッチアンテナとして半導体装置部10の一方の表面側に配設されている。 The antenna section 5 is arranged on one surface side of the semiconductor device section 10 as a patch antenna as a planar antenna.
 アンテナ付き半導体パッケージ100は、半導体装置部10とアンテナ部5とを接続するための絶縁層1(例えば、第一絶縁層1A)、及びアンテナ部5内部の絶縁層1のうちの少なくとも一方の絶縁層1の構成に関して特に主要な特徴を有している。以下、本実施形態のアンテナ付き半導体パッケージ100における絶縁層1の構成について更に詳細に説明する。なお、以下、半導体装置部10とアンテナ部5とを接続するための絶縁層1、及びアンテナ部5内部の絶縁層1を総称して、単に「絶縁層1」ということがある。 In the semiconductor package 100 with an antenna, at least one of an insulating layer 1 (for example, a first insulating layer 1A) for connecting the semiconductor device portion 10 and the antenna portion 5 and an insulating layer 1 inside the antenna portion 5 is insulated. There are particular main features regarding the construction of layer 1 . The configuration of the insulating layer 1 in the semiconductor package 100 with an antenna of this embodiment will be described in more detail below. In addition, hereinafter, the insulating layer 1 for connecting the semiconductor device portion 10 and the antenna portion 5 and the insulating layer 1 inside the antenna portion 5 may be collectively referred to simply as the "insulating layer 1".
 アンテナ付き半導体パッケージ100において、少なくとも一の絶縁層1は、これまでに説明した本発明の樹脂組成物と同様に構成された樹脂組成物の硬化物からなる。即ち、絶縁層1を構成する硬化物は、(A)成分としての末端にスチレン構造を有するポリフェニレンエーテルと、(B)成分としてのアミノ基を有するスチレン系エラストマーと、を含む樹脂組成物の硬化物である。そして、この樹脂組成物は、(B)成分の含有量が、(A)成分100質量部に対して、70~1100質量部となるように調製されたものである。 In the semiconductor package 100 with an antenna, at least one insulating layer 1 is made of a cured product of a resin composition configured in the same manner as the resin composition of the present invention described above. That is, the cured product constituting the insulating layer 1 is a cured resin composition containing polyphenylene ether having a styrene structure at the end as component (A) and a styrene elastomer having an amino group as component (B). It is a thing. This resin composition is prepared so that the content of component (B) is 70 to 1100 parts by mass per 100 parts by mass of component (A).
 上記したように構成された絶縁層1を備えたアンテナ付き半導体パッケージ100は、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制することができる。5Gミリ波用のアンテナ部5を備えたアンテナ付き半導体パッケージ100では、例えば、アンテナ部5を接続するための絶縁層1について、288℃のはんだ試験が行われることがあり、従来では必要なかった耐熱温度での耐はんだ耐熱性が求められる。従来の半導体パッケージにおける絶縁層は、公知の高周波フィルムが使用されているが、このような高周波フィルムは、上述した耐はんだ耐熱性を満たしていないものがあり、5Gミリ波用のアンテナ部5を備えたアンテナ付き半導体パッケージ100に対しての使用できないものが多く含まれている。本実施形態のアンテナ付き半導体パッケージ100において、絶縁層1を構成する硬化物は、SPDR(スプリットポスト誘電体共振器)法にて周波数10GHzで測定した誘電正接(tanδ)が0.0020以下であり、はんだ耐熱が290℃2分以上であることが好ましい。 The semiconductor package 100 with an antenna having the insulating layer 1 configured as described above has excellent solder heat resistance, has low dielectric properties in the initial state, and suppresses changes in dielectric properties when left at high temperatures for a long period of time. can be done. In the semiconductor package 100 with an antenna including the antenna section 5 for 5G millimeter waves, for example, the insulating layer 1 for connecting the antenna section 5 may be subjected to a solder test at 288 ° C., which was not necessary in the past. Solder heat resistance at heat resistant temperature is required. A known high-frequency film is used as an insulating layer in a conventional semiconductor package, but such a high-frequency film does not meet the solder heat resistance described above, and the antenna section 5 for 5G millimeter waves Many of them cannot be used for the semiconductor package 100 with an antenna. In the semiconductor package 100 with an antenna of the present embodiment, the cured product constituting the insulating layer 1 has a dielectric loss tangent (tan δ) of 0.0020 or less measured at a frequency of 10 GHz by an SPDR (split post dielectric resonator) method. It is preferable that the solder heat resistance is 290° C. for 2 minutes or more.
 絶縁層1は、上述した(A)成分と(B)成分とを含む樹脂組成物を、加熱硬化することによって得ることができる。絶縁層1を形成するための樹脂組成物は、これまでに説明した本発明の樹脂組成物と同様に構成された樹脂組成物である。樹脂組成物には、既に説明した(A)成分及び(B)成分に加えて、(C)成分としてのエポキシ樹脂、(D)成分としてのポリテトラフルオロエチレンフィラー、(E)成分としての硬化触媒、(F)成分としての有機過酸化物、及び(G)成分としての酸化防止剤などの他の成分を含んでいてもよい。 The insulating layer 1 can be obtained by heating and curing a resin composition containing the above-described components (A) and (B). The resin composition for forming the insulating layer 1 is a resin composition constructed in the same manner as the resin composition of the present invention described above. In addition to the components (A) and (B) already described, the resin composition contains an epoxy resin as component (C), a polytetrafluoroethylene filler as component (D), and a curing agent as component (E). Other components such as a catalyst, an organic peroxide as component (F), and an antioxidant as component (G) may be included.
 本実施形態のアンテナ付き半導体パッケージ100は、はんだ耐熱性に優れ、且つ、初期状態及び長期高温放置後における誘電特性にも優れているため、5Gミリ波の送信・受信の通信を行うRF(無線周波)チップ8が実装された半導体パッケージとして好適に利用される。 The semiconductor package 100 with an antenna of this embodiment has excellent solder heat resistance and excellent dielectric properties in the initial state and after long-term high temperature exposure. It is suitably used as a semiconductor package in which the frequency) chip 8 is mounted.
 アンテナ付き半導体パッケージ100において、半導体装置部10とアンテナ部5とを接続するための第一絶縁層1A、及び、配線層4における配線ビアを被覆するように構成された第二絶縁層1B、第三絶縁層1C、第四絶縁層1D、及び第五絶縁層1Eのそれぞれが、これまでに説明した硬化物からなる絶縁層1と同様に構成されていることが好ましい。 In the semiconductor package 100 with an antenna, the first insulating layer 1A for connecting the semiconductor device portion 10 and the antenna portion 5, the second insulating layer 1B configured to cover the wiring via in the wiring layer 4, the second Each of the third insulating layer 1C, the fourth insulating layer 1D, and the fifth insulating layer 1E is preferably configured in the same manner as the insulating layer 1 made of the cured material described above.
 次に、アンテナ付き半導体パッケージ100における絶縁層1の作製方法については特に制限はないが、例えば、以下のような方法を挙げることができる。 Next, the method of manufacturing the insulating layer 1 in the semiconductor package 100 with an antenna is not particularly limited, but for example, the following method can be used.
 まず、(A)成分と(B)成分とを少なくとも含むアンテナ付き半導体パッケージ用樹脂組成物を調製する。以下、「アンテナ付き半導体パッケージ用樹脂組成物」を、単に「樹脂組成物」ということがある。取り扱いの観点から、樹脂組成物は、フィルム形状であることが好ましい。このアンテナ付き半導体パッケージ用フィルムは、例えば、(A)成分と(B)成分とを含む樹脂組成物に有機溶剤を加えた溶液を、支持体である離型処理をほどこしたPETフィルムに塗工し、80~130℃で乾燥させることにより得ることができる。得られたアンテナ付き半導体パッケージ用フィルムを、支持体から剥離し、半導体装置部10に貼り付け、例えば、200℃で30~60分の熱処理を行うことにより、アンテナ付き半導体パッケージを作製することができる。 First, a resin composition for a semiconductor package with an antenna containing at least component (A) and component (B) is prepared. Hereinafter, the "resin composition for a semiconductor package with an antenna" may be simply referred to as the "resin composition". From the viewpoint of handling, the resin composition is preferably in the form of a film. This film for a semiconductor package with an antenna is obtained by, for example, applying a solution obtained by adding an organic solvent to a resin composition containing components (A) and (B) on a PET film that is a support and has been subjected to a release treatment. and dried at 80 to 130°C. The obtained film for a semiconductor package with an antenna is peeled off from the support, attached to the semiconductor device portion 10, and subjected to heat treatment at 200° C. for 30 to 60 minutes, for example, to produce a semiconductor package with an antenna. can.
 アンテナ付き半導体パッケージ100における半導体装置部10における配線層4等の構成については、図1に示すような構成に限定されることはなく、5Gミリ波用アンテナを備えた各種半導体パッケージに適用することができる。例えば、図2は、本発明の他の実施形態のアンテナ付き半導体パッケージを示す模式的部分断面図である。 The configuration of the wiring layer 4 and the like in the semiconductor device portion 10 in the semiconductor package 100 with an antenna is not limited to the configuration shown in FIG. can be done. For example, FIG. 2 is a schematic partial cross-sectional view showing a semiconductor package with an antenna according to another embodiment of the invention.
 図2に示すアンテナ付き半導体パッケージ200は、半導体装置部30にアンテナ部25,26が一体的に形成されたものである。アンテナ部25,26は、半導体装置部10において、ミリ波の通信を行うRFチップ28と各種の配線パターンを有する配線層24により接続されている。 A semiconductor package 200 with an antenna shown in FIG. 2 is obtained by integrally forming antenna sections 25 and 26 with a semiconductor device section 30 . In the semiconductor device section 10, the antenna sections 25 and 26 are connected to an RF chip 28 that performs millimeter wave communication and a wiring layer 24 having various wiring patterns.
 半導体装置部30は、コア基板22と、半導体装置部30の一方の表面側に配設されたアンテナ部25と、半導体装置部30とアンテナ部25とを接続するための絶縁層21と、を有する。コア基板22内には、5Gミリ波の送信・受信の通信を行うRFチップ28が収容されており、コア基板22内に配置された配線層24によって配線されている。半導体装置部30の両端には直線状の導線(エレメント)を左右対称に配設したダイポールアンテナとしてのアンテナ部26が設けられている。半導体装置部30の他方の表面側は、アンテナ付き半導体パッケージ200と外部とを物理的及び/又は電気的に連結させるための電気連結金属27と連結されている。 The semiconductor device portion 30 includes a core substrate 22, an antenna portion 25 provided on one surface side of the semiconductor device portion 30, and an insulating layer 21 for connecting the semiconductor device portion 30 and the antenna portion 25. have. An RF chip 28 that performs 5G millimeter wave transmission/reception communication is accommodated in the core substrate 22 and is wired by a wiring layer 24 arranged in the core substrate 22 . At both ends of the semiconductor device portion 30, an antenna portion 26 is provided as a dipole antenna in which linear conductors (elements) are arranged symmetrically. The other surface side of the semiconductor device portion 30 is connected to an electrical connection metal 27 for physically and/or electrically connecting the semiconductor package 200 with an antenna and the outside.
 図2に示すようなアンテナ付き半導体パッケージ200においても、絶縁層21を、(A)成分としての末端にスチレン構造を有するポリフェニレンエーテルと、(B)成分としてのアミノ基を有するスチレン系エラストマーと、を含む樹脂組成物の硬化物とすることで、はんだ耐熱性に優れ、初期状態において低い誘電特性を有し、且つ長期高温放置での誘電特性の変化を抑制することができる。絶縁層21として用いられる硬化物は、図1に示すアンテナ付き半導体パッケージ100の絶縁層1として用いられる硬化物と同様に構成されたものを採用することができる。 Also in the semiconductor package 200 with an antenna as shown in FIG. By using a cured product of a resin composition containing, it is possible to have excellent solder heat resistance, have low dielectric properties in the initial state, and suppress changes in dielectric properties when left at high temperatures for a long period of time. As the cured material used as the insulating layer 21, the cured material having the same structure as the cured material used as the insulating layer 1 of the semiconductor package 100 with an antenna shown in FIG. 1 can be adopted.
 また、図1に示すようなアンテナ付き半導体パッケージ100の絶縁層21として用いられる、(A)成分と(B)成分とを含む樹脂組成物の硬化物は、当該硬化物の下記計算式3で算出される耐熱試験前後の誘電正接の変化量が0.0050以下であることが好ましい。下記計算式3で算出される耐熱試験前後の誘電正接の変化量は、0.0040以下がより好ましく、0.0030以下が更に好ましい。このように構成することによって、本実施形態のアンテナ付き半導体パッケージ100は、高温環境下に置かれても誘電損失が小さいものとなる。 Further, the cured product of the resin composition containing the (A) component and the (B) component, which is used as the insulating layer 21 of the semiconductor package 100 with an antenna as shown in FIG. The calculated amount of change in dielectric loss tangent before and after the heat resistance test is preferably 0.0050 or less. The amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 3 is more preferably 0.0040 or less, and even more preferably 0.0030 or less. With such a configuration, the antenna-equipped semiconductor package 100 of the present embodiment has a small dielectric loss even when placed in a high-temperature environment.
 [計算式3]
 「耐熱試験前後の誘電正接の変化量」=「耐熱試験後の周波数10GHzの誘電正接」-「耐熱試験前の周波数10GHzの誘電正接」
 ここで、上記計算式3において、耐熱試験は、125℃、1000時間の加熱条件にて行うこととする。耐熱試験のより具体的な方法は、上述した計算式1にて説明した方法と同様の方法を用いることができる。
[Formula 3]
"Amount of change in dielectric loss tangent before and after heat resistance test" = "Dielectric loss tangent at frequency 10 GHz after heat resistance test" - "Dielectric loss tangent at frequency 10 GHz before heat resistance test"
Here, in Formula 3 above, the heat resistance test is performed under the heating conditions of 125° C. and 1000 hours. As a more specific method for the heat resistance test, the same method as the method described in Equation 1 above can be used.
 また、この樹脂組成物の硬化物は、当該硬化物の下記計算式4で算出される上記耐熱試験前後の誘電正接の変化率が400%以下であることが更に好ましい。下記計算式4で算出される耐熱試験前後の誘電正接の変化率は、300%以下がより好ましく、200%以下が更に好ましい。 Further, it is more preferable that the cured product of this resin composition has a dielectric loss tangent change rate of 400% or less before and after the heat resistance test, which is calculated by the following formula 4. The rate of change in dielectric loss tangent before and after the heat resistance test calculated by Equation 4 below is more preferably 300% or less, and even more preferably 200% or less.
 [計算式4]
 「耐熱試験前後の誘電正接の変化率(%)」=「耐熱試験前後の誘電正接の変化量」/「耐熱試験前の周波数10GHzの誘電正接」×100
 ここで、上記計算式4において、耐熱試験は、125℃、1000時間の加熱条件にて行い、耐熱試験前後の誘電正接の変化量は、上記計算式3で算出された値である。
[Formula 4]
"Rate of change in dielectric loss tangent before and after heat resistance test (%)" = "Amount of change in dielectric loss tangent before and after heat resistance test" / "Dielectric loss tangent at frequency 10 GHz before heat resistance test" x 100
Here, in Equation 4 above, the heat resistance test is performed under the heating conditions of 125° C. and 1000 hours, and the amount of change in dielectric loss tangent before and after the heat resistance test is the value calculated by Equation 3 above.
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited by these examples. In the following examples, parts and % represent parts by weight and % by weight unless otherwise specified.
(実施例1~16、比較例1~7)
〔サンプル作製〕
 各成分を下記表1~表4に示す配合割合(質量部)になるように計量配合した後、それらを80℃に加温された反応釜に投入し、回転数150rpmで回転させながら、常圧混合を4時間行った。(E)成分の硬化触媒及び/又は(F)成分の有機過酸化物を加える場合には、冷却後に、(E)成分の硬化触媒及び/又は(F)成分の有機過酸化物を加えた。以上のようにして、実施例1~16及び比較例1~7の樹脂組成物を含むワニスを調製した。
(Examples 1 to 16, Comparative Examples 1 to 7)
[Sample preparation]
After weighing and blending each component so that the blending ratio (parts by mass) shown in Tables 1 to 4 below, they are put into a reaction kettle heated to 80 ° C. and rotated at a rotation speed of 150 rpm. Pressure mixing was carried out for 4 hours. When the curing catalyst of component (E) and/or the organic peroxide of component (F) were added, the curing catalyst of component (E) and/or the organic peroxide of component (F) were added after cooling. . As described above, varnishes containing the resin compositions of Examples 1 to 16 and Comparative Examples 1 to 7 were prepared.
 実施例1~16及び比較例1~7において樹脂組成物の調製に使用した原料は以下の通りである。 The raw materials used to prepare the resin compositions in Examples 1-16 and Comparative Examples 1-7 are as follows.
〔(A)成分:末端にスチレン構造を有するポリフェニレンエーテル〕
(A1):三菱ガス化学社製、商品名「OPE-2200」。
(A2):三菱ガス化学社製、商品名「OPE-1200」。
〔(A’)成分:末端にスチレン構造を有さないポリフェニレンエーテル〕
(A’3):SABICジャパン社製、商品名「Noryl SA90」。
(A’4):SABICジャパン社製、商品名「Noryl SA9000」。
[Component (A): polyphenylene ether having a styrene structure at the end]
(A1): trade name "OPE-2200" manufactured by Mitsubishi Gas Chemical Company.
(A2): manufactured by Mitsubishi Gas Chemical Company, trade name "OPE-1200".
[(A') component: polyphenylene ether having no styrene structure at the end]
(A'3): Trade name "Noryl SA90" manufactured by SABIC Japan.
(A'4): Trade name "Noryl SA9000" manufactured by SABIC Japan.
〔(B)成分:アミノ基を有するスチレン系エラストマー〕
(B1):アミノ基を有するスチレン系エラストマー(SBBS)、旭化成ケミカルズ社製、商品名「MP10」。(スチレン比率30%)分子量:Mw:52000。
〔(B’)成分:アミノ基を有さないスチレン系エラストマー〕
(B’2):スチレン系エラストマー(SBS(スチレン比率43%))、JSR社製、商品名「TR2003」。
(B’3):スチレン系エラストマー(SBBS(スチレン比率30%))、旭化成ケミカルズ社製、商品名「P1500」。
(B’4):スチレン系エラストマー(SEBS(スチレン比率30%))、クレイトンポリマー社製、商品名「G1652」。
[Component (B): Styrene-based elastomer having an amino group]
(B1): Styrene-based elastomer having an amino group (SBBS), manufactured by Asahi Kasei Chemicals, trade name "MP10". (Styrene ratio: 30%) Molecular weight: Mw: 52,000.
[(B') component: styrene-based elastomer having no amino group]
(B'2): Styrene-based elastomer (SBS (styrene ratio: 43%)) manufactured by JSR, trade name "TR2003".
(B'3): Styrene-based elastomer (SBBS (styrene ratio: 30%)) manufactured by Asahi Kasei Chemicals, trade name "P1500".
(B'4): Styrene-based elastomer (SEBS (styrene ratio: 30%)) manufactured by Kraton Polymer Co., Ltd., trade name "G1652".
〔(C)成分:エポキシ樹脂〕
(C1):ビスフェノールA型エポキシ樹脂、三菱ケミカル社製、商品名「828EL」。
(C2):ビフェニル型エポキシ樹脂、日本化薬社製、商品名「NC3000H」。
(C3):ナフタレン型エポキシ樹脂、DIC社製、商品名「HP-4032D」。
(C4):ノボラック型エポキシ樹脂、日本化薬社製、商品名「EPPN-502H」。
[(C) component: epoxy resin]
(C1): Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name "828EL".
(C2): Biphenyl-type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name "NC3000H".
(C3): Naphthalene-type epoxy resin, manufactured by DIC, trade name "HP-4032D".
(C4): novolac type epoxy resin, trade name "EPPN-502H" manufactured by Nippon Kayaku Co., Ltd.;
〔(D)成分:ポリテトラフルオロエチレンフィラー〕
(D1):ダイキン工業社製、商品名「ルブロンL-5F」。
〔(E)成分:硬化触媒〕
(E1):ADEKA社製、商品名「EH2021」。
〔(F)成分:有機過酸化物〕
(F1):日油化学社製、商品名「パーブチルZ」。
(F2):日油化学社製、商品名「パークミルD」。
〔(G)成分:酸化防止剤〕
(G1):ADEKA社製、商品名「AO-50」。
[(D) component: polytetrafluoroethylene filler]
(D1): Trade name “Lubron L-5F” manufactured by Daikin Industries, Ltd.
[(E) component: curing catalyst]
(E1): Made by ADEKA, trade name "EH2021".
[(F) component: organic peroxide]
(F1): manufactured by NOF Chemical Co., Ltd., trade name "PERBUTYL Z".
(F2): manufactured by NOF Chemical Co., Ltd., trade name "Percumyl D".
[(G) component: antioxidant]
(G1): manufactured by ADEKA, trade name "AO-50".
 表1~表4の「原料比率」の欄に、実施例1~16及び比較例1~7において、樹脂組成物の調製に用いた原料の比率を示す。表1~表4の「原料比率」の各欄における比率は、以下の通りである。「B/A×100(質量比)」の欄は、(A)成分100質量部に対する(B)成分の含有量(質量部)を示す。「B/(A+B)×100(質量比)」の欄は、(A)成分及び(B)成分の合計100質量部に対する(B)成分の含有量(質量部)を示す。「C/(A+B+C)×100(質量比)」の欄は、(A)成分、(B)成分及び(C)成分の合計100質量部に対する(B)成分の含有量(質量部)を示す。 The column "ratio of raw materials" in Tables 1 to 4 shows the ratio of the raw materials used to prepare the resin compositions in Examples 1 to 16 and Comparative Examples 1 to 7. The ratios in each column of "raw material ratio" in Tables 1 to 4 are as follows. The column of "B/A x 100 (mass ratio)" indicates the content (parts by mass) of component (B) with respect to 100 parts by mass of component (A). The column of "B/(A+B) x 100 (mass ratio)" indicates the content (parts by mass) of component (B) with respect to a total of 100 parts by mass of components (A) and (B). The column "C / (A + B + C) × 100 (mass ratio)" shows the content (parts by mass) of component (B) with respect to a total of 100 parts by mass of components (A), (B) and (C). .
 次に、上記のようにして調製した樹脂組成物を含むワニスを支持体(離型処理を施したPETフィルム)の片面に塗布し、100℃で乾燥させることにより、支持体付の接着フィルムを得た。 Next, the varnish containing the resin composition prepared as described above is applied to one side of the support (PET film subjected to release treatment) and dried at 100° C. to form an adhesive film with the support. Obtained.
 このようにして得られた支持体付の接着フィルムについて、以下の誘電特性の評価を行った。誘電特性の評価は、誘電率(ε)及び誘電正接(tanδ)の測定を、下記に示すような耐熱試験を行う前と耐熱試験を行った後のそれぞれにおいて行った。また、耐熱試験前と耐熱試験後の誘電正接(tanδ)から、耐熱試験前後の誘電正接の変化量と、耐熱試験前後の誘電正接の変化率(%)を算出した。耐熱試験前後の誘電正接の変化量とは、耐熱試験(125℃1000時間の加熱条件)後の周波数10GHzの誘電正接から耐熱試験前の周波数10GHzの誘電正接の値を引いたものである。また、耐熱試験前後の誘電正の変化率とは、耐熱試験前後の誘電正接の変化量に対し、耐熱試験(125℃1000時間の加熱条件)前の周波数10GHzの誘電正接の値を除したものである耐熱試験前後の誘電正接の変化量は、0.0050以下が好ましく、0.0040以下がより好ましく、0.0030以下が更に好ましい。耐熱試験前後の誘電正接の変化率は、400%以下が好ましく、300%以下がより好ましく、200%以下が更に好ましい。各結果を表1~表4に示す。 The following dielectric properties were evaluated for the adhesive film with support thus obtained. For the evaluation of dielectric properties, the dielectric constant (ε) and dielectric loss tangent (tan δ) were measured before and after the heat resistance test described below. Also, from the dielectric loss tangent (tan δ) before and after the heat resistance test, the amount of change in the dielectric loss tangent before and after the heat resistance test and the rate of change (%) in the dielectric loss tangent before and after the heat resistance test were calculated. The amount of change in the dielectric loss tangent before and after the heat resistance test is obtained by subtracting the value of the dielectric loss tangent at a frequency of 10 GHz before the heat resistance test from the dielectric loss tangent at a frequency of 10 GHz after the heat resistance test (heating condition of 125° C. for 1000 hours). Also, the rate of change in dielectric loss before and after the heat resistance test is obtained by dividing the amount of change in the dielectric loss tangent before and after the heat resistance test by the value of the dielectric loss tangent at a frequency of 10 GHz before the heat resistance test (heating condition of 125°C for 1000 hours). is preferably 0.0050 or less, more preferably 0.0040 or less, and even more preferably 0.0030 or less. The rate of change in dielectric loss tangent before and after the heat resistance test is preferably 400% or less, more preferably 300% or less, and even more preferably 200% or less. Each result is shown in Tables 1 to 4.
〔誘電特性(誘電率(ε)、誘電正接(tanδ))〕
 耐熱試験前の接着フィルムを、200℃、60分、10kgf/cmで加熱硬化させ、支持体から剥離した後、該接着フィルムから試験片(50±0.5mm×100±2mm)を切り出し、厚みを測定した。厚みを測定したフィルムを誘電体共振器法(SPDR法)にて、誘電率(ε)及び誘電正接(tanδ)を測定した。なお、誘電体共振器法による測定は、測定周波数を10GHzとした。誘電率(ε)は、2.6以下が好ましくい。誘電正接(tanδ)は、0.0020以下が好ましく、0.0010以下がより好ましい。
[Dielectric properties (dielectric constant (ε), dielectric loss tangent (tan δ))]
The adhesive film before the heat resistance test was heat-cured at 200° C. for 60 minutes at 10 kgf/cm 2 , peeled off from the support, and then cut out from the adhesive film into a test piece (50±0.5 mm×100±2 mm), Thickness was measured. The dielectric constant (ε) and dielectric loss tangent (tan δ) of the film whose thickness was measured were measured by the dielectric resonator method (SPDR method). In the measurement by the dielectric resonator method, the measurement frequency was 10 GHz. The dielectric constant (ε) is preferably 2.6 or less. The dielectric loss tangent (tan δ) is preferably 0.0020 or less, more preferably 0.0010 or less.
〔耐熱試験後の誘電特性(誘電率(ε)、誘電正接(tanδ))〕
 耐熱試験は、125℃の恒温槽に接着フィルムを投入し、1000時間保持することによって行った。このような耐熱試験を行った後に、接着フィルムを恒温槽から取り出し、接着フィルムの表面温度が常温となった時点で、上記した誘電体共振器法(SPDR法)
にて、誘電率(ε)及び誘電正接(tanδ)を測定した。耐熱試験後の誘電特性の評価においては、誘電率(ε)は、2.6以下が好ましくい。誘電正接(tanδ)は、0.0050以下が好ましく、0.0040以下がより好ましく、0.0030以下が更に好ましい。
[Dielectric properties after heat resistance test (dielectric constant (ε), dielectric loss tangent (tan δ))]
A heat resistance test was performed by placing the adhesive film in a constant temperature bath at 125° C. and holding it for 1000 hours. After conducting such a heat resistance test, the adhesive film was taken out from the constant temperature bath, and when the surface temperature of the adhesive film reached room temperature, the dielectric resonator method (SPDR method) was performed.
, the dielectric constant (ε) and dielectric loss tangent (tan δ) were measured. In evaluating the dielectric properties after the heat resistance test, the dielectric constant (ε) is preferably 2.6 or less. The dielectric loss tangent (tan δ) is preferably 0.0050 or less, more preferably 0.0040 or less, and even more preferably 0.0030 or less.
 また、得られた支持体付の接着フィルムについて、以下のはんだ耐熱試験、及びピール強度の評価を行った。各結果を表1~表4に示す。 In addition, the following solder heat resistance test and peel strength evaluation were performed on the obtained adhesive film with support. Each result is shown in Tables 1 to 4.
〔はんだ耐熱性〕
 JIS C5012(1993)に準拠して行った。具体的には、接着フィルムの両面に、粗化面を内側にして銅箔を貼りあわせ、プレス機で熱圧着させた。熱圧着の条件は、200℃、60分、10kgf/cmとした。得られた試験片を25mm×25mmにカットし、288℃に熱したはんだ槽にフロートし、4分間膨れの有無を確認した。表1~表4に示す結果(秒)は、目視にて試験片に膨れが発生するまでの時間(秒)を示す。なお、4分間膨れが発生しなかった場合は「240<」と記載した。はんだ耐熱性の評価は、120秒以上膨れが発生しないことが好ましい。
[Solder heat resistance]
It was carried out according to JIS C5012 (1993). Specifically, a copper foil was pasted on both sides of the adhesive film with the roughened surface facing inward, and was thermocompressed with a press. The thermocompression bonding conditions were 200° C., 60 minutes, and 10 kgf/cm 2 . The obtained test piece was cut into a size of 25 mm×25 mm, floated in a solder bath heated to 288° C., and the presence or absence of swelling was confirmed for 4 minutes. The results (seconds) shown in Tables 1 to 4 show the time (seconds) until the test pieces blister visually. In addition, when swelling did not generate|occur|produce for 4 minutes, it described as "240<". In the evaluation of solder heat resistance, it is preferable that swelling does not occur for 120 seconds or more.
〔ピール強度(M)〕
 JIS C 6471に準拠して行った。具体的には、接着フィルムの両面に、粗化面を内側にして銅箔を貼りあわせ、プレス機で熱圧着させた。銅箔は、商品名「CF-T9」、福田金属箔工業社製、18μmを用いた。熱圧着の条件は、200℃、60分、10kgf/cmとした。得られた試験片を10mm幅にカットし、オートグラフで引きはがし、ピール強度を測定した。測定結果について、各N=5の平均値を計算した。
[Peel strength (M)]
It was carried out in accordance with JIS C 6471. Specifically, a copper foil was pasted on both sides of the adhesive film with the roughened surface facing inward, and was thermocompressed with a press. A copper foil of 18 μm, trade name “CF-T9” manufactured by Fukuda Metal Foil Industry Co., Ltd. was used. The thermocompression bonding conditions were 200° C., 60 minutes, and 10 kgf/cm 2 . The obtained test piece was cut into a width of 10 mm, peeled off by an autograph, and the peel strength was measured. An average value of each N=5 was calculated for the measurement results.
〔ピール強度(S)〕
 接着フィルムの両面に、光沢面を内側にして銅箔を貼りあわせ、プレス機で熱圧着させた。銅箔は、商品名「CF-T9」、福田金属箔工業社製、18μmを用いた。熱圧着の条件は、200℃、60分、10kgf/cmとした。得られた試験片を10mm幅にカットし、オートグラフで引きはがし、ピール強度を測定した。測定結果について、各N=5の平均値を計算した。
[Peel strength (S)]
A copper foil was pasted on both sides of the adhesive film with the glossy side facing inward, and was thermocompression bonded with a press. A copper foil of 18 μm, trade name “CF-T9” manufactured by Fukuda Metal Foil Industry Co., Ltd. was used. The thermocompression bonding conditions were 200° C., 60 minutes, and 10 kgf/cm 2 . The obtained test piece was cut into a width of 10 mm, peeled off by an autograph, and the peel strength was measured. An average value of each N=5 was calculated for the measurement results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
〔結果〕
 表1~表3に示すように、実施例1~16の樹脂組成物は、(A)成分としての末端にスチレン構造を有するポリフェニレンエーテルと、(B)成分としてのアミノ基を有するスチレン系エラストマーと、を含むものであった。実施例1~16の樹脂組成物は、「B/A×100(質量比)」の欄に示されるように、(A)成分100質量部に対する(B)成分の含有量が特定の数値範囲にあり、耐熱試験前後の誘電特性(誘電率(ε)及び誘電正接(tanδ))、はんだ耐熱性、及びピール強度の各評価において全て良好な結果を示すものであった。
〔result〕
As shown in Tables 1 to 3, the resin compositions of Examples 1 to 16 consisted of polyphenylene ether having a styrene structure at the terminal as component (A) and a styrene elastomer having an amino group as component (B). and was included. In the resin compositions of Examples 1 to 16, as shown in the column of "B/A x 100 (mass ratio)", the content of component (B) with respect to 100 parts by mass of component (A) is within a specific numerical range. In each evaluation of dielectric properties (permittivity (ε) and dielectric loss tangent (tan δ)), soldering heat resistance, and peel strength before and after the heat resistance test, good results were obtained.
 また、実施例1~16の樹脂組成物は、耐熱試験前後の誘電正接の変化量が少なく、耐熱試験前後の誘電正接の変化率(%)は最大で400%以下という小さい値を示すものであった。また、実施例3を除く、全ての実施例は、上記変化率(%)が最大で300%以下という非常に小さい値を示すものであった。特にアンテナ付き半導体パッケージでは、ICからの発熱によりアンテナ周辺の絶縁層も高温になることが予想されるが、これらの樹脂組成物は高温放置後の誘電正接の変化が小さいことにより安定したアンテナ性能が期待できる。なお、実施例4の樹脂組成物は、(B)成分の含有量が相対的に少なく、誘電特性が若干高くなる傾向が確認された。一方で、実施例5の樹脂組成物は、(B)成分の含有量が相対的に多く、誘電特性が低くなる傾向が確認された。 In addition, the resin compositions of Examples 1 to 16 show a small amount of change in dielectric loss tangent before and after the heat resistance test, and the change rate (%) of the dielectric loss tangent before and after the heat resistance test is a small value of 400% or less at maximum. there were. In addition, all the examples except Example 3 showed a very small value of 300% or less at the maximum of the rate of change (%). Especially in a semiconductor package with an antenna, it is expected that the temperature of the insulating layer around the antenna will rise due to the heat generated from the IC. can be expected. In addition, it was confirmed that the resin composition of Example 4 had a relatively low content of the component (B) and tended to have slightly higher dielectric properties. On the other hand, it was confirmed that the resin composition of Example 5 had a relatively large content of the component (B) and tended to have low dielectric properties.
 比較例1の樹脂組成物は、末端にスチレン構造を有するポリフェニレンエーテルの代わりに、(A’)成分として、末端に水酸基(OH基)を有するポリフェニレンエーテルを用いた。また、比較例2の樹脂組成物は、末端にスチレン構造を有するポリフェニレンエーテルの代わりに、(A’)成分として、末端にメタクリル基を有するポリフェニレンエーテルを用いた。比較例1,2の樹脂組成物は、はんだ耐熱性が極めて劣るものであった。また、比較例1の樹脂組成物は、耐熱試験前の誘電正接(tanδ)及び耐熱試験後の誘電率(ε)が高い値を示した。比較例2の樹脂組成物は、耐熱試験後の誘電率(ε)が高い値を示した。 In the resin composition of Comparative Example 1, a polyphenylene ether having a terminal hydroxyl group (OH group) was used as the (A') component instead of a polyphenylene ether having a styrene structure at the terminal. In the resin composition of Comparative Example 2, a polyphenylene ether having a terminal methacrylic group was used as the component (A') instead of the polyphenylene ether having a terminal styrene structure. The resin compositions of Comparative Examples 1 and 2 were extremely poor in solder heat resistance. In addition, the resin composition of Comparative Example 1 exhibited a high dielectric loss tangent (tan δ) before the heat resistance test and a high dielectric constant (ε) after the heat resistance test. The resin composition of Comparative Example 2 exhibited a high dielectric constant (ε) after the heat resistance test.
 比較例3~5の樹脂組成物は、アミノ基を有するスチレン系エラストマーの代わりに、(B’)成分として、アミノ基を有さないスチレン系エラストマーを用いた。比較例3の樹脂組成物は、耐熱試験前の誘電正接(tanδ)、並びに耐熱試験後の誘電率(ε)及び誘電正接(tanδ)が高い値を示した。比較例4の樹脂組成物は、耐熱試験後の誘電正接(tanδ)が高い値を示した。このため、比較例3,4の樹脂組成物は、耐熱試験前後の誘電正接(tanδ)の変化率が非常に大きい値を示すものであった。比較例5の樹脂組成物は、はんだ耐熱性が極めて劣るものであった。 In the resin compositions of Comparative Examples 3 to 5, a styrene-based elastomer having no amino group was used as the component (B') instead of the styrene-based elastomer having an amino group. The resin composition of Comparative Example 3 exhibited high values of dielectric loss tangent (tan δ) before the heat resistance test, and dielectric constant (ε) and dielectric loss tangent (tan δ) after the heat resistance test. The resin composition of Comparative Example 4 exhibited a high dielectric loss tangent (tan δ) after the heat resistance test. For this reason, the resin compositions of Comparative Examples 3 and 4 exhibited extremely large values of change in dielectric loss tangent (tan δ) before and after the heat resistance test. The resin composition of Comparative Example 5 was extremely poor in solder heat resistance.
 比較例6の樹脂組成物は、(B)成分の含有量が、(A)成分100質量部に対して、61.67質量部であった。比較例6の樹脂組成物は、はんだ耐熱性が劣り、耐熱試験前の誘電正接(tanδ)も高い値を示した。 In the resin composition of Comparative Example 6, the content of component (B) was 61.67 parts by mass with respect to 100 parts by mass of component (A). The resin composition of Comparative Example 6 was inferior in soldering heat resistance and showed a high dielectric loss tangent (tan δ) before the heat resistance test.
 比較例7の樹脂組成物は、(B)成分の含有量が、(A)成分100質量部に対して、1895質量部であった。比較例7の樹脂組成物は、はんだ耐熱性が極めて劣るものであった。 In the resin composition of Comparative Example 7, the content of component (B) was 1895 parts by mass with respect to 100 parts by mass of component (A). The resin composition of Comparative Example 7 was extremely poor in solder heat resistance.
 本発明の樹脂組成物は、電子部品に使用する接着フィルム用の樹脂組成物として用いることができる。また、本発明の樹脂組成物は、多層化基板用の層間接着用ボンディングシートや層間接着剤としても用いることができる。また、本発明のアンテナ付き半導体パッケージは、5Gミリ波の送信・受信の通信を行うRFチップが実装される高周波基板として利用することができる。本発明のアンテナ付き半導体パッケージ用樹脂組成物は、本発明のアンテナ付き半導体パッケージの絶縁層に利用することができる。 The resin composition of the present invention can be used as a resin composition for adhesive films used in electronic parts. The resin composition of the present invention can also be used as a bonding sheet for interlayer adhesion and an interlayer adhesive for multilayer substrates. Moreover, the semiconductor package with an antenna of the present invention can be used as a high-frequency substrate on which an RF chip that performs 5G millimeter wave transmission/reception communication is mounted. The resin composition for a semiconductor package with an antenna of the present invention can be used for the insulating layer of the semiconductor package with an antenna of the present invention.
1 絶縁層
1A 第一絶縁層
1B 第二絶縁層
1C 第三絶縁層
1D 第四絶縁層
1E 第五絶縁層
2 コア基板
4 配線層
5 アンテナ部(パッチアンテナ)
7 電気連結金属
8 RFチップ
9 接続パッド
10 半導体装置部
21 絶縁層
22 コア基板
24 配線層
25 アンテナ部(パッチアンテナ)
26 アンテナ部(ダイポールアンテナ)
27 電気連結金属
28 RFチップ
30 半導体装置部
100,200 アンテナ付き半導体パッケージ
1 Insulating Layer 1A First Insulating Layer 1B Second Insulating Layer 1C Third Insulating Layer 1D Fourth Insulating Layer 1E Fifth Insulating Layer 2 Core Substrate 4 Wiring Layer 5 Antenna Part (Patch Antenna)
7 Electrical connection metal 8 RF chip 9 Connection pad 10 Semiconductor device section 21 Insulation layer 22 Core substrate 24 Wiring layer 25 Antenna section (patch antenna)
26 Antenna part (dipole antenna)
27 electrical connection metal 28 RF chip 30 semiconductor device part 100, 200 semiconductor package with antenna

Claims (19)

  1.  (A)末端にスチレン構造を有するポリフェニレンエーテルと、
     (B)アミノ基を有するスチレン系エラストマーと、を含み、
     前記(B)成分の含有量が、前記(A)成分100質量部に対して、70~1100質量部である、樹脂組成物。
    (A) a polyphenylene ether having a styrene structure at its end;
    (B) a styrene-based elastomer having an amino group,
    A resin composition in which the content of component (B) is 70 to 1100 parts by mass per 100 parts by mass of component (A).
  2.  前記(A)成分が、下記一般式(1)で示される構造である、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(1)中、
     R、R、R、R、R、R、Rは、同一又は異なってもよく、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基又はフェニル基であり、
     -(O-X-O)-は、上記構造式(2)で示され、当該構造式(2)中、R、R、R10、R14、R15は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R11、R12、R13は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
     -(Y-O)-は、上記構造式(3)で示される1種類の構造、又は、上記構造式(3)で示される2種類以上の構造がランダムに配列したものであり、当該構造式(3)中、R16、R17は、同一又は異なってもよく、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、R18、R19は、同一又は異なってもよく、水素原子、ハロゲン原子、炭素数6以下のアルキル基又はフェニル基であり、
     Zは、炭素数1以上の有機基であり、場合により酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともあり、
     a、bは、少なくともいずれか一方が0でない、0~300の整数を示し、c、dは、0又は1の整数を示す。)
    The resin composition according to claim 1, wherein the component (A) has a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formula (1),
    R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , which may be the same or different, are a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group or a phenyl group;
    —(O—X—O)— is represented by the above structural formula (2), and in the structural formula (2), R 8 , R 9 , R 10 , R 14 and R 15 may be the same or different. R 11 , R 12 and R 13 may be the same or different and may be a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group. is the basis,
    -(Y-O)- is one type of structure represented by the above structural formula (3), or two or more types of structures represented by the above structural formula (3) arranged randomly, and the structure In formula (3), R 16 and R 17 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, R 18 and R 19 may be the same or different, a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group;
    Z is an organic group having 1 or more carbon atoms, optionally containing an oxygen atom, a nitrogen atom, a sulfur atom, or a halogen atom,
    a and b are integers of 0 to 300, at least one of which is not 0; c and d are integers of 0 or 1; )
  3.  (C)エポキシ樹脂を更に含む、請求項1又は2に記載の樹脂組成物。 (C) The resin composition according to claim 1 or 2, further comprising an epoxy resin.
  4.  前記(C)成分の含有量が、前記(A)成分、前記(B)成分及び前記(C)成分の合計100質量部に対して、0.01~11質量部である、請求項3に記載の樹脂組成物。 Claim 3, wherein the content of component (C) is 0.01 to 11 parts by mass with respect to a total of 100 parts by mass of component (A), component (B) and component (C). The described resin composition.
  5.  前記(B)成分のアミノ基を有するスチレン系エラストマーが、スチレン/ブタジエン/ブチレン/スチレンブロックコポリマーである、請求項1~4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the amino group-containing styrene elastomer of component (B) is a styrene/butadiene/butylene/styrene block copolymer.
  6.  (D)ポリテトラフルオロエチレンフィラーを更に含む、請求項1~5のいずれか一項に記載の樹脂組成物。 (D) The resin composition according to any one of claims 1 to 5, further comprising a polytetrafluoroethylene filler.
  7.  (E)硬化触媒を更に含む、請求項1~6のいずれか一項に記載の樹脂組成物。 (E) The resin composition according to any one of claims 1 to 6, further comprising a curing catalyst.
  8.  (F)有機過酸化物を更に含む、請求項1~7のいずれか一項に記載の樹脂組成物。 (F) The resin composition according to any one of claims 1 to 7, further comprising an organic peroxide.
  9.  (G)酸化防止剤を更に含む、請求項1~8のいずれか一項に記載の樹脂組成物。 (G) The resin composition according to any one of claims 1 to 8, further comprising an antioxidant.
  10.  請求項1~9のいずれか一項に記載の樹脂組成物を用いた接着フィルム。 An adhesive film using the resin composition according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか一項に記載の樹脂組成物を用いた層間接着用ボンディングシート。 A bonding sheet for interlayer adhesion using the resin composition according to any one of claims 1 to 9.
  12. 請求項1~9のいずれか一項に記載の樹脂組成物の硬化物を含む、積層板又は半導体装置。 A laminate or semiconductor device comprising a cured product of the resin composition according to any one of claims 1 to 9.
  13.  請求項1~9のいずれか一項に記載の樹脂組成物を用いた層間接着剤。 An interlayer adhesive using the resin composition according to any one of claims 1 to 9.
  14.  請求項1~9のいずれか一項に記載の樹脂組成物からなるアンテナ付き半導体パッケージ用樹脂組成物。 A resin composition for a semiconductor package with an antenna, comprising the resin composition according to any one of claims 1 to 9.
  15.  請求項1~9のいずれか一項に記載の樹脂組成物の硬化物であって、前記硬化物の下記計算式1で算出される耐熱試験前後の誘電正接の変化量が0.0050以下である、硬化物。
     [計算式1]
     「耐熱試験前後の誘電正接の変化量」=「耐熱試験後の周波数10GHzの誘電正接」-「耐熱試験前の周波数10GHzの誘電正接」
     前記計算式1において、耐熱試験は、125℃、1000時間の加熱条件にて行う。
    A cured product of the resin composition according to any one of claims 1 to 9, wherein the amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 1 of the cured product is 0.0050 or less. There is a hardened material.
    [Formula 1]
    "Amount of change in dielectric loss tangent before and after heat resistance test" = "Dielectric loss tangent at frequency 10 GHz after heat resistance test" - "Dielectric loss tangent at frequency 10 GHz before heat resistance test"
    In Formula 1, the heat resistance test is performed under heating conditions of 125° C. and 1000 hours.
  16.  前記硬化物の下記計算式2で算出される前記耐熱試験前後の誘電正接の変化率が400%以下である、請求項15に記載の硬化物。
     [計算式2]
     「耐熱試験前後の誘電正接の変化率(%)」=「耐熱試験前後の誘電正接の変化量」/「耐熱試験前の周波数10GHzの誘電正接」×100
     前記計算式2において、耐熱試験は、125℃、1000時間の加熱条件にて行い、耐熱試験前後の誘電正接の変化量は、前記計算式1で算出された値である。
    16. The cured product according to claim 15, wherein the cured product has a dielectric loss tangent change rate of 400% or less before and after the heat resistance test calculated by the following formula 2.
    [Formula 2]
    "Rate of change in dielectric loss tangent before and after heat resistance test (%)" = "Amount of change in dielectric loss tangent before and after heat resistance test" / "Dielectric loss tangent at frequency 10 GHz before heat resistance test" x 100
    In Equation 2, the heat resistance test was performed under the heating conditions of 125° C. and 1000 hours, and the amount of change in dielectric loss tangent before and after the heat resistance test is the value calculated by Equation 1 above.
  17.  半導体装置部にアンテナ部が一体的に形成されたアンテナ付き半導体パッケージであって、前記半導体装置部と前記アンテナ部とを接続するための絶縁層、及び前記アンテナ部内部の絶縁層のうちの少なくとも一方が、
     (A)末端にスチレン構造を有するポリフェニレンエーテルと、(B)アミノ基を有するスチレン系エラストマーと、を含む樹脂組成物の硬化物であり、前記樹脂組成物が、前記(A)成分100質量部に対して、前記(B)成分を70~1100質量部含む、アンテナ付き半導体パッケージ。
    A semiconductor package with an antenna in which an antenna section is integrally formed with a semiconductor device section, wherein at least one of an insulating layer for connecting the semiconductor device section and the antenna section and an insulating layer inside the antenna section on the one hand,
    A cured product of a resin composition containing (A) a polyphenylene ether having a styrene structure at its end and (B) a styrene elastomer having an amino group, wherein the resin composition contains 100 parts by mass of the component (A). A semiconductor package with an antenna, containing 70 to 1100 parts by mass of the component (B).
  18.  前記硬化物の下記計算式3で算出される耐熱試験前後の誘電正接の変化量が0.0050以下である、請求項17に記載のアンテナ付き半導体パッケージ。
     [計算式3]
     「耐熱試験前後の誘電正接の変化量」=「耐熱試験後の周波数10GHzの誘電正接」-「耐熱試験前の周波数10GHzの誘電正接」
     前記計算式3において、耐熱試験は、125℃、1000時間の加熱条件にて行う。
    18. The semiconductor package with an antenna according to claim 17, wherein the amount of change in dielectric loss tangent before and after the heat resistance test calculated by the following formula 3 of the cured product is 0.0050 or less.
    [Formula 3]
    "Amount of change in dielectric loss tangent before and after heat resistance test" = "Dielectric loss tangent at frequency 10 GHz after heat resistance test" - "Dielectric loss tangent at frequency 10 GHz before heat resistance test"
    In the calculation formula 3, the heat resistance test is performed under heating conditions of 125° C. and 1000 hours.
  19.  前記硬化物の下記計算式4で算出される前記耐熱試験前後の誘電正接の変化率が400%以下である、請求項18に記載のアンテナ付き半導体パッケージ。
     [計算式4]
     「耐熱試験前後の誘電正接の変化率(%)」=「耐熱試験前後の誘電正接の変化量」/「耐熱試験前の周波数10GHzの誘電正接」×100
     前記計算式4において、耐熱試験は、125℃、1000時間の加熱条件にて行い、耐熱試験前後の誘電正接の変化量は、前記計算式3で算出された値である。
    19. The semiconductor package with an antenna according to claim 18, wherein a rate of change in dielectric loss tangent of said cured product before and after said heat resistance test calculated by the following formula 4 is 400% or less.
    [Formula 4]
    "Rate of change in dielectric loss tangent before and after heat resistance test (%)" = "Amount of change in dielectric loss tangent before and after heat resistance test" / "Dielectric loss tangent at frequency 10 GHz before heat resistance test" x 100
    In Equation 4, the heat resistance test was performed under the heating conditions of 125° C. and 1000 hours, and the amount of change in dielectric loss tangent before and after the heat resistance test is the value calculated by Equation 3 above.
PCT/JP2022/030845 2021-09-30 2022-08-15 Resin composition, adhesive film, bonding sheet for interlayer bonding, resin composition for semiconductor package with antenna, and semiconductor package with antenna WO2023053749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161112 2021-09-30
JP2021-161112 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053749A1 true WO2023053749A1 (en) 2023-04-06

Family

ID=85782333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030845 WO2023053749A1 (en) 2021-09-30 2022-08-15 Resin composition, adhesive film, bonding sheet for interlayer bonding, resin composition for semiconductor package with antenna, and semiconductor package with antenna

Country Status (2)

Country Link
TW (1) TW202317689A (en)
WO (1) WO2023053749A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099712A (en) * 2017-12-05 2019-06-24 日立化成株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
JP2019172803A (en) * 2018-03-28 2019-10-10 三井金属鉱業株式会社 Resin composition, copper foil with resin, printed circuit board, and treatment method of copper foil with resin
JP2020094172A (en) * 2018-12-10 2020-06-18 太陽ホールディングス株式会社 Curable composition, dry film, cured object, and electronic component
WO2021024364A1 (en) * 2019-08-06 2021-02-11 デクセリアルズ株式会社 Adhesive composition, thermally curable adhesive sheet, and printed wiring board
CN112457651A (en) * 2020-11-30 2021-03-09 南亚新材料科技股份有限公司 Bio-based resin composition, adhesive sheet, metal-clad laminate, and printed wiring board
JP6909342B1 (en) * 2020-07-31 2021-07-28 アイカ工業株式会社 Resin composition and adhesive sheet using it
WO2022172759A1 (en) * 2021-02-10 2022-08-18 三井金属鉱業株式会社 Resin composition, copper foil with resin, and printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099712A (en) * 2017-12-05 2019-06-24 日立化成株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board and high-speed communication compatible module
JP2019172803A (en) * 2018-03-28 2019-10-10 三井金属鉱業株式会社 Resin composition, copper foil with resin, printed circuit board, and treatment method of copper foil with resin
JP2020094172A (en) * 2018-12-10 2020-06-18 太陽ホールディングス株式会社 Curable composition, dry film, cured object, and electronic component
WO2021024364A1 (en) * 2019-08-06 2021-02-11 デクセリアルズ株式会社 Adhesive composition, thermally curable adhesive sheet, and printed wiring board
JP6909342B1 (en) * 2020-07-31 2021-07-28 アイカ工業株式会社 Resin composition and adhesive sheet using it
CN112457651A (en) * 2020-11-30 2021-03-09 南亚新材料科技股份有限公司 Bio-based resin composition, adhesive sheet, metal-clad laminate, and printed wiring board
WO2022172759A1 (en) * 2021-02-10 2022-08-18 三井金属鉱業株式会社 Resin composition, copper foil with resin, and printed wiring board

Also Published As

Publication number Publication date
TW202317689A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
KR102323672B1 (en) Resin composition, and insulating film and semiconductor device using same
KR102138174B1 (en) Resin composition and adhesive film, coverlay film, and interlayer adhesive using resin composition
JP5463110B2 (en) Coverlay film
WO2014064986A1 (en) Coverlay film, flexible printed circuit board using same, and production method therefor
WO2014024678A1 (en) Resin composition, and adhesive film and coverlay film each of which is formed of same
JP5422235B2 (en) Epoxy resin composition, epoxy resin cured product, epoxy resin-based conductive composition, and epoxy resin-based conductive cured product
WO2022004409A1 (en) Semiconductor package with antenna, and resin composition for semiconductor package with antenna
WO2023053749A1 (en) Resin composition, adhesive film, bonding sheet for interlayer bonding, resin composition for semiconductor package with antenna, and semiconductor package with antenna
JP7264485B2 (en) Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
KR102390263B1 (en) Bonding sheet and flexible printed circuit board
KR101797723B1 (en) Adhesive composition, adhesive film, and flexible metal laminate
WO2024048055A1 (en) Resin composition, adhesive film, bonding sheet for interlayer adhesion, and resin composition for semiconductor package with antenna
JP2023170864A (en) Resin composition, prepreg, laminate, resin film, printed wiring board, antenna device and antenna module
TW202411329A (en) Resin compositions, adhesive films, adhesive sheets for interlayer bonding, and resin compositions for semiconductor packages with antennas
JP6979746B2 (en) Methacrylic group-containing resin, curable resin composition and its cured product
WO2022123792A1 (en) Resin composition for molding and electronic component device
KR102378121B1 (en) Cover lay and flexible printed circuit board
JPWO2017026396A1 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
WO2022255078A1 (en) Resin composition, production method therefor, adhesive film, and bonding sheet for interlaminar bonding
JP2017171890A (en) Resin composition, thermosetting film, cured product, printed wiring board, and semiconductor device
WO2023190419A1 (en) Resin composition for molding and electronic component device
JP2023013224A (en) Method for manufacturing laminate for antenna module, method for manufacturing antenna device, method for manufacturing antenna module, and method for manufacturing communication device
JP2022059974A (en) Method for producing resin composition, resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor package
WO2015155982A1 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
JP2015048458A (en) Low dielectric constant epoxy resin composition, and metal laminated sheet and substrate material for package using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550436

Country of ref document: JP