WO2015155982A1 - Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board - Google Patents

Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board Download PDF

Info

Publication number
WO2015155982A1
WO2015155982A1 PCT/JP2015/001941 JP2015001941W WO2015155982A1 WO 2015155982 A1 WO2015155982 A1 WO 2015155982A1 JP 2015001941 W JP2015001941 W JP 2015001941W WO 2015155982 A1 WO2015155982 A1 WO 2015155982A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
parts
printed wiring
resin
Prior art date
Application number
PCT/JP2015/001941
Other languages
French (fr)
Japanese (ja)
Inventor
達也 有沢
中村 善彦
阿部 智之
清孝 古森
昌二 橋本
充修 西野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014201427A external-priority patent/JP6604564B2/en
Priority claimed from JP2015026301A external-priority patent/JP6604565B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/128,093 priority Critical patent/US9775239B2/en
Priority to CN201580017589.9A priority patent/CN106134296B/en
Publication of WO2015155982A1 publication Critical patent/WO2015155982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition for printed wiring boards, a prepreg, and a metal-clad laminate used as a material for printed wiring boards, and also relates to a printed wiring board manufactured using these.
  • Printed wiring boards are widely used in various fields such as electronic devices, communication devices, and computers.
  • electronic components such as semiconductor packages mounted on such devices are also becoming thinner and smaller.
  • printed wiring boards used to mount these electronic components are also required to have high performance such as miniaturization, multilayering, thinning, and mechanical characteristics of wiring patterns.
  • the printed wiring board becomes thinner in this way, it is caused by a difference in coefficient of thermal expansion (hereinafter referred to as CTE) between a conductor layer and an insulating layer for forming a circuit, or a difference in CTE between a mounted component and an insulating layer.
  • CTE coefficient of thermal expansion
  • warping of the printed wiring board has been regarded as a problem.
  • As a method for preventing warpage it is known that reducing the CTE of the insulating layer is effective. Therefore, technical development for reducing the CTE of the insulating material constituting the insulating layer has been performed.
  • the layers are electrically connected by forming a via hole or the like in the insulating layer. In order to ensure the reliability of this interlayer electrical connection, it is required to reduce the CTE in the thickness direction.
  • an inorganic filler to the resin composition constituting the insulating layer.
  • Silica is used as such an inorganic filler.
  • Patent Document 1 proposes an epoxy resin composition for a prepreg containing a predetermined phosphorus compound, bifunctional epoxy resin, polyfunctional epoxy resin, curing agent, inorganic filler, and molybdenum compound as essential components.
  • inorganic fillers include magnesium hydroxide, silica, and talc.
  • the printed wiring board manufactured using this epoxy resin composition for prepregs has excellent glass transition temperature (Tg), flame retardancy, heat resistance, and thermal rigidity, and excellent hole position accuracy. ing.
  • Patent Document 2 proposes a thermosetting resin composition containing a thermosetting resin, silica, and a molybdenum compound, and having a silica content of 20% by volume to 60% by volume.
  • a printed wiring board produced using this resin composition is excellent in drilling workability, and its insulating layer has good electrical insulation and low thermal expansion.
  • Patent Document 3 discloses a resin composition containing a reaction product obtained by reacting at least a part of hydroxyl groups of polyphenylene ether with an epoxy group of an epoxy compound, a cyanate ester compound, and an organometallic salt. Yes. With this configuration, it is possible to produce a cured product that achieves an excellent glass transition temperature (Tg) while maintaining the excellent dielectric properties of polyphenylene ether.
  • Tg glass transition temperature
  • the present invention provides a resin composition for a printed wiring board that can achieve a low thermal linear expansion coefficient and can achieve good drill workability and moldability while meeting the demand for cost reduction, and uses the same. Prepregs, metal-clad laminates, and printed wiring boards.
  • the 1st resin composition for printed wiring boards which concerns on this invention contains the resin component containing a thermosetting resin, and an inorganic filler.
  • the inorganic filler includes crushed silica having a specific surface area of 0.1 m 2 / g or more and 15 m 2 / g or less, and molybdenum compound particles having a molybdenum compound in at least a surface layer portion.
  • the content of crushed silica is in the range of 10 to 150 parts by mass with respect to 100 parts by mass of the resin component.
  • crushed silica having a predetermined specific surface area is used even though relatively inexpensive crushed silica is used. Moreover, the content is also limited to the specific range. Molybdenum compound particles are used in combination. With this configuration, the thermal expansion coefficient of the printed wiring board, which is the final form of the cured product, can be reduced, and good drillability can be realized.
  • the second resin composition for a printed wiring board according to the present invention includes a resin component and an inorganic filler.
  • the resin component includes the following (a) and (b), and the inorganic filler includes the following (c) and (d).
  • the glass transition temperature and the dielectric properties are stable and excellent, and can be cured with good drillability and formability. Can make things.
  • the prepreg according to the present invention can be obtained by impregnating a base material with the resin composition for printed wiring board and semi-curing it.
  • the metal-clad laminate according to the present invention can be obtained by stacking a metal foil on the prepreg, and integrating by heating and pressing.
  • the printed wiring board according to the present invention can be obtained by removing a part of the metal foil of the metal-clad laminate and forming a conductor pattern.
  • FIG. 1 is a schematic cross-sectional view of a prepreg according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a metal-clad laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a printed wiring board according to the embodiment of the present invention.
  • silica is generally used as an inorganic filler added to reduce CTE.
  • the cured product exhibits good electrical characteristics and heat resistance.
  • silica spherical silica and crushed silica are known.
  • Patent Document 2 also describes that fused spherical silica is preferable. Thus, it is thought that it is contributing to the improvement of drill workability and moldability that the shape of each silica particle is spherical. Moreover, in order to improve drill workability, it is also known that it is effective to add a molybdenum compound to a resin composition as shown in Patent Document 1 and Patent Document 2.
  • the printed wiring board resin composition according to the present embodiment (hereinafter also simply referred to as “resin composition”) contains a resin component and an inorganic filler.
  • the resin component includes a thermosetting resin, and includes a curing agent and a curing accelerator as necessary.
  • thermosetting resin examples include epoxy resins, phenol resins, imide resins, cyanate ester resins, isocyanate resins, modified polyphenylene ether resins, benzoxazine resins, and oxetane resins.
  • epoxy resin for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy compound, bisphenol A novolak type epoxy compound, biphenyl aralkyl type epoxy resin, naphthalene ring-containing epoxy compound And dicyclopentadiene (DCPD) type epoxy resin. Only one of these thermosetting resins may be used, or two or more of them may be used.
  • the curing agent is not particularly limited as long as it can react with the thermosetting resin to form a crosslinked structure.
  • bifunctional or higher polyfunctional phenol compounds, polyfunctional amine compounds, acid anhydride compounds, vinyl group-containing compounds, low molecular weight polyphenylene ether compounds, dicyandiamide, and triallyl isocyanate can be exemplified.
  • curing accelerator examples include organic acid metal salts such as imidazole compounds, amine compounds, thiol compounds, and metal soaps.
  • organic acid metal salts such as imidazole compounds, amine compounds, thiol compounds, and metal soaps.
  • a hardening accelerator only 1 type of these may be used and 2 or more types may be used together.
  • the resin component may further contain other resin compounds such as a thermoplastic resin, a flame retardant, a colorant, a coupling agent, and the like as necessary.
  • the inorganic filler includes molybdenum compound particles and crushed silica having a specific surface area within a range of 0.1 m 2 / g to 15 m 2 / g.
  • the specific surface area of the crushed silica is preferably 9 m 2 / g or more and 15 m 2 / g or less.
  • the crushed silica is prepared, for example, by pulverizing fused silica or crystalline silica mined as ore.
  • the specific surface area of the crushed silica is 0.1 m 2 / g or more
  • drillability of the laminate is improved.
  • drill workability is significantly reduced, such as when the drill blade is easily worn when drilling a laminated plate or the like, compared to when spherical silica is used. ing.
  • crushed silica having a specific surface area of 0.1 m 2 / g or more together with molybdenum compound particles wear of the drill blade is greatly improved.
  • crushed silica having a specific surface area of less than 0.1 m 2 / g it cannot be expected to sufficiently improve the drill workability even when used with molybdenum compound particles.
  • the specific surface area of the crushed silica is 15 m 2 / g or less, thickening of the varnish of the resin composition is suppressed.
  • the increase in melt viscosity at the time of thermoforming is also suppressed, and the resin fluidity falls within a suitable range.
  • the moldability at the time of manufacturing a laminated board becomes favorable.
  • the specific surface area can be measured by the BET method.
  • Crushed silica is contained in the resin composition within a range of 10 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the resin component. Preferably they are 10 mass parts or more and 100 mass parts or less.
  • the crushed silica is less than 10 parts by mass, the degree to which the crushed silica contributes to the reduction in CTE becomes too small. Therefore, in order to make CTE sufficiently small, it is necessary to add a large amount of other inorganic fillers such as spherical silica. That is, the significance of including crushed silica is substantially lost.
  • the crushed silica exceeds 150 parts by mass, it is necessary to use a large amount of molybdenum compound particles in order to sufficiently improve the drill workability. In that case, heat resistance may be reduced.
  • drill workability may not be sufficiently improved.
  • the combination is not limited as long as the specific surface area and content of the crushed silica are within the range, but particularly when the specific surface area of the crushed silica is in the range of 9 m 2 / g or more and 15 m 2 / g or less, the inclusion of the crushed silica
  • the amount is preferably within a range of 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin component.
  • Molybdenum compound particles are inorganic particles having at least a molybdenum compound in the surface layer portion. When molybdenum compound particles are used together with crushed silica, the molybdenum compound functions as a lubricant. Therefore, wear of the drill due to crushed silica is suppressed, and drill workability is improved.
  • the molybdenum compound particles may be composed entirely of the molybdenum compound or may be particles in which the molybdenum compound is supported or coated on the surface of a carrier formed of an inorganic material other than the molybdenum compound.
  • molybdenum compound particles it is considered that the molybdenum compound present in the surface layer mainly acts to suppress drill wear. Therefore, in order to obtain an effect of improving the drill workability with a small amount of molybdenum compound, it is preferable to use particles having a molybdenum compound on the surface of a carrier formed of another inorganic material, as in the latter case.
  • the specific gravity of the molybdenum compound is larger than that of an inorganic filler such as silica, and the specific gravity difference with the resin component is large. Therefore, from the viewpoint of dispersibility in the resin composition, it is preferable to use particles having a molybdenum compound on the surface of a carrier formed of another inorganic material.
  • the inorganic material used as the carrier talc, aluminum hydroxide, boehmite, magnesium hydroxide, silica, etc., which are usually used as inorganic fillers for laminates, can be suitably used.
  • the average particle size of the carrier is preferably 0.05 ⁇ m or more.
  • Such molybdenum compound particles are available as commercial products, and examples thereof include KEGGARD manufactured by Sherwin Williams.
  • Examples of the molybdenum compound constituting the molybdenum compound particles include molybdenum oxide, molybdate compound, and other molybdenum compounds.
  • An example of molybdenum oxide is molybdenum trioxide.
  • Examples of molybdate compounds include zinc molybdate, calcium molybdate, magnesium molybdate, ammonium molybdate, barium molybdate, sodium molybdate, potassium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, sodium phosphomolybdate, silica Molybdic acid is mentioned.
  • molybdenum compounds examples include molybdenum boride, molybdenum disilicide, molybdenum nitride, and molybdenum carbide. These may be used alone or in combination of two or more. Among these, zinc molybdate (ZnMoO 4 ), calcium molybdate (CaMoO 4 ), and magnesium molybdate (MgMoO 4 ) are preferable from the viewpoints of chemical stability, moisture resistance, and insulation. Only one of these may be used, two may be used in combination, or all three may be used.
  • the content of the molybdenum compound particles is preferably within a range of 0.1% by volume or more and 10% by volume or less with respect to 100% by volume of the total amount of the inorganic filler. If the content of the molybdenum compound particles is 0.1% by volume or more, it can sufficiently function as a lubricant and improve the drillability of the laminate. If content of a molybdenum compound particle is 10 volume% or less, the influence on the heat resistance of a laminated board and copper foil peel strength can be suppressed. In addition, since the molybdenum compound has low oil absorption, if the content of the molybdenum compound particles is within the above range, the practical resin fluidity during molding or the like is not adversely affected.
  • the molybdenum compound particles contain a molybdenum compound, and the total content of the molybdenum compound in the resin composition is 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the resin component. It is preferable to be within the range. If the content of the molybdenum compound in the resin composition is less than 0.05 parts by mass, there is a possibility that sufficient drill workability improvement effect cannot be obtained. Moreover, when the total content of the molybdenum compound exceeds 5 parts by mass, the heat resistance of the laminated board may be reduced.
  • the content of the inorganic filler in the resin composition is 15 parts by mass or more and 400 parts by mass or less with respect to 100 parts by mass of the resin component. It is preferable to be within the range.
  • the inorganic filler may contain other fillers other than the crushed silica and molybdenum compound particles. That is, by adding other fillers, it is possible to further reduce the CTE in addition to the CTE reduction effect by the crushed silica. Moreover, it is possible to impart properties such as flame retardancy and thermal conductivity that cannot be sufficiently obtained with crushed silica alone.
  • Other fillers can be appropriately selected from known fillers according to the purpose and are not particularly limited. However, a filler having a relatively low hardness that is difficult to reduce drill workability is preferable. Specific examples include spherical silica, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, talc, clay, mica and the like.
  • spherical silica it is preferable to use spherical silica as the other filler. If spherical silica is used as another filler, all fillers other than the molybdenum compound particles in the inorganic filler can be used as the silica component. In particular, since the upper limit of the content of crushed silica is 150 parts by mass, when the silica component is used as an inorganic filler in an amount of more than 150 parts by mass with respect to 100 parts by mass of the resin component, the remainder exceeding 150 parts by mass Spherical silica may be used as the silica component.
  • crushed silica is relatively inexpensive compared to spherical silica, it is still less than when all inorganic fillers are spherical silica. There is cost merit. Moreover, since spherical silica is a shape which does not put a burden on a drill blade, compared with the case where crushing silica is used exceeding said upper limit (150 mass parts), there is no possibility that drill workability may fall large.
  • the resin composition should be prepared as a resin varnish by preparing resin components, inorganic fillers, and other components to be blended as necessary, respectively, mixing them in a solvent, further stirring and mixing them. Can do.
  • the resin composition includes a thermosetting resin, a curing agent, and the like, and the inorganic filler includes crushed silica and molybdenum compound particles.
  • blended only the resin component except the inorganic filler may be prepared beforehand as a base resin, and an inorganic filler may be mix
  • the solvent for example, ethers such as ethylene glycol monomethyl ether, acetone, methyl ethyl ketone (MEK), dimethylformamide, benzene, toluene and the like can be used.
  • FIG. 1 is a cross-sectional view of the prepreg 10.
  • the prepreg 10 is obtained by impregnating a base material 4A such as a glass cloth with the varnish of the resin composition obtained as described above, and then drying by heating at 110 to 140 ° C. to remove the solvent in the varnish. It can be produced by semi-curing the product. Therefore, the prepreg 10 includes the base material 4A and the resin composition 2A that is impregnated into the base material 4A and semi-cured. At this time, it is good to adjust so that content of the resin composition in a prepreg may become the range of 30 mass% or more and 80 mass% or less with respect to the prepreg whole quantity.
  • FIG. 2 is a cross-sectional view of the metal-clad laminate 20.
  • the metal-clad laminate 20 can be manufactured by superimposing a metal foil 14 such as a copper foil on the prepreg 10 obtained as described above, heating and pressing, and integrating them. Therefore, the metal-clad laminate 20 includes the insulating layer 12 that is a cured product of the prepreg 10 and the metal foil 14 that is laminated on the insulating layer 12. In addition, the metal foil 14 may be piled up on both surfaces of one prepreg 10, and may be heated and pressed to form a metal-clad laminate.
  • a metal-clad laminate may be formed by stacking metal foils 14 on one or both surfaces of a plurality of prepregs 10 that are stacked and heating and pressing.
  • the heating and pressing conditions are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
  • FIG. 3 is a cross-sectional view of the printed wiring board 30.
  • the printed wiring board 30 can be manufactured by forming a conductor pattern 16 by removing a part of the metal foil 14 of the metal-clad laminate 20 by etching using a subtractive method or the like. Therefore, the printed wiring board 30 includes the insulating layer 12 that is a cured product of the prepreg 10 and the conductor pattern 16 formed on the insulating layer 12.
  • a conductive pattern 16 is formed.
  • a hole is made in the insulating layer 12 by drilling to form a through hole or a blind via hole. Since the insulating layer 12 in which the hole is drilled is a cured product of the prepreg 10 (resin composition), the drill workability is good, and wear of the drill can be suppressed.
  • the insulating layer 12 is formed of a cured product of the prepreg 10, the insulating layer 12 can be molded well and is less likely to cause scumming. Moreover, the insulating layer 12 has a high heat resistance and a low coefficient of thermal expansion.
  • a multilayer printed wiring board can be manufactured by preparing a printed wiring board as a core material (inner layer material) and laminating and molding the prepreg 10 thereon.
  • the conductor pattern (inner layer pattern) of the core material is roughened by black oxidation or the like
  • the metal foil 14 is superimposed on the surface of the core material via the prepreg 10, and this laminate is heated and pressed. Mold.
  • the heating and pressing conditions at this time are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
  • the core material may be manufactured using the prepreg 10. Next, drilling and desmearing are performed. Thereafter, a conductor pattern (outer layer pattern) is formed using a subtractive method. In addition, a through hole or a blind via hole is formed by plating the inner wall of the hole.
  • a multilayer printed wiring board can be manufactured by such a procedure.
  • the number of layers of the printed wiring board is not particularly limited.
  • the printed wiring board resin composition according to the present embodiment contains, together with the molybdenum compound, crushed silica having a predetermined specific surface area in a specific range.
  • ⁇ Resin component base resin 2> Cyanate ester resin (Lonza “BADCy”, 2,2-bis (4-cyanatophenyl) propane) Dicyclopentadiene type epoxy resin (“HP7200” manufactured by DIC Corporation) Polyphenylene ether (PPE) resin (SABIC Innovative Plastics “SA90”) Metal soap (zinc octoate)
  • Silica particles are selected from the following five types. Spherical silica (Co. Admatechs made “SC2500-SEJ", a specific gravity of 2.2g / cm 3) Crushed silica 1 (“AS-1 SSA” manufactured by Tatsumori Co., Ltd., specific surface area 20 m 2 / g, specific gravity 2.2 g / cm 3 ) Crushed silica 2 ("MC3000” manufactured by Admatechs Co., Ltd., specific surface area 15 m 2 / g, specific gravity 2.2 g / cm 3 ) Fractured silica 3 (“MC6000” manufactured by Admatechs Co., Ltd., specific surface area 10 m 2 / g, specific gravity 2.2 g / cm 3 ) Crushed silica 4 ("Megasil 525" manufactured by Sibelco, specific surface area 2.2 m 2 / g, specific gravity 2.2 g / cm 3 ) As the molybdenum compound particles, zinc molybdate-treated
  • a glass base material (WEA116ES136, thickness 0.1 ⁇ m) manufactured by Nitto Boseki Co., Ltd. is used.
  • the base material is impregnated with a varnish of the resin composition at room temperature, and then dried by heating at 150 to 160 ° C. Thereby, the prepreg is manufactured by removing the solvent in the varnish and semi-curing the resin composition.
  • the resin content (resin amount) in the prepreg is 56% by mass.
  • Drill wear rate Laminated four 0.8mm thick laminates, 0.15mm aluminum plate for entry board, 0.15mm bake plate for backup board, with 0.3mm diameter drill A through hole is formed by drilling 5000 hits. Then, the drill wear rate after drilling is measured.
  • NHU L020W manufactured by Union Tool Co., Ltd. is used as a drill.
  • the number of rotations of the drill when drilling is 160000 r. p. m
  • the feed rate of the drill is 3.2 m / min.
  • sample EA and sample CE when comparing sample EA and sample CE, sample EB and sample CF, sample EC and sample CG, and sample EE and sample CL, it is good to use the predetermined crushed silica defined in this embodiment together with molybdenum compound particles. It can be seen that excellent drillability can be realized.
  • the laminated plates of samples EF to EJ using both crushed silica and spherical silica also show excellent drillability, formability, heat resistance, and a low coefficient of thermal expansion.
  • the content of crushed silica exceeds 150 parts by mass.
  • the drill wear rate is reduced by increasing the content of the molybdenum compound particles.
  • the heat resistance T-288
  • the drill wear rate exceeds 70%, although the heat resistance is not greatly reduced.
  • a resin composition for a printed wiring board that is stable and excellent in glass transition temperature and dielectric properties and that can realize good drill processability and moldability will be described based on the above knowledge. .
  • the resin composition for printed wiring boards (hereinafter referred to as resin composition) according to the present embodiment is blended with a resin component including the following (a) and (b), and an inorganic filler including the following (c) and (d) Prepared.
  • a resin component including the following (a) and (b)
  • an inorganic filler including the following (c) and (d) Prepared.
  • Cyanate ester compound (c) Surface-treated hydrophobic silica particles
  • d At least a molybdenum compound Molybdenum compound particles in the surface layer portion That is, this resin composition is prepared by first reacting a polyphenylene ether and an epoxy compound to form a prereacted product (a), and then further adding a cyanate ester compound (b) and a hydrophobic silica.
  • the cured product of the resin composition rather than the resin composition obtained without forming the preliminary reaction product by previously reacting the polyphenylene ether and the epoxy compound to form the preliminary reaction product (a).
  • the glass transition temperature of (hereinafter, cured product) can be increased.
  • the cured product uses the resin component as a base resin, it is excellent in dielectric characteristics such as dielectric constant and dielectric loss tangent.
  • the amount of water brought into the resin composition is preferably less than 0.1%, more preferably 0.07% by mass or less, based on the total mass of the resin composition.
  • the varnish gel time of the resin composition is unlikely to be shortened.
  • the varnish gel time is short, when the resin composition is cured, the resin composition cannot be sufficiently heated, and a large amount of volatile components remain in the cured product. Therefore, there exists a possibility that the glass transition temperature of hardened
  • the amount of moisture brought into the resin composition is mainly due to the moisture absorbed by the silica particles. Therefore, when the surface treatment is not performed on the silica particles, a relatively large amount of water is mixed into the resin composition.
  • the varnish gel time for the resin composition will be significantly shortened.
  • This phenomenon is peculiar to the resin composition containing the preliminary reaction product (a), the cyanate ester compound (b), the hydrophobic silica particles (c), and the molybdenum compound particles (d).
  • a resin composition prepared by polymerizing polyphenylene ether, epoxy compound, cyanate ester compound (b), hydrophobic silica particles (c) and molybdenum compound particles (d) without using the pre-reacted product (a) Does not show this phenomenon.
  • the reason why the varnish gel time is shortened when the amount of moisture brought into the resin composition is large is presumed to be because the trimerization reaction of the cyanate ester caused by the cyanate ester compound (b) is promoted. That is, when the amount of moisture brought into the resin composition is large, the cyanate ester compound (b) and water are likely to react with each other, and carbamate is likely to be generated.
  • the active hydrogen in the carbamate, together with the molybdenum compound greatly promotes the trimerization reaction of the cyanate ester resulting from the cyanate ester compound (b), thereby generating a triazine ring. It is presumed that this triazine ring functions as a curing agent and the resin composition is easily gelled.
  • the varnish gel time of the resin composition needs to be 120 seconds or more, preferably 120 to 240 seconds, and more preferably 150 to 210 seconds.
  • varnish gel time is defined as time until 2.5 ml of the varnish of the obtained resin composition gelatinizes on a 200 degreeC cure plate.
  • the adsorbed water content of the silica particles can be measured by the Karl Fischer method (JIS K0113: 2005, coulometric titration method).
  • the amount of moisture brought into the resin composition can be calculated by the following calculation formula.
  • Moisture amount brought into resin composition (water amount contained in silica (Karl Fischer measurement value%) ⁇ silica addition amount / total amount of resin composition) ⁇ 100
  • the resin component includes a pre-reacted product (a) and a cyanate ester compound (b).
  • the preliminary reaction product (a) is prepared by reacting the polyphenylene ether (a-1) with an epoxy compound (a-2) having an epoxy group.
  • the polyphenylene ether (a-1) preferably has an average of 1.5 to 2 hydroxyl groups in one molecule. Having an average of 1.5 to 2 hydroxyl groups in one molecule means that the average number of hydroxyl groups per molecule (average number of hydroxyl groups) is 1.5 to 2. When the average number of hydroxyl groups is 1.5 or more, the three-dimensional crosslinking is caused by reacting with the epoxy group of the epoxy compound (a-2), so that the adhesion during curing is improved. Further, when the average number of hydroxyl groups is 2 or less, it is considered that there is no possibility of gelation during the preliminary reaction.
  • the average number of hydroxyl groups of polyphenylene ether (a-1) can be determined from the standard value of the polyphenylene ether product used.
  • Examples of the average number of hydroxyl groups of polyphenylene ether (a-1) include the average value of hydroxyl groups per molecule of all the polyphenylene ethers present in 1 mol of polyphenylene ether.
  • the number average molecular weight (Mn) of the polyphenylene ether (a-1) is preferably 800 or more and 2000 or less. If the number average molecular weight is 800 or more, the dielectric properties, heat resistance, and high glass transition temperature of the cured product can be secured. In addition, if the number average molecular weight is 2000 or less, even if a pre-reacted product reacted with an epoxy resin having relatively few epoxy groups is contained, resin flow or phase separation may occur, or moldability may be deteriorated. Can be suppressed.
  • a polyphenylene ether having a number average molecular weight of 800 or more and 2000 or less can be directly prepared by, for example, a polymerization reaction.
  • polyphenylene ether having a number average molecular weight of 2000 or more may be prepared by redistribution reaction in a solvent in the presence of a phenolic compound and a radical initiator.
  • the number average molecular weight (Mn) of polyphenylene ether (a-1) can be measured using, for example, gel permeation chromatography.
  • polyphenylene ether (a-1) examples include poly (2,6-dimethyl-1,4-phenylene oxide), 2,6-dimethylphenol, and at least one of a bifunctional phenol and a trifunctional phenol.
  • polyphenylene ether having a molecular structure synthesized in (1) examples include the latter polyphenylene ether having a molecular structure synthesized with 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol is preferable.
  • the bifunctional phenol examples include tetramethylbisphenol A.
  • the epoxy compound (a-2) preferably has an average of 2 to 2.3 epoxy groups in one molecule.
  • the average number of epoxy groups is within this range, a pre-reacted product with polyphenylene ether (a-1) can be satisfactorily produced while maintaining the heat resistance of the cured product.
  • Examples of the epoxy compound (a-2) include dicyclopentadiene (DCPD) type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and biphenyl type epoxy resin. Can be mentioned. These may be used alone or in combination of two or more. Among these, a DCPD type epoxy resin is particularly preferable from the viewpoint of improving dielectric characteristics. Further, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable from the viewpoint of good compatibility with polyphenylene ether. In addition, although it is preferable not to contain a halogenated epoxy resin from a heat resistant viewpoint, you may mix
  • DCPD dicyclopentadiene
  • bisphenol A type epoxy resin bisphenol F type epoxy resin
  • phenol novolac type epoxy resin phenol novolac type epoxy resin
  • naphthalene type epoxy resin and biphenyl type epoxy resin
  • the average number of epoxy groups of the epoxy compound (a-2) can be determined from the standard value of the epoxy resin product used. Specific examples of the number of epoxy groups in the epoxy resin include an average value of epoxy groups per molecule of all epoxy resins present in 1 mol of the epoxy resin.
  • the solubility of the epoxy compound (a-2) in toluene is preferably 10% by mass or more at 25 ° C.
  • the compatibility between the epoxy compound (a-2) and the polyphenylene ether (a-1) becomes relatively high, and the epoxy compound (a-2) easily reacts uniformly with the polyphenylene ether (a-1). Conceivable.
  • the heat resistance of the cured product is sufficiently increased without impairing the excellent dielectric properties of polyphenylene ether (a-1).
  • the preliminary reaction product (a) is prepared, for example, by the following reaction. First, the polyphenylene ether (a-1) and the epoxy compound (a-2) are weighed so as to have a predetermined ratio, and these are weighed in an organic solvent having a solid concentration of about 50 to 70% for about 10 to 60 minutes. Stir to mix. The mixture is heated at 80 to 110 ° C. for 2 to 12 hours to react polyphenylene ether (a-1) with epoxy compound (a-2). Thereby, the preliminary reaction product (a) is prepared.
  • the organic solvent is not particularly limited as long as it dissolves polyphenylene ether (a-1) and epoxy compound (a-2) and does not inhibit these reactions. For example, toluene can be used.
  • the ratio of the polyphenylene ether (a-1) to the epoxy compound (a-2) is expressed as the molar ratio of the epoxy group of the epoxy compound (a-2) to the hydroxyl group of the polyphenylene ether (a-1) (epoxy group / hydroxyl group), the preferred range is 3 or more and 6 or less, more preferably It is about 3.5 or more and 5.5 or less.
  • the molar ratio is in the above range, both ends of the polyphenylene ether (a-1) can be efficiently capped with epoxy groups.
  • the viscosity of a preliminary reaction material (a) falls, the viscosity of the varnish and prepreg mentioned later falls, and productivity improves.
  • the catalyst is not particularly limited as long as it can promote the reaction between the hydroxyl group of polyphenylene ether (a-1) and the epoxy group of epoxy compound (a-2).
  • Examples thereof include metal salts of organic acids, tertiary amines, imidazoles, and organic phosphines.
  • metal salts of organic acids include metal salts of organic acids such as octanoic acid, stearic acid, acetylacetonate, naphthenic acid, and salicylic acid, such as Zn, Cu, and Fe.
  • Examples of the tertiary amine include 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), triethylamine, triethanolamine and the like.
  • Examples of imidazoles include 2-ethyl-4-imidazole (2E4MZ) and 4-methylimidazole.
  • Examples of organic phosphines include triphenylphosphine (TPP), tributylphosphine, tetraphenylphosphonium / tetraphenylborate, and the like. These may be used alone or in combination of two or more.
  • imidazoles particularly 2-ethyl-4-imidazole
  • the content of the catalyst is preferably 0.05 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass in total of the polyphenylene ether (a-1) and the epoxy compound (a-2). If the catalyst content is within the above range, the reaction between the hydroxyl group of polyphenylene ether (a-1) and the epoxy group of epoxy compound (a-2) does not take time, and the reaction is easily controlled. , Difficult to gel.
  • the solid content concentration during the reaction is preferably about 50 to 70% in view of reaction efficiency and viscosity (manufacturability).
  • the cyanate ester compound (b) preferably has an average number of cyanate groups per molecule (average number of cyanate groups) of 2 or more. Thereby, the heat resistance of hardened
  • the average number of cyanate groups is an average value of cyanate groups per all cyanate resin molecules present in 1 mol of the cyanate resin used as the cyanate ester compound (b). The average number of cyanate groups can be determined from the standard value of the cyanate resin product.
  • cyanate ester compound (b) examples include 2,2-bis (4-cyanatephenyl) propane (bisphenol A type cyanate resin), bis (3,5-dimethyl-4-cyanatephenyl) methane, 2,2- Aromatic cyanate ester compounds such as bis (4-cyanatephenyl) ethane or derivatives thereof. These may be used alone or in combination of two or more.
  • the resin composition preferably further contains an epoxy compound (e).
  • the epoxy compound (e) preferably has an average of 2 or more and 2.3 or less epoxy groups in one molecule.
  • the epoxy compound (e) include DCPD type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin and the like. These may be used alone or in combination of two or more. In this case, the epoxy compound (e) may be the same as or different from the epoxy compound (a-2).
  • a DCPD type epoxy resin is preferable from the viewpoint of improving dielectric properties.
  • epoxy compounds having an average of 2 or more and 2.3 or less epoxy groups per molecule among polyfunctional epoxy compounds such as a cresol novolac epoxy resin, an average of 2.3 per molecule A compound having more epoxy groups can also be used.
  • the resin composition contains a DCPD type epoxy resin as the epoxy compound (a-2) and / or the epoxy compound (e), the DCPD type with respect to the total mass of the epoxy compound (a-2) and the epoxy compound (e) It is preferable that 50 mass% or more of the epoxy compound is contained. Thereby, an insulating material having better dielectric properties can be manufactured.
  • a preferable blending ratio of the resin component is 100 parts by mass of the total amount of the polyphenylene ether (a-1), the epoxy compound (a-2), the cyanate ester compound (b) and the epoxy compound (e) (epoxy compound (e)
  • the following ranges are included. 10 parts by mass or more and 40 parts by mass or less of polyphenylene ether (a-1), and 20 parts by mass or more and 60 parts by mass or less of the cyanate ester compound (b ) Is 20 parts by mass or more and 40 parts by mass or less.
  • the epoxy compound (a-2) is preferably 20 parts by mass or more and 60 parts by mass or less. It is considered that such a blend makes it possible to achieve both excellent dielectric properties, heat resistance and adhesion (adhesion) of the cured product.
  • the resin composition may further contain a halogen flame retardant or a non-halogen flame retardant.
  • a halogen flame retardant used, flame retardancy can be imparted to the cured product, the glass transition temperature of the cured product is unlikely to decrease, and heat resistance is not significantly reduced.
  • flame retardancy can be easily imparted to the cured product even when a DCPD type epoxy resin that is difficult to impart flame retardancy is used.
  • the halogen-based flame retardant is not dissolved but dispersed in the varnish described below.
  • the halogen flame retardant include ethylenedipentabromobenzene, ethylenebistetrabromoimide, decabromodiphenyl oxide, and tetradecabromodiphenoxybenzene having a melting point of 300 ° C. or higher.
  • the halogen-based flame retardant is contained at a blending ratio such that the halogen concentration in the total amount of the resin component is about 5 to 30% by mass.
  • the inorganic filler includes hydrophobic silica particles (c) subjected to surface treatment and molybdenum compound particles (d) having a molybdenum compound in at least a surface layer portion.
  • hydrophobic silica particles (c) will be described.
  • Hydrophobic silica particles (c) are difficult to absorb moisture even under high temperature or high humidity environment. Therefore, even if the hydrophobic silica particles (c) that have been left (stored) at room temperature for a long time are used as the material of the resin composition, moisture is hardly brought into the resin composition. As a result, the varnish gel time equivalent to that of the silica particles in the dry state can be maintained. That is, depending on the storage state of the silica particles, the glass transition temperature and dielectric properties of the cured product are unlikely to deteriorate with time, and the glass transition temperature and dielectric properties are stable and excellent.
  • the dry silica particles mean silica particles having a water content of less than 0.1% measured by the Karl Fischer method.
  • silane coupling agents include silane couplings such as ⁇ -ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, hexamethyldisilazane, and dimethyldichlorosilane.
  • An agent can be mentioned.
  • Hydrophobic silica particles (c) are available as commercial products, for example, “Megasil 525RCS” manufactured by Sibelco Japan Co., Ltd.
  • silica particles constituting the hydrophobic silica particles (c) include spherical silica and crushed silica.
  • crushed silica having a specific surface area of 0.1 m 2 / g or more and 15 m 2 / g or less is more preferable.
  • the specific surface area of the crushed silica is 0.1 m 2 / g or more and used together with the molybdenum compound particles (d), a laminate such as a metal-clad laminate is produced using the resin composition.
  • the drilling workability of the plate can be improved.
  • the specific surface area of the crushed silica is 15 m 2 / g or less, the thickening of the varnish of the resin composition is suppressed, and the increase of the melt viscosity at the time of thermoforming is also suppressed, and the resin flowability in a suitable range Thus, the moldability at the time of producing the laminated plate is improved.
  • the resin component includes a prereacted product obtained by reacting polyphenylene ether and an epoxy compound having an epoxy group, and a cyanate ester compound.
  • the inorganic filler has a specific surface area within a range of 0.1 m 2 / g or more and 15 m 2 / g or less, a crushed silica whose surface has been subjected to a hydrophobic treatment, and a molybdenum compound having at least a surface portion of a molybdenum compound. Particles. This makes it possible to produce a cured product that is stable and excellent in glass transition temperature and dielectric properties, and that can realize good drill workability and formability at a high level.
  • the preferred range of the content of the hydrophobic silica particles (c) is 10 parts by mass or more and 200 parts by mass or less, more preferably 10 parts by mass or more and 150 parts by mass or less, and further preferably 100 parts by mass of the resin component. 30 parts by mass or more and 100 parts by mass or less.
  • the content of the hydrophobic silica particles (c) is preferably 10 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the resin component.
  • it is more preferably 20 parts by mass or more and 100 parts by mass or less. The reason is the same as in the first embodiment.
  • the combination is not limited as long as the specific surface area and content of the crushed silica are within the above ranges, but when the specific surface area of the crushed silica is 9 m 2 / g or more and 15 m 2 / g or less, the content of the crushed silica is It is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the specific surface area of crushed silica increases, the melt viscosity of the resin composition during molding tends to increase. Therefore, in order to ensure the fluidity of the resin composition, it is preferable to suppress the content of crushed silica.
  • the resin composition may further contain a catalyst.
  • a catalyst acts as a curing accelerator. Therefore, the high glass transition temperature, heat resistance, and adhesion of the cured product can be ensured.
  • the metal soap for example, what is generally called a metal soap can be used.
  • the metal salt of an organic acid is mentioned.
  • the organic acid include octylic acid, naphthenic acid, stearic acid, lauric acid, ricinoleic acid, and acetyl acetate.
  • the metal include zinc, copper, cobalt, lithium, magnesium, calcium, and barium.
  • copper naphthenate is preferable because the activity of the cyanate ester trimerization reaction is low, and the pot life of the varnish or prepreg is relatively good while maintaining the heat resistance of the cured product.
  • a catalyst may be used independently or may be used in combination of 2 or more type.
  • the compounding amount of the catalyst is preferably 0.001 part by mass or more and 1 part by mass or less with respect to 100 parts by mass of the total amount of the preliminary reaction product (a) and the cyanate ester compound (b). If the blending amount of the catalyst is within this range, the curing acceleration effect can be enhanced, the high heat resistance and glass transition temperature of the cured product can be secured, and a prepreg having no problem in moldability can be easily produced.
  • the inorganic filler may contain other fillers different from these. That is, by adding other fillers, in addition to the effect of lowering the coefficient of thermal expansion due to the hydrophobic silica particles (c), the coefficient of thermal expansion can be further reduced. Moreover, the characteristics which cannot fully be acquired only by hydrophobic silica particles (c), such as a flame retardance and heat conductivity, can be provided to hardened
  • Other fillers can be appropriately selected from known fillers according to the purpose and are not limited, but those having relatively low hardness that are difficult to reduce drill workability are preferable. Specific examples include aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, talc, clay, mica and the like.
  • the resin composition may further contain, for example, additives such as a heat stabilizer, an antistatic agent, an ultraviolet absorber, a dye, a pigment, and a lubricant as long as the effects of the present invention are not impaired. .
  • the resin composition can be prepared and used as a varnish by mixing predetermined amounts of the various components described above in a solvent.
  • the solvent is not particularly limited as long as it can dissolve the resin components such as the preliminary reaction product (a), the cyanate ester compound (b), and the epoxy compound (e) and does not inhibit the curing reaction.
  • examples thereof include organic solvents such as toluene, cyclohexanone, methyl ethyl ketone, and propylene glycol monomethyl ether acetate.
  • the resin component may be heated in a temperature range that does not cause a curing reaction, if necessary.
  • the varnish may be agitated using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like until a good dispersion state is obtained.
  • Embodiment 1 it can replace with the resin composition in Embodiment 1, and can also form a prepreg, a metal-clad laminated board, and a printed wiring board also using the resin composition by this Embodiment. Since the method and the like are the same as those in the first embodiment, description thereof is omitted.
  • SA90 number average molecular weight: 1500, hydroxyl group: 1.9
  • PPE polyphenylene ether
  • DCPD type epoxy resin is used as the epoxy compound. Specifically, “HP7200” (2.3 average functional groups in one molecule) manufactured by DIC Corporation is used.
  • Imidazole is used as the catalyst. Specifically, “2E4MZ” (2-ethyl-4-imidazole) manufactured by Shikoku Chemicals Co., Ltd. is used.
  • the preliminary reaction product (a) is prepared by reacting (prereacting) polyphenylene ether and an epoxy resin in advance. The amount of toluene as the solvent to be added is adjusted so that the solid content concentration of the preliminary reaction product (a) is 60%.
  • Samples AG, BJ, and BK use the following materials together with the preliminary reaction product (a) as a resin component in order to prepare a resin composition.
  • 2,2-bis (4-cyanatephenyl) propane is used as the cyanate ester compound (b), and a DCPD type epoxy resin is used as the epoxy compound (e).
  • a DCPD type epoxy resin is used as the epoxy compound (e).
  • BADCy manufactured by Lonza Japan Co., Ltd.
  • EPICRON HP7200 manufactured by DIC Corporation (2.3 average functional groups in one molecule) are used.
  • Metal soap is used as a catalyst. Specifically, zinc octoate (Zn-OCTOATE) manufactured by DIC Corporation.
  • the silica particles are selected from seven types of crushed silica 1 (c), crushed silica 2 (c), crushed silica 3, spherical silica 1 (c), spherical silica 2 (c), spherical silica 3 and spherical silica 4. Used.
  • the crushed silica 1 (c) is a melt-crushed silica particle “Megasil 525RCS” manufactured by Sibelco Japan Co., Ltd., having an average particle size of 1.6 ⁇ m and a specific surface area of 2.1 m 2 / g. The surface is treated with.
  • Crushed silica 2 is crushed silica particles that have been subjected to a treatment (moisture absorption treatment) in which crushed silica 1 is left in an environment of 35 ° C. and 90% for 7 days (168 hours).
  • the crushed silica 3 is a fused crushed silica particle “Megasil 525” manufactured by Sibelco Japan Co., Ltd., the average particle diameter is 1.6 ⁇ m, and the specific surface area is 2.2 m 2 / g. No surface treatment is applied.
  • the crushed silica 4 is crushed silica particles obtained by subjecting the crushed silica 3 to the above moisture absorption treatment.
  • the spherical silica 1 (c) is spherical silica particles “SC2500-SEJ” manufactured by Admatechs Co., Ltd., having an average particle diameter of 0.8 ⁇ m, a specific gravity of 2.2 g / cm 3 , and a specific surface area of 7 m 2 / g and surface-treated with epoxysilane.
  • the spherical silica 2 (c) is crushed silica particles obtained by subjecting the spherical silica 1 to the above moisture absorption treatment.
  • the spherical silica 3 is spherical silica particles “SO-25R” manufactured by Admatechs Co., Ltd., having an average particle size of 0.6 ⁇ m and a specific surface area of 6 m 2 / g. No surface treatment is applied.
  • the spherical silica 4 is crushed silica particles obtained by subjecting the spherical silica 3 to the above moisture absorption treatment.
  • molybdenum compound particles (d) calcium zinc molybdate “KEMGARD 911A” manufactured by Sherwin Williams is used.
  • the amount of molybdic acid is 10% by mass, the specific gravity is 3.0 g / cm 3 , and the average particle size is 2.7 ⁇ m.
  • the zinc molybdate-treated talc “KEMGARD911C” manufactured by Sherwin Williams used in the first embodiment is used.
  • the pre-reacted PPE (a) solution is heated to 30 to 35 ° C. so that the blending ratio shown in (Table 8) or (Table 9) is obtained, and the cyanate ester compound (b) and the catalyst are added thereto. is doing.
  • samples AG, BJ, and BK a DCPD type epoxy resin is also added at this time. Thereafter, the mixture is completely dissolved by stirring for 30 minutes, and further, silica particles and molybdenum compound particles are added and dispersed by a bead mill to prepare a varnish of the resin composition.
  • Samples BL to BO use the same materials as Sample AA except that the following materials were used as the resin component and catalyst for preparing the resin composition.
  • samples AI, AJ, BR, and BS the same material as that of sample AG is used in order to prepare a varnish of the resin composition.
  • the pre-reacted PPE (a) solution was heated to 30 to 35 ° C. so that the blending ratios shown in (Table 6) and (Table 10) were obtained, and then the cyanate ester compound (b), DCPD type epoxy Resin, PPE and metal soap are added. Thereafter, the mixture is completely dissolved by stirring for 30 minutes, and further, silica particles and molybdenum compound particles are added and dispersed by a bead mill to prepare a varnish of the resin composition.
  • the sample BR does not use new silica particles.
  • each component shown in (Table 7) was added to toluene so as to have the blending ratio shown in (Table 7) and (Table 10), and then stirred at 30 to 35 ° C. for 60 minutes.
  • Silica particles and molybdenum compound particles are further added to this resin component and dispersed by a bead mill to prepare a varnish of the resin composition.
  • a prepreg is manufactured in the same manner as in the first embodiment.
  • the resin content (resin amount) of the prepreg is 57% by mass.
  • Laminate A laminate for evaluation is manufactured using the prepreg in the same manner as in the first embodiment.
  • the dielectric loss tangent at 1 GHz of the evaluation laminate is measured by a method based on IPC-TM-650-2.5.5.9. Specifically, the dielectric loss tangent of the laminate for evaluation at 1 GHz is measured using an impedance analyzer (RF impedance analyzer HP4291B manufactured by Agilent Technologies).
  • Drill wear rate The drill wear rate is evaluated in the same manner as in the first embodiment. Detailed description is omitted.
  • Varnish gel time is a value obtained by measuring the time required for 2.5 ml of the varnish of the obtained resin composition to gel on a cure plate at 200 ° C.
  • Adsorbed moisture amount of silica particles, moisture amount brought into the resin composition The adsorbed moisture amount of silica particles and the moisture amount brought into the resin composition were determined as described above using the Karl Fischer method. ing.
  • CTE Thermal expansion coefficient
  • Samples AA to AJ use hydrophobic silica particles in which the silica particles are surface-treated. Therefore, the glass transition temperature is high and the dielectric loss tangent is low. Further, comparing the sample AA without moisture absorption with the sample AB with moisture absorption, and the sample AE without moisture absorption with the sample AF with moisture absorption, the glass transition temperature and the dielectric loss tangent are the same. That is, the glass transition temperature and dielectric properties are stable and excellent before and after the moisture absorption treatment. Furthermore, since the resin composition contains hydrophobic silica particles and molybdenum compound particles, the drill wear rate is low. That is, drilling workability and formability are good.
  • samples BA to BQ contain a pre-reacted product (a) of polyphenylene ether and an epoxy compound, a cyanate ester compound (b), hydrophobic silica particles (c) and molybdenum compound particles (d). It is not the obtained resin composition. Therefore, except for samples BA, BD and BP using new silica particles (silica particles in a dry state), the glass transition temperature and the dielectric properties are excellent, but good drillability and formability are not shown.
  • Samples BF to BJ do not contain molybdenum compound particles. Therefore, the drill wear rate is high. That is, drill workability and formability are not good. Further, comparing the sample BF without moisture absorption and the sample BG after moisture absorption treatment, and the sample BH without moisture absorption treatment and the sample BI after moisture absorption treatment, the varnish gel time is equivalent to the samples AA to AJ. From this result and the results of samples BD and BE, it is presumed that the molybdenum compound particles promote the reduction of the varnish gel time.
  • the preliminary reaction PPE (a) is not used, so the glass transition temperature is low.
  • the varnish gel time is the same regardless of whether or not moisture absorption treatment is performed, and is longer than samples AA to AJ.
  • Samples BN and BO have a low glass transition temperature and a high dielectric loss tangent because the resin component does not contain polyphenylene ether.
  • the varnish gel time is the same regardless of the presence or absence of moisture absorption treatment, and is longer than samples AA to AJ.
  • the resin composition containing the pre-reacted product (a) of polyphenylene ether and epoxy compound, cyanate ester compound (b) and molybdenum compound particles (d) absorbs moisture.
  • samples BB, BC, BE, BK, and BQ using the silica particles the varnish gel time is abnormally short.
  • Samples AI and AJ use hydrophobic silica particles in which silica particles are surface-treated. Therefore, the glass transition temperature is high and the dielectric loss tangent is low. When samples AI and AJ are compared, the glass transition temperature and the dielectric loss tangent are the same regardless of whether or not moisture absorption treatment is performed. That is, the glass transition temperature and dielectric properties are stable and excellent.
  • samples BR to BT were obtained by blending a prereacted product (a) of polyphenylene ether and an epoxy compound, a cyanate ester compound (b), hydrophobic silica particles (c) and den compound particles (d). It is not a resin composition obtained. Therefore, excellent glass transition temperature and dielectric properties cannot be realized.
  • sample BS using silica particles subjected to moisture absorption treatment has a lower glass transition temperature, increased dielectric loss tangent, and greatly increased varnish gel time. It has become shorter. That is, it can be seen that the glass transition temperature and dielectric properties are impaired after moisture absorption treatment.
  • the cured product of the resin composition for wiring boards according to the present invention has a small coefficient of thermal expansion, good drillability, and good glass transition temperature and dielectric properties when applied to a printed wiring board. Since such a printed wiring board can be provided relatively inexpensively, the resin composition for wiring boards according to the present invention is useful.

Abstract

 A resin composition for a printed wiring board contains an inorganic filler and a resin component that contains a thermoset resin. The inorganic filler contains crushed silica measuring 0.1 m2/g-15 m2/g in specific surface area, and molybdenum compound particles having at least a molybdenum compound on the surface layer. The crushed silica content is 10-150 parts by mass to 100 parts by mass of the resin component.

Description

プリント配線板用樹脂組成物、プリプレグ、金属張積層板、プリント配線板Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board
 本発明は、プリント配線板の材料として用いられるプリント配線板用樹脂組成物、プリプレグ、金属張積層板に関し、またこれらを用いて製造されるプリント配線板に関する。 The present invention relates to a resin composition for printed wiring boards, a prepreg, and a metal-clad laminate used as a material for printed wiring boards, and also relates to a printed wiring board manufactured using these.
 プリント配線板は、電子機器、通信機器、計算機など、各種の分野において広く使用されている。近年、特に携帯通信端末やノート型PC等の小型携帯機器では、多機能化、高性能化、薄型化・小型化が急速に進んでいる。そのため、このような機器に搭載される半導体パッケージ等の電子部品も薄型化、小型化が進んでいる。これに伴い、これら電子部品を実装するのに用いられるプリント配線板にも、配線パターンの微細化や多層化、薄型化、機械特性等の高性能化が要求されている。 Printed wiring boards are widely used in various fields such as electronic devices, communication devices, and computers. In recent years, especially in small portable devices such as portable communication terminals and notebook PCs, multifunction, high performance, thinning and downsizing are rapidly progressing. For this reason, electronic components such as semiconductor packages mounted on such devices are also becoming thinner and smaller. Along with this, printed wiring boards used to mount these electronic components are also required to have high performance such as miniaturization, multilayering, thinning, and mechanical characteristics of wiring patterns.
 このようにプリント配線板の薄型化が進むにつれ、回路形成するための導体層と絶縁層との熱線膨張率(以下、CTE)の差異、あるいは、実装部品と絶縁層とのCTEの差異に起因する、プリント配線板の反りが問題視されてきている。反りを防止する方法として、絶縁層のCTEを低減することが有効であることが知られている。そのため、絶縁層を構成する絶縁材料のCTEを小さくするための技術開発が行われている。また、多層プリント配線板の場合、絶縁層にビアホール等を形成することにより層間が電気的に接続される。この層間電気接続の信頼性を確保するため、板厚方向でのCTEを低減することが求められている。 As the printed wiring board becomes thinner in this way, it is caused by a difference in coefficient of thermal expansion (hereinafter referred to as CTE) between a conductor layer and an insulating layer for forming a circuit, or a difference in CTE between a mounted component and an insulating layer. However, warping of the printed wiring board has been regarded as a problem. As a method for preventing warpage, it is known that reducing the CTE of the insulating layer is effective. Therefore, technical development for reducing the CTE of the insulating material constituting the insulating layer has been performed. In the case of a multilayer printed wiring board, the layers are electrically connected by forming a via hole or the like in the insulating layer. In order to ensure the reliability of this interlayer electrical connection, it is required to reduce the CTE in the thickness direction.
 絶縁層のCTEを小さくするために、絶縁層を構成する樹脂組成物に無機充填材を含有させることが知られている。そのような無機充填材として、シリカが用いられている。 In order to reduce the CTE of the insulating layer, it is known to add an inorganic filler to the resin composition constituting the insulating layer. Silica is used as such an inorganic filler.
 例えば、特許文献1には、所定のリン化合物、2官能エポキシ樹脂、多官能エポキシ樹脂、硬化剤、無機充填剤、モリブデン化合物を必須成分とするプリプレグ用エポキシ樹脂組成物が提案されている。無機充填材としては、水酸化マグネシウム、シリカ、タルク等が例示されている。そして、このプリプレグ用エポキシ樹脂組成物を用いて製造されるプリント配線板は、優れたガラス転移温度(Tg)、難燃性、耐熱性、熱時剛性を有し、かつ、穴位置精度も優れている。 For example, Patent Document 1 proposes an epoxy resin composition for a prepreg containing a predetermined phosphorus compound, bifunctional epoxy resin, polyfunctional epoxy resin, curing agent, inorganic filler, and molybdenum compound as essential components. Examples of inorganic fillers include magnesium hydroxide, silica, and talc. And the printed wiring board manufactured using this epoxy resin composition for prepregs has excellent glass transition temperature (Tg), flame retardancy, heat resistance, and thermal rigidity, and excellent hole position accuracy. ing.
 また特許文献2には、熱硬化性樹脂と、シリカと、モリブデン化合物とを含み、シリカの含有量が20体積%以上60体積%以下である熱硬化性樹脂組成物が提案されている。この樹脂組成物を用いて製造されるプリント配線板は、ドリル加工性に優れ、その絶縁層は良好な電気絶縁性及び低熱膨張性を有する。 Patent Document 2 proposes a thermosetting resin composition containing a thermosetting resin, silica, and a molybdenum compound, and having a silica content of 20% by volume to 60% by volume. A printed wiring board produced using this resin composition is excellent in drilling workability, and its insulating layer has good electrical insulation and low thermal expansion.
 また特許文献3には、ポリフェニレンエーテルの水酸基の少なくとも一部をエポキシ化合物のエポキシ基で予め反応させた反応生成物と、シアネートエステル化合物と、有機金属塩とを含有する樹脂組成物が開示されている。この構成により、ポリフェニレンエーテルの有する優れた誘電特性を維持したまま、優れたガラス転移温度(Tg)を実現する硬化物を作製することができる。 Patent Document 3 discloses a resin composition containing a reaction product obtained by reacting at least a part of hydroxyl groups of polyphenylene ether with an epoxy group of an epoxy compound, a cyanate ester compound, and an organometallic salt. Yes. With this configuration, it is possible to produce a cured product that achieves an excellent glass transition temperature (Tg) while maintaining the excellent dielectric properties of polyphenylene ether.
国際公開第2011/118584号International Publication No. 2011/118584 特開2012-23248号公報JP 2012-23248 A 特開2014-152283号公報JP 2014-152283 A
 本発明は、低コスト化の要求に対応しつつ、低い熱線膨張率が得られ、かつ、良好なドリル加工性、成形性を実現することができるプリント配線板用樹脂組成物と、それを用いたプリプレグ、金属張積層板、プリント配線板を提供する。 The present invention provides a resin composition for a printed wiring board that can achieve a low thermal linear expansion coefficient and can achieve good drill workability and moldability while meeting the demand for cost reduction, and uses the same. Prepregs, metal-clad laminates, and printed wiring boards.
 本発明に係る第1のプリント配線板用樹脂組成物は、熱硬化性樹脂を含む樹脂成分と、無機充填材とを含有する。無機充填材は、比表面積が0.1m/g以上、15m/g以下の範囲内の破砕シリカと、モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子とを含む。破砕シリカの含有量は、樹脂成分100質量部に対して10質量部以上、150質量部以下の範囲内である。 The 1st resin composition for printed wiring boards which concerns on this invention contains the resin component containing a thermosetting resin, and an inorganic filler. The inorganic filler includes crushed silica having a specific surface area of 0.1 m 2 / g or more and 15 m 2 / g or less, and molybdenum compound particles having a molybdenum compound in at least a surface layer portion. The content of crushed silica is in the range of 10 to 150 parts by mass with respect to 100 parts by mass of the resin component.
 本発明の第1のプリント配線板用樹脂組成物では、比較的安価な破砕シリカが用いられているにも関わらず、所定の比表面積を有する破砕シリカが用いられている。また、その含有量も特定範囲に限定されている。そして、モリブデン化合物粒子が併用されている。この構成により、硬化物の最終形であるプリント配線板の熱線膨張率を低下することができるとともに、良好なドリル加工性を実現することができる。 In the first resin composition for a printed wiring board of the present invention, crushed silica having a predetermined specific surface area is used even though relatively inexpensive crushed silica is used. Moreover, the content is also limited to the specific range. Molybdenum compound particles are used in combination. With this configuration, the thermal expansion coefficient of the printed wiring board, which is the final form of the cured product, can be reduced, and good drillability can be realized.
 本発明に係る第2のプリント配線板用樹脂組成物は、樹脂成分と無機充填材とを含む。樹脂成分は、下記(a)および(b)を含み、無機充填材は下記(c)および(d)を含む。
(a)ポリフェニレンエーテルとエポキシ基を持つエポキシ化合物とを反応させることにより得られた予備反応物
(b)シアネートエステル化合物
(c)表面処理が施された疎水性シリカ粒子
(d)モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子
 本発明の第2のプリント配線板用樹脂組成物では、ガラス転移温度および誘電特性が安定して優れ、かつ良好なドリル加工性および成形性を実現することができる硬化物を作製できる。
The second resin composition for a printed wiring board according to the present invention includes a resin component and an inorganic filler. The resin component includes the following (a) and (b), and the inorganic filler includes the following (c) and (d).
(A) Prereacted product obtained by reacting polyphenylene ether with an epoxy compound having an epoxy group (b) Cyanate ester compound (c) Surface-treated hydrophobic silica particles (d) At least a molybdenum compound Molybdenum compound particles in the surface layer portion In the second printed wiring board resin composition of the present invention, the glass transition temperature and the dielectric properties are stable and excellent, and can be cured with good drillability and formability. Can make things.
 本発明に係るプリプレグは、上記プリント配線板用樹脂組成物を基材に含浸し半硬化させることで得られる。 The prepreg according to the present invention can be obtained by impregnating a base material with the resin composition for printed wiring board and semi-curing it.
 本発明に係る金属張積層板は、上記プリプレグに金属箔を重ね、加熱加圧成形して一体化することで得られる。 The metal-clad laminate according to the present invention can be obtained by stacking a metal foil on the prepreg, and integrating by heating and pressing.
 本発明に係るプリント配線板は、上記金属張積層板の上記金属箔の一部を除去し、導体パターンを形成することで得られる。 The printed wiring board according to the present invention can be obtained by removing a part of the metal foil of the metal-clad laminate and forming a conductor pattern.
図1は本発明の実施の形態によるプリプレグの模式断面図である。FIG. 1 is a schematic cross-sectional view of a prepreg according to an embodiment of the present invention. 図2は本発明の実施の形態による金属張積層板の模式断面図である。FIG. 2 is a schematic cross-sectional view of a metal-clad laminate according to an embodiment of the present invention. 図3は本発明の実施の形態によるプリント配線板の模式断面図である。FIG. 3 is a schematic cross-sectional view of a printed wiring board according to the embodiment of the present invention.
 (実施の形態1)
 本発明の実施の形態1の説明に先立ち、従来の構成における課題を説明する。プリント配線板用の樹脂組成物では、CTEを小さくするために添加する無機充填材として、シリカが一般に用いられている。シリカを用いることで、硬化物は良好な電気特性や耐熱性を示す。シリカとしては、球状シリカや破砕シリカが知られている。
(Embodiment 1)
Prior to the description of the first embodiment of the present invention, problems in the conventional configuration will be described. In a resin composition for a printed wiring board, silica is generally used as an inorganic filler added to reduce CTE. By using silica, the cured product exhibits good electrical characteristics and heat resistance. As silica, spherical silica and crushed silica are known.
 一方、絶縁層が無機充填材を多量に含有する場合、プリント配線板にドリル加工を施してスルーホールを形成する際にドリル刃が磨耗しやすくなるなど加工性の問題がある。球状シリカを使用すると、このドリル加工性が比較的良好である。特許文献2にも、溶融球状シリカが好ましいことが記載されている。このように、個々のシリカ粒子の形状が球状であることがドリル加工性及び成形性の向上に寄与していると考えられる。また、ドリル加工性を改善するには、特許文献1や特許文献2に示されているように、モリブデン化合物を樹脂組成物中に添加することが有効であることも知られている。 On the other hand, when the insulating layer contains a large amount of an inorganic filler, there is a problem in workability such that the drill blade is easily worn when the printed wiring board is drilled to form a through hole. When spherical silica is used, this drillability is relatively good. Patent Document 2 also describes that fused spherical silica is preferable. Thus, it is thought that it is contributing to the improvement of drill workability and moldability that the shape of each silica particle is spherical. Moreover, in order to improve drill workability, it is also known that it is effective to add a molybdenum compound to a resin composition as shown in Patent Document 1 and Patent Document 2.
 ところで近年では、絶縁層における低いCTEを実現しつつ、各種特性を高い水準で維持したうえで、プリント配線板材料のコストを低減することが市場で要求されている。溶融球状シリカは、例えば粉砕したシリカ粉末を火炎中で溶融・球状化するなどの処理工程を経て製造される。そのため、溶融球状シリカは破砕シリカよりも高価である。しかしながら、球状シリカの代替として破砕シリカを用いると経済的にも有利であるが、ドリル加工性及び成形性が大きく低下する虞がある。 In recent years, there has been a demand in the market to reduce the cost of printed wiring board materials while maintaining various characteristics at a high level while realizing a low CTE in the insulating layer. The fused spherical silica is produced, for example, through processing steps such as melting and spheroidizing a pulverized silica powder in a flame. Therefore, fused spherical silica is more expensive than crushed silica. However, using crushed silica as an alternative to spherical silica is economically advantageous, but drill workability and moldability may be greatly reduced.
 本願発明者らは、上記課題を解決するために、まず無機充填材として粉砕シリカを用い、さらにモリブデン化合物を添加することを試みた。しかしながら、単に球状シリカをそのまま破砕シリカに代替した樹脂組成物では、ドリル加工性及び成形性の低下を十分改善することができない。そこで、特定の比表面積を有する破砕シリカを用い、かつ、その含有量を特定範囲に制限することで、上記課題を解決することができることを見出した。 In order to solve the above problems, the inventors of the present application first tried to use pulverized silica as an inorganic filler and further add a molybdenum compound. However, a resin composition in which spherical silica is simply replaced with crushed silica as it is cannot sufficiently improve the drilling processability and moldability. Then, it discovered that the said subject could be solved by using the crushing silica which has a specific specific surface area, and restrict | limiting the content to a specific range.
 以下、本発明の実施の形態1について説明する。本実施の形態に係るプリント配線板用樹脂組成物(以下単に「樹脂組成物」ともいう)は、樹脂成分と、無機充填材とを含有する。 Hereinafter, Embodiment 1 of the present invention will be described. The printed wiring board resin composition according to the present embodiment (hereinafter also simply referred to as “resin composition”) contains a resin component and an inorganic filler.
 樹脂成分には、熱硬化性樹脂が含まれ、必要に応じて、硬化剤及び硬化促進剤が含まれる。 The resin component includes a thermosetting resin, and includes a curing agent and a curing accelerator as necessary.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、イミド樹脂、シアネートエステル樹脂、イソシアネート樹脂、変性ポリフェニレンエーテル樹脂、ベンゾオキサジン樹脂、オキセタン樹脂を挙げることができる。特にエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ビフェニルアラルキル型エポキシ樹脂、ナフタレン環含有エポキシ化合物、ジシクロペンタジエン(DCPD)型エポキシ樹脂を挙げることができる。熱硬化性樹脂はこれらのうちの1種のみを用いてもよいし2種以上を用いてもよい。 Examples of the thermosetting resin include epoxy resins, phenol resins, imide resins, cyanate ester resins, isocyanate resins, modified polyphenylene ether resins, benzoxazine resins, and oxetane resins. In particular, as the epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy compound, bisphenol A novolak type epoxy compound, biphenyl aralkyl type epoxy resin, naphthalene ring-containing epoxy compound And dicyclopentadiene (DCPD) type epoxy resin. Only one of these thermosetting resins may be used, or two or more of them may be used.
 硬化剤としては、熱硬化性樹脂と反応して架橋構造を形成し得るものであれば特に限定されない。例えば、2官能以上の多官能フェノール化合物、多官能アミン化合物、酸無水物系化合物、ビニル基含有化合物、低分子量ポリフェニレンエーテル化合物、ジシアンジアミド、トリアリルイソシアネートを挙げることができる。 The curing agent is not particularly limited as long as it can react with the thermosetting resin to form a crosslinked structure. For example, bifunctional or higher polyfunctional phenol compounds, polyfunctional amine compounds, acid anhydride compounds, vinyl group-containing compounds, low molecular weight polyphenylene ether compounds, dicyandiamide, and triallyl isocyanate can be exemplified.
 硬化促進剤としては、例えば、イミダゾール化合物、アミン系化合物、チオール化合物、金属石鹸等の有機酸金属塩を挙げることができる。硬化促進剤として、これらのうちの1種のみを用いてもよいし2種以上を併用してもよい。 Examples of the curing accelerator include organic acid metal salts such as imidazole compounds, amine compounds, thiol compounds, and metal soaps. As a hardening accelerator, only 1 type of these may be used and 2 or more types may be used together.
 樹脂成分には、さらに必要に応じて、熱可塑性樹脂等の他の樹脂化合物、難燃剤、着色剤、カップリング剤等を含めることができる。 The resin component may further contain other resin compounds such as a thermoplastic resin, a flame retardant, a colorant, a coupling agent, and the like as necessary.
 無機充填材には、モリブデン化合物粒子と、0.1m/g以上、15m/g以下の範囲内の比表面積を有する破砕シリカが含まれる。なお、破砕シリカの比表面積は、好ましくは9m/g以上、15m/g以下である。 The inorganic filler includes molybdenum compound particles and crushed silica having a specific surface area within a range of 0.1 m 2 / g to 15 m 2 / g. The specific surface area of the crushed silica is preferably 9 m 2 / g or more and 15 m 2 / g or less.
 破砕シリカは、例えば、溶融シリカや鉱石として採掘された結晶質シリカ等を粉砕して調製される。破砕シリカの比表面積が0.1m/g以上であることで、樹脂組成物を用いて金属張積層板等の積層板を製造したとき、積層板のドリル加工性が良好になる。上述のように、一般に破砕シリカを使用すると球状シリカを用いた場合に比べて積層板等にドリルにより穴あけをする際にドリル刃が磨耗しやすくなるなどドリル加工性が著しく低下することが知られている。しかしながら、0.1m/g以上の比表面積を有する破砕シリカをモリブデン化合物粒子と共に使用することで、ドリル刃の磨耗は大きく改善される。逆に、比表面積が0.1m/g未満の破砕シリカを用いる場合には、モリブデン化合物粒子と共に使用しても、ドリル加工性を十分に改善することが望めない。一方、破砕シリカの比表面積が15m/g以下であることで、樹脂組成物のワニスの増粘が抑制される。また加熱成形時の溶融粘度の増大も抑制され、樹脂流動性が好適な範囲になる。そのため、積層板を製造する際の成形性が良好になる。これにより、プリプレグの製造が困難となったり、積層板の絶縁層にボイド(空洞)が残存したりすることが防止される。なお、比表面積はBET法により測定することができる。 The crushed silica is prepared, for example, by pulverizing fused silica or crystalline silica mined as ore. When the specific surface area of the crushed silica is 0.1 m 2 / g or more, when a laminate such as a metal-clad laminate is manufactured using the resin composition, the drillability of the laminate is improved. As described above, it is generally known that when crushed silica is used, drill workability is significantly reduced, such as when the drill blade is easily worn when drilling a laminated plate or the like, compared to when spherical silica is used. ing. However, by using crushed silica having a specific surface area of 0.1 m 2 / g or more together with molybdenum compound particles, wear of the drill blade is greatly improved. On the other hand, when crushed silica having a specific surface area of less than 0.1 m 2 / g is used, it cannot be expected to sufficiently improve the drill workability even when used with molybdenum compound particles. On the other hand, when the specific surface area of the crushed silica is 15 m 2 / g or less, thickening of the varnish of the resin composition is suppressed. Moreover, the increase in melt viscosity at the time of thermoforming is also suppressed, and the resin fluidity falls within a suitable range. Therefore, the moldability at the time of manufacturing a laminated board becomes favorable. As a result, it is possible to prevent the prepreg from being difficult to manufacture and to prevent voids (cavities) from remaining in the insulating layer of the laminate. The specific surface area can be measured by the BET method.
 破砕シリカは、樹脂成分100質量部に対して10質量部以上、150質量部以下の範囲内で樹脂組成物に含有されている。好ましくは10質量部以上、100質量部以下である。破砕シリカが10質量部未満であると、破砕シリカが低CTE化に寄与する度合いが小さくなりすぎる。そのため、CTEを十分に小さくするためには球状シリカ等の他の無機充填材を多量に添加する必要性を生じる。すなわち、破砕シリカを含有させる意義が実質的に失われる。逆に破砕シリカが150質量部を超えると、ドリル加工性を十分改善するためにモリブデン化合物粒子を多量に使用する必要がある。その場合、耐熱性が低下する虞がある。一方、モリブデン化合物粒子の使用量を抑制すればドリル加工性を十分に改善できなくなる虞がある。 Crushed silica is contained in the resin composition within a range of 10 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the resin component. Preferably they are 10 mass parts or more and 100 mass parts or less. When the crushed silica is less than 10 parts by mass, the degree to which the crushed silica contributes to the reduction in CTE becomes too small. Therefore, in order to make CTE sufficiently small, it is necessary to add a large amount of other inorganic fillers such as spherical silica. That is, the significance of including crushed silica is substantially lost. On the other hand, when the crushed silica exceeds 150 parts by mass, it is necessary to use a large amount of molybdenum compound particles in order to sufficiently improve the drill workability. In that case, heat resistance may be reduced. On the other hand, if the amount of molybdenum compound particles used is suppressed, drill workability may not be sufficiently improved.
 破砕シリカの比表面積及び含有量は範囲内であればその組合せは限定されないが、特に破砕シリカの比表面積が9m/g以上、15m/g以下の範囲内の場合は、破砕シリカの含有量は、樹脂成分100質量部に対して10質量部以上、100質量部以下の範囲内であることが好ましい。破砕シリカの比表面積が大きくなると成形時における樹脂組成物の溶融粘度が増大する傾向がある。そのため、破砕シリカの含有量を抑制することで樹脂組成物の流動性が確保され、成形性が良好になる。 The combination is not limited as long as the specific surface area and content of the crushed silica are within the range, but particularly when the specific surface area of the crushed silica is in the range of 9 m 2 / g or more and 15 m 2 / g or less, the inclusion of the crushed silica The amount is preferably within a range of 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin component. When the specific surface area of crushed silica increases, the melt viscosity of the resin composition during molding tends to increase. Therefore, by suppressing the content of crushed silica, the fluidity of the resin composition is ensured and the moldability is improved.
 モリブデン化合物粒子とは、表層部分にモリブデン化合物を少なくとも有する無機粒子である。モリブデン化合物粒子を破砕シリカと共に用いると、モリブデン化合物が潤滑剤として機能する。そのため、破砕シリカによるドリルの磨耗が抑制され、ドリル加工性が向上する。モリブデン化合物粒子は、モリブデン化合物によって粒子全体が構成されていても、モリブデン化合物以外の無機材料で形成された担体の表面にモリブデン化合物を担持又は被覆させた粒子であってもよい。 Molybdenum compound particles are inorganic particles having at least a molybdenum compound in the surface layer portion. When molybdenum compound particles are used together with crushed silica, the molybdenum compound functions as a lubricant. Therefore, wear of the drill due to crushed silica is suppressed, and drill workability is improved. The molybdenum compound particles may be composed entirely of the molybdenum compound or may be particles in which the molybdenum compound is supported or coated on the surface of a carrier formed of an inorganic material other than the molybdenum compound.
 なお、モリブデン化合物粒子では、表層部分に存在するモリブデン化合物が、ドリルの磨耗の抑制に主として作用すると考えられる。よって、少ないモリブデン化合物の量でドリル加工性の改善効果を得るために、後者のように、他の無機材料で形成された担体の表面にモリブデン化合物を有する粒子を用いることが好ましい。また、一般にモリブデン化合物の比重は、シリカ等の無機充填材の比重に比べて大きく、樹脂成分との比重差が大きい。したがって、樹脂組成物中における分散性の観点からも、他の無機材料で形成された担体の表面にモリブデン化合物を有する粒子を用いることが好ましい。担体として用いる無機材料としては、積層板の無機充填材として通常用いられる、タルク、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、シリカ等を好適に用いることができる。担体の平均粒径は0.05μm以上であることが好ましい。このようなモリブデン化合物粒子は市販品として入手可能であり、シャーウィン・ウィリアムズ社製のKEMGARD等が挙げられる。 In molybdenum compound particles, it is considered that the molybdenum compound present in the surface layer mainly acts to suppress drill wear. Therefore, in order to obtain an effect of improving the drill workability with a small amount of molybdenum compound, it is preferable to use particles having a molybdenum compound on the surface of a carrier formed of another inorganic material, as in the latter case. In general, the specific gravity of the molybdenum compound is larger than that of an inorganic filler such as silica, and the specific gravity difference with the resin component is large. Therefore, from the viewpoint of dispersibility in the resin composition, it is preferable to use particles having a molybdenum compound on the surface of a carrier formed of another inorganic material. As the inorganic material used as the carrier, talc, aluminum hydroxide, boehmite, magnesium hydroxide, silica, etc., which are usually used as inorganic fillers for laminates, can be suitably used. The average particle size of the carrier is preferably 0.05 μm or more. Such molybdenum compound particles are available as commercial products, and examples thereof include KEGGARD manufactured by Sherwin Williams.
 モリブデン化合物粒子を構成するモリブデン化合物としては、例えば、モリブデン酸化物、モリブデン酸化合物、その他のモリブデンの化合物が挙げられる。モリブデン酸化物として、例えば、三酸化モリブデンが挙げられる。モリブデン酸化合物として、例えば、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マグネシウム、モリブデン酸アンモニウム、モリブデン酸バリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、リンモリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、ケイモリブデン酸が挙げられる。その他のモリブデンの化合物として、例えば、ホウ化モリブデン、二ケイ化モリブデン、窒化モリブデン、炭化モリブデンが挙げられる。これらは単独で用いてもよく、2種以上を併用して用いてよい。これらの中でも、化学安定性や耐湿性、絶縁性の観点から、モリブデン酸亜鉛(ZnMoO)、モリブデン酸カルシウム(CaMoO)、モリブデン酸マグネシウム(MgMoO)が好ましい。これらのうちの1種のみを用いてもよいし、2種を組み合わせて用いてもよいし、3種すべてを用いてもよい。 Examples of the molybdenum compound constituting the molybdenum compound particles include molybdenum oxide, molybdate compound, and other molybdenum compounds. An example of molybdenum oxide is molybdenum trioxide. Examples of molybdate compounds include zinc molybdate, calcium molybdate, magnesium molybdate, ammonium molybdate, barium molybdate, sodium molybdate, potassium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, sodium phosphomolybdate, silica Molybdic acid is mentioned. Examples of other molybdenum compounds include molybdenum boride, molybdenum disilicide, molybdenum nitride, and molybdenum carbide. These may be used alone or in combination of two or more. Among these, zinc molybdate (ZnMoO 4 ), calcium molybdate (CaMoO 4 ), and magnesium molybdate (MgMoO 4 ) are preferable from the viewpoints of chemical stability, moisture resistance, and insulation. Only one of these may be used, two may be used in combination, or all three may be used.
 モリブデン化合物粒子の含有量は、無機充填材の総量の100体積%に対して0.1体積%以上、10体積%以下の範囲内で含有されていることが好ましい。モリブデン化合物粒子の含有量が0.1体積%以上であれば、潤滑剤として十分に機能し、積層板のドリル加工性を向上させることができる。モリブデン化合物粒子の含有量が10体積%以下であれば、積層板の耐熱性や銅箔ピール強度への影響を抑制することができる。また、モリブデン化合物は吸油性が低いため、モリブデン化合物粒子の含有量が上述の範囲内であれば、成形時等における実用上の樹脂流動性に悪影響を及ぼさない。 The content of the molybdenum compound particles is preferably within a range of 0.1% by volume or more and 10% by volume or less with respect to 100% by volume of the total amount of the inorganic filler. If the content of the molybdenum compound particles is 0.1% by volume or more, it can sufficiently function as a lubricant and improve the drillability of the laminate. If content of a molybdenum compound particle is 10 volume% or less, the influence on the heat resistance of a laminated board and copper foil peel strength can be suppressed. In addition, since the molybdenum compound has low oil absorption, if the content of the molybdenum compound particles is within the above range, the practical resin fluidity during molding or the like is not adversely affected.
 また、モリブデン化合物粒子中にはモリブデン化合物が含まれるが、このモリブデン化合物の、樹脂組成物中における総含有量は、樹脂成分100質量部に対して0.05質量部以上、5質量部以下の範囲内であることが好ましい。樹脂組成物中におけるモリブデン化合物の含有量が0.05質量部未満であると、十分なドリル加工性の改善効果が得られない虞がある。また、モリブデン化合物の総含有量が5質量部を超えると、積層板の耐熱性が低下する虞がある。 The molybdenum compound particles contain a molybdenum compound, and the total content of the molybdenum compound in the resin composition is 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the resin component. It is preferable to be within the range. If the content of the molybdenum compound in the resin composition is less than 0.05 parts by mass, there is a possibility that sufficient drill workability improvement effect cannot be obtained. Moreover, when the total content of the molybdenum compound exceeds 5 parts by mass, the heat resistance of the laminated board may be reduced.
 また、CTEを小さくし、ドリル加工性及び成形性を良好にする観点から、樹脂組成物において、無機充填材の含有量は、樹脂成分100質量部に対して15質量部以上、400質量部以下の範囲内であることが好ましい。 In addition, from the viewpoint of reducing CTE and improving drillability and moldability, the content of the inorganic filler in the resin composition is 15 parts by mass or more and 400 parts by mass or less with respect to 100 parts by mass of the resin component. It is preferable to be within the range.
 無機充填材は、破砕シリカ及びモリブデン化合物粒子以外に、これらとは異なる他の充填材を含んでいてもよい。すなわち、他の充填材の添加により、破砕シリカによるCTEの低減効果に加えて、さらにCTEを小さくすることが可能である。また破砕シリカのみでは十分得られない難燃性や熱伝導性等の特性を付与することが可能である。他の充填材としては、目的に応じて適宜公知の充填材から選択可能であって特に制限されない。但し、ドリル加工性を低下させにくい比較的硬度の低い充填材が好ましい。具体的には、球状シリカ、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、タルク、クレー、マイカ等が挙げられる。 The inorganic filler may contain other fillers other than the crushed silica and molybdenum compound particles. That is, by adding other fillers, it is possible to further reduce the CTE in addition to the CTE reduction effect by the crushed silica. Moreover, it is possible to impart properties such as flame retardancy and thermal conductivity that cannot be sufficiently obtained with crushed silica alone. Other fillers can be appropriately selected from known fillers according to the purpose and are not particularly limited. However, a filler having a relatively low hardness that is difficult to reduce drill workability is preferable. Specific examples include spherical silica, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, talc, clay, mica and the like.
 これらの中でも、他の充填材としては、球状シリカを用いることが好ましい。球状シリカを他の充填材として用いれば、無機充填材のうちモリブデン化合物粒子以外を除いた充填材を全てシリカ成分とすることができる。特に、破砕シリカの含有量の上限が150質量部であるため、無機充填材としてシリカ成分を樹脂成分100質量部に対して150質量部より多く使用する場合には、150質量部を超える残分のシリカ成分として球状シリカを用いるとよい。 Among these, it is preferable to use spherical silica as the other filler. If spherical silica is used as another filler, all fillers other than the molybdenum compound particles in the inorganic filler can be used as the silica component. In particular, since the upper limit of the content of crushed silica is 150 parts by mass, when the silica component is used as an inorganic filler in an amount of more than 150 parts by mass with respect to 100 parts by mass of the resin component, the remainder exceeding 150 parts by mass Spherical silica may be used as the silica component.
 このように、破砕シリカ及びモリブデン化合物粒子以外に球状シリカを併用したとしても、破砕シリカが球状シリカに比べて比較的安価なことから、無機充填材を全て球状シリカとする場合に比べて、依然としてコストメリットがある。また球状シリカはドリル刃に負担をかけない形状であるため、破砕シリカを上記の上限量(150質量部)を超えて使用する場合と比べて、ドリル加工性が大きく低下する虞がない。 Thus, even if spherical silica is used in addition to crushed silica and molybdenum compound particles, since crushed silica is relatively inexpensive compared to spherical silica, it is still less than when all inorganic fillers are spherical silica. There is cost merit. Moreover, since spherical silica is a shape which does not put a burden on a drill blade, compared with the case where crushing silica is used exceeding said upper limit (150 mass parts), there is no possibility that drill workability may fall large.
 次に樹脂組成物の調製法について説明する。樹脂組成物は、樹脂成分、無機充填材、その他必要に応じて配合する成分をそれぞれ所定の配合量準備し、溶媒中でそれらを配合し、さらに攪拌、混合することで樹脂ワニスとして調製することができる。樹脂組成物は熱硬化性樹脂や硬化剤等を含み、無機充填材は破砕シリカとモリブデン化合物粒子とを含む。この際、無機充填材を除いた樹脂成分のみを配合した樹脂ワニスをベース樹脂として予め調製し、このベース樹脂に無機充填材を配合してもよい。溶媒としては、例えば、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、ジメチルホルムアミド、ベンゼン、トルエン等を用いることができる。 Next, a method for preparing the resin composition will be described. The resin composition should be prepared as a resin varnish by preparing resin components, inorganic fillers, and other components to be blended as necessary, respectively, mixing them in a solvent, further stirring and mixing them. Can do. The resin composition includes a thermosetting resin, a curing agent, and the like, and the inorganic filler includes crushed silica and molybdenum compound particles. Under the present circumstances, the resin varnish which mix | blended only the resin component except the inorganic filler may be prepared beforehand as a base resin, and an inorganic filler may be mix | blended with this base resin. As the solvent, for example, ethers such as ethylene glycol monomethyl ether, acetone, methyl ethyl ketone (MEK), dimethylformamide, benzene, toluene and the like can be used.
 次に本実施の形態に係るプリプレグ10について図1を参照しながら説明する。図1はプリプレグ10の断面図である。プリプレグ10は、上記のようにして得られた樹脂組成物のワニスをガラスクロス等の基材4Aに含浸した後、110~140℃で加熱乾燥し、ワニス中の溶媒を除去して、樹脂組成物を半硬化させることによって製造することができる。したがって、プリプレグ10は、基材4Aと、基材4Aに含浸し半硬化された樹脂組成物2Aとを有する。このとき、プリプレグにおける樹脂組成物の含有量が、プリプレグ全量に対して30質量%以上、80質量%以下の範囲になるように調整するとよい。 Next, the prepreg 10 according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view of the prepreg 10. The prepreg 10 is obtained by impregnating a base material 4A such as a glass cloth with the varnish of the resin composition obtained as described above, and then drying by heating at 110 to 140 ° C. to remove the solvent in the varnish. It can be produced by semi-curing the product. Therefore, the prepreg 10 includes the base material 4A and the resin composition 2A that is impregnated into the base material 4A and semi-cured. At this time, it is good to adjust so that content of the resin composition in a prepreg may become the range of 30 mass% or more and 80 mass% or less with respect to the prepreg whole quantity.
 次に本実施の形態に係る金属張積層板20について図2を参照しながら説明する。図2は金属張積層板20の断面図である。金属張積層板20は、上記のようにして得られたプリプレグ10に銅箔等の金属箔14を重ねて加熱加圧成形して一体化することによって製造することができる。したがって、金属張積層板20は、プリプレグ10の硬化物である絶縁層12と、絶縁層12に積層された金属箔14とを有する。なお、1枚のプリプレグ10の両面に金属箔14を重ね、加熱加圧して金属張積層板を成形してもよい。また、複数枚重ねたプリプレグ10の片面又は両面に金属箔14を重ね、加熱加圧して金属張積層板を成形してもよい。加熱加圧の条件は、例えば、140~200℃、0.5~5.0MPa、40~240分間である。 Next, the metal-clad laminate 20 according to the present embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view of the metal-clad laminate 20. The metal-clad laminate 20 can be manufactured by superimposing a metal foil 14 such as a copper foil on the prepreg 10 obtained as described above, heating and pressing, and integrating them. Therefore, the metal-clad laminate 20 includes the insulating layer 12 that is a cured product of the prepreg 10 and the metal foil 14 that is laminated on the insulating layer 12. In addition, the metal foil 14 may be piled up on both surfaces of one prepreg 10, and may be heated and pressed to form a metal-clad laminate. Alternatively, a metal-clad laminate may be formed by stacking metal foils 14 on one or both surfaces of a plurality of prepregs 10 that are stacked and heating and pressing. The heating and pressing conditions are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
 次に本実施の形態に係るプリント配線板30について図3を参照しながら説明する。図3はプリント配線板30の断面図である。プリント配線板30は、サブトラクティブ法等を使用して、金属張積層板20の金属箔14の一部をエッチングにより除去して導体パターン16を形成することによって製造することができる。したがって、プリント配線板30は、プリプレグ10の硬化物である絶縁層12と、絶縁層12上に形成された導体パターン16とを有する。 Next, the printed wiring board 30 according to the present embodiment will be described with reference to FIG. FIG. 3 is a cross-sectional view of the printed wiring board 30. The printed wiring board 30 can be manufactured by forming a conductor pattern 16 by removing a part of the metal foil 14 of the metal-clad laminate 20 by etching using a subtractive method or the like. Therefore, the printed wiring board 30 includes the insulating layer 12 that is a cured product of the prepreg 10 and the conductor pattern 16 formed on the insulating layer 12.
 なお、図2に示す金属張積層板20にさらにプリプレグ10と金属箔14とを重ね、上述のように加熱加圧成形して一体化して複層のプリント配線板を作製する場合、導体パターン16が形成された複数の層の間を接続する必要がある場合がある。そのためには、スルーホール又はブラインドバイアホールを形成するためにドリル加工により、絶縁層12に穴を開ける。穴があけられる絶縁層12は、プリプレグ10(樹脂組成物)の硬化物であるため、ドリル加工性が良好であり、ドリルの磨耗を抑制することができる。また、プリプレグ10の硬化物で絶縁層12が形成されているため、絶縁層12は良好に成形でき、カスレが生じにくい。しかも、絶縁層12は高い耐熱性とともに、低い熱線膨張率も有している。 When the prepreg 10 and the metal foil 14 are further stacked on the metal-clad laminate 20 shown in FIG. 2 and integrated by heating and press-molding as described above, a conductive pattern 16 is formed. In some cases, it is necessary to connect between a plurality of layers in which the is formed. For this purpose, a hole is made in the insulating layer 12 by drilling to form a through hole or a blind via hole. Since the insulating layer 12 in which the hole is drilled is a cured product of the prepreg 10 (resin composition), the drill workability is good, and wear of the drill can be suppressed. In addition, since the insulating layer 12 is formed of a cured product of the prepreg 10, the insulating layer 12 can be molded well and is less likely to cause scumming. Moreover, the insulating layer 12 has a high heat resistance and a low coefficient of thermal expansion.
 またコア材(内層材)としてプリント配線板を準備し、その上にプリプレグ10を積層して成形することで、多層プリント配線板を製造することができる。この場合、コア材の導体パターン(内層パターン)を黒色酸化処理等で粗面化処理した後、このコア材の表面にプリプレグ10を介して金属箔14を重ね、この積層体を加熱加圧して成形する。このときの加熱加圧の条件も、例えば、140~200℃、0.5~5.0MPa、40~240分間である。コア材がプリプレグ10を用いて製造されたものであってもよい。次に、ドリル加工による穴あけ及びデスミア処理を行う。その後、サブトラクティブ法を使用して導体パターン(外層パターン)を形成する。また、穴の内壁にめっき処理を行ってスルーホール又はブラインドバイアホールを形成する。このような手順で多層プリント配線板を製造することができる。なお、プリント配線板の層数は特に限定されない。 Also, a multilayer printed wiring board can be manufactured by preparing a printed wiring board as a core material (inner layer material) and laminating and molding the prepreg 10 thereon. In this case, after the conductor pattern (inner layer pattern) of the core material is roughened by black oxidation or the like, the metal foil 14 is superimposed on the surface of the core material via the prepreg 10, and this laminate is heated and pressed. Mold. The heating and pressing conditions at this time are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes. The core material may be manufactured using the prepreg 10. Next, drilling and desmearing are performed. Thereafter, a conductor pattern (outer layer pattern) is formed using a subtractive method. In addition, a through hole or a blind via hole is formed by plating the inner wall of the hole. A multilayer printed wiring board can be manufactured by such a procedure. The number of layers of the printed wiring board is not particularly limited.
 上記のように、本実施の形態に係るプリント配線板用樹脂組成物は、モリブデン化合物と共に、所定の比表面積を有する破砕シリカを、特定範囲の含有量で含有している。これにより、プリント配線板用樹脂組成物を用いて製造された金属張積層板及びプリント配線板では、比較的安価な破砕シリカを用いているにも関わらず、絶縁層の熱線膨張率を低減することができる。しかも、穴あけ加工を行う際の良好なドリル加工性を実現することができる。 As described above, the printed wiring board resin composition according to the present embodiment contains, together with the molybdenum compound, crushed silica having a predetermined specific surface area in a specific range. Thereby, in the metal-clad laminate and the printed wiring board manufactured using the resin composition for printed wiring boards, the thermal expansion coefficient of the insulating layer is reduced despite using relatively inexpensive crushed silica. be able to. In addition, it is possible to achieve good drillability when performing drilling.
 以下、具体的な例を挙げて、本実施の形態の効果をさらに説明する。 Hereinafter, the effects of the present embodiment will be further described with specific examples.
 [1]評価用の積層板の製造手順
 (1)樹脂組成物
 (表1)~(表4)に示す配合組成により、樹脂成分と、無機充填材とを配合し、さらに溶媒で希釈することによって、樹脂組成物のワニスを調製する。なお、溶剤として、下記ベース樹脂1ではMEKを用い、下記ベース樹脂2ではトルエンを用いている。各材料は、次のとおりである。
[1] Manufacturing procedure of laminated board for evaluation (1) Resin composition According to the blending composition shown in Tables 1 to 4, the resin component and the inorganic filler are blended and further diluted with a solvent. To prepare a varnish of the resin composition. As the solvent, MEK is used in the following base resin 1, and toluene is used in the following base resin 2. Each material is as follows.
 <樹脂成分(ベース樹脂1)>
フェノールノボラック型エポキシ樹脂(DIC株式会社製「N-770」)
クレゾールノボラック型フェノール樹脂(DIC株式会社製「KA-1165」)
2-エチル-4-メチルイミダゾール(四国化成工業株式会社製「2E4MZ」)
<Resin component (base resin 1)>
Phenol novolac type epoxy resin (“N-770” manufactured by DIC Corporation)
Cresol novolac type phenolic resin (“KA-1165” manufactured by DIC Corporation)
2-Ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <樹脂成分(ベース樹脂2)>
シアネートエステル樹脂(Lonza社製「BADCy」、2,2-ビス(4-シアナートフェニル)プロパン)
ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製「HP7200」)
ポリフェニレンエーテル(PPE)樹脂(SABICイノベーティブプラスチックス製「SA90」)
金属石鹸(オクタン酸亜鉛)
<Resin component (base resin 2)>
Cyanate ester resin (Lonza "BADCy", 2,2-bis (4-cyanatophenyl) propane)
Dicyclopentadiene type epoxy resin (“HP7200” manufactured by DIC Corporation)
Polyphenylene ether (PPE) resin (SABIC Innovative Plastics "SA90")
Metal soap (zinc octoate)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <無機充填材>
 シリカ粒子としては、以下の5種類から選択して用いている。
球状シリカ(株式会社アドマテックス製「SC2500-SEJ」、比重2.2g/cm
破砕シリカ1(株式会社龍森製「AS-1 SSA」、比表面積20m/g、比重2.2g/cm
破砕シリカ2(株式会社アドマテックス製「MC3000」、比表面積15m/g、比重2.2g/cm
破砕シリカ3(株式会社アドマテックス製「MC6000」、比表面積10m/g、比重2.2g/cm
破砕シリカ4(シベルコ社製「Megasil525」、比表面積2.2m/g、比重2.2g/cm
 モリブデン化合物粒子としては、シャーウィンウィリアムズ社製モリブデン酸亜鉛処理タルク「KEMGARD911C」を用いている。モリブデン酸亜鉛量は17質量%、比重は2.8g/cm、平均粒径は3.0μmである。
<Inorganic filler>
Silica particles are selected from the following five types.
Spherical silica (Co. Admatechs made "SC2500-SEJ", a specific gravity of 2.2g / cm 3)
Crushed silica 1 (“AS-1 SSA” manufactured by Tatsumori Co., Ltd., specific surface area 20 m 2 / g, specific gravity 2.2 g / cm 3 )
Crushed silica 2 ("MC3000" manufactured by Admatechs Co., Ltd., specific surface area 15 m 2 / g, specific gravity 2.2 g / cm 3 )
Fractured silica 3 ("MC6000" manufactured by Admatechs Co., Ltd., specific surface area 10 m 2 / g, specific gravity 2.2 g / cm 3 )
Crushed silica 4 ("Megasil 525" manufactured by Sibelco, specific surface area 2.2 m 2 / g, specific gravity 2.2 g / cm 3 )
As the molybdenum compound particles, zinc molybdate-treated talc “KEMGARD911C” manufactured by Sherwin Williams is used. The amount of zinc molybdate is 17% by mass, the specific gravity is 2.8 g / cm 3 , and the average particle size is 3.0 μm.
 (2)プリプレグ
 基材として、日東紡績株式会社製のガラス基材(WEA116ES136、厚み0.1μm)を用いている。この基材に樹脂組成物のワニスを室温で含浸させた後、150~160℃で加熱乾燥する。これにより、ワニス中の溶媒を除去し、樹脂組成物を半硬化させることによって、プリプレグを製造する。プリプレグ中のレジンコンテント(樹脂量)は56質量%である。
(2) Prepreg As a base material, a glass base material (WEA116ES136, thickness 0.1 μm) manufactured by Nitto Boseki Co., Ltd. is used. The base material is impregnated with a varnish of the resin composition at room temperature, and then dried by heating at 150 to 160 ° C. Thereby, the prepreg is manufactured by removing the solvent in the varnish and semi-curing the resin composition. The resin content (resin amount) in the prepreg is 56% by mass.
 (3)積層板
 プリプレグ(300mm×450mm)を6枚重ね、さらにこの両側に金属箔として銅箔(三井金属鉱業株式会社製、厚み35μm)を重ねて、200℃、3MPaの条件で90分間、加熱加圧成形する。このような手順で、評価用の積層板(厚み0.8mm)を製造している。
(3) Laminated plate Six prepregs (300 mm × 450 mm) are stacked, and copper foil (made by Mitsui Mining & Smelting Co., Ltd., thickness 35 μm) is further stacked on both sides as a metal foil for 90 minutes at 200 ° C. and 3 MPa. Heat-press molding. The laminated board for evaluation (thickness 0.8 mm) is manufactured in such a procedure.
 [2]積層板の評価とその結果
 (1)成形後のカスレ
 厚さ0.8mmの積層板の両面の銅箔をエッチングにより除去した後、目視によりカスレの有無を確認している。
[2] Evaluation and Results of Laminate (1) Scrap after Molding After removing the copper foil on both sides of the 0.8 mm thick laminate by etching, the presence or absence of scum was confirmed by visual inspection.
 (2)ドリル磨耗率
 厚さ0.8mmの積層板を4枚重ね合わせ、エントリーボードに0.15mmのアルミニウム板、バックアップボードに0.15mmのベーク板を用い、直径0.3mmのドリルにて5000hit穴あけ加工して、貫通孔を形成している。そして、穴あけ加工後のドリル磨耗率を測定している。
(2) Drill wear rate: Laminated four 0.8mm thick laminates, 0.15mm aluminum plate for entry board, 0.15mm bake plate for backup board, with 0.3mm diameter drill A through hole is formed by drilling 5000 hits. Then, the drill wear rate after drilling is measured.
 ドリルとしては、ユニオンツール株式会社製「NHU L020W」を用いている。穴あけ時のドリルの回転数は160000r.p.m、ドリルの送り速度は3.2m/minである。 As a drill, “NHU L020W” manufactured by Union Tool Co., Ltd. is used. The number of rotations of the drill when drilling is 160000 r. p. m, the feed rate of the drill is 3.2 m / min.
 (3)熱線膨張率(CTE)
 厚さ0.8mmの積層板の両面の銅箔をエッチングにより除去した後、IPC TM650 2.4.24に基づいて、TMA法(Thermal mechanical analysis method)により、ガラス転移温度(Tg)未満の温度での板厚方向の熱線膨張率を測定している。
(3) Thermal expansion coefficient (CTE)
After removing the copper foil on both sides of the 0.8 mm thick laminate by etching, the temperature is lower than the glass transition temperature (Tg) by the TMA method (Thermal mechanical analysis method) based on IPC TM650 2.4.24. The thermal expansion coefficient in the plate thickness direction is measured.
 (4)T-288耐熱性
 厚さ0.8mmの積層板の両面の銅箔をエッチングにより除去した後、288℃に保持したときの樹脂組成物の硬化物の分解開始時間を求めている。
(4) T-288 heat resistance After removing the copper foil on both sides of the 0.8 mm thick laminate by etching, the decomposition start time of the cured product of the resin composition when it is kept at 288 ° C. is obtained.
 以上の評価結果を(表3)及び(表4)に示す。 The above evaluation results are shown in (Table 3) and (Table 4).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (表3)及び(表4)から明らかなように、サンプルEA~EEの積層板は、破砕シリカを用いているにも関わらず、球状シリカを用いる場合(サンプルCA、CB、CK)に匹敵するほど優れたドリル加工性、成形性、耐熱性、低い熱線膨張率を有する。 As is clear from (Table 3) and (Table 4), the laminated plates of samples EA to EE are comparable to the case of using spherical silica (samples CA, CB, CK) even though crushed silica is used. The better the drilling processability, the formability, the heat resistance, and the lower the thermal expansion coefficient.
 特にサンプルEAとサンプルCE、サンプルEBとサンプルCF、サンプルECとサンプルCG、サンプルEEとサンプルCLとをそれぞれ対比すると、本実施の形態で規定する所定の破砕シリカをモリブデン化合物粒子と共に用いることで良好なドリル加工性を実現できることが分かる。 In particular, when comparing sample EA and sample CE, sample EB and sample CF, sample EC and sample CG, and sample EE and sample CL, it is good to use the predetermined crushed silica defined in this embodiment together with molybdenum compound particles. It can be seen that excellent drillability can be realized.
 またサンプルEDとサンプルCHとの対比から、モリブデン化合物粒子の含有量が多すぎると、耐熱性が大幅に低下することが分かる。 Also, from the comparison between the sample ED and the sample CH, it can be seen that if the content of the molybdenum compound particles is too large, the heat resistance is greatly reduced.
 また、破砕シリカと球状シリカとを併用したサンプルEF~EJの積層板も、優れたドリル加工性、成形性、耐熱性、低い熱線膨張率を示している。 Also, the laminated plates of samples EF to EJ using both crushed silica and spherical silica also show excellent drillability, formability, heat resistance, and a low coefficient of thermal expansion.
 また、比表面積が大きい破砕シリカを用いたサンプルCC、CDでは成形時の樹脂流動性が低下したと考えられ、成形後のカスレが認められている。 In addition, in samples CC and CD using crushed silica having a large specific surface area, it is considered that the resin fluidity at the time of molding was lowered, and smoldering after molding was observed.
 サンプルCI、CJでは、破砕シリカの含有量が150質量部を超えている。サンプルCIではモリブデン化合物粒子の含有量を多くしたことでドリル磨耗率が小さくなっている。しかしながら耐熱性(T-288)は大きく低下している。一方、モリブデン化合物粒子の含有量を控えたサンプルCJでは、耐熱性は大きく低下していないもののドリル磨耗率が70%を超えて大きくなっている。 In samples CI and CJ, the content of crushed silica exceeds 150 parts by mass. In the sample CI, the drill wear rate is reduced by increasing the content of the molybdenum compound particles. However, the heat resistance (T-288) is greatly reduced. On the other hand, in the sample CJ in which the content of molybdenum compound particles is refrained, the drill wear rate exceeds 70%, although the heat resistance is not greatly reduced.
 (実施の形態2)
 本発明の実施の形態2の説明に先立ち、従来の構成における課題を説明する。特許文献3に開示された樹脂組成物を用いても、その硬化物のガラス転移温度、誘電正接が大幅に低下することがある。例えば、吸湿したシリカ粒子を用いた場合には、硬化物のガラス転移温度および誘電特性が経時的に低下する。一方、新品のシリカ粒子(乾燥状態のシリカ粒子)を用いた場合には、硬化物のガラス転移温度および誘電正接は優れる。
(Embodiment 2)
Prior to the description of the second embodiment of the present invention, problems in the conventional configuration will be described. Even when the resin composition disclosed in Patent Document 3 is used, the glass transition temperature and dielectric loss tangent of the cured product may be significantly reduced. For example, when silica particles that have absorbed moisture are used, the glass transition temperature and dielectric properties of the cured product decrease with time. On the other hand, when new silica particles (dry silica particles) are used, the glass transition temperature and dielectric loss tangent of the cured product are excellent.
 本実施の形態では、ガラス転移温度および誘電特性が安定して優れ、かつ良好なドリル加工性および成形性を実現することができるプリント配線板用樹脂組成物について、上記の知見に基づいて説明する。 In the present embodiment, a resin composition for a printed wiring board that is stable and excellent in glass transition temperature and dielectric properties and that can realize good drill processability and moldability will be described based on the above knowledge. .
 本実施の形態に係るプリント配線板用樹脂組成物(以下、樹脂組成物)は、下記(a)および(b)を含む樹脂成分、下記(c)および(d)を含む無機充填材を配合して調製される。
(a)ポリフェニレンエーテルとエポキシ基を持つエポキシ化合物とを反応させることにより得られた予備反応物
(b)シアネートエステル化合物
(c)表面処理が施された疎水性シリカ粒子
(d)モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子
 すなわち、この樹脂組成物は、はじめにポリフェニレンエーテルとエポキシ化合物とを反応させることにより予備反応物(a)を形成した後、さらにシアネートエステル化合物(b)と、疎水性シリカ粒子(c)と、モリブデン化合物粒子(d)とを配合して調製される。このように、予め、ポリフェニレンエーテルとエポキシ化合物を反応させて予備反応物(a)を形成しておくことにより、予備反応物を形成しないで得られた樹脂組成物よりも樹脂組成物の硬化物(以下、硬化物)のガラス転移温度を高くすることができる。さらに、硬化物は上記樹脂成分をベース樹脂とするので、誘電率や誘電正接等の誘電特性に優れる。
The resin composition for printed wiring boards (hereinafter referred to as resin composition) according to the present embodiment is blended with a resin component including the following (a) and (b), and an inorganic filler including the following (c) and (d) Prepared.
(A) Prereacted product obtained by reacting polyphenylene ether with an epoxy compound having an epoxy group (b) Cyanate ester compound (c) Surface-treated hydrophobic silica particles (d) At least a molybdenum compound Molybdenum compound particles in the surface layer portion That is, this resin composition is prepared by first reacting a polyphenylene ether and an epoxy compound to form a prereacted product (a), and then further adding a cyanate ester compound (b) and a hydrophobic silica. It is prepared by blending particles (c) and molybdenum compound particles (d). Thus, the cured product of the resin composition rather than the resin composition obtained without forming the preliminary reaction product by previously reacting the polyphenylene ether and the epoxy compound to form the preliminary reaction product (a). The glass transition temperature of (hereinafter, cured product) can be increased. Furthermore, since the cured product uses the resin component as a base resin, it is excellent in dielectric characteristics such as dielectric constant and dielectric loss tangent.
 樹脂組成物中に持込まれる水分量は、樹脂組成物の総質量に対して、好ましくは0.1%未満、より好ましくは0.07質量%以下である。樹脂組成物中に持込まれる水分量が上記範囲内であると、樹脂組成物のワニスゲルタイムが短くなりにくい。ワニスゲルタイムが短いと、樹脂組成物を硬化させる際、樹脂組成物に対し十分に熱をかけられず、硬化物中に揮発成分が多く残存する。そのため、硬化物のガラス転移温度が大きく低下する虞がある。樹脂組成物中に持込まれる水分量は、主に、シリカ粒子が吸湿した水分に起因する。そのため、シリカ粒子に表面処理が施されていない場合、比較的多量の水分が樹脂組成物に混入する。 The amount of water brought into the resin composition is preferably less than 0.1%, more preferably 0.07% by mass or less, based on the total mass of the resin composition. When the amount of moisture brought into the resin composition is within the above range, the varnish gel time of the resin composition is unlikely to be shortened. When the varnish gel time is short, when the resin composition is cured, the resin composition cannot be sufficiently heated, and a large amount of volatile components remain in the cured product. Therefore, there exists a possibility that the glass transition temperature of hardened | cured material may fall large. The amount of moisture brought into the resin composition is mainly due to the moisture absorbed by the silica particles. Therefore, when the surface treatment is not performed on the silica particles, a relatively large amount of water is mixed into the resin composition.
 樹脂組成物中に持込まれる水分が多いと、樹脂組成分のワニスゲルタイムが大幅に短くなる。この現象は、予備反応物(a)、シアネートエステル化合物(b)、疎水性シリカ粒子(c)およびモリブデン化合物粒子(d)を含む樹脂組成物に特有である。例えば、予備反応物(a)を用いずに、ポリフェニレンエーテル、エポキシ化合物、シアネートエステル化合物(b)、疎水性シリカ粒子(c)およびモリブデン化合物粒子(d)を重合させて調製される樹脂組成物にはこの現象は見られない。 If a large amount of moisture is brought into the resin composition, the varnish gel time for the resin composition will be significantly shortened. This phenomenon is peculiar to the resin composition containing the preliminary reaction product (a), the cyanate ester compound (b), the hydrophobic silica particles (c), and the molybdenum compound particles (d). For example, a resin composition prepared by polymerizing polyphenylene ether, epoxy compound, cyanate ester compound (b), hydrophobic silica particles (c) and molybdenum compound particles (d) without using the pre-reacted product (a) Does not show this phenomenon.
 樹脂組成物中に持込まれる水分量が多いとワニスゲルタイムが短くなるのは、シアネートエステル化合物(b)に起因するシアネートエステルの三量化反応が促進されるためと推測される。すなわち、樹脂組成物中に持込まれる水分量が多いと、シアネートエステル化合物(b)と水とが反応しやすくなり、カルバメートが生成しやすくなる。このカルバメート中の活性水素がモリブデン化合物とともに、シアネートエステル化合物(b)に起因するシアネートエステルの三量化反応を大きく促進させ、トリアジン環を生成する。このトリアジン環が硬化剤として機能し、樹脂組成物はゲル化しやすくなると推測される。 The reason why the varnish gel time is shortened when the amount of moisture brought into the resin composition is large is presumed to be because the trimerization reaction of the cyanate ester caused by the cyanate ester compound (b) is promoted. That is, when the amount of moisture brought into the resin composition is large, the cyanate ester compound (b) and water are likely to react with each other, and carbamate is likely to be generated. The active hydrogen in the carbamate, together with the molybdenum compound, greatly promotes the trimerization reaction of the cyanate ester resulting from the cyanate ester compound (b), thereby generating a triazine ring. It is presumed that this triazine ring functions as a curing agent and the resin composition is easily gelled.
 樹脂組成物のワニスゲルタイムは、120秒以上である必要があり、好ましくは120~240秒、より好ましくは150~210秒である。本実施の形態において、ワニスゲルタイムは、得られた樹脂組成物のワニスの2.5mlが200℃のキュアープレート上でゲル化するまでの時間として定義している。 The varnish gel time of the resin composition needs to be 120 seconds or more, preferably 120 to 240 seconds, and more preferably 150 to 210 seconds. In this Embodiment, varnish gel time is defined as time until 2.5 ml of the varnish of the obtained resin composition gelatinizes on a 200 degreeC cure plate.
 なお、シリカ粒子の吸着水分量は、カールフィッシャー法(JIS K0113:2005、電量滴定方法)により測定することができる。また樹脂組成物中に持込まれる水分量は、以下の計算式よって算出することができる。
樹脂組成物中に持込まれる水分量=(シリカ中に含まれる水分量(カールフィッシャー測定値%)×シリカ添加量/樹脂組成物の総量)×100
 次に、樹脂成分について説明する。樹脂成分は、予備反応物(a)とシアネートエステル化合物(b)とを含む。まず、予備反応物(a)について説明する。予備反応物(a)は、ポリフェニレンエーテル(a-1)とエポキシ基を持つエポキシ化合物(a-2)とを反応させることにより調製される。
The adsorbed water content of the silica particles can be measured by the Karl Fischer method (JIS K0113: 2005, coulometric titration method). The amount of moisture brought into the resin composition can be calculated by the following calculation formula.
Moisture amount brought into resin composition = (water amount contained in silica (Karl Fischer measurement value%) × silica addition amount / total amount of resin composition) × 100
Next, the resin component will be described. The resin component includes a pre-reacted product (a) and a cyanate ester compound (b). First, the preliminary reaction product (a) will be described. The preliminary reaction product (a) is prepared by reacting the polyphenylene ether (a-1) with an epoxy compound (a-2) having an epoxy group.
 ポリフェニレンエーテル(a-1)は、1分子中に平均1.5~2個の水酸基を有することが好ましい。1分子中に平均1.5~2個の水酸基を有するとは、1分子当たりの水酸基の平均個数(平均水酸基数)が1.5~2個であることを意味する。平均水酸基数が1.5個以上であれば、エポキシ化合物(a-2)のエポキシ基と反応することによって3次元架橋されるため、硬化時の密着性が向上する。また、平均水酸基数が2個以下であることによって、予備反応時にゲル化する虞もなくなると考えられる。 The polyphenylene ether (a-1) preferably has an average of 1.5 to 2 hydroxyl groups in one molecule. Having an average of 1.5 to 2 hydroxyl groups in one molecule means that the average number of hydroxyl groups per molecule (average number of hydroxyl groups) is 1.5 to 2. When the average number of hydroxyl groups is 1.5 or more, the three-dimensional crosslinking is caused by reacting with the epoxy group of the epoxy compound (a-2), so that the adhesion during curing is improved. Further, when the average number of hydroxyl groups is 2 or less, it is considered that there is no possibility of gelation during the preliminary reaction.
 ポリフェニレンエーテル(a-1)の平均水酸基数は、使用するポリフェニレンエーテルの製品の規格値からわかる。ポリフェニレンエーテル(a-1)の平均水酸基数は、例えば、ポリフェニレンエーテル1モル中に存在する全てのポリフェニレンエーテルの1分子あたりの水酸基の平均値等が挙げられる。 The average number of hydroxyl groups of polyphenylene ether (a-1) can be determined from the standard value of the polyphenylene ether product used. Examples of the average number of hydroxyl groups of polyphenylene ether (a-1) include the average value of hydroxyl groups per molecule of all the polyphenylene ethers present in 1 mol of polyphenylene ether.
 ポリフェニレンエーテル(a-1)の数平均分子量(Mn)は、800以上、2000以下であることが好ましい。数平均分子量が800以上であれば、硬化物の誘電特性、耐熱性、高ガラス転移温度を確保することができる。また数平均分子量が2000以下であれば、エポキシ基が比較的少ないエポキシ樹脂と反応させた予備反応物を含有させた場合でも、樹脂流れや相分離を起こしたり、成型性が低下したりすることを抑制することができる。 The number average molecular weight (Mn) of the polyphenylene ether (a-1) is preferably 800 or more and 2000 or less. If the number average molecular weight is 800 or more, the dielectric properties, heat resistance, and high glass transition temperature of the cured product can be secured. In addition, if the number average molecular weight is 2000 or less, even if a pre-reacted product reacted with an epoxy resin having relatively few epoxy groups is contained, resin flow or phase separation may occur, or moldability may be deteriorated. Can be suppressed.
 数平均分子量が800以上、2000以下のポリフェニレンエーテルは、例えば、重合反応により直接に調製することができる。あるいは、数平均分子量が2000以上のポリフェニレンエーテルを、溶媒中でフェノール系化合物とラジカル開始剤との存在下で再分配反応させて調製してもよい。なお、ポリフェニレンエーテル(a-1)の数平均分子量(Mn)は、例えば、ゲルパーミエーションクロマトグラフィー等を用いて測定することができる。 A polyphenylene ether having a number average molecular weight of 800 or more and 2000 or less can be directly prepared by, for example, a polymerization reaction. Alternatively, polyphenylene ether having a number average molecular weight of 2000 or more may be prepared by redistribution reaction in a solvent in the presence of a phenolic compound and a radical initiator. The number average molecular weight (Mn) of polyphenylene ether (a-1) can be measured using, for example, gel permeation chromatography.
 ポリフェニレンエーテル(a-1)としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)や、2,6-ジメチルフェノールと、2官能フェノール及び3官能フェノールの少なくともいずれか一方とで合成された分子構造を有するポリフェニレンエーテルが挙げられる。この中でも後者の、2,6-ジメチルフェノールと、2官能フェノール及び3官能フェノールの少なくともいずれか一方とで合成された分子構造を有するポリフェニレンエーテルが好ましい。また、2官能フェノールとしては、例えば、テトラメチルビスフェノールAが挙げられる。 Examples of the polyphenylene ether (a-1) include poly (2,6-dimethyl-1,4-phenylene oxide), 2,6-dimethylphenol, and at least one of a bifunctional phenol and a trifunctional phenol. And polyphenylene ether having a molecular structure synthesized in (1). Among these, the latter polyphenylene ether having a molecular structure synthesized with 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol is preferable. Examples of the bifunctional phenol include tetramethylbisphenol A.
 エポキシ化合物(a-2)は、1分子中に平均2~2.3個のエポキシ基を有することが好ましい。平均エポキシ基数がこの範囲であれば、硬化物の耐熱性を維持したまま、ポリフェニレンエーテル(a-1)との予備反応物を良好に生成することができる。 The epoxy compound (a-2) preferably has an average of 2 to 2.3 epoxy groups in one molecule. When the average number of epoxy groups is within this range, a pre-reacted product with polyphenylene ether (a-1) can be satisfactorily produced while maintaining the heat resistance of the cured product.
 エポキシ化合物(a-2)としては、例えば、ジシクロペンタジエン(DCPD)型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、誘電特性を向上させる観点から、DCPD型エポキシ樹脂が特に好ましい。また、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が、ポリフェニレンエーテルとの相溶性が良い点から好ましい。なお、樹脂組成物には、耐熱性の観点からハロゲン化エポキシ樹脂を含有しないことが好ましいが、本発明の効果を損なわない範囲であれば、必要に応じて配合してもよい。 Examples of the epoxy compound (a-2) include dicyclopentadiene (DCPD) type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and biphenyl type epoxy resin. Can be mentioned. These may be used alone or in combination of two or more. Among these, a DCPD type epoxy resin is particularly preferable from the viewpoint of improving dielectric characteristics. Further, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable from the viewpoint of good compatibility with polyphenylene ether. In addition, although it is preferable not to contain a halogenated epoxy resin from a heat resistant viewpoint, you may mix | blend as needed if it is a range which does not impair the effect of this invention.
 エポキシ化合物(a-2)の平均エポキシ基数は、使用するエポキシ樹脂の製品の規格値からわかる。エポキシ樹脂のエポキシ基数としては、具体的には、例えば、エポキシ樹脂1モル中に存在する全てのエポキシ樹脂の1分子あたりのエポキシ基の平均値が挙げられる。 The average number of epoxy groups of the epoxy compound (a-2) can be determined from the standard value of the epoxy resin product used. Specific examples of the number of epoxy groups in the epoxy resin include an average value of epoxy groups per molecule of all epoxy resins present in 1 mol of the epoxy resin.
 トルエンに対するエポキシ化合物(a-2)の溶解度が25℃において10質量%以上であることが好ましい。これにより、エポキシ化合物(a-2)とポリフェニレンエーテル(a-1)との相溶性が比較的高くなり、エポキシ化合物(a-2)がポリフェニレンエーテル(a-1)と均一に反応しやすくなると考えられる。その結果、ポリフェニレンエーテル(a-1)の有する優れた誘電特性を阻害することなく、硬化物の耐熱性が充分に高まる。 The solubility of the epoxy compound (a-2) in toluene is preferably 10% by mass or more at 25 ° C. As a result, the compatibility between the epoxy compound (a-2) and the polyphenylene ether (a-1) becomes relatively high, and the epoxy compound (a-2) easily reacts uniformly with the polyphenylene ether (a-1). Conceivable. As a result, the heat resistance of the cured product is sufficiently increased without impairing the excellent dielectric properties of polyphenylene ether (a-1).
 予備反応物(a)は、例えば、以下の反応によって調製される。まず、ポリフェニレンエーテル(a-1)とエポキシ化合物(a-2)とが所定の比率となるように秤量し、これらを、10~60分間程度、固形分濃度50~70%程度の有機溶媒中で攪拌して混合する。この混合物を80~110℃で2~12時間加熱することによって、ポリフェニレンエーテル(a-1)とエポキシ化合物(a-2)とを反応させる。これにより、予備反応物(a)が調製される。有機溶媒としては、ポリフェニレンエーテル(a-1)及びエポキシ化合物(a-2)等を溶解させ、これらの反応を阻害しないものであれば、特に限定されず、例えば、トルエンを用いることができる。 The preliminary reaction product (a) is prepared, for example, by the following reaction. First, the polyphenylene ether (a-1) and the epoxy compound (a-2) are weighed so as to have a predetermined ratio, and these are weighed in an organic solvent having a solid concentration of about 50 to 70% for about 10 to 60 minutes. Stir to mix. The mixture is heated at 80 to 110 ° C. for 2 to 12 hours to react polyphenylene ether (a-1) with epoxy compound (a-2). Thereby, the preliminary reaction product (a) is prepared. The organic solvent is not particularly limited as long as it dissolves polyphenylene ether (a-1) and epoxy compound (a-2) and does not inhibit these reactions. For example, toluene can be used.
 ポリフェニレンエーテル(a-1)とエポキシ化合物(a-2)との比率には、好ましい範囲がある。この比率をポリフェニレンエーテル(a-1)の水酸基に対するエポキシ化合物(a-2)のエポキシ基のモル比(エポキシ基/水酸基)として表すと、好ましい範囲は3以上、6以下であり、より好ましくは3.5以上、5.5以下程度である。モル比が上記範囲にあれば、ポリフェニレンエーテル(a-1)の両端をエポキシ基で効率よくキャッピングできる。さらに、予備反応物(a)の粘度が下がることによって、後述するワニスやプリプレグの粘度が低下し、生産性が向上する。 There is a preferred range for the ratio of the polyphenylene ether (a-1) to the epoxy compound (a-2). When this ratio is expressed as the molar ratio of the epoxy group of the epoxy compound (a-2) to the hydroxyl group of the polyphenylene ether (a-1) (epoxy group / hydroxyl group), the preferred range is 3 or more and 6 or less, more preferably It is about 3.5 or more and 5.5 or less. When the molar ratio is in the above range, both ends of the polyphenylene ether (a-1) can be efficiently capped with epoxy groups. Furthermore, when the viscosity of a preliminary reaction material (a) falls, the viscosity of the varnish and prepreg mentioned later falls, and productivity improves.
 ポリフェニレンエーテル(a-1)とエポキシ化合物(a-2)とを反応させる際、触媒を共存させてもよい。触媒としては、ポリフェニレンエーテル(a-1)の水酸基とエポキシ化合物(a-2)のエポキシ基との反応を促進することができれば、特に制限されない。例えば、有機酸の金属塩、3級アミン、イミダゾール類、有機ホスフィン類等が挙げられる。有機酸の金属塩として、オクタン酸、ステアリン酸、アセチルアセトネート、ナフテン酸、サリチル酸等の有機酸のZn、Cu、Fe等の金属塩が挙げられる。3級アミンとして、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、トリエチルアミン、トリエタノールアミン等が挙げられる。イミダゾール類として、2-エチル-4-イミダゾール(2E4MZ)、4-メチルイミダゾール等が挙げられる。有機ホスフィン類としてトリフェニルホスフィン(TPP)、トリブチルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、イミダゾール類、特に2-エチル-4-イミダゾールが、反応時間を短くすることができ、さらに、エポキシ樹脂同士の重合(エポキシ樹脂の自重合)を抑制できる点から、特に好ましい。また、触媒の含有量は、ポリフェニレンエーテル(a-1)とエポキシ化合物(a-2)との合計100質量部に対して、好ましくは0.05質量部以上、1質量部以下である。触媒の含有量が上記範囲内であれば、ポリフェニレンエーテル(a-1)の水酸基とエポキシ化合物(a-2)のエポキシ基との反応に時間がかからず、また、反応の制御がしやすく、ゲル化しにくい。 When the polyphenylene ether (a-1) and the epoxy compound (a-2) are reacted, a catalyst may coexist. The catalyst is not particularly limited as long as it can promote the reaction between the hydroxyl group of polyphenylene ether (a-1) and the epoxy group of epoxy compound (a-2). Examples thereof include metal salts of organic acids, tertiary amines, imidazoles, and organic phosphines. Examples of metal salts of organic acids include metal salts of organic acids such as octanoic acid, stearic acid, acetylacetonate, naphthenic acid, and salicylic acid, such as Zn, Cu, and Fe. Examples of the tertiary amine include 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), triethylamine, triethanolamine and the like. Examples of imidazoles include 2-ethyl-4-imidazole (2E4MZ) and 4-methylimidazole. Examples of organic phosphines include triphenylphosphine (TPP), tributylphosphine, tetraphenylphosphonium / tetraphenylborate, and the like. These may be used alone or in combination of two or more. Among these, imidazoles, particularly 2-ethyl-4-imidazole, is particularly preferable because the reaction time can be shortened and polymerization between epoxy resins (self-polymerization of epoxy resins) can be suppressed. The content of the catalyst is preferably 0.05 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass in total of the polyphenylene ether (a-1) and the epoxy compound (a-2). If the catalyst content is within the above range, the reaction between the hydroxyl group of polyphenylene ether (a-1) and the epoxy group of epoxy compound (a-2) does not take time, and the reaction is easily controlled. , Difficult to gel.
 反応時の固形分濃度は、反応効率や粘度(製造性)を考慮すると、50~70%程度であることが好ましい。 The solid content concentration during the reaction is preferably about 50 to 70% in view of reaction efficiency and viscosity (manufacturability).
 次に、シアネートエステル化合物(b)について説明する。シアネートエステル化合物(b)は、1分子当たりのシアネート基の平均個数(平均シアネート基数)が2個以上有することが好ましい。これにより、硬化物の耐熱性を向上させることができる。ここで、平均シアネート基数とは、シアネートエステル化合物(b)として使用するシアネート樹脂の1モル中に存在する全てのシアネート樹脂分子あたりのシアネート基の平均値である。平均シアネート基数は、シアネート樹脂の製品の規格値からわかる。 Next, the cyanate ester compound (b) will be described. The cyanate ester compound (b) preferably has an average number of cyanate groups per molecule (average number of cyanate groups) of 2 or more. Thereby, the heat resistance of hardened | cured material can be improved. Here, the average number of cyanate groups is an average value of cyanate groups per all cyanate resin molecules present in 1 mol of the cyanate resin used as the cyanate ester compound (b). The average number of cyanate groups can be determined from the standard value of the cyanate resin product.
 シアネートエステル化合物(b)としては、例えば、2,2-ビス(4-シアネートフェニル)プロパン(ビスフェノールA型シアネート樹脂)、ビス(3,5-ジメチル-4-シアネートフェニル)メタン、2,2-ビス(4-シアネートフェニル)エタン等またはこれらの誘導体等の芳香族系シアネートエステル化合物等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the cyanate ester compound (b) include 2,2-bis (4-cyanatephenyl) propane (bisphenol A type cyanate resin), bis (3,5-dimethyl-4-cyanatephenyl) methane, 2,2- Aromatic cyanate ester compounds such as bis (4-cyanatephenyl) ethane or derivatives thereof. These may be used alone or in combination of two or more.
 樹脂組成物は、エポキシ化合物(e)をさらに含有するのが好ましい。エポキシ化合物(e)は、エポキシ化合物(a-2)と同様に、1分子中に平均2個以上、2.3個以下のエポキシ基を有することが好ましい。エポキシ化合物(e)としては、例えば、DCPD型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。この場合、エポキシ化合物(e)は、エポキシ化合物(a-2)と同じであっても、異なっていてもかまわない。エポキシ化合物(e)として、誘電特性を向上させる観点から、DCPD型エポキシ樹脂が好ましい。 The resin composition preferably further contains an epoxy compound (e). Like the epoxy compound (a-2), the epoxy compound (e) preferably has an average of 2 or more and 2.3 or less epoxy groups in one molecule. Examples of the epoxy compound (e) include DCPD type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin and the like. These may be used alone or in combination of two or more. In this case, the epoxy compound (e) may be the same as or different from the epoxy compound (a-2). As the epoxy compound (e), a DCPD type epoxy resin is preferable from the viewpoint of improving dielectric properties.
 そのほか、1分子中に平均2個以上、2.3個以下のエポキシ基を有するエポキシ化合物以外に、クレゾールノボラック型エポキシ樹脂等の多官能型エポキシ化合物のうち、1分子中に平均2.3個より多くエポキシ基を有する化合物を用いることもできる。 In addition to the epoxy compounds having an average of 2 or more and 2.3 or less epoxy groups per molecule, among polyfunctional epoxy compounds such as a cresol novolac epoxy resin, an average of 2.3 per molecule A compound having more epoxy groups can also be used.
 樹脂組成物がエポキシ化合物(a-2)および/又はエポキシ化合物(e)としてDCPD型エポキシ樹脂を含む場合、エポキシ化合物(a-2)およびエポキシ化合物(e)の総質量に対して、DCPD型のエポキシ化合物が50質量%以上含まれることが好ましい。これにより、誘電特性により優れた絶縁材料を作製することができる。 When the resin composition contains a DCPD type epoxy resin as the epoxy compound (a-2) and / or the epoxy compound (e), the DCPD type with respect to the total mass of the epoxy compound (a-2) and the epoxy compound (e) It is preferable that 50 mass% or more of the epoxy compound is contained. Thereby, an insulating material having better dielectric properties can be manufactured.
 樹脂成分の好ましい配合割合は、ポリフェニレンエーテル(a-1)、エポキシ化合物(a-2)、シアネートエステル化合物(b)およびエポキシ化合物(e)を合わせて100質量部とした場合(エポキシ化合物(e)の配合が0の場合を含む)に、例えば、以下のような範囲である。ポリフェニレンエーテル(a-1)が10質量部以上、40質量部以下、エポキシ化合物(a-2)とエポキシ化合物(e)とが合わせて20質量部以上、60質量部以下、シアネートエステル化合物(b)が20質量部以上、40質量部以下である。なお、エポキシ化合物(e)の配合が0の場合、エポキシ化合物(a-2)が20質量部以上、60質量部以下であることが好ましい。このような配合により、硬化物の優れた誘電特性、耐熱性および密着性(接着性)を両立させることができると考えられる。 A preferable blending ratio of the resin component is 100 parts by mass of the total amount of the polyphenylene ether (a-1), the epoxy compound (a-2), the cyanate ester compound (b) and the epoxy compound (e) (epoxy compound (e For example, the following ranges are included. 10 parts by mass or more and 40 parts by mass or less of polyphenylene ether (a-1), and 20 parts by mass or more and 60 parts by mass or less of the cyanate ester compound (b ) Is 20 parts by mass or more and 40 parts by mass or less. When the compounding of the epoxy compound (e) is 0, the epoxy compound (a-2) is preferably 20 parts by mass or more and 60 parts by mass or less. It is considered that such a blend makes it possible to achieve both excellent dielectric properties, heat resistance and adhesion (adhesion) of the cured product.
 樹脂組成物は、ハロゲン系難燃剤や非ハロゲン系難燃剤をさらに含有してもよい。これにより、硬化物の難燃性が高まる。ハロゲン系難燃剤を使用する場合、硬化物に難燃性を付与でき、かつ硬化物のガラス転移温度が低下しにくく、耐熱性の大幅な低下が起こりにくい。ハロゲン系難燃剤を使用すると、難燃性を付与しにくいDCPD型のエポキシ樹脂を使用した場合でも、硬化物に容易に難燃性を付与することができる。 The resin composition may further contain a halogen flame retardant or a non-halogen flame retardant. Thereby, the flame retardance of hardened | cured material increases. When a halogen-based flame retardant is used, flame retardancy can be imparted to the cured product, the glass transition temperature of the cured product is unlikely to decrease, and heat resistance is not significantly reduced. When a halogen-based flame retardant is used, flame retardancy can be easily imparted to the cured product even when a DCPD type epoxy resin that is difficult to impart flame retardancy is used.
 ハロゲン系難燃剤は後述のワニス中では溶解せず分散することが好ましい。ハロゲン系難燃剤としては、例えば、融点が300℃以上のエチレンジペンタブロモベンゼン、エチレンビステトラブロモイミド、デカブロモジフェニルオキサイド、テトラデカブロモジフェノキシベンゼンが挙げられる。このようなハロゲン系難燃剤を使用することにより、高温時におけるハロゲンの脱離が抑制でき、耐熱性の低下を抑制できると考えられる。 It is preferable that the halogen-based flame retardant is not dissolved but dispersed in the varnish described below. Examples of the halogen flame retardant include ethylenedipentabromobenzene, ethylenebistetrabromoimide, decabromodiphenyl oxide, and tetradecabromodiphenoxybenzene having a melting point of 300 ° C. or higher. By using such a halogen-based flame retardant, it is considered that elimination of halogen at high temperatures can be suppressed, and a decrease in heat resistance can be suppressed.
 ハロゲン系難燃剤は、全量の樹脂成分中におけるハロゲン濃度が5~30質量%程度になるような配合割合で含有させることが、難燃性や耐熱性の観点から好ましい。 It is preferable from the viewpoint of flame retardancy and heat resistance that the halogen-based flame retardant is contained at a blending ratio such that the halogen concentration in the total amount of the resin component is about 5 to 30% by mass.
 次に、無機充填材について説明する。無機充填材は表面処理が施された疎水性シリカ粒子(c)と、モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子(d)とを含む。まず疎水性シリカ粒子(c)について説明する。 Next, the inorganic filler will be described. The inorganic filler includes hydrophobic silica particles (c) subjected to surface treatment and molybdenum compound particles (d) having a molybdenum compound in at least a surface layer portion. First, the hydrophobic silica particles (c) will be described.
 疎水性シリカ粒子(c)は高温または多湿環境下においても吸湿しにくい。そのため、長期間室温で放置(保管)された疎水性シリカ粒子(c)を樹脂組成物の材料に用いても、樹脂組成物中に水分が持込まれにくい。その結果、乾燥状態のシリカ粒子と同等のワニスゲルタイムを維持することができる。すなわち、シリカ粒子の保管状態によって、硬化物のガラス転移温度および誘電特性が経時的に低下しにくく、ガラス転移温度および誘電特性が安定して優れる。ここで、乾燥状態のシリカ粒子とは、カールフィッシャー法で測定した水分量が0.1%未満であるシリカ粒子を意味する。 Hydrophobic silica particles (c) are difficult to absorb moisture even under high temperature or high humidity environment. Therefore, even if the hydrophobic silica particles (c) that have been left (stored) at room temperature for a long time are used as the material of the resin composition, moisture is hardly brought into the resin composition. As a result, the varnish gel time equivalent to that of the silica particles in the dry state can be maintained. That is, depending on the storage state of the silica particles, the glass transition temperature and dielectric properties of the cured product are unlikely to deteriorate with time, and the glass transition temperature and dielectric properties are stable and excellent. Here, the dry silica particles mean silica particles having a water content of less than 0.1% measured by the Karl Fischer method.
 表面処理を施すための処理剤としては、例えば、シランカップリング剤や、シリコーンオイルなどの公知の処理剤を用いることができる。シランカップリング剤としては、例えば、β-エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、ジメチルジクロロシラン等のシランカップリング剤を挙げることができる。また疎水性シリカ粒子(c)は市販品として入手可能であり、例えば、シベルコ・ジャパン(株)製の「Megasil 525RCS」が挙げられる。 As the treatment agent for performing the surface treatment, for example, a known treatment agent such as a silane coupling agent or silicone oil can be used. Examples of silane coupling agents include silane couplings such as β-ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, hexamethyldisilazane, and dimethyldichlorosilane. An agent can be mentioned. Hydrophobic silica particles (c) are available as commercial products, for example, “Megasil 525RCS” manufactured by Sibelco Japan Co., Ltd.
 疎水性シリカ粒子(c)を構成するシリカ粒子としては、例えば、球状シリカ、破砕シリカなどが挙げられる。なかでも、硬化物のドリル加工性をより向上させる点で、実施の形態1で述べたように、球状シリカ、または0.1m/g以上、15m/g以下の比表面積を有する破砕シリカが好ましい。経済的な点で0.1m/g以上、15m/g以下の比表面積を有する破砕シリカがより好ましい。 Examples of the silica particles constituting the hydrophobic silica particles (c) include spherical silica and crushed silica. Among them, spherical silica or crushed silica having a specific surface area of 0.1 m 2 / g or more and 15 m 2 / g or less as described in Embodiment 1 in that the drillability of the cured product is further improved. Is preferred. From the economical viewpoint, crushed silica having a specific surface area of 0.1 m 2 / g or more and 15 m 2 / g or less is more preferable.
 破砕シリカの比表面積が0.1m/g以上であり、かつ、モリブデン化合物粒子(d)と共に使用することで、樹脂組成物を用いて金属張積層板等の積層板を製造したとき、積層板のドリル加工性を良好にできる。一方、破砕シリカの比表面積が15m/g以下であることで、樹脂組成物のワニスの増粘が抑制され、また加熱成形時の溶融粘度の増大も抑制され好適な範囲の樹脂流動性となって積層板を製造する際の成形性が良好になる。これらの効果は実施の形態1と同様である。 When the specific surface area of the crushed silica is 0.1 m 2 / g or more and used together with the molybdenum compound particles (d), a laminate such as a metal-clad laminate is produced using the resin composition. The drilling workability of the plate can be improved. On the other hand, when the specific surface area of the crushed silica is 15 m 2 / g or less, the thickening of the varnish of the resin composition is suppressed, and the increase of the melt viscosity at the time of thermoforming is also suppressed, and the resin flowability in a suitable range Thus, the moldability at the time of producing the laminated plate is improved. These effects are the same as those of the first embodiment.
 このように、実施の形態1に本実施の形態の特徴を組み合わせることも可能である。その場合、樹脂成分は、ポリフェニレンエーテルとエポキシ基を持つエポキシ化合物とを反応させることにより得られた予備反応物と、シアネートエステル化合物とを含む。無機充填材は、0.1m/g以上、15m/g以下の範囲内の比表面積を有するとともに、表面に疎水処理が施された破砕シリカと、モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子とを含む。これにより、ガラス転移温度および誘電特性が安定して優れ、かつ高いレベルで良好なドリル加工性および成形性を実現することができる硬化物を作製できる。 As described above, the features of the present embodiment can be combined with the first embodiment. In that case, the resin component includes a prereacted product obtained by reacting polyphenylene ether and an epoxy compound having an epoxy group, and a cyanate ester compound. The inorganic filler has a specific surface area within a range of 0.1 m 2 / g or more and 15 m 2 / g or less, a crushed silica whose surface has been subjected to a hydrophobic treatment, and a molybdenum compound having at least a surface portion of a molybdenum compound. Particles. This makes it possible to produce a cured product that is stable and excellent in glass transition temperature and dielectric properties, and that can realize good drill workability and formability at a high level.
 疎水性シリカ粒子(c)の含有量の好ましい範囲は、樹脂成分100質量部に対して、10質量部以上、200質量部以下、より好ましくは10質量部以上、150質量部以下、さらに好ましくは30質量部以上、100質量部以下である。疎水性シリカ粒子(c)の含有量が上記範囲内であれば、硬化物の熱線膨張率を低減することができる。 The preferred range of the content of the hydrophobic silica particles (c) is 10 parts by mass or more and 200 parts by mass or less, more preferably 10 parts by mass or more and 150 parts by mass or less, and further preferably 100 parts by mass of the resin component. 30 parts by mass or more and 100 parts by mass or less. When the content of the hydrophobic silica particles (c) is within the above range, the thermal linear expansion coefficient of the cured product can be reduced.
 疎水性シリカ粒子(c)を構成するシリカ粒子が破砕シリカである場合、疎水性シリカ粒子(c)の含有量は、樹脂成分100質量部に対して、好ましくは10質量部以上、150質量部以下、より好ましくは20質量部以上、100質量部以下である。この理由は実施の形態1と同様である。 When the silica particles constituting the hydrophobic silica particles (c) are crushed silica, the content of the hydrophobic silica particles (c) is preferably 10 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the resin component. Hereinafter, it is more preferably 20 parts by mass or more and 100 parts by mass or less. The reason is the same as in the first embodiment.
 破砕シリカの比表面積及び含有量は上記範囲内であればその組み合わせは限定されないが、特に破砕シリカの比表面積が9m/g以上、15m/g以下である場合、破砕シリカの含有量は、樹脂成分100質量部に対して10質量部以上、100質量部以下であることが好ましい。破砕シリカの比表面積が大きくなると成形時における樹脂組成物の溶融粘度が増大する傾向がある。したがって、樹脂組成物の流動性を確保するためには、破砕シリカの含有量を抑制することが好ましい。 The combination is not limited as long as the specific surface area and content of the crushed silica are within the above ranges, but when the specific surface area of the crushed silica is 9 m 2 / g or more and 15 m 2 / g or less, the content of the crushed silica is It is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin component. When the specific surface area of crushed silica increases, the melt viscosity of the resin composition during molding tends to increase. Therefore, in order to ensure the fluidity of the resin composition, it is preferable to suppress the content of crushed silica.
 モリブデン化合物粒子(d)については、実施の形態1と同様であるので説明を省略する。 Since the molybdenum compound particles (d) are the same as those in Embodiment 1, the description thereof is omitted.
 樹脂組成物は、触媒をさらに含有してもよい。これにより、予備反応物(a)とシアネートエステル化合物(b)との硬化反応(架橋反応)を促進させることができる。すなわち、触媒は硬化促進剤として作用する。そのため、硬化物の高いガラス転移温度や耐熱性、密着性を確保することができる。 The resin composition may further contain a catalyst. Thereby, the curing reaction (crosslinking reaction) between the preliminary reaction product (a) and the cyanate ester compound (b) can be promoted. That is, the catalyst acts as a curing accelerator. Therefore, the high glass transition temperature, heat resistance, and adhesion of the cured product can be ensured.
 触媒としては、例えば、一般的に金属石鹸と呼ばれるものを用いることができる。例えば、有機酸の金属塩が挙げられる。有機酸として、例えば、オクチル酸、ナフテン酸、ステアリン酸、ラウリン酸及びリシノール酸、アセチルアセテートが挙げられる。金属として、亜鉛、銅、コバルト、リチウム、マグネシウム、カルシウム及びバリウム等が挙げられる。中でも、ナフテン酸銅は、シアネートエステルの三量化反応の活性が低いため、硬化物の耐熱性を維持しつつ、ワニスやプリプレグのポットライフが比較的良いため好ましい。触媒は、単独で用いても、2種以上を組み合わせて用いてもよい。 As the catalyst, for example, what is generally called a metal soap can be used. For example, the metal salt of an organic acid is mentioned. Examples of the organic acid include octylic acid, naphthenic acid, stearic acid, lauric acid, ricinoleic acid, and acetyl acetate. Examples of the metal include zinc, copper, cobalt, lithium, magnesium, calcium, and barium. Among these, copper naphthenate is preferable because the activity of the cyanate ester trimerization reaction is low, and the pot life of the varnish or prepreg is relatively good while maintaining the heat resistance of the cured product. A catalyst may be used independently or may be used in combination of 2 or more type.
 触媒の配合量は、予備反応物(a)とシアネートエステル化合物(b)との合計量100質量部に対して、0.001質量部以上、1質量部以下であることが好ましい。触媒の配合量がこの範囲内であれば、硬化促進効果を高めて、硬化物の高い耐熱性やガラス転移温度を確保することができ、さらに成型性に問題のないプリプレグを容易に作製できる。 The compounding amount of the catalyst is preferably 0.001 part by mass or more and 1 part by mass or less with respect to 100 parts by mass of the total amount of the preliminary reaction product (a) and the cyanate ester compound (b). If the blending amount of the catalyst is within this range, the curing acceleration effect can be enhanced, the high heat resistance and glass transition temperature of the cured product can be secured, and a prepreg having no problem in moldability can be easily produced.
 無機充填材は、疎水性シリカ粒子(c)及びモリブデン化合物粒子(d)以外に、これらとは異なる他の充填材を含んでいてもよい。すなわち、他の充填材の添加により、疎水性シリカ粒子(c)による熱線膨張率低下効果に加えて、さらに熱線膨張率を小さくすることが可能である。また難燃性や熱伝導性等、疎水性シリカ粒子(c)のみでは十分に得られない特性を硬化物に付与することができる。他の充填材としては、目的に応じて適宜公知の充填材から選択可能であって制限されるものではないが、ドリル加工性を低下させにくい比較的硬度の低いものが好ましい。具体的には、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、タルク、クレー、マイカ等が挙げられる。 In addition to the hydrophobic silica particles (c) and the molybdenum compound particles (d), the inorganic filler may contain other fillers different from these. That is, by adding other fillers, in addition to the effect of lowering the coefficient of thermal expansion due to the hydrophobic silica particles (c), the coefficient of thermal expansion can be further reduced. Moreover, the characteristics which cannot fully be acquired only by hydrophobic silica particles (c), such as a flame retardance and heat conductivity, can be provided to hardened | cured material. Other fillers can be appropriately selected from known fillers according to the purpose and are not limited, but those having relatively low hardness that are difficult to reduce drill workability are preferable. Specific examples include aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, talc, clay, mica and the like.
 樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、例えば熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤等の添加剤をさらに配合してもよい。 The resin composition may further contain, for example, additives such as a heat stabilizer, an antistatic agent, an ultraviolet absorber, a dye, a pigment, and a lubricant as long as the effects of the present invention are not impaired. .
 樹脂組成物は、前述した各種成分の所定量を溶媒中で混合することでワニスとして調製して用いることができる。溶媒としては、予備反応物(a)、及びシアネートエステル化合物(b)、エポキシ化合物(e)等の樹脂成分を溶解可能であり、硬化反応を阻害しないものであれば、特に限定されない。例えば、トルエン、シクロヘキサノン、メチルエチルケトン、プロピレングリコールモノメチルエーテルアセテート等の有機溶媒が挙げられる。 The resin composition can be prepared and used as a varnish by mixing predetermined amounts of the various components described above in a solvent. The solvent is not particularly limited as long as it can dissolve the resin components such as the preliminary reaction product (a), the cyanate ester compound (b), and the epoxy compound (e) and does not inhibit the curing reaction. Examples thereof include organic solvents such as toluene, cyclohexanone, methyl ethyl ketone, and propylene glycol monomethyl ether acetate.
 樹脂組成物のワニスを調製する際、固形成分の溶解/分散を促進させるために、必要に応じて、樹脂成分が硬化反応を起こさない温度範囲で加熱してもよい。さらに、必要に応じて無機充填材やハロゲン系難燃剤を添加した場合、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、良好な分散状態になるまでワニスを攪拌してもよい。 When preparing the varnish of the resin composition, in order to promote the dissolution / dispersion of the solid component, the resin component may be heated in a temperature range that does not cause a curing reaction, if necessary. Furthermore, when an inorganic filler or a halogen-based flame retardant is added as necessary, the varnish may be agitated using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like until a good dispersion state is obtained.
 なお、実施の形態1における樹脂組成物に代えて、本実施の形態による樹脂組成物を用いてもプリプレグ、金属張積層板、プリント配線板を形成することができる。その方法等は実施の形態1と同様であるので説明を省略する。 In addition, it can replace with the resin composition in Embodiment 1, and can also form a prepreg, a metal-clad laminated board, and a printed wiring board also using the resin composition by this Embodiment. Since the method and the like are the same as those in the first embodiment, description thereof is omitted.
 以下、具体的な例を挙げて、本実施の形態の効果をさらに説明する。 Hereinafter, the effects of the present embodiment will be further described with specific examples.
 [1]評価用の積層板の製造手順
 (1)樹脂組成物
 <予備反応物>
 予備反応物(a)を調製するために、次の各材料を用いている。
[1] Manufacturing procedure of laminate for evaluation (1) Resin composition <Preliminary reaction product>
In order to prepare the preliminary reaction product (a), the following materials are used.
 ポリフェニレンエーテル(PPE)として、SABICイノベーティブプラスチックス社製の「SA90」(数平均分子量:1500、水酸基:1.9個)を用いている。 “SA90” (number average molecular weight: 1500, hydroxyl group: 1.9) manufactured by SABIC Innovative Plastics is used as polyphenylene ether (PPE).
 エポキシ化合物として、DCPD型エポキシ樹脂を用いている。具体的には、DIC(株)製の「HP7200」(1分子中の平均官能基2.3個)を用いている。 DCPD type epoxy resin is used as the epoxy compound. Specifically, “HP7200” (2.3 average functional groups in one molecule) manufactured by DIC Corporation is used.
 触媒としては、イミダゾールを用いている。具体的には、四国化成工業(株)製の「2E4MZ」(2-エチル-4-イミダゾール)を用いている。 Imidazole is used as the catalyst. Specifically, “2E4MZ” (2-ethyl-4-imidazole) manufactured by Shikoku Chemicals Co., Ltd. is used.
 (表5)に示す配合割合となるように、各成分を秤量し、トルエンに添加した後、100℃で6時間攪拌させている。すなわち、ポリフェニレンエーテルとエポキシ樹脂とを予め反応(プレリアクト)させて、予備反応物(a)を調製している。なお予備反応物(a)の固形分濃度が60%となるように、添加する溶媒であるトルエンの量を調製している。 Each component was weighed so as to have a blending ratio shown in (Table 5), added to toluene, and then stirred at 100 ° C. for 6 hours. That is, the preliminary reaction product (a) is prepared by reacting (prereacting) polyphenylene ether and an epoxy resin in advance. The amount of toluene as the solvent to be added is adjusted so that the solid content concentration of the preliminary reaction product (a) is 60%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <シアネートエステル化合物>
 サンプルAA~AF,AH,BA~BI,BP,BQでは、樹脂組成物を調製するために、樹脂成分として上記予備反応物(a)とともに次の材料を用いている。すなわち、シアネートエステル化合物(b)として、2,2-ビス(4-シアネートフェニル)プロパンを用いている。具体的には、ロンザジャパン社製の「BADCy」である。
<Cyanate ester compound>
In Samples AA to AF, AH, BA to BI, BP, and BQ, the following materials are used as a resin component together with the preliminary reaction product (a) in order to prepare a resin composition. That is, 2,2-bis (4-cyanatephenyl) propane is used as the cyanate ester compound (b). Specifically, it is “BADCy” manufactured by Lonza Japan.
 サンプルAG、BJ,BKでは、樹脂組成物を調製するために、樹脂成分として上記予備反応物(a)とともに次の各材料を用いている。シアネートエステル化合物(b)として、2,2-ビス(4-シアネートフェニル)プロパンを用い、エポキシ化合物(e)としてDCPD型エポキシ樹脂を用いている。具体的には、ロンザジャパン社製の「BADCy」と、DIC(株)製の「EPICRON HP7200」(1分子中の平均官能基は2.3個)とを用いている。 Samples AG, BJ, and BK use the following materials together with the preliminary reaction product (a) as a resin component in order to prepare a resin composition. 2,2-bis (4-cyanatephenyl) propane is used as the cyanate ester compound (b), and a DCPD type epoxy resin is used as the epoxy compound (e). Specifically, “BADCy” manufactured by Lonza Japan Co., Ltd. and “EPICRON HP7200” manufactured by DIC Corporation (2.3 average functional groups in one molecule) are used.
 <触媒>
 触媒として、金属石鹸を用いている。具体的には、DIC(株)製のオクタン酸亜鉛(Zn-OCTOATE)である。
<Catalyst>
Metal soap is used as a catalyst. Specifically, zinc octoate (Zn-OCTOATE) manufactured by DIC Corporation.
 <無機充填材>
 シリカ粒子としては破砕シリカ1(c)、破砕シリカ2(c)、破砕シリカ3、球状シリカ1(c)、球状シリカ2(c)、球状シリカ3、球状シリカ4の7種類から選択して用いている。
<Inorganic filler>
The silica particles are selected from seven types of crushed silica 1 (c), crushed silica 2 (c), crushed silica 3, spherical silica 1 (c), spherical silica 2 (c), spherical silica 3 and spherical silica 4. Used.
 破砕シリカ1(c)は、シベルコ・ジャパン(株)製の溶融破砕シリカ粒子「Megasil 525RCS」であり、その平均粒径は1.6μm、比表面積は2.1m/gであり、エポキシシランで表面処理されている。 The crushed silica 1 (c) is a melt-crushed silica particle “Megasil 525RCS” manufactured by Sibelco Japan Co., Ltd., having an average particle size of 1.6 μm and a specific surface area of 2.1 m 2 / g. The surface is treated with.
 破砕シリカ2(c)は、破砕シリカ1を35℃90%の環境で7日(168時間)放置する処理(吸湿処理)を施した破砕シリカ粒子である。 Crushed silica 2 (c) is crushed silica particles that have been subjected to a treatment (moisture absorption treatment) in which crushed silica 1 is left in an environment of 35 ° C. and 90% for 7 days (168 hours).
 破砕シリカ3は、シベルコ・ジャパン(株)製の溶融破砕シリカ粒子「Megasil 525」であり、その平均粒径は1.6μmであり、比表面積は2.2m/gである。表面処理は施されていない。 The crushed silica 3 is a fused crushed silica particle “Megasil 525” manufactured by Sibelco Japan Co., Ltd., the average particle diameter is 1.6 μm, and the specific surface area is 2.2 m 2 / g. No surface treatment is applied.
 破砕シリカ4は、破砕シリカ3に上記吸湿処理を施した破砕シリカ粒子である。 The crushed silica 4 is crushed silica particles obtained by subjecting the crushed silica 3 to the above moisture absorption treatment.
 球状シリカ1(c)は、(株)アドマテックス製の球状シリカ粒子「SC2500-SEJ」であり、その平均粒径は0.8μm、比重は2.2g/cm、比表面積は7m/gであり、エポキシシランで表面処理されている。 The spherical silica 1 (c) is spherical silica particles “SC2500-SEJ” manufactured by Admatechs Co., Ltd., having an average particle diameter of 0.8 μm, a specific gravity of 2.2 g / cm 3 , and a specific surface area of 7 m 2 / g and surface-treated with epoxysilane.
 球状シリカ2(c)は、球状シリカ1に上記吸湿処理を施した破砕シリカ粒子である。 The spherical silica 2 (c) is crushed silica particles obtained by subjecting the spherical silica 1 to the above moisture absorption treatment.
 球状シリカ3は、(株)アドマテックス製の球状シリカ粒子「SO-25R」であり、その平均粒径は0.6μm、比表面積は6m/gである。表面処理は施されていない。 The spherical silica 3 is spherical silica particles “SO-25R” manufactured by Admatechs Co., Ltd., having an average particle size of 0.6 μm and a specific surface area of 6 m 2 / g. No surface treatment is applied.
 球状シリカ4は球状シリカ3に上記吸湿処理を施した破砕シリカ粒子である。 The spherical silica 4 is crushed silica particles obtained by subjecting the spherical silica 3 to the above moisture absorption treatment.
 モリブデン化合物粒子(d)としては、シャーウィン・ウィリアムズ社製のモリブデン酸カルシウム亜鉛「KEMGARD 911A」を用いている。モリブデン酸量は10質量%、比重は3.0g/cm、平均粒径は2.7μmである。あるいは、実施の形態1で用いたシャーウィンウィリアムズ社製モリブデン酸亜鉛処理タルク「KEMGARD911C」を用いている。 As the molybdenum compound particles (d), calcium zinc molybdate “KEMGARD 911A” manufactured by Sherwin Williams is used. The amount of molybdic acid is 10% by mass, the specific gravity is 3.0 g / cm 3 , and the average particle size is 2.7 μm. Alternatively, the zinc molybdate-treated talc “KEMGARD911C” manufactured by Sherwin Williams used in the first embodiment is used.
 (表8)または(表9)に示す配合割合となるように、予備反応PPE(a)の溶液を30~35℃になるまで加熱し、そこに、シアネートエステル化合物(b)及び触媒を添加している。サンプルAG、BJ,BKではこの際にDCPD型エポキシ樹脂も添加している。その後、30分間攪拌することによって、完全に溶解させ、さらに、シリカ粒子およびモリブデン化合物粒子を添加して、ビーズミルで分散させることによって、樹脂組成物のワニスを調製している。 The pre-reacted PPE (a) solution is heated to 30 to 35 ° C. so that the blending ratio shown in (Table 8) or (Table 9) is obtained, and the cyanate ester compound (b) and the catalyst are added thereto. is doing. In samples AG, BJ, and BK, a DCPD type epoxy resin is also added at this time. Thereafter, the mixture is completely dissolved by stirring for 30 minutes, and further, silica particles and molybdenum compound particles are added and dispersed by a bead mill to prepare a varnish of the resin composition.
 サンプルBL~BOでは、樹脂組成物を調製するための樹脂成分、触媒として、下記材料を用いた他はサンプルAAと同様の材料を用いている。 Samples BL to BO use the same materials as Sample AA except that the following materials were used as the resin component and catalyst for preparing the resin composition.
 <樹脂成分>
・PPE:SABICイノベーティブプラスチックス社製の「SA90」(数平均分子量1500、水酸基:1.9個)
(触媒)
・イミダゾール:四国化成工業(株)製の「2E4MZ」(2-エチル-4-イミダゾール)
・金属石鹸:DIC(株)製のオクタン酸亜鉛(Zn-OCTOATE)
 (表8)に示す配合割合となるように、各成分をトルエンに添加した後、30~35℃で60分間攪拌している。そして、さらに、シリカ粒子およびモリブデン化合物粒子を添加して、ビーズミルで分散させることによって、樹脂組成物のワニスを調製している。
<Resin component>
PPE: “SA90” (number average molecular weight 1500, hydroxyl group: 1.9) manufactured by SABIC Innovative Plastics
(catalyst)
Imidazole: “2E4MZ” (2-ethyl-4-imidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
Metal soap: Zinc octoate (Zn-OCTOATE) manufactured by DIC Corporation
Each component was added to toluene so that the blending ratio shown in Table 8 was obtained, and then stirred at 30 to 35 ° C. for 60 minutes. Furthermore, the varnish of the resin composition is prepared by adding silica particles and molybdenum compound particles and dispersing them with a bead mill.
 サンプルAI、AJ,BR,BSでは、樹脂組成物のワニスを調製するために、サンプルAGと同じ材料を用いている。(表6)および(表10)に示す配合割合となるように、予備反応PPE(a)の溶液を30~35℃になるまで加熱し、そこに、シアネートエステル化合物(b)、DCPD型エポキシ樹脂、PPEおよび金属石鹸を添加している。その後、30分間攪拌することによって、完全に溶解させ、さらに、シリカ粒子およびモリブデン化合物粒子を添加して、ビーズミルで分散させることによって、樹脂組成物のワニスを調製している。なお、サンプルBRでは、サンプルBA、BD、BPと異なり、新品のシリカ粒子を用いていない。 In samples AI, AJ, BR, and BS, the same material as that of sample AG is used in order to prepare a varnish of the resin composition. The pre-reacted PPE (a) solution was heated to 30 to 35 ° C. so that the blending ratios shown in (Table 6) and (Table 10) were obtained, and then the cyanate ester compound (b), DCPD type epoxy Resin, PPE and metal soap are added. Thereafter, the mixture is completely dissolved by stirring for 30 minutes, and further, silica particles and molybdenum compound particles are added and dispersed by a bead mill to prepare a varnish of the resin composition. Note that, unlike the samples BA, BD, and BP, the sample BR does not use new silica particles.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 サンプルBTでは、(表7)および(表10)に示す配合割合となるように、(表7)に示す各成分をトルエンに添加した後、30~35℃で60分間攪拌している。この樹脂成分に、さらに、シリカ粒子およびモリブデン化合物粒子を添加して、ビーズミルで分散させることによって、樹脂組成物のワニスを調製している。 In sample BT, each component shown in (Table 7) was added to toluene so as to have the blending ratio shown in (Table 7) and (Table 10), and then stirred at 30 to 35 ° C. for 60 minutes. Silica particles and molybdenum compound particles are further added to this resin component and dispersed by a bead mill to prepare a varnish of the resin composition.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (2)プリプレグ
 実施の形態1と同様の基材を用い、実施の形態1と同様にしてプリプレグを製造する。プリプレグのレジンコンテント(樹脂量)は57質量%である。
(2) Prepreg Using the same base material as in the first embodiment, a prepreg is manufactured in the same manner as in the first embodiment. The resin content (resin amount) of the prepreg is 57% by mass.
 (3)積層板
 上記プリプレグを用いて、実施の形態1と同様にして評価用の積層板を製造している。
(3) Laminate A laminate for evaluation is manufactured using the prepreg in the same manner as in the first embodiment.
 [2]積層板の評価とその結果
 (1)ガラス転移温度
 評価用の積層板のガラス転移温度を、DSC測定方法により、IPC-TM-650-2.4.25に基づいて、昇温スピード20℃/分の条件で測定している。
[2] Evaluation of Laminated Plate and its Results (1) Glass Transition Temperature The glass transition temperature of the laminated plate for evaluation was measured by DSC measurement method based on IPC-TM-650-24.25. The measurement is performed at 20 ° C./min.
 (2)誘電正接
 評価用の積層板の1GHzにおける誘電正接を、IPC-TM-650-2.5.5.9に準拠の方法で測定している。具体的には、インピーダンスアナライザ(アジレント・テクノロジー(株)製のRFインピーダンスアナライザHP4291B)を用い、1GHzにおける評価用の積層板の誘電正接を測定している。
(2) Dielectric loss tangent The dielectric loss tangent at 1 GHz of the evaluation laminate is measured by a method based on IPC-TM-650-2.5.5.9. Specifically, the dielectric loss tangent of the laminate for evaluation at 1 GHz is measured using an impedance analyzer (RF impedance analyzer HP4291B manufactured by Agilent Technologies).
 (3)ドリル摩耗率
 実施の形態1と同様にしてドリル摩耗率を評価している。詳細な説明を省略する。
(3) Drill wear rate The drill wear rate is evaluated in the same manner as in the first embodiment. Detailed description is omitted.
 (4)ワニスゲルタイム
 ワニスゲルタイムは、得られた樹脂組成物のワニスの2.5mlが200℃のキュアープレート上でゲル化するまでの時間を測定した値である。
(4) Varnish gel time The varnish gel time is a value obtained by measuring the time required for 2.5 ml of the varnish of the obtained resin composition to gel on a cure plate at 200 ° C.
 (5)シリカ粒子の吸着水分量、樹脂組成物中に持込まれる水分量
 シリカ粒子の吸着水分量および樹脂組成物中に持込まれる水分量は、カールフィッシャー法を利用し、前述のようにして求めている。
(5) Adsorbed moisture amount of silica particles, moisture amount brought into the resin composition The adsorbed moisture amount of silica particles and the moisture amount brought into the resin composition were determined as described above using the Karl Fischer method. ing.
 (6)熱線膨張率(CTE)
 実施の形態1と同様にしてCTEを評価している。詳細な説明を省略する。なお、CTEの測定結果は、参考のために示している。
(6) Thermal expansion coefficient (CTE)
The CTE is evaluated in the same manner as in the first embodiment. Detailed description is omitted. The CTE measurement results are shown for reference.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 サンプルAA~AJでは、シリカ粒子に表面処理が施された疎水性シリカ粒子を用いている。そのため、ガラス転移温度は高く、誘電正接は低い。さらに、吸湿処理無のサンプルAAと吸湿処理済のサンプルAB、吸湿処理無のサンプルAEと吸湿処理済のサンプルAFとをそれぞれ比較すると、ガラス転移温度および誘電正接はそれぞれ同等である。すなわち、吸湿処理の前後でガラス転移温度および誘電特性が安定して優れている。さらに、樹脂組成物は、疎水性シリカ粒子とモリブデン化合物粒子とを含有するので、ドリル摩耗率が低い。すなわちドリル加工性および成形性が良好である。 Samples AA to AJ use hydrophobic silica particles in which the silica particles are surface-treated. Therefore, the glass transition temperature is high and the dielectric loss tangent is low. Further, comparing the sample AA without moisture absorption with the sample AB with moisture absorption, and the sample AE without moisture absorption with the sample AF with moisture absorption, the glass transition temperature and the dielectric loss tangent are the same. That is, the glass transition temperature and dielectric properties are stable and excellent before and after the moisture absorption treatment. Furthermore, since the resin composition contains hydrophobic silica particles and molybdenum compound particles, the drill wear rate is low. That is, drilling workability and formability are good.
 これに対して、サンプルBA~BQは、ポリフェニレンエーテルとエポキシ化合物との予備反応物(a)、シアネートエステル化合物(b)、疎水性シリカ粒子(c)およびモリブデン化合物粒子(d)を配合して得られた樹脂組成物ではない。そのため、新品のシリカ粒子(乾燥状態のシリカ粒子)を用いたサンプルBA,BD,BPを除き、ガラス転移温度および誘電特性には優れるものの、良好なドリル加工性および成形性を示していない。 On the other hand, samples BA to BQ contain a pre-reacted product (a) of polyphenylene ether and an epoxy compound, a cyanate ester compound (b), hydrophobic silica particles (c) and molybdenum compound particles (d). It is not the obtained resin composition. Therefore, except for samples BA, BD and BP using new silica particles (silica particles in a dry state), the glass transition temperature and the dielectric properties are excellent, but good drillability and formability are not shown.
 吸湿処理無のサンプルBAと吸湿処理済のサンプルBB、吸湿処理無のサンプルBDと吸湿処理済のサンプルBE、吸湿処理無のサンプルBPと吸湿処理済のサンプルBQとをそれぞれ比較すると、吸湿処理を施していないシリカ粒子を用いた場合に対して、吸湿処理を施したシリカ粒子を用いた場合は、ガラス転移温度が低下し、誘電正接が上昇し、ワニスゲルタイムが大幅に短くなっている。すなわち、優れたガラス転移温度および誘電特性が吸湿処理後では損なわれている。この傾向は樹脂組成物中のシリカ粒子の含有量を少なくしても同様である(サンプルBC)。 Comparing the sample BA without moisture absorption with the sample BB with moisture absorption, the sample BD without moisture absorption with the sample BE with moisture absorption, and the sample BP without moisture absorption with the sample BQ with moisture absorption, When silica particles that have been subjected to moisture absorption treatment are used in contrast to the case where silica particles that have not been applied are used, the glass transition temperature decreases, the dielectric loss tangent increases, and the varnish gel time is significantly shortened. That is, excellent glass transition temperature and dielectric properties are impaired after moisture absorption treatment. This tendency is the same even if the content of silica particles in the resin composition is reduced (sample BC).
 サンプルBF~BJは、モリブデン化合物粒子を配合していない。そのため、ドリル摩耗率が高い。すなわち、ドリル加工性および成形性が良好でない。さらに、吸湿処理無のサンプルBFと吸湿処理済のサンプルBG、吸湿処理無のサンプルBHと吸湿処理済のサンプルBIとをそれぞれ比較すると、ワニスゲルタイムはサンプルAA~AJと同等である。この結果と、サンプルBD、BEの結果から、モリブデン化合物粒子によりワニスゲルタイムが短くなることが促進されると推測される。 Samples BF to BJ do not contain molybdenum compound particles. Therefore, the drill wear rate is high. That is, drill workability and formability are not good. Further, comparing the sample BF without moisture absorption and the sample BG after moisture absorption treatment, and the sample BH without moisture absorption treatment and the sample BI after moisture absorption treatment, the varnish gel time is equivalent to the samples AA to AJ. From this result and the results of samples BD and BE, it is presumed that the molybdenum compound particles promote the reduction of the varnish gel time.
 サンプルBL、BMでは、予備反応PPE(a)を用いていないので、ガラス転移温度が低い。またサンプルBL、BMを比較すると、吸湿処理の有無に関わらずワニスゲルタイムは同等であり、サンプルAA~AJよりも長い。 In the samples BL and BM, the preliminary reaction PPE (a) is not used, so the glass transition temperature is low. When samples BL and BM are compared, the varnish gel time is the same regardless of whether or not moisture absorption treatment is performed, and is longer than samples AA to AJ.
 サンプルBN、BOは、樹脂成分がポリフェニレンエーテルを含有していないので、ガラス転移温度が低く、誘電正接が高い。またサンプルBN、BOを比較すると、吸湿処理の有無に関わらずワニスゲルタイムは同等であり、サンプルAA~AJより長い。この結果と、サンプルBL、BMの結果とは対照的に、ポリフェニレンエーテルとエポキシ化合物との予備反応物(a)、シアネートエステル化合物(b)およびモリブデン化合物粒子(d)を含む樹脂組成物に吸湿したシリカ粒子を用いたサンプルBB、BC、BE、BK、BQでは、ワニスゲルタイムが異常に短くなっている。 Samples BN and BO have a low glass transition temperature and a high dielectric loss tangent because the resin component does not contain polyphenylene ether. When samples BN and BO are compared, the varnish gel time is the same regardless of the presence or absence of moisture absorption treatment, and is longer than samples AA to AJ. In contrast to this result and the results of samples BL and BM, the resin composition containing the pre-reacted product (a) of polyphenylene ether and epoxy compound, cyanate ester compound (b) and molybdenum compound particles (d) absorbs moisture. In samples BB, BC, BE, BK, and BQ using the silica particles, the varnish gel time is abnormally short.
 サンプルAI、AJでは、シリカ粒子に表面処理が施された疎水性シリカ粒子を用いている。そのため、ガラス転移温度が高く、誘電正接は低い。またサンプルAI、AJを比較すると、吸湿処理の有無に関わらずガラス転移温度および誘電正接は同等である。すなわち、ガラス転移温度および誘電特性が安定して優れている。 Samples AI and AJ use hydrophobic silica particles in which silica particles are surface-treated. Therefore, the glass transition temperature is high and the dielectric loss tangent is low. When samples AI and AJ are compared, the glass transition temperature and the dielectric loss tangent are the same regardless of whether or not moisture absorption treatment is performed. That is, the glass transition temperature and dielectric properties are stable and excellent.
 これに対してサンプルBR~BTは、ポリフェニレンエーテルとエポキシ化合物との予備反応物(a)、シアネートエステル化合物(b)、疎水性シリカ粒子(c)およびデン化合物粒子(d)を配合して得られた樹脂組成物ではない。そのため、優れたガラス転移温度および誘電特性を実現できていない。 On the other hand, samples BR to BT were obtained by blending a prereacted product (a) of polyphenylene ether and an epoxy compound, a cyanate ester compound (b), hydrophobic silica particles (c) and den compound particles (d). It is not a resin composition obtained. Therefore, excellent glass transition temperature and dielectric properties cannot be realized.
 サンプルBRでは、サンプルBA、BD、BPと異なり、新品のシリカ粒子を用いていない。すなわち吸着水分量が高いシリカ粒子を用いているため、ワニスゲルタイムが短い。 In the sample BR, unlike the samples BA, BD, and BP, new silica particles are not used. That is, since silica particles having a high amount of adsorbed moisture are used, the varnish gel time is short.
 また、吸湿処理を施していないシリカ粒子を用いたサンプルBRに比べて、吸湿処理を施したシリカ粒子を用いたサンプルBSでは、ガラス転移温度が低下し、誘電正接が上昇し、ワニスゲルタイムが大幅に短くなっている。すなわち、すなわち、ガラス転移温度および誘電特性が吸湿処理後では損なわれていることがわかる。 Compared to sample BR using silica particles not subjected to moisture absorption treatment, sample BS using silica particles subjected to moisture absorption treatment has a lower glass transition temperature, increased dielectric loss tangent, and greatly increased varnish gel time. It has become shorter. That is, it can be seen that the glass transition temperature and dielectric properties are impaired after moisture absorption treatment.
 サンプルBTでは、予備反応物(a)を用いていないので、ガラス転移温度が低い。 In sample BT, since the preliminary reaction product (a) is not used, the glass transition temperature is low.
 本発明による配線板用樹脂組成物の硬化物は、熱線膨張率が小さく、良好なドリル加工性を有し、ガラス転移温度および誘電特性がプリント配線板に適用した際に良好である。このようなプリント配線板を比較的安価に提供できるので、本発明による配線板用樹脂組成物は有用である。 The cured product of the resin composition for wiring boards according to the present invention has a small coefficient of thermal expansion, good drillability, and good glass transition temperature and dielectric properties when applied to a printed wiring board. Since such a printed wiring board can be provided relatively inexpensively, the resin composition for wiring boards according to the present invention is useful.
2A  樹脂組成物
4A  基材
10  プリプレグ
12  絶縁層
14  金属箔
16  導体パターン
20  金属張積層板
30  プリント配線板
2A Resin composition 4A Base material 10 Prepreg 12 Insulating layer 14 Metal foil 16 Conductive pattern 20 Metal-clad laminate 30 Printed wiring board

Claims (20)

  1. 熱硬化性樹脂を含む樹脂成分と、
     0.1m/g以上、15m/g以下の範囲内の比表面積を有する破砕シリカと、
     モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子と、を含む無機充填材とを含有し、
    前記破砕シリカの含有量が、前記樹脂成分100質量部に対して10質量部以上、150質量部以下の範囲内である、
    プリント配線板用樹脂組成物。
    A resin component containing a thermosetting resin;
    Crushed silica having a specific surface area in the range of 0.1 m 2 / g or more and 15 m 2 / g or less;
    Containing molybdenum compound particles having a molybdenum compound at least in a surface layer portion, and an inorganic filler,
    The content of the crushed silica is in the range of 10 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the resin component.
    Resin composition for printed wiring boards.
  2. 前記モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム及びモリブデン酸マグネシウムからなる群より選ばれた1種以上である、
    請求項1に記載のプリント配線板用樹脂組成物。
    The molybdenum compound is at least one selected from the group consisting of zinc molybdate, calcium molybdate and magnesium molybdate,
    The resin composition for printed wiring boards according to claim 1.
  3. 前記モリブデン化合物粒子の含有量が、前記無機充填材の総量の100体積%に対して0.1体積%以上、10体積%以下の範囲内である、
    請求項1に記載のプリント配線板用樹脂組成物。
    The content of the molybdenum compound particles is in the range of 0.1% by volume or more and 10% by volume or less with respect to 100% by volume of the total amount of the inorganic filler.
    The resin composition for printed wiring boards according to claim 1.
  4. 前記モリブデン化合物の含有量が、前記樹脂成分100質量部に対して0.05質量部以上、5質量部以下の範囲内である、
    請求項1に記載のプリント配線板用樹脂組成物。
    The molybdenum compound content is in the range of 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the resin component.
    The resin composition for printed wiring boards according to claim 1.
  5. 前記無機充填材は、球状シリカをさらに含む、
    請求項1に記載のプリント配線板用樹脂組成物。
    The inorganic filler further includes spherical silica,
    The resin composition for printed wiring boards according to claim 1.
  6. 前記無機充填材の含有量が、前記樹脂成分100質量部に対して15質量部以上、400質量部以下の範囲内である、
    請求項1に記載のプリント配線板用樹脂組成物。
    The content of the inorganic filler is in the range of 15 parts by mass or more and 400 parts by mass or less with respect to 100 parts by mass of the resin component.
    The resin composition for printed wiring boards according to claim 1.
  7. 前記樹脂成分は、
     ポリフェニレンエーテルとエポキシ基を持つエポキシ化合物とを反応させることにより得られた予備反応物と、
     シアネートエステル化合物とを含み、
    前記破砕シリカの表面は疎水処理が施されている、
    請求項1記載のプリント配線板用樹脂組成物。
    The resin component is
    A preliminary reaction product obtained by reacting a polyphenylene ether and an epoxy compound having an epoxy group;
    A cyanate ester compound,
    The surface of the crushed silica is subjected to a hydrophobic treatment,
    The resin composition for printed wiring boards according to claim 1.
  8. 前記モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム及びモリブデン酸マグネシウムからなる群から選ばれた1種以上である
    請求項7に記載のプリント配線板用樹脂組成物。
    The resin composition for a printed wiring board according to claim 7, wherein the molybdenum compound is one or more selected from the group consisting of zinc molybdate, calcium molybdate, and magnesium molybdate.
  9. 前記モリブデン化合物粒子の含有量が、前記樹脂成分100質量部に対して、0.1質量部以上、10質量部以下である
    請求項7に記載のプリント配線板用樹脂組成物。
    The resin composition for a printed wiring board according to claim 7, wherein a content of the molybdenum compound particles is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin component.
  10. 前記疎水性シリカ粒子の含有量が、前記樹脂成分100質量部に対して、10質量部以上、200質量部以下である、
    請求項7に記載のプリント配線板用樹脂組成物。
    The content of the hydrophobic silica particles is 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the resin component.
    The resin composition for printed wiring boards according to claim 7.
  11. 基材と、
    基材に含浸し半硬化された請求項1に記載のプリント配線板用樹脂組成物と、を備えた、
    プリプレグ。
    A substrate;
    The resin composition for a printed wiring board according to claim 1, wherein the substrate is impregnated and semi-cured.
    Prepreg.
  12. 請求項11に記載のプリプレグの硬化物である絶縁層と、
    前記絶縁層に積層された金属箔と、を備えた、
    金属張積層板。
    An insulating layer that is a cured product of the prepreg according to claim 11;
    A metal foil laminated on the insulating layer,
    Metal-clad laminate.
  13. 請求項11に記載のプリプレグの硬化物である絶縁層と、
    前記絶縁層上に形成された導体パターンと、を備えた、
    プリント配線板。
    An insulating layer that is a cured product of the prepreg according to claim 11;
    A conductor pattern formed on the insulating layer,
    Printed wiring board.
  14. 樹脂成分と、無機充填材とを含み、
    前記樹脂成分は、
     ポリフェニレンエーテルとエポキシ基を持つエポキシ化合物とを反応させることにより得られた予備反応物と、
     シアネートエステル化合物とを含み、
    前記無機充填材は、
     表面処理が施された疎水性シリカ粒子と、
     モリブデン化合物を少なくとも表層部分に有するモリブデン化合物粒子と、を含む、
    プリント配線板用樹脂組成物。
    Including a resin component and an inorganic filler;
    The resin component is
    A preliminary reaction product obtained by reacting a polyphenylene ether and an epoxy compound having an epoxy group;
    A cyanate ester compound,
    The inorganic filler is
    Surface-treated hydrophobic silica particles,
    Including molybdenum compound particles having a molybdenum compound in at least a surface layer portion,
    Resin composition for printed wiring boards.
  15. 前記モリブデン化合物が、モリブデン酸亜鉛、モリブデン酸カルシウム及びモリブデン酸マグネシウムからなる群から選ばれた1種以上である
    請求項14に記載のプリント配線板用樹脂組成物。
    The resin composition for a printed wiring board according to claim 14, wherein the molybdenum compound is one or more selected from the group consisting of zinc molybdate, calcium molybdate, and magnesium molybdate.
  16. 前記モリブデン化合物粒子の含有量が、前記樹脂成分100質量部に対して、0.1質量部以上、10質量部以下である
    請求項14に記載のプリント配線板用樹脂組成物。
    The resin composition for a printed wiring board according to claim 14, wherein a content of the molybdenum compound particles is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin component.
  17. 前記疎水性シリカ粒子の含有量が、前記樹脂成分100質量部に対して、10質量部以上、200質量部以下である、
    請求項14に記載のプリント配線板用樹脂組成物。
    The content of the hydrophobic silica particles is 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the resin component.
    The resin composition for printed wiring boards according to claim 14.
  18. 基材と、
    基材に含浸し半硬化された請求項14に記載のプリント配線板用樹脂組成物と、を備えた、
    プリプレグ。
    A substrate;
    A resin composition for a printed wiring board according to claim 14, wherein the substrate is impregnated and semi-cured.
    Prepreg.
  19. 請求項18に記載のプリプレグの硬化物である絶縁層と、
    前記絶縁層に積層された金属箔と、を備えた、
    金属張積層板。
    An insulating layer that is a cured product of the prepreg according to claim 18;
    A metal foil laminated on the insulating layer,
    Metal-clad laminate.
  20. 請求項18に記載のプリプレグの硬化物である絶縁層と、
    前記絶縁層上に形成された導体パターンと、を備えた、
    プリント配線板。
    An insulating layer that is a cured product of the prepreg according to claim 18;
    A conductor pattern formed on the insulating layer,
    Printed wiring board.
PCT/JP2015/001941 2014-04-08 2015-04-07 Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board WO2015155982A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/128,093 US9775239B2 (en) 2014-04-08 2015-04-07 Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
CN201580017589.9A CN106134296B (en) 2014-04-08 2015-04-07 Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-079566 2014-04-08
JP2014079566 2014-04-08
JP2014201427A JP6604564B2 (en) 2014-04-08 2014-09-30 Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board
JP2014-201427 2014-09-30
JP2015026301A JP6604565B2 (en) 2015-02-13 2015-02-13 Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP2015-026301 2015-02-13

Publications (1)

Publication Number Publication Date
WO2015155982A1 true WO2015155982A1 (en) 2015-10-15

Family

ID=54287568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001941 WO2015155982A1 (en) 2014-04-08 2015-04-07 Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board

Country Status (1)

Country Link
WO (1) WO2015155982A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007724A1 (en) * 2003-07-22 2005-01-27 Matsushita Electric Works, Ltd. Resin composition for printed wiring board, prepreg, laminate, and printed wiring board made with the same
JP2011074124A (en) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd Resin composition, process for producing resin composition, resin varnish, prepreg, metal-clad laminate board and printed wiring board
WO2012018126A1 (en) * 2010-08-06 2012-02-09 日立化成工業株式会社 Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007724A1 (en) * 2003-07-22 2005-01-27 Matsushita Electric Works, Ltd. Resin composition for printed wiring board, prepreg, laminate, and printed wiring board made with the same
JP2011074124A (en) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd Resin composition, process for producing resin composition, resin varnish, prepreg, metal-clad laminate board and printed wiring board
WO2012018126A1 (en) * 2010-08-06 2012-02-09 日立化成工業株式会社 Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate

Similar Documents

Publication Publication Date Title
US10017601B2 (en) Resin composition, prepreg and laminate board
KR101229854B1 (en) Epoxy resin, hardenable resin composition containing the same and use thereof
JP6128311B2 (en) Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
CN104098871B (en) Hardening resin composition
JP5264133B2 (en) Epoxy resin composition, prepreg and metal-clad laminate using the epoxy resin composition
EP2896653B1 (en) Epoxy resin composition, and, prepreg and copper clad laminate manufactured using the composition
JP5577107B2 (en) Resin composition, method for producing resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
CN106134296B (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
JP6604564B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board
JP6604565B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP2017101152A (en) Modified polyimide resin composition and manufacturing method therefor, and prepreg and laminate using the same
WO2014122911A1 (en) Method for curing heat-curable resin composition, heat-curable resin composition, and prepreg, metal-clad laminated plate, resin sheet, printed wiring board and sealing material each produced using said composition
JP2015199905A (en) Insulating resin compositions for printed circuit board, and products using the same
WO2020161926A1 (en) Resin composition and method for producing same
JP6767709B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP5691833B2 (en) Thermosetting resin composition, prepreg and laminate
JP2010090182A (en) Flame-retardant epoxy resin composition, prepreg, laminate sheet, and wiring board
WO2015155982A1 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, and printed wiring board
KR20230052965A (en) Methods of using epoxy resin compositions, adhesive films, printed wiring boards, semiconductor chip packages, semiconductor devices, and adhesive films
JPH1121452A (en) Modified cyanate ester-based hardening resin composition for laminated sheet, prepreg and laminated sheet using the same composition
JP5940943B2 (en) Insulating resin material and multilayer substrate
JP6664092B2 (en) Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP7061944B2 (en) Varnish and its manufacturing method
JP5779962B2 (en) Resin composition for package substrate and prepreg and laminate using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776748

Country of ref document: EP

Kind code of ref document: A1