JP5779962B2 - Resin composition for package substrate and prepreg and laminate using the same - Google Patents

Resin composition for package substrate and prepreg and laminate using the same Download PDF

Info

Publication number
JP5779962B2
JP5779962B2 JP2011099643A JP2011099643A JP5779962B2 JP 5779962 B2 JP5779962 B2 JP 5779962B2 JP 2011099643 A JP2011099643 A JP 2011099643A JP 2011099643 A JP2011099643 A JP 2011099643A JP 5779962 B2 JP5779962 B2 JP 5779962B2
Authority
JP
Japan
Prior art keywords
resin composition
package substrate
epoxy resin
prepreg
polycyclic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011099643A
Other languages
Japanese (ja)
Other versions
JP2012229362A (en
Inventor
森田 高示
高示 森田
村井 曜
曜 村井
高根沢 伸
伸 高根沢
康雄 井上
康雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011099643A priority Critical patent/JP5779962B2/en
Publication of JP2012229362A publication Critical patent/JP2012229362A/en
Application granted granted Critical
Publication of JP5779962B2 publication Critical patent/JP5779962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁性や耐熱性などを有すると共に、特にピール強度に優れ、電子部品等に用いられるパッケージ基板用樹脂組成物並びにこれを用いたプリプレグ及び積層板に関する。   The present invention relates to a resin composition for a package substrate, which has insulation properties, heat resistance, and the like, is particularly excellent in peel strength, and is used for electronic parts and the like, and a prepreg and a laminate using the same.

電子機器等に用いられる通常の積層板は、エポキシ樹脂などの芳香環を有する樹脂を主剤とした樹脂組成物とガラス織布とを硬化し、一体成形したものが一般的である。
このような芳香環を有する樹脂は絶縁性や耐熱性、コストなどのバランスが優れるが、燃焼し易いという欠点を有する。このため、積層板の難燃化が必須であり、従来ブロム系難燃剤が用いられていた(例えば、特許文献1参照)。
しかし、ブロム系難燃剤は燃焼時に有害な物質を発生する可能性があり、環境意識の高まりから、有害な物質を発生する材料は電子部品も含めて規制する動きが活発になっている。
A typical laminated board used for an electronic device or the like is generally formed by integrally molding a resin composition mainly composed of a resin having an aromatic ring such as an epoxy resin and a glass woven fabric.
A resin having such an aromatic ring has an excellent balance of insulation, heat resistance, cost, and the like, but has a drawback of being easily combusted. For this reason, the flame retarding of a laminated board is essential and the bromine type flame retardant was conventionally used (for example, refer patent document 1).
However, brominated flame retardants may generate harmful substances during combustion, and due to increased environmental awareness, there is an active movement to regulate materials that generate harmful substances, including electronic parts.

このため、ブロム系難燃剤に代わる難燃剤として、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物、リン酸エステル等のリン化合物、メラミン樹脂等の窒素化合物が使用されている(例えば、特許文献2〜4参照)。
しかしながら、金属水酸化物は多量に配合しないと難燃機能が発現しない、リン化合物は腐食性を有する、窒素化合物は難燃効果が低いなどの問題も知られている。
また、水酸化アルミニウムは燃焼時に冷却効果を発現する水を多量に含んでいるため、ある程度以上配合すると樹脂組成物や積層板の耐熱性が急激に低下する問題を有している。これは水酸化アルミニウムの水を放出する温度がはんだの溶融温度よりも低いことに起因している。また、鉛フリーはんだを用いた場合、その溶融温度はさらに上昇し、水の放出は顕著な問題になると考えられる。
Therefore, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, phosphorus compounds such as phosphate esters, and nitrogen compounds such as melamine resins are used as flame retardants to replace brominated flame retardants (for example, patents) References 2-4).
However, there are also known problems that the flame retardant function does not appear unless a large amount of metal hydroxide is added, the phosphorus compound has corrosive properties, and the nitrogen compound has a low flame retardant effect.
In addition, since aluminum hydroxide contains a large amount of water that exhibits a cooling effect during combustion, there is a problem in that the heat resistance of the resin composition and the laminate is drastically reduced when blended more than a certain amount. This is due to the fact that the temperature at which aluminum hydroxide water is released is lower than the melting temperature of the solder. In addition, when lead-free solder is used, the melting temperature further rises, and the release of water is considered to be a significant problem.

この対策として、非ハロゲン化エポキシ樹脂に対して高耐熱水酸化アルミニウムなどを含有させた熱硬化性樹脂組成物が検討されている(例えば、特許文献5参照)。
また、水酸化アルミニウムの増加に伴い樹脂/水酸化アルミニウム間の界面が増加してピール強度が低下するので、水酸化アルミニウムの粒径と、比表面積を調整することである程度改善できることが知られている(例えば、特許文献6参照)。
As a countermeasure against this, a thermosetting resin composition containing a non-halogenated epoxy resin containing high heat-resistant aluminum hydroxide or the like has been studied (for example, see Patent Document 5).
In addition, since the interface between the resin / aluminum hydroxide increases with the increase in aluminum hydroxide and the peel strength decreases, it is known that it can be improved to some extent by adjusting the particle size of aluminum hydroxide and the specific surface area. (See, for example, Patent Document 6).

特開昭54−113665号公報JP 54-113665 A 特開2002−212394号公報JP 2002-212394 A 特開平11−124489号公報JP-A-11-124489 特開昭59−53549号公報JP 59-53549 A 特開2005−209692号公報JP 2005-209692 A 特開2007−146095号公報JP 2007-146095 A

上記のように水酸化アルミニウム等の金属水酸化物は難燃効果を発現するが、十分な難燃性を発現するには多量の配合を必要とする。しかし、多量の金属水酸化物の配合は、金属水酸化物の界面増加に伴うピール強度の低下や金属水酸化物の分解に伴う耐熱性の低下など多くの課題を有する。
特許文献5では、非ハロゲン化エポキシ樹脂としてビスフェノールAノボラック型エポキシ樹脂やo−クレゾールノボラック型エポキシ樹脂を使用しているが、本発明者らの検討によりピール強度が相当に低下することが分かった。
本発明の目的は、こうした現状に鑑み、今後も更に微細配線化が進むパッケージ基板に対応するため、高いピール強度と耐熱性に優れたパッケージ基板用樹脂組成物、プリプレグ及び積層板を提供することである。
As described above, metal hydroxides such as aluminum hydroxide exhibit a flame retarding effect, but a large amount of blending is required to exhibit sufficient flame retardancy. However, blending a large amount of metal hydroxide has many problems such as a decrease in peel strength accompanying an increase in the interface of the metal hydroxide and a decrease in heat resistance accompanying the decomposition of the metal hydroxide.
In Patent Document 5, a bisphenol A novolak type epoxy resin or an o-cresol novolak type epoxy resin is used as a non-halogenated epoxy resin, but it has been found that the peel strength is considerably reduced by the study of the present inventors. .
In view of the current situation, an object of the present invention is to provide a package substrate resin composition, a prepreg, and a laminate that are excellent in high peel strength and heat resistance in order to cope with a package substrate that will be further miniaturized in the future. It is.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、分子内に二つまたはそれ以上の環式構造を持つ多環式化合物と、高耐熱水酸化アルミニウム(B)を必須成分とする樹脂組成物が上記目的に沿うものであることを見出した。本発明は、かかる知見に基づいて完成したものである。 As a result of intensive studies to achieve the above object, the present inventors have obtained a polycyclic compound having two or more cyclic structures in the molecule , and a high heat resistant aluminum hydroxide (B). It has been found that the resin composition as an essential component meets the above purpose. The present invention has been completed based on such findings.

すなわち、本発明は、以下のパッケージ基板用樹脂組成物、プリプレグ及び積層板を提供するものである。
1.多環式化合物(A)と、脱水温度が250℃以上の高耐熱水酸化アルミニウム(B)を含有するパッケージ基板用樹脂組成物であって、多環式化合物(A)がビフェニルノボラック型エポキシ樹脂及びジヒドロアントラセン型エポキシ樹脂であるパッケージ基板用樹脂組成物。
2.さらにシリカ(C)を含有する上記1のパッケージ基板用樹脂組成物。
3.シリカ(C)の含有量が、多環式化合物(A)100質量部に対して、30〜150質量部である上記2のパッケージ基板用樹脂組成物。
4.シリカ(C)が、平均粒子径が0.1〜10μmの溶融球状シリカである上記2又は3のパッケージ基板用樹脂組成物。
.多環式化合物(A)が、20℃で結晶性状を持つエポキシ樹脂である上記1〜4のいずれかのパッケージ基板用樹脂組成物。
.高耐熱水酸化アルミニウム(B)のBET比表面積が3.5〜10m2/gである上記1〜5のいずれかのパッケージ基板用樹脂組成物。
.多環式化合物(A)が、下記の一般式(1)で表されるビフェニルノボラック型エポキシ樹脂及び一般式(2)で表されるアントラセン型エポキシ樹脂である上記1〜のいずれかのパッケージ基板用樹脂組成物。
That is, this invention provides the following resin compositions for package substrates, prepregs, and laminates.
1. A resin composition for a package substrate comprising a polycyclic compound ( A) and a high heat-resistant aluminum hydroxide (B) having a dehydration temperature of 250 ° C. or higher , wherein the polycyclic compound (A) is a biphenyl novolac epoxy A resin composition for a package substrate, which is a resin and a dihydroanthracene-type epoxy resin .
2. Furthermore, the resin composition for package substrates of said 1 containing a silica (C).
3. The resin composition for a package substrate according to 2 above, wherein the content of silica (C) is 30 to 150 parts by mass with respect to 100 parts by mass of the polycyclic compound (A).
4). The resin composition for a package substrate according to 2 or 3 above, wherein the silica (C) is fused spherical silica having an average particle diameter of 0.1 to 10 μm.
5 . The resin composition for a package substrate according to any one of 1 to 4 above, wherein the polycyclic compound ( A) is an epoxy resin having crystallinity at 20 ° C.
6 . The resin composition for a package substrate according to any one of 1 to 5 above, wherein the high heat-resistant aluminum hydroxide (B) has a BET specific surface area of 3.5 to 10 m 2 / g.
7 . Polycyclic compound (A), any of the above 1-6 is an anthracene type epoxy resins represented by the following general formula biphenyl novolac type epoxy resin and represented by the general formula (1) (2) The resin composition for package substrates.

Figure 0005779962
(R1〜R4は、独立に、水素原子又は炭素数1〜4のアルキル基であり、nは1以上の整数である。)
Figure 0005779962
(R 1 to R 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 or more.)

Figure 0005779962
(R9〜R10は、独立に、炭素数1〜6のアルキル基であり、pおよびqは0〜4の整数である。)
Figure 0005779962
(R 9 to R 10 are independently an alkyl group having 1 to 6 carbon atoms, p and q is an integer of 0-4.)

8.高耐熱水酸化アルミニウム(B)の含有量が、多環式化合物(A)100質量部に対して、50〜150質量部である上記1〜7のいずれかのパッケージ基板用樹脂組成物。8). The resin composition for package substrates according to any one of 1 to 7 above, wherein the content of the high heat-resistant aluminum hydroxide (B) is 50 to 150 parts by mass with respect to 100 parts by mass of the polycyclic compound (A).
9.更に硬化剤を、多環式化合物(A)に対して、0.8〜1.2当量含有する上記1〜8のいずれかのパッケージ基板用樹脂組成物。9. Furthermore, the resin composition for package substrates in any one of said 1-8 which contains a hardening | curing agent 0.8-1.2 equivalent with respect to a polycyclic compound (A).
10.更に硬化促進剤を、多環式化合物(A)100質量部に対して、0.01〜5質量部含有する上記1〜9のいずれかのパッケージ基板用樹脂組成物。10. Furthermore, the resin composition for package substrates in any one of said 1-9 which contains 0.01-5 mass parts of hardening accelerators with respect to 100 mass parts of polycyclic compounds (A).

11.上記1〜10のいずれかのパッケージ基板用樹脂組成物に有機溶剤を含有するワニス。
12.上記11のワニスを基材に含浸又は塗工した後、Bステージ化して得られたプリプレグ。
13.基材が、ガラス織布、ガラス不織布、アラミド不織布から選ばれる少なくとも一種である上記12のプリプレグ。
14.上記12又は13のプリプレグを積層成形して得られた積層板。
15.プリプレグの少なくとも一方の面に金属箔を重ねた後、加熱加圧成形して得られた金属張積層板である上記14の積層板。
11 . The varnish which contains the organic solvent in the resin composition for package substrates in any one of said 1-10 .
12 . A prepreg obtained by impregnating or coating the above 11 varnish on a base material and then forming a B-stage.
13 . 13. The prepreg as described in 12 above, wherein the substrate is at least one selected from a glass woven fabric, a glass nonwoven fabric, and an aramid nonwoven fabric.
14 . A laminate obtained by laminating the above 12 or 13 prepreg.
15 . 14. The laminate as described in 14 above, which is a metal-clad laminate obtained by stacking a metal foil on at least one surface of a prepreg and then heating and pressing.

本発明によれば、多環式化合物に高耐熱水酸化アルミニウムを配合することで、ピール強度が低下することなく、耐熱性の高いパッケージ基板用樹脂組成物、プリプレグおよび積層板を得ることができる。 According to the present invention, it is possible to obtain a highly heat-resistant resin composition for package substrates, a prepreg, and a laminate without adding low peel strength by blending high heat-resistant aluminum hydroxide with a polycyclic compound . it can.

以下、本発明について詳細に説明する。
本発明のパッケージ基板用樹脂組成物は、多環式化合物(A)と、脱水温度が250℃以上の高耐熱水酸化アルミニウム(B)を含有することを特徴するものであり、多環式化合物に高耐熱水酸化アルミニウムを均一分散することで耐熱性とピール強度を向上させた樹脂組成物である。
Hereinafter, the present invention will be described in detail.
The resin composition for a package substrate of the present invention comprises a polycyclic compound ( A) and a highly heat-resistant aluminum hydroxide (B) having a dehydration temperature of 250 ° C. or higher. high heat aluminum hydroxide to be uniformly dispersed in the compound is a resin composition having improved heat resistance and peel strength.

本発明のパッケージ基板用樹脂組成物における多環式化合物(A)は、多層配線板用途として、絶縁性や吸湿性の面で優れている分子内に2個以上のエポキシ基を持つエポキシ樹脂が好適に用いられる。
多環式化合物であるエポキシ樹脂としては、ナフタレン型エポキシ樹脂、ナフタレンノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂が好ましい。
The polycyclic compound ( A) in the resin composition for a package substrate of the present invention is an epoxy resin having two or more epoxy groups in the molecule, which is excellent in insulation and hygroscopicity, for use as a multilayer wiring board. Are preferably used.
As an epoxy resin which is a polycyclic compound, a naphthalene type epoxy resin, a naphthalene novolak type epoxy resin, an anthracene type epoxy resin, a dihydroanthracene type epoxy resin, a biphenyl type epoxy resin, and a biphenyl novolak type epoxy resin are preferable.

また、これらのエポキシ樹脂の中で、下記の一般式(1)で表されるビフェニルノボラック型エポキシ樹脂、一般式(2)で表されるアントラセン型エポキシ樹脂および一般式(3)で表されるジヒドロアントラセン型エポキシ樹脂が特に好ましい。
エポキシ樹脂の分子量は特に制限されず、何種類かの芳香環を有する樹脂を併用することもできる。
Among these epoxy resins, the biphenyl novolac type epoxy resin represented by the following general formula (1), the anthracene type epoxy resin represented by the general formula (2), and the general formula (3) A dihydroanthracene type epoxy resin is particularly preferred.
The molecular weight of the epoxy resin is not particularly limited, and resins having several kinds of aromatic rings can be used in combination.

Figure 0005779962
(R1〜R4は、独立に、水素原子又は炭素数1〜4のアルキル基であり、nは1以上の整数である。)
Figure 0005779962
(R 1 to R 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 or more.)

Figure 0005779962
(R5〜R8は、独立に、水素原子又は炭素数1〜4のアルキル基である。)
Figure 0005779962
(R 5 to R 8 are independently hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)

Figure 0005779962
(R9〜R10は、独立に、炭素数1〜6のアルキル基であり、pおよびqは0〜4の整数である。)
Figure 0005779962
(R 9 to R 10 are independently an alkyl group having 1 to 6 carbon atoms, p and q is an integer of 0-4.)

なお、本発明のパッケージ基板用樹脂組成物には、ビフェニル環、ナフタレン環、アントラセン環、ジヒドロアントラセン環から選ばれる少なくとも一種の芳香環を有する化合物以外の芳香環を有する化合物を含むエポキシ樹脂を含んでいても良く、このようなエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などが挙げられる。   The resin composition for a package substrate of the present invention includes an epoxy resin containing a compound having an aromatic ring other than a compound having at least one aromatic ring selected from a biphenyl ring, a naphthalene ring, an anthracene ring, and a dihydroanthracene ring. Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, and cresol novolak type epoxy resins.

上記のように多環式化合物(A)としてエポキシ樹脂を用いる場合、結晶性エポキシ樹脂、即ち20℃で結晶性状を持つエポキシ樹脂が好適に使用される。 When an epoxy resin is used as the polycyclic compound ( A) as described above, a crystalline epoxy resin, that is, an epoxy resin having crystallinity at 20 ° C. is preferably used.

多環式化合物(A)としてエポキシ樹脂を用いる場合、必要に応じて該エポキシ樹脂の硬化剤や硬化促進剤を使用することができる。硬化剤の例としては、例えば、フェノールノボラック、クレゾールノボラック等の多官能フェノール化合物、ベンゾグアナミン、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン化合物、無水フタル酸、無水ピロメリット酸、無水マレイン酸、無水マレイン酸共重合体等の酸無水物等が挙げられ、これらの1種又は2種以上を混合して使用できる。
また、硬化促進剤の例としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩等が挙げられ、これらの1種又は2種以上を混合して使用できる。
なお、本発明のパッケージ基板用樹脂組成物において、エポキシ樹脂の他に硬化剤および硬化促進剤を使用する場合、使用される硬化剤および硬化促進剤は、多環式化合物(A)中に含まれる。
When using an epoxy resin as a polycyclic compound ( A), the hardening | curing agent and hardening accelerator of this epoxy resin can be used as needed. Examples of curing agents include, for example, polyfunctional phenol compounds such as phenol novolak and cresol novolak, amine compounds such as benzoguanamine, dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, maleic anhydride, and anhydrous An acid anhydride such as a maleic acid copolymer may be used, and one or more of these may be used in combination.
Examples of curing accelerators include, for example, imidazoles and derivatives thereof, organophosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. Or 2 or more types can be mixed and used.
In addition, in the resin composition for package substrates of this invention, when using a hardening | curing agent and a hardening accelerator other than an epoxy resin, the hardening | curing agent and hardening accelerator to be used are in a polycyclic compound ( A). included.

多環式化合物(A)がエポキシ樹脂の場合、硬化剤は多環式化合物(A)に対して0.8〜1.2当量とすることが好ましく、硬化促進剤は多環式化合物(A)100質量部に対して0.01〜5質量部とすることが好ましい。 When the polycyclic compound (A) is an epoxy resin, the curing agent is preferably 0.8 to 1.2 equivalents relative to the polycyclic compound ( A), and the curing accelerator is a polycyclic compound . ( A) It is preferable to set it as 0.01-5 mass parts with respect to 100 mass parts.

パッケージ基板用樹脂組成物における高耐熱水酸化アルミニウム(B)は、脱水温度が250℃以上あればどのような形状のものでも良い。なお、この脱水温度は水酸化アルミニウムを加熱して1質量%の水を排出する時の温度であり、脱水温度が250℃以上の水酸化アルミニウムが一般に高耐熱水酸化アルミニウムと呼ばれている。
このような高耐熱水酸化アルミニウムとしては、例えば、ALH(河合石灰工業株式会社製、商品名)を挙げることができる。
High heat aluminum hydroxide in the package base board resin composition (B), the dehydration temperature may be of any shape as long as 250 ° C. or higher. This dehydration temperature is a temperature when aluminum hydroxide is heated to discharge 1% by mass of water, and aluminum hydroxide having a dehydration temperature of 250 ° C. or higher is generally called high heat resistant aluminum hydroxide.
As such a high heat resistant aluminum hydroxide, for example, ALH (trade name, manufactured by Kawai Lime Industry Co., Ltd.) can be exemplified.

高耐熱水酸化アルミニウムは、BET比表面積が3.5〜10m2/gのものが好ましく、3.8〜7m2/gのものがさらに好ましい。BET比表面積が3.5m2/g以上であることにより耐熱性の向上効果が得られ、10m2/g以下であることによりピール強度が向上する。 The high heat-resistant aluminum hydroxide preferably has a BET specific surface area of 3.5 to 10 m 2 / g, and more preferably 3.8 to 7 m 2 / g. When the BET specific surface area is 3.5 m 2 / g or more, an effect of improving heat resistance is obtained, and when it is 10 m 2 / g or less, the peel strength is improved.

多環式化合物(A)と高耐熱水酸化アルミニウム(B)の比率は、多環式化合物(A)100質量部に対し、高耐熱水酸化アルミニウム(B)が50〜150質量部が好ましく、70〜130質量部がより好ましく、80〜120質量部が特に好ましい。高耐熱水酸化アルミニウム(B)を50質量部以上とすることにより難燃効果が得られ、150質量部以下とすることにより耐熱性が低下しない。 The ratio of the polycyclic compound (A) and the high heat aluminum hydroxide (B), compared polycyclic compound (A) 100 parts by mass of high heat aluminum hydroxide (B) is 50 to 150 parts by weight Preferably, 70-130 mass parts is more preferable, and 80-120 mass parts is especially preferable. A flame-retardant effect is acquired by making high heat-resistant aluminum hydroxide (B) 50 mass parts or more, and heat resistance does not fall by setting it as 150 mass parts or less.

本発明のパッケージ基板用樹脂組成物には、多環式化合物(A)および高耐熱水酸化アルミニウム(B)と共に、シリカ(C)を含有させることが好ましい。
パッケージ基板用樹脂組成物に含有させるシリカ(C)としては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融球状シリカが挙げられる。これらの中で、低熱膨張性及び樹脂に充填した際の高流動性から溶融球状シリカが好ましい。
The resin composition for a package substrate of the present invention preferably contains silica (C) together with the polycyclic compound ( A) and the high heat resistant aluminum hydroxide (B).
Examples of the silica (C) contained in the resin composition for a package substrate include precipitated silica produced by a wet method and having a high moisture content, and dry method silica produced by a dry method and containing almost no bound water, etc. Examples of the dry process silica further include crushed silica, fumed silica, and fused spherical silica depending on the production method. Among these, fused spherical silica is preferable because of its low thermal expansion and high fluidity when filled in a resin.

(C)成分のシリカとして溶融球状シリカを用いる場合、その平均粒子径は0.1〜10μmであることが好ましく、0.3〜8μmであることがより好ましい。
溶融球状シリカの平均粒子径を0.1μm以上にすることで、樹脂組成物に溶融球状シリカを高充填した際の流動性を良好に保つことができ、さらに10μm以下にすることで、粗大粒子の混入確率を減らし粗大粒子起因の不良の発生を抑えることができる。
ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
(C)成分のシリカの含有量は、多環式化合物(A)100質量部に対し、30〜150質量部が好ましく、70〜130質量部がより好ましい。シリカ(C)の含有量を30質量部以上とすることにより熱膨張率が低減でき、150質量部以下とすることにより銅箔引き剥がし強さが向上する。
When fused spherical silica is used as the component (C) silica, the average particle size is preferably 0.1 to 10 μm, and more preferably 0.3 to 8 μm.
By setting the average particle size of the fused spherical silica to 0.1 μm or more, the fluidity when the resin composition is highly filled with fused spherical silica can be kept good, and by setting the average particle size to 10 μm or less, coarse particles The occurrence probability of coarse particles can be suppressed.
Here, the average particle size is a particle size at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle size is obtained with the total volume of the particles being 100%, and the laser diffraction scattering method is used. It can be measured with the used particle size distribution measuring device or the like.
(C) 30-150 mass parts is preferable with respect to 100 mass parts of polycyclic compounds ( A), and, as for content of the silica of a component, 70-130 mass parts is more preferable. The content of silica mosquito (C) thermal expansion coefficient can be reduced by 30 parts by mass or more, the copper foil peel strength is improved by more than 150 parts by weight.

本発明のパッケージ基板用樹脂組成物には、高耐熱水酸化アルミニウム(B)およびシリカ(C)以外の無機充填剤を配合しても構わないし、添加剤を添加することができる。(B)、(C)成分以外の無機充填剤としては、アルミナ、炭酸カルシウム、クレイ、タルク、窒化珪素、窒化ホウ素、酸化チタン、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウム等を使用することができる。
これらの無機充填剤の配合量としては、均一でかつ良好な取扱性を得るために、パッケージ基板用樹脂組成物の総量100質量部に対して、300質量部以下とすることが好ましく、200質量部以下にすることがより好ましい。
また、添加剤としては、各種シランカップリング剤、消泡剤等を使用できる。この配合量としてはパッケージ基板用樹脂組成物の総量100質量部に対して、5質量部以下、好ましくは3質量部以下にすることが樹脂組成物の特性を維持する上で好ましい。
高耐熱水酸化アルミニウム(B)やシリカ(C)などの無機充填剤を均一に分散させるため、らいかい機、ホモジナイザー、ビーズミル、ナノマイザー等を用いることが有効である。
The resin composition for a package substrate of the present invention may contain an inorganic filler other than the high heat-resistant aluminum hydroxide (B) and silica (C), and an additive can be added. As inorganic fillers other than the components (B) and (C), use alumina, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, lead titanate, strontium titanate, etc. Can do.
The blending amount of these inorganic fillers is preferably 300 parts by mass or less, and 200 parts by mass with respect to 100 parts by mass of the total amount of the resin composition for package substrates, in order to obtain uniform and good handling properties. It is more preferable to make it less than the part.
Moreover, as an additive, various silane coupling agents, an antifoamer, etc. can be used. The blending amount is preferably 5 parts by mass or less, and preferably 3 parts by mass or less with respect to 100 parts by mass of the total amount of the resin composition for a package substrate in order to maintain the characteristics of the resin composition.
In order to uniformly disperse inorganic fillers such as high heat-resistant aluminum hydroxide (B) and silica (C), it is effective to use a raking machine, a homogenizer, a bead mill, a nanomizer or the like.

本発明のパッケージ基板用樹脂組成物は、多環式化合物(A)と高耐熱水酸化アルミニウム(B)などの無機充填剤を均一に混合するため、有機溶剤を加えてワニスとして用いることが好ましい。
有機溶剤は、多環式化合物(A)の溶解と高耐熱水酸化アルミニウム(B)などを分散できればどのようなものでもよいが、特にアセトン、メチルエチルケトン、メチルブチルケトン、トルエン、キシレン、酢酸エチル、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、エタノール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が多環式化合物(A)の溶解性に優れ、高耐熱水酸化アルミニウム(B)などの分散性を有するので好ましく使用される。なお、上記の有機溶剤は組み合わせて用いることができる。
これらの有機溶剤の配合量は、多環式化合物(A)の溶解と高耐熱水酸化アルミニウム(B)などの分散ができればどのような量でもよいが、多環式化合物(A)と高耐熱水酸化アルミニウム(B)などの固形成分の総量100質量部に対して、30〜300質量部が好ましく、50〜200質量部がさらに好ましい。
The resin composition for a package substrate of the present invention can be used as a varnish by adding an organic solvent in order to uniformly mix an inorganic filler such as a polycyclic compound ( A) and a high heat-resistant aluminum hydroxide (B). preferable.
The organic solvent may be any solvent as long as it can dissolve the polycyclic compound ( A) and disperse the highly heat-resistant aluminum hydroxide (B), but in particular acetone, methyl ethyl ketone, methyl butyl ketone, toluene, xylene, ethyl acetate. N, N-dimethylformamide, N, N-dimethylacetamide, ethanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc. are excellent in solubility of the polycyclic compound ( A), and have high heat resistance aluminum hydroxide (B ) And the like. In addition, said organic solvent can be used in combination.
The amount of the organic solvents, polycyclic compound may be any amount which dispersion possible, such as dissolving the high heat aluminum hydroxide (B) of (A), but a polycyclic compound (A) 30-300 mass parts is preferable with respect to 100 mass parts of total amounts of solid components, such as high heat-resistant aluminum hydroxide (B), and 50-200 mass parts is more preferable.

本発明のパッケージ基板用樹脂組成物は、基材に含浸又は塗工した後、Bステージ化してプリプレグとして使用される。プリプレグに用いる際には、最終的に、多環式化合物(A)や高耐熱水酸化アルミニウム(B)などの各成分が有機溶剤中に溶解もしくは分散されたワニスの状態とすることが好ましい。
本発明のプリプレグは、本発明のパッケージ基板用樹脂組成物を、基材に含浸又は塗工した後、Bステージ化してなるものである。すなわち、本発明のパッケージ基板用樹脂組成物を、基材に含浸又は塗工した後、加熱等により半硬化(Bステージ化)させて本発明のプリプレグを製造する。以下、本発明のプリプレグについて詳述する。
The resin composition for a package substrate of the present invention is impregnated or coated on a base material, and then B-staged to be used as a prepreg. When used in the prepreg, it is preferable that the final components are in the form of a varnish in which each component such as the polycyclic compound ( A) and the high heat-resistant aluminum hydroxide (B) is dissolved or dispersed in an organic solvent. .
The prepreg of the present invention is formed by impregnating or coating the substrate composition resin composition of the present invention on a base material and then forming a B-stage. That is, the resin composition for package substrates of the present invention is impregnated or coated on a base material, and then semi-cured (B-stage) by heating or the like to produce the prepreg of the present invention. Hereinafter, the prepreg of the present invention will be described in detail.

本発明のプリプレグに用いられる基材は、パッケージ基板用樹脂組成物を含浸させて熱硬化・一体化出来るものであればよく、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物の繊維、ポリイミド、ポリエステル及びポリテトラフルオロエチレン等の有機物の繊維並びにそれらの混合物等が挙げられ、ガラス織布やガラス不織布、アラミド不織布が好適に用いられる。
基材の厚さは、特に制限されないが、例えば、約0.01〜0.2mmのものを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて、本発明のプリプレグを得ることができる。
The base material used in the prepreg of the present invention is not limited as long as it can be thermoset and integrated by impregnating the resin composition for a package substrate, and well-known ones used for various laminates for electrical insulating materials. Can be used. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and polytetrafluoroethylene, and mixtures thereof. A glass nonwoven fabric and an aramid nonwoven fabric are preferably used.
The thickness of the substrate is not particularly limited. For example, a substrate having a thickness of about 0.01 to 0.2 mm can be used, and the substrate is surface-treated with a silane coupling agent or the like or mechanically opened. Is suitable from the viewpoints of heat resistance, moisture resistance and processability. After impregnating or coating the base material so that the amount of the resin composition attached to the base material is 20 to 90% by mass in terms of the resin content of the prepreg after drying, the temperature is usually 100 to 200 ° C. Can be heated and dried for 1 to 30 minutes and semi-cured (B-stage) to obtain the prepreg of the present invention.

本発明の積層板は、本発明のプリプレグを積層成形して得られるものである。すなわち、プリプレグを、例えば、1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形したものである。成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。   The laminate of the present invention is obtained by laminating the prepreg of the present invention. That is, for example, 1 to 20 prepregs are stacked and laminated and formed with a configuration in which a metal foil such as copper and aluminum is disposed on one or both sides thereof. As the molding conditions, for example, a method of a laminated plate for an electrical insulating material and a multilayer plate can be applied. It can shape | mold in the range of 10-10 MPa and heating time 0.1-5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.

次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
なお、実施例での耐熱性、ピール強度および絶縁性の評価は以下の方法により測定した。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
The heat resistance, peel strength, and insulation in the examples were evaluated by the following methods.

(1)耐熱性
作製した両面銅張積層板(プリプレグ8枚重ね)を50×50mmに切断し、288℃のはんだにフローティングして膨れが発生するまでの時間を測定した。
(2)ピール強度(銅箔引き剥がし強さ)
銅張積層板を銅エッチング液に浸漬することにより1cm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔のピール強度を測定した。(JIS C 5016に準拠し、銅箔の厚さは18μmとした。)
(3)絶縁性
作製した両面銅張積層板(プリプレグ8枚重ね)を50×100mmに切断した後、直径10mmのパターンを形成した。絶縁性は、作製した試験片を85℃/85%RHの恒温恒湿槽中でDC50Vの電圧を印加した条件で、絶縁劣化するまでの時間として測定した。
(1) Heat resistance The produced double-sided copper-clad laminate (8 prepreg stacks) was cut into 50 × 50 mm, and the time until it floated on a solder at 288 ° C. to cause swelling was measured.
(2) Peel strength (stripping strength of copper foil)
A 1 cm wide copper foil was formed by immersing the copper clad laminate in a copper etching solution to produce an evaluation substrate, and the peel strength of the copper foil was measured using a tensile tester. (Based on JIS C 5016, the thickness of the copper foil was 18 μm.)
(3) Insulation After cutting the prepared double-sided copper-clad laminate (8 prepreg stacks) to 50 × 100 mm, a pattern with a diameter of 10 mm was formed. Insulation was measured as the time until the insulation deteriorated under the condition that a voltage of DC 50 V was applied to the prepared test piece in a constant temperature and humidity chamber of 85 ° C./85% RH.

実施例1
温度計、冷却管、攪拌装置を備えた4つ口セパラブルフラスコに、多環式化合物(A)としてジヒドロアントラセン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名:YX−8800)100gとビフェニルノボラック型エポキシ樹脂(日本化薬株式会社、商品名:NC−3000‐H)65.8g、エポキシ樹脂の硬化剤としてジシアンジアミド(関東化学株式会社製)0.6gとクレゾールノボラック樹脂(DIC株式会社製、商品名:KA−1165)84.5g、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)252gを加え、100℃で30分間加熱溶解した。その後、シリカ(株式会社アドマテックス製、商品名:SO−G1)153.3g、高耐熱水酸化アルミニウム(河合石灰工業株式会社製、商品名:ALH、脱水温度255℃)168.6g、プロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)100g、硬化促進剤1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社、商品名:2PZ−CN)0.5gを投入し、1時間撹拌して目的のワニスを得た。
作製したワニスを厚みが0.1mmのガラス織布(坪量105g/m2)に含浸し、1
60℃で4分間加熱して半硬化(Bステージ状態)のプリプレグを得た。このプリプレグを8枚重ね、その両側に18μmの銅箔(商品名:YGP−18、Rz:8.6μm)を重ね、185℃、90分、3.0MPaのプレス条件で両面銅張積層板を作製した。得られた銅張積層板の評価結果を第1表に示す。
Example 1
In a four-neck separable flask equipped with a thermometer, a condenser, and a stirrer, 100 g of dihydroanthracene type epoxy resin (trade name: YX-8800, manufactured by Japan Epoxy Resin Co., Ltd.) as the polycyclic compound ( A) Biphenyl novolac type epoxy resin (Nippon Kayaku Co., Ltd., trade name: NC-3000-H) 65.8 g, dicyandiamide (manufactured by Kanto Chemical Co., Ltd.) 0.6 g as an epoxy resin curing agent and cresol novolak resin (DIC Corporation) Product, trade name: KA-1165) 84.5 g, propylene glycol monomethyl ether acetate (manufactured by Kanto Chemical Co., Inc.) 252 g was added as an organic solvent, and the mixture was heated and dissolved at 100 ° C. for 30 minutes. Then, silica (manufactured by Admatechs Co., Ltd., trade name: SO-G1) 153.3 g, high heat resistant aluminum hydroxide (manufactured by Kawai Lime Industry Co., Ltd., trade name: ALH, dehydration temperature 255 ° C.) 168.6 g, propylene glycol 100 g of monomethyl ether acetate (manufactured by Kanto Chemical Co., Inc.) and 0.5 g of curing accelerator 1-cyanoethyl-2-phenylimidazole (Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) are added and stirred for 1 hour for the purpose. The varnish was obtained.
The prepared varnish was impregnated into a 0.1 mm thick glass woven fabric (basis weight 105 g / m 2 ).
A semi-cured (B stage state) prepreg was obtained by heating at 60 ° C. for 4 minutes. Eight sheets of this prepreg are stacked, 18 μm copper foil (trade name: YGP-18, Rz: 8.6 μm) is stacked on both sides, and a double-sided copper-clad laminate is pressed at 185 ° C., 90 minutes, 3.0 MPa. Produced. Table 1 shows the evaluation results of the obtained copper-clad laminate.

実施例2
温度計、冷却管、攪拌装置を備えた4つ口セパラブルフラスコに、多環式化合物(A)としてジヒドロアントラセン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名:YX−8800)100gとビフェニルノボラック型エポキシ樹脂(日本化薬株式会社、商品名:NC−3000−H)65.8g、エポキシ樹脂の硬化剤としてジシアンジアミド(関東化学株式会社製)0.6gとクレゾールノボラック樹脂(DIC株式会社製、商品名:KA−1165)61.1g、フェノールノボラック樹脂(DIC株式会社製、商品名:TD−2090)20.7g、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)252gを加え、100℃で30分間加熱溶解した。その後、シリカ(株式会社アドマテックス製、商品名:SO−G1)151.7g、高耐熱水酸化アルミニウム(河合石灰工業株式会社製、商品名:ALH)166.9g、プロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)100g、硬化促進剤1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社、商品名:2PZ−CN)0.5gを投入し、1時間撹拌して目的のワニスを得た。
以下、実施例1と同様の方法で両面銅張積層板を作製した。得られた銅張積層板の評価結果を第1表に示す。
Example 2
In a four-neck separable flask equipped with a thermometer, a condenser, and a stirrer, 100 g of dihydroanthracene type epoxy resin (trade name: YX-8800, manufactured by Japan Epoxy Resin Co., Ltd.) as the polycyclic compound ( A) Biphenyl novolac type epoxy resin (Nippon Kayaku Co., Ltd., trade name: NC-3000-H) 65.8 g, dicyandiamide (manufactured by Kanto Chemical Co., Ltd.) 0.6 g as an epoxy resin curing agent and cresol novolac resin (DIC Corporation) Product name: KA-1165) 61.1 g, phenol novolac resin (DIC Corporation, product name: TD-2090) 20.7 g, propylene glycol monomethyl ether acetate (manufactured by Kanto Chemical Co., Ltd.) 252 g as an organic solvent. In addition, it was dissolved by heating at 100 ° C. for 30 minutes. Then, silica (manufactured by Admatechs Co., Ltd., trade name: SO-G1) 151.7 g, high heat-resistant aluminum hydroxide (manufactured by Kawai Lime Industry Co., Ltd., trade name: ALH) 166.9 g, propylene glycol monomethyl ether acetate (Kanto) Chemical Co., Ltd.) 100 g, curing accelerator 1-cyanoethyl-2-phenylimidazole (Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) 0.5 g was added and stirred for 1 hour to obtain the desired varnish. .
Thereafter, a double-sided copper-clad laminate was produced in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained copper-clad laminate.

比較例1
温度計、冷却管、攪拌装置を備えた4つ口セパラブルフラスコに、多環式化合物(A)として、ジヒドロアントラセン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名:YX−8800)100gとビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000−H)65.8g、エポキシ樹脂の硬化剤としてジシアンジアミド(関東化学株式会社製)0.6gとクレゾールノボラック樹脂(DIC株式会社製、商品名KA−1165)84.5g、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)252gを加え、100℃で30分間加熱溶解した。その後、シリカ(株式会社アドマテックス製、商品名:SO−G1)153.3g、水酸化アルミニウム(昭和電工株式会社製、商品名:HP−360、脱水温度248℃)168.6g、プロピレングリコールモノメチルエーテルアセテート(関東化学株式会社製)100g、硬化促進剤1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社、商品名:2PZ−CN)0.5gを投入し、1時間撹拌して目的のワニスを得た。
作製したワニスを厚みが0.1mmのガラス織布(坪量105g/m2)に含浸し、1
60℃で3分間加熱して半硬化(Bステージ状態)のプリプレグを得た。このプリプレグを8枚重ね、その両側に18μmの銅箔(商品名:YGP−18、Rz:8.6μm)を重ね、185℃、90分、3.0MPaのプレス条件で両面銅張積層板を作製した。得られた銅張積層板の評価結果を第1表に示す。
Comparative Example 1
100 g of dihydroanthracene type epoxy resin (trade name: YX-8800, manufactured by Japan Epoxy Resin Co., Ltd.) as a polycyclic compound ( A) in a four-neck separable flask equipped with a thermometer, a condenser, and a stirring device And biphenyl novolac type epoxy resin (Nippon Kayaku Co., Ltd., trade name: NC-3000-H) 65.8 g, epoxy resin curing agent 0.6 g and cresol novolac resin (DIC) 84.5 g of trade name, KA-1165, manufactured by Co., Ltd., and 252 g of propylene glycol monomethyl ether acetate (manufactured by Kanto Chemical Co., Ltd.) as an organic solvent were added and dissolved by heating at 100 ° C for 30 minutes. Thereafter, 153.3 g of silica (manufactured by Admatechs Co., Ltd., trade name: SO-G1), 168.6 g of aluminum hydroxide (manufactured by Showa Denko KK, trade name: HP-360, dehydration temperature 248 ° C.), propylene glycol monomethyl 100 g of ether acetate (manufactured by Kanto Chemical Co., Inc.) and 0.5 g of a curing accelerator 1-cyanoethyl-2-phenylimidazole (Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CN) are added and stirred for 1 hour. A varnish was obtained.
The prepared varnish was impregnated into a 0.1 mm thick glass woven fabric (basis weight 105 g / m 2 ).
A semi-cured (B stage state) prepreg was obtained by heating at 60 ° C. for 3 minutes. Eight sheets of this prepreg are stacked, 18 μm copper foil (trade name: YGP-18, Rz: 8.6 μm) is stacked on both sides, and a double-sided copper-clad laminate is pressed at 185 ° C., 90 minutes, 3.0 MPa. Produced. Table 1 shows the evaluation results of the obtained copper-clad laminate.

比較例2
比較例1において、水酸化アルミニウム(昭和電工株式会社製、商品名:HP−360)168.6gに代えて、水酸化アルミニウム(住友化学株式会社製、商品名CL−303、脱水温度230℃)173.2gとした以外は全て同様とした。得られた銅張積層板の評価結果を第1表に示す。
Comparative Example 2
In Comparative Example 1, aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., trade name CL-303, dehydration temperature 230 ° C.) was used instead of 168.6 g of aluminum hydroxide (manufactured by Showa Denko KK, trade name: HP-360). All were the same except that it was 173.2 g. Table 1 shows the evaluation results of the obtained copper-clad laminate.

比較例3
エポキシ樹脂としてビスフェノールAノボラック型エポキシ樹脂(DIC株式会社製、商品名:N865)100g、エポキシ樹脂の硬化剤としてジシアンジアミド(関東化学株式会社製)0.5gとクレゾールノボラック樹脂(DIC株式会社製、商品名KA−1165)55.2g、無機充填剤としてシリカ(株式会社アドマテックス製、商品名:SO−G1)95.1g、水酸化アルミニウム(住友化学株式会社製、商品名:CL−303)104.7g、有機溶剤としてメチルエチルケトン(関東化学株式会社製)130g、プロピレングリコールモノメチルエーテル(関東化学株式会社製)20g、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社、商品名:2PZ−CN)0.3gを投入し、エポキシ樹脂、硬化剤が溶解、無機充填剤が分散するまで撹拌して目的のワニスを得た。
以下、実施例1と同様の方法で両面銅張積層板を作製した。得られた銅張積層板の評価結果を第1表に示す。
Comparative Example 3
100 g of bisphenol A novolac type epoxy resin (manufactured by DIC Corporation, trade name: N865) as an epoxy resin, 0.5 g of dicyandiamide (manufactured by Kanto Chemical Co., Ltd.) and a cresol novolac resin (manufactured by DIC Corporation, commodity) Name KA-1165) 55.2 g, silica as an inorganic filler (manufactured by Admatechs, Inc., trade name: SO-G1) 95.1 g, aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., trade name: CL-303) 104 0.7 g, 130 g of methyl ethyl ketone (manufactured by Kanto Chemical Co., Ltd.) as an organic solvent, 20 g of propylene glycol monomethyl ether (manufactured by Kanto Chemical Co., Ltd.), 1-cyanoethyl-2-phenylimidazole (Shikoku Kasei Kogyo Co., Ltd., trade name) as a curing accelerator : 2PZ-CN) 0.3g , Epoxy resin, curing agent dissolved, to give the desired varnish was stirred until the inorganic filler is dispersed.
Thereafter, a double-sided copper-clad laminate was produced in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained copper-clad laminate.

Figure 0005779962
Figure 0005779962

第1表の実施例1、2と比較例2の比較から、高耐熱水酸化アルミニウム(B)を用いることで耐熱性、ピール強度を同時に向上できることが分かる。また、比較例1は特許文献6で示されている手法を用いたものであり、耐熱性、ピール強度を共に向上できるが、実施例ほどの耐熱性の向上が無い。
従って、本発明によるピール強度と耐熱性を同時に向上できることは、多環式化合物(A)に高耐熱水酸化アルミニウム(B)を用いた場合のみに発現する現象であることが分かる。
From comparison between Examples 1 and 2 and Comparative Example 2 in Table 1, it can be seen that heat resistance and peel strength can be improved at the same time by using high heat-resistant aluminum hydroxide (B). Comparative Example 1 uses the technique shown in Patent Document 6 and can improve both the heat resistance and the peel strength, but does not improve the heat resistance as much as the examples.
Therefore, it can be understood that the peel strength and heat resistance according to the present invention can be improved at the same time, which is a phenomenon that occurs only when the high heat resistant aluminum hydroxide (B) is used for the polycyclic compound ( A).

本発明によれば、多環式化合物(A)に高耐熱水酸化アルミニウム(B)を配合することで、ピール強度と耐熱性を同時に向上した樹脂組成物を得ることができ、パッケージ基板の用途に好適な材料として電子部品の製造等に好適に用いられる。 According to the present invention, by blending the polycyclic compound ( A) with the high heat-resistant aluminum hydroxide (B), a resin composition having improved peel strength and heat resistance can be obtained at the same time. As a material suitable for use, it is suitably used for manufacturing electronic parts.

Claims (15)

多環式化合物(A)と、脱水温度が250℃以上の高耐熱水酸化アルミニウム(B)を含有するパッケージ基板用樹脂組成物(ただし、シアネート樹脂を含むものを除く)であって、多環式化合物(A)がビフェニルノボラック型エポキシ樹脂及びジヒドロアントラセン型エポキシ樹脂であるパッケージ基板用樹脂組成物。 A resin composition for a package substrate containing a polycyclic compound (A) and a high heat-resistant aluminum hydroxide (B) having a dehydration temperature of 250 ° C. or higher ( excluding those containing a cyanate resin) , A resin composition for a package substrate, wherein the formula compound (A) is a biphenyl novolac type epoxy resin and a dihydroanthracene type epoxy resin. さらにシリカ(C)を含有する請求項1に記載のパッケージ基板用樹脂組成物。   Furthermore, the resin composition for package substrates of Claim 1 containing a silica (C). シリカ(C)の含有量が、多環式化合物(A)100質量部に対して、30〜150質量部である請求項2に記載のパッケージ基板用樹脂組成物。   The resin composition for a package substrate according to claim 2, wherein the content of silica (C) is 30 to 150 parts by mass with respect to 100 parts by mass of the polycyclic compound (A). シリカ(C)が、平均粒子径が0.1〜10μmの溶融球状シリカである請求項2又は3に記載のパッケージ基板用樹脂組成物。   The resin composition for a package substrate according to claim 2 or 3, wherein the silica (C) is fused spherical silica having an average particle size of 0.1 to 10 µm. 多環式化合物(A)が、20℃で結晶性状を持つエポキシ樹脂である請求項1〜4のいずれかに記載のパッケージ基板用樹脂組成物。   The resin composition for a package substrate according to any one of claims 1 to 4, wherein the polycyclic compound (A) is an epoxy resin having crystallinity at 20 ° C. 高耐熱水酸化アルミニウム(B)のBET比表面積が3.5〜10m/gである請求項1〜5のいずれかに記載のパッケージ基板用樹脂組成物。 The resin composition for a package substrate according to any one of claims 1 to 5, wherein the BET specific surface area of the high heat-resistant aluminum hydroxide (B) is 3.5 to 10 m 2 / g. 多環式化合物(A)が、下記の一般式(1)で表されるビフェニルノボラック型エポキシ樹脂及び一般式(3)で表されるジヒドロアントラセン型エポキシ樹脂である請求項1〜6のいずれかに記載のパッケージ基板用樹脂組成物。
Figure 0005779962
(R〜Rは、独立に、水素原子又は炭素数1〜4のアルキル基であり、nは1以上の整数である。)
Figure 0005779962
(R〜R10は、独立に、炭素数1〜6のアルキル基であり、pおよびqは0〜4の整数である。)
The polycyclic compound (A) is a biphenyl novolac type epoxy resin represented by the following general formula (1) and a dihydroanthracene type epoxy resin represented by the general formula (3): The resin composition for package substrates as described in 2. above.
Figure 0005779962
(R 1 to R 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 or more.)
Figure 0005779962
(R < 9 > -R < 10 > is a C1-C6 alkyl group independently, and p and q are integers of 0-4.)
高耐熱水酸化アルミニウム(B)の含有量が、多環式化合物(A)100質量部に対して、50〜150質量部である請求項1〜7のいずれかに記載のパッケージ基板用樹脂組成物。   The resin composition for a package substrate according to any one of claims 1 to 7, wherein the content of the high heat-resistant aluminum hydroxide (B) is 50 to 150 parts by mass with respect to 100 parts by mass of the polycyclic compound (A). object. 更に硬化剤を、多環式化合物(A)に対して、0.8〜1.2当量含有する請求項1〜8のいずれかに記載のパッケージ基板用樹脂組成物。   Furthermore, the resin composition for package substrates in any one of Claims 1-8 which contains a hardening | curing agent 0.8-1.2 equivalent with respect to a polycyclic compound (A). 更に硬化促進剤を、多環式化合物(A)100質量部に対して、0.01〜5質量部含有する請求項1〜9のいずれかに記載のパッケージ基板用樹脂組成物。   Furthermore, 0.01-5 mass parts of hardening accelerators are contained with respect to 100 mass parts of polycyclic compounds (A), The resin composition for package substrates in any one of Claims 1-9. 請求項1〜10のいずれかに記載のパッケージ基板用樹脂組成物に有機溶剤を含有するワニス。   The varnish which contains the organic solvent in the resin composition for package substrates in any one of Claims 1-10. 請求項11に記載のワニスを基材に含浸又は塗工した後、Bステージ化して得られたプリプレグ。   A prepreg obtained by impregnating or coating the base material with the varnish according to claim 11 and then forming a B-stage. 基材が、ガラス織布、ガラス不織布、アラミド不織布から選ばれる少なくとも一種である請求項12に記載のプリプレグ。   The prepreg according to claim 12, wherein the substrate is at least one selected from a glass woven fabric, a glass nonwoven fabric, and an aramid nonwoven fabric. 請求項12又は13に記載のプリプレグを積層成形して得られた積層板。   A laminate obtained by laminating the prepreg according to claim 12 or 13. プリプレグの少なくとも一方の面に金属箔を重ねた後、加熱加圧成形して得られた金属張積層板である請求項14に記載の積層板。   The laminate according to claim 14, wherein the laminate is a metal-clad laminate obtained by superposing metal foil on at least one surface of the prepreg and then heating and pressing.
JP2011099643A 2011-04-27 2011-04-27 Resin composition for package substrate and prepreg and laminate using the same Active JP5779962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099643A JP5779962B2 (en) 2011-04-27 2011-04-27 Resin composition for package substrate and prepreg and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099643A JP5779962B2 (en) 2011-04-27 2011-04-27 Resin composition for package substrate and prepreg and laminate using the same

Publications (2)

Publication Number Publication Date
JP2012229362A JP2012229362A (en) 2012-11-22
JP5779962B2 true JP5779962B2 (en) 2015-09-16

Family

ID=47431188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099643A Active JP5779962B2 (en) 2011-04-27 2011-04-27 Resin composition for package substrate and prepreg and laminate using the same

Country Status (1)

Country Link
JP (1) JP5779962B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314068B (en) * 2014-05-29 2021-01-29 住友化学株式会社 Heat-resistant aluminum hydroxide and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209692A (en) * 2004-01-20 2005-08-04 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg for printed-wiring board and metal-clad laminate
JP2005247889A (en) * 2004-03-01 2005-09-15 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg, and laminate using the same
JP2006028297A (en) * 2004-07-14 2006-02-02 Hitachi Chem Co Ltd Prepreg and metal-clad laminated board
JP4926811B2 (en) * 2006-04-28 2012-05-09 日立化成工業株式会社 Resin composition, prepreg, laminate and wiring board
JP2008266513A (en) * 2007-04-24 2008-11-06 Hitachi Chem Co Ltd Curable resin composition, prepreg, laminate, metal foil with adhesive layer, film sheet, and printed wiring board using these materials
US20120111621A1 (en) * 2009-07-24 2012-05-10 Sumitomo Bakelite Company, Ltd. Resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board and semiconductor device
JP5703570B2 (en) * 2010-03-01 2015-04-22 住友ベークライト株式会社 Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
JP5703547B2 (en) * 2009-07-24 2015-04-22 住友ベークライト株式会社 Resin composition, prepreg, laminate, multilayer printed wiring, and semiconductor device

Also Published As

Publication number Publication date
JP2012229362A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP6294478B2 (en) Non-halogen resin composition and use thereof
TWI529161B (en) Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
TWI537341B (en) Thermosetting resin compositions and articles
US10017601B2 (en) Resin composition, prepreg and laminate board
JP2013001807A (en) Resin composition for electronic circuit board material, prepreg and laminated plate
TWI666248B (en) Maleimide resin composition, prepreg, laminate and printed circuit board
JP5682110B2 (en) Thermosetting resin composition, prepreg and laminate using the same
KR102325101B1 (en) Maleimide resin composition, prepreg, laminate and printed circuit board
TWI716967B (en) Resin composition, prepreg, laminate, metal-clad laminate and printed circuit board
US8748513B2 (en) Epoxy resin composition, and prepreg and printed circuit board using the same
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
JP5779962B2 (en) Resin composition for package substrate and prepreg and laminate using the same
KR20180067715A (en) Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
JP2010090182A (en) Flame-retardant epoxy resin composition, prepreg, laminate sheet, and wiring board
JP5593915B2 (en) Method for producing resin composition varnish, prepreg, laminate
JP2021011535A (en) Thermosetting resin composition, prepreg, copper-clad laminate, printed wiring board and semiconductor package
JP2005154739A (en) Resin composition, and prepreg and laminate using the composition
JP5370735B2 (en) Resin composition and prepreg, laminate and wiring board using the same
JP5494010B2 (en) Resin composition and prepreg, laminate and wiring board using the same
JP7274114B2 (en) Thermosetting resin compositions, prepregs, laminates, printed wiring boards, and high-speed communication modules
JP2014053400A (en) Insulating resin material and multilayer substrate
KR20200059296A (en) Resin composition, prepreg, laminate and metal foil laminate
JP5556466B2 (en) Laminate board for wiring boards
JP6695074B2 (en) Resin composition, prepreg, metal foil with resin, metal-clad laminate and wiring board
JP2004059704A (en) Epoxy resin composition for printed wiring board, prepreg and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R151 Written notification of patent or utility model registration

Ref document number: 5779962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350