JP5691833B2 - Thermosetting resin composition, prepreg and laminate - Google Patents

Thermosetting resin composition, prepreg and laminate Download PDF

Info

Publication number
JP5691833B2
JP5691833B2 JP2011112811A JP2011112811A JP5691833B2 JP 5691833 B2 JP5691833 B2 JP 5691833B2 JP 2011112811 A JP2011112811 A JP 2011112811A JP 2011112811 A JP2011112811 A JP 2011112811A JP 5691833 B2 JP5691833 B2 JP 5691833B2
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
prepreg
thermal conductivity
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011112811A
Other languages
Japanese (ja)
Other versions
JP2012241115A (en
Inventor
真裕 青嶌
真裕 青嶌
上方 康雄
康雄 上方
陶 晴昭
晴昭 陶
慎一 小杉
慎一 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011112811A priority Critical patent/JP5691833B2/en
Publication of JP2012241115A publication Critical patent/JP2012241115A/en
Application granted granted Critical
Publication of JP5691833B2 publication Critical patent/JP5691833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱硬化性樹脂組成物と、この熱硬化性樹脂組成物及びガラス繊維を有するプリプレグと、このプリプレグを積層してなる積層板に係り、詳しくは、半導体パッケージやプリント配線板用に好適な熱硬化性樹脂組成物、プリプレグ及び積層板に関する。   The present invention relates to a thermosetting resin composition, a prepreg having the thermosetting resin composition and glass fiber, and a laminate obtained by laminating the prepreg, and more specifically for a semiconductor package or a printed wiring board. The present invention relates to a suitable thermosetting resin composition, prepreg and laminate.

近年、携帯電話やモバイル機器など、電子機器の小型軽量化または薄型化が顕著である。これにより、電子機器内部のプリント配線板に搭載されたICやLSI等の電子部品は高密度化してきており、それに伴って電子機器内部の発熱密度も大きくなっている。
電子機器内の発熱密度が大きくなると、電子機器内部の発熱に伴う温度上昇は顕著になり、電子部品の動作信頼性は低下する。したがって、電子部品や導体から発生した熱を速やかに外部に放出するために、プリント配線基板の放熱性を向上させる必要がある。
上記問題を解決する手段としては、様々な方法が提案されている。例えば特許文献1には、内層回路板に対し、熱硬化性樹脂に電気絶縁性フィラーを分散させた半硬化状態の接着層を積層してなる多層プリント配線板が記載されている。
In recent years, downsizing and thinning of electronic devices such as mobile phones and mobile devices have been remarkable. As a result, electronic components such as ICs and LSIs mounted on a printed wiring board inside the electronic device have been increased in density, and accordingly, the heat generation density inside the electronic device has also increased.
When the heat generation density in the electronic device increases, the temperature rise accompanying heat generation in the electronic device becomes significant, and the operation reliability of the electronic component decreases. Therefore, it is necessary to improve the heat dissipation of the printed wiring board in order to quickly release the heat generated from the electronic components and conductors to the outside.
Various methods have been proposed as means for solving the above problems. For example, Patent Document 1 describes a multilayer printed wiring board in which an inner layer circuit board is laminated with a semi-cured adhesive layer in which an electrically insulating filler is dispersed in a thermosetting resin.

特開2000−349446号公報JP 2000-349446 A

特許文献1のようにフィラーを添加すると放熱性(熱伝導率)が向上するが、その添加割合にも限界があるため、熱硬化性樹脂の方の熱伝導率の更なる向上が望まれている。
しかしながら、熱伝導性に優れた樹脂組成物が得られた場合であっても、ガラス繊維織物に含浸して得られるプリプレグや積層板にすると、熱伝導性が大きく低下することがある。特に、樹脂組成物の熱伝導性がガラス繊維織物の熱伝導性を上回る場合に、プリプレグや積層板にしたときの熱伝導が著しく低下する傾向が見られる。なお、このように樹脂組成物の熱伝導性がガラス繊維織物の熱伝導性を上回る場合、ガラス繊維織物の割合を少なくし、樹脂組成物を多くすることで熱伝導率は改善するが、積層板の剛性が低下したり熱膨張率が増加したりしてしまい、薄い積層板を作ることができない。
When filler is added as in Patent Document 1, the heat dissipation (thermal conductivity) is improved, but since the addition ratio is limited, further improvement of the thermal conductivity of the thermosetting resin is desired. Yes.
However, even when a resin composition having excellent thermal conductivity is obtained, thermal conductivity may be greatly reduced when a prepreg or laminate obtained by impregnating a glass fiber fabric is used. In particular, when the thermal conductivity of the resin composition exceeds the thermal conductivity of the glass fiber woven fabric, there is a tendency that the thermal conductivity when the prepreg or the laminated plate is made is remarkably lowered. In addition, when the thermal conductivity of the resin composition exceeds the thermal conductivity of the glass fiber fabric, the thermal conductivity is improved by reducing the proportion of the glass fiber fabric and increasing the resin composition. The rigidity of a board falls or a thermal expansion coefficient increases, and a thin laminated board cannot be made.

本発明はかかる事情に鑑みなされたものであり、ガラス繊維織物に含浸した際のプリプレグの熱伝導率の低下が小さいために熱伝導率の高いプリプレグを製造することが可能な樹脂組成物と、この樹脂組成物を用いたプリプレグ及び積層板とを提供することを目的とする。   The present invention has been made in view of such circumstances, a resin composition capable of producing a prepreg having a high thermal conductivity because a decrease in the thermal conductivity of the prepreg when impregnated into a glass fiber fabric is small, and An object is to provide a prepreg and a laminate using the resin composition.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定のエポキシ樹脂及び多価フェノール性化合物を含有する樹脂組成物が、上記目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have found that a resin composition containing a specific epoxy resin and a polyhydric phenolic compound can achieve the above object. The present invention has been completed based on such findings.

すなわち、本発明は、以下の[1]〜[7]を提供するものである。
[1]下記一般式(1)で表わされるエポキシ樹脂と、下記一般式(2)で表わされる繰り返し構造及び/又は下記一般式(3)で表される繰り返し構造を有するフェノール性化合物とを配合してなる熱硬化性樹脂組成物。
That is, the present invention provides the following [1] to [7].
[1] An epoxy resin represented by the following general formula (1) and a phenolic compound having a repeating structure represented by the following general formula (2) and / or a repeating structure represented by the following general formula (3) A thermosetting resin composition.

Figure 0005691833
Figure 0005691833

Figure 0005691833
Figure 0005691833

Figure 0005691833
Figure 0005691833

[式(1)中において、mは0〜10の整数であり、nは0〜10の整数であり、R1及びR2はそれぞれ独立に水素又は炭素数1〜10のアルキル基である。]
[2]前記フェノール性化合物の数平均分子量が300〜600であり、前記フェノール性化合物中におけるカテコール及びレゾルシノールの合計数に対するレゾルシノールの存在比率が80%以上である[1]に記載の熱硬化性樹脂組成物。
[3]前記熱硬化性樹脂組成物は、酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、酸化珪素、及び窒化硼素より選ばれる1種又は2種以上よりなる無機充填材を含有しており、前記無機充填材の前記熱硬化性樹脂組成物全体に対する含有量が30〜70体積%である[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]前記無機充填材は表面処理剤で表面処理されたものである[3]に記載の熱硬化性樹脂組成物。
[5][1]〜[4]のいずれか1項に記載の熱硬化性樹脂組成物と、ガラス繊維基材と
を含有するプリプレグ。
[6]プリプレグ全体に対する前記熱硬化性樹脂組成物の含有量が60〜90体積%である[5]に記載のプリプレグ。
[7][5]又は[6]に記載のプリプレグを積層成形してなる積層板。
[In the formula (1), m is an integer of 0, n is an integer of 0, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms. ]
[2] The thermosetting property according to [1], wherein the number average molecular weight of the phenolic compound is 300 to 600, and the abundance ratio of resorcinol to the total number of catechol and resorcinol in the phenolic compound is 80% or more. Resin composition.
[3] The thermosetting resin composition contains an inorganic filler composed of one or more selected from aluminum oxide, magnesium oxide, magnesium hydroxide, silicon oxide, and boron nitride. The thermosetting resin composition according to [1] or [2], wherein a content of the filler with respect to the entire thermosetting resin composition is 30 to 70% by volume.
[4] The thermosetting resin composition according to [3], wherein the inorganic filler is surface-treated with a surface treatment agent.
[5] A prepreg containing the thermosetting resin composition according to any one of [1] to [4] and a glass fiber substrate.
[6] The prepreg according to [5], wherein the content of the thermosetting resin composition with respect to the entire prepreg is 60 to 90% by volume.
[7] A laminate obtained by laminating the prepreg according to [5] or [6].

本発明によれば、ガラス繊維に含浸した際におけるプリプレグの熱伝導率の低下が小さい熱硬化性樹脂組成物の熱伝導率と、熱伝導率が高いために半導体パッケージやプリント配線板用に好適なプリプレグ及び積層板とを提供することができる。   According to the present invention, the thermal conductivity of the thermosetting resin composition with a small decrease in the thermal conductivity of the prepreg when impregnated into the glass fiber and the high thermal conductivity are suitable for semiconductor packages and printed wiring boards. Prepregs and laminates can be provided.

以下、本発明の熱硬化性樹脂組成物、それを用いたプリプレグ、及びこのプリプレグを積層してなる積層板について詳細に説明する。
<熱硬化性樹脂組成物>
本発明の樹脂組成物は、エポキシ樹脂と、フェノール性化合物とを配合してなるものである。
Hereinafter, the thermosetting resin composition of the present invention, a prepreg using the same, and a laminate obtained by laminating the prepreg will be described in detail.
<Thermosetting resin composition>
The resin composition of the present invention is obtained by blending an epoxy resin and a phenolic compound.

[エポキシ樹脂]
本発明で用いられるエポキシ樹脂は、下記一般式(1)で表わされるエポキシ樹脂を含むものである。
[Epoxy resin]
The epoxy resin used in the present invention includes an epoxy resin represented by the following general formula (1).

Figure 0005691833
Figure 0005691833

[式(1)中において、mは0〜10の整数であり、nは0〜10の整数であり、R1及びR2はそれぞれ独立に水素又は炭素数1〜10のアルキル基である。] [In the formula (1), m is an integer of 0, n is an integer of 0, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms. ]

この一般式(1)で表わされるエポキシ樹脂を配合した熱硬化性樹脂組成物は、ガラス繊維基材に含浸させる等してプリプレグにした際における熱伝導率の低下が小さいため、熱伝導率の大きいプリプレグ及び積層板を得ることができる。また、溶剤に対する溶解性に優れるため、プリプレグ製造用のワニスを容易に得ることができる。さらに、溶融粘度が低くフィラー充填性に優れ、また耐熱性にも優れる。   The thermosetting resin composition blended with the epoxy resin represented by the general formula (1) has a small decrease in thermal conductivity when it is made into a prepreg by impregnating the glass fiber base material, etc. Large prepregs and laminates can be obtained. Moreover, since it is excellent in the solubility with respect to a solvent, the varnish for prepreg manufacture can be obtained easily. Furthermore, it has a low melt viscosity, excellent filler filling properties, and excellent heat resistance.

式(1)中において、mが10よりも大きいと、分子量が大きくなるため粘度が高くなり、作業性、流動性、耐ブロッキング性、保存安定性の面で不都合がある。nが10よりも大きい場合も同様である。このmは好ましくは1であり、このnは好ましくは1である。   In the formula (1), when m is larger than 10, the molecular weight is increased and the viscosity is increased, which is disadvantageous in terms of workability, fluidity, blocking resistance, and storage stability. The same applies when n is greater than 10. This m is preferably 1, and this n is preferably 1.

また、式(1)中において、R1及びR2は、好ましくは共に水素である。
なお、エポキシ樹脂として、一般式(1)で表わされるエポキシ樹脂以外のエポキシ樹脂が一般式(1)で表されるエポキシ樹脂と共に配合されていてもよい。その際、エポキシ樹脂総量における一般式(1)で表されるエポキシ樹脂の割合が30重量%以上であることが好ましく、50重量%であることがより好ましい。このエポキシ樹脂としては、たとえば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のグリシジルエーテル化合物等が挙げられる。
In formula (1), R 1 and R 2 are preferably both hydrogen.
In addition, as an epoxy resin, epoxy resins other than the epoxy resin represented by General formula (1) may be mix | blended with the epoxy resin represented by General formula (1). In that case, it is preferable that the ratio of the epoxy resin represented by General formula (1) in epoxy resin total amount is 30 weight% or more, and it is more preferable that it is 50 weight%. Examples of this epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol. A novolak type epoxy resin, bisphenol F novolak type epoxy resin, dicyclopentadiene type epoxy resin, polyfunctional aromatic compounds such as glycidyl ether compounds such as polyfunctional phenols and anthracene.

[フェノール性化合物]
本発明で用いられるフェノール性化合物は、下記一般式(2)で表わされる繰り返し構造及び/又は下記一般式(3)で表される繰り返し構造を有するものである。
[Phenolic compounds]
The phenolic compound used in the present invention has a repeating structure represented by the following general formula (2) and / or a repeating structure represented by the following general formula (3).

Figure 0005691833
Figure 0005691833

Figure 0005691833
Figure 0005691833

上記フェノール性化合物を配合した熱硬化性樹脂組成物は、熱伝導率が高い。その理由は明らかでないが、このフェノール性化合物の水酸基が上記一般式(1)で表わされるエポキシ樹脂のエポキシ基と反応することで、高熱伝導性が付与されるものと考えられる。   The thermosetting resin composition containing the phenolic compound has high thermal conductivity. Although the reason is not clear, it is considered that high thermal conductivity is imparted by the reaction of the hydroxyl group of the phenolic compound with the epoxy group of the epoxy resin represented by the general formula (1).

また、レゾルシノールはカテコールより熱伝導性に優れ、カテコールは安定性に優れていることから、レゾルシノールとカテコールの混合物をノボラック化したものが好ましい。具体的には、カテコール及びレゾルシノールの合計数に対するレゾルシノールの存在比率が80%以上100%未満とすることが好ましく、85%以上98%未満とすることがより好ましい。また、プリプレグの可とう性を向上するため、レゾルシノールやカテコールのモノマを一定量含むことも有効である。   Resorcinol is superior in thermal conductivity to catechol, and catechol is superior in stability. Therefore, a novolak mixture of resorcinol and catechol is preferred. Specifically, the ratio of resorcinol to the total number of catechol and resorcinol is preferably 80% or more and less than 100%, and more preferably 85% or more and less than 98%. It is also effective to contain a certain amount of resorcinol or catechol monomer in order to improve the flexibility of the prepreg.

このフェノール性化合物の数平均分子量は、好ましくは300〜600であり、より好ましくは350〜575であり、更に好ましくは400〜550である。300以下であるとモノマの存在比率が多くなり、硬化しにくくなったり、Tgが低くなる傾向があり、600以上であるとプリプレグの柔軟性が失われる傾向がある。
このフェノール性化合物の一般式(1)で表わされるエポキシ樹脂に対する配合割合は、エポキシ樹脂のエポキシ1当量に対して0.85〜1.25当量にして用いることが好ましく、0.8〜1.2であることがより好ましい。
The number average molecular weight of the phenolic compound is preferably 300 to 600, more preferably 350 to 575, and still more preferably 400 to 550. When the ratio is 300 or less, the presence ratio of the monomer is increased, and it tends to be hard to be cured or the Tg tends to be low. When the ratio is 600 or more, the flexibility of the prepreg tends to be lost.
The blending ratio of this phenolic compound to the epoxy resin represented by the general formula (1) is preferably 0.85 to 1.25 equivalent to 1 epoxy equivalent of the epoxy resin. 2 is more preferable.

[無機充填材]
本発明の熱硬化性樹脂組成物は、さらに無機充填材を含有することが好ましい。これにより、プリプレグや積層体の熱伝導性が向上する。
この無機充填材の材料としては、シランカップリング剤もしくはシリコーンオリゴマーのアルコキシ基や加水分解してできるシラノール基が強い吸着性、反応性を持つ絶縁材料が好ましい。それは表面にOH基をもった無機材料であり、例えば酸化珪素、酸化アルミニウムなどはシランカップリング剤もしくはシリコーンオリゴマーの効果が顕著に現れる。その中でも25℃における熱伝導率が3W/mK以上の熱伝導率の高い無機充填材を用いるのが好ましく、酸化アルミニウム(25℃における熱伝導率:20〜30W/mK)が好ましい無機充填材である。その他にも、酸化マグネシウム、水酸化マグネシウム、及び窒化硼素も好適に用いられる。これらの無機充填材は、単独で使用されても良く、2種以上で使用されても良い。
ここで、熱伝導率は温度の依存性があるため、測定上の制約が少なく管理も容易な温度である25℃における熱伝導率を、無機充填材、樹脂組成物、プリプレグ、積層板等の熱伝導率として使用した。
[Inorganic filler]
The thermosetting resin composition of the present invention preferably further contains an inorganic filler. Thereby, the thermal conductivity of a prepreg or a laminated body improves.
As the material for the inorganic filler, an insulating material having a strong adsorptivity and reactivity of an alkoxy group of a silane coupling agent or a silicone oligomer or a silanol group formed by hydrolysis is preferable. It is an inorganic material having an OH group on the surface. For example, silicon oxide, aluminum oxide, etc. have a remarkable effect of a silane coupling agent or a silicone oligomer. Among them, it is preferable to use an inorganic filler having a high thermal conductivity of 3 W / mK or higher at 25 ° C., and aluminum oxide (thermal conductivity at 25 ° C .: 20 to 30 W / mK) is a preferable inorganic filler. is there. In addition, magnesium oxide, magnesium hydroxide, and boron nitride are also preferably used. These inorganic fillers may be used alone or in combination of two or more.
Here, since the thermal conductivity is temperature dependent, the thermal conductivity at 25 ° C., which is a temperature that is less constrained in measurement and easy to manage, is used for inorganic fillers, resin compositions, prepregs, laminates, Used as thermal conductivity.

また、無機充填材の形状は、樹脂に高充填した際に流動性の低下が少ない球状の粒子が好ましい。無機充填材の粒子径は、累積50%粒子径が0.1〜10μmが好ましい。この粒子径の領域では、粒子径が大きいほどフィラの充填性が向上するが、粒子径が5μm以上になるとガラス繊維織物を含むプリプレグの厚さを薄くすることができるため、特に0.3〜5μmのものが好ましい。
ここで、累積50%粒子径とは、粉末の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置などで測定することができる。
Moreover, the shape of the inorganic filler is preferably spherical particles with little decrease in fluidity when the resin is highly filled. The particle size of the inorganic filler is preferably 0.1 to 10 μm with a cumulative 50% particle size. In this particle size region, the filler filling property is improved as the particle size is increased. However, when the particle size is 5 μm or more, the thickness of the prepreg including the glass fiber fabric can be reduced. The thing of 5 micrometers is preferable.
Here, the cumulative 50% particle diameter is the particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the powder as 100%. It can be measured by a particle size distribution measuring apparatus using a method.

本発明では、熱硬化性樹脂組成物中の無機充填材の含有量は、樹脂組成物全体に対して、好ましくは30〜80体積%であり、より好ましくは30〜70体積%であり、更に好ましくは40〜65体積%であり、特に好ましくは45〜60体積%である。無機充填材の含有量が樹脂組成物全体の30〜80体積%であると、無機充填材による樹脂組成物の熱伝導率を高める効果が大きく、また樹脂組成物の熱膨張率が低減し、適度な流動性を有し優れた成形性を有する樹脂組成物が得られるからである。詳しくは、無機充填材の含有量が樹脂組成物全体の30体積%以上であると、熱伝導効果が十分となり、80体積%以下であると、流動性が維持されて成形性が良好となる。
ここで、無機充填材の体積%とは、樹脂組成物全体の体積に対する無機充填材の占める体積を百分率で示したものである。
In the present invention, the content of the inorganic filler in the thermosetting resin composition is preferably 30 to 80% by volume, more preferably 30 to 70% by volume, based on the entire resin composition. Preferably it is 40-65 volume%, Most preferably, it is 45-60 volume%. When the content of the inorganic filler is 30 to 80% by volume of the entire resin composition, the effect of increasing the thermal conductivity of the resin composition by the inorganic filler is large, and the thermal expansion coefficient of the resin composition is reduced. This is because a resin composition having appropriate fluidity and excellent moldability can be obtained. Specifically, if the content of the inorganic filler is 30% by volume or more of the entire resin composition, the heat conduction effect is sufficient, and if it is 80% by volume or less, the fluidity is maintained and the moldability is improved. .
Here, the volume% of the inorganic filler is a percentage of the volume occupied by the inorganic filler with respect to the total volume of the resin composition.

上記のとおり、無機充填材は、表面処理剤で前処理されたり、インテグラルブレンド処理されたりしていることが好ましい。この表面処理剤としては、シランカップリング剤、シリコーンオリゴマー等が挙げられる。   As described above, the inorganic filler is preferably pretreated with a surface treatment agent or subjected to an integral blend treatment. Examples of the surface treatment agent include a silane coupling agent and a silicone oligomer.

このうち、シランカップリング剤としては、具体的には、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、2−(2,3−エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシ基含有シラン;3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピル(メチル)ジメトキシシランのようなアミノ基含有シラン;3−(トリメトキシリル)プロピルテトラメチルアンモニウムクロリドのようなカチオン性シラン;ビニルトリエトキシシランのようなビニル基含有シラン;3−メタクリロキシプロピルトリメトキシシランのようなアクリル基含有シラン;および3−メルカプトプロピルトリメトキシシランのようなメルカプト基含有シランが挙げられる。
なお、上記シランカップリング剤のほかに、チタネート系等のカップリング剤を用いてもよい。
Of these, specific examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl (methyl) dimethoxysilane, and 2- (2,3-epoxycyclohexyl) ethyltrimethoxy. Epoxy group-containing silane such as silane; 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl (methyl) Amino group-containing silanes such as dimethoxysilane; cationic silanes such as 3- (trimethoxylyl) propyltetramethylammonium chloride; vinyl group-containing silanes such as vinyltriethoxysilane; 3-methacryloxypropyltrimethoxysilane Acrylic group-containing silanes such as; and 3- Mercapto group-containing silane such as Le mercaptopropyl trimethoxysilane.
In addition to the silane coupling agent, a titanate-based coupling agent may be used.

[その他の配合成分]
本発明の熱硬化性樹脂組成物には、上記成分以外の成分を配合してもよい。たとえば、上記フェノール性化合物以外の硬化剤を配合してもよい。また、硬化促進剤、熱可塑性樹脂、エラストマー、難燃剤、紫外線吸収剤、酸化防止剤、密着性向上剤等を配合してもよい。
[Other ingredients]
You may mix | blend components other than the said component with the thermosetting resin composition of this invention. For example, you may mix | blend hardeners other than the said phenolic compound. Moreover, you may mix | blend a hardening accelerator, a thermoplastic resin, an elastomer, a flame retardant, a ultraviolet absorber, antioxidant, an adhesive improvement agent, etc.

硬化促進剤の例としては、たとえばエポキシ樹脂の硬化促進剤として、イミダゾール類及びその誘導体;有機リン系化合物;第二級アミン類、第三級アミン類、及び第四級アンモニウム塩;等が挙げられる。   Examples of curing accelerators include, for example, epoxy resin curing accelerators such as imidazoles and derivatives thereof; organophosphorus compounds; secondary amines, tertiary amines, and quaternary ammonium salts; It is done.

このようなイミダゾール類及びその誘導体としては、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ヘプタデシルイミダゾール、4、5−ジフェニルイミダゾール、2−メチルイミダゾリン、2−フェニルイミダゾリン、2−ウンデシルイミダゾリン、2−ヘプタデシルイミダゾリン、2−イソプロピルイミダゾール、2、4−ジメチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−エチルイミダゾリン、2−イソプロピルイミダゾリン、2、4−ジメチルイミダゾリン、2−フェニル−4−メチルイミダゾリン等が挙げられる。これらイミダゾール系化合物は、マスク化剤によりマスクされていても良い。
このようなマスク化剤としては、アクリルニトリル、フェニレンジイソシアネート、トルイジンイソシアニネート、ナフタレンジイソシアネート、メチレンビスフェニルイソシアネート、メラミンアクリレート等が挙げられる。
Examples of such imidazoles and derivatives thereof include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-heptadecylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2 -Phenyl-4-methylimidazole, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4-methylimidazoline and the like. These imidazole compounds may be masked with a masking agent.
Examples of such a masking agent include acrylonitrile, phenylene diisocyanate, toluidine isocyaninate, naphthalene diisocyanate, methylene bisphenyl isocyanate, melamine acrylate and the like.

有機リン系化合物としては、エチレンホスフィン、プロピルホスフィン、ブチルホスフィン、フェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン/トリフェニルボラン錯体、テトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。   Examples of organophosphorus compounds include ethylenephosphine, propylphosphine, butylphosphine, phenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, triphenylphosphine / triphenylborane complex, tetra Examples include phenylphosphonium tetraphenylborate.

第二級アミン類としては、モルホリン、ピペリジン、ピロリジン、ジメチルアミン、ジエチルアミン、ジシクロヘキシルアミン、N−アルキルアリールアミン、ピペラジン、ジアリルアミン、チアゾリン、チオモルホリン等が挙げられる。
第三級アミン類としては、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2、4、6−トリス(ジアミノメチル)フェノール等が挙げられる。
第四級アンモニウム塩としては、テトラブチルアンモニウムアイオダイド、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムフルオライド、塩化ベンザルコニウム、ベンジルジ(2−ヒドロキシエチル)エチルアンモニウムクロライド、デシルジ(2−ヒドロキシエチル)メチルアンモニウムブロマイド等が挙げられる。
なお、上記硬化促進剤は、2種類以上を併用しても良い。
Secondary amines include morpholine, piperidine, pyrrolidine, dimethylamine, diethylamine, dicyclohexylamine, N-alkylarylamine, piperazine, diallylamine, thiazoline, thiomorpholine and the like.
Tertiary amines include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl) phenol, and the like.
Quaternary ammonium salts include tetrabutylammonium iodide, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium fluoride, benzalkonium chloride, benzyldi (2-hydroxyethyl) ethylammonium chloride, decyldi (2- And hydroxyethyl) methylammonium bromide.
In addition, the said hardening accelerator may use 2 or more types together.

難燃剤の例としては、臭素や塩素を含有する含ハロゲン系難燃剤、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、ホスファゼン、赤リン等のリン系難燃剤;三酸化アンチモン;等の無機系難燃剤が挙げられる。
その他、紫外線吸収剤の例としてはベンゾトリアゾール系紫外線吸収剤、酸化防止剤の例としてはヒンダードフェノール系やスチレン化フェノール系酸化防止剤、密着性向上剤の例としては尿素シラン等の尿素化合物やシランカップリング剤が挙げられる。
Examples of flame retardants include halogen-containing flame retardants containing bromine and chlorine, phosphorus flame retardants such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphazene, red phosphorus; antimony trioxide; An inorganic flame retardant is mentioned.
Other examples of UV absorbers include benzotriazole UV absorbers, examples of antioxidants include hindered phenols and styrenated phenols, and examples of adhesion improvers include urea compounds such as urea silane. And silane coupling agents.

[ワニス]
本発明の熱可塑性樹脂組成物は、プリプレグに用いられるため、各成分が有機溶媒中に溶解もしくは分散された状態で配合され、最終的にはワニスの状態で提供されることが好ましい。
[varnish]
Since the thermoplastic resin composition of the present invention is used for a prepreg, it is preferable that each component is blended in a state of being dissolved or dispersed in an organic solvent, and finally provided in a varnish state.

この際用いる有機溶媒としては、例えばメタノール、エタノール、プロパノール、ブタノール等のアルコール類;メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;テトラヒドロフラン等のエーテル類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;等が挙げられ、単独または2種以上を混合して使用できる。
これらの中で、溶解性の点からメチルイソブチルケトン、メチルエチルケトン、プロピレングリコールモノメチルエーテル、メチルセロソルブが好ましく、低毒性である点からメチルイソブチルケトン、プロピレングリコールモノメチルエーテルがより好ましい。
Examples of the organic solvent used here include alcohols such as methanol, ethanol, propanol and butanol; glycol ethers such as methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Esters such as butyl acetate and propylene glycol monomethyl ether acetate; Ethers such as tetrahydrofuran; Aromatic hydrocarbons such as toluene and xylene; Nitrogen-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; Dimethyl sulfoxide and the like Or a mixture of two or more of them.
Among these, methyl isobutyl ketone, methyl ethyl ketone, propylene glycol monomethyl ether and methyl cellosolve are preferable from the viewpoint of solubility, and methyl isobutyl ketone and propylene glycol monomethyl ether are more preferable from the viewpoint of low toxicity.

また、配合の順序は、無機充填材をあらかじめ有機溶媒中に分散させた後、無機充填材以外の成分と配合することが好ましい。
無機充填材を有機溶媒中に分散させる際は、分散性向上のためにビーズミル、ホモジナイザー、ジェットミル等の分散機を使うことができる。また、上述のとおり、無機充填材をシラン系やチタネート系等のカップリング剤、シリコーンオリゴマー等の表面処理剤で前処理、あるいはインテグラルブレンド処理することも好ましい。
The blending order is preferably blended with components other than the inorganic filler after the inorganic filler is previously dispersed in the organic solvent.
When dispersing the inorganic filler in the organic solvent, a disperser such as a bead mill, a homogenizer, or a jet mill can be used to improve dispersibility. In addition, as described above, it is also preferable that the inorganic filler is pretreated with an silane or titanate coupling agent, or a surface treatment agent such as a silicone oligomer, or an integral blend treatment.

最終的に得られるワニス中の樹脂組成物は、ワニス全体の40〜90質量%であることが好ましく、50〜80質量%であることがより好ましい。ワニス中の樹脂組成物の含有量が50質量%以上であると、適切な樹脂組成物の付着量のプリプレグを作製することが容易となり、80質量%以下であると、ワニスの粘度が低くなり塗工性が向上する。   It is preferable that the resin composition in the varnish finally obtained is 40 to 90 mass% of the whole varnish, and it is more preferable that it is 50 to 80 mass%. When the content of the resin composition in the varnish is 50% by mass or more, it becomes easy to prepare a prepreg having an appropriate resin composition adhesion amount, and when it is 80% by mass or less, the viscosity of the varnish becomes low. Coating property is improved.

<プリプレグ>
次に上記の熱硬化性樹脂組成物を用いたプリプレグについて説明する。
本発明のプリプレグは、上記の熱硬化性樹脂組成物をガラス繊維基材に含浸、吹付け、押出し等の方法で塗工し、加熱等により半硬化して製造することができる。特に、上記樹脂組成物ワニスを用いて基材に含浸塗工し、加熱半硬化する方法が生産性に優れているので好ましい。
<Prepreg>
Next, a prepreg using the above thermosetting resin composition will be described.
The prepreg of the present invention can be produced by coating the above-mentioned thermosetting resin composition on a glass fiber substrate by a method such as impregnation, spraying or extrusion, and semi-curing by heating or the like. In particular, a method of impregnating a substrate with the resin composition varnish and heating and semi-curing is preferable because it is excellent in productivity.

プリプレグ全体に対する熱硬化性樹脂組成物の含有割合は、好ましくは60〜90体積%であり、より好ましくは65〜85体積%であり、更に好ましくは70〜85体積%である。特に70体積%以上であると、熱伝導率の大きい熱硬化性樹脂組成物の含有割合が大きいため、プリプレグの熱伝導率が高くなる。60体積%以下であると、ガラス繊維基材の含有割合が大きいため、剛性及び熱膨張性が高くなるが、熱伝導性は損なわれる。   The content ratio of the thermosetting resin composition with respect to the entire prepreg is preferably 60 to 90% by volume, more preferably 65 to 85% by volume, and still more preferably 70 to 85% by volume. In particular, when the content is 70% by volume or more, since the content ratio of the thermosetting resin composition having a large thermal conductivity is large, the thermal conductivity of the prepreg is increased. When the content is 60% by volume or less, since the content ratio of the glass fiber base material is large, rigidity and thermal expansibility are increased, but thermal conductivity is impaired.

[ガラス繊維基材]
本発明のプリプレグに用いるガラス繊維基材としては、Eガラス、Dガラス、SガラスおよびQガラス等が挙げられる。
これらのガラス繊維基材は、例えば、織布、不織布、ロービンク、チョップドストランドマットおよびサーフェシングマット等の形状を有するが、材質および形状は目的とする積層板の用途や性能により選択され、必要により、単独または2種類以上の材質および形状を組み合せることができる。シランカップリング剤等で表面処理したもの、または機械的に開繊処理を施したものが耐熱性や耐湿性、加工性の面から好ましい。また熱伝導性を高める場合には、未開繊のものを使用することが好ましい。
ガラス繊維基材の厚さは、好ましくは0.01〜0.2mmであり、より好ましくは0.02〜0.15mmであり、更に好ましくは0.02〜0.1mmである。
[Glass fiber substrate]
Examples of the glass fiber substrate used for the prepreg of the present invention include E glass, D glass, S glass, and Q glass.
These glass fiber base materials have shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the laminated board, and if necessary A single material or a combination of two or more materials and shapes can be used. Those subjected to surface treatment with a silane coupling agent or the like, or those subjected to mechanical opening treatment are preferred from the viewpoints of heat resistance, moisture resistance and processability. Moreover, when improving thermal conductivity, it is preferable to use an unopened fiber.
The thickness of the glass fiber substrate is preferably 0.01 to 0.2 mm, more preferably 0.02 to 0.15 mm, and still more preferably 0.02 to 0.1 mm.

<積層板>
本発明の積層板は、本発明のプリプレグを用いて積層成形してなるものである。例えば、本発明のプリプレグを1〜20枚重ね、その片面または両面に銅またはアルミニウム等の金属箔を配置した構成で、多段プレス、多段真空プレス、連続成形機、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で積層成形して、金属箔張積層板を製造することができる。金属箔は、電子部品用途で用いるものであれば特に制限されない。また、本発明のプリプレグと内層用配線板とを組合せて積層成形し、多層板を製造することもできる。
<Laminated plate>
The laminate of the present invention is formed by laminate molding using the prepreg of the present invention. For example, 1 to 20 prepregs of the present invention are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides thereof, and a multistage press, a multistage vacuum press, a continuous molding machine, an autoclave molding machine, etc. are used. A metal foil-clad laminate can be produced by laminate molding at a temperature of 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours. The metal foil is not particularly limited as long as it is used for electronic parts. Moreover, the prepreg of the present invention and the inner layer wiring board can be laminated and molded to produce a multilayer board.

<熱伝導率の評価方法>
熱硬化性樹脂組成物、プリプレグおよび積層板の熱伝導率は、熱拡散率と定圧比熱容量と密度の積で求めることが出来る。熱拡散率や定圧比熱容量は、フラッシュ法によって測定することができる。フラッシュ法にはレーザーフラッシュ法やキセノンフラッシュ法などがある。また、定圧比熱容量は示差走査熱量測定(DSC)によって求めることもできる。密度は、アルキメデス法等によって測定することができる。熱伝導率は温度の依存性があるため、すべての測定は同一温度で測定することが好ましい。
<Method of evaluating thermal conductivity>
The thermal conductivity of the thermosetting resin composition, prepreg, and laminate can be determined by the product of thermal diffusivity, constant pressure specific heat capacity, and density. The thermal diffusivity and the constant pressure specific heat capacity can be measured by a flash method. The flash method includes a laser flash method and a xenon flash method. The constant pressure specific heat capacity can also be determined by differential scanning calorimetry (DSC). The density can be measured by the Archimedes method or the like. Since thermal conductivity is temperature dependent, all measurements are preferably made at the same temperature.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited by these Examples.

[成分]
なお、各成分として、次のものを用いた。
<エポキシ樹脂A>
ナフタレン型エポキシ樹脂
(DIC(株)製、商品名:EPICLON HP4032D)
<エポキシ樹脂B>
ナフタレン型エポキシ樹脂
(DIC(株)製、商品名:EPICLON EXA4070)
<エポキシ樹脂C>
ビフェニル型エポキシ樹脂
(ジャパンエポキシレジン製、商品名:YL6121H)
<エポキシ樹脂D>
フェノールノボラック型エポキシ樹脂
(DIC(株)製、商品名:N770M70)
<フェノール性化合物(硬化剤)E>
カテコール・レゾルシノールノボラック
(日立化成工業(株)製、材料名:A−4、数平均分子量:430、カテコール及び
レゾルシノールノボラックの合計数に対するレゾルシノールの割合:95%、
シクロヘキサノン50%希釈液)
<フェノール性化合物(硬化剤)F>
クレゾールノボラック型フェノール樹脂
(大日本インキ化学工業(株)製、商品名:KA−1165)
<硬化促進剤G>
2−エチル−4−メチルイミダゾール
(四国化成(株)製、商品名:2E4MZ)
<無機充填材H>
酸化アルミニウムAl23
(住友化学(株)製、商品名:AA−1.5、AA−0.4)
<表面処理剤I>
シランカップリング剤
(信越化学工業(株)製、商品名:KBM573)
[component]
In addition, the following were used as each component.
<Epoxy resin A>
Naphthalene type epoxy resin (manufactured by DIC Corporation, trade name: EPICLON HP4032D)
<Epoxy resin B>
Naphthalene type epoxy resin (manufactured by DIC Corporation, trade name: EPICLON EXA4070)
<Epoxy resin C>
Biphenyl type epoxy resin (product name: YL6121H, manufactured by Japan Epoxy Resin)
<Epoxy resin D>
Phenol novolac type epoxy resin (manufactured by DIC Corporation, trade name: N770M70)
<Phenolic compound (curing agent) E>
Catechol / resorcinol novolak (manufactured by Hitachi Chemical Co., Ltd., material name: A-4, number average molecular weight: 430, ratio of resorcinol to the total number of catechol and resorcinol novolak: 95%,
Cyclohexanone 50% dilution)
<Phenolic compound (curing agent) F>
Cresol novolac type phenolic resin (Dainippon Ink Chemical Co., Ltd., trade name: KA-1165)
<Curing accelerator G>
2-Ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name: 2E4MZ)
<Inorganic filler H>
Aluminum oxide Al 2 O 3
(Product name: AA-1.5, AA-0.4, manufactured by Sumitomo Chemical Co., Ltd.)
<Surface treatment agent I>
Silane coupling agent (trade name: KBM573, manufactured by Shin-Etsu Chemical Co., Ltd.)

実施例1
(熱硬化樹脂組成物のワニスの作製)
表1に示した樹脂組成物の配合のうち、まず無機充填材H(酸化アルミニウム)1000gを用い、その最小被覆面積を満たす表面処理剤I(シランカップリング剤)を10g添加して乾式処理した。次に、エポキシ樹脂としてエポキシ樹脂A(ナフタレン骨格を有するエポキシ樹脂)193.3gおよびフェノール性化合物E(カテコール・レゾルシノールノボラック)84.1g(シクロヘキサノンを含まない重量)をシクロヘキサノン200gとメチルエチルケトン125gの混合溶媒中に加えて均一に分散するまで撹拌した。さらに、上記無機充填材H(酸化アルミニウム)を撹拌しながら加え、分散液とその他の成分が十分混合してから硬化促進剤G(2−エチル−4−メチルイミダゾール)0.83gを加えて全体が均一になるまで攪拌した。最後に、塗工に適切な粘度になるようにメチルエチルケトン25gとシクロヘキサノン50gを加えて濃度を調整し、樹脂組成物のワニスを得た。
Example 1
(Preparation of varnish of thermosetting resin composition)
Of the resin compositions shown in Table 1, first, 1000 g of inorganic filler H (aluminum oxide) was used, and 10 g of surface treatment agent I (silane coupling agent) satisfying the minimum covering area was added and dry-treated. . Next, 193.3 g of epoxy resin A (epoxy resin having a naphthalene skeleton) as an epoxy resin and 84.1 g of phenolic compound E (catechol / resorcinol novolak) (weight not including cyclohexanone) are mixed solvent of 200 g of cyclohexanone and 125 g of methyl ethyl ketone. The mixture was stirred until it was uniformly dispersed. Further, the inorganic filler H (aluminum oxide) is added with stirring, and after the dispersion and other components are sufficiently mixed, 0.83 g of a curing accelerator G (2-ethyl-4-methylimidazole) is added to the whole. Was stirred until. Finally, 25 g of methyl ethyl ketone and 50 g of cyclohexanone were added to adjust the concentration so that the viscosity was appropriate for coating, and a varnish of the resin composition was obtained.

(熱伝導率評価用樹脂板の作製)
また、上記樹脂組成物のワニスをガラス板に塗工し、150℃で5分加熱乾燥して得られた膜から樹脂組成物の粉末を得た。この樹脂組成物の粉末を温度185℃、圧力4MPaで1.5時間成形を行って、厚さ1mmの樹脂板を得た。この樹脂板を10mm角の大きさに切断して、熱伝導率評価用樹脂板を作製した。
(Preparation of resin plate for thermal conductivity evaluation)
Moreover, the resin composition powder was obtained from a film obtained by coating the varnish of the resin composition on a glass plate and heating and drying at 150 ° C. for 5 minutes. The resin composition powder was molded at a temperature of 185 ° C. and a pressure of 4 MPa for 1.5 hours to obtain a resin plate having a thickness of 1 mm. The resin plate was cut to a size of 10 mm square to produce a resin plate for thermal conductivity evaluation.

(プリプレグの作製)
次に上記樹脂組成物のワニスを、Eガラスクロス(旭化成イーマテリアルズ(株)製、商品名:AS750、厚さ0.06mm、Eガラスの熱伝導率1.03W/mK)に含浸塗工し、160℃で5分加熱乾燥して樹脂組成物の含有量が70体積%のプリプレグを得た。
(Preparation of prepreg)
Next, the varnish of the resin composition is impregnated with E glass cloth (Asahi Kasei E-Materials Co., Ltd., trade name: AS750, thickness 0.06 mm, thermal conductivity of E glass 1.03 W / mK). And dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin composition content of 70% by volume.

(熱伝導率評価基板の作製)
次に、このプリプレグを6枚重ね、18μmの電解銅箔を上下に配置し、温度185℃、圧力4MPaで1.5時間積層成形を行って銅張積層板(厚さ0.45mm)を得た。銅張積層板の銅箔をエッチング液により取除いた後、10mm角の大きさに切断して熱伝導率評価基板を作製した。
(Preparation of thermal conductivity evaluation board)
Next, 6 sheets of this prepreg are stacked, 18 μm electrolytic copper foils are arranged on the top and bottom, and laminated molding is performed at a temperature of 185 ° C. and a pressure of 4 MPa for 1.5 hours to obtain a copper clad laminate (thickness 0.45 mm) It was. After removing the copper foil of the copper-clad laminate with an etching solution, it was cut into a 10 mm square size to produce a thermal conductivity evaluation substrate.

(熱伝導率の評価)
熱伝導率の評価は、熱拡散率はキセノンフラッシュ法(Nano Flash LEA447、NETZSCH製)を用いて、定圧比熱容量はDSC(PE Pyris Series Pyris1、パーキンエルマー製)を用いて、密度は電子比重計(SD−200L、アルファミラージュ製)を用いて測定し、これらの積によって算出した。なお、熱拡散率、密度は25℃で測定し、定圧比熱容量測定についても25℃の比熱容量を測定により導いた。
(Evaluation of thermal conductivity)
The thermal conductivity was evaluated using a xenon flash method (Nano Flash LEA447, manufactured by NETZSCH), a constant pressure specific heat capacity using DSC (PE Pyris Series Pyris1, manufactured by PerkinElmer), and a density measured by an electronic hydrometer. (SD-200L, manufactured by Alpha Mirage) and calculated by the product of these. The thermal diffusivity and density were measured at 25 ° C., and the specific heat capacity at 25 ° C. was also derived by measurement for the constant pressure specific heat capacity measurement.

実施例2〜3、比較例1〜5
各成分の種類及び配合割合を表1に示すとおりとしたこと以外は実施例1と同様にして操作を行った。
Examples 2-3 and Comparative Examples 1-5
The operation was performed in the same manner as in Example 1 except that the types and mixing ratios of the components were as shown in Table 1.

Figure 0005691833
Figure 0005691833

(結果)
実施例1〜2及び比較例1〜4の比較から明らかなとおり、本発明の樹脂組成物は、ガラス繊維基材に含浸して積層板とした際の熱伝導率の低下が小さく、積層板の熱伝導率が大きくなる。
(result)
As is clear from the comparison between Examples 1 and 2 and Comparative Examples 1 to 4, the resin composition of the present invention has a small decrease in thermal conductivity when impregnated into a glass fiber substrate to form a laminate, and the laminate The thermal conductivity of increases.

すなわち、実施例1〜2及び比較例1〜4は、積層板中の樹脂組成物とガラス繊維基材との含有量が同一である(樹脂組成物70質量%、ガラス繊維基材30質量%)。そして、樹脂組成物の熱伝導率(1)と積層板の熱伝導率(2)との差(1)−(2)は、実施例1〜2では0.27〜0.32W/mKであるのに対して、比較例1〜4では0.34〜0.48W/mKであり、実施例1〜2の樹脂組成物は積層板とした際の熱伝導率の低下が小さい。別言すると、表1の最下欄に記載されているとおり、熱伝導率の低下率{(1)−(2)}/(1)は、実施例1〜2では15〜18%であるのに対して、比較例1〜4では21〜26%であり、実施例1〜2の樹脂組成物は積層板とした際の熱伝導率の低下率が小さい。そのため、実施例1〜2の方が比較例1〜4よりも、積層板の熱伝導率が大きい。
また、実施例1と比較例2を比較すると、樹脂組成物の熱伝導率は1.85W/mKと同一であるのに対し、積層板にした場合の熱伝導率は、実施例1では1.58W/mK(低下量(1)−(2)=0.27)であるのに対して、比較例2では1.37W/mK(低下量(1)−(2)=0.48)であり、実施例1の樹脂組成物は比較例2の樹脂組成物と比べ、積層板とした際の熱伝導率の低下が小さい。別言すると、熱伝導率の低下率{(1)−(2)}/(1)が、実施例1では15%であるのに対して、比較例2では26%であり、実施例1の樹脂組成物は比較例2の樹脂組成物と比べ、積層板とした際の熱伝導率の低下率が小さい。そのため、実施例1の方が比較例2よりも、積層板の熱伝導率が大きい。
更に、実施例1と比較例5とを比較すると、実施例1の方が比較例5よりも積層板中における樹脂組成物の含有量が10体積%も少ないのに、熱伝導率の低下率{(1)−(2)}/(1)は15%と同一である。
したがって、本発明により、熱伝導性に優れ、半導体パッケージやプリント配線板用に好適な熱硬化性樹脂組成物、これを用いたプリプレグ、及び積層板を得ることができる。
That is, Examples 1-2 and Comparative Examples 1-4 have the same content of the resin composition and the glass fiber substrate in the laminate (resin composition 70% by mass, glass fiber substrate 30% by mass). ). And the difference (1)-(2) of the thermal conductivity (1) of a resin composition and the thermal conductivity (2) of a laminated board is 0.27-0.32 W / mK in Examples 1-2. On the other hand, in Comparative Examples 1-4, it is 0.34-0.48 W / mK, and the resin composition of Examples 1-2 has a small decrease in thermal conductivity when used as a laminate. In other words, as described in the bottom column of Table 1, the rate of decrease in thermal conductivity {(1)-(2)} / (1) is 15 to 18% in Examples 1-2. On the other hand, in Comparative Examples 1-4, it is 21-26%, and the resin composition of Examples 1-2 has a small decrease rate of the thermal conductivity when it is used as a laminate. Therefore, the thermal conductivity of a laminated board is larger in Examples 1-2 than Comparative Examples 1-4.
Further, when Example 1 and Comparative Example 2 are compared, the thermal conductivity of the resin composition is the same as 1.85 W / mK, whereas the thermal conductivity in the case of the laminated plate is 1 in Example 1. .58 W / mK (reduction amount (1)-(2) = 0.27), while in Comparative Example 2, 1.37 W / mK (reduction amount (1)-(2) = 0.48) And compared with the resin composition of Comparative Example 2, the resin composition of Example 1 has a small decrease in thermal conductivity when used as a laminate. In other words, the rate of decrease in thermal conductivity {(1)-(2)} / (1) is 15% in Example 1, compared with 26% in Comparative Example 2, and Example 1 Compared with the resin composition of Comparative Example 2, this resin composition has a lower rate of decrease in thermal conductivity when used as a laminate. Therefore, the thermal conductivity of the laminate is higher in Example 1 than in Comparative Example 2.
Furthermore, when Example 1 and Comparative Example 5 are compared, although the content of the resin composition in the laminated plate is less than 10% by volume in Example 1 than in Comparative Example 5, the rate of decrease in thermal conductivity is {(1)-(2)} / (1) is the same as 15%.
Therefore, according to the present invention, a thermosetting resin composition excellent in thermal conductivity and suitable for semiconductor packages and printed wiring boards, a prepreg using the same, and a laminate can be obtained.

本発明の熱硬化性樹脂組成物、それを用いたプリプレグ、および積層板は、半導体パーケージやプリント配線板の製造に好適に用いられる。   The thermosetting resin composition of the present invention, the prepreg using the same, and the laminate are suitably used for the production of semiconductor packages and printed wiring boards.

Claims (7)

下記一般式(1)で表わされるエポキシ樹脂と、
下記一般式(2)で表わされる繰り返し構造及び下記一般式(3)で表される繰り返し構造を有するフェノール性化合物と
を配合してなり、前記フェノール性化合物中におけるカテコール及びレゾルシノールの合計数に対するレゾルシノールの存在比率が80%以上100%未満である熱硬化性樹脂組成物。
Figure 0005691833
Figure 0005691833
Figure 0005691833
[式(1)中において、mは0〜10の整数であり、nは0〜10の整数であり、R1及びR2はそれぞれ独立に水素又は炭素数1〜10のアルキル基である。]
An epoxy resin represented by the following general formula (1):
Following general formula (2) Ri greens by blending a phenolic compound having a repeating structure represented by the repeating structural及beauty under following general formula (3) represented by the sum of catechol and resorcinol in the phenolic compound The thermosetting resin composition whose abundance ratio of resorcinol with respect to number is 80% or more and less than 100% .
Figure 0005691833
Figure 0005691833
Figure 0005691833
[In the formula (1), m is an integer of 0, n is an integer of 0, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms. ]
前記フェノール性化合物の数平均分子量が300〜600である請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the average molecular weight the phenolic compound has a number is 300 to 600. 前記熱硬化性樹脂組成物は、酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、酸化珪素、及び窒化硼素より選ばれる1種又は2種以上よりなる無機充填材を含有しており、
前記無機充填材の前記熱硬化性樹脂組成物全体に対する含有量が30〜70体積%である請求項1又は2に記載の熱硬化性樹脂組成物。
The thermosetting resin composition contains an inorganic filler composed of one or more selected from aluminum oxide, magnesium oxide, magnesium hydroxide, silicon oxide, and boron nitride,
The thermosetting resin composition according to claim 1 or 2, wherein a content of the inorganic filler with respect to the entire thermosetting resin composition is 30 to 70% by volume.
前記無機充填材は表面処理剤で表面処理されたものである請求項3に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 3, wherein the inorganic filler is surface-treated with a surface treatment agent. 請求項1〜4のいずれか1項に記載の熱硬化性樹脂組成物と、
ガラス繊維基材と
を含有するプリプレグ。
The thermosetting resin composition according to any one of claims 1 to 4,
A prepreg containing a glass fiber substrate.
プリプレグ全体に対する前記熱硬化性樹脂組成物の含有量が60〜90体積%である請求項5に記載のプリプレグ。   The prepreg according to claim 5, wherein the content of the thermosetting resin composition with respect to the entire prepreg is 60 to 90% by volume. 請求項5又は6に記載のプリプレグを積層成形してなる積層板。   A laminate obtained by laminating the prepreg according to claim 5 or 6.
JP2011112811A 2011-05-19 2011-05-19 Thermosetting resin composition, prepreg and laminate Active JP5691833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011112811A JP5691833B2 (en) 2011-05-19 2011-05-19 Thermosetting resin composition, prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112811A JP5691833B2 (en) 2011-05-19 2011-05-19 Thermosetting resin composition, prepreg and laminate

Publications (2)

Publication Number Publication Date
JP2012241115A JP2012241115A (en) 2012-12-10
JP5691833B2 true JP5691833B2 (en) 2015-04-01

Family

ID=47463175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112811A Active JP5691833B2 (en) 2011-05-19 2011-05-19 Thermosetting resin composition, prepreg and laminate

Country Status (1)

Country Link
JP (1) JP5691833B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811774B2 (en) * 2011-11-01 2015-11-11 住友ベークライト株式会社 Prepreg, laminate and electronic parts
CN103935092B (en) * 2014-04-11 2016-08-31 四川东材科技集团股份有限公司 Polyester-phenolic aldehyde-polyvinyl butyral resin-epoxy composite material and preparation method thereof
WO2019093192A1 (en) * 2017-11-07 2019-05-16 住友ベークライト株式会社 Fiber-containing resin composition
WO2019203292A1 (en) * 2018-04-20 2019-10-24 三菱瓦斯化学株式会社 Thermal curing composition, prepreg, laminate, metal-foil-clad laminate, printed circuit board, and multi-layer printed circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103617A (en) * 1990-08-23 1992-04-06 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic part
JPH07304846A (en) * 1994-05-09 1995-11-21 Yuka Shell Epoxy Kk Epoxy resin composition
JPH1017636A (en) * 1996-07-03 1998-01-20 Nec Corp Flame-retardant thermosetting resin composition
JP5651959B2 (en) * 2010-01-22 2015-01-14 横浜ゴム株式会社 Resin composition for syntactic foam

Also Published As

Publication number Publication date
JP2012241115A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
TWI605078B (en) Resin composition, prepreg using the resin composition, and laminate
JP5849948B2 (en) Resin composition and prepreg and laminate using the same
JP6066118B2 (en) Resin composition, prepreg and laminate
JP2013216884A (en) Thermosetting resin composition, prepreg and laminated plate
JP2009138075A (en) Resin composition, prepreg using the same, and laminate
WO2017057561A1 (en) Resin composition and multilayer substrate
JP2014009140A (en) Spherical type alumina filler, and resin composition for high heat conduction insulation material, prepreg, and laminate sheet including the same
US20150114693A1 (en) Insulating resin composition for printed circuit board and products manufactured by using the same
JP5194750B2 (en) Prepreg and laminate
WO2014122911A1 (en) Method for curing heat-curable resin composition, heat-curable resin composition, and prepreg, metal-clad laminated plate, resin sheet, printed wiring board and sealing material each produced using said composition
JP5691833B2 (en) Thermosetting resin composition, prepreg and laminate
JP2006028298A (en) Flame-retardant resin composition, prepreg and metal-clad laminated board
TW201940589A (en) Resin composition, prepreg, laminate, metal foil-clad laminate, and printed circuit board having excellent dielectric properties, high flame retardancy, good heat resistance, low water absorption, low coefficient of thermal expansion, and high adhesion to a conductor after curing
JP2014015528A (en) Prepreg and laminate sheet
JP6028349B2 (en) Thermosetting resin composition, prepreg and laminate
JP5767540B2 (en) B-stage film, multilayer substrate and laminated film which are episulfide resin materials
JP5223781B2 (en) Resin composition, prepreg and laminate
JP6303627B2 (en) Epoxy resin composition and cured product
JP2010260955A (en) Resin composition, production method of resin composition, and prepreg and laminate each using the same
JP5509625B2 (en) Prepreg resin composition, prepreg, laminated board, and printed wiring board
JP5940943B2 (en) Insulating resin material and multilayer substrate
JP2011157445A (en) Thermosetting resin composition, prepreg using the same, and laminated board
JP5691443B2 (en) Prepreg, laminated board using the same, and printed wiring board
JP2012240312A (en) Prepreg, laminated board using the same and printed wiring board
JP2015063608A (en) Thermosetting resin composition, prepreg using the same, and laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5691833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350